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Computational and Systems Biology are recently experiencing a rapid development. Mathematical

modeling is a key tool in analyzing critical biological processes in cells and living organisms. In particular,

stochastic models are essential to accurately describe the biochemical processes in the cell. However,

stochastic models are computationally much more challenging than the traditional deterministic models.

Also, the sheer scale of biological processes makes efficiency of their simulation a key issue. In this thesis

we study the numerical solution of a continuous stochastic model of biochemical systems, the Chemical

Langevin Equation. We propose an adaptive step-size method for the Euler-Maruyama scheme applied

to small noise problems. The adaptive technique is p-mean convergent and computes simultaneously all

the trajectories, using the same time-step on all trajectories. Our adaptive algorithm is tested on several

examples arising in applications and shown to perform much better than the fixed step-size schemes.
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Chapter 1

Introduction

In recent years there has been a great interest in mathematical modeling and simulation in the rapid rise

of Computational and Systems Biology [13],[20]. Mathematical modeling in biology can be employed

in various scales of precision (ranging from molecule interactions to population dynamics) for a number

of different purposes (ranging from simulation of the behavior to assessing the risks associated with

particular states of a system). It allows for the in silico prediction of the organism or the population

dynamics in the future, thus foregoing computational and time costly experiments.

Naturally, a biological system can not be depicted in all its complexity by mathematical models,

since such a model will be hard to analyze. One needs to have a number of simplifying assumptions

that are close to reality in order to reduce the dynamics of the system to a relatively small number of

interacting modules. The abstraction allows to translate a biological process into a mathematical model

and to analyze the resulting model using a highly developed mathematical theory. Mathematical and

computational results of the analysis can be interpreted into biological terms. In this way we can obtain,

for example, insight on some aspects of gene interactions, without having to model the whole process.

Breaking a complicated system into a number of modules and analyzing these modules individually

will provide for a better and more systematic understanding of the whole organism dynamics. Having

understood the dynamics of simpler models, we can refine and extend them to make the modeling more

realistic and accommodating to more sophisticated inquiries. Biological processes that can benefit from

mathematical modeling range from population dynamics to mitosis (division) of an individual cell. Each

level is subject to the previously collected biological information and patterns, as well as to some degree
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CHAPTER 1. INTRODUCTION

of abstraction. Having studied a sub-component, we are able to discern the behavior of the network

that enlists it, by facilitating our knowledge of individual component reactions to a particular event.

Mathematically, this is achieved via reduction of complicated processes to a parametrized model, where

the major components whose interactions are being analyzed are depicted as interacting compartments

(rather than complicated systems in their own right). Another reason for abandoning the modeling of

a system in the full detail is the lack of all the necessary quantitative data, such as the rates of the

processes. On the other hand, if there is a collected data about the average behavior of a component,

we can come up with a more detailed and complicated picture of its dynamics.

For example, a century ago an eukaryotic cell was viewed as a sack filled with liquid protoplasm.

Currently it is known that a complicated molecular structure, called cytoskeleton, heavily influences

the cell dynamics [12]. Knowing how the cell structure looks in general, we can deduce which integral

chemical processes influence its dynamics, shape and internal chemistry due to the structure.

In this thesis we will focus on the stochastic numerical simulation of biochemical processes. This

approach, guided by pre-existing knowledge of the structure of the problem, allows for the quantitative

analysis of some key biological networks, and in particular of the gene regulatory networks. Below we

discuss the advantages and the challenges of stochastic modeling using examples in genetic networks and

some critical biological processes.

To date, due to the development of experimental techniques and of genetics and molecular biology,

many studies have been conducted to detect and gather information about genes and their regulatory

sites for various species of living organisms. It is extremely important to gain the understanding based on

the above knowledge about the gene interaction. Thus, tools for organization and analysis of the collected

data are in high demand. While certain patterns in molecular dynamics through which regulation is

executed have been detected, the larger dynamics of regulatory networks still remains a great challenge.

One of the areas that have already benefited from mathematical modeling and that anticipates even

greater development is genetics. In general, the genome of an organism has many important functions

and plays a central role in many cellular processes like the cell responses to environmental stimulation,

the replication of the DNA prior to cell division, and many more. Therefore, gene expression is a complex

process that has to be regulated at many stages. This complexity prompts the existence of genetic regu-

latory systems that are structured in accordance with the complex interactions of DNA, RNA, proteins

and other molecules [13]. To benefit from the gain of experimental methodology, theoretical modeling of
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CHAPTER 1. INTRODUCTION

the biological processes has been employed. The models are usually built using some understanding of

the gene interactions and the regulation of the system dynamics under certain conditions. These models

would allow (ideally) the use of the collected data to fill out the gaps in the knowledge of the regulatory

system dynamics (occasionally foregoing costly experiments), as well as to understand its structure and

to make forecasts of its behavior. The predictions of the model are verified against the available data

for possible refinement of the system parameters. The development of tools that will allow for scientists

without a significant mathematical background to build and analyze the regulatory systems’ models

behavior can bring drastic advancement in the field of genetics.

An example of a process relatively common to many species, that could benefit from the insight of

stochastic modeling is the eukaryotic cell division cycle. It is a very complex process which involves

many aspects, such as the cell having to ensure that prior to division both of its copies (daughter cells)

have all the necessary components and information to function on their own. This means the cell has

to reproduce its components. This process is guided by a complex network of interacting genes and

proteins (called cyclin-dependent kinases). While this process is deterministic in many aspects, there

are occasional fluctuations from the average behavior pattern. Fluctuations may arise in the total time

it takes a cell to prepare for division and to divide, on the daughter cell sizes after the division, as well

as in the distribution (occasionally uneven) of the mRNAs and proteins to the daughter cells. The size

of the cell is important since it is in direct correlation with the time it takes the cell to divide. That

is, the smaller the cell at birth, the larger is the time of the cell division cycle. Clearly, these aspects

influence the size of the proliferating cell populations. While certain patterns of what is happening

in the general case are established, there exist deviations from the average, which may influence the

whole system dynamics. These fluctuations may be explained by the inherent randomness of the system

that controls the division of a cell. Another source of probabilistic factors is the small number of very

important particles (e.g, the mRNAs in cycle progressions of the yeast population). The fluctuations in

the dynamics of these species will be crucial for the process [14]. The cell division cycle is an excellent

example of a system that could benefit from incorporating the random effects into its model. On the

other hand, this is an example of the lack of necessity to trace all the aspects of the cell functioning

in order to simulate its dynamics of the division cycle. Rather, we can concentrate on such pivotal

issues as the molecular interactions (mRNA and any number of proteins, depending on the grain of the

model), the cell size and the cell cycle. This effectively reduces the system with respect to the modeling
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CHAPTER 1. INTRODUCTION

parameters.

Another example where stochastic modeling is useful are the circadian rhythms. As a living organism

needs to keep up with the periodic nature of the environment, many organisms have developed a way

to maintain the nature’s rhythms. The mechanism that is responsible with this is called a circadian

clock. Usually, it has a period of roughly 24 hours. During this cycle, the biochemical processes in the

bodies are adjusted to the needs of the organism according to the time of the day. These rhythms have

a periodic nature with fixed amplitude and maintain this property. On the other hand, the circadian

rhythms are subject to some biochemical processes, which are extrinsically vulnerable to the outside

environment factors (such as the temperature) and intrinsically are inherently stochastic. As in any

systems that are governed by chemical reactions, this system is easily disturbed if there are fluctuations

in some important species of molecules that have small population numbers. However, the nature found

a way to control these occurrences. To study the periodic nature of circadian rhythms, stochastic systems

should be used, since they will allow to incorporate the random effects described above. Thus, stochastic

modeling gives a more realistic picture of such processes [21].

Another example where stochastic modeling proved to be relevant is the analysis of the Phage λ-

Infected Escherichia coli cells [1]. The stochastic approach was suitable as there existed unexplained

fluctuations in the rates of gene expression that were observed experimentally. These fluctuations caused

unevenness in the time of protein production. This phenomenon affected the individual cells, as well as it

had a profound effect on the total cell populations dynamics. If these proteins were in low concentrations

in the system and competitively control a switch path, then a variation in their quantity could turn

initially homogeneous system of cells into two completely different subpopulations.

In the simulation of biological processes that have every molecular population very large, the tradi-

tional deterministic system of reaction rate equation, which operates with molecular concentrations, is

a good enough representation. However, in cellular biology there are processes (such as the regulation

of gene expression, where the gene transcription factors interact with the DNA binding sites) that have

their most significant molecules in small population numbers. It has been observed that in the system

where certain populations are hardly larger than tens, it is more suitable to operate with discrete num-

bers of molecules, rather than with their concentrations. Hence, the need for considering more general,

discrete models arises [20]. On the other hand, in cellular processes random fluctuations due to the

presence of small populations of molecules can no longer be neglected. This is particularly true when
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CHAPTER 1. INTRODUCTION

dealing with species which are key to the dynamics of the whole system [20].

The stochastic modeling of chemically reacting systems was pioneered by Daniel Gillespie [8], [7].

Gillespie introduced the Stochastic Simulation Algorithm (SSA) to simulate the solution of the Chemical

Master Equation (CME), which is the most refined mathematical model of well-stirred bio-chemical

kinetics. The algorithm is a Monte Carlo type method, which provides numerical realizations of the

state of the system and whose statistics are consistent with the CME. The algorithm simulates one

reaction at a time, by generating the time and the index of the next reaction conditional on the current

state of the system. While this algorithm is exact, it is extremely slow on most realistic applications. A

number of extensions and approximations were developed based on various properties of the biochemical

systems under consideration [19], [10], [3].

One of the core problems for SSA is that often biochemical systems have high probabilities of some

reactions taking place. Then, it is very time and resource consuming to use Gillespie’s algorithm even

during a relatively small time interval. Thus, Gillespie proposed in [9] that instead of simulating one

reaction at a time, to update the state of the system after some predefined time leaps. More precisely,

the interval of integration is divided into sub-intervals. We simulate the number of reactions that fired

during each time interval by a Poisson distributed variable and update the state variable at the end of

each interval correspondingly. This algorithm assumes that the probability of each reaction taking place

does not change significantly over the time leap.

For systems where all the reactions have high probabilities of taking place there is a further sim-

plification. The Poisson distributed variables with large means can be well approximated by normally

distributed variables with appropriate means and variances. This allows for the reduction of the Chemi-

cal Master Equation model to the simplified Chemical Langevin Equation (CLE). In addition, it leads to

the Langevin Leaping algorithm (a direct result of solving the CLE using the Euler-Maruyama method

for stochastic differential equations). Similarly to the tau-leaping algorithm before, this algorithm re-

quires that the probability of each reaction taking place in a time interval does not change significantly

over that time leap. It is faster and usually admits larger time steps, due to the condition that many

reactions of each type occur during a time step.

However, systems arising in applications are rarely ’well-behaved’. Often their models are stiff. Stiff

systems are characterized by varying scales of the reaction rates, the fastest of which is stable. The slow

reactions often happen to be the key reactions in the system. Among the algorithms designed to deal
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CHAPTER 1. INTRODUCTION

with stiffness are the slow scale Stochastic Simulation Algorithm [3] and the implicit tau-leaping method

[16].

Another issue with the approximate algorithms for the CME, such as the tau-leaping algorithms,

are the negative populations occasionally arising due to the unrestricted nature of the Poisson random

variables. This aspect was addressed directly by replacing the Poisson distributions by the Binomial

distributions [19]. Another approach is to follow the so called critical reactions (reactions that are few

firings away from depleting the population of some species of molecules) [2] and to impose more strict

Leap conditions.

Over the years there have been proposed improved ways to impose for the Leap Condition. The

change in the individual reactions propensities over one step were restricted in terms of the largest

reaction propensity, or of the sum of all propensities. Another method proposed was that the relative

change in each reaction propensity was negligible over one time step. Adaptive step size methods proved

to be useful in dealing with this challenge. Intuitively, a time step of the algorithm should be adapted

to the significant changes in the propensity functions.

