
Matching-based Cache Placement Decision for 5G network caching

By

Shadi Sadeghpour Kharkan

B.Sc., Islamic Azad University, Iran

2005

A thesis presented to

Ryerson University

in partial fulfillment of the requirements

for the degree of

Master of Applied Science

in the program of Computer Networks

Toronto, Ontario, Canada

©Shadi Sadeghpour 2018

ii

Abstract
Matching-based Cache Placement Decision for 5G network caching

Shadi Sadeghpour Kharkan

M.A.Sc, Computer Networks, Ryerson University, 2018

In this thesis, we present a cache placement scheme to deal with backhaul link constraint in Small

Cell Network for 5G wireless network. We formulated the cache placement problem as a graph

matching problem and presented an optimal file-helper matching algorithm. We defined stability

criterion for the matching and found that our matching solution is stable in the sense that every

helper finds at least one file to cache given that no file exceed minimum cache size.

We achieved a unique placement of a file within a cluster of helpers to increase the number of files

cached within a cluster. Further, our experimental evaluation demonstrates that our algorithm

increases local and neighbor hit ratios as compared to a random placement, which in turn

significantly decreases the traffic that goes over the backhaul bottleneck link.

iii

Acknowledgements

It is pleasure to thanks to Professor Muhammad Jaseemuddin who made this thesis possible and

many insightful conversations during the development of ideas. Without his continuous support,

enthusiasm, and encouragement, this study would hardly have been completed.

I also express my sincere gratitude to Professor Ma for his unwavering support and collegiality

over the years.

iv

Table of Content

Abstract .. ii

Acknowledgements .. iii

List of Figures ... vi

List of Tables ... vii

Chapter 1 ... 1

Introduction ... 1

Chapter 2 ... 3

Background ... 3

2.1 Cache Placement ... 3

2.1.1 Distributed Cache Placement ... 4

2.2 Proactive Caching in Small Cell Networks .. 5

2.3 Cache Placement for D2D communication in Wireless Networks 7

2.4 Collaborative Caching for multi-cell systems... 9

Chapter 3 ... 10

Design of Deferred Acceptance Placement Algorithm ... 10

3.1 Problem Formulation .. 10

3.1.1 Matching Problem .. 12

Preferences... 14

3.1.2 Matching Sets... 17

3.1.3 Stable Assignment ... 18

3.1.4 Proposed Algorithm ... 19

Chapter 4 ... 21

Performance Evaluation .. 21

4.1 Experiment Evaluation.. 21

4.2 Results ... 24

Case 1: A1 B1 for skew=0.4 ... 24

Case 2: A1 B2 for skew=0.4 ... 25

Case 3: A1 B3 for skew=0.4 ... 25

Case 4: A2 B1 for skew=0.4 ... 26

Case 5: A2 B2 for skew=0.4 ... 26

Case 6: A2 B3 for skew=0.4 ... 27

Case 7: A2 B3 for skew=0.9 ... 27

4.3 Analysis... 28

v

4.4 File-Helper Deferred Acceptance Placement Algorithm and Random Algorithm 29

Chapter 5 ... 31

Conclusion .. 31

References .. 32

vi

List of Figures

Figure 2. 1 Distributed caching and conflicting interests among users. ... 4

Figure 2. 2 Proactive Caching at Base Stations .. 6

Figure 2. 3 Proactive caching at the user terminal .. 7

Figure 2. 4 D2D assisted wireless caching system ... 8

Figure 3. 1 Studied network deployment .. 11

Figure 3. 2 Matching Problem .. 12

Figure 4. 1a, b and c of Zipf parameter variation in return the number of files 23

Figure 4. 2a Variation of popularity in return to the helpers

Figure 4.2b Number of files which each helper cached ... 24

Figure 4. 3a Variation of popularity in return to the helpers

Figure 4.3b Number of files which each helper cached .. 25

Figure 4. 4a Variation of popularity in return to the helper

Figure 4.4b Number of files each helper cached .. 25

Figure 4. 5a Variation of popularity in return to the helpers

Figure 4.5b Number of cached files for each helper ... 26

Figure 4. 6a Variation of popularity in return to the helpers

Figure 4.6b Number of files which each helper cached ... 26

Figure 4. 7a Variation of popularity in return to the helpers

Figure 4.7b Number of files which each helper cached ... 27

Figure 4. 8a Average popularity in relation between files and helpers

Figure 4.8b Number of files which each helper cached .. 27

vii

List of Tables

Table 3. 1 List of notations ... 13

Table 3. 2 File-Helper proposing Deferred Acceptance Algorithm ... 20

Table 4. 1 Different Situation of effective parameters ... 22

Table 4. 2 Simulation Parameters ... 22

Table 4. 3 The files which were requested by each user .. 29

Table 4. 4 How good it is the File-Helper Algorithm ... 30

1

Chapter 1

Introduction

One of the most effective ways to achieve high data throughput in a wireless network is using

small cells in the network (SCN). Due to explosive demand for delivery of various contents

specifically stream videos on portable devices, the idea of bringing the contents closer to the users

was raised [1]. This type of the network which is called Femtocell or Picocell, are impaired by the

capacity of backhaul link, since the capacity should be in the same order of access wireless links

to prevent bottleneck in the process of delivering huge traffic generated by mobile users.

There is a huge body of work on the heterogeneous network (HeNets) or small cell networks

(SCNs) from various aspects of cell associations, energy efficiency, and mobility management to

LTE/Wi-Fi interworking.

Most of the current research in SCNs approach the problems in a reactive way meaning the caching

decision is made in response to user’s requests for the content. This approach requires expensive

high-speed backhaul link to cope with the peak traffic demands, which is not sustainable as the

rate of requests continuously grows in the network. In another approach, the storage at base-

stations, content-awareness even social networking that affects the network usage, should be

considered in reducing the traffic on the backhaul link. In this approach, a proactive solution can

be designed that requires predicting users’ context information to intelligently store contents to

offload the backhaul and bring a high quality of service (QoS) for users [2].

With the prediction of future data requests and storing of data in the cache, the probability of

serving a huge amount of users’ requests without further downloading through backhaul link

increases. Predicting future users demand and estimating the popularity of the contents, content

can be stored in the cache of nodes that reside at the edge of the network. Consequently, proactively

caching users’ content at Small Base Stations (SBSs) would ease the backhaul load and improve

the QOS from the user’s point of view.

For this solution to work, providing a good caching technique is crucial and the importance of this

point has brought many studies to a different setting and different objectives to cache at the base

stations. Here when the concept of hierarchical caching comes up where the information theoretic

approach applies to deal with.

2

Collaboration among small cells can efficiently reduce the cost of operation in a cellular network

and improve the performance that aims to deploy collaborative caching [4].

Collaborative caching is proposed for proactive caching as well as reactive caching through offline

and online settings [4]. It is found that content caching in a multicellular system by collaborating

with their small cells can minimize the total cost paid by content provider [4].

