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ABSTRACT

EXPERIMENTAL TESTING ON THE COMPRESSIVE STRENGTH OF SOLID
STEEL ROUND BARS
MARWAN SALIBA, M.A.SC. THESIS, CIVIL ENGINEERING DEPARTMENT,
RYERSON UNIVERSITY, TORONTO, 2005

Solid steel round bars are used as legs, diagonals and horizontal members of a
communication tower. The Canadian Standards, CAN/CSA-S16.1-94, AISC-LRFD
Specifications of 1993, and the European Standard, Eurocode 3, provide the factored
compressive resistance of structural steel members other than solid rounds. While, the
Current Canadian Standard, CAN/CSA-S37-01 of 2001, for Antenna towers and Antenna
Supporting Structures specifies empirical expressions for the compressive strength of solid
rounds based on the SSRC column curves for non-solid-round bars and the results from
experimental investigation on the compressive resistance of solid rounds carried out back
to 1965. This thesis provides a summary of the available literature on the compressive
strength of solid rounds as well as the results of recently tested large solid round bars.
Correlation between the results from these tests and the current practice for the design of

solid rounds is investigated. Recommendations to update the available code equations are

drawn.
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NOTATIONS

A Cross-sectional area of member
Ce Compressive resistance of a member
E Modulus of elasticity
Ees Effective modulus
EIl Elastic stiffness

E; Reduced modulus
E; Tangent modulus
»F y . Yield stress
Fy Average value of equivalent yield éueﬁgths
I Moment of inertia of a section

.K Effective buckling length factor, or Characteristic value of a parameter
K Coefficient of variation modification factor for steel -
L Unbraced length of the solid round bar
N Design value of axial compressive force
P Column axial load
Pe Euler buckling load
P, Reduced modulus load
P, Tangent modulus load
r Governing radius of gyration abo.ut the plane of buckling
1 Column displacement
Vs Coefficient of variation of equivalent yield strengths
w Column displacement

ix



Yo

Initial out-of-straightness

~ Compressive strength, or Standard deviation

Non-dimensional slenderness parameter

Non-dimensional slenderness in bending
Resistance factor for compression

Total deflection at mid height of solid round bar
Rotation

Strain - -

Displacement

“Imperfection factor

Reduction factor according to the standard and buckling curves as used in
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CHAPTER I

INTRODUCTION -

1.1 General

In the information industry, satellites, antenna towers and cables are used to transmit

" the signal from communication tools. Some of these communication tools are mobile

phones and pagérs. Antenna towers are the best choice because they are relatively

economical and effective for remote transmission, especially in North Ameﬁca where land
area is large and distances among the cities and towns are great. Antenna tower transmission
of signals is the best medium, which is widely used not only in Canada but also in USA and
Europe. Tﬁese kinds of éteel towers have their own characteristic. ’fhey ar;: tall and élender.
Théy can be classified into three types as shown in Figure 1.1, namely: ta) ﬁonomles with
" heights up to 70 m; (b) self-supporting towers with heights up to 120 m; andb(c) guyed
towers with heights up to 620 m. The environmental factors li-ke the land-use classiﬁ;:atién
of the property and whether the surrounding area is residential, indﬁstrial or agn'cultﬁral 'pla);
an essential part in determining the height of the tower. The telecoiﬁmunicat-idﬁ .towers used
in Canada are either square i)ased self-supporting towers dr triangular towers supported by
guy cables, depending upon various factors, such as.the spacé availablé' at the site for its
insfailation and the height of the tower. The most populaf cross-section of the towef is the
triangular shape. Leés, diagonais and horizontals are made of solid round steei bars w1th
| varying diameters and with all the joints welded or bolted. View of tower segment is shown
in Figure 1.2. Solid round steel bars are widely used in tﬁe iﬂdustry as compression
members. For example, with increasing needs in information industry for transmitting

communication signals, antenna towers made of solid round steel bars are frequently used



around the world for their economy and effectiveness. It should be noted, however, that the
residual stresses in the material, which may occur during rolling, heat treatment, rotary
straightening or other processes, may have significant influence on the behaviour of the

these members.

The towers are subjected to self-weight, snow, wind loads and also earthquake loads
in seismic areas. Although the behaviour of the entire tower is rather complicated when
subjected to these loads, the resultant forces in the members are mainly axial tension or
compression. Hence, the behaviour of the tower members under axial forces is the most
important consideration in the tower design. For this reason, the properties of the members
with the residual stresses must be studied in order to obtain an opt.imized design’ while
satisfying the safety requirements. Design loads during fabrication, erection and service can
be classified as two categories, vertical loads and transverse loads. Leg members (chords)
bear vertical loads and bending moments caused by transverse loads. But most of the shear
force is borne by cross—brace diagonals, one in compression and the other in tension. In
designing these members, not only the strength and stiffness but also the stability problems
should be considered. The advancement of knowledge and technology has always resulted
in an improvement in the specifications and the underlying philosophy through which
various structures are designed. Since antenna towers are made of steel, the progress in the
specifications concerning the design of steel structures generally, and the antenna towers

specially, should be studied.



1.2 Need for Investigation

The behavior of members in tension is very simple compared with that of those in
compression. The mostly used philosophy for steel tower design at the present time is
based on the ultimate strength of the members.. There are many faciors affecting the

behavior of compression members, for example, the properties of steel, the slenderness of

. the member, the end constraints, cross-section of the member, initial out-of-straightness

of the colﬁmn, etc. The effect of end restraints, an _impdrtant consideration in column
stability analysis, is generally represented by the effective length factor. Residual stréss ié
another factor influencing the compression behavior of the steel memberé and a lot of
work on this topic has been done. But unfortunately, most of the work was on wide-
flange shapes. Few research results are available on solid round steel. For members in
compression, because of the existence of residual stresses, early localized yielding occurs
| at some part of the cross section when the loading increases and the ultimate strength is
appreciably reduced. Also, the fatigue life will be shortened due to the residual stresses
when the tower is subjected to dynamic loads such as wind load. The superseded
Canadian Standards of 1994, CAN/CSA-S16.1-94, AISC-LRFD Specifications of 1993,
and the European Standard, Eurocode 3, provide the factored compressive resistance of
structural steell members other than solid rounds. While, the Current Canadian Standard,
CAN/CSA-S37-01 of 2001, for Antenna towers and Antenna Suppbrting Structures
specifies empirical expressions for the compressive strength of solid rounds based on the
well-known Structural Stability Research Council (SSRC) column curves for non-solid-
round members as well as the results from experimental investigatiqn on the compressive

resistance of solid rounds carried out back to 1965. As a result, there is an urgent need for
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experimental data on the load carrying capacity of solid rounds made of stress-relieved or
non-stress-relieved steel so that the code equation can be easily updated. This will reflect
on considerable savings to owners of communication towers and other structures that use

solid rounds as primary members.

13 Objectives of the study

The objectives of the study are:

i) To experimentally determine the compressive resistance of solid round steel
members made of stress-relieved or non-stress-relieved steel.

ii) To compare the experimental failure loads with the compressive resistance of
solid rounds obtained from the available codes and specifications.

iii) To recommend modification factors to the available code equations for the
compressive resistance of solid rounds based on the experimental results

obtained in this thesis.
1.4 Outline of the Thesis

The thesis begins with an introduction to communication towers, followed by the
need and objectives of the present investigation. The relevant literature is reviewed in
Chapter 2. In chapter 3, details of experimental test set-up, geometric properties of the
tested solid round steel members, support assembly and loading conditions are presented.
Experimental results are presented and analyzed in Chapter 4. .Finally, the conclusions

and recommendations for further study are presented in Chapter 5. - -



CHAPTER II

LITERATURE REVIEW

2.1 General

This chapter summarizes the literature pertained to the compressive strength of axiélly
loaded steel members with emphasis on solid steel rounds. The literature review includes
the critical-load theory, inelastic buckling of columns, imperfect éolumn, compressive
resistance of columns, influence of residual stresses, influence of out-of-straightness,
effect of cold-straightening, American specification, Canadian Standard, and European

Code pertained to compressive resistance of columns

2.2 Critical-Load Theory

The strength of a perfectly straight prismatic column with perfect central loading and
well-defined end restraints is the Euler load, Pg, as long as the material is still elastic when

buckling occurs (Galambos, 1998):

pp= LI (2-1)
(KL)*
where,
EI is the elastic stiffness,
L is the length of the column



K is the effective length factor ( 1.0 for perfectly frictionless pins).

When the axial load attains Pg , a stable equilibrium configuration is possible even in the
presence of lateral deflection (Figure 2.1a), while the load remains essentially constant
(Figure 2.1b, path OAB). Even if an initial deflection, and/or an initial load eccentricity is
present, the maximum load will approach the Euler load asymptotically as long as the

material remains elastic (curve C in Figure 2.1b)

2.3 Inelastic Buckling of Column

Many practical columns are in a range of slenderness where.at buckling portions of
the columns are no longer elastic. The stiffness of the column is reduced by yielding, which
may be a result of the nonlinearity in the material itself or it may be due to partial yielding of
the cross section at points of compressive residual stress. The post-buckling behaviour of
such a column is radically different from the elastic column. Bifurcation buckling occurs at

the tangent modulus load, point D in Figure 2.1 (c) (Galambos 1998):

nE,I

Pr= (2-2)

(KL)’
where, E; is the tangent modulus. The tangent modulus E; is the slope of the stress-strain
curve at a load level (Figure 242) when the material is non-linear.
Further lateral deflection is possible only if the load increases. If there were no further
changes in stiffness due to yielding, the load would asymptotically approach the reduced

modulus load as the deflection becomes large, (Point E in Figure 2-1c)(Galambos 1998):

p =T E (2-3)



where, E; is the reduced modulus.

In presence of residual stress, E, and E, depend on the shape of the cross-séction. Since
increased loading beyond the tangent modulus load results in further yielding, stiffness
continues to be reduced and the load-deflection curve achieves a peak, (Pmax) point F in

Figure 2-1(c) beyond which it falls off. Thus, a perfect inelastic column will begin to deflect

laterally when P = P, and P; < Ppqc < Py (Galambos 1998)_

In linear analysis of columns, it is assumed that the material behaves ;ccording to
Hooké’s law and the stresses in the member must remain below the propéniohal limit of the -
material for this postulation to be valid. From Figure 2-3 it'cari l;':e-seen that for slender
columns, the applied load reaches Euler’s load before the axial stress exceeds the
proportional limit. The Eulét ioad representé the correct buckling load of such members and
the linear elastic analysis is therefore valid for slender columns. For stocky columns, the
axial stress will exceed the proportional limit of the material before the applied load reaches
the Euler load. Therefore, the results of the elastic analysis are not valid for bstocky columns,
and the buckling load of stocky columns must be determined by taking inelastic behaviour
into account. This type of bhckling is known as inelastic buckling. For columns that buckle
inelastically, some of the fibres in the cross-section have been yielded before buckling
occurs. Consequently, only the fibres that remain elastic are effective in resisting the
additional applied fércé. Since only a small portion .gf the cross-section is effective in
resisting the axial force at buckling, the elastic m\odulus E is replaced by an effective

. modulus, E.f, to describe the behaviour of the inelastic column.