As was pointed out by Sotiropoulos and Kaznessis [18] stiff systems are prime candidates for adaptive

time step algorithms. Since, if we restrict the step size to a single value, it will have to be very small on

all regions of integration to ensure that the accuracy requirement is met, although some regions would

allow for larger time steps. In this thesis, we study the numerical solution of the Chemical Langevin

Equation based on the Euler-Maruyama method. We develop an adaptive time-stepping strategy for this

method. One of the issues that arises with the adaptive time stepping is how to deal with step rejections,

when the accuracy criteria is not satisfied. During integration, we generate Brownian paths, which are

based on time steps. Once we reject a time step, if we reject the associated Brownian path point, then we

will skew the distribution of the numerical solution. Instead, we chose to generate intermediate Wiener

increments for the smaller time steps, that are conditioned on the previously generated points. This will

ensure that we maintain the correct distribution.

In this thesis we offer an approach based on the p-mean of the local discretization error, that makes

the correction of the leaping step after the perceived error across all trajectories has been evaluated. This

approach has the advantage that it does not differentiate between the states of the system (equilibrium

or transient), which would require for the step to grow larger or smaller. It treats all reactions uniformly.

This time stepping strategy was proposed for stochastic differential equation models by Romisch and
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Winkler [17]. Their method employed the leading term of the estimated p mean local error for controlling

the step size. The authors proved that the Euler-Maruyama scheme for the numerical solutions of SDEs

is p mean stable. This result directly applies to our method. The nature of the p-mean analysis gives a

new strategy of trajectory generation, which results in identical stepping sequences for all trajectories.

Such an approach allows to estimate the error on the collection of data from all trajectories. This leads

to a speed up in computations.

This algorithm guarantees that the accuracy requirement is satisfied on each time step. We expect

significant improvement in terms of the computational speed, since this method estimates the local error

based on the information provided by the collection of trajectories.

Finally, we provide a short overview of this thesis. In Chapter 2, we introduce the mathematical

models and simulation methods of biochemical systems. In this chapter, we present the stochastic

simulation algorithm and the condition under which it is possible to develop much faster tau-leaping

algorithms. We discuss the underlying mathematical theory for stochastic differential equations (SDE).

We describe a particular numerical method to solve the SDEs, the Euler-Maruyama scheme, that we use

in this thesis. In Chapter 3, we introduce an adaptive stepping strategy for the numerical approximation

for the solution of an SDE, and we show how it applies to the Chemical Langevin Equation. We discuss

the theoretical foundation of the method, as well as show that the Euler scheme is p-mean stable. In

Chapter 4, we test on three biochemical reacting systems both the adaptive and the fixed step size

algorithms and showcase the advantages of the proposed adaptive strategy. In Chapter 5, we present

our conclusions and discuss further improvements and extensions of the method.
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Chapter 2

Background

Many important biological processes and in particular cellular processes can be described as systems of

biochemical reactions. The most general mathematical model of such a system is given by the Molecular

Dynamics. The Molecular Dynamics model keeps track of the location and velocity for each molecule

in the system, at any given time. However, for most practical applications in Systems Biology it is

computationally very expensive to approximate numerically the solution of the Molecular Dynamics

model. A great simplification of this model is obtained under the mild assumption that the system is

well-stirred, i.e. spatially homogeneous. We also assume that the biochemically reacting system is held

at a constant temperature, in a constant volume Ω. Then the system can be described by tracing the

time evolution of the number of molecules of each reacting species.

Below, we will present the mathematical framework that gives the most refined model of the dynamics

of biochemical systems satisfying the above assumptions.

The set S of interacting molecules in the system can be partitioned into N subsets: [S1, S2, ..., SN ],

where N ≥ 1 is the number of different molecular species in the system. Thus, S =
⋃N
i=1 Si and

∀i, j, Si
⋂
Sj = ∅, i 6= j. These molecules interact according to a finite set of reactions [R1, ..., RM ],

where M ≥ 1 is the number of biochemical reactions occurring in the system.

Each reaction is assumed to be an instantaneous event, that is it takes the smallest measurable unit of

time. At each moment in time, the system can be described by the vector X(t) = (x1(t), x2(t), ...xN (t))T ,

where we denoted by xi(t) the number of molecules of species Si present in the system at time t. Thus,

X(t) is a snapshot of the system in terms of the molecular population sizes in time.

9



CHAPTER 2. BACKGROUND

We would like to trace the dynamics of X(t) in time. We note that X(t) is a stochastic process. As

we shall see below, stochastic mathematical models are essential to accurately describe the evolution of

biochemically reacting systems, in particular when some reactant species have low population numbers.

For example, at the level of a single cell, the DNA and RNA have only few copies. In such cases the

traditional deterministic models of reaction rate equations fail to correctly predict the dynamics of the

system. Unlike the deterministic models, the stochastic model operates with quantities of molecules,

rather than their concentrations in the given volume.

The chemical reactions are usually represented as:

S1 + S2
c−→ S3 + S4 . (2.1)

The molecules on the left hand side of the equation are called reactants, and the molecules on the right

hand side are called products of the reaction. Each reaction Rj has a corresponding reaction rate cj .

Note, that a rate for unimolecular reaction has a different meaning than a rate of a bimolecular reaction.

In what follows we shall consider all the chemical reaction rate constants scaled in terms of the

numbers of molecules, rather than of the concentrations.

Every reaction channel Rj can be described explicitly by two quantities: the reaction propensity

function aj(X(t)), where X(t) is the current state of the system and the state-change vector vj :

• For every reaction Rj , the propensity function aj(x) is defined such that aj(x)dt gives the proba-

bility that a single reaction Rj will take place in the infinitesimal time interval [t, t+ dt), provided

that at time t, X(t) = x.

• Every reaction has reactants and product molecules. As the reaction channel fires, the populations

of both the reactants and the products are altered. The state change vector vj describes the

change in the population of all types of molecules in the system after one reaction Rj occurs.

Thus, if at time t the state of the system was X(t) = x and one reaction Rj fired over the time

interval [t, t + dt], then the state of the system at time t + dt is X(t + dt) = x + vj . We denote

by vj = [v1j , v2j , ..., vNj ]
T , where vij is the change in the number of species Si if one reaction Rj

occurred. The matrix V = (vij)1≤i≤N,1≤j≤M is commonly referred to as the stoichiometric matrix.

10
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Propensity functions In this thesis we only consider systems with either unimolecular and bimolec-

ular reactions. This is due to the reaction ’rapidity’ assumption made earlier. Indeed, provided that a

reaction takes place in an infinitesimal time interval, then no more than two molecules can interact.

It is obvious from its definition that a propensity function depends on both quantities of reactants

present in the system and on the reaction rate of the equation.

• Unimolecular reactions:

S1
cj−→ products (2.2)

Recall, that the definition of the propensity function states that aj(x)dt is the probability that the

reaction Rj will take place in the time interval [t, t+ dt] provided that at time t, the state of the

system was X(t) = x. On the other hand, the probability that a unimolecular reaction will take

place is directly proportional to the quantity of the appropriate reactant molecules in the system.

Hence the propensity of (2.2) is:

aj(x)dt = cjx1(t)dt

• Bimolecular reactions:

Bimolecular reactions can be of two types: the reactant molecules are of the same species or the

reactant molecules belong to different species. The probability that such a reaction will take place

is proportional to all possible distinct combinations of molecules of reactants, with the reaction

rate being the constant of proportionality. Let us consider a reaction with reactants of the same

species:

S1 + S1
cj−→ products (2.3)

If the reactant molecules are of the same type, then the total number of combinations is (x1−1)x1/2,

thus the propensity of (2.3) is

aj(x) =
cj
2

(x1 − 1)x1 (2.4)

Let us assume that the reaction has different reactant species:

S1 + S2
cj−→ products (2.5)

11
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Since the molecules are of different types, the total number of combinations is x1x2 and thus the

reaction (2.5) has propensity:

aj(x) = cj · x1 · x2 .

According to their definition, the propensity functions are probability based functions, and therefore

the most suitable way to describe a chemically reacting system is to trace the evolution of the conditional

probability function P (x, t|x0, t0) in time. We denoted by P (x, t|x0, t0) the probability of the system to

be in state x at time t, X(t) = x, given that the initial state of the system was x0, X(t0) = x0. Moreover,

we observe that X(t) is a Markov process. Indeed, the state of the system at time t+ dt depends only

on the state of the system at time t.

2.1 Chemical Master Equation

The state of the system at the initial time t0 is given by X(t0) = x0. We take dt to be small enough that

only one reaction can take place during the time interval [t, t + dt]. There are two possible situations

which lead to the system being in the state x at the time t + dt provided that X(t0) = x0. These two

possibilities are mutually exclusive and cover the space of all possibilities exhaustively. Either the system

is already at state x at time t, and then the probability that it is in state x at time t+ dt is equal to the

probability of no reaction taking place during the interval [t, t+ dt). The corresponding probability is:

P (t, x|x0, t0)(1−
M∑
j=1

aj(x)dt) (2.6)

Or, the system is one reaction away from the state x at time t, and that reaction occurs in [t, t + dt).

Thus, summing over the probabilities for all reactions which may take place in the system we obtain:

M∑
j=1

P (x− vj , t−∆t|x0, t0)aj(x− vj)dt (2.7)

Therefore, by exhausting the space of all possibilities we derive:

P (x, t+ dt|x0, t0) = P (x, t|x0, t0)(1−
M∑
j=1

aj(x)dt) +

M∑
j=1

P (x− vj , t|x0, t0)aj(x− vj)dt (2.8)

12
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By extracting P (x, t|x0, t0) from both sides of the equation and then dividing both sides by dt, we

obtain the following result:

P (x, t+ dt|x0, t0)− P (x, t|x0, t0)

dt
=

M∑
j=1

[P (x− vj , t|x0, t0)aj(x− vj)− P (x, t|x0, t0)aj(x)] . (2.9)

Taking the above equation to the limit as dt→ 0, we obtain the following equation:

dP (x, t|x0, t0)

dt
=

M∑
j=1

P (x− vj , t|x0, t0)aj(x− vj)− P (x, t|x0, t0)aj(x) (2.10)

The equation (2.10) is called the Chemical Master Equation (CME) and it is a system of ordinary

differential equations (ODEs), with one equation for each possible state of the system (i.e every possible

combination of molecules in the reaction system under consideration). Its solution gives the evolution

of the probability of the system being in a particular state, given its initial state x0 at time t0. Note,

that for a system with many molecules and many reactions, the size of this system is very large. This

happens in most applications. Except for cases of systems which are relatively simple (i.e. for which

both the number of species and of reactions is small), it is impossible to solve CME analytically.

2.2 Stochastic simulation algorithm

There is a Monte Carlo type algorithm developed by Daniel Gillespie [8], which allows the computation

of the realizations of trajectories in exact accordance with the statistics as given by the CME. Thus,

having generated a sufficiently large number of trajectories, we can approximate the mean, the variance

and other moments for the solution of the CME model. The algorithm is called the Stochastic Simulation

Algorithm (SSA).

The key concept in deriving the algorithm is the conditional probability function, p(τ, j|x, t). We

define p(j, τ |x, t)dt to denote the joint probability that, provided that the system’s state at time t is

X(t) = x, the next reaction will take place in the infinitesimal interval [t+ τ, t+ τ + dt) and the index

of this reaction will be j. By definition, this probability is the joint probability density function for the

next reaction index and the time to the next reaction.

We use the following notation:

13
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• p(j, τ |x, t)dτ is the probability that, provided that the system is in state x at time t, the next

reaction will occur in the time interval [t + τ ; t + τ + dτ) and will be the reaction j. Note, that

here dτ is infinitesimal, so that only one reaction can take place during dτ .

• P0(τ |x, t) is the probability that, if system is at the state x at the time t, no reaction will fire

during the time interval [t, t+ τ).