Caching helpers (femtocells, Wi-Fi) with high storage capacity can be placed small cell base

stations [1]. These helpers comprise a high bandwidth communication and storage capacity with

low rate backhaul link. The localized high bandwidth communication capabilities enable them for

high-frequency reuse by caching the popular contents and serve the requests from mobile user

terminals (UEs).

There are some studies that show the potential of caching at the UEs side that can help to bring the

contents even closer [3], e.g., Device to Device caching or local cache offloading. These concepts

try to deal with the placement problem of caching contents in a wireless system.

Since caching the most popular files at the Small Base Stations (SBSs) is known to effectively

increase the data throughput and bring the contents closer to the users. FemtoCaching is introduced

as a novel architecture to use the concept of caching in a very practical way to deal with backhaul

capacity constraints by reusing local storage at the SBSs for caching [9].

However, the effectiveness of caching largely depends on the reusability of the content stored in

the cache. The decision for the placement of content (files) in the cache is crucial for improving

the reusability of the cached file. In this thesis, we propose a placement algorithm based on the

well-known graph matching problem in order to increase the probability of finding the requested

files already cached at the helpers.

The thesis is organized as follows.

First, we discuss background work on caching with focus on cache placement in chapter 2. Then

in chapter 3, we present our placement algorithm based on graph matching. We discuss the user

and helper preferences and develop their preference matrices, then we describe the matching game

and its requirement, and finally we provide our algorithm and its pseudo-code. In chapter 4, we

evaluate the performance of our algorithm as well as the simulation results. Finally, we present

some concluding remarks and future work in chapter 5.

3

Chapter 2

Background

This chapter discusses the concepts and research that are relevant to the work reported in this

thesis. Section 2.1 gives an overview of the basic ideas of caching placement in a wireless

networks. In section 2.2 proactive caching in small cell network is discussed. Section 2.3 provides

the schemes related to caching placement for D2D assisted in wireless networks. Finally,

collaborative small cellular network is reviewed in the last section.

2.1 Cache Placement

The dramatic growth of data traffic in the wireless network is due to downloading of high demand

files that are requested every day. Comparative analysis of small cell architecture and conventional

macro-cell architecture with the estimated growth demand in future motivated researchers to look

for new technologies to cope with such traffic. One of the most promising approaches is introduced

to reduce the cell size and bring the content closer to the user [1]. Small cell network becomes

viable for localized communication and when communication resources are reused. Femto-cell

architecture [1] was proposed to handle users’ demand while using short-range links to the nearest

small base station. These femto base stations (helpers) with high storage capacity are connected

to the backbone network through low rate backhaul links. The bottleneck bandwidth of backhaul

links can be mitigated by storing popular files and serving the requests through the backhaul link

only when none of the helpers could serve them. In [1], the placement of these contents is discussed

to answer the key question of which files should be placed in which helpers. The optimal caching

policy is relatively simple when a user can communicate with only one helper because in this case

each helper should cache the most popular files. However, when a user has connections to multiple

helpers, caching policy becomes more challenging and the task of assigning caches to helpers

becomes crucial.

Reference [1] presents the formalization of the caching placement problem and the design of an

architecture for increasing the throughput of wireless video delivery network to reduce the

backhaul traffic load.

4

2.1.1 Distributed Cache Placement

The scheme in [1] considers that all video files are requested randomly and they are redundant. It

deals with the problem of finding a way of placing the files among helpers to minimize the average

delay experienced by users. Figure 2.1 illustrates the relationship between users and helpers when

four users and two helpers are engaged in communication. It is obvious from the figure that U1

and U2 prefer helper1 and U4 prefers helper 2 to cache their popular files. For U3, both helpers

H1 and H2 are equally preferable and they together provide almost double the space for caching

U3 as compared to a single helper.

Figure 2. 1 Distributed caching and conflicting interests among users.

In general, for a system with H number of helpers, K user terminals and a library of N files, each

user sends a request with the probability of 𝑝𝑛 while relationship between users and helpers can

be modeled as a bipartite graph. When a local helper receives a request, it first looks in its cache

to find the requested file and serve it. If the local helper does not find the requested file in its cache,

it sends the request to the BS that serves the request at higher delay.

In-network caching is proposed to increase the throughput of wireless contents (Videos) delivery

and decrease the backhaul traffic load. Since the storage becomes cheap, caching at the base

stations provides a low-cost solution of reducing the load in the backhaul links. The download cost

can further be reduced by offloading the download traffic from the low-rate backhaul link at peak

time through scheduling download requests at off-peak hours especially in case of proactive

caching. In [1] the placement problem is formulated in terms of maximizing a monotone

submodular function over matroid constraints and a greedy algorithm is introduced that solves the

5

problem in ½ of the optimal value. Researchers evaluated their scheme by simulating an LTE-

based cellular network and using a real trace of YouTube requests. Their result shows almost 500%

performance improvements making the proposed scheme a promising way of alleviating the

bottlenecks in wireless video delivery.

2.2 Proactive Caching in Small Cell Networks

One of the key roles of employing small-cell base stations in the cellular wireless network is to

take the advantage of using their capacity and valuable coverage to avoid the bottleneck in content

delivery and sustain huge traffic that is generated by mobile users, specifically for video streaming

and content sharing in social networks [2]. Caching popular contents at the edge of the network

(at the SBSs) is introduced to reduce the backhaul bottleneck and satisfy user’s demand by caching

files on-demand upon serving first request for the file. In [2], proactive caching is introduced in

small-cell networks by predicting popularity of files based on context-awareness and data mining

social network for usage pattern.

In Proactive caching, schemes are developed to predict user’s context information and future file

usage pattern to cache a content before it is requested [2]. Thus, we can offload the backhaul traffic

and download the content at less busy time. It is shown in [2] that proactive caching contents at

SBSs significantly reduced the backhaul load and improved user satisfaction.

To estimate the popularity of contents some tools like machine learning or analyzing the

infrastructure logs have been studied. Collaborative filtering (CF) methods were applied to predict

the popularity. The study showed that exploring user-user relationships through online social

networking that strongly affect the network can also assist in storing strategic contents. We discuss

their system model below.

The small cell network system presented in [2] includes M SBSs, N UTs (user terminals) and a

central scheduler with a limited capacity. The central scheduler is responsible to provide

broadband access to SCs over backhaul links. SBSs serve the requests through wireless small cell

links or Device-to-Device communications (which will be discussed later), depending on the

availability of caches in SBSs or UTs. The goal of this system is to keep the satisfaction ratio above

6

a threshold by minimizing the usage of the backhaul. It can be achieved by caching the predicted

content either at the base-station or at the user terminals.

