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in Practice
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Nolan Nicholls
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We compare three different dynamic hedging strategies for the purchase or sale of

a bundle of European options to profit from volatility arbitrage. The investor will

”cross hedge” with a stock highly correlated with the untraded underlying. The

first strategy maximizes terminal utility, the second minimizes the variance of the

incremental profit, and the third is the adjusted Black-Scholes strategy. We note

that the nature of cross hedging results in significant potential for losses. We study

the robustness of the strategies to misspecification of parameters by the investor and

find that the first two strategies are more robust to parameter misspecification. On

a different subject, we then attempt to find profit opportunities by pricing options

using a simple non-probabilistic model. We find a situation where an investor willing

to take risks can profit, but a more cautious investor cannot. We also derive basic

non-probabilistic volatility arbitrage results.
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Chapter 1

INTRODUCTION

This thesis will focus primarily on two different topics. The first will concern the

hedging of European options with either the underlying stock or a stock highly

correlated with the underlying (Chapters 2 and 3). Options hedging is an incredibly

important investment strategy whereby an investor takes a position by purchasing

or short selling some amount of stock, to reduce the risk of a position involving

the purchase or sale of options. Hedging can be divided into two broad categories

(Papayiannis, 2010). The first is static hedge, which an investor will construct at the

onset and does not need to be adjusted with time. An example would be purchasing

an option, and then immediately selling some amount of the underlying stock. The

second is dynamic hedging, where an investor is constantly updating an offsetting

position in the option’s underlying or in an asset correlated with the underlying. An

example of this is the standard Black-Scholes hedging strategy. When the hedging

is done with a correlated asset, it is referred to as cross hedging. A perfect hedge

will eliminate the risk of a position entirely, however, due to a number of issues such

as stock price jumps, stochastic stock volatility, transaction costs or an inability to

hedge continuously, such hedges are exceedingly rare. Hence, hedging strategies can

be evaluated by how much uncertainty in the final result they remove. It is also
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important to consider the negatives of a particular hedging strategy, so the investor

can determine if the costs are worth the benefits. For example, a hedging strategy

may involve trading too much or too frequently which can result in the investor

being responsible for significant transaction costs. Throughout, we will consider

an investor who is attempting to take advantage of volatility arbitrage, meaning

that the investor has a more accurate forecast for the future volatility than the

market (Ahmad & Wilmott, 2005). This allows an investor to identify an option as

mispriced. We first summarize the main results of Ahmad and Wilmott (2005) who

compare different dynamic hedging strategies and weigh the benefits and drawbacks

of each (we revisit these results in Chapter 2) in a Black-Scholes complete market.

In this setting, the investor is guaranteed to secure a profit if they have forecasted

the volatility correctly. The two strategies differ only in what value for the volatility

is used in the Black-Scholes hedging formula. In Chapter 3, we consider an investor

who is unable or unwilling to trade with the option’s underlying, but instead cross

hedges with a second stock that is correlated with the underlying. We extend the

experiment of Ahmad and Wilmott (2005), into this incomplete market framework.

We will consider an investor who possesses a more accurate forecast of the future

volatility of the untraded underlying, and wishes to profit from volatility arbitrage

by trading with a correlated stock. We compare the results of three different hedging

strategies, two of which we suggest are analogous to those presented by Ahmad and

Wilmott (2005), and a third which corresponds to a naive investor who believes
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that the two stocks are perfectly correlated. Comparisons of different cross hedging

strategies have been performed before (Hulley & McWalter, 2015; Monoyios, 2004;

Papayiannis, 2010), and mainly differentiated the strategies on the basis of the profit

distributions each results in. Here, we will be studying each hedging strategy as a

means to secure a profit from volatility arbitrage, and we aim for a comparison that

is more comprehensive. We not only study the resulting profit distributions, but

also test the robustness of these hedging strategies to parameter misspecification.