In order for the reaction j to be the next reaction that will change the state of the system and for it

to fire in the time interval [t+ τ ; t+ τ + dτ) the following two events must happen: (1) No reaction fires

during the time interval [t; t+ τ) and (2) The reaction j fires during the time interval [t+ τ ; t+ τ + dτ).

These two probabilities are denoted by P0(τ |x, t) and aj(x)dτ , respectively. Hence, the expression for

the conditional probability p(j, τ |x, t)dτ is:

p(j, τ |x, t)dτ = P0(τ |x, t)aj(x)dτ . (2.11)

On the other hand, the event that no reaction takes place during the time interval [t; t + τ + dτ) is

the combination of the two events: (1) No reaction takes place during the time interval [t; t+ τ) and (2)

No reaction takes place in the time interval [t+ τ ; t+ τ + dτ). Therefore we obtain:

P0(τ + dτ |x, t) = P0(τ |x, t)(1−
M∑
i=1

ai(x)dτ) . (2.12)

Subtracting P0(τ |x, t) from the both sides of the equation 2.12, dividing both sides by dτ and taking

the limit as dτ → 0, leads to the following differential equation for P0(τ |x, t):

dP0(τ |x, t)
dτ

= −P0(τ |x, t)
M∑
i=1

ai(x) . (2.13)

Introducing the following notation a0(x) =
∑M
i=1 ai(x), we see that the above equation is an ordinary

differential equation (ODE). Its solution is:

P0(τ |x, t) = exp(−a0(x)τ) . (2.14)

Substituting the expression for P0(τ |x, t) in (2.14) into the equation (2.11) gives us the following

14
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joint probability density function for the index j of the reaction as well as for its time of occurrence, τ :

p(j, τ |x, t)dτ = exp(−a0(x)τ)aj(x) . (2.15)

The equation (2.15) can be written as:

p(j, τ |x, t) = [a0(x) exp(−a0(x)τ)]
aj(x)

a0(x)
. (2.16)

Thus, the joint probability density function is a product of the probability density function for the time

of occurrence and of the probability density function for index of the next reaction. To calculate the

time to the next reaction, we draw a sample of an exponentially distributed random variable with mean

equal to 1/a0(x).

To calculate the index of the next reaction, we draw a sample of a discrete random variable, where

the chance of the j-th reaction taking place is proportional to the value of
aj(x)

a0(x)
for 1 ≤ j ≤ M . This

leads to the following Stochastic Simulation Algorithm:

1. Set i=1, set the initial state X(0) = x0 and the initial time t = t0

2. Draw two samples of the uniformly distributed unit random variable, r1 and r2.

3. Evaluate all the propensity functions at time t.

4. Calculate the time to the next reaction, τ , by using the following equation

τ =
1

a0(x)
ln(

1

r1
)

5. Calculate the index of the new reaction to be smallest j such that the cumulative sum
∑j
i=1 ai(x) >

r2a0(x).

6. Update the time variable t to be t = t+ τ

7. Update the state of the system at time t, X = X + vj

8. Repeat steps 2-5 until t > Tf . Here Tf is some pre-defined stopping time.
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This algorithm provides accurate realizations of the trajectories described by the CME, that is the

resulting statistics of these realizations coincide with the CME solution statistics. It has been successfully

employed for many models of biochemical systems, in particular for the models of λ-phage [1] and that

of circadian rhythms [6].

If the trajectories obtained by using the SSA are similar to those obtained by numerically solving the

corresponding reaction rate equations (RREs), we can conclude, that the fluctuations in the system are

negligible. However, if the trajectories obtained by the SSA are different from those obtained from solving

the corresponding RRE, we conclude that the RRE model does not provide an accurate description of the

system dynamics and solving it may lead to an inaccurate representation of the system. However, in the

systems where reactions rates are relatively large, it is very expensive to use the SSA, since the reactions

rates contribute to the propensity function sizes, and consequently to their sum. We remember that the

inverse of this sum is the expected value for the intervals between consecutive reactions. Consequently,

the sum is large, the time interval between two consecutive reactions is very small. Therefore, when

the propensity functions are large, the number of reactions in the system is large. Thus, it is time

consuming to produce a simulation of a system involving a very large number of reactions occurring in

short intervals of time, by simulating each reaction in the systems as the SSA does. Another issue with

using the SSA is the necessity to update the propensity functions after each reaction occurs, which is

very time consuming in systems with many reactions. Alternative methods are required. Such methods

sacrifice a certain degree of accuracy, in return for a gain in the efficiency of the algorithm. These

algorithms are valid under certain conditions. We will discuss these conditions in the following sections.

2.3 Tau-leaping method

The key idea of this algorithm is to not simulate each reaction in the system, but rather to record the

system’s state after a predicted time step. Thus, the system state progresses in time by time leaps,

while recording the number of times each reaction fired after each leap. This approach is valid under

the following condition:

Leap condition We assume that the size of a time step is sufficiently small, so that no propensity

function changes in a ’significant’ manner during that time step.
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There are several ways to ensure the invariability of the propensity functions. We will return to this

criterion later. We mention that, it is assumed that the time step is small enough to treat the propensity

functions as constants over each leap.

The Leap condition allows us to treat aj(x)τ as a constant over the time leap τ . Thus, aj(x)τ is

constant during the interval [t; t+ τ ], ∀j = 1, ..,M and therefore aj(x)τ , the probability that a reaction j

will fire during the time interval remains constant. The Poisson random P (λ, τ) variable is defined as the

number of times the event will occur in the time interval of length τ , provided that the probability that

an event will occur in the infinitesimal interval dτ is λdτ . (Here λ is a non-negative constant). Therefore,

the number of times each reaction j fires during the time leap can be approximated by drawing a sample

of a Poisson distributed random variable with mean and variance equal to aj(x)τ . Knowing the state

of the system at the time t, we can approximate the state of the system at time t + τ by simulating

the number of times each reaction fired in this interval and updating the state system correspondingly.

Note that for now, we assume that there exists a procedure for finding the step size τ , which satisfies

the Leap Condition and that we are using such a τ . We will describe this in more detail in the later

chapters.

Let us define Kj as the number of times the reaction j fired during [t; t+ τ). Then:

X(t+ τ) = X(t) +

M∑
j=1

vjKj . (2.17)

Here vj is j-th column of stoichiometric matrix V, depicting the change in the system state due to the

occurrence of the reaction j. Since aj(x) is assumed to be constant, we approximate Kj on [t, t+ τ) by:

Kj = P (aj(x)τ) (2.18)

Note that P (aj(x)τ) are independently distributed Poisson random variables. And thus substituting

(2.18) into (2.17), we obtain the following equation:

X(t+ τ) = X(t) +

M∑
j=1

vjP (aj(x)τ) , (2.19)

This equation is key to the tau-leaping algorithm used to approximate the solution of a system whose
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dynamics is described by the CME. The tau-leaping algorithm is as follows:

1. Set t = t0 and X(t) = X0

2. Calculate all the propensity functions.

3. Pick τ compatible with the Leaping condition.

4. For 1 ≤ j ≤ M , calculate the number of times each reaction has fired during the time interval

[t, t+ τ), using

Kj = P (aj(X(t))τ) .

5. Update the system state variable X(t+ τ) = X(t) +
∑M
j=1Kjvj

6. Update the time variable t = t+ τ .

7. Repeat the steps 2-6 until t ≤ Tfinal.

Note: step 3 indicates that τ does not have to be a constant throughout the simulation, which allows for

adaptive step leaping algorithms, as we shall discuss later. Adaptive time-stepping is tightly connected

with the leap condition and the estimation of the error. The advantages of the tau-leaping method

are apparent. We do not have to keep track of all the possible states of the system within a small

time interval, but rather trace the dynamics of species populations at various points in time. This saves

computational space and gives computational efficiency. If reactions are frequent, we save computational

time by simulating them all at once during a leap using the tau-leaping method instead of simulating

each one of them as the SSA does. This brings gain in the computational time. It is desired that the

total number of reactions that fire over each leap is larger than M, the number of reactions. For that

purpose τ for each leap should be larger than a small multiple of 1/a0(x), which is evaluated before

the leap. Otherwise, the leaping algorithm is less efficient than the SSA and we lose accuracy without

gaining speed. This happens due to the fact that for each leap we have to generate M random numbers.

If the sum is of order M, then the system has not moved further in time by much (Tau-Leap algorithm

loses efficiency compared to SSA) and we have lost computational time to generate the random numbers.

In such a case, it is preferred to abandon the leaping algorithm and use the SSA to advance the state of

the system some small number of reactions ahead, and then return to the leaping algorithm.
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There are other issues with the Leaping algorithm. Since it is an approximate algorithm, it may lead

to negative population numbers. Also, its performance is reduced when simulating stiff systems. We

will talk in some detail about these issues.

The Poisson tau-leaping, due to its unrestricted nature, may drive some population sizes to negative

numbers. Several factors were suggested as possible culprit and some strategies were offered to deal with

the issue (depending on the perceived cause of the negative populations). The paper [19] described a

mid-point tau-leaping method and proposes another way to deal with the issue of negative population

numbers by using binomially distributed variables instead of the Poisson distributed variables. The

mid-point method uses the predicted mid-point (X(t + τ/2)) state calculated by considering the mean

of the appropriate Poisson variables for each reaction

X(t+ τ/2) = x+
τ

2

M∑
j=1

aj(x)vj .

In this method, the authors used the fact that the binomially distributed variables are bounded (this

allows to specify the maximum amount of reactions that fired during the time leap), as well as the fact

that the Binomial variable with parameters p and N can be approximated by a Poisson variable with

mean Njp, whenever Nj is relatively large and p is relatively small. Nj is estimated for each reaction

Rj independently, with regards to the amount of reactant species available. Here p is ajτ/Nj . The

authors show that the Poisson prediction mid-point method can be incorporated into the Binomial tau-

leaping method to increase the accuracy for the simulation of the stiff systems. Although it was first

suggested that the unbounded nature of the Poisson variable is the culprit [19], it was later observed

that more often than not the lack of the coordination between the ’critical’ reactions is to blame and

that the Binomial leaping approach does not deal with it directly. A critical reaction is a reaction that

within a small number of firings can deplete a population of some species. Thus, instead of treating

all reactions as equivalent when advancing the system in time, the new approach proposed that the

reaction channels should be divided into two mutually exclusive sets: critical and non-critical. In this

set-up, a critical moment arises whenever the system is nc (some user-supplied coefficient, a relatively

small integer) number of reactions away from depleting the population of a particular species. Given

this notion, we are advancing the system from one critical moment to another (simulating the dynamics

of non-critical species between critical reactions using the conventional Poisson tau-leaping) with an
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algorithm analogous to the SSA. Whenever we have to simulate the dynamics of the slow reactions, we

assume that the sub-system of the fast reactions is in the so-called partial equilibrium. Thus, it is safe to

assume that only the average values of the fast-scale reaction propensities affect the dynamics of the slow

reactions. This is the approach adopted by the slow scale stochastic simulation algorithm (ssSSA)[3].

One class of systems that needs special attention are the stiff systems. Stiff systems are those with

varying time scales of the reaction rates, the fastest of which are stable. To simulate such systems

accurately, one should implement the Leap condition that will be influenced by the fastest reaction rate,

which means that the Leaping step, τ , will be too small. Therefore the tau-leaping algorithm will not

perform efficiently. One method to overcome this problem is to use implicit numerical approximation

methods rather than explicit ones. Another approach uses a variable step size algorithm throughout the

simulation. This particular family of methods will be the focus of this thesis and we shall introduce an

algorithm for it.

Systems with high rates of reactions of each type firing is another important class of problems. An

extension of the classical tau-leaping algorithm is possible for them. For such systems not only we should

bound τ from being too large, we would also like to have a criterion for τ not being too small. When

the populations of all species are large, all of the propensities become relatively large.

Therefore, the time step τ which depends on the propensities will be very small, which is not necessary

the case when all reactions’ propensities are above a certain threshold. If we will restrict the Leap

condition further and bound τ not only from above, but also from below, we will derive another model,

the Chemical Langevin Equation, that will give an accurate description of the system’s dynamics for

this class of systems.