Figure 2. 2 Proactive Caching at Base Stations

Figure 2.2 illustrates the proactive caching at base-stations. The first step is to collect users ranking

of the contents even during peak time. Then, by applying CF tools, content popularity are

estimated. In the third step, the most popular contents are stored for a given storage size to finally

serve the requests from the local cache. The content popularity follows ZipF distribution while

arrival times are uniformly sampled in the T time duration. Popularity matrix is built for each SBS

and a greedy approach is employed to store all popular contents (considering the storage size

constrain of SBS). The performance evaluation shows that the proactive caching outperforms

reactive caching by improving the satisfaction ratio and reducing the backhaul load.

Content can also be cached at the UTs by exploiting direct communication between devices,

known as D2D Communication. To achieve device caching, social ties and physical proximity are

two important parameters that play a crucial role in measuring the interactions among users.

Influential users (those that have already cached popular contents) offer content delivery through

D2D communication. The SBS takes advantage of these users to look for requested content after

 Small cell Base Station-Small cell (cache-enabled)

 Small Cell Link

 User terminal

7

it fails to find content in its own cache. If the content is not found in both SBS and device cache

of the influential users, then it is finally delivered through expensive backhaul link.

Influential users can be identified by employing centrality metric method in social networks and

assessing the quality of their connections. The influential users are the users with higher centrality

metric value or with more communication links. Analysis of the content distribution among each

social community identifies significant contents of each community that can be stored in the cache

of these influential users.

Figure 2. 3 Proactive caching at the user terminal

Figure 2.3 shows the process of proactive caching at user terminals [2]. All users are considered

to be in a cluster and this study shows that the proactive approach provides desirable performance

in comparison with the on-demand caching.

2.3 Cache Placement for D2D communication in Wireless Networks

One of the significant approach of cache placement in devices was studied in [3]. This approach

developed the optimal cache placement scheme in terms of increasing the offloading probability

where both the base stations and users have capability of caching. Offloading in their scheme is

categorized into three different types: self-offloading, D2D-offloading, and helper-offloading [3].

Figure 2.4 shows the system model of D2D assisted wireless caching system. When a request

arrives, each user checks its local cache whether the desired content is stored there to serve

8

immediately, which is known as self-offloading. If the user fails to find the content in its local

cache, it launches a search among closest devices. If the content is found in a device cache within

a specific radius, that device serves the request and offloading happens through D2D-offloading.

The helpers- with low rate backhaul link and high storage capacity- if find the content in their

caches, transmit the content to the user through helper-offloading. Ultimately, if the request

couldn’t be served through any of the previous offloading stages, the cellular base station is

responsible to bring the requested content from the Internet.

Figure 2. 4 D2D assisted wireless caching system

To reduce the backhaul BS traffic, the scheme in [3] tried to maximize the offloading probability

and formulated the optimal cache placement into a difference of convex (DC) problem that can be

solved by DC programming. The probability distribution is modeled using PPP distribution with

designated density, to find the probability of spreading n devices in a definite radius. The paper

computes the probability that at least one user caching the i-th content, the probability that one

helper caching the i-th content, the probability that one helper and one user caching i-th content,

the probability of cached-enabled users, and finally the total offloading probability for D2D

assisted wireless caching system. The paper concludes that more data offloading through caching,

9

lessens the need of transferring the content from the BS. The performance results show that the

most popular contents should be cached under low node density but general content can be cached

under high node density. Further, the caching scheme in [3] provide a balance among different

offloading techniques.

2.4 Collaborative Caching for multi-cell systems

In [4], minimizing the total cost of caching to the content providers through collaborative caching

for multi-cell coordinated system are studied. Collaboration among the base stations decreases the

operational cost of a network and improves performance. This research considered two types of

caching cost: the storage cost and the user attrition (UA) cost. The storage cost is paid by Cellular

Network Operator for caching the content. On the other hand, the UA cost should be considered

in case of losing users that are not satisfied with the QoS, for example a user experiencing high

delay in downloading streaming videos. Therefore, minimizing the cost is tantamount to

maximizing users demand satisfaction. This scheme does not consider the popularity of the content

instead it employs the concept of competitive ratio to measure the performance of an online

algorithm. The algorithm has a potential function for each base station and when a request arrives,

the algorithm updates the total UA cost function. It decides to cache the content when the function

shows a potential, while caching costs at other base stations exceeded .The problem is formulated

as the Integer Linear Program that consists of two cost functions that should be minimized.

The Mobility Management Entity (MME) of a cellular network is responsible for executing the

algorithm and the content providers need to pay for running the algorithm at MMEs plus the cost

of storing the content at base stations. When the base station receives a request, it immediately

serves the request if the content is already cached there. Otherwise, it contacts MME to run the

algorithm and decides whether the content should be cached by a new base station or not.

It is shown that the collaborative caching scheme offers greater saving and applying the online

algorithms is much more worth than solving non-collaborative optimization problems.

10

Chapter 3

Design of Deferred Acceptance Placement Algorithm

The goal of this research is to suggest a new caching scheme of dealing with the backhaul problem

in wireless access network of femto base stations that have a low-bandwidth backhaul link but

high storage capacity. In this network, femto base stations serve as caching helpers that store the

most popular files to increase the probability of finding requested files by users within the set of

helpers or reducing the downloading time experience by them [1].

These helpers can locally communicate with user terminals (UTs), cache popular files, and serve

them in response to user requests. Our proposed scheme differs from previous works in access

network caching in two respects: one, we propose an algorithm of optimal placement of files

through stable matching theory on bipartite graphs, and two, using a user-to-file association

matrix. Knowing a set of files that each user can access, make us rank the files and then place them

at the best helper in terms of accessing user and by applying matching game, the most matched

files will place in each matched helper within a cluster in small cell network.

In this chapter, we define the problem precisely and outline all possible solutions. Finally, after

formulating the problem and outlining its solution space, we present our file-helper placement

deferred acceptance algorithm.

3.1 Problem Formulation

In this research, we study a wireless network where the files are requested randomly and they are

redundant. They can be requested at a different time based on some popularity distribution. We

want to find the best place to cache each file within the helpers in same cluster to increase the

probability of finding the requested files among these helpers.

We consider K user terminals (UTs), M helpers and a library of P files connect through a

connectivity graph that shows UT k can communicate reliably with helper m. Figure 3.1 shows

different components of the network.

When a user sends some requests, one of the local helpers, the one which is directly connect to the

user, serves the requests. If the helper couldn’t find the requested file in its local cache, neighbor

11

helper the one which is not directly connect but exists in the same cluster, serve the request

otherwise, the macro base station (MBS) handles the request incurring a higher delay.

By predicting the probability of the users’ requests and storing them in the helpers’ cache, we

increase the probability of finding a requested content within the cluster and prevent the backhaul

load traffic.

Figure 3. 1 Studied network deployment

We assume that the file download cost per byte from a local helper is 𝐶𝑈, from a helper in the

neighbor is 𝐶𝐻, and over the backhaul link is 𝐶𝐵. We further assume following relationship among

the three costs:

 2 𝐶𝐻+𝐶𝑈 < 𝐶𝐵 – (1)

It means, if a requested file is found in the local helpers’ cache, the download incurs CU cost,

otherwise the file will be downloaded from the local cluster via MBS,and the cost will be 2 𝐶𝐻+𝐶𝑈.

