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Abstract 
Matching-based Cache Placement Decision for 5G network caching 

Shadi Sadeghpour Kharkan 

M.A.Sc, Computer Networks, Ryerson University, 2018 

 

 

 

 

In this thesis, we present a cache placement scheme to deal with backhaul link constraint in Small 

Cell Network for 5G wireless network. We formulated the cache placement problem as a graph 

matching problem and presented an optimal file-helper matching algorithm. We defined stability 

criterion for the matching and found that our matching solution is stable in the sense that every 

helper finds at least one file to cache given that no file exceed minimum cache size.  

We achieved a unique placement of a file within a cluster of helpers to increase the number of files 

cached within a cluster. Further, our experimental evaluation demonstrates that our algorithm 

increases local and neighbor hit ratios as compared to a random placement, which in turn 

significantly decreases the traffic that goes over the backhaul bottleneck link.  
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Chapter 1 
 

 

Introduction 
 

One of the most effective ways to achieve high data throughput in a wireless network is using 

small cells in the network (SCN). Due to explosive demand for delivery of various contents 

specifically stream videos on portable devices, the idea of bringing the contents closer to the users 

was raised [1]. This type of the network which is called Femtocell or Picocell, are impaired by the 

capacity of backhaul link, since the capacity should be in the same order of access wireless links 

to prevent bottleneck in the process of delivering huge traffic generated by mobile users. 

There is a huge body of work on the heterogeneous network (HeNets) or small cell networks 

(SCNs) from various aspects of cell associations, energy efficiency, and mobility management to 

LTE/Wi-Fi interworking. 

Most of the current research in SCNs approach the problems in a reactive way meaning the caching 

decision is made in response to user’s requests for the content. This approach requires expensive 

high-speed backhaul link to cope with the peak traffic demands, which is not sustainable as the 

rate of requests continuously grows in the network. In another approach, the storage at base-

stations, content-awareness even social networking that affects the network usage, should be 

considered in reducing the traffic on the backhaul link. In this approach, a proactive solution can 

be designed that requires predicting users’ context information to intelligently store contents to 

offload the backhaul and bring a high quality of service (QoS) for users [ 2]. 

With the prediction of future data requests and storing of data in the cache, the probability of 

serving a huge amount of users’ requests without further downloading through backhaul link 

increases. Predicting future users demand and estimating the popularity of the contents, content 

can be stored in the cache of nodes that reside at the edge of the network. Consequently, proactively 

caching users’ content at Small Base Stations (SBSs) would ease the backhaul load and improve 

the QOS from the user’s point of view. 

For this solution to work, providing a good caching technique is crucial and the importance of this 

point has brought many studies to a different setting and different objectives to cache at the base 

stations. Here when the concept of hierarchical caching comes up where the information theoretic 

approach applies to deal with. 
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Collaboration among small cells can efficiently reduce the cost of operation in a cellular network 

and improve the performance that aims to deploy collaborative caching [4]. 

Collaborative caching is proposed for proactive caching as well as reactive caching through offline 

and online settings [4]. It is found that content caching in a multicellular system by collaborating 

with their small cells can minimize the total cost paid by content provider [4].  

Caching helpers (femtocells, Wi-Fi) with high storage capacity can be placed small cell base 

stations [1]. These helpers comprise a high bandwidth communication and storage capacity with 

low rate backhaul link. The localized high bandwidth communication capabilities enable them for 

high-frequency reuse by caching the popular contents and serve the requests from mobile user 

terminals (UEs). 

There are some studies that show the potential of caching at the UEs side that can help to bring the 

contents even closer [3], e.g., Device to Device caching or local cache offloading. These concepts 

try to deal with the placement problem of caching contents in a wireless system. 

Since caching the most popular files at the Small Base Stations (SBSs) is known to effectively 

increase the data throughput and bring the contents closer to the users. FemtoCaching is introduced 

as a novel architecture to use the concept of caching in a very practical way to deal with backhaul 

capacity constraints by reusing local storage at the SBSs for caching [9].    

However, the effectiveness of caching largely depends on the reusability of the content stored in 

the cache. The decision for the placement of content (files) in the cache is crucial for improving 

the reusability of the cached file. In this thesis, we propose a placement algorithm based on the 

well-known graph matching problem in order to increase the probability of finding the requested 

files already cached at the helpers.  

The thesis is organized as follows. 

First, we discuss background work on caching with focus on cache placement in chapter 2. Then 

in chapter 3, we present our placement algorithm based on graph matching. We discuss the user 

and helper preferences and develop their preference matrices, then we describe the matching game 

and its requirement, and finally we provide our algorithm and its pseudo-code.  In chapter 4, we 

evaluate the performance of our algorithm as well as the simulation results. Finally, we present 

some concluding remarks and future work in chapter 5. 
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Chapter 2 
 

Background 
 

This chapter discusses the concepts and research that are relevant to the work reported in this 

thesis. Section 2.1 gives an overview of the basic ideas of caching placement in a wireless 

networks. In section 2.2 proactive caching in small cell network is discussed. Section 2.3 provides 

the schemes related to caching placement for D2D assisted in wireless networks. Finally, 

collaborative small cellular network is reviewed in the last section. 

 

  

2.1 Cache Placement 

 

The dramatic growth of data traffic in the wireless network is due to downloading of high demand 

files that are requested every day. Comparative analysis of small cell architecture and conventional 

macro-cell architecture with the estimated growth demand in future motivated researchers to look 

for new technologies to cope with such traffic. One of the most promising approaches is introduced 

to reduce the cell size and bring the content closer to the user [1]. Small cell network becomes 

viable for localized communication and when communication resources are reused. Femto-cell 

architecture [1] was proposed to handle users’ demand while using short-range links to the nearest 

small base station.  These femto base stations (helpers) with high storage capacity are connected 

to the backbone network through low rate backhaul links. The bottleneck bandwidth of backhaul 

links can be mitigated by storing popular files and serving the requests through the backhaul link 

only when none of the helpers could serve them. In [1], the placement of these contents is discussed 

to answer the key question of which files should be placed in which helpers. The optimal caching 

policy is relatively simple when a user can communicate with only one helper because in this case 

each helper should cache the most popular files. However, when a user has connections to multiple 

helpers, caching policy becomes more challenging and the task of assigning caches to helpers 

becomes crucial. 