2.4 Chemical Langevin equation

Extended leap condition The time step τ should be small enough so that no propensity function

changes significantly over the leap, but it should be sufficiently large so that aj(x)τ >> 1,∀j. The second

part of the extended Leap condition is true for systems where the populations of all types of species are

large, since the propensity functions are proportional to them. By imposing this condition, we reduce

the chance that the leaping algorithm does not perform efficiently, since over each leap, we can simulate

a number of reactions firing that is larger than the order O(M). It is known that the Poisson random
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variable with large mean can be well approximated by the normal distributed random variable with the

same mean and variance. Thus, the number of times each reaction channel fired during [t, t+ τ) can be

approximated by:

Kj = P (aj(x)τ) = N(aj(x)τ, aj(x)τ),∀j = 1 . . .M (2.20)

Note that we can write N(aj(x)τ, aj(x)τ) = aj(x)τ +
√
aj(x)τNj(0, 1), where Nj(0, 1),∀j = 1 . . . n are

independent normally distributed random variables with mean 0 and variance 1.

Substituting (2.20) in the (2.19) Tau-leaping equation leads to the Langevin leaping equation:

X(t+ τ) = X(t) +

M∑
j=1

vjaj(X(t))τ +

M∑
j=1

vj

√
aj(X(t))τNj(0, 1) (2.21)

By approximating the Poisson distributed random variables with the normal random variables we moved

from integer values for the number of molecules to real values for them. The errors of such an approx-

imation are small when populations of molecules are large. If we subtract X(t) from both sides of the

equation, divide both sides by τ and take the limit τ → 0, we obtain the following equation:

dX

dt
=

M∑
j=1

aj(X(t))vj +

M∑
j=1

vj

√
aj(X(t))Γj , (2.22)

where Γj are independent Gaussian white noise processes for 1 ≤ j ≤ M . The stochastic differential

equation (SDE) (2.22) is called the Chemical Langevin Equation (CLE). Unlike the Chemical Master

Equation which is a discrete stochastic model, the reduced model of the Chemical Langevin Equation

is continuous and stochastic. It is of dimension equal to the number of different reacting species in the

system.

There are many numerical methods for approximating the solution of stochastic differential equations.

For more details we suggest as reading [15].

In this thesis, to approximate numerically the solution of stochastic differential equations, we use

the Euler-Maruyama scheme. This method is of strong order of convergence 1/2 and weak order of

convergence 1. Before we proceed with the method, we introduce some definitions.
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2.4.1 Brownian motion

Definition 1. A standard Brownian motion process W(t) over the time period [0,T] is a continuous in

time t random variable with the following properties:

1. W(0) = 0.

2. For any 0 ≤ s < t ≤ T , the random variable Z = W(t) - W(s) has a normal distribution with mean

0 and variance t-s.

3. For any 0 ≤ s < t < u < v ≤ T , the random variables Z1 = W (t)−W (s) and Z2 = W (v)−W (u)

are independently distributed.

To simulate the evolution in time of a Brownian motion, we discretized the time interval [0, T ] and

evaluate the Brownian motion at the mesh points as follows. Assume that the time period [0, T ] is divided

into L subintervals, each of length ∆t, then ∆t = T/L. Thus, ti = i∆t and W (∆t · i) = W (ti) = Wi

and ∆Wi = Wi − Wi−1. Consequently, Wi = Wi−1 + ∆Wi, for 1 ≤ i ≤ L. However, we know

that ∆Wi = W (ti) − W (ti−1) is a normally distributed random variable with mean 0 and variance

ti − ti−1 = ∆t. Hence, we can write Wi = Wi−1 +N(0, 1)
√

∆t, where N(0,1) is a random variable with

a normal distribution of mean 0 and variance 1. Thus, in order to simulate a single trajectory over the

time period [0, T ], with L mesh points, we have to draw L random samples of the Normal distribution

random variable with mean 0 and variance 1 and to calculate Wi by: Wi = Wi−1 + N(0, 1)
√

∆t for

1 ≤ i ≤ L.

2.4.2 The Itô integral

Recall the definition of a Riemann integral for a given function h defined on some interval [0, T ],

∫ T

0

h(t) dt ,

as the limit as ∆t→ 0 of
∑L
i=1 (ti+1 − ti)h(ξi), where ξi ∈ [ti, ti+1] for any 1 ≤ i ≤ L and ∆t = ti+1− ti.

Stochastic integration gives the integral of a function h with respect to a standard Brownian motion,

W(t), and is denoted by ∫ T

0

h(t) dW (t) .
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Following our analogy with the deterministic integral, the stochastic integral can be approximated by

the following sum: ∫ T

0

h(t) dW (t) = lim
∆t→0

N∑
i=1

h(ξi)(W (ti+1)−W (ti)) , (2.23)

where ξi ∈ [ti, ti+1]. For the stochastic integrals, unlike for the deterministic integral, the choice of

ξi leads to different values of the integral. This is due to the fact the we integrate with respect to a

non-differentiable function. For example ξi could be equal to ti or ti+1+ti
2 . The choice of ξi produces

different results. When ξi = ti, the integral (2.23) is called an Itô integral and when ξi = ti+1+ti
2 it is

called a Stratonovich integral. In this thesis we will use ξi = ti, which corresponds to the Itô integral.

2.5 Euler-Maruyama method

A scalar SDE can be written in the following form:

X(t) = X(0) +

∫ t

0

f(X(s)) ds+

∫ t

0

g(X(s)) dW (s), t ∈ [0, T ] . (2.24)

The function f(x) is called the drift function and the function g(x) is called the diffusion function. The

initial condition X(0) = X0 is given. We would like to numerically approximate the solution X(t) of the

equation (2.24). The integral form (2.24) can be re-written in differential form as:

dX = f(X(t))dt+ g(X(t))dW (t) , (2.25)

where X(0) = X0. To solve the equation numerically we once again have to discretize the time interval

and to approximate the solution X(t) at the mesh points. We take ∆t = T/L, where L is the number

of intervals. The time variable at the mesh points is τj = j∆t for j = 1, .., L and we wish to find the

corresponding approximation of the variable Xj ≈ X(τj). The Euler-Maruyama method to approximate

the solution to the SDE (2.25) takes the following form:

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)(W (τj)−W (τj−1)), j = 1, . . . , L . (2.26)
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Thus, for a single trajectory one needs to generate a Brownian path with L points Wj to estimate W (τj),

j = 1, . . . , L and to estimate Xj based on the information of Xj−1. The Chemical Langevin Equation is

an autonomous stochastic differential equation driven, in general, by multiple Wiener processes. Recall

that:

dX =

M∑
j=1

aj(X(t))vjdt+

M∑
j=1

√
aj(X(t))vjdWj (2.27)

Here,
∑M
j=1 aj(X(t))vj is the drift coefficient and

√
aj(X(t))vj are the diffusion coefficients. Hence,

using the Euler-Maruyama method, we obtain the following algorithm for simulating the approximate

solution of the CLE: Given the initial state of the system X(t0) = X0 at the start time t0 and the

number L of the intervals do:

1. Set τ = T/N

2. Set t = t0 and i = 1.

3. Generate an M × L array A, with each entry being a sample of the normal distributed random

variable with mean 0 and variance 1.

4. Update the state system at time t+τ byX(t+τ) = X(t)+
∑M
j=1 vjaj(X(t))τ+

∑M
j=1 vj

√
aj(X(t))τAji

5. Update the time variable t→ t+ τ .

6. Update i = i+1.

Repeat the steps 4-7 until t ≥ T .

Definition 2. A method is said to have a strong order of convergence γ, if there exists a constant C,

such that for ∆t > 0 sufficiently small, the following holds true:

E[|Xn −X(n∆t)|] ≤ C∆tγ ,∀n (2.28)

We are bounding the mean absolute error, or equivalently measuring the rate with which it decays,

as ∆t > 0 is sufficiently small. It can be shown, that for appropriate drift and diffusion terms in the

SDE the Euler-Maruyama method has strong order of convergence γ = 1/2. An example of a method

of strong order of convergence 1 is the Milstein method.
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Definition 3. A method has weak order of convergence β if for all 2(β + 1) differentiable functions q

there exists a constant C such that for any ∆t small enough:

|E[q(Xn)]− E[q(X(n∆t))]| < C∆tβ ,∀n. (2.29)

It can be shown that provided that the drift and the diffusion terms satisfy certain conditions,

the Euler-Maruyama method has a weak order of convergence of order 1. The reason for this is the

difference between the Itô calculus and the deterministic calculus, which in particular influences the

Taylor expansion.

2.6 Reaction rate equations (RRE)

We discuss in this section the connection between the stochastic mathematical models of biochemical

systems presented so far and the traditional reaction rate equation model of biochemical kinetics.

For these systems we assume the thermo-dynamic limit is approached, that is the volume Ω→∞ and

all species population grow to∞, such that the concentration Xi/Ω remains constant for all i = 1, . . . , N .

Then, it was shown that the propensity functions grow linearly with respect to the system size. This is

obvious for unimolecular reactions. The same phenomenon is observed for bimolecular reactions, since

their reaction rates are inversely proportional to the volume size. The larger the volume is, the lower is

the chance of such a reaction to take place. Now, since we assumed that all species populations are very

large, we can use the Chemical Langevin Equation model. As propensities grow linearly, also the drift

term grows linearly. However, the diffusion terms (which are the square root of propensities) grow like

the square root of the system size and thus becomes negligibly small compared to the drift term. Thus,

under the conditions above, the Chemical Langevin Equation may be approximated by:

dX

dt
=

M∑
j=1

aj(X(t))vj (2.30)

The equation (2.30) is known as the Reaction Rate Equation model. It is a system of ordinary differential

equations of dimension equal to the number of reacting species in the system.

The connections between the modeling approaches for isothermal well-stirred biochemical systems

we introduced so far, are presented in Figure 2.1.
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Figure 2.1: The mathematical models of well-stirred biochemical systems

2.7 Implicit methods for the numerical approximation of stiff

systems

In order to produce numerical approximations of stiff systems with explicit methods, the numerical

method would have to advance in time with steps of the same order as the fastest rate in the system.

This leads to very small time steps that render the approach of the leaping algorithms inefficient. A
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widely used approach to simulating stiff systems is to employ so-called implicit methods. For example,

to solve numerically the following system:

dy

dt
= f(t, y) (2.31)

y(0) = y0 (2.32)

with the implicit Euler scheme, we apply the following reccurence:

Y (t+ ∆t) = Y (t) + f(t+ ∆t, Y (t+ ∆t))∆t (2.33)

The equation (2.33) can be solved for the unknown Y (t+ ∆t) by a number of iterative (if the system is

non-linear) numerical methods, such as the Newton’s method. By using implicit methods we would be

able to take larger time steps, as the time steps will not be restricted by the same stability restrictions

imposed by explicit methods. This outweighs the extra iterations we will need to do for solving the

implicit equation for Y (t + ∆t). For stochastic models this problem becomes more complicated. If the

system has reached the equilibrium with respect to the fast reactions, then the random fluctuations

disturb this equilibrium. If these fluctuations are relatively small, then the system will return to the

state of slow equilibrium relatively fast and the implicit algorithm may take large steps (larger than the

time scale of the fast reactions). In the opposite case, the implicit algorithm due to its taking larger steps

than the time scale of the fast reactions will produce the dampening of the fast reaction fluctuations.

This can be corrected by down-shifting [5]. The slow reactions will be computed with their correct

distributions.