In this case, MBS knows the files are already cached in a helper within the cluster and fetches it

to the local helper. All the helpers connected through a single MBS and there is no direct

connection between users and MBS. If the file is not with any helper in the cluster, it needs to be

downloaded from the network through the backhaul link at the higher 𝐶𝐵cost.

12

3.1.1 Matching Problem

The placement problem is to match the files to the helpers. From the files perspective, it is a one

to one matching problem that means each file p ε P should find at most one matching helper to

cache it. On the other hand, from helpers perspective, each helper m ε M may find several matching

files to cache them as long as the cache capacity 𝑞𝑠 allows.

Figure 3. 2 Matching Problem

In particular, our matching problem is to find the most popular files and place them in the most

preferred helpers.

It can be shown that there always exists at least one stable matching to:

 -Match the files to helpers such that a file is matched to only one helper

 -And, a helper matches to several files.

In the following table, we introduce the notations used in our matching game.

13

Parameter Description

K= { 𝑘1 … , 𝑘𝐾} Set of K users

𝑘𝑖 Variable indicating ith user

M = { 𝑚1 … , 𝑚𝑀} Set of M Helpers

𝑚𝑖 Variable indicating ith helper

P = { 𝑝1 … , 𝑝𝑃} Set of P Files

𝑝𝑖 Variable indicating ith file

CU Download cost from the local helper to the user

CB Download cost from the helper in the neighbour

CH Download cost from MBS

qp Helper m can have 𝑞𝑝 maximum number of files

qs Cache size of each helper

H Popularity Matrix- Zipf Distribution Modeled

Y SINR Matrix- user to the helper

Z File-Helper correlation matrix

A Connection Matrix-User to Helper

NSize Normalized file size matrix

StoP Size of the Files to Popularity Rate matrix

HtoP Helper to File Association Matrix

B Matching Matrix

Table 3. 1 List of notations

The popularity of the files in the system is modeled by Zipf distribution popularity where each

user ranks each file accordingly. By using Zipf distribution popularity concept we created a user

to file correlation matrix to guess the popularity of files ranking by users [7].

 𝐻𝑃,𝐾 = [

𝛼1,1 ⋯ 𝛼1,𝐾

⋮ ⋱ ⋮
𝛼𝑃,1 ⋯ 𝛼𝑃,𝐾

]

In 𝐻𝑃,𝐾 matrix each row shows files from 𝑝1 to 𝑝𝑃 while each column represents each user from

𝑘1 to 𝑘𝐾 who we have in the system.

Matrix H is a P×K dimension matrix where each element of the matrix shows the rank of the file

corresponding to the row given by the user corresponding to the column. For example, 𝛼1,1

indicates that file one is ranked by user one with the value 𝛼. The highest number of a column

shows the highest ranked file for the corresponding user. The average of each row shows the

average rank for each file computed over the rank of all users in the system. In [7], the study shows

that all these predictions come from the statistical traffic patterns and users’ context information

(i.e., file popularity distributions, location, velocity and mobility patterns), to allows us to have a

14

better understanding of users and contents (or files) relation in a network. In our scheme, the matrix

H can be derived from any popularity data, such as from recommendation system that often

develops user-file association. In this thesis, we assume that the popularity of the files is modeled

by a Zipf distribution [9], where the Zipf’s skew parameter characterizes the skew in the

distribution.

Preferences

In order to define the assignment criteria in matching game aimed to find the most suitable

matching of files and helpers [6], we need to find out the preferences of files to helpers as well as

helpers to files. Each file can rank one helper in order of its preference based on its local

information. In wireless communication, the local information contains channel quality

information in terms of SINR value, RSRP even RSRQ or Data Rate [5]. We use SINR value to

measure the quality of channel experience by each user connected to each helper.

Matrix 𝑌 𝐾×𝑀 gives the SINR value for each helper-user pair, which is computed using the SINR

equation [1].

 𝑌 𝐾×𝑀 = [

𝜃1,1 ⋯ 𝜃1,𝑀

⋮ ⋱ ⋮
𝜃𝐾,1 ⋯ 𝜃𝐾,𝑀

]

Each row belongs to every user from 𝑘1 to 𝑘𝐾 while columns represents helpers from 𝑚1 to 𝑚𝑀.

In Y matrix each value 𝜃𝑖,𝑗 represents the value of SINR of i-th user to the j-th helper. We can

drive weighted SINR matrix between files and helpers by multiplying Y with H, the popularity

distribution matrix, to get Z = H. Y is a file-helper association matrix. Each 𝛿𝑖,𝑗 is a weighted SINR

value of file i to helper j. In Z, rows show the helpers 𝑚1 to 𝑚𝑀 while each column represents

every file exists in our system 𝑝1 to 𝑝𝑃.

 [

𝛿1,1 ⋯ 𝛿𝑃,𝑀

⋮ ⋱ ⋮
𝛿𝑃,1 ⋯ 𝛿𝑃,𝑀

] = [

𝛼1,1 ⋯ 𝛼1,𝐾

⋮ ⋱ ⋮
𝛼𝑃,1 ⋯ 𝛼𝑃,𝐾

] × [

𝜃1,1 ⋯ 𝜃1,𝑀

⋮ ⋱ ⋮
𝜃𝐾,1 ⋯ 𝜃𝐾,𝑀

]

15

Denote the channel quality of file 𝑝𝜀𝑃 on helper m 𝜀 𝑀 as 𝛿𝑃,𝑀 ≥ 0, comes from the matrix Z.

Thus, each file has a preference relation ≻𝑀 over the subset of helpers.

From Z, it can be concluded that the high ranked files will likely be cached by the helpers

connected to some users through the best quality of channel among all other helpers.

Each helper 𝑚𝜀𝑀 can set its preference for files based on some local information and data coming

from file-user association matrix.

We can derive connectivity matrix A from 𝑌 𝐾×𝑀, channel quality matrix, by evaluating SINR

with the SINRmin, which is the minimum SINR below that reliable connection cannot be

established. The connectivity matrix 𝐴 𝐾×𝑀 is a Boolean matrix where aij = 1 indicates that

connection exists between user i and helper j and aij = 0 indicates otherwise. Each row indicates

all connected helpers for the corresponding user and there are 𝐾 rows for 𝐾 users. Similarly, each

column indicates all the users connected to the corresponding helper and there are 𝑀 columns for

all 𝑀 helpers.

 A= [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

]

Let us consider 𝑢[𝑚𝑖] be a function that shows the total number of users that are connected to the

ith helper 𝑚𝑖, which can be calculated by adding the bits of column 𝑚𝑖:

 𝑢[𝑚1]  1+1+0+…+0+1

 𝑢[𝑚2] 1+1+1+…+0+0

 .

 .