Reference [1] presents the formalization of the caching placement problem and the design of an 

architecture for increasing the throughput of wireless video delivery network to reduce the 

backhaul traffic load.   
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2.1.1 Distributed Cache Placement  
 

The scheme in [1] considers that all video files are requested randomly and they are redundant. It 

deals with the problem of finding a way of placing the files among helpers to minimize the average 

delay experienced by users. Figure 2.1 illustrates the relationship between users and helpers when 

four users and two helpers are engaged in communication. It is obvious from the figure that U1 

and U2 prefer helper1 and U4 prefers helper 2 to cache their popular files. For U3, both helpers 

H1 and H2 are equally preferable and they together provide almost double the space for caching 

U3 as compared to a single helper.   

   

 

Figure 2. 1 Distributed caching and conflicting interests among users. 

 

In general, for a system with H number of helpers, K user terminals and a library of N files, each 

user sends a request with the probability of 𝑝𝑛 while relationship between users and helpers can 

be modeled as a bipartite graph. When a local helper receives a request, it first looks in its cache 

to find the requested file and serve it. If the local helper does not find the requested file in its cache, 

it sends the request to the BS that serves the request at higher delay. 

In-network caching is proposed to increase the throughput of wireless contents (Videos) delivery 

and decrease the backhaul traffic load. Since the storage becomes cheap, caching at the base 

stations provides a low-cost solution of reducing the load in the backhaul links. The download cost 

can further be reduced by offloading the download traffic from the low-rate backhaul link at peak 

time through scheduling download requests at off-peak hours especially in case of proactive 

caching. In [1] the placement problem is formulated in terms of maximizing a monotone 

submodular function over matroid constraints and a greedy algorithm is introduced that solves the 
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problem in ½ of the optimal value. Researchers evaluated their scheme by simulating an LTE-

based cellular network and using a real trace of YouTube requests. Their result shows almost 500% 

performance improvements making the proposed scheme a promising way of alleviating the 

bottlenecks in wireless video delivery. 

 

2.2 Proactive Caching in Small Cell Networks 

 

One of the key roles of employing small-cell base stations in the cellular wireless network is to 

take the advantage of using their capacity and valuable coverage to avoid the bottleneck in content 

delivery and sustain huge traffic that is generated by mobile users, specifically for video streaming 

and content sharing in social networks [2]. Caching popular contents at the edge of the network 

(at the SBSs) is introduced to reduce the backhaul bottleneck and satisfy user’s demand by caching 

files on-demand upon serving first request for the file. In [2], proactive caching is introduced in 

small-cell networks by predicting popularity of files based on context-awareness and data mining 

social network for usage pattern. 

 

In Proactive caching, schemes are developed to predict user’s context information and future file 

usage pattern to cache a content before it is requested [2]. Thus, we can offload the backhaul traffic 

and download the content at less busy time. It is shown in [2] that proactive caching contents at 

SBSs significantly reduced the backhaul load and improved user satisfaction.    

To estimate the popularity of contents some tools like machine learning or analyzing the 

infrastructure logs have been studied. Collaborative filtering (CF) methods were applied to predict 

the popularity. The study showed that exploring user-user relationships through online social 

networking that strongly affect the network can also assist in storing strategic contents. We discuss 

their system model below. 

The small cell network system presented in [2] includes M SBSs, N UTs (user terminals) and a 

central scheduler with a limited capacity. The central scheduler is responsible to provide 

broadband access to SCs over backhaul links. SBSs serve the requests through wireless small cell 

links or Device-to-Device communications (which will be discussed later), depending on the 

availability of caches in SBSs or UTs. The goal of this system is to keep the satisfaction ratio above 
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a threshold by minimizing the usage of the backhaul. It can be achieved by caching the predicted 

content either at the base-station or at the user terminals. 

 

 

Figure 2. 2 Proactive Caching at Base Stations 

Figure 2.2 illustrates the proactive caching at base-stations. The first step is to collect users ranking 

of the contents even during peak time. Then, by applying CF tools, content popularity are 

estimated. In the third step, the most popular contents are stored for a given storage size to finally 

serve the requests from the local cache. The content popularity follows ZipF distribution while 

arrival times are uniformly sampled in the T time duration. Popularity matrix is built for each SBS 

and a greedy approach is employed to store all popular contents (considering the storage size 

constrain of SBS). The performance evaluation shows that the proactive caching outperforms 

reactive caching by improving the satisfaction ratio and reducing the backhaul load.   

 

Content can also be cached at the UTs by exploiting direct communication between devices, 

known as D2D Communication. To achieve device caching, social ties and physical proximity are 

two important parameters that play a crucial role in measuring the interactions among users. 

Influential users (those that have already cached popular contents) offer content delivery through 

D2D communication. The SBS takes advantage of these users to look for requested content after 

  Small cell Base Station-Small cell (cache-enabled)                          

                
             
                                            Small Cell Link 

 

                  
 

                                      User terminal 
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it fails to find content in its own cache. If the content is not found in both SBS and device cache 

of the influential users, then it is finally delivered through expensive backhaul link. 

Influential users can be identified by employing centrality metric method in social networks and 

assessing the quality of their connections. The influential users are the users with higher centrality 

metric value or with more communication links. Analysis of the content distribution among each 

social community identifies significant contents of each community that can be stored in the cache 

of these influential users.  

 

Figure 2. 3 Proactive caching at the user terminal 

Figure 2.3 shows the process of proactive caching at user terminals [2]. All users are considered 

to be in a cluster and this study shows that the proactive approach provides desirable performance 

in comparison with the on-demand caching. 

 

 

2.3 Cache Placement for D2D communication in Wireless Networks 
 

One of the significant approach of cache placement in devices was studied in [3]. This approach 

developed the optimal cache placement scheme in terms of increasing the offloading probability 

where both the base stations and users have capability of caching. Offloading in their scheme is 

categorized into three different types: self-offloading, D2D-offloading, and helper-offloading [3]. 