Another issue with the implicit algorithms for stochastic differential equations is the fact that X(t)

is a random variable, i.e. it is not known how to set up a scheme which is implicit in both the drift and

the diffusion terms. Taking the case of the tau-leaping, this issue is dealt with as follows, the mean of

Poisson variable, aj(x)τ,∀j = 1, ..,M , is approximated implicitly, that is at t + τ (deterministic part),

and the remaining stochastic part is estimated explicitly at t. The corresponding equation is:

X(t+ τ) ≈ X(t) +

M∑
j=1

vjaj(X(t+ τ))τ +

M∑
j=1

vj(Pj(aj(X(t)), τ)− aj(X(t))τ) (2.34)
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Once again, we obtained an implicit equation in X(t + τ), which can be solved by using an iterative

method. The corresponding implicit algorithm for the Chemical Langevin equation is:

X(t+ τ) ≈ X(t) +

M∑
j=1

vjaj(X(t+ τ))τ +

M∑
j=1

vj(
√
aj(X(t))τNj(0, 1)) (2.35)

Here the drift term is estimated at t+ τ and the diffusion term is evaluated at t. As before, Nj(0, 1) are

independent normally distributed random variables with mean 0 and variance 1.

2.8 Slow scale SSA for stiff systems

Another method for simulating stiff biochemically reacting systems is to employ the slow scale SSA

(ssSSA)([3]). It differs in principle from the implicit methods described above. It has some resemblance

with the hybrid methods using both the SSA and the leaping algorithms. At the heart of ssSSA lie two

assumptions. First being that there are at least two time scales in the system that are drastically different

from each other. The second being that the fast reactions reach an equilibrium (or pseudo-equilibrium)

relatively fast with respect to the time scale of the slow reactions. By pseudo-equilibrium we mean that

the chemical reactions might still take place, but the quantities of all the species participating in the

slow reactions remain relatively constant.

We partition the space of all species into two subspaces: the slow species and the fast species. Fast

species are species whose quantity is being changed by some fast reaction. Slow species are the ones

that are not fast. Thus, a fast species may be changed by the slow reaction, but a slow species can

not be changed by a fast reaction. Fast reactions have propensity functions that are relatively large

in comparison to the propensities of the slow reactions. Note that the propensities are dependent on

the number of reactants present in the system as well as on the rate of the corresponding reaction. We

denote the fast reactions by Rf = [Rf1 , .., R
f
Mf ] and the slow reactions by Rs = [Rs1, .., R

s
Ms ]. Here, Ms

is the number of fast reactions and Ms is the number of slow reactions and Mf + Ms = M . Likewise,

we partition the space of all species into two subspaces. We denote the fast species by Sf = [Sf1 , .., S
f
Nf ]

and the slow species by Ss = [Ss1 , .., S
s
Ns ]. Here, Ns is the number of fast species and Ns is the number

of slow species. Therefore, Nf +Ns = N . Since we partitioned the space of species into two subspaces,

the same can be done for the state vector, X(t) = (Xs(t), Xf (t)). Bearing in mind the lack of symmetry

28



CHAPTER 2. BACKGROUND 2.8. SLOW SCALE SSA FOR STIFF SYSTEMS

between the fast and the slow species we divide the state change vectors onto vfj and vsj . Here:

vf = [vff1j , ..., v
ff
Nf j

]T , j = 1, ..,Mf (2.36)

vs = [vss1j , ..., v
ss
Nsj , v

fs
1j , ..., v

fs
Nf j

]T , j = 1, ..,Mf (2.37)

Here, vαβi,j denotes the change brought by one reaction Rβj of either slow or fast type (denoted by β) in

the slow species i of either the slow or the fast subspace (denoted by α).

Having set up a system in this way, we focus on the system that consists only of the fast reactions

of the initial system. We denote it by X̂f (t). For the ssSSA to be applicable, the following conditions

should be true. The process X̂f (t) should be stable, which means the following limit exists:

lim
t→∞

P̂ (xf , t|x0, t0) = P̂ (xf ,∞|x0) , (2.38)

where P̂ (xf , t|x0, t0) is the conditional probability for the system of the fast reactions only. The second

condition is that X̂(t)f reaches its limit value X̂(∞)f very quickly (compared to the time scale of the

slow reactions). Having this set-up and assuming that by the time a slow reactions fires, the fast reaction

system is at equilibrium, we can estimate the probability that a fast reaction fires during time interval

(t; t+ dts], a
s
jdts using:

āsj =
∑
xf′

P̂ (xf
′
,∞|xf , xs)asj(xf

′
, xs) , (2.39)

The state of the system at time t is X(t) = (xf , xs). Here xf
′

stands for the state of the system with

slow reactions switched off. Thus, āsj the slow scale propensity function averaged over the fast variables,

as if these variables had distribution with the slow reactions turned off.

The algorithm obtained from this set-up leads to the system moving from one slow reaction to the

next, while updating the fast species by randomly sampling the virtual fast process X̂f (t) according to

(2.38).
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2.9 Reflection on the stepsize

For the Chemical Langevin Equation model to apply there are two limitations on the step size τ . The

first condition is the Leap condition and the second is that the step size should be large enough so that

many reactions fire during one step. We need a way to determine the largest τ so that both conditions

hold.

One way to bind the step size τ is to ensure that the change in the state of the system will not bring

a change in any propensity function larger than the sum of all propensities [10]. In other words, is we

assume that X(t) = x and X(t+ τ)−X(t) = Φ(τ, x), then

|aj(x+ Φ(τ, x))− aj(x)| ≤ εa0(x),∀j = 1, ..,M . (2.40)

Here 0 < ε << 1 and a0(x) =
∑M
j=1 aj(x). Improved ways of bounding the change in each propensity

have been proposed in [2], [4]. Each propensity function aj(x) may be bounded in terms of a small

fraction of itself or in terms of a fraction of the largest propensity function at time t. Mathematically,

this leads to the following conditions:

|aj(x+ Φ(τ, x))− aj(x)| ≤ εaj(x),∀j = 1, ..,M , (2.41)

or

|aj(x+ Φ(τ, x))− aj(x)| ≤ ε max
i=1..N

[ai(x)],∀j = 1, ..,M . (2.42)

The task of choosing the appropriate leaping step τ to satisfy any of the above three conditions is being

complicated by the fact that Φ(τ, x) is a random variable and we have to draw many representative

samples in order to accurately determine all possible outcomes of using the leaping step τ of a particular

size.
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Chapter 3

Method

In this section, we propose an adaptive time-stepping algorithm for the numerical solution of the Chem-

ical Langevin Equation. We assume that the extended leaping condition holds. Some systems exhibit

a variable behavior throughout the simulation: they might be stiff during one period of time and non-

stiff on another. It is not efficient then to employ the same small step size to ensure that the error is

below some pre-fixed tolerance. Since we compare the error to some tolerance, there may be occasional

rejections of the step size. Then the step is substituted by a smaller one (which should lead to a smaller

error). However, since this algorithm is based on an a priori-fixed Brownian path, we would have to dis-

card some random variables associated with the rejected step size. This will result in a skew distribution

and thus will lead to a less accurate simulation. To avoid this, we will maintain the correct statistics

by conditioning the random variables for the new, smaller step on the already generated values. We use

the Euler-Maruyama method which is shown to be p-th mean convergent [17].

Another aspect of the proposed algorithm is the way in which the trajectory generation is connected

to the error estimation. The stochastic simulation by Monte Carlo type methods involves producing a

large number of trajectories, which may be used to approximate the statistics for the exact solution of

the problem. These trajectories are computed one at a time. However, if the algorithm uses an adaptive

step size scheme, then one needs to verify if the numerical solution converges to the exact solution.

The existing convergence theory for adaptive methods for SDEs is developed for the strong convergent

schemes.

In the current algorithm, the trajectories are computed synchronously, one time leap at a time. Note
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that the number of mesh points in each trajectory will be the same. Thus, if the time step is rejected,

it is rejected for all trajectories. This approach has the following advantage. It allows a single error

estimation per all trajectories per time step, based on the mean across all generated paths. To compare,

generating one trajectory at a time makes it is necessary to evaluate the errors for each time step on

each trajectory.

The algorithm we propose is based on the estimate of the p-th mean of the local error (at each step).

Moreover, we only compute the leading term in the p-th mean error term. This enables us to estimate

the global error, provided that the system has small noise. According to [17], we define the p-mean error

of an integrable random variable x by :

||x||Lp = (E(|x|)p)1/p (3.1)

Definition 4. Given the discretized solution at the mesh points, Xl approximates X(tl), we call an

approximation method p-mean convergent of order γ > 0 if

max
l=1..N

||X(tl)−Xl||Lp
≤ C · hγ , (3.2)

where h = maxi=1..L(hi) and C is some positive constant, independent of h.

According to [17], the p-th mean of the global error term (X(tl) −Xl) can be estimated by a term

proportional to p-th mean of a local error. We discuss below two important aspects to this strategy: the

error estimation and the time-stepping technique.

Consider the following stochastic differential equation:

X(t) = X(0) +

∫ t

0

f(X(s)) ds+

∫ t

0

g(X(s)) dW (s), t ∈ [0, T ] , (3.3)

where W = [W1,W2, ..,WM ]T is an M-dimensional Wiener process, having independent entries. We use

the following results from [17] to estimate the leading term of the local approximation error (ηl) for the

Euler-Maruyama scheme applied to problems with small noise:

ηl = h
1

2
||(ft + fxf)(xl−1, tl−1)||Lp , (3.4)
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where, h is the time step.

In our case, the stochastic differential system is the Chemical Langevin Equation:

X(t) = X(0) +

∫ t

0

M∑
j=1

aj(X(s))vj ds+

∫ t

0

M∑
j=1

√
aj(X(s))vj dWj(s) , t ∈ [0, T ] (3.5)

Thus, the drift coefficient is f =
∑M
j=1 aj(X(t))vj . We remember the leaping assumption that aj ,∀j =

1, ..,M , remains almost constant during the leap. Therefore, ft = 0. The approximate leading error

term can be estimated as following:

ηl = hl
1

2
||(fxf)(xl−1, tl−1)||Lp . (3.6)

3.1 Adaptive time-stepping method

There are two aspects to the proposed adaptive algorithm: the error evaluation in the perceived post-

leap state of the system and the correction of the time step accordingly. The key idea of this algorithm

is to be able to maximize the mean square error of the approximation, while satisfying the prescribed

tolerance. Thus, we strive for the error being exactly equal to the tolerance. This not only allows us

to diminish the step size when the error exceeds the user-provided tolerance, but also increases the step

size, when the error falls way below it (and thus prevents unnecessary increase of computational time).

The algorithm we employ for numerically solving the Chemical Langevin Equation is the Euler-

Maruyama method described above. We propose below an adaptive time-stepping algorithm for the

Euler-Maruyama scheme applied to the CLE. We will show that this leads to a numerical solution which

converges to the exact solution of the given problem.

3.2 Time step adjustment

Before attempting a step we calculate the mean square error across all the trajectories, η, by using the

current state of the system and the current value of τ . Since we would like for the step size to decrease

only when the error for the current time step is larger than the provided tolerance, we would like to

make the step size adjustment a function of the ratio between the local error and the tolerance. Based

on the resulting error, we calculate the candidate time step for the next iteration using the following
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equation:

τnew = τold ·
(
θ · tol
η

)1/γ

, (3.7)

and |θ| < 1 is a safety factor. If for the current time step τ the error is smaller than the tolerance, then

we accept the step, calculate the number of times each reaction fired during the time step, update the

system correspondingly, advance the time by τ and re-set τ . This strategy is particularly useful when the

numerical solution of the system is close to equilibrium and no sharp changes in any species population

is expected.

If the error associated with the current step is higher than the tolerance, we divide the current time

step τ into smaller steps τ1 = τnew and τ2 = τ − τ1. However, previously we had a set of normal

random variables associated with the current τ . Since we wish to maintain the correct distribution of

the numerical solution, we use these random variables for the calculation of the number of reactions that

fired during τ1 and τ2. If we denote the Wiener increment on the larger interval [t; t+ τ ] by ∆W , then

∆W has mean 0 and variance τ . Then, the increments ∆W1 and ∆W2 corresponding to [t, t+ τ1) and

[t+ τ1, t+ τ) are calculated according to [17], by the following two equations:

∆W1 =
τ1
τ

∆W +

√
τ1τ2
τ
φ (3.8)

∆W2 =
τ2
τ

∆W −
√
τ1τ2
τ
φ , (3.9)

where φ is a vector of length M, each entry of which is N(0, 1). One notices that ∆W1 + ∆W2 = ∆W .