24 Imperfect Column

In Euler theory, the member is assumed Ato be perfectiy straight and the loading isl B
assumed to be concentric at every cross-section of the member. However, in actual
structures, perfect members do not exist; minor imperfections of shape and small
eccentricities of loading are present. For studying the behavior of an imperfect column,
con§ider a member whose centroidal axis is initially. bent and assume that the material

obeys Hooke’s law and that the deformations are small.

The initial deflection is assumed to be of the form (Figure 2.4):
. m :
=asin| — 2-4
Yo ( 7 ) 2-49)
Due to the éxially applied load P, the resulting bending moment in the column is given by
M=P(Yyo+Yy) (2-5)
And the total deflection at mid-height is given by

a
s —_— 2-
1-(P/PkE) (2-6)

Where, yo is the initial out-of-straightness of the column, L is the column length, y is the

lateral deflection at distance x from the column end.

2.5 Compressive Resistance of Steel Columns

Steel columns are conventionally classified as short, intermediate, or long
members, and each category has an associated characteristic type of behavior. A short
column is one, which can resist a load equal to the yield load. A long column fails by

elastic buckling on which the maximum load depends only on the bending stiffness (EI)



—~—

and length of the member. Columns in the intermediate range are most common in steel

structures (Figure 2.3). Failure is characterized by inelastic buckling and is greatly

—

influenced by the magnitude and pattern of residual stresses that are present and the -

magnitude, shape of the initial imperfections or out-of-straightness and the end restraint.

—

These effects lessen for both shorter and longer columns. To take into account these
effects, a computerizéd maximum étrength analysis was performed (Bjorhovde 1972)
first on basic data available from carefully constructed column tests performed at Lehigh
University on W-shaped and hollow column sections. Next, a set of 112 column curves
was ge;nerated for members from whom measured «_gesiAdual-stress distributions were
available, assuming an initial crookeciness of 1/ 100_0 of the colum Jength and zero end
restraint. Bjorhovde grouped the whole spectrum ‘of column behavior to three Acolumn-
curves known as Structural Stability Research Coqncil- (SSRC) Column Strength Curves

1, 2 and 3 (Galambos 1998).

In a pilot investigation conducted from 1954 to 1956, the behavior of 70-mm
diameter stress-relieved bars was studied experimentally (Fujita and Driscoll 1962).
Three stub-column tests, nine axially loaded colum tests (eight “T-1" steel bars and one
structural carbon-steel bar), and two eCcentriéally loaded ;:olumn tests were performed.
The slenderness ratios of these bars ranged frqm 30 to 73. Comparison with the tangent
modulus concept for axially loaded columns, and-with.an inelastic strenéth theory for the
ecé:entrically loaded columns, showed that the uitimate strength of solid round columns .

might be predicted adequately by theory.



Latter, (Galanibos and Yoda, 1962) reported testing four axially loaded solid
round bars of 190.5 mm diameter and slenderne;ss -ratios of 52, 61, 66 and 67,
respectively.-Then, Galambos (1965) added the results of the experimentgl ultimate axial
compressive strength of fourteen bars with diameter 70 mm slenderness rations ranging
from 30 to 62. The effects of residual stress and initial qrpokedness on column strength
were also considered. The initial out-of-straightness (also refereed as initial crookedness or
initial curvat;ue) also -affects the primary column strength. The analysis of the strength of
inelastic, initially curved columns has either made use of assumed valqes and shapes of the
initial out-of-straightness, or can use actually measured data. The former is the most
common, mostly because the measurements that are available for columns are rare. This
applies in particular to the magnitude of the maximum out-of-straightness, normally
assumed to occur at the mid-height of the member. The latter is usually thought to be that of

a half —sine wave (Bjorhovde 1972).

)& 2.5.1. Influence Of Residual Stresses

Residual stresses in structural steel shapes and plates result primarily from uneven
cooling after rolling of hot-rolled steel columns. The quick cooling parts of sections when
solidified resist further shortening, while those parts that are still hot tend to shorten further
as they cool. The net result is that the area that cooled more quickly has residual
compressive stresses, while the slower cooling areas have residual tensile stresses. In the
elastic region, residual stresses and initial crookedness have a significant influence on the
strength of solid round bars. These stresses are of -particular importance for columns with

slenderness ratio varying from approximately 40 to 120, a range that includes a very large

10



percentage of real-world columns. The influence of the initial crookedness is. predominant if
only small residual stresses are present. For materials, which are quenched withopt stress .
relieving, the effect of residual stresses and initial crookedness is significant (Galambos
-1965). Few researchers (among them: Hetenyi, 1957; Watanabe et al., 1955; Biihler, 1954)
measured experimentally the residual stresses in cylindrical steel bars by the boring-out
technique. According to the study by Nitta and Thiirlimann (1962b) on the effect of thermal
residual stresses and initial deflections on solid round steel bars, members containing high
residual stress caused by water quenching, for example, carry approximately a 10 to 20%
lower load than air-cooled or stress-relieved steel columns, provided that the generalized
‘slenderness ratio and initial deflections are the same. Few éuthors utilized analytical and
numerical simulation techniques, such as the finite-element method, to predict residual
stresses produced by the manufacturing process (Jahanian, 1995; Toparli and Aksoy, 1991;
Kamamato et al., 1985; Weiner and Huddleston, 1959). Recently, Weiner and Huddleston -
showed a solution of the phase-transformation stresses from the standpoint of the flow
theory of plasticity. Since the process for obtaining a general solution is very involved it
seems almost inevitable to introduce simplifying assumptions when performing numerical
calculations. Hence certain constant values of the material properties are used as a common
value for the whole cooling instead of taking the true values corresponding to the variable
temperatures. By including the effect of the residual stresses in steel columns a reasonable

approach to the solution of the buckling load was suggested by Osgood, Yang and others.

- Fujita and Driscoll (1962) solved graphically the ultimate strength of H-shape and

built-up columns including the effect of residual stresses due to welding. Since these

11



particular solutions are not applicable to any other cross sectional shapes in which the
magnitude and the distribution pattern of residual stresses are different, further studies are
necessary in order to visualize the true column behavior until failure occurs. Most recently,
Ding (2000) used the classical boring-out method to determine ﬂle residual stresses on
fourteen samples of hot-rolled solid round steel bars. The diameter of the specimens ranged
from 38.1 to 152.4 mm, with yield strength of 456 MPa. It should be noted that the residual

stresses are an unavoidable consequence of the manufacturing process. Hence, the

measurement of them is needed in order to assess the performance of columns under

combined effect.

- The results obtained by the studies of Batterman and Johnston (1.967) showed that
the separate effects of residual stresses and initial curvature cannot be added to give a good
approximation of the combined effects on the maximum column strength. Residual stresses
have little effect on the maximum strength of very slender columns, either straight or
initially crooked, which have strengths approaching the Euler load. However, such columns
made of higher-strength steels can tolerate much greater lateral deflection before yield or
before becoming unstable. The differences in column strength, caused by variations in the
shape of the residual stress pattern, are smaller for initially curved columns than for initially

straight columns.

2.5.2. Influence Of Out-of-Straightness -

The initial out-of-straightness '(also referred to as initial crookedness or initial

——

curvature) also affects the primary column strength. The analysis of the strength of inelastic,

— .
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initially curved columns has either made use of assumed values and shapes of the initial out-
of-straightness, or can use actually measured data. The former is the most common, mostly
because the measurements that are available for columns are rare. This applies in particular
to the magnitude of the maximum out-of-straightness, normally assumed to occur at mid-
height of the member. The latter is usually thought to be that of half-sine wave (Batterman

and Johnston, 1967; Bjorhovde and Tall, 1971).

2.5.3. Effect of Cold-Straight_ening
The strength of cold-straightened columns is, in general, greater than.that of the

corresponding as-rolled members because of the improved straightness and redistribution
of residual stress (Alpsten 1970). According to the study by Nitta and Thiirlimann
(1962a) on the effect of cold straightening on the ultimate strength of circular columns,
the tangent modulus concept cannot be used for predication of cold-straightening
columns, as there exists no bifurcation point in the load-deflection curve of cold-
straightened column, which contains ant-symmetric residual stress. The strength depends
upon the magnitude of the cold-straightening residual stresses and the out-of-straightness
remaining after cold-straightening operation. The load carrying capacity of such column

can be determined by ultimate load analysis.

Fujita and Deiscoll (1962) tested nine axially loaded bars and two eccentrically
loaded bars (eight USS "T-1" constructional alloy steel bars and one structural carbon
steel bar). The bars were of 70 mmA in diameter, with slenderness ratio (KL/r) ranging

from 30 to 73. The bars were cold straightened and subsequently stress-relieved, followéd |
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by air-cooling. Comparison with the theory based on the 'téhgent modulus" concept for
axially loaded columns, and with an inelastic-strength theory for the eccentrically loaded
~ columns shows that the ultimate strength of solid round columns may be predicated

- adequately by the tangent modulus concept.