 𝑢[𝑚𝑀] 1+0+0+…+0+0

Where a given helper can be connected to many users and a user to several helpers. Unlike most

of the previous works in this area that consider fixed file size with no impact on cache placement

decision, we consider file size that varies and becomes a factor in helper’s decision of caching a

file. To achieve this, we consider matrix 𝑁𝑆𝑖𝑧𝑒 𝑃×𝑃, which is a diagonal file size matrix such that

16

every element 𝛽𝑖,𝑖 along the main diagonal gives the size of the ith file. We obtain matrix 𝑆𝑡𝑜𝑃 𝑃×𝑘

by multiplying 𝑁𝑆𝑖𝑧𝑒 𝑃×𝑃, and ranking matrix 𝐻 𝑃×𝐾 .

Using 𝑁𝑆𝑖𝑧𝑒𝑃×𝑃 = [

𝛽1,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝛽𝑃,𝑃

] and 𝐻𝑃,𝐾 = [

𝛼1,1 ⋯ 𝛼1,𝐾

⋮ ⋱ ⋮
𝛼𝑃,1 ⋯ 𝛼𝑃,𝐾

]

 We will have:

 𝑆𝑡𝑜𝑃 𝑃×𝐾 = [

𝜔1,1 ⋯ 𝜔′1,𝐾

⋮ ⋱ ⋮
𝜔𝑃,1 ⋯ 𝜔𝑃,𝐾

]

Where 𝜔𝑖,𝑗 in 𝑆𝑡𝑜𝑃 𝑝×𝑘 matrix, is a weighted file size of file i with specific size coupled with its

popularity that has been ranked based on Zipf distribution by user j. Since all users are not

connected with each helper, the popularity used in weighted size should be based on the file

popularity assessed by connected users only. Hence, we derive matrix 𝐻𝑡𝑜𝐹 𝑃×𝑀 where each

element 𝛼′𝑖,𝑗 shows sum of weighted size of ith file computed for all users connected to jth helper

where weighted size is the file size multiplied by user-file association index. Therefore,

 𝐻𝑡𝑜𝐹 𝑃×𝑀 → [

𝛼′1,1 ⋯ 𝛼′𝑃,𝑀

⋮ ⋱ ⋮
𝛼′𝑃,1 ⋯ 𝛼′𝑃,𝑀

] = [

𝜔1,1 ⋯ 𝜔1,𝑘

⋮ ⋱ ⋮
𝜔𝑃,1 ⋯ 𝜔𝑃,𝐾

] × [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

]

Each row belongs to different helpers 𝑚1 to 𝑚𝑀 while each column is for every file in the

system 𝑝1 to 𝑝𝑃.

In conclusion, each helper m 𝜀 𝑀 sets its preference for the files in the matrix 𝐻𝑡𝑜𝐹 𝑃×𝑀 that is a

compound value of file size and file popularity evaluated for connected users. Thus, each helper

has a preference relation ≻𝑃 over the set of files that creates an ordered list of files 𝑃𝐿ℎ (𝑚) =

{𝑝1, 𝑝2 … 𝑝𝑡}, which is the files preference list 𝑃𝐿ℎ of t most preferred files for helper m where

17

𝑝𝑖 ≻𝑃 𝑝𝑖+1 indicates that 𝑝𝑖 is more preferred file than 𝑝𝑖+1 in the list. A helper m can select top

𝑞𝑝 files from the list of t files, which defines the maximum number of files in a helper’s cache due

to its size constrain. Similarly, each file has a preference relation ≻𝑀 over the set of helpers that

creates an ordered list of helpers 𝑃𝐿𝑓(𝑝) = {𝑚1, 𝑚2 … 𝑚𝑠 }, which is the helpers preference

list 𝑃𝐿𝑓 that contains s most preferred helpers for file p where 𝑚𝑖 ≻𝑀 𝑚𝑖+1 indicates that 𝑚𝑖 is

more preferred helper than 𝑚𝑖+1 in the list. Files derive their preference list from matrix Z. In the

following we formulate cache placement problem as a graph matching problem.

3.1.2 Matching Sets

A matching 𝜂 is a function from set 𝑀 ∪ 𝑃 into the set 𝑀 ∪ 𝑃. Let us consider 𝜂(.) is a matching

function. If the argument is a file, then 𝜂(𝑝) gives us a set of matched helpers. If the argument is

a helper, then 𝜂(𝑚) maps to the matched files [5] and we have:

1. |𝜂(𝑚)|= 𝑞𝑝 for each file 𝑝𝜀𝑃 and if the number of files in 𝜂(𝑚) ≥ 𝑞𝑝 ⇒ pick high rated file,

otherwise check for more user to connect to.

2. |𝜂(𝑝)|= 1 for every file 𝑝𝜀𝑃, there exist at most one helper m 𝜀 𝑀 that caches the file and

|𝜂(𝑝)|= 0 if 𝜂(𝑝) ∉ 𝑀.

3. 𝜂(𝑝) ∈ 𝑀 if and only if 𝑝 ∈ |𝜂(𝑚)| 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑚 ∈ 𝑀.

For example, matching of files 𝑝1, 𝑝2 and 𝑝3 are 𝜂(𝑝1)= {𝑚1 𝑚3}, 𝜂(𝑝2)= {𝑚2} and 𝜂(𝑝3)= {}

respectively. The above mappings show that file 𝑝1 match with helpers 𝑚1 and 𝑚3 and will be

cached in those helpers. Similarly, 𝑝2 finds its matching with 𝑚2 and cached there. In case of file

𝑝3, it is not matched with 𝑚4 due to number of files already cached reaches it limit 𝑞𝑝 = 3.

The matching matrix 𝐵𝑃×𝑀 is as follows:

 𝐵𝑃×𝑀 = [
1 0 1 0
 0 1 0 0
0 0 0 0

]

18

In the matching matrix, a row corresponds to each file 𝑝1, 𝑝2 and 𝑝3 and a column shows every

helper in this matching 𝑚1, 𝑚2, 𝑚3 and 𝑚4. The matching matrix 𝐵 𝑃×𝑀 is a Boolean matrix

where bij = 1 indicates that matching exists between file 𝑝𝑖 and helper 𝑚𝑗 and bij = 0 indicates

otherwise. One means specific file and helper are matched while zero otherwise.

3.1.3 Stable Assignment

To show that the matching 𝜂 is stable according to Gale and Shapley [6] criterion, we review the

matching assignment criteria.

A set of P files is to be assigned among M helpers where the quota of the ith helper in terms of

number of files it can cache is 𝑞𝑝𝑖.

Each file ranks each helper in order of its preferences, omitting only those helpers it would never

accept under any circumstances (admission-college problem [6]). To simplify, we assume there

are no ties (indifferent).

Similarly, each helper ranks the files that it wants to cache in order of preferences, by first

eliminating those files that cannot be accepted under any circumstances even though the occupied

space in the cache is below the quota 𝑞𝑠.