The important consideration for the stepping strategy is that we try to keep the distribution un-altered,

which means that when a time step was rejected, and a smaller time step was chosen, then we need to

condition the Wiener increments on the smaller time steps on the Wiener increments associated with

the rejected step, by using (3.8) and (3.9).

3.3 Algorithm

We introduce below an algorithm for adapting the step size for the mean-square numerical approximation

of the solution of the Chemical Langevin Equation. This algorithm applies when the noise in the
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Chemical Langevin Equation model is relatively small. This is the case for a large class of problems

arising in applications.

Input:

1. Initialize t = 0 and the initial state of the system is X(t) = X0. Set i=1, set the number of

trajectories, the tolerance tol, the control factor θ = 0.8 and the initial step τ1.

2. For all the trajectories generate the vectors ∆W = (∆W1, ...,∆WM )T each having M independent

Gaussian random variables as entries, with mean 0 and variance the current time step size, τ .

3. Based on the current state of the system and the current value of the time step, we calculate the

mean-square error ηi across all trajectories, according to (3.6) where the drift is

f(x) =

M∑
j=1

aj(x)vj .

4. Calculate τnew using (3.7).

5. Compare the error for the current step with the tolerance. If the error ηl is smaller than the

tolerance tol then accept the step ti = ti−1 + τ i:

(a) Update the system state variable using the Euler-Maruyama scheme:

Xi = Xi−1 +

M∑
j=1

aj(Xi−1)vjτ
i +

M∑
j=1

√
aj(Xi−1)vj∆Wj

(b) If ti < Tfinal, set i = i+1, τ i = τnew and return to Step 3. Otherwise, stop.

Else:

(a) Set τ1 = τnew and τ2 = τ i − τ1.

(b) Generate the Wiener increment vectors for τ1 and τ2 across all trajectories according to (3.8)

and (3.9).

(c) Update the system state variable Xi, using the Euler-Maruyama scheme and set i=i+1

(d) Set τ i = τ2.

(e) Go to step 3.
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The following theorems apply, as described in [17].

3.4 Convergence analysis of the method

Definition 5. A function F: Ω ⊂ Rn → Rn is called Lipschitz continuous, if for all X1 and X2 ∈ Ω,∃K

constant, such that:

|F (X1)− F (X2)| ≤ K|X1 −X2| (3.10)

Effectively, this limits the absolute value of rate of growth of the function (i.e. the absolute value

of its derivative if it exists) to be no larger than a constant K. The constant K is called the Lipschitz

constant for F.

The following theorem establishes the p-th mean stability of the described method.

Theorem 1. Consider the following Itô stochastic differential equation:

X(t) = X0 +

∫ t

t0

f(x(s), s) ds+

∫ t

t0

g(x(s), s) dW (s), t ∈ T (3.11)

Here, X0 = X(t0), T = [t0, Tfinal], f : Rn × T → Rn, g : Rn × T → Rn×m and f is continuously

differentiable with respect to t. Let the following scheme be the discretization scheme for the solution of

(3.11):

Xk = Xk−1 + F (Xk−1, Xk, tk−1, τk) +G(Xk−1, tk−1, τk, Itk−1,hk
), k = 1..N (3.12)

Here Itk−1,hk
is a vector of multiple stochastic integrals. Also, let p ≥ 1 and X0 to have a p-th order

moment. Assume that the following properties hold for the scheme (3.12):

• For all the random vectors X1
k and X1

k−1, X2
k and X2

k−1, k=1,..,N and the pair (t, τ) ∈ T , the

following holds:

|F (X1
k , X

1
k−1, t, τ)− F (X2

k , X
2
k−1, t, τ)| ≤ τ(L1|X1

k −X2
k |+ L2|X1

k−1 −X2
k−1|) (3.13)

for some positive constants L1, L2 and τ .

• For all the pairs (t, τ) ∈ T and for all the random vectors X1 and X2
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E(|G(X1, t, τ, It,τ )−G(X2, t, τ, It,τ )|) = 0 .

E(|G(X1, t, τ, It,τ )−G(X2, t, τ, It,τ )|p) ≤ τp/2Lp3|X1 −X2|p ,

for some constant L3 .

E(|G(0, t, τ, It,τ )|p) <∞ .

Then for all a ≥ 1 there exist a maximal step size τ0 > 0 and a stability constant S > 0 such that the

following holds for each set t0, t1, .., tN having the property τ = maxk=1..N τk ≤ τ0 and τ×N ≤ a(tN−t0):

for all the vectors X∗0 , X̂0 having finite p-th mean and the perturbations d∗l , d̂l having a finite p-th mean

∀k = 1, .., N , the perturbed discrete system

X̂k = X̂k−1 + F (X̂k−1, X̂k, tk−1, τk) +G(X̂k−1, tk−1, τk, Itk−1,τk) + d̂k, k = 1..N (3.14)

has a unique solution (X̂k)Nk=0 and the following estimates are valid for any two solutions (X̂k)Nk=0

and (X∗k)Nk=0 of the perturbed discrete system with perturbations (d∗k)Nk=1 and (d̂k)Nk=1 and splittings of

dk = d∗k − d̂k such that dk = sk + rk with E(sl) = 0

E( max
k=1..N

|X∗k − X̂k|
p
) ≤ Sp(E|X∗0 − X̂0|p +

maxk=1..N E|sk|p

h
p
2

+
Emaxk=1..N |rk|p

hp
) (3.15)

max
k=1..N

E|X∗k − X̂k|p ≤ Sp(E|X∗0 − X̂0|p +
maxk=1..N E|sk|p

h
p
2

+
maxk=1..N E|rk|p

hp
) (3.16)

The scheme (3.12) that has properties (3.15) and (3.16) is p-th mean stable.

The following lemma establishes that the drift-implicit Euler scheme applied to (3.11):

Xk = Xk−1 + τk(αf(Xk, tk−1 + τ) + (1− α)f(Xk−1, tk−1)) + g(Xt−1, tk−1)∆Wk, k = 1, .., N (3.17)
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is p-th mean stable, where α ∈ [0, 1]. It is easy to see that if we will take

F (X,Z, t, τ) = τ(αf(X, t+ τ) + (1− α)f(Z, t)) (3.18)

G(X, t, τ, It,τ ) = g(X, t)(W (t+ h)−W (t)) =

m∑
j=1

gj(X, t)

∫ t+τ

t

dWj(s) (3.19)

the scheme (3.17) turns into scheme (3.11) and thus, if functions f and g satisfy the necessary conditions,

the Theorem 1 can be applied to the Euler scheme.

Lemma 1. Let the functions f and g be Lipschitz continuous with respect to x. Then the Euler scheme

(3.17) is p-th mean stable.

Together Theorem 1 and Lemma 1 establish that the scheme developed in our method (based on

Euler numerical method) is p-th mean stable. Note that in this thesis we deal with explicit schemes,

that is with the Euler-Maruyama scheme, corresponding to α = 0 in (3.17).
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Chapter 4

Numerical results

4.1 System 1: Michaelis-Menten model

The first model is well known in the literature as the Michaelis-Menten model, as it was given in [11].

It consists of the following biochemical reactions:

S1 + S2
c1−→ S3

S3
c2−→ S1 + S2

S3
c3−→ S4 + S2

This system models the conversion of substrate into product, in the presence of an enzyme. We

denoted the substrate by S1, the enzyme by S2, the complex substrate-enzyme by S3 and the product

by S4. The data used is: the parameters are C = [1.661e − 3, 1e − 4, 0.1]. The initial conditions are

X(t0) = [312, 125, 0, 0]. We simulated the dynamics of the system for 55 sec using 100 trajectories. The

stoichiometric matrix is:

V =



−1 1 0

−1 1 1

1 −1 −1

0 0 1


According to Section 2 we obtained the following propensity functions for the first, second and third
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Tol, % No of Steps rejected max error
tolerance

Adaptive 1.14 28 9 0.834
Fixed 1.14 28 0 10.528

Adaptive 0.23 61 0 0.833
Fixed 0.23 61 0 24.162

Adaptive 0.14 113 0 0.880
Fixed 0.14 113 0 26.086

Adaptive 2.28× 10−2 517 0 0.856
Fixed 2.28× 10−2 517 0 28.508

Table 4.1: System 1: Comparative analysis between the adaptive step and the fixed step algorithms for
Michaelis-Menten system

reactions, respectively:

a1(X(t)) = c1X1(t)X2(t)

a2(X(t)) = c2X3(t)

a3(X(t)) = c3X3(t)

Based on the well-studied behavior of this model, we expect our algorithm to perform more efficiently

(use less steps and adjust to tolerance better) than the fixed step size algorithm. We compared the

performance of the adaptive step-size algorithm with the fixed-step size Langevin Leaping algorithm.

We measured the error for the fixed step size algorithm using the same mechanism as for the adaptive

algorithm.

In Table 4.1 are summarized the numerical results for the various runs of the adaptive step algorithm

and the fixed step size algorithm for the Michaelis-Menten system. We ran the adaptive algorithm for

a set of tolerance values, calculated the number of steps obtained while maintaining the error below the

tolerance. Then, we ran the fixed step size algorithm for the same number of attempted steps as the

adaptive algorithm. At each run, we calculated the ratio between the maximum error and the prescribed

tolerance. From table 4.1 we can see that, given the equal number of steps, the error obtained with

the adaptive algorithm is between 10 and 28 times smaller than that committed by the fixed step size

scheme. Moreover, as the tolerance decreases, the error to tolerance ratio for the fixed step size algorithm

grows even more. Figures 4.1-4.4 describe the evolution of the error as a function of time for the two
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algorithms.

Figure 4.1: System 1, Michaelis-Menten model: plot of the error evolution in time, tolerance = 1.14%

Figure 4.2: System 1, Michaelis-Menten model: plot of the error evolution in time, tolerance = 0.23%

From the graphs we see that the maximum error for the fixed step size method occurs during the
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Figure 4.3: System 1, Michaelis-Menten model: plot of the error evolution in time, tolerance = 0.14%

Figure 4.4: System 1, Michaelis-Menten model: plot of the error evolution in time, tolerance = 2.28×10−2

%

first 10 sec of the simulation. This happens when the number of molecules has a sharp change. Thus, to

have the lower error the step size for the fixed step mesh should have been smaller. However, having an
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even smaller step size would reduce the efficiency even further during the time period when the system

is not stiff.

Figures 4.5-4.6 plot the system dynamics as estimated with the adaptive and the fixed step size

algorithm:

Figure 4.5: System 1, Michaelis-Menten model: plot of system’s dynamics, adaptive step algorithm

From Figures 4.5 and 4.6 we see that the adaptive step size algorithm produces a simulation of

the system’s behavior similar to the one computed by the fixed step strategy. This shows numerically

that the adaptive step algorithm gives a good approximation of the exact solution of the problem (it is

convergent).

4.2 System 2: decaying dimerization model

The second test model is a stiff decaying dimerization model (see [5] for details). We have modified

it slightly, to make the system less stiff. Consequently, the tolerance values could be less strict and

consequently less computational time will be required to simulate the evolution in time of the system.