Recently, Mull (1999) experimentally determined the compressive resistance of
forty steel solid round specimens for five different diameters of specimens ranging from
31.75 mm to 57.15 mm. The effective slenderness ratios of the specimens varied from 59
to 117. The specimens were tested as pinned-end columns loaded concentrically. From
the measured strain data, it was determined‘that énly sixteen of thé forty specimens had
load eccentricities less than or equal to 1/500™ of the effective lquth éf the specimen.
For these sixteen specimens, the ratio of the resistancé computed from the Canadian A
Standard - “Limit States Design of Steel Structures”, CAN/CSA-S16.1-94, to the
experimental failure loads ranged from 0.98 to 0.79, and, for resistances computed from
AISC-LRFD Specification (1993), the ratios ranged from 1.10 to 0.89. So, more tests
need to be carried out of wide range of solid rounds, especially of large diameters, to
reach recommendations that may provide considerable savings in the design and
evaluation of solid round bars. Previous studies on the effective.lengfh factors of solid
round bars used as bracing diagonals (Jaboo, 1998; Sun, 1999, Chen, 2000; Lim, 2000)
and as chord members (Qureshi, 1999). General effective length factors for structural

steel members are specified in CAN/CSA-S16-01, Figure 2.5.
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2.6 Structural Stability Research Council (SSRC) Column Strength

Curves

In a major study, Bjorhovde (1972) examined the deteﬁniﬂistic and probabilistic
characteristics of column strength in general and developed an extgnsive database for the
maximum strengths of centrally loaded compressi(;n members, covering fhe full practical
range of shapes, steel grades, and manﬁfacturing bmethods. This study resulted in a
collection of 112 maximum-strength column curvéd. Thé_n, th.ese.curves were subdivided
into groups of curves with a mean or similar curve for each group. The latter defines the
multiple column curve concept (Bjorhovde and Tall, 1971; Bjorhovde, 1972; Bjorhovde
and Birkemoe, 1979). This results in three Acurves known as SSRC column strength curves
1, 2 and 3, and they are reproduced as shown in Figures 2..6; 27 and 2.8, respectively.
Algebraic representations of the three column strength curves were obtained by curve

fitting, and the resulting equations are as follows:

SSRC curve 1:

1 For0<A<0.15 Oy =0y

2. For015<A<12 Gy = Gy (0.990 +0.122), - 0.367A%)
3.  Forl2<A<18 o, =0y (0.051 +0.8011%)

4 For 1.8<A<2.8 Oy = Gy (0.008 + 0.94212)

5 ForA>2.8 Op =0y A% (Euler Load)

SSRC curve 2:

1.  For0<A<0.15 Oy =0y

2. For0.15<A<10 Gy = Gy (1.035 - 0.202) - 0.222)%)
3. Forl0<A<20 O =0y (-0.111 + 0.6361"" +0.0871.%)
4.  For20<A<36 G, =Gy (0.009 + 0.8771.%)

5. ForA236 o, = oy A2 (Euler Load)
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SSRC curve 3:

L. For0<A<0:.15 ~ Oup=0y

2. For0.15<A<08 G, = Gy (1.093 - 0.6221)

3.  For0.8<A<22 Oy =0y (-0.128 + 0.7071"" - 0.102A2)
4.  For22<A<50 Gy = Oy (0.008 +0.7921.%)

5. ForA=5.0 o, = 6y A (Euler Load)

2.7 Canadian Stan_dards

The experimental investigation on the compressive resistance of solid rounds
carfied out was as far back as to 1965 _i)n structural carbon and construction alloy steel
(Galambos and .Ueda, 1962; Galambos, 1965). Since there is no other literature on the .
compressive resistance of solid rounds, ﬁe superseded version of the Canadian Standard
fof Antennas, Towers, and Antenna-Supporting Structures, CAN/CSA-S37-94, assumed the
applicability of Column Strength Curve 2 of the Structural Stability'Research Council
(Galambos, 1998) to hot rolled solid round bars 51 mm in‘diameter and less and to hot-
rolled solid round bars greater than 51 mm in diameter that are stress-relieved to
manufacturer’s recommendations after initial cold-straightening at the mill. It should be
noted that the resulting equations of the SSRC Column Strength curve 2, equations 1 to 5

listed below, were obtained for W-shapes and hollow structural sections.

0<A1<0.15 C,=9.AF, Q2.7)
0.15(A<1.0 : C, = §.AF,[1.035-0.2024 - 0.2224°] (2.8)
1.0(1<2.0 C, = §.AF,[-0.111+0.6364" + 0.087172] 2.9)
2.0(A<3.6 C, = §.AF,[0.009+0.87717] (2.10)
3.6(1<5.0 C, =9.AF,[A”] (2.11)
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where:
KL | F, : . .
=— TE; F, = yield stress; ¢ = resistance factor; A = cross-sectional area; A =
V(2 , .

slenderess function; L = length of member; r = radius of gyration; K = effective length

factor; E = modulus of elasticity.

Also, the CAN/CSA-S37-94 presented expressions .of the compressive resistance of
solid round bars greater than 51 mm in diameter and not stress-reheved after cold
straightening, based on Column Strength Curve 3 of the Struetliral Stability Research

Council (Galambos 1998).

0(A<0.8 C, = $.AF,[1.093-0.6224 ] ‘ (12)
0.8(1<2.3 C, = $.AF,[-0.128+0.7074" —0.10242] (2.13)
2.3(1<5.0 C, = $.AF,[0.008+0.79247] ’ (2.14)

Most recently, the Canadian Standard for Antenna towers and Antenna Supporting
Structures, CAN/CSA-S37-01, was released to the public, w1th some modifications to the
expressrons found in the superseded version of 1994 for compress1ve strength of solid
rounds. These modifications were based on results of testing a limited number of solid
rounds back to 1965. The factored axial compressive resistance, C, 'of a member is
determined by the following formula: o

AF,
C =p—r ~ (2.15)

C ey
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where:

n = 1.34 for hot rolled round bars 51 mm in diameter and less; hot rolled solid round bars
greater than 51 mm in diameter - and stress relieved to manufacturer's
rccommendations after initial cold straightening at the mill.

= 0.93 for hot-rolled solid'roﬁnd bars g&ater than 51 mm in diameter. and not stress

relieved after cold straightening.

It should be noted that earlier versions of the Canadian Standard “Limit States
Design of Steel Structures” adqpted Equations 2.7 to 2.14 for solid round bars till 1994
version of the standa;d. However, the current standard “CAN/CSA-S16-01" (2003) omitted
these equations for the insufficient data in the literature that supports them. It adopts

- equation 2:15 for shapes other than solid rounds. -

In summary, there is a lack of available literature that would assist code writers td
specify more economical and safe expressions for the compressive strength of stress-
relieved and non-stress-relieved solid round steel bars. Also, as manufacturing methods have
advanced considerably since the current equations were formulated, there is a need to revisit

this issue.

2.8 AISC (LRFD) Specifications
According to the AISC-LRFD, “Load and Resistance Factor Design Specifications
for Structural Steel Buildings”, [American Institute of Steel Construction Inc. 1993], the

compressive resistance of structural steel members of different shapes is given by:
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C,=9AF, (2.16) -

Where,
F, =[0.658"1F, for A<1.5,and (2.17)
0.877 g

It »shou'lcil be noted that equations 2.17 and 2.18 represent SSRC column strength

curve 2 and apply for structural steel shapes other than solid rounds.

29 European Standard

This European Standard for the design.of steel structui‘es, Eurocode 3, (CEN,
2003) specifies rules relating to ultimqté limit state analysis of the buckling resistance of
steel linear members and frames susceptible to loss of stability. Buckling is a
phenomenon in which displacement, v or w, of a member occurs, or rotation, #} occurs
about its major-axis, or both occur in combination. A distinction is conventionally made
between lateral buckling and lateral torsional buckling. Lateral buckling is a phenomenon
in which displacements, v or w, of a member occurs, or both-occur in conjunction, any
rotation, ¢} about its major axis being neglected. Lateral torsional bﬁckling is a
phenomenon in which displacements, v and w, of a member occur iﬁ combination with

rotation, 2 about its major axis, consideration of the latter being obligatory. -

Eurocode 3 specifies that the analysis shall take the form of one of the methods
given in Table 2.1 shown below, taking into account the following factors:

e Plastic capacity of materials
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e Imperfections

e Internal forces and moments

e The effects of deformations

e Slip

e The s}:ructural contribution of cross sections

e Deductions in cross-sectional area for holes
As a simplification, latefal buckling and lateral torsional buckling may be checked
separately, first carrying out the analysis for lateral buckling and then that for lateral
torsional buckling whereby, in the latter case, members shall be notionally singled out of
the structural system and subjected to the internal forces and rﬁoments acting at the
member ends (when considering the sysfem as a whole) and to fhose acting on the
member considered in isolation. Details on whether first or second ordef theory is to be

applied are given together with the relevant method of analysis

The materials used shall be of sufﬂcienti plastic capacity. Calculatioﬂs may be
based on assumptions of linear elastic-perfectly plastic stress-strain behavior instead of
actual behavior. Reasonable assumptions shall be made in order io take into account the
effects of geometrical and structural imperfections. Typical geometrical imperfections are
accidental load eccentricity and deviations from design geometry. Typical structural
imperfections would be residual stresses. The internal forces and moments occurring at
significant points in the members shall be calculated on the basis of the design actions.
Calculations of internal forces and moments usually make alloWahce fbr deformation

effects on equilibfium, using as the design stiffness values the characteristic stiffness
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obtained by dividing the nominal characteristics of cross section and the elastic
characteristic and shear moduli by a partial safety factor yv equal to-1.1. The effect of

N

deformations resulting from stresses due to shear forces may normally be ignored.

Members notionally singled out of the systém and considered in isolation shall be
analyzed for lateral torsional buckling. Their end moments may réquirq to be determined
by second order theory. The moments in the span may then be calculated by first order
theory using these end moments.

An analysis of lateral torsional buckling is not required for the following:
e Hollow sections
e Members with sufficient lateral or torsional restraint
e Members designed to be in bending, provided that their non-dimensional

slenderness in bending, Ay, is not more than 0.4

The ultimate limit state analysis shall be made for the direcfion in which buckling will

take place, using equation 2-19

N < _ ‘ (2-19)
x.Np,,d .

Where N is design value of the compressive force, Npq is the design buckling resistance of
the compression member, x is a reduction factor according to the standard and buckling

curved as used in Europe.

If A <02, x=1

1
If XK >O.2;x=
k+k? -2
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where k=0.5[1+a( A —02)+42]
As a simplification, in cases where _XK >3.0:

X == -—-1
/?’k(ﬂ’k +a')

Where a is the imperfection factor being taken from Table 2.2 for curve I,°°

In lieu of the above equations,  can be obtained from curve ¢ in Figure 2.9.
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Chapter III

EXPERIMENTAL STUDY

3.1 Getieral -

Axially 10aded column strength tests: were conducted at the structural laboratory of
Ryerson Universify on »;20 stress-relived steel solid rounds and 35 non-stress-relieved steel solid
rounds oﬁ different diameter and length. Also, a set of 7 stub columns was tested to collapse.
This chapter reports the siz.es; of the tested specimens as well as the test set-up used to conduct

each type of testing.