Figure 2.4 shows the system model of D2D assisted wireless caching system. When a request 

arrives, each user checks its local cache whether the desired content is stored there to serve 
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immediately, which is known as self-offloading. If the user fails to find the content in its local 

cache, it launches a search among closest devices. If the content is found in a device cache within 

a specific radius, that device serves the request and offloading happens through D2D-offloading. 

The helpers- with low rate backhaul link and high storage capacity- if find the content in their 

caches, transmit the content to the user through helper-offloading.  Ultimately, if the request 

couldn’t be served through any of the previous offloading stages, the cellular base station is 

responsible to bring the requested content from the Internet. 

 

  

 
Figure 2. 4 D2D assisted wireless caching system 

 

To reduce the backhaul BS traffic, the scheme in [3] tried to maximize the offloading probability 

and formulated the optimal cache placement into a difference of convex (DC) problem that can be 

solved by DC programming. The probability distribution is modeled using PPP distribution with 

designated density, to find the probability of spreading n devices in a definite radius. The paper 

computes the probability that at least one user caching the i-th content, the probability that one 

helper caching the i-th content, the probability that one helper and one user caching i-th content, 

the probability of cached-enabled users, and finally the total offloading probability for D2D 

assisted wireless caching system. The paper concludes that more data offloading through caching, 
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lessens the need of transferring the content from the BS.  The performance results show that the 

most popular contents should be cached under low node density but general content can be cached 

under high node density. Further, the caching scheme in [3] provide a balance among different 

offloading techniques. 

 

2.4 Collaborative Caching for multi-cell systems 
 

In [4], minimizing the total cost of caching to the content providers through collaborative caching 

for multi-cell coordinated system are studied. Collaboration among the base stations decreases the 

operational cost of a network and improves performance. This research considered two types of 

caching cost: the storage cost and the user attrition (UA) cost. The storage cost is paid by Cellular 

Network Operator for caching the content. On the other hand, the UA cost should be considered 

in case of losing users that are not satisfied with the QoS, for example a user experiencing high 

delay in downloading streaming videos. Therefore, minimizing the cost is tantamount to 

maximizing users demand satisfaction. This scheme does not consider the popularity of the content 

instead it employs the concept of competitive ratio to measure the performance of an online 

algorithm. The algorithm has a potential function for each base station and when a request arrives, 

the algorithm updates the total UA cost function. It decides to cache the content when the function 

shows a potential, while caching costs at other base stations exceeded .The problem is formulated 

as the Integer Linear Program that consists of two cost functions that should be minimized.  

The Mobility Management Entity (MME) of a cellular network is responsible for executing the 

algorithm and the content providers need to pay for running the algorithm at MMEs plus the cost 

of storing the content at base stations. When the base station receives a request, it immediately 

serves the request if the content is already cached there. Otherwise, it contacts MME to run the 

algorithm and decides whether the content should be cached by a new base station or not.  

It is shown that the collaborative caching scheme offers greater saving and applying the online 

algorithms is much more worth than solving non-collaborative optimization problems. 
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Chapter 3 
 

Design of Deferred Acceptance Placement Algorithm 

 
The goal of this research is to suggest a new caching scheme of dealing with the backhaul problem 

in wireless access network of femto base stations that have a low-bandwidth backhaul link but 

high storage capacity. In this network, femto base stations serve as caching helpers that store the 

most popular files to increase the probability of finding requested files by users within the set of 

helpers or reducing the downloading time experience by them [1]. 

These helpers can locally communicate with user terminals (UTs), cache popular files, and serve 

them in response to user requests. Our proposed scheme differs from previous works in access 

network caching in two respects: one, we propose an algorithm of optimal placement of files 

through stable matching theory on bipartite graphs,  and two, using a user-to-file association 

matrix. Knowing a set of files that each user can access, make us rank the files and then place them 

at the best helper in terms of accessing user and by applying matching game, the most matched 

files will place in each matched helper within a cluster in small cell network. 

In this chapter, we define the problem precisely and outline all possible solutions. Finally, after 

formulating the problem and outlining its solution space, we present our file-helper placement 

deferred acceptance algorithm. 

 

 

3.1 Problem Formulation   

 

In this research, we study a wireless network where the files are requested randomly and they are 

redundant. They can be requested at a different time based on some popularity distribution. We 

want to find the best place to cache each file within the helpers in same cluster to increase the 

probability of finding the requested files among these helpers.  

We consider K user terminals (UTs), M helpers and a library of P files connect through a 

connectivity graph that shows UT k can communicate reliably with helper m.  Figure 3.1 shows 

different components of the network. 

When a user sends some requests, one of the local helpers, the one which is directly connect to the 

user, serves the requests. If the helper couldn’t find the requested file in its local cache, neighbor 
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helper the one which is not directly connect but exists in the same cluster, serve the request 

otherwise, the macro base station (MBS) handles the request incurring a higher delay. 

By predicting the probability of the users’ requests and storing them in the helpers’ cache, we 

increase the probability of finding a requested content within the cluster and prevent the backhaul 

load traffic. 

 

  

Figure 3. 1 Studied network deployment 

We assume that the file download cost per byte from a local helper is 𝐶𝑈, from a helper in the 

neighbor is 𝐶𝐻, and over the backhaul link is 𝐶𝐵. We further assume following relationship among 

the three costs:  

                                                                                                                                               2 𝐶𝐻+𝐶𝑈 < 𝐶𝐵 – (1) 

 

It means, if a requested file is found in the local helpers’ cache, the download incurs CU cost, 

otherwise the file will be downloaded from the local cluster via MBS,and the cost will be 2 𝐶𝐻+𝐶𝑈. 

In this case, MBS knows the files are already cached in a helper within the cluster and fetches it 

to the local helper. All the helpers connected through a single MBS and there is no direct 

connection between users and MBS. If the file is not with any helper in the cluster, it needs to be 

downloaded from the network through the backhaul link at the higher 𝐶𝐵cost.  
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3.1.1 Matching Problem 
 

The placement problem is to match the files to the helpers. From the files perspective, it is a one 

to one matching problem that means each file p ε P should find at most one matching helper to 

cache it. On the other hand, from helpers perspective, each helper m ε M may find several matching 

files to cache them as long as the cache capacity 𝑞𝑠 allows. 