The chemical system is subject to the following reactions:
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Figure 4.6: System 1, Michaelis-Menten model: plot of system’s dynamics, fixed step algorithm

S1
c1−→ ∅

S1 + S1
c2−→ S2

S2
c3−→ S1 + S1

S2
c4−→ S3

We use the following data: the parameters are C = [1, 0.002, 0.5, 0.04], while the initial conditions

are X(t0) = [5000, 10, 10]. The interval of simulation is [0, 0.03] and we run the algorithm for 100

trajectories. The stoichiometric matrix is:

V =


−1 −2 2 0

0 1 −1 −1

0 0 0 1


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Tol, % No of Steps No of steps rejected max error
tolerance

Adaptive 10 54 15 0.8
Fixed 10 54 0 1.452

Adaptive 5 75 1 0.8
Fixed 5 75 0 2.091

Adaptive 2.5 150 5 0.8
Fixed 2.5 150 0 2.091

Adaptive 1 373 17 0.8
Fixed 1 373 0 2.102

Table 4.2: System 2: comparative analysis between the adaptive step and the fixed step algorithms for
the decaying dimerization model

The propensities corresponding to the decay-dimerization system are:

a1(X(t)) = c1X1(t)

a2(X(t)) = 1
2c2X1(t)(X1(t)− 1)

a3(X(t)) = c3X2(t)

a4(X(t)) = c4X2(t)

We compared the performance of the adaptive step-size algorithm with that of the regular fixed-step size

Langevin Leaping algorithm. Again, we used the same measure for the local error for both the adaptive

and the fixed step size algorithm. The results of the simulation with the adaptive step algorithm and

the fixed step algorithms are presented in Table 4.2

Similar to the first system, the basic idea of comparison stayed the same. From the table, one can see

that given the equal number of total steps (which in the case of the adaptive algorithm means the total

number of accepted and rejected steps), the error ratio for the adaptive step algorithm is smaller than

that of the fixed step size method. Moreover, as the tolerance size decreases, the error to tolerance ratio

for the fixed step size method grows even more compared to the adaptive strategy.

Figures 4.7-4.10 describe the evolution of the errors for the two algorithms, in time:

From these graphs we see that the maximum error for the fixed step size occurs during the first 0.05

sec of the simulation. Thus, to have the lower error the step size for the constant step algorithm should

have been smaller. However, this would lead to a decrease in the efficiency during the time period when
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Figure 4.7: System 2, decaying dimerization: plot of the error evolution in time, tolerance = 10%

Figure 4.8: System 2, decaying dimerization: plot of the error evolution in time, tolerance = 5%

the system is not stiff. Which in this case, when the system moves away from the dharp transient,

the fixed step size algorithm becomes utterly inefficient. The simulation of this system by these two
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Figure 4.9: System 2, decaying dimerization: plot of the error evolution in time, tolerance = 2.5%

Figure 4.10: System 2, decaying dimerization: plot of the error evolution in time, tolerance = 1%

algorithms wonderfully showcases the dual action of adaptive steps. The adaptive step size not only

decreases when more accuracy is required, but also quickly recovers to maintain the error almost equal
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to the indicated tolerance.

In Figures 4.11-4.12 we plotted the system dynamics as estimated by the adaptive and the fixed step

size algorithms.

Figure 4.11: System 2, decaying dimerization: plot of the system’s dynamics, adaptive step algorithm

From Figures 4.11 and 4.12 we see that, similarly to the Michaelis-Menten model, the adaptive step

size algorithm produces a simulation of system’s dynamics similar to the one computed by the fixed step

algorithm.

4.3 System 3

Finally, the third model we analyze was introduced in [18]. The problem exhibits the most pronounced

dynamically stiff behavior. Its reaction rates range from 1e6 molecules/sec to 1e2. We have modified
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Figure 4.12: System 2, decaying dimerization: plot of the system’s dynamics, fixed step algorithm

the coefficients and the initial conditions to make the system less stiff. However, we still observe a

considerable difference in the reaction rate magnitudes and thus expect the adaptive time step algorithm

to perform better than the fixed step one. The following system of chemical reactions describes the
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system:

S1 + S2
c1−→ S3

S3
c2−→ S1 + S2

S1 + S3
c3−→ S2

S2
c4−→ S1 + S3

S3 + S2
c5−→ S1

S1
c6−→ S3 + S2

The data we used: the parameters are C = [1e1, 1e1, 1e−6, 1, 1e−2, 1e4], while the initial conditions

are X(t0) = [100, 99, 10001]. We ran the simulation on the short time interval [0, 0.00015] sec using 100

trajectories. The stoichiometric matrix associated with this biochemically reacting system is:

V =


−1 1 −1 1 1 −1

−1 1 1 −1 −1 1

1 −1 −1 1 −1 1



The propensities corresponding to the reaction rates:

a1(X(t)) = c1X1(t)X2(t)

a2(X(t)) = c2X3(t)

a3(X(t)) = c3X1(t)X3(t)

a4(X(t)) = c4X2(t)

a5(X(t)) = c5X3(t)X2(t)

a6(X(t)) = c6X2(t)

We compared the performance of the adaptive step-size algorithm with that of the regular fixed-step

size Langevin Leaping algorithm. We measured the error for the fixed step size algorithm and that for

the adaptive algorithm in a similar way.
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Tol, % No of Steps No of steps rejected max error
tolerance

Adaptive 20 73 0 1.000
Fixed 20 73 0 1.778

Adaptive 10 140 0 1.000
Fixed 10 140 0 1.854

Adaptive 5 271 0 1.000
Fixed 5 271 0 1.915

Adaptive 2.5 548 2 1.000
Fixed 2.5 548 0 1.894

Table 4.3: System 3: comparative analysis between the adaptive step and the fixed step algorithms

Table 4.3 summarizes the results for the various runs of the adaptive step algorithm and the constant

step one for the System 3. Also, we used the same strategy for comparison of the two algorithms. From

this table one can see that given the equal number of steps, the error computed with a constant step

mesh is larger than the error obtained on the adaptive mesh. Moreover, as the tolerance decreases, the

error to tolerance ratio for the fixed step size grows even more, while the error for the variable step

scheme stays the same.

Figures 4.13-4.16 describe the error computed with the two algorithms in time.

Figure 4.13: System 3: plot of the error evolution in time, tolerance = 20%
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Figure 4.14: System 3: plot of the error evolution in time, tolerance = 10%

Figure 4.15: System 3: plot of the error evolution in time, tolerance = 5%

This model’s dynamics exhibit the same pattern as System 2. From these graphs we see that the

maximum error for the fixed step size algorithm occurs during the first 0.5 sec of the simulation. Thus,
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Figure 4.16: System 3: plot of the error evolution in time, tolerance = 2.5%

to have a lower error we should take a smaller step size with the fixed step scheme in the second part of

the simulation, after the transient stage.

Figures 4.17-4.18 plot the system dynamics as estimated by the adaptive and the fixed step size

algorithms:

From Figures 4.17 and 4.18 we see that, as for the the first and second systems, the adaptive step

size algorithm produces a similar behavior as the one produced by the fixed step algorithm.
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Figure 4.17: System 3: plot of the system’s dynamics, adaptive step algorithm

Figure 4.18: System 3: plot of the system’s dynamics, fixed step algorithm



Chapter 5

Conclusion

A fundamental problem in the post-genomic biology is to describe and analyze the complex dynamical

interactions which take place in the cell. Recent experimental techniques made it possible to study

the biological networks in living cells. A successful approach to studying the dynamics associated with

these networks should be based on sound mathematical models and powerful new computational tools

to simulate them.

There are currently several levels of refinement used for modeling the cellular dynamics. Often

chemical kinetic models represent cellular processes as systems of chemical reactions. Traditionally,

these processes were modeled as continuous deterministic systems, by ordinary differential equations.

However, when some molecular species have relatively low population numbers, then the effects of the

random molecular interactions may no longer be neglected. Then stochastic models are required to

accurately capture the system’s dynamics. The study of stochastic mathematical models of biochemical

systems is a critical, but difficult task. As a consequence, the development of new methods and computer

tools to deal with the complexity of their simulations is becoming very important.

This thesis focused on the development of efficient numerical methods for approximating the solution

of a stochastic continuous mathematical model of biochemical systems. This model is known as the

Chemical Langevin Equation. This thesis proposed an adaptive step size algorithm for the numerical

solution of the Chemical Langevin Equation. The underlining numerical technique used was the Euler-

Maruyama scheme. The adaptive algorithm was compared to the existing fixed step size methods on

several problems of interest, and shown to perform much better than those. We have seen a significant
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improvement in the running time, while the tolerance criterion was met by the adaptive scheme. The

performance of the adaptive algorithm had increasing efficiency, compared to the fixed step algorithm,

which grows when the tolerance decreases.

The proposed numerical method will make possible a more efficient and accurate simulation of the

proposed models. As a consequence, it will help validate the model and make predictions of its behavior.

The approach we propose is based on theoretically rigorous foundations.

Our future work will consider a number of improvements of our algorithm, such as an optimal choice

of the initial step of the mesh. We wish to extend the algorithm to estimate the p-mean local error, for

an arbitrary p. In addition, we plan to extend the applicability of the adaptive algorithm to problems

which are very stiff.
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Appendix A: Code

6.1 Main Programs

6.1.1 Adaptive Step Size Algorithm

Input: Initial state of the system, stoichiometric matrix, reaction rate vector, final time of the integration,

first proposed step size, user provided tolerance and total number of trajectories.

Output: Time mesh, the state of the system as a function of time for the number of trajectories

indicated by the user, mean error as a function of time, number of rejected steps, number of accepted

steps.

Function: Once supplied with all the necessary values for the input, the code initializes the variables,

such as the system state variable X and the time vector T. Note that X contains the data for all the

trajectories for all mesh points. The counter variable is initialized to the value 1 (not to 0, since Matlab

does not support 0-th array indexing). Once the loop begins, it runs until the current value of T(i) is

equal to the specified final time. We move the system in time by updating the three variables: X, T and

i. Every iteration of the loop starts from generating a set of Wiener increments for the current value

of tau and the error estimate eta(i). We generate the Wiener increments only if special flag f tau is

set to true. That means we do not have any previously generated and yet unused Wiener increments

associated with the current time step. We set the flag variable f tau to true. The candidate time step

is being generated based on the current error estimate. If the eta(i) is not larger than the user-specified
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tolerance, then the variables X, T, and i are update according to the Euler-Maruyama scheme and the

execution goes to the first line of the loop. If the current error estimate is larger than the tolerance, it is

broken down into smaller steps. First of them, tau1, is equal to the new time step generated previously

and, based on the current error estimate and the second step, tau2, equals to difference between the old

time step and the new time step. We generate new arrays of Wiener increments associated with these

time steps and conditioned on the previously generated Wiener increments for the old time step. The

counter of rejected time steps is increased by 1. We move the time variable by tau1, update the state

variable X(i+1) according to the Euler-Maruyama scheme, where the time step taken is tau1. Finally, we

update the counter i. Having finished with tau1, we proceed to tau2. We calculate the error associated

with it, given the current system state. This is done since most likely it is the biggest part of the old

time step and very likely to have large error associated with it. We calculate the candidate time step,

based on the current error and the step size tau2. If the error is smaller than the tolerance, we move the

time variable, T, by tau2, update the system according to the Euler-Maruyama scheme with the time

step equal to tau2. Finally, we update the counter variable i, set the time step tau to be equal to the

candidate time step and move to the first line of the cycle. In case the error is larger than the tolerance,

the time step tau is set to be equal to tau2, and flag f tau is set to false, which notifies the code that the

current step already has Wiener increments generated and not used. We increase by one our counter of

rejected steps.

function [T,X,eta,rejected,i] = Langevine_keep_traj_v4(S,V,C,Time,tau,tol, total_t)

%Input check

%V1 reactant part of stochiometric matrix

format long;

n_species = length(S);

if n_species<=0

error(’Initial State Vector should be non-empty’);

end

[n1,n_reactions] = size(V);

if (n1>n_species)

error(’Not all the species used in reactions were given initial state value’);
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elseif (n1<n_species)

error(’Initial state vector is too long’);

end

n2 = length(C);

if (n2>n_reactions)

error(’Not all of the reactions have been described in change state matrix V’);

elseif(n2<n_reactions)

error(’Reaction rate vector is too long’);

end

if (tau<0 || Time<0)

error(’Time parameters should be positive’);

end

if (tau==0 || Time==0)

error(’System will make no progress’);

end

if(tol<=0)

error(’Tolerance should be greater then 0 in order for the system to progress’);

end

if (total_t<=0)

error(’Number of trajectories should be a positive number’);

end

%Initialization

rejected = 0;

p=2;

gamma = 1;

theta = 1;