3.2 Description of th‘e' test specimens
3.2.1 Testing Centrally Loaded Columns made of Stress-Relieved Steel

Tp minimize initial geometric imperfections of the specimen, the column specimen is cut
from a straight portion of the.stock. Both ends of the specimen are milled. 20 solid .rounds'madé
of stress-relieved steel were cuf tb size per thé dimensions shown in Table 3.1. This type of
specimensA was supplied by Radian- Communications Systems Inc. of Oakville, Ontario, Canada.
The diameter of the columns ranged from 38 to 128 mm, with slenderness ratios ranging from 10
to 70. It should be noted that the conirﬁon slenderness ratios for existing tower members rangé
from 40 to 70. However, the inclusion of smaller slenderness ratios was coﬁsidered as a result of .

the considerable high compressive forces in the tower legs in high seismic regions. Table 3.1

summarizes the details of these specimens. The results of these tests would be in the form of
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lateral deflection of the column at mideheight;:' ai'.ial, st';ains; colnrnn ‘shortening and mode of
failure.

3.2.2 Testing Centrally Loaded Columns made of ~Non'-Stress-Relieved Steel

 Two sets of sol1d rounds made of non-stress-reheved steel were supplied by ERI,
| Electronics Research Inc. of Chandler, Indzana‘ U Sl‘l The ﬁrst set mcluded 25 solid rounds
with diameter ranging from 38 mm to 114 .mm .}apd,‘s.lende_rness ratlos ranging from 20 to 75, as
shown in Table 3.2. The other set has longerlength,w1th sleﬁdeiness ratios ranging from 25 to
© 91. Table 3.3 svummarizes the details of thes,e s_;_)'eeiinens.. I'I_‘héSe,'tests'Were intended to stand on
the level of the effect of residual stresses."_ ar_.i's‘ing;.fr‘o'rn-the rnant,lfacturing process on the column

compressive resistance.

323 Stlil) Colnmn Tests:

Stub column tests were made of shoft :hars'to_determine the average compressive stress-
strain characteristics of the solid round .when 1nstab111ty effects alre excluded. This information
will be used in a subsequent study for the 'de-terrn'inéttion 'of the tangent-modulus curved needed
for the theoretical predication of the crltlcal load of the ax1ally loaded columns and to stand on
the percentage reduction in strength when uslng longer length of columns SSRC Guidelines
(Galambos 1998) recommend the length of the hot-rolled stub columns to be 2d +250 mm or 3d,

whichever is the smaller, where d is the dia'me;ter of_‘the' bar. ,‘ .
Seven stub columns were snnolied' byERI, UElegtfonics-- Rés,earch Inc. of Chaltdler,

~ Indiana, U.S.A. Table 3.4 summarizes the details of the tested stnb eolumns{ The length-to-

.diameter ratio of the stub was maintained at 4. The diameter of the stubs ranged from 38 mm to
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114 mm, maintaining a slenderness ratio of 16. These specimens were cold-sawed from the
stock and the ends of the columns were milled plane and perpendicular to the longitudinal axis of
the column. Stub column tests are expected to provide Young’s modulus of elasticity,
proportional limit stress, yield strength, elastic range, elastic-plastic range, onset of strain

hardening, strain-hardening range, and strain-hardening modulus.

3.3 Test Set-Up

The specimens were tested in the Structural Laboratory of Ryerson University. Two test
set-ups were used to conduct the columns strength tests as well as stud column tests. The first
test set-up u‘tilized the available 4500-kN compression testing (MTS) machine, shown in Figure
3.1. The clear head of between the upper and lower end plates can accommodate specimens of
maximum length of 1118 mm. As a result, all specimens shown in Tébles 3.1 to 3.4 were tested
using the MTS machine except specimen NSR-26 shown in Table 3.3. This specimen was

tested in a set-up prepared to accommodate specimen height of 1219 mm.

The second set up was installed between the upper and lower steel beams of the available
self-contained 3D structural steel testing facility in the structural laboratory. A hydraulic jack
having a capacity of 900 kN was used for the application of the load. The jack was mounted on a
W-shape mondréil beam supported by a rigid portal frame as shown in Figure 3.3-b. A universal flat
load cell, of 900 kN capacity, was used to measure the applied loads on bridge models. While

Figure 3.3 shows the two test setups mentioned herein. -
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Three iypcs of end conditions were applied to the columns:tested in the MTS machine,
namely, hinged-hinged (H-H), hinged-fixed (H-F) and fixed-fixed (F-F).‘ A hemispherical
bearing block at the upper and/or lower end of the machine provided a uniform distribution of
applied stress in the test specimen and ensured the pinned-end restrain'ts.df the specimen while
flat-ended conditions were considered ai the' lower end and/m" uppe;' end of the specimen
ensuring fixed-end constrains. Figure 3.2 shows schematic diagram of the specimens in a test set-

up with hinged-fixed conditions.

3.4 Instrumentations

3.4.1 Strain Gauges

Electric resistance strain gauges, manufactures by Kyowa, Japan, type KFG-5-120-C1-
11, with a gaﬁge length of 5 mm and a gauge factor of 2.12 were used to measure the axial strain
in the test specimen. Four strain géuges were attached in North, East, South and West directions,
as shown in Figure 3.2 to measure the axial strain in the specimen at its. mid-height. For the
application of strain gauges, the surface was properly polished with a 50 mm air grinder using a
brush, grit size-50, for roughening and grit si;e-lSO for fmishiﬂg; and thén cleaned wit.h acetone,
followed by application of M-Prep conditioner-A and ‘M-prep Neutfalizcr-SAI Conditioner-A
(non.-ﬂammable phosphoric acid) was water based acidic surface 'c;'leaner, and M-prep
Neutralizer-5SA (non~ﬂammable ammonia water) was a water based alkaline surface cleaner.
After polishing and cleaning the surfaces, Fastac accelerator-H, Sicomet-7000 (for use with
cyanacrylate adhesives), was applied on the polished and cleaned surface, followed by the

application of the strain gauge adhesive (alkyl cyanoacrylate ester), albng with the strain gauge.
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3.4.2 Mechanical Dial Gauges

Mechanical dial having travel sensitivity 0.01 mm were used to measure .the lateral
deflection in the north and east directions at the mid-height of the column. The dial gauge readings
were manually taken at specific increments of the loading throughout the test. In some specimens,
Linear Variable Displacement Transducers, LVDT’s, were used to measure lateral deflection in

two perpendicular directions.

34.3 Automatic Strain Indicator

Daytronics system 10 data acquisition unit was used to ca.lpturev the strain reading from rebar
strain gauges. 'Ihis unit consists of balancing unit having quarter, half and full bridge connections of
the circuit and data acquisition system which was connected to the computer. Data from the

acquisition system was captured using Visual Designer software from Intelligent Instrumentation.

3.5 | Test Procedure

Initial dimensions (length, diameter and .out-of-straightness) of each specimen were
recorded. .Then, each specimen was aligned centrally within the testing machine. Dial gauges
were installed at the north and east sides of the column at its mid-height. Strain gauge wires were
connected to the automatic strain indicator. When using the MTS machine, the load was applied .
at a rate of 6.9 MPa/min (Galambos, 1998). The converted load rate for each specimen is listed
in the last column of Tables 3.1 to 3.4. The MTS machine software recorded the applied load
per second as well as the overall shortening of the column with the applied load till failure. Ata

specified load increment, the readings from the strain gauges and the dial gauges were recorded.
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3.6 Meiterial Property

“The tensile yield strength is the key mechanical property required by codes and design
p;actice. Because of its standard usage, it is the most accepted value for analyzing and
comparing test data. Since the tensile testing is sensitive to the rate of straining, stability test data
can easily be shifted by more than 20% if care is not exercised in conducting the tension test and -

in reporting the test method employed and its results.

Seven tensile coupons for stress relieved steel columns as well as seven tensile coupons
taken from non-stress-relieved steel specimens were tested, corresponding to each bar size. The
tensile coupons were prepared in accordance with ASTM Standards. The total length of the
- specimens was 200 mm, with a gauge length of 50 mm and diameter of 12.5 mm. Figure 3.5
shows the test set-up for tension coupon test before and after failure, respectively. Typical load-
elongation curve for the tensile coupons are given in the following chapter. The values of yield
stress, tensile strength and percent elongation for each specimen are presented in the following

chapter.

3.7 Determination of Yield Strength from Tension Coupons

Kennedy and Gad (1980; CSA, 2000) provided .guidance to determine representative
material strength for use in the evaluation of existing bridges from the test of material sampies
taken from the bridge. The analysis and interpretation of test data may often be made difficult by
presence of qurious high or low observations in the data set. A test observation can be ignored if
- reasons for its extreme value can be identified and its exclusion from the analysis can be

justified. However, such justification may be difficult if there are less than 6 samples in total.
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The yield strength for evaluation, Fy, is determined from Eq. (3-1) (CSA, 2000). In this .
equation, it is assumed that the difference between yield strength observed during a coupon test

and static yield strength is 28 MPa.

Fy - (Fy _ 28 )e—l.3KSVS (3-1)
where,
— 1n
Fy = Average value of equivalent yield strengths from the tests = ;:Z:I F yi
K; = coefficient of variation modification factor for steel from Table 3.5. Coefficient K is a

measure of confidence in strength data and reflects effect of sample size on the uncertainty of the
mean value; higher value of K; means a greater uncertainty and hence a lower degree of
confidence. This confidence in data improves as the number of sample increases. The equivalent
yield strength of each coupon is its reported yield strength from the test, except of a coupon is
obtained from the flange of a rolled member, the equivalent yield strength of that coupon may be
taken as 1.05 times the reported yield strength from the test.

n = number of strength tests

Vs = coefficient of variation of equivalent yield strengths from the tests. It is dimensionless and

is defined as the standard deviation divided by the meanr =

'F=y.