         

Figure 3. 2 Matching Problem 

In particular, our matching problem is to find the most popular files and place them in the most 

preferred helpers.  

It can be shown that there always exists at least one stable matching to: 

 

                       -Match the files to helpers such that a file is matched to only one helper 

                       -And, a helper matches to several files. 

 

 

In the following table, we introduce the notations used in our matching game. 
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Parameter Description 

K= { 𝑘1 … , 𝑘𝐾} Set of K users 

𝑘𝑖 Variable indicating ith user  

M = { 𝑚1 … , 𝑚𝑀} Set of M  Helpers 

𝑚𝑖 Variable indicating ith helper 

P  = { 𝑝1 … , 𝑝𝑃} Set of P Files  

𝑝𝑖 Variable indicating ith file 

CU Download cost from the local helper to the user 

CB Download cost from the helper in the neighbour  

CH Download cost from MBS  

qp Helper m can have 𝑞𝑝  maximum number of files 

qs Cache size of each helper 

H Popularity Matrix- Zipf Distribution Modeled 

Y SINR Matrix- user to the helper 

Z File-Helper correlation matrix 

A Connection Matrix-User to Helper 

NSize Normalized file size matrix 

StoP Size of the Files to Popularity Rate matrix 

HtoP Helper to File Association Matrix 

B Matching Matrix 

Table 3. 1 List of notations 

The popularity of the files in the system is modeled by Zipf distribution popularity where each 

user ranks each file accordingly. By using Zipf distribution popularity concept we created a user 

to file correlation matrix to guess the popularity of files ranking by users [7]. 

 

                                     𝐻𝑃,𝐾    =      [

𝛼1,1 ⋯ 𝛼1,𝐾

⋮ ⋱ ⋮
𝛼𝑃,1 ⋯ 𝛼𝑃,𝐾

] 

 

In 𝐻𝑃,𝐾 matrix each row shows files from 𝑝1 to 𝑝𝑃 while each column represents each user from 

𝑘1 to 𝑘𝐾 who we have in the system. 

Matrix H is a P×K dimension matrix where each element of the matrix shows the rank of the file 

corresponding to the row given by the user corresponding to the column. For example, 𝛼1,1 

indicates that file one is ranked by user one with the value 𝛼. The highest number of a column 

shows the highest ranked file for the corresponding user. The average of each row shows the 

average rank for each file computed over the rank of all users in the system. In [7], the study shows 

that all these predictions come from the statistical traffic patterns and users’ context information 

(i.e., file popularity distributions, location, velocity and mobility patterns), to allows us to have a 
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better understanding of users and contents (or files) relation in a network. In our scheme, the matrix 

H can be derived from any popularity data, such as from recommendation system that often 

develops user-file association. In this thesis, we assume that the popularity of the files is modeled 

by a Zipf distribution [9], where the Zipf’s skew parameter characterizes the skew in the 

distribution. 

 

 

Preferences  
 

In order to define the assignment criteria in matching game aimed to find the most suitable 

matching of files and helpers [6], we need to find out the preferences of files to helpers as well as 

helpers to files. Each file can rank one helper in order of its preference based on its local 

information. In wireless communication, the local information contains channel quality 

information in terms of SINR value, RSRP even RSRQ or Data Rate [5]. We use SINR value to 

measure the quality of channel experience by each user connected to each helper.  

Matrix 𝑌 𝐾×𝑀 gives the SINR value for each helper-user pair, which is computed using the SINR 

equation [1].  

 

                                          𝑌 𝐾×𝑀  = [

𝜃1,1 ⋯ 𝜃1,𝑀

⋮ ⋱ ⋮
𝜃𝐾,1 ⋯ 𝜃𝐾,𝑀

] 

 

Each row belongs to every user from 𝑘1 to 𝑘𝐾 while columns represents helpers from 𝑚1 to 𝑚𝑀. 

In Y matrix each value 𝜃𝑖,𝑗 represents the value of SINR of i-th user to the j-th helper. We can 

drive weighted SINR matrix between files and helpers by multiplying Y with H, the popularity 

distribution matrix, to get Z = H. Y is a file-helper association matrix. Each 𝛿𝑖,𝑗 is a weighted SINR 

value of file i to helper j.  In Z, rows show the helpers 𝑚1 to 𝑚𝑀 while each column represents 

every file exists in our system 𝑝1 to 𝑝𝑃. 

 

                                  [

𝛿1,1 ⋯ 𝛿𝑃,𝑀

⋮ ⋱ ⋮
𝛿𝑃,1 ⋯ 𝛿𝑃,𝑀

] = [

𝛼1,1 ⋯ 𝛼1,𝐾

⋮ ⋱ ⋮
𝛼𝑃,1 ⋯ 𝛼𝑃,𝐾

] × [

𝜃1,1 ⋯ 𝜃1,𝑀

⋮ ⋱ ⋮
𝜃𝐾,1 ⋯ 𝜃𝐾,𝑀

] 
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Denote the channel quality of file 𝑝𝜀𝑃 on helper m 𝜀 𝑀 as 𝛿𝑃,𝑀 ≥ 0, comes from the matrix Z. 

Thus, each file has a preference relation ≻𝑀 over the subset of helpers. 

From Z, it can be concluded that the high ranked files will likely be cached by the helpers 

connected to some users through the best quality of channel among all other helpers.  

Each helper 𝑚𝜀𝑀 can set its preference for files based on some local information and data coming 

from file-user association matrix. 

We can derive connectivity matrix A from 𝑌 𝐾×𝑀, channel quality matrix, by evaluating SINR 

with the SINRmin, which is the minimum SINR below that reliable connection cannot be 

established. The connectivity matrix  𝐴 𝐾×𝑀 is a Boolean matrix where aij = 1 indicates that 

connection exists between user i and helper j and aij = 0 indicates otherwise. Each row indicates 

all connected helpers for the corresponding user and there are 𝐾  rows for 𝐾 users. Similarly, each 

column indicates all the users connected to the corresponding helper and there are 𝑀 columns for 

all 𝑀 helpers. 