The matching 𝜂 is blocked by helper m and file p if helper m strictly prefers p to some 𝑝′ ∈ 𝜂(𝑚)

and 𝑝 strictly prefers m to some 𝑚′ ∈ 𝜂(𝑝)

 |𝜂(𝑝)| ≤ 𝑞𝑝 and m is acceptable to p.

Additionally, there always exists one file at least to be matched to one helper based on the stability

of College-Admission problem [5]:

Among all the helpers in M and files in P, a stable set of file-helper matching exists in the way that

each helper should definitely find its matching file but every helper find top 𝑞𝑝 of matched files.

The matching algorithm is modeled as a college admission problem with a straight forward

procedure for solving it. In the beginning, all files (students) propose (apply) to their first preferred

helper (college), which are the helpers at the top of their helpers preference list.

A helper with a quota of 𝑞𝑝 then places on its waiting list the 𝑞𝑝 files which ranked highest or all

if the capacity is equal or less than 𝑞𝑝 and rejects the rest. Rejected files then propose to their

19

second preferences and again each helper selects the top 𝑞𝑝 from all new files and those on its

waiting list, will be put on its new waiting list and rejects the rest. The process ends when each file

is either on a waiting list or is rejected by every helper to which it is willing and accepted to

propose. Now, each helper admits each file on its waiting list and the stable assignment has been

achieved.

In [6], the proof is by induction to show that this matching is not even stable but also optimal. It is

assumed that to a given point in the procedure, college A hasn’t yet decided over it waiting list

with quota 𝑞𝑝 of better-qualified applicants 𝛼1 to 𝛼𝑖 and rejected applicant 𝛽 . We must show that

𝛽 is impossible for A while those on the waiting list are possible. We know that every 𝛼𝑖 prefer A

to all others or it should be rejected by the others, then under our assumption, 𝛼𝑖 was impossible

for them. Supposed an assignment which 𝛽 sends to A and everyone else to the colleges they

desired to go. In this situation at least one of the 𝛼𝑖 should go to a less desirable place than A which

show an impossible situation since in this case both A and 𝛼𝑖 will upset to the benefit of both.

Hence this assignment is unstable and A is impossible for 𝛽 . Defined procedure shows “Deferred

acceptance” procedure which is not only stable but an optimal assignment of applicants.

3.1.4 Proposed Algorithm

The following pseudo-code describes helper deferred acceptance algorithm. In this algorithm files

apply for helper based in its preference list. Each helper accepts the application of files applied for

the helper in the order of its preference list of files. A helper accepts as many files as the remaining

cache size allows.

20

Algorithm: Find the stable matching for file-helper placement problem (𝑀, 𝐾, 𝑃, 𝑃𝐿, 𝑞𝑝)

Input: M, K, P, PLh, PLf, qp,

Initialization: File=True, Helper=True and 𝑇(𝑝) = 𝑃

While ((File==True)&&(Helper==True))

do

 Step 1: Form a list 𝐿 = {(𝑝1, 𝑚1), (𝑝2, 𝑚2), … } of (file, helper) pairs formed when each file pi in 𝑇(𝑝)

applies for helper mi such that mi is the most preferred helper in 𝑃𝐿𝑓(𝑝𝑖) and 𝑇(𝑝) = { }

 Step 2: For every helper m:

 1. Form a list 𝐴 = {𝑝1
𝑚, 𝑝2

𝑚𝑝3
𝑚 … … , 𝑝𝑒

𝑚} that applied for helper m such that 𝑝𝑖
𝑚 ≻𝑃 𝑝𝑖+1

𝑚 in 𝑃𝐿ℎ(𝑚)

 2. Form the list by accepting up to 𝑠 ≤ 𝑞𝑝 best ranked files: 𝐵 (𝑚) = {𝑝1
𝑚, 𝑝2

𝑚 , 𝑝3
𝑚 … … , 𝑝𝑠

𝑚}

 3. Update both 𝜂𝑓 and 𝜂ℎ matching

 4. Update the set of rejected files 𝑇(𝑝) = 𝑇(𝑝) ∪ {𝑝s+1
𝑚 , … … , 𝑝e

𝑚}

 Step 3: if (𝑇(𝑝) == { }) then File=False or if no helper is left with less than qp files in its cache then

Helper=False

end

Output: Stable matching 𝜂

Table 3. 2 File-Helper proposing Deferred Acceptance Algorithm

21

Chapter 4

Performance Evaluation

We evaluated the performance of our proposed Helper Deferred Acceptance Algorithm described

in chapter 3 using MATLAB. We first discuss the simulation parameters and then analyze the

results.

4.1 Experiment Evaluation

We used MATLAB to implement our proposed file-helper deferred acceptance algorithm.

We consider the popularity of content (files) follows Zipf distribution, which is widely used in

cache placement studies [1], [9], [18]. In our case, Zipf distribution shows user-file association

and provides the ranking of files by a user. We developed the notion of popularity domain to reflect

different user-ranking of files, which simulates a particular user-file association regime. We used

different Zipf parameter (α) to distinguish between popularity domains. We consider two

situations: One where all users belong to the same popularity domain following one file ranking

simulated by one α-parameter of Zipf distribution. Two, where all users belong to different

popularity domain following different α-parameter values of Zipf distribution. We also evaluated

how files size impacts placement decisions in terms of the number of files stored in a cache. We

consider three file different file sizes; first the situation that size of all files are fixed, second file

size has a small variation and finally, file size shows big variation. Thus, we get 6 different

combination of these situations, which uses Zipf parameter, 0.4 < 𝑠𝑘𝑒𝑤 < 0.9.

22

Situation Description

A1 All users belong to the same popularity domain following one file ranking

simulated by one α-parameter of Zipf distribution

A2 All users belong to different popularity domain following different α-

parameter values of Zipf distribution

B1 Fixed File Sizes

B2 Small Variation among File Sizes

B3 Big Variation among File Sizes

Table 4. 1Different Situation of effective parameters

Subsequently, we have 6 different scenarios: For 0.4 <∝< 0.9 ;

 1. A1 B1 4. A2 B1

 2. A1 B2 5. A2 B2

 3. A1 B3 6. A2 B3

The capacity of the backhaul links is assumed to be lower than the capacity of the wireless links.

The simulation parameters are given the table 4.1.

Parameter Value Description

K 40 Number of Users

M 10 Number of Helpers

P 150 Number of Files

SF 10…100

MB

Size of the Files

𝑞𝑠 Cache Size, 450 MB The Capacity of Each Helper Cache

Table 4. 2 Simulation Parameters

23

Figure 4.1a, b and c shows the ranking of files following Zipf probability distribution with different skew

parameter 0.4, 0.6 and 0.9 in order.