As a general case, the mean value of x is denoted by pix. For a continuous random variable,

the mean value is defined as
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pe= [ (Ddx | "

For a discrete random variable, the mean value is defined as

=Y 5p,(x) | (3-3)

alls,
The expected value of X is commonly denoied bs; E(X) and is equal to the mean value of the
variable as defined above:
E(X) = X | - G4
It is also possible to determine the expected value of X". This expected value is called the

nth moment of X and is defined for continuous variables as

E(X") = [x" f.(x)dx | (35
E(X" )= 3 pyf;) 6
allxi ' ’

The variance of X, commonly denotéd as 0'3 , is defined as the expected value of (X-px)

and is equal to

+oo : :
0'3 = I (x— ux )2 fX(x)dx  (Continuous random variable) (-7
2 - Z( X; — Ux )2 p.(x;) (Discrete random variable) (3-8)
X ] X 1l
allxi

An important relationship exits among the mean, variance, and second moment of a random

variable X:

or=E(X*)-p | (3-9)
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The standard deviation of X is defined as the positive square root of the variance:

o =0 ‘ (3-10)

'The nondimensional coefficient of variation, VXx, is defined as the standard deviation divided

by the mean:
v, =% (3-11)

This parameter is always taken to be positive by convention even though the mean may be
negative. In many practical épplications, the true distribution is not known, and one needs to
estimate parameters using test data. If a set of n observations {xy, Xa, ...,X,} are obtained for

a particular random variable X, then the true mean px can be approximated by the sample
mean x and the true standard deviation o, can be approximated by the sample standard

deviation Sy

The sample mean is calculated as

(3-12)

o

(3-13)

This method provides the specified yield strength in the structural drawings that can be used

in calculating the ultimate load carrying capacity of the column. This value is usually less that the
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average yield strength obtained from tests. In this study, it was decided to use the actual yield
strength as obtained experimentally for each coupon.to obtain the ultimate strength of the respective
specimen. This approach will make the comparison more realistic than using a lower value of yield

strength or the commercial yield strength of Grade 50 steel.
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CHAPTER IV |
ANALYSIS AND DISCUSSION OF RESULTS

4.1 General

The results from testing to-collapse 20 solid round bars made of stress-relieved
steel and 33 solid round bars made of non-stress-relieved steel, under increasing
monotonic axial compressive load, are reported in this chapter. Also, the results from
testing 7 stub columns are reported in this chapter. Moreover, results from tensile testing
of 7 coupons made of stress-relieved steel and other 7 coupons made of non-stress-
relievéd steel are reported. for different bar diameters. The applfed load, the measured
axial strain at the mid-height of the column specimen, the lateral deflection at the mid-
height and the machine crosshead movement were recorded using a data acquisition

system.

The compressive resistance obtained from testing were then compared with the
compressive resistances computed based on the Canadian Standard (CAN/CSA-S37-01),
the American Specifications (AISC-LRFD) and the European Standard (Euro code 3).
The comparison between the experimental findings and the available Code equations for
the steel bars was performed using the theoretical buckling length as well as the

recommended practical buckling length specified in' the Canadian Standard CAN/CSA-

S16-01.
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4.2 Results from Tension Coupons

Seven tensile coupons for stress relieved steel columns as well as seven tensile -
coupons taken from non-stress-relieved steel specimens were tested. Columns 1 and 2 of
Tables 4.1 and 4.2 summarize the column diameters from which the coupon was
machined towards their centroids. The tensile coupons were prepared in accordance with-
ASTM Standards. The total length of the specimens was 200 mm, with a gauge length of
50 mm and diameter of 12.5 mm. Figure 4.1 shows views of coupon samples during and
after the fabrication process. While Figure 3.5 shows the test set-up for tension coupon

test before and after failure, respectively.

Results from tensile testing the coupons made of stress-relieved steel and.non-
stress-relieved steel are presented in Table 4.1 and 4.2, respectively. Each table provides
the average of three measurements for the diameter of each tension coupon, area of the
tension coupon, peak load and stress, modulus of elasticity, the yield stress, percentage
elongation at break and reduction of cross-sectional area after failure. It should be noted
that the yield stress was calculated basgd on the 0.2%-offset method when recorded
stress-strain curve did not show the flat-yield plateaux at the end of the elastic stage and

before entering the plastic stage.

Figures 4.2 to 4.8 show the recorded axial stress-strain relationship for each tested bar
diameter shown in Table 4.1. Some of these curves show distinct uppér yield point and
flat-yield plateaux‘ before entering the non-linear stage. While others show no yield point

before at the end of the elastic stage. Each of the tensile coupons failed in a ductile
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manner as indicated in the calculated percentage elongations at break and reduction in
cross-sectional area. Each coupon failed in a form of cup and cone. Figures 4.9 and 4.10
show the failure mode and the initial portion of the \stress-strain curve of a coupon taken
from a 38-mm diameter bar made of non-stress-relieved steel (NSR). Figures 4.11 and
4.12 show similar graphs for 51-mm diameter bar. Also, Figures 4.13 to 4.22 show
similar graphs for coupons taken from NSR bars of diameters 64, 76, ‘89, 102 and 114

mm.

4.2 Results from Testing Centrally Loaded Columns Made of Stress-

Relieved Steel

 Tests to-collapse on 20 solid round bars made of stress-relieved steel were
performed to check the accuracy of the compressive resistance equations specified in
steel Standards, Specifications and Codes, when applied to solid rounds. The
experimental failure load, as well as other pertinent information, such as diameter, length,
end conditions, load rate and slenderness ratio, are given in Table 4.3. Three end
conditions were considered while testing, namely: hinged-hinged (H-H), hinged-fixed
(H-F), and fixed-fixed (F-F) conditions as listed in Table 4.3 for each tested column.
Increasing axial load was applied to each column and readings from strains gauges for
axial strains, and from LVDT’s for column lateral deflection at its height, were recorded.
The MTS machine recorded the crosshead movement with time as during the test. It
should be noted that crosshead movement gives an indication of the average shortening

over the column length. It should be noted that columns SR-18, SR-19 and SR-20 of 128
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mm diameter did not fail because the applied axial load reached the specified capacity of

_the MTS machine of 4500 KN.

Figures 4.23 to 4.99 show the results from testing the 20 solid rounds made of

stress-relieved steel. They include views of each specimen before and after failure. As an
example, Figure 4.23 shows views of specimens SR-1 of 38 mm diameter and 660 mm
length before and after failure. It can be observed that buckling is the dominant mode of
failure for all specimens. Also, these ﬁgﬁes include the measured axial strain at each
load level. For example, Figure 4.65 shows the relationship between the applied axial
load and the axial strains recorded at four points at the mid-height of the column. Two of
these points represent the axial strains at the column surface along a line parallel to the
machine head (north-south direction), while the other two pqints represent the axial

strains at the column surface along a line perpendicular to the machine head (east-west

direction). It can be observed that the strain readings at the four points are very close to

each other which prove that there was almost no eccentricity on the application of the

load. However, some columns show uneven distribution of axial strains along the

perimeter of the columns at its mid-height. It should be noted that care was given at the

first few increments of load at the start of each test to locate the column centrally as much -

as possible. Then, the test was continued till failure. It should be noted that the plane of
buckling failure differ from one column to the other. This is why in some figures, such as
Figure 4.65, it can be observed that buckling occurred about the east-west axis. While in

Figure 4.31, failure occurred at the axis located between the south and west directions.
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Some of Figures 4.23 to 4.99 provide the lateral deflection of tested column at its
mid-height with increase in axial load. For example, Figure 4.25 shows LVDT readings
in the east and north direction of the specimen. It should be noted that the two readings
are not interrelated. However, they may give an indication of load level at which buckling
started (usually when deflection deviates from the straight line relationship with load).
One may observe that in ideal column (the one that has no initial out-of-straightness), the
lateral deflection is almost zero till the column buckles laterally. However, this situation
did not exist in many of the tested column since there is a small initial imperfection
(crookedness) before applying the axial load. Some of Figures 4.23 to 4.99 provide the
movement of the sensitive crosshead relative to the fixed crosshead using a built in
LVDT, as automatically recorded by the MTS machine, with increase in applied axial
load. For example, Figure 4.37 shows the change in the average shortening of column

SR-4 of 51 m diameter and 661 mm length, along its length.

4.3 Correlation between the Experimental Failure Load of Stress-

Relieved Steel Bars and the Compressive Resistance as Obtained from

Design Standards.

The compressive resistances of the tested columns made of stress-relived steel
were computed based on the available empirical expressions specified in the Canadian
Standard (CAN/CSA-S37-01), the American Specifications (AISC-LRFD) and the
European Standard (Euro code 3). A resistance factor, @, of 1.0 was considered to take
into account the actual failure load obtained e_xperimentally. Then, the obtained

compressive resistance for each column was correlated with the results from tests.
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It should be noted that three end conditions were considered while testing,

namely: hinged-hinged (H-H), hinged-fixed (H-F), and fixed-fixed (F-F) conditions. For

theoretical calculations of the slenderness factor, A, the effective buckling length, k, was -

taken as 1 in case of H-H condition, 0.707 in case of H-F condition and 0.5 in case of F-F -
condition, as specified in CSA-S16-01 (see Figure 2.5). In testing columns under full
fixed-end condition, the full restraint may not exist throughout the-test. Therefore, the
effective length factor of the tested column may not be constant with increase in the
applied load. This may be partly attributed to the indeterminate nature of the stress
distribution at the column end, particularly in the load range in which the material yields.
As a result, an increase in the effective length factor, K, is expected in case of fixed end
condition tested experimentally. In case of H-H condition, this problem does not exist
because the critical condition exists at the mid-height of the column. In actual structures,
the condition of full-fixity is approached only when the column is anchored securely to a
foundation for which rotation is negligible, or when the column is framed integrally to a
girder many times more rigid than itself. As a result, CAN/CSA-S16-01 recomme;nds a
design value for k as a modification to the ideal value, taking into account the fact that
neither perfect fixity nor perfect flexibility is attained in practice. Figure 2.5 summarizes |

these values as 0.8 for H-F columns and 0.65 for F-F columns.

Table 4.4 shows the comparison between the experimental ultimate load and the
compressive resistance of solid rounds made of stress-relieved steel as obtained from
CSA-S37-01, AISC-LRFD and Euro code 3, based on the theoretical buckling length

factors. While, Table 4.5 presents similar comparison but based on the recommended
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- practical buckling length factor shown in Figure 2.5. As it can be observed that the
experimental failure load is always more or equal to the theoretical ultimate resistance.
The following table summarizes the minimum, maximum and average value of the ratio
between the experimental failure load the theoretical compressive resistance as obtained
from the code equations. The standard deviation and the coefficient of variation .are also

presented in the table.

Effective Mini | Max. | Average | Standard | Coefficient
length factor, k deviation | of
o _ variation - -
AISC-LRFD 1.00 1.52 [ 1.24 0.161 12.9%
Theoretical CSA-S37-01 1.00 1.68 | 1.27 0.189 14.9%
EURO Code 1.02 1.85 | 1.34 0.222 16.5%
AISC-LRFD 1.00 1.62 | 1.29 0.161 12.4%
Practical CSA-S37-01 1.00 1.78 ] 1.33 0.201 15.1%
EURO Code 1.02 - | 196 |1.42 0.243 17.0%

One may notice that the average ratios of the experimental failure load to that
obtained from available code equations are always more than 1. As an example, CSA-37-
01 underestimates the compressive resistance by about 27% and 33% when using the
theoretical or practical effective buckling length factor, respectively. Considering the
variation in results, the ratio between the experimental failure load and the compressive

resistance as obtained from S37-01 equations is 1.08 in case of stress-relieved steel bars.