 

                                                  A=  [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] 

Let us consider 𝑢[𝑚𝑖] be a function that shows the total number of users that are connected to the 

ith helper 𝑚𝑖, which can be calculated by adding the bits of column 𝑚𝑖: 

 

                                                  𝑢[𝑚1 ]  1+1+0+…+0+1  

                                                  𝑢[𝑚2 ] 1+1+1+…+0+0 

                                                  . 

                                                  . 

                                                 𝑢[𝑚𝑀 ] 1+0+0+…+0+0 

 

Where a given helper can be connected to many users and a user to several helpers. Unlike most 

of the previous works in this area that consider fixed file size with no impact on cache placement 

decision, we consider file size that varies and becomes a factor in helper’s decision of caching a 

file.  To achieve this, we consider matrix 𝑁𝑆𝑖𝑧𝑒 𝑃×𝑃, which is a diagonal file size matrix such that 
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every element  𝛽𝑖,𝑖 along the main diagonal gives the size of the ith file. We obtain matrix 𝑆𝑡𝑜𝑃 𝑃×𝑘 

by multiplying  𝑁𝑆𝑖𝑧𝑒 𝑃×𝑃,   and ranking matrix 𝐻 𝑃×𝐾 . 

 

Using  𝑁𝑆𝑖𝑧𝑒𝑃×𝑃     =    [

𝛽1,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝛽𝑃,𝑃

]    and    𝐻𝑃,𝐾    =      [

𝛼1,1 ⋯ 𝛼1,𝐾

⋮ ⋱ ⋮
𝛼𝑃,1 ⋯ 𝛼𝑃,𝐾

] 

 

 We will have: 

                                    𝑆𝑡𝑜𝑃 𝑃×𝐾     =    [

𝜔1,1 ⋯ 𝜔′1,𝐾

⋮ ⋱ ⋮
𝜔𝑃,1 ⋯ 𝜔𝑃,𝐾

] 

 

 

Where 𝜔𝑖,𝑗 in 𝑆𝑡𝑜𝑃 𝑝×𝑘 matrix, is a weighted file size of file i with specific size coupled with its 

popularity that has been ranked based on Zipf distribution by user j. Since all users are not 

connected with each helper, the popularity used in weighted size should be based on the file 

popularity assessed by connected users only. Hence, we derive matrix  𝐻𝑡𝑜𝐹 𝑃×𝑀 where each 

element 𝛼′𝑖,𝑗 shows sum of weighted size of ith file computed for all users connected to jth helper 

where weighted size is the file size multiplied by user-file association index. Therefore, 

                                     

 

      𝐻𝑡𝑜𝐹 𝑃×𝑀  → [

𝛼′1,1 ⋯ 𝛼′𝑃,𝑀

⋮ ⋱ ⋮
𝛼′𝑃,1 ⋯ 𝛼′𝑃,𝑀

]   =   [

𝜔1,1 ⋯ 𝜔1,𝑘

⋮ ⋱ ⋮
𝜔𝑃,1 ⋯ 𝜔𝑃,𝐾

]    ×    [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

]  

 

Each row belongs to different helpers 𝑚1 to 𝑚𝑀 while each column is for every file in the 

system 𝑝1 to 𝑝𝑃.  

 

In conclusion, each helper m 𝜀 𝑀 sets its preference for the files in the matrix  𝐻𝑡𝑜𝐹 𝑃×𝑀 that is a 

compound value of file size and file popularity evaluated for connected users. Thus, each helper 

has a preference relation ≻𝑃 over the set of files that creates an ordered list of files 𝑃𝐿ℎ (𝑚) =

{𝑝1, 𝑝2 … 𝑝𝑡}, which is the files preference list 𝑃𝐿ℎ of t most preferred files for helper m where 
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𝑝𝑖  ≻𝑃  𝑝𝑖+1 indicates that 𝑝𝑖 is more preferred file than 𝑝𝑖+1 in the list. A helper m can select top 

𝑞𝑝 files from the list of t files, which defines the maximum number of files in a helper’s cache due 

to its size constrain. Similarly, each file has a preference relation ≻𝑀 over the set of helpers that 

creates an ordered list of helpers 𝑃𝐿𝑓(𝑝) = {𝑚1, 𝑚2 … 𝑚𝑠 }, which is the helpers preference 

list 𝑃𝐿𝑓 that contains s most preferred helpers for file p where 𝑚𝑖  ≻𝑀  𝑚𝑖+1 indicates that 𝑚𝑖 is 

more preferred helper than 𝑚𝑖+1 in the list.  Files derive their preference list from matrix Z. In the 

following we formulate cache placement problem as a graph matching problem. 

 

3.1.2 Matching Sets 

 

A matching 𝜂 is a function from set 𝑀 ∪ 𝑃 into the set 𝑀 ∪ 𝑃. Let us consider 𝜂(.) is a matching 

function. If the argument is a file, then  𝜂(𝑝) gives us a set of matched helpers. If the argument is 

a helper, then 𝜂(𝑚) maps to the matched files [5] and we have: 

 

1. |𝜂(𝑚)|= 𝑞𝑝 for each file 𝑝𝜀𝑃 and if the number of files in  𝜂(𝑚) ≥ 𝑞𝑝  ⇒ pick high rated file, 

otherwise check for more user to connect to. 

2.   |𝜂(𝑝)|= 1 for every file 𝑝𝜀𝑃, there exist at most one helper m 𝜀 𝑀 that caches the file and   

|𝜂(𝑝)|= 0 if 𝜂(𝑝) ∉ 𝑀. 

3. 𝜂(𝑝) ∈ 𝑀 if and only if 𝑝 ∈ |𝜂(𝑚)| 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑚 ∈ 𝑀. 

 

For example, matching of files 𝑝1, 𝑝2 and 𝑝3 are 𝜂(𝑝1)= {𝑚1 𝑚3}, 𝜂(𝑝2)= {𝑚2} and 𝜂(𝑝3)= {} 

respectively. The above mappings show that file 𝑝1 match with helpers 𝑚1 and 𝑚3 and will be 

cached in those helpers. Similarly, 𝑝2 finds its matching with 𝑚2 and cached there. In case of file 

𝑝3, it is not matched with 𝑚4 due to number of files already cached reaches it limit 𝑞𝑝 = 3. 