4.1a Skew=0.4 4.1b Skew=0.6 4.1c Skew=0.9

Figure 4. 1a, b and c of Zipf parameter variation in return the number of files

We calculated two metrics to evaluate the performance of our placement algorithm, which is described

below:

1. Average Popularity

We calculate the average popularity of files cached in a helper by taking mean of Zipf probability

of all the files cached in that helper. Each file has an associated Zipf probability that is its

popularity index. We also calculated Max. and Min. Zipf probability of the cached files.

2. Number of Cached files

We also computed the number of files cached at each helper that shows the efficiency of cache

memory utilization and its sensitivity to the variation in file sizes.

24

4.2 Results

We discuss results for each of six scenarios below:

Case 1: A1 B1 for skew=0.4

Figure 4. 2a Variation of popularity in return to the helpers Figure 4.2b Number of files which each helper cached

In the first case, we consider same popularity domain and fixed file sizes. Figure 4.2(a) shows the

minimum, mean and maximum popularity of the files cached by each helper. It shows that helper 3 and

6 cached mostly popular files as compared to other helpers.

In our algorithm, since helpers with high preference start caching files, they tend to cache the most

popular files. When helpers with low preference get a chance for caching, they tend to get less popular

files. As the number of files is more than the capacity of the system, all helpers will cache to their full

capacity which is 450, and as the file size is the same, the number of files cached in each helper will be

the same. This is shown in Figure 4.2(b). In our case file size equal to 40, so each helper cache 450/40=11

files.

25

 Case 2: A1 B2 for skew=0.4

In this case, we introduce small variation in file size that varies from 30 to 50 with average 40. It causes

helpers caching a different number of files.

Figure 4. 3a Variation of popularity in return to the helpers Figure 4.3b Number of files which each helper cached

Case 3: A1 B3 for skew=0.4

In this case, we introduce a large variation in file size, which varies from10 to70 MB. With large variation

of file size the number of cached files decreases.

Figure 4. 4a Variation of popularity in return to the helper Figure 4.4b Number of files each helper cached

26

The result shows that the most preferred helpers tend to cache popular files with small size. The preferred

helpers are the helpers with the best channel quality (high SINR experienced by users).

In the following cases, we will study how popularity domain influences caching decisions.

Case 4: A2 B1 for skew=0.4

Figure 4. 5a Variation of popularity in return to the helpers Figure 4.5b Number of cached files for each helper

In the caching decision, a helper with high preference caches files with the highest popularity.

Case 5: A2 B2 for skew=0.4

Figure 4. 6a Variation of popularity in return to the helpers Figure 4.6b Number of files which each helper cached

27

Case 6: A2 B3 for skew=0.4

Figure 4. 7a Variation of popularity in return to the helpers Figure 4.7b Number of files which each helper cached

Condition 4, 5 and 6 prove that when the popularity changes for users, how it moves caching placement

and the file sizes, on the other hand, changes both standing to win the matching game pro themselves. In

condition 6, each helper cache fewer files in compare when the size is fixed in condition 4.

Case 7: A2 B3 for skew=0.9

In this condition the popularity of users are various and the size of files are between 10 to 70 MB.

Figure 4. 8a Average popularity in relation between files and helpers Figure 4.8b Number of files which each helper cached

28

4.3 Analysis

A1, the popularity distribution of files among users in the same domain, clearly displays that how it

makes the popularity rate increases, because the probability of requesting the same file by different user

goes up in compare with condition A2 that users are placed in the different domain which they might

request totally different files, (A person who likes watching sport game video, might not be interested in

fashions matters), but the average of these popularity value seems to be close together.

While the size of the files is fixed (B1) by increasing the skew (from 0.4 to 0.9) the value of Max rises in

A1, however, we don’t see any significant changes on the value of Max in A2.

When the size of the files change in the small variation (30 to 50M), by increasing the skew value, the

Max goes up in A1 but still no big change in A2, therefore, we conclude that in this condition, the

popularity distribution changes differently and smallest files with new popularity value, are cached in the

most popular helpers.

By growing files’ sizes in a big variation, the weight of the size is more than popularity value.(In our

matching game the preferences are files with smaller sizes and higher popularity value and helpers with

better quality of channel to connect to).

From the whole graph we conclude that: The most popular helpers when the sizes of the files are fixed

or have a small variation, cache the most popular file, but when the variation in sizes increases, it affects

more in the decision and the most favoured helpers cache files with the smallest sizes rather than the

higher value of popularity.

In condition A2, we observed that the value of Min, Mean and Max increases slightly when the skew

grows. Popularity doesn’t influence a lot.

On the other hand, by having the small variation in sizes for A2, again, most preferred helpers start to

cache more files and we can say that the matching game is mostly based on popularity value.

[Big variation as it discussed before, increases the weight of sizes in the decision, by growing the value

of skew (skew=0.4 means the number popular files are more than when skew=0.8) even though the Max

somewhat goes up but file sizes are dominated].

To have a better result of the way that how placement happens, we required some numerical results as

well. By creating a request pattern we were able to observe which files placed on which helper. Then,

we could be able to compare our placement algorithm with others.

29

4.4 File-Helper Deferred Acceptance Placement Algorithm and Random Algorithm

We compared our algorithm with a random placement one to illustrate how much our placement

algorithm is optimal. Our users’ requests pattern was based on Zipf distribution where skew is equal 0.25,

for example, the low value of skew means the number of requests is made by each user tends to be close

to each other. In the other hand, the high value of skew means some users will have more chance to

generate requests among the others, and each user requests the files based on file popularity distribution.

Rank File

Popularity

(skew=0.4)

User1

(file

#)

User2

(file

#)

User3

(file

#)

User4

(file

#)

User5

(file

#)

User6

(file

#)

User7

(file

#)

………. User40

(file #)

1 0.0307 13 50 46 60 96 127 42 …….. 28

2 0.0232 87 97 142 73 146 45 25 …….. 47

3 0.0198 22 4 27 129 26 61 57 …….. 122

4 0.0176 60 51 69 26 18 35 101 …….. 45

5 0.0161 73 132 95 85 10 119 5 …….. 116

6 0.0150 20 78 150 58 78 126 144 …….. 48

7 0.0141 6 145 70 17 122 133 89 …….. 103

…….. …….. …….. …….. …….. …….. …….. …….. …….. …….. ……..

150 0.0041 96 43 23 74 5 26 50 …….. 135

Table 4. 3 The files which were requested by each user

 Based on this request pattern we defined and calculated 4 different ratios as;

-LocalHitRatio, the percentage that local helpers- the helpers which users directly connect to- can serve

the requests

-NeighborHitRatio, the percentage that those neighbor helpers- the helpers which users do not connect

to but they are all connected to one ENB- can serve the request

-TotalHitRatio, the percentage that our system can totally serve all coming requests

-MissRatio, the number of requests which missed and needed to be served through the backhaul link.