44 Results from Testihg Centrally Loaded Columns Made of Non-

Stress-Relieved Steel
“Tests to-collapse on 33 solid round bars made of non-stress-relieved steel were

performed to check the accuracy of the compressive resistance equations specified in
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steel Standards, Specifications and Codes, when applied to -solid rounds. The
experimental failure load, as well as other pertinent information, such as diameter, length,
end conditions, load rate and slenderness ratio, are given in Table 4.6.-and 4.9. In this
case, two end conditions were considered while testing, namely: hinged-hinged (H-H),
and hinged-fixed (H-F). Increasing axial load was applied to each column and readings
from strains gauges for axial strains, and from LVDT’s for column lateral deflection at its
height, were recorded. The MTS machine recorded the crosshead movement with time as
during the test. It should be noted that columns NSR-22, NSR-23 and NSR-24, NSR-25
and NSR-33 of 114 mm diameter did not fail because the applied axial load reached the

specified capacity of the MTS machine of 4500 KN.

Figures 4.100 to 4.219 show the results from testing the 33 solid rounds made of -
non-stress-relieved steel. They include views of each specimen before and after failure.
As an example, Figure 4.100 shows views of specimens NSR-1 of 38 mm diameter and
508 mm length before and after failure. It can be observed that buckling is the dominant
mode of failure for all specimens. Also, t_hese figures include the measured axial strain at
each load level. For example, Figure 4.106 shows the relationship between the applied
axial load and the axial strains recorded at four points at the mid-height of the column. It
can be observed that the strain readings at the four points are very closé to each other
which prove that there was almost no eccentricity on the application of the .load.
However, some columns show uneven distribution of axial strains along the perimeter of

the columns at its mid-height. It should be noted that care was given at the first few
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increments of load at the start of each test to locate the column centrally as much as
- possible. Then, the test was continued till failure.

Some of Figures 4.100 to 4.219 provide the lateral deflection of tested column at
its mid-height with increase in axial load. For example, Figure 4.107 shows LVDT
readings in the east and north direction of column NSR-3 OF 38 mm diameter and 914
mm length. Some of Figures 4.100 to 4.219 provide the movement of the sensitive
crosshead relative to the fixed crosshead using a built-in LVDT, as automatically
recorded by the MTS machine, with increase in applied axial load. For example, Figure
4.128 shows the change in the average shortening of column NSR-8 of 64 m diameter

and 771 mm length, along its léngth.

4.5 Correlation between the Experimental Failure Load of Non-Stress-
Relieved Steel Bars and the Compressive Resistance as Obtained from

Design Standards.

The compressive resistances of the tested columns made of non-stress-relived
steel were computed based on the based on the available empirical expressions specified
in the Canadian Standard (CAN/CSA-S37-01), the American Specifications (AISC-
LRFD) and the European Standard (Euro code ‘3). A resistance factor, ¢, of 1.0 was
considered to take into account the actual failure load obtained experimentally. Then, the
obtained compressive resistance for each column was correlated with the results from
tests.

It should be noted that two end conditions were considered while testing, namely:

hinged-hinged (H-H) and hinged-fixed (H-F) conditions. For theoretical calculations of
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the slenderness factor, A, the effective buckling length, k, was taken as 1 in case of H-H - = -

condition and 0.707 in case of H-F condition, as specified in CSA-S16-01 (see Figure -
2.5). However, the compressive resistance of the tested columns was also calculated
using the recommended practical effective buckling length factor per Figure 2.5, that is

0.8 for H-F columns.

Tables 4.7 and 4.10 show the comparison between the experimental ultimate load
and the compressive resistance of solid rounds made of ﬁon—stress-relieved steel as
obtained from CSA-S37-01, AISC-LRFD and Euro code 3, based on the theoretical
buckling length factors. While, Tables 4.8 and 4.' 11 p’res'ent similar comparison but based
on the recommended practical buckling.length faqtor_ shown in Figure 2.5. As it can be
observed that the experimental failure load is always more or equal to the theoretical
ultimate resistance. The following table summarizes the minimum, maximum and
average value of the ration between the experimental failure load the theoretical
compressive resistance as obtained from the code equations. The standard deviation and

the coefficient of variation are also presented in the table.

Effective Mini | Max. | Average | Standard | Coefficient
length factor, k deviation | of
. variation
AISC-LRFD 1.00 141 [1.19 0.095 8.0%
Theoretical CSA-S37-01 1.07 1.54 [133  |0.118 8.9%
EURO Code 1.09 1.69 | 1.31 0.121 9.0%
AISC-LRFD 1.03 141 [1.22 0.080 6.5%
Practical CSA-S37-01 1.12 1.65 |1.37 0.120 8.8%
EURO Code 1.09 1.69 [135 - |0.128 9.5%

42




One may notice that the average ratios of the experimental failure load to that
obtained from available code equations are always more than 1. As an example, CSA-37-
01 underestimates the compressive resistance by about 33% and 37% when using the
theoretical or practical effective buckling length factor, respéCtivély. Considering the
variation in results, the ratio between the experimental failure load and the compressive
resistance as obtained from S37-01 equations is 1.22 in case of non-stress-relieved steel
bars. It can be observed that the inclusion of the practical effective buckling length factor
in compressive resistance calculations provides conservative results when designing a
compression member. However, for the sake of revising the available code expressions, it
is advisable to use the theoretical effective buckling length factor in compiessive

resistance calculations so that it can be very close to the experimental failure load.

4.6 Results from Testing Stub Columns

Stub column tests were made of short bafs to determine the average compreésivé stress-
strain characteristics of the solid round when instability effects are excluded. One stub
column test was perforrﬁed for each b;lr size listed in Table 3.4. Axiaily symmetric
residual stresses are introduced in the bars by non-uniform cooling of the member after
rolling or heat treatment. In case of stud column (SC-1) listed in Table 3.4, the specimen
was carefully centered in the MTS machine. Then, two LVDT’s were placed at'the mid-
height of the specimen to measure the lateral deflection which was observed to be
insignificant. Also four strain gauges are used to measure axial strains around the stub
cross-section at its mid-height. Figure 4.222 show the stub column SC-1 before and after

testing. Figure 4.221 show the relationship between the axial load and the corresponding
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axial strain at the mid-height of the stub. While, Figure 4.222 show the relationship
between the applied axial load and the corresponding cross—hc;ad movement. A linear
relation was observed with increase in applied axial load up to a certain load increment
when residual stress effect started to force the stub cross-section to behave non-linearly.
At failure, the stub buckled laterally as shown in Figure 4.222.

The yield stress of the stub column can simply be obtained at 0.2% offset of .
strain. Also, modulus of elasticity of the stub column can be obta@ed as the slope of the
straight line portion of the stress-strain curve. However, the maximum compressive
residual stress can be obtained by subtracting the stress at which deviation from linearity
- was first observed in the stub column test from the yield stress. Figures 4.223 to 4.240
show views of the stub column before and after testing, the axial load-strain relationship
and the axial load-crosshead movement relationship for stub columns SC-2 to SC-7.-
Also, Table 4.12 lists the size, end conditions, load rate and experimental failure load for
each stub column tested at the structural laboratory. These results will be used in a further.
research to verify the finite element modelling to be used to obtain the compressive

resistance of non-stress-relieved solid round bars.



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

5;1 General

The need for information on the compressive resistance of solid round bars made of
stress-relieved or non-sfress-relieved steel arose from t.he increased use of these bars
in communication towers. Solid steel round bars arc;, used as leg members, diagonal
members and horizontal members of a communication tower. The superseded
Canadian Standards of 1994, CAN/CSA-S16.1-94, AISC-LRFD Specifications of
1993, and the European Standard, Euro code 3, provide the factored compressive
resistance of structural steel members other than solid rounds. While, the Current
Canadian Standard, CAN/CSA-S37-01 of 2001, for Antenné -towers and Anténna
Supporting Structures specifies empirical expressions for the compressive strength of
solid rounds based on the well-known Structural Stability Research Council (SSRC)
column curves for non-solid-round members as well as the results from experimental
investigation on the compressive resistance of solid rounds carried out back to 1965.
This thesis provides a summary of the results of tests on 20 stress-relived steel solid

rounds, 33 non-stress-relieved steel solid rounds on different diameter and length and
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7 stub columns. Correlation between the results from these tests and the current

practice for the design of solid rounds is investigated. The following section

summarizes the conclusions deduced from this research.

5.2 Conclusions

Based on the findings of this research, the following conclusions are drawn:

1- For slenderness ratios ranging from 18 to 70, CAN/CSA-S37-01 provides an
ultimate compressive resistance of solid round bars made of stress-relieved steel that is
about an average of 27% less that that pbtained experimeqtally. While AISC-LRFD
provides a conservative compressive resistance of an average of 24%. Euro Code 3
provides the highest conservative value of an average of 34%.

2- For slenderness ratios ranging from 20 to 91, CAN/CSA-S37-01 provides an
ultimate compressive resistance of solid round bars made of non-stress-rglieved steel that
is 33% less that that obtained experimentally. While AISC-LRFD and‘ Eﬁro Code 3
provide conservative compressive resistance of 19% and 31%, respectively, more than
that obtained experimentally.

3- Based on the'results from the current study, code writers may update the
available expression in CSA-S37-01 by multiplying the available code expressions for
the compressive strength of solid round bars by a magnification factor of 1.08 in case of
stress-relieved steel bars and 1.22 in case of non-stress-relieved steel bars for economical
design, considering the practical effective buckling length factor. Also, this increase in
compressive resistance of solid rounds would assist the practicing engineers in the

evaluation of the load-carrying capacity of existing antenna towers since even a small
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increase in strength for live load can make the difference between demolishing a tower or
leaving it in service.

4- Results from experimental testing shows that the compressive resistance bars
made of stress-relieved steel is greater than that for bars made of non-stress-relieved

steel.