The matching matrix 𝐵𝑃×𝑀 is as follows: 

                                                       

                                                             𝐵𝑃×𝑀 =     [
1 0 1 0
 0 1 0 0 
0 0 0 0 

]      
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In the matching matrix, a row corresponds to each file 𝑝1, 𝑝2 and 𝑝3 and a column shows every 

helper in this matching 𝑚1, 𝑚2, 𝑚3 and  𝑚4. The matching matrix 𝐵  𝑃×𝑀 is a Boolean matrix 

where bij = 1 indicates that matching exists between file 𝑝𝑖 and helper 𝑚𝑗 and bij = 0 indicates 

otherwise. One means specific file and helper are matched while zero otherwise. 

 

3.1.3 Stable Assignment 
 

To show that the matching 𝜂 is stable according to Gale and Shapley [6] criterion, we review the 

matching assignment criteria.  

A set of P files is to be assigned among M helpers where the quota of the ith helper in terms of 

number of files it can cache is 𝑞𝑝𝑖. 

Each file ranks each helper in order of its preferences, omitting only those helpers it would never 

accept under any circumstances (admission-college problem [6]). To simplify, we assume there 

are no ties (indifferent). 

Similarly, each helper ranks the files that it wants to cache in order of preferences, by first 

eliminating those files that cannot be accepted under any circumstances even though the occupied 

space in the cache is below the quota 𝑞𝑠. 

The matching 𝜂 is blocked by helper m and file p if helper m strictly prefers p to some 𝑝′ ∈ 𝜂(𝑚) 

and 𝑝 strictly prefers m to some 𝑚′ ∈ 𝜂(𝑝) 

                                                     |𝜂(𝑝)| ≤ 𝑞𝑝  and m is acceptable to p.              

  

Additionally, there always exists one file at least to be matched to one helper based on the stability 

of College-Admission problem [5]: 

Among all the helpers in M and files in P, a stable set of file-helper matching exists in the way that 

each helper should definitely find its matching file but every helper find top 𝑞𝑝 of matched files. 

The matching algorithm is modeled as a college admission problem with a straight forward 

procedure for solving it. In the beginning, all files (students) propose (apply) to their first preferred 

helper (college), which are the helpers at the top of their helpers preference list. 

A helper with a quota of 𝑞𝑝  then places on its waiting list the 𝑞𝑝 files which ranked highest or all 

if the capacity is equal or less than 𝑞𝑝 and rejects the rest. Rejected files then propose to their 
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second preferences and again each helper selects the top 𝑞𝑝 from all new files and those on its 

waiting list, will be put on its new waiting list and rejects the rest. The process ends when each file 

is either on a waiting list or is rejected by every helper to which it is willing and accepted to 

propose. Now, each helper admits each file on its waiting list and the stable assignment has been 

achieved. 

In [6], the proof is by induction to show that this matching is not even stable but also optimal. It is 

assumed that to a given point in the procedure, college A hasn’t yet decided over it waiting list 

with quota 𝑞𝑝 of better-qualified applicants 𝛼1 to 𝛼𝑖   and rejected applicant 𝛽 . We must show that 

𝛽 is impossible for A while those on the waiting list are possible. We know that every 𝛼𝑖 prefer A 

to all others or it should be rejected by the others, then under our assumption, 𝛼𝑖 was impossible 

for them. Supposed an assignment which 𝛽 sends to A and everyone else to the colleges they 

desired to go. In this situation at least one of the 𝛼𝑖 should go to a less desirable place than A which 

show an impossible situation since in this case both A and 𝛼𝑖 will upset to the benefit of both. 

Hence this assignment is unstable and A is impossible for 𝛽 . Defined procedure shows “Deferred 

acceptance” procedure which is not only stable but an optimal assignment of applicants. 

 

3.1.4 Proposed Algorithm 
 

 

The following pseudo-code describes helper deferred acceptance algorithm. In this algorithm files 

apply for helper based in its preference list. Each helper accepts the application of files applied for 

the helper in the order of its preference list of files. A helper accepts as many files as the remaining 

cache size allows. 
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Algorithm: Find the stable matching for file-helper placement problem (𝑀, 𝐾, 𝑃, 𝑃𝐿, 𝑞𝑝) 

Input:      M, K, P, PLh, PLf, qp,   

Initialization: File=True, Helper=True and 𝑇(𝑝) = 𝑃 

                  

While ((File==True)&&(Helper==True)) 

do       

    Step 1:  Form a list 𝐿 = {(𝑝1, 𝑚1), (𝑝2, 𝑚2), … } of (file, helper) pairs formed when each file pi in 𝑇(𝑝) 

applies for helper mi such that mi is the most preferred helper in 𝑃𝐿𝑓(𝑝𝑖) and 𝑇(𝑝) = { } 

    Step 2: For every helper m: 

                 1. Form a list   𝐴 = {𝑝1
𝑚, 𝑝2

𝑚𝑝3
𝑚 … … , 𝑝𝑒

𝑚} that applied for helper m such that 𝑝𝑖
𝑚  ≻𝑃 𝑝𝑖+1

𝑚  in 𝑃𝐿ℎ(𝑚)  

                 2. Form the list by accepting up to 𝑠 ≤ 𝑞𝑝 best ranked files: 𝐵 (𝑚) = {𝑝1
𝑚, 𝑝2

𝑚 , 𝑝3
𝑚 … … , 𝑝𝑠

𝑚}  

                 3. Update both 𝜂𝑓 and 𝜂ℎ matching 

                 4. Update the set of rejected files 𝑇(𝑝) = 𝑇(𝑝) ∪ {𝑝s+1
𝑚 , … … , 𝑝e

𝑚}   

     Step 3: if  (𝑇(𝑝) == { }) then File=False or if no helper is left with less than qp files in its cache then 

Helper=False 

end 

Output:  Stable matching 𝜂 

Table 3. 2 File-Helper proposing Deferred Acceptance Algorithm 
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Chapter 4 

 
Performance Evaluation 

 
 

We evaluated the performance of our proposed Helper Deferred Acceptance Algorithm described 

in chapter 3 using MATLAB. We first discuss the simulation parameters and then analyze the 

results. 