%initialization of tau arrays and it’s counter of depth c

%for c=1,2,... tau1(c) = tau1(c+1)+tau2(c+1)

%once we are done with depth c+1 we mo to depth c, until c=1

%initialization of system matrix
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i=1;

X = zeros(total_t,2000,n_species);

eta = zeros(1,2000);

x_candidate = zeros(total_t,n_species);

r= zeros(total_t,n_reactions);

r_t= zeros(total_t,n_reactions);

r1=zeros(total_t,n_reactions);

r2=zeros(total_t,n_reactions);

for j=1:total_t

for k=1:n_species

X(j,i,k) = S(k);

end

end

%Symbolic Computation of Propensity Functions

for i=1:n_species

x(i) = sym([’x’ int2str(i)]);

end

for j=1:n_reactions

a(j) = sym([’a’ int2str(j)]);

a(j) = C(j);

for i=1:n_species

if V(i,j)<0

for k=1:abs(V(i,j))

a(j) = a(j)*(x(i)-k+1)/k;

end

end

end

b(j,1) = a(j);
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end

f = V*(b);

f_anal = jacobian(f,x)*f;

Jac = jacobian(a,x);

%i-1 number of leaps system has performed

i=1;

T(i) = 0;

%Main Loop

tau_in = tau;

f_tau = true;

while(T(i)<Time)

%tau_c = tau;

%T_c = T(i);

if (f_tau)

for j=1:total_t

for k=1:n_reactions

r(j,k) = randn*sqrt(tau);

end

end

end

f_tau=true;

x_prev = x_previous(X,total_t,i,n_species);

eta(i) = eta_calc(x,x_prev,total_t,p,tau,f_anal);

[i T(i) eta(i)]

%calculation of candidate tau

tau_new = tau*(theta*tol/eta(i))^(1/gamma);

if eta(i)<=tol %step was accepted
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for j=1:total_t

[x_candidate(j,:)] = x_candidate_c2(X(j,i,:),V,x,r(j,:),tau,a,n_reactions,n_species);

for l=1:n_species

X(j,i+1,l) = x_candidate(j,l);

end

end

T(i+1) = T(i)+tau;

%tau=max(tau_new,0.9*tau_in);

tau=tau_new;

i=i+1;

else %step was rejected

rejected = rejected+1;

tau1 = tau_new;

tau2 =tau - tau1;

for j=1:total_t

for k=1:n_reactions

r_t(j,k) = randn;%may need fixing

r1(j,k) = r(j,k)*tau1/tau+r_t(j,k)*sqrt(tau1*(tau-tau1)/tau);

r2(j,k) = (tau-tau1)*r(j,k)/tau-r_t(j,k)*sqrt(tau1*(tau-tau1)/tau1);

end

end

eta(i) = eta_calc(x,x_prev,total_t,p,tau1,f_anal);

for j=1:total_t

[x_candidate(j,:)] = x_candidate_c2(X(j,i,:),V,x,r1(j,:),tau1,a,n_reactions,n_species);

for l=1:n_species

X(j,i+1,l) = x_candidate(j,l);
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end

end

T(i+1) = T(i)+tau1;

i=i+1;

x_prev = x_previous(X,total_t,i,n_species);

eta(i) = eta_calc(x,x_prev,total_t,p,tau2,f_anal);

tau_new = tau2*(theta*tol/eta(i))^(1/gamma);

if(eta(i)<=tol)%tau2 passed and we have completed this step

for j=1:total_t

[x_candidate(j,:)] = x_candidate_c2(X(j,i,:),V,x,r2(j,:),tau2,a,n_reactions,n_species);

for l=1:n_species

X(j,i+1,l) = x_candidate(j,l);

end

end

T(i+1) = T(i)+tau2;

%tau=max(tau_new,0.9*tau_in);

tau = tau_new;

i=i+1;

else%tau2 failed and will now serve as tau

rejected = rejected+1;

tau=tau2;

f_tau = false;

for j=1:total_t

for k=1:n_reactions

r(j,k) = r2(j,k);

end
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end

end

end

end

6.1.2 Fixed Step Size Algorithm

Input: Initial state of the system, stoichiometric matrix, reactions rates vector, final time of the integra-

tion, first proposed step size, user provided tolerance and total number of trajectories.

Output: Time mesh, the state of the system as the function of time for the number of trajectories

indicated by the user, mean error as a function of time and number of rejected steps.

Function: The program below requires the same input values as the adaptive step algorithm. It

proceeds with the execution of the Euler-Maruyama scheme as it was described in Chapter 3. The

system’s state, the time and the counter variables are updated after each iteration. The execution stops

once the current value of T(i) is larger or equal to the final time supplied by the user. For each iteration,

we calculate the associated error estimate, however the step size is not being adjusted and remains the

same throughout the execution.

function [T,X,eta] = Langevine_keep_traj_fix(S,V,C,Time,tau,tol, total_t)

%Input check

n_species = length(S);

if n_species<=0

error(’Initial State Vector should be non-empty’);

end

[n1,n_reactions] = size(V);

if (n1>n_species)

error(’Not all the species used in reactions were given initial state value’);

elseif (n1<n_species)

error(’Initial state vector is too long’);

end

n2 = length(C);
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if (n2>n_reactions)

error(’Not all of the reactions have been described in change state matrix V’);

elseif(n2<n_reactions)

error(’Reaction rate vector is too long’);

end

if (tau<0 || Time<0)

error(’Time parameters should be positive’);

end

if (tau==0 || Time==0)

error(’System will make no progress’);

end

if(tol<=0)

error(’Tolerance should be greater then 0 in order for the system to progress’);

end

if (total_t<=0)

error(’Number of trajectories should be a positive number’);

end

%Initialization

p=2;

gamma = 1;

theta = 0.8;

%initialization of tau arrays and it’s counter of depth c

%for c=1,2,... tau1(c) = tau1(c+1)+tau2(c+1)

%once we are done with depth c+1 we mo to depth c, until c=1

%initialization of system matrix

i=1;

num = ceil(Time/tau);

X = zeros(total_t,num,n_species);

eta = zeros(1,num);
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x_candidate = zeros(total_t,n_species);

for j=1:total_t

for k=1:n_species

X(j,i,k) = S(k);

end

end

%set up a flag whether all the future info has been used

r1_f = true;

%Symbolic Computation of Propensity Functions

for i=1:n_species

x(i) = sym([’x’ int2str(i)]);

end

for j=1:n_reactions

a(j) = sym([’a’ int2str(j)]);

a(j) = C(j);

for i=1:n_species

if V(i,j)<0

for k=1:abs(V(i,j))

a(j) = a(j)*(x(i)-k+1)/k;

end

end

end

b(j,1) = a(j);

end

Jac = jacobian(a,x);

f = V*(b);

f_anal = jacobian(f,x)*f;

%i-1 number of leaps system has performed

i=1;
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T(i) = 0;

%Main Loop

while(T(i)<Time)

x_prev = x_previous(X,total_t,i,n_species);

eta(i) = eta_calc(x,x_prev,total_t,p,tau,f_anal);

%calculation of x_candidate for each trajectory

for j=1:total_t

for k=1:n_reactions

%for each trajectory for each reaction we generating

r1(j,k) = randn*sqrt(tau);

end

%calculation of propensity function sets for each trajectory

[x_candidate(j,:)] = x_candidate_c2(X(j,i,:),V,x,r1(j,:),tau,a,n_reactions,n_species);

end

%calculation of eta(i)

%calculation of sum_p (over all trajectories)

for j=1:total_t

for l=1:n_species

X(j,i+1,l) = x_candidate(j,l);

end

end

T(i+1) = T(i)+tau;

i=i+1;

end

end
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6.2 Sub-Modules

6.2.1 Error Estimation

Input: Vector of variables x, current sizes of each species population for each trajectory, total number

of trajectories, p, time step, expression for function which we will use to evaluate the error estimate.

Output: error estimate associated with the proposed time step.

Function: Estimates the error associated with the proposed time step tau, given the current state of

the system for all trajectories.

function [eta] = eta_calc(x,x1,total_t,p,tau,f_anal)

theta_2=0.6;

n_species = length(x);

f_anal_c = zeros(n_species,total_t);%jacobian(f,x)*f container

sum_2p = 0;

for j=1:total_t

sum_2p = sum_2p+ sum(subs(f_anal,x,x1(j,1,:)).^p);%calculation of jacobian(f,x)*f for each trajectory

end

norm_p =(sum_2p/total_t)^(1/p);%%% mean norm_p across all trajectories

eta = tau*abs(theta_2-0.5)*norm_p(1,1);%eta calculation based on p-norm and current tau

end

6.2.2 Produce candidate update to system’s state

Input: Current state of the system on all trajectories, X, stoichiometric matrix V, set of symbolic

variables (corresponding to species) x1, set of random variables one per each reaction on each trajectory,

r1, perspective time step tau, number of reactions and number of species.

Output: Vector of the system step after the time leap tau.

Function: Provide the state of the system at time t, X(t), calculates the system’s state, X(t+tau),

at the time t+tau as per the Langevin Leaping algorithm.
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function [x_candidate] = x_candidate_c2(X,V,x,r1,tau,a,n_reactions,n_species)

%calculation of propensity function sets for each trajectory

a0c = subs(a,x,X);

%calculation of x_candidate

for l=1:n_species

x_candidate(l) = X(l);

for k=1:n_reactions

x_candidate(l) = x_candidate(l) + a0c(k)*tau.*V(l,k)

+sqrt(a0c(k))*r1(k).*V(l,k);

end

end

end

6.2.3 View State of the System for all trajectories at any passed point in

time

Input: Record of the system dynamics so far, X, total number of trajectories, point in time i, number

of the molecular species in the system.

Output: The state of each trajectory for all species at time T(i).

function [x_prev] = x_previous(X,total_t,i,n_species)

x_prev = zeros(total_t,n_species);

x_prev = X(:,i,:);

end
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Chapter 7

Appendix B: Probability

7.1 Poisson and Binomial Distributions

We state that a Binomial Distributed random variable with a large number of trials N and a small

probability λ
N of invidual success can be approximated by a Poisson distributed random variable with

mean λ.

To show this, we note that:

lim
n→∞

(1− λ

n
)n = e−λ (7.1)

If Xn is a binomially distributed variable with the probability of individual success equal to λ/n and

the number of trials equal to n, then:

lim
n→∞

P (Xn ≤ k) = lim
n→∞

(
n

k

)
(λ/n)k(1− λ/n)n−k = lim

n→∞

n!

k!(n− k)!
(λ/n)k(1− λ/n)n(1− λ/n)−k

(7.2)

Note that,

lim
n→∞

(1− λ/n)−k = 1 (7.3)

Substituting (7.3) into (7.2), we obtain

lim
n→∞

P (Xn ≤ k) = lim
n→∞

n!

nk(n− k)!

λk

k!
e−λ (7.4)
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Since,

lim
n→∞

n!

nk(n− k)!
= 1 , (7.5)

then

lim
n→∞

P (Xn ≤ k) =
λk

k!
e−λ (7.6)

Equation (7.6) states that indeed a Binomial random variable with parameters p = λ
N and N, can be

approximated by a Poisson variable with mean equal to λ.

7.2 Poisson and Normal Distributions

We state that a Poisson distributed random variable with a large mean λ can be approximated by a

normally distributed variable with the mean and the variance equal to λ. We will give the intuition

behind this approximation below.

If we take a Poisson random variable with a large mean λ, we can represent it as a sum of N identical

random Poisson variables with mean equal to λ/N . This is due to the fact that if the random variable

Z is a sum of two independent Poisson distributed random variables with means µ1 and µ2, then Z is a

Poisson distributed random variable with mean equal to µ1 + µ2. However, the Central Limit Theorem

states that the sum of a relatively large number of independent variables with finite means and variances

will be approximately normally distributed. Therefore, a Poisson distributed random variable with a

relatively large mean can be approximated by a Normal random variable with the same mean.
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