5.3 Recommendations for Future Research

Based on the findings from the current resc;,arch, the following points of search

need further investigations:

1- Finite Eleﬁlent modelling, including geometric and material ﬁénlinearity, for
buckling behaviour of éxially loaded solid steel round bars made of stress-
relieved steel or non-stress-relieved steel. In the latter, the actual distribution
of residual stresses in bar cross-section should be incorporated ‘in the
modelling.

2- More experiments to-collapse on bars of slenderness ratios between 100 and
140 to widen the scope of application of the proposed expressioné of the
compressive resistance of solid rounds.

3- Conduct testing on short bars to determine the state of residual stresses in non-
stress-relieved steel due to the manufacturing process as well as cold

straightening.
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Table 2.1 Ultimate limit state analysis

Calculation of
Method Internal forces and Resistances
moments
According to

1 Elastic-elastic Elastic theory Elastic theory

2 Elastic-plastic Elastic theory Plastic theory

3 Plastic-plastic Plastic hinge theory Plastic theory

Table 2.2 Parameters o for calculation of reduction factor x
Buckling Curve a b c d
o 0.21 0.34 0.49 0.76
Table 3.1 Details of Test Specimens: 20 Stress Relieved Specimens
Specimen Diameter Length | End Load rate
number (mm) (mm) condition KL/r (KN/sec.)

SR-1 38 660 H-H 70.0 0.13
SR-2 38 813 H-F 60.4 0.13
SR-3 38 1143 F-F 60.0 0.13
SR-4 51 661 H-H 52.0 0.23
SR-5 51 812 H-F 45.2 0.23
SR-6 51 1143 F-F 44.8 0.23
SR-7 64 660 H-H 41.2 0.37
SR-8 64 813 H-F 50.8 0.37
SR-9 64 1143 F-F 35.6 0.37
SR-10 76 660 H-H 34.8 0.52
SR-11 76 1140 F-F 30.0 0.52
SR-12 89 661 H-H 29.6 0.73
SR-13 89 813 H-F 26.0 0.73
SR-14 89 1142 F-F 25.6 0.73
SR-15 102 661 H-H 26.0 0.94
SR-16 102 813 H-F 224 0.94
SR-17 102 1143 F-F 22.4 0.94
SR-18 128 660 H-H 20.6 1.5
SR-19 128 813 H-F 18.0 1.5
SR-20 128 1143 F-F 18.0 1.5
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Table 3.2 Details of Test Specimens: 25 Non-Stress Relieved Specimens

Specimen | Diameter Length End Load rate
number (mm) (mm) condition KL/r (KN/sec.)
NSR-1 38 508 H-H 53.5 0.13
NSR-2 38 711 H-H 74.8 0.10
NSR-3 38 914 H-F 68.0 0.11
NSR-4 51 508 H-H 39.8 0.23
NSR-5 51 711 H-H 55.8 0.20
NSR-6 51 914 H-F 470 0.21
NSR-7 64 508 H-H 31.8 0.32
NSR-8 64 711 H-H ‘44 4 0.28 -
NSR-9 64 914 H-F 400 1 0.29
NSR-10 76 610 H-H 32.1 0.45
NSR-11 76 711 H-H 374 043
NSR-12 76 813 H-F 30.3 0.46
NSR-13 76 914 H-F 34.0 0.44
NSR-14 89 610 H-H 274 0.64
NSR-15 89 711 H-H 320 0.61
NSR-16 89 813 H-F 25.8 0.65
NSR-17 89 914 H-F 29.0 0.63
NSR-18 100 610 H-H 244 0.82
NSR-19 100 711 H-H 284 0.78
NSR-20 100 813 H-F 23.0 0.82
NSR-21 100 914 H-F 25.8 0.80
NSR-22 114 610 H-H 214 1.10
NSR-23 114 711 H-H 249 1.06
NSR-24 114 813 H-F 20.1 1.10
NSR-25 114 914 H-F 22.33 1.08
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Table 3.3 Details of Test Specimens: 8 Non-Stress Relieved Specimens

Specimen Diameter Length End KL/r Load rate
number (mm) (mm) condition (KN/sec.)
NSR-26 38 1219 H-F 91 0.13
NSR-27 38 1118 H-F 83 0.13
NSR-28 51 1118 H-F 62 0.24
NSR-29 64 1118 H-F 49 0.38
NSR-30 76 1016 H-F 38 0.53
NSR-31 89 1016 H-F 32 0.73
NSR-32 102 1016 H-F 28 0.95
NSR-33 114 1016 H-F 25 1.19
Table 3.4 Details of Test Specimens: 7 Stub Columns for Non-Stress Relieved Specimens
Specimen | Diameter Length | End KL/r Load rate
number (mm) (mm) condition "(KN/sec.)
SC-1 38 152 H-H 16 0.13
SC-2 51 203 H-H 16 0.24
SC-3 64 254 H-H 16 0.38
SC-4 76 305 H-H 16 0.53
SC-5 89 356 H-H 16 0.73
SC-6 102 406 H-H 16 0.95
SC-7 114 457 H-H 16 1.19
Table 3.5 Coefficient of Variation Modification Factor for Steel, K;
n 3 4 5 6 8 10 12 16 20 25 30 or more
K 346 234 [192 |1.69 |145 |132 (124 |1.14 |1.08 |1.03 |1.00
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a- Monopoles (up to 70 m) b- Self-supporting towers (up to 120 m)

c- Guyed towers (up to 620 m)

Figure 1.1 Views of communication towers
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Figure 2.1 Behavior of perfect and imperfect columns (Galambos, 1998)
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E = modulus of elasticity (linear)
E, = target modulus (nonlinear)
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Figure 2.2 General stress-strain relationship (Galambos, 1998)
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Figure 2.3 Column curve
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Figure 2.4 Initially bent column
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Figure 2.5 Effective length factor (CAN/CSA S16-01, 2003)
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Figure 2.6 SSRC column strength curve 1 for structural steel (Bjordhovde, 1972), (Based on
maximum strength and initial out-of-straightness of L/1000)
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Figure 2.7 SSRC column strength curve 2 for structural steel (Bjordhovde, 1972), (Based on
maximum strength and initial out-of-straightness of L/1000)
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Figure 2.8 SSRC column strength curve 3 for structural steel (Bjordhovde, 1972), (Based on

maximum strength and initial out-of-straightness of L/500)
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Figure 2.9 Buckling curves (Eurocode 3, 2003)
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Figure 3.1 View of the MTS machine
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Figure 3.2 Schematic diagram of the specimen setup and strain gauge locations
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Figure 3.4 Test set up for tension coupon before and after failure
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Figure 4.2 Stress-strain curve for the coupon sample of SR 38-mm bar
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Figure 4.3 Initial part of the stress-strain curve for the coupon sample of SR 51-mm bar
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Figure 4.8 Stress-strain curve for the coupon sample of SR 128-mm bar

Figure 4.9 Views of the coupon sample for 38-mm bar before and after testing
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Figure 4.10 Initial portion of the stress-strain curve for the coupon sample of NSR 38-mm bar

Figure 4.11 Views of the coupon sample for 51-mm bar before and after testing
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Results for NSR 51-mm bar

414 '
o /\
276

207 /

o/

i/
/

0 T v T ] T T
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

_ Strain
Figure 4.12 Initial part of the stress-strain curve for the coupon sample of NSR 51-mm bar

Stress , MPa

Figure 4.13 Views of the coupon sample for 64-mm bar before and after testing
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Results for NSR 64-mm bar
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Figure 4.14 Initial part of the stress-strain curve for the coupon sample of NSR 64-mm bar

Figure 4.15 Views of the coupon sample for 76-mm bar before and after testing

82



483
Results for NSR 76-mm bar
414
© /
o
= 276
g -
691 /
0 ¥ ) L} T T L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Strain

Figure 4.16 Initial portion of the stress-strain curve for the coupon sample of NSR 76-mm bar

Figure 4.17 Views of the coupon sample for 89-mm bar before and after testing
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Resuilts for NSR 83-mm bar
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Figure 4.18 Initial part of the stress-strain curve for the coupon sample of NSR 89-mm bar

Figure 4.19

Views of the coupon sample for 102-mm bar before and after testing
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Results for NSR 102-mm bar
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Figure 4.20 Initial portion of the stress-strain curve for the coupon sample of NSR 102-mm bar

Figure 4.21 Views of the coupon sample for

114-mm bar before and after testing
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Figure 4.22 Initial part of the stress-strain curve for the coupon sample of NSR 114-mm bar

86



Axial Load (kN,

—e— North Strain|. .
—=®—East Strain |
----A:--- South Strain

0 500 1000 1500 2000 2500 3000 3500 4000
Axial Strain (micro-strain)

Figure 4.24 Axial load-strain relationships for specimen SR-1
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Figure 4.25 Load-lateral deflection curves for specimen SR-1

Figure 4.26 Views of specimen SR-2 before and after testing
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Figure 4.28 Load-lateral deflection curves for specimen SR-2
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Figure 4.29 Load versus overall shortening curve for specimen SR-2

Figure 4.30 Views of specimen SR-3 before and after testing
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Figure 4.32 Load-lateral deflection curves for specimen SR-3
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Figure 4.33 Load versus overall shortening curve for specimen SR-3

Figure 4.34 Views of specimen SR-4 before and after testing
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Figure 4.36 Load-lateral deflection curves for specimen SR-4
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Figure 4.37 Load versus overall shortening curve for specimen SR-4

Figure 4.38 Views of specimen SR-5 before and after testing
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Figure 4.41 Load versus overall shortening curve for specimen SR-5

Figure 4.42 Views of specimen SR-6 before and after testing
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Figure 4.43 Axial load-strain relationships for specimen SR-6
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Figure 4.44 Load-lateral deflection curves for specimen SR-6

97



SR-6

:

Axial load (kN)
H
8

800 - -f=-mom oo e e e
200 - -
100 Ff- -
0 , : : , -
0 5 10 15 20 25 30

Crosshead movement (mm)
Figure 4.45 Load versus overall shortening curve for specimen SR-6

Figure 4.46 Views of specimen SR-7 before and after testing
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Figure 4.48 Load versus overall shortening curve for specimen SR-7

Figure 4.49 Views of specimen SR-8 before and after testing

100



Axial load (kN)

Axial load (kN)

1400

~—e— North Strain
—=a— East Strain

----a--- South Strain|~ - - 1
— % - West Strain

21 400

T T T

500 1000 1500 2000 2500 3000 3500 4000
Axial Strain (micro-strain)

Figure 4.50 Axial load-strain relationships for specimen SR-8
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Figure 4.51 Load-lateral deflection curves for specimen SR-8
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Figure 4.52 Load versus overall shortening curve for specimen SR-8