 

 

4.1 Experiment Evaluation  

We used MATLAB to implement our proposed file-helper deferred acceptance algorithm.  

 
 

We consider the popularity of content (files) follows Zipf distribution, which is widely used in 

cache placement studies [1], [9], [18]. In our case, Zipf distribution shows user-file association 

and provides the ranking of files by a user. We developed the notion of popularity domain to reflect 

different user-ranking of files, which simulates a particular user-file association regime. We used 

different Zipf parameter (α) to distinguish between popularity domains. We consider two 

situations: One where all users belong to the same popularity domain following one file ranking 

simulated by one α-parameter of Zipf distribution. Two, where all users belong to different 

popularity domain following different α-parameter values of Zipf distribution. We also evaluated 

how files size impacts placement decisions in terms of the number of files stored in a cache. We 

consider three file different file sizes; first the situation that size of all files are fixed, second file 

size has a small variation and finally, file size shows big variation. Thus, we get 6 different 

combination of these situations, which uses  Zipf parameter, 0.4 < 𝑠𝑘𝑒𝑤 < 0.9. 
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Situation Description 

A1 All users belong to the same popularity domain following one file ranking 

simulated by one α-parameter of Zipf distribution 

A2 All users belong to different popularity domain following different α-

parameter values of Zipf distribution 

B1 Fixed File Sizes 

B2 Small Variation among File Sizes  

B3 Big Variation among File Sizes 

Table 4. 1Different Situation of effective parameters 

 

Subsequently, we have 6 different scenarios:           For  0.4 <∝< 0.9 ; 

                                                                            1.       A1 B1              4.    A2 B1 

                                                                            2.      A1 B2              5.    A2 B2 

                                                                            3.     A1 B3              6.    A2 B3 

                                                                                  

 

The capacity of the backhaul links is assumed to be lower than the capacity of the wireless links. 

The simulation parameters are given the table 4.1. 

  

Parameter Value Description 

K 40 Number of Users 

M 10 Number of Helpers 

P 150 Number of Files 

SF 10…100 

MB 

Size of the Files  

𝑞𝑠 Cache Size,  450 MB The Capacity of Each Helper Cache 

Table 4. 2 Simulation Parameters 
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Figure 4.1a, b and c shows the ranking of files following Zipf probability distribution with different skew 

parameter 0.4, 0.6 and 0.9 in order.  

4.1a Skew=0.4                                     4.1b Skew=0.6                                     4.1c Skew=0.9 

    

Figure 4. 1a, b and c of Zipf parameter variation in return the number of files 

 

We calculated two metrics to evaluate the performance of our placement algorithm, which is described 

below: 

 

1. Average Popularity 

 

We calculate the average popularity of files cached in a helper by taking mean of Zipf probability 

of all the files cached in that helper. Each file has an associated Zipf probability that is its 

popularity index. We also calculated Max. and Min. Zipf probability of the cached files. 

 

2. Number of Cached files 

 

We also computed the number of files cached at each helper that shows the efficiency of cache 

memory utilization and its sensitivity to the variation in file sizes. 
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4.2 Results 

 

We discuss results for each of six scenarios below: 

 

 

Case 1: A1 B1 for skew=0.4 

 

 

Figure 4. 2a  Variation of popularity in return to the helpers         Figure 4.2b  Number of files which each helper cached 

 

 
 

In the first case, we consider same popularity domain and fixed file sizes. Figure 4.2(a) shows the 

minimum, mean and maximum popularity of the files cached by each helper.  It shows that helper 3 and 

6 cached mostly popular files as compared to other helpers.  

In our algorithm, since helpers with high preference start caching files, they tend to cache the most 

popular files. When helpers with low preference get a chance for caching, they tend to get less popular 

files. As the number of files is more than the capacity of the system, all helpers will cache to their full 

capacity which is 450, and as the file size is the same, the number of files cached in each helper will be 

the same. This is shown in Figure 4.2(b). In our case file size equal to 40, so each helper cache 450/40=11 

files. 
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 Case 2: A1 B2 for skew=0.4 

 

In this case, we introduce small variation in file size that varies from 30 to 50 with average 40. It causes 

helpers caching a different number of files.  

 

 
Figure 4. 3a Variation of popularity in return to the helpers      Figure 4.3b Number of files which each helper cached 

 

 

Case 3: A1 B3 for skew=0.4 

 

In this case, we introduce a large variation in file size, which varies from10 to70 MB. With large variation 

of file size the number of cached files decreases. 

     

Figure 4. 4a Variation of popularity in return to the helper            Figure 4.4b Number of files each helper cached 
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The result shows that the most preferred helpers tend to cache popular files with small size. The preferred 

helpers are the helpers with the best channel quality (high SINR experienced by users). 

In the following cases, we will study how popularity domain influences caching decisions. 

 

Case 4: A2 B1 for skew=0.4 

 

 

 

Figure 4. 5a Variation of popularity in return to the helpers          Figure 4.5b Number of cached files for each helper 

 
 

In the caching decision, a helper with high preference caches files with the highest popularity. 

 

Case 5: A2 B2 for skew=0.4 

 

 
Figure 4. 6a Variation of popularity in return to the helpers    Figure 4.6b  Number of files which each helper cached 
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Case 6: A2 B3 for skew=0.4 

 

 
Figure 4. 7a Variation of popularity in return to the helpers     Figure 4.7b  Number of files which each helper cached 

 

Condition 4, 5 and 6 prove that when the popularity changes for users, how it moves caching placement 

and the file sizes, on the other hand, changes both standing to win the matching game pro themselves. In 

condition 6, each helper cache fewer files in compare when the size is fixed in condition 4. 

Case 7: A2 B3 for skew=0.9 

 

In this condition the popularity of users are various and the size of files are between 10 to 70 MB. 

 

 
Figure 4. 8a Average popularity in relation between files and helpers  Figure 4.8b Number of files which each helper cached 
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4.3 Analysis 

 

A1, the popularity distribution of files among users in the same domain, clearly displays that how it 

makes the popularity rate increases, because the probability of requesting the same file by different user 

goes up in compare with condition A2 that users are placed in the different domain which they might 

request totally different files, ( A person who likes watching sport game video, might not be interested in 

fashions matters), but the average of these popularity value seems to be close together.  