Following table displays the above comparisons;

30

Parameter File-Helper Deferred Acceptance Placement Algorithm Random Algorithm

A1B1-Skew=0.4

LocalHitRatio

NeighborHitRatio

TotalHitRatio

MissRatio

%26

%69

%95

%5

%19

%32

%51

%49

A1B1-Skew=0.9

LocalHitRatio

NeighborHitRatio

TotalHitRatio

MissRatio

%32

%44

%76

%24

%19

%32

%51

%49

A1B2-Skew=0.6

LocalHitRatio

NeighborHitRatio

TotalHitRatio

MissRatio

%36

%46

%82

%18

%19

%32

%51

%49

A1B3-Skew=0.9

LocalHitRatio

NeighborHitRatio

TotalHitRatio

MissRatio

%36

%58

%94

%6

%19

%32

%51

%49

Table 4. 4 How good it is the File-Helper Algorithm

Our numerical outcome in many different cases with various value for our input parameters prove that

the file-helper placement algorithm has a much better result.

31

Chapter 5

Conclusion

In this study, we introduced a new method for caching placement in small cell networks to increase the

probability of finding a requested file by a user in the network. We formulated the cache placement

problem as graph matching problem and presented an optimal file-helper matching algorithm based on

Gale-Shapley optimal matching criterion [6]. We define stability criterion for the matching and found

our matching solution stable in the sense that every helper finds at least one file to cache given no file

exceed minimum cache size.

We achieved unique placement of a file within a cluster of helpers to increase the number of files cached

within a cluster. We define a cluster as the number of helpers connected through same Node B. Thus,

there is no replication of files in a cluster.

Further, our experimental evaluation demonstrates that our algorithm increases local and neighbor hit

ratios as compared to a random placement. We also simulated our algorithm for different scenarios by

varying file sizes and Zipf popularity parameter. We found that for fixed sized files, helpers tend to cache

highly popular files, but for variable sized files, they tend to cache smaller files compromising file

popularity ranking. We also found that by applying the file-helper deferred acceptance, we could

significantly decrease the traffic that goes over the backhaul bottleneck link.

32

References

[1] Golrezaei, Negin, Karthikeyan Shanmugam, Alexandros G. Dimakis, Andreas F. Molisch,

and Giuseppe Caire. "FemtoCaching: Wireless video content delivery through distributed

caching helpers." 2012 Proceedings IEEE INFOCOM, 2012.

doi:10.1109/infcom.2012.6195469.

[2] Baştuğ, Ejder, Mehdi Bennis, and Mérouane Debbah. "Proactive Caching in 5G Small Cell

Networks." Towards 5G, 2016, 78-98. doi:10.1002/9781118979846.ch6.

[3] Rao, Jun, Hao Feng, Chenchen Yang, Zhiyong Chen, and Bin Xia. "Optimal caching

placement for D2D assisted wireless caching networks." 2016 IEEE International

Conference on Communications (ICC), 2016. doi:10.1109/icc.2016.7511410.

[4] Gharaibeh, Ammar, Abdallah Khreishah, Bo Ji, and Moussa Ayyash. "A Provably Efficient

Online Collaborative Caching Algorithm for Multicell-Coordinated Systems." IEEE

Transactions on Mobile Computing 15, no. 8 (2016), 1863-1876.

doi:10.1109/tmc.2015.2474364.

[5] Jorswieck, Eduard A. "Stable matchings for resource allocation in wireless networks." 2011

17th International Conference on Digital Signal Processing (DSP), 2011.

doi:10.1109/icdsp.2011.6004983.

[6] Gale, D., and L. S. Shapley. "College Admissions and the Stability of Marriage." The

 American Mathematical Monthly 69, no. 1 (1962), 9. doi:10.2307/2312726.

[7] Bastug, Ejder, Mehdi Bennis, and Mérouane Debbah. "Living on the edge: The role of

proactive caching in 5G wireless networks." IEEE Communications Magazine 52, no. 8

(2014), 82-89. doi:10.1109/mcom.2014.6871674.

[8] Bastug, Ejder, Mehdi Bennis, and Merouane Debbah. "Social and spatial proactive caching

for mobile data offloading." 2014 IEEE International Conference on Communications

Workshops (ICC), 2014. doi:10.1109/iccw.2014.6881261.

[9] Tan, Yuanyuan, Yiling Yuan, Tao Yang, Yuedong Xu, and Bo Hu. "Femtocaching in wireless

video networks: Distributed framework based on exact potential game." 2016 IEEE/CIC

International Conference on Communications in China (ICCC), 2016.

doi:10.1109/iccchina.2016.7636817.

[10] Pantisano, Francesco, Mehdi Bennis, Walid Saad, and Merouane Debbah. "Cache-aware user

association in backhaul-constrained small cell networks." 2014 12th International

33

Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), 2014. doi:10.1109/wiopt.2014.6850276.

[11] Meng, Yue, Chunxiao Jiang, Lei Xu, Yong Ren, and Zhu Han. "User Association in

Heterogeneous Networks: A Social Interaction Approach." IEEE Transactions on

Vehicular Technology 65, no. 12 (2016), 9982-9993. doi:10.1109/tvt.2016.2525726.

[12] Gu, Yunan, Walid Saad, Mehdi Bennis, Merouane Debbah, and Zhu Han. "Matching theory

for future wireless networks: fundamentals and applications." IEEE Communications

Magazine 53, no. 5 (2015), 52-59. doi:10.1109/mcom.2015.7105641.

[13] Tran, Tuyen X., Parul Pandey, Abolfazl Hajisami, and Dario Pompili. "Collaborative multi-

bitrate video caching and processing in Mobile-Edge Computing networks." 2017 13th

Annual Conference on Wireless On-demand Network Systems and Services (WONS),

2017. doi:10.1109/wons.2017.7888772.

[14] Khreishah, Abdallah, Jacob Chakareski, and Ammar Gharaibeh. "Joint Caching, Routing,

and Channel Assignment for Collaborative Small-Cell Cellular Networks." IEEE Journal

on Selected Areas in Communications 34, no. 8 (2016), 2275-2284.

doi:10.1109/jsac.2016.2577199.

[15] Hamidouche, Kenza, Walid Saad, and Merouane Debbah. "Many-to-many matching games

for proactive social-caching in wireless small cell networks." 2014 12th International

Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), 2014. doi:10.1109/wiopt.2014.6850348.

[16] Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. "Wireless Device-to-Device Caching

Networks: Basic Principles and System Performance." IEEE Journal on Selected Areas in

Communications 34, no. 1 (2016), 176-189. doi:10.1109/jsac.2015.2452672.

[17] Pantisano, Francesco, Mehdi Bennis, Walid Saad, and Merouane Debbah. "Match to cache:

Joint user association and backhaul allocation in cache-aware small cell networks." 2015

IEEE International Conference on Communications (ICC), 2015.

doi:10.1109/icc.2015.7248797.

[18] Borst, Sem, Varun Gupta, and Anwar Walid. "Distributed Caching Algorithms for Content

Distribution Networks." 2010 Proceedings IEEE INFOCOM, 2010.

doi:10.1109/infcom.2010.5461964.