Figure 4.53 Views of specimen SR-9 before and after testing
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Figure 4.57 Axial load-strain relationships for specimen SR-10
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Figure 4.59 Load versus overall shortening curve for specimen SR-10
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Figure 4.61 Axial load-strain relationships for specimen SR-11
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Figure 4.63 Load versus overall shortening curve for specimen SR-11
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Figure 4.64 Views of specimen SR-12 before and after testing
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Figure 4.65 Axial load-strain relationships for specimen SR-12
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Figure 4.67 Load versus overall shortening curve for specimen SR-12
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Figure 4.69 Axial load-strain relationships for specimen SR-13
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Figure 4.71 Load versus overall shortening curve for specimen SR-13
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Figure 4.75 Load versus overall shortening curve for specimen SR-14
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Figure 4.77 Axial load-strain relationships for specimen SR-15
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Figure 4.85 Axial load-strain relationships for specimen SR-17
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Figure 4.87 Load versus overall shortening curve for specimen SR-17
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Figuré 4.101 Views of specimen NSR-2 before and after testing
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Figure 4.103 Load-lateral deflection curves for specimen NSR-2
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Figure 4.104 Load versus overall shortening curve for specimen NSR-2

Figure 4.105 Views of specimen NSR-3 before and after testing
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Figure 4.107 Load-lateral deflection curves for specimen NSR-3
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Figure 4.108 Load versus overall shortening curve for specimen NSR-3

Figure 4.109 Views of specimen NSR-4 before and after testing
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Figure 4.112 Load versus overall shortening curve for specimen NSR-4
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Figure 4.113 Views of specimen NSR-5 before and after testing
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Figure 4.114 Axial load-strain relationships for specimen NSR-5
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Figure 4.115 Load-lateral deflection curves for specimen NSR-5

133



Load, KN

900

800 - e
700 F----mm s e
600 f------f--m - m e AN e
BOO -----of-o oo s AN
400 -
I
200 - e

100 /oo

0 I L L L L e eSS A B L R A |
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Crosshead movement (mm)
Figure 4.116 Load versus overall shortening curve for specimen NSR-5

Figure 4.117 Views of specimen NSR-6 before and after testing

134






Load, KN

Load, KN

—a—Strain2[ """~ """ 7]
—— Strain 1

0 500 1000 1500 2000 2500 3000 3500 4000
Strain (micro-strain)

Figure 4.118 Axial load-strain relationships for specimen NSR-6
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Figure 4.119 Load-lateral deflection curves for specimen NSR-6
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Figure 4.120 Load versus overall shortening curve for specimen NSR-6

Figure 4.121 Views of specimen NSR-7 before and after testing
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Figure 4.122 Axial load-strain relationships for specimen NSR-7
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Figure 4.123 Load-lateral deflection curves for specimen NSR-7
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Figure 4.124 Load versus overall shortening curve for specimen NSR-7

Figure 4.125 Views of specimen NSR-8 before and after testing
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Figure 4.126 Axial load-strain relationships for specimen NSR-8
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Figure 4.127 Load-lateral deflection curves for specimen NSR-8
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Figure 4.128 Load versus overall shortening curve for specimen NSR-8

Figure 4.129 Views of specimen NSR-9 before and after testing
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Figure 4.130 Axial load-strain relationships for specimen NSR-9
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Figure 4.131 Load-lateral deflection curves for specimen NSR-9
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Figure 4.132 Load versus overall shortening curve for specimen NSR-9

Figure 4.133 Views of specimen NSR-10 before and after testing
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Figure 4.134 Axial load-strain relationships for specimen NSR-10
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Figure 4.136 Load versus overall shortening curve for specimen NSR-10

Figure 4.137 Views of specimen NSR-11 before and after testing
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Figure 4.139 Load versus overall shortening curve for specimen NSR-11
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Figure 4.140 Views of specimen NSR-12 before and after testing
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Figure 4.141 Axial load-strain relationships for specimen NSR-12
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Figure 4.142 Load-lateral deflection curves for specimen NSR-12
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Figure 4.143 Load versus overall shortening curve for specimen NSR-12
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Figure 4.145 Axial load-strain relationships for specimen NSR-13
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Figure 4.146 Load-lateral deflection curves for specimen NSR-13
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Figure 4.147 Load versus overall shortening curve for specimen NSR-13
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Figure 4.148 Views of specimen NSR-14 before and after testing
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Figure 4.149  Axial load-strain relationships for specimen NSR-14
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Figure 4.150 Load-lateral deflection curves for specimen NSR-14
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Figure 4.151 Load versus overall shortening curve for specimen NSR-14
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Figure 4.152 Views of specimen NSR-15 before and after testing
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Figure 4.153  Axial load-strain relationships for specimen NSR-15
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Figure 4.154 Load-lateral deflection curves for specimen NSR-15
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Figure 4.155 Load versus overall shortening curve for specimen NSR-15
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Figure 4.156 Views of specimen NSR-16 before and after testing
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Figure 4.157 Axial load-strain relationships for specimen NSR-16
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Figure 4.158 Load-lateral deflection curves for specimen NSR-16
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Figure 4.159 Load versus overall shortening curve for specimen NSR-16
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Figure 4.160 Views of specimen NSR-17 before and after testing
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Figure 4.161 Axial load-strain relationships for specimen NSR-17
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Figure 4.162 Load-lateral deflection curves for specimen NSR-17

2700

2400 |-~ T
2100 -

1800 1
1500 -
1200
900 H
600 -

300 ft,

Figur

0 2 4 6 8 10 12 14 16 18 20

Crosshead movement (mm)
e 4.163 Load versus overall shortening curve for specimen NSR-17

157



Load, KN

Figure 4.164 Views of specimen NSR-18 before and after testing
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Figure 4.165 Axial load-strain relationships for specimen NSR-18
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Figure 4.166 Load-lateral deflection curves for specimen NSR-18
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Figure 4.167 Load versus overall shortening curve for specimen NSR-18
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Figure 4.169 Axial load-strain relationships for specimen NSR-19
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Figure 4.170 Load-lateral deflection curves for specimen NSR-19
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Figure 4.171 Load versus overall shortening curve for specimen NSR-19
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Figure 4.172 Views of specimen NSR-20 before and after testing
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Figure 4.173  Axial load-strain relationships for specimen NSR-20
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Figure 4.174 Load versus overall shortening curve for specimen NSR-20
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Figure 4.175 Load versus overall shortening curve for specimen NSR-20
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Figure 4.178 Load-lateral deflection curves for specimen NSR-21
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Figure 4.179 Load versus overall shortening curve for specimen NSR-21
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Figure 4.180 Views of specimen NSR-22 before and after testing
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Figure 4.182 Load-lateral deflection curves for specimen NSR-22
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Figure 4.183 Load versus overall shortening curve for specimen NSR-22
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Figure 4.185 Axial load-strain relationships for specimen NSR-23

168



Load, KN

—+—Dial 1 - East
—s—Dial 2 - North

Load, KN

Lateral deflection (mm)

Figure 4.186 Load-lateral deflection curves for specimen NSR-23
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Figure 4.187 Load versus overall shortening curve for specimen NSR-23

169



Load, KN

Figure 4.188 Views of specimen NSR-24 before and after testing
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Figure 4.189 Axial load-strain relationships for specimen NSR-24
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Figure 4.190 Load-lateral deflection curves for specimen NSR-24
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Figure 4.191 Load versus overall shortening curve for specimen NSR-24
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Figure 4.192 Views of specimen NSR-25 before and after testing
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Figure 4.193 Axial load-strain relationships for specimen NSR-25
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Figure 4.194 Load-lateral deflection curves for specimen NSR-25
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Figure 4.195 Load versus overall shortening curve for specimen NSR-25
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Figure 4.198 Axial load-strain relationships for specimen NSR-26

Figure 4.199 Views of specimen NSR-27 before and after testing
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Figure 4.200 Axial load-strain relationships for specimen NSR-27
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Figure 4.201 Load versus overall shortening curve for specimen NSR-27
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Figure 4.203 Axial load-strain relationships for specimen NSR-28
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Figure 4.204 Load versus overall shortening curve for specimen NSR-28

Figure 4.205 Views of specimen NSR-29 before and after testing
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Figure 4.206 Axial load-strain relationships for specimen NSR-29
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Figure 4.207 Load versus overall shortening curve for specimen NSR-29
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Figure 4.209 Axial load-strain relationships for specimen NSR-30
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Figure 4.210 Load versus overall shortening curve for specimen NSR-30

Figure 4.211 Views of specimen NSR-31 before and after testing
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Figure 4.213 Load versus overall shortening curve for specimen NSR-31
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Figure 4.215 Axial load-strain relationships for specimen NSR-32
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Figure 4.216 Load versus overall shortening curve for NSR-32

Figure 4.217 Views of specimen NSR-33 before and after testing
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Figure 4.218 Axial load-strain relationships for specimen NSR-33
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Figure 4.219 Load versus overall shortening for specimen NSR-33
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Figure 4.221 Axial load-strain relationships for specimen SC-1
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Figure 4.222 Load versus overall shortening curve for specimen SC-1
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Figure 4.223 Views of specimen SC-2 before and after testing

187

45




Axial Load (kN)

Axial Load (kN)

Strain 2

-20000 -18000 -16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000
Strain (micro-strain)

Figure 4.224 Axial load-strain relationships for specimen SC-2
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Figure 4.225 Load versus overall shortening curve for specimen SC-2
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Figure 4.227 Axial load-strain relationships for specimen SC-3
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Figure 4.228 Load versus overall shortening curve for specimen SC-3

Figure 4.229 Views of specimen SC-4 before and after testing
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Figure 4.230 Axial load-strain relationships for specimen SC-4
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Figure 4.231 Load versus overall shortening curve for specimen SC-4
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Figure 4.233 Axial load-strain relationships for specimen SC-5
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Figure 4.234 Load versus overall shortening curve for specimen SC-5
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Figure 4.235 Views of specimen SC-6 before and after testing
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Figure 4.236 Axial load-strain relationships for specimen SC-6
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Figure 4.237 Load versus overall shortening curve for specimen SC-6
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Figure 4.239 Axial load-strain relationships for specimen SC-7

195




5000

4500

4000 -

3500

3000

2500

Axial Load (kN)

1500 1

1000 ¢

500

2000 ¢

0 5 10 15 20 25 30 35 40 45 50

Crosshead movement (mm)

Figure 4.240 Load versus overall shortening curve for specimen SC-7
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