While the size of the files is fixed (B1) by increasing the skew (from 0.4 to 0.9) the value of Max rises in 

A1, however, we don’t see any significant changes on the value of Max in A2. 

When the size of the files change in the small variation (30 to 50M), by increasing the skew value, the 

Max goes up in A1 but still no big change in A2, therefore, we conclude that in this condition, the 

popularity distribution changes differently and smallest files with new popularity value, are cached in the 

most popular helpers. 

By growing files’ sizes in a big variation, the weight of the size is more than popularity value.( In our 

matching game the preferences are files with smaller sizes and higher popularity value and helpers with 

better quality of channel to connect to).  

From the whole graph we conclude that: The most popular helpers when the sizes of the files are fixed 

or have a small variation, cache the most popular file, but when the variation in sizes increases, it affects 

more in the decision and the most favoured helpers cache files with the smallest sizes rather than the 

higher value of popularity.  

In condition A2, we observed that the value of Min, Mean and Max increases slightly when the skew 

grows. Popularity doesn’t influence a lot. 

On the other hand, by having the small variation in sizes for A2, again, most preferred helpers start to 

cache more files and we can say that the matching game is mostly based on popularity value. 

[Big variation as it discussed before, increases the weight of sizes in the decision, by growing the value 

of skew (skew=0.4 means the number popular files are more than when skew=0.8) even though the Max 

somewhat goes up but file sizes are dominated]. 

 

To have a better result of the way that how placement happens, we required some numerical results as 

well. By creating a request pattern we were able to observe which files placed on which helper. Then, 

we could be able to compare our placement algorithm with others. 
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4.4 File-Helper Deferred Acceptance Placement Algorithm and Random Algorithm 

 

We compared our algorithm with a random placement one to illustrate how much our placement 

algorithm is optimal. Our users’ requests pattern was based on Zipf distribution where skew is equal 0.25, 

for example, the low value of skew means the number of requests is made by each user tends to be close 

to each other. In the other hand, the high value of skew means some users will have more chance to 

generate requests among the others, and each user requests the files based on file popularity distribution. 

 

 

Rank File 

Popularity 

(skew=0.4) 

User1 

(file 

#) 

User2 

(file 

#) 

User3 

(file 

#) 

User4 

(file 

#) 

User5 

(file 

#) 

User6 

(file 

#) 

User7 

(file 

#) 

………. User40 

(file #) 

1 0.0307 13 50 46 60 96 127 42 …….. 28 

2 0.0232   87 97 142 73 146 45 25 …….. 47 

3 0.0198     22 4 27 129 26 61 57 …….. 122 

4 0.0176     60 51 69 26 18 35 101 …….. 45 

5 0.0161     73 132 95 85 10 119 5 …….. 116 

6 0.0150     20 78 150 58 78 126 144 …….. 48 

7 0.0141 6 145 70 17 122 133 89 …….. 103 

…….. …….. …….. …….. …….. …….. …….. …….. …….. …….. …….. 

150 0.0041 96 43 23 74 5 26 50 …….. 135 

Table 4. 3 The files which were requested by each user 

 

 

 Based on this request pattern we defined and calculated 4 different ratios as; 

 

-LocalHitRatio, the percentage that local helpers- the helpers which users directly connect to- can serve 

the requests  

-NeighborHitRatio, the percentage that those neighbor helpers- the helpers which users do not connect 

to but they are all connected to one ENB- can serve the request 

-TotalHitRatio, the percentage that our system can totally serve all coming requests 

-MissRatio, the number of requests which missed and needed to be served through the backhaul link.  

 

Following table displays the above comparisons; 
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Parameter File-Helper Deferred Acceptance Placement Algorithm  Random Algorithm 

A1B1-Skew=0.4 

 

LocalHitRatio 

NeighborHitRatio 

TotalHitRatio 

MissRatio 

  

 

%26 

%69 

%95 

%5 

 

 

%19 

%32 

%51 

%49 

A1B1-Skew=0.9 

 

LocalHitRatio 

NeighborHitRatio 

TotalHitRatio 

MissRatio 

 

 

%32 

%44 

%76 

%24 

 

 

%19 

%32 

%51 

%49 

A1B2-Skew=0.6 

 

LocalHitRatio 

NeighborHitRatio 

TotalHitRatio 

MissRatio 

 

 

%36 

%46 

%82 

%18 

 

 

%19 

%32 

%51 

%49 

A1B3-Skew=0.9 

 

LocalHitRatio 

NeighborHitRatio 

TotalHitRatio 

MissRatio 

 

 

%36 

%58 

%94 

%6 

 

 

%19 

%32 

%51 

%49 

Table 4. 4 How good it is the File-Helper Algorithm 

 

Our numerical outcome in many different cases with various value for our input parameters prove that 

the file-helper placement algorithm has a much better result.   
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Chapter 5 
 

Conclusion  
 

 

In this study, we introduced a new method for caching placement in small cell networks to increase the 

probability of finding a requested file by a user in the network. We formulated the cache placement 

problem as graph matching problem and presented an optimal file-helper matching algorithm based on 

Gale-Shapley optimal matching criterion [6]. We define stability criterion for the matching and found 

our matching solution stable in the sense that every helper finds at least one file to cache given no file 

exceed minimum cache size.  

We achieved unique placement of a file within a cluster of helpers to increase the number of files cached 

within a cluster. We define a cluster as the number of helpers connected through same Node B. Thus, 

there is no replication of files in a cluster. 

Further, our experimental evaluation demonstrates that our algorithm increases local and neighbor hit 

ratios as compared to a random placement. We also simulated our algorithm for different scenarios by 

varying file sizes and Zipf popularity parameter.  We found that for fixed sized files, helpers tend to cache 

highly popular files, but for variable sized files, they tend to cache smaller files compromising file 

popularity ranking.  We also found that by applying the file-helper deferred acceptance, we could 

significantly decrease the traffic that goes over the backhaul bottleneck link. 
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