Ahmad and Wilmott (2005) show that in the Black-Scholes world, the Black-Scholes

hedging strategy can be expected to profit from volatility arbitrage, for a wide range

of choices of volatility. This issues is more important when cross hedging, where

there are additional parameters to estimate. The maximal utility and minimal

variance strategies both require the estimation of five different parameters, including

two of the notoriously difficult to estimate drift terms, while the adjusted Black-

Scholes strategy requires the estimation of only two. This means that the two

more sophisticated strategies will give the investor more opportunities for parameter

misspecification. We will compare strategy robustness by looking at the effect of

misspecification of each of the parameters on profit distributions, as well as on the

loss of expected terminal utility. We propose that this latter method is the most

relevant for comparison, because, as we will see, all three strategies will result in

significant uncertainty in final profit. For this reason, the investor’s risk preferences

will be of paramount importance.
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The second main portion of the thesis introduces the concept of non-probabilistic

models for stock movements and option pricing. These allow an investor to assign

upper and lower arbitrage price bounds to an option (Chapter 4). It has been

suggested that these models are more compatible with the concepts of arbitrage,

which is concerned only with events that are possible or impossible, and not their

relative likelihood (Britten-Jones & Neuberger, 1996). They also naturally incor-

porate jump sizes and the necessarily discontinuous nature of hedging. We review

an early framework for non-probabilistic models, the Britten-Jones and Neuberger

model (BJN), that requires stock trajectories consume a certain quadratic variation

over the lifetime of an option. We then propose a simple, new framework, which

allows for varying quadratic variations and is dependent on the operations of the

investor. We argue that this new model is more practical for exploiting arbitrage

opportunities than the BJN model. The main parameters of the model are easily

understood and intuitive, and can be adjusted to suit the risk preferences of the in-

vestor. We use this model as well as the history of price movements for a few stocks,

to price European options and compare these prices to market prices. Where possi-

ble, we identify arbitrage opportunities and attempt to translate them into profits.

We also examine reasons the model can fail to capitalize on arbitrage opportunities

and suggest a few extensions.
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Chapter 2

DELTA HEDGING AND VOLATILITY ARBITRAGE

2.1 Introduction

Volatility arbitrage is a type of statistical arbitrage that results when an investor has

a forecast of the future realized volatility that he or she believe to be more accurate

than the volatility implied by option prices (Ahmad & Wilmott, 2005). Ahmad

and Wilmott (2005) study how to profit from this scenario in the standard Black-

Scholes setting with a single, tradeable underlying, following a lognormal diffusion

with constant volatility and drift. The price of the underlying asset, (Pt)06t6T ,

obeys

dPt = µPtdt+ σPtdBt, (2.1)

where µ is the drift, σ is the volatility and (Bt)06t6T is a standard Brownian mo-

tion. They consider a situation where an investor believes that the actual realized

volatility, σa, will be different than that implied by option prices, σi. This σi is

obtained by inverting the Black-Scholes pricing formula (Eqn.(2.2) for a European

call) to find the value for σ that gives the current market price of the option. The

investor will find σi at the initial time t0 and we will assume it remains constant

until the option expiration time T. In the Black-Scholes formula for the price of a

5



European call (or put) option, the volatility is the only parameter which is is not

directly observable. The Black-Scholes price of a European call option with strike

K underlying stock volatility σ, and continuous dividends yield q, is

C(Pt, t) = N(d1)Pt −N(d2)Ke
−r(T−t), (2.2)

where

N(x) =
1√
2π

∫ x

−∞
e

−s2
2 ds,

and

d1(t, Pt; q, σ) =
ln(PtK ) + (r − q + 1

2σ
2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t,

where r is the interest rate. Hence, if the investor believes that the volatility over the

option’s life, σa, will be different than that implied by option prices, σi, an option can

be identified as being mispriced. It is the exploitation of this mispricing to obtain a

profit, usually with delta hedging, that is referred to as volatility arbitrage. Ahmad

and Wilmott (2005) initially consider a situation where the realized volatility will

be 30% and the implied volatility of an option is 20%. Because the Black-Scholes

price of a European option is a monotonic increasing function of the volatility,

BS(t, Pt; q, σ1) > BS(t, St; q, σ2) if σ1 > σ2, where BS(t, Pt; q, σ) is the Black-Scholes

price of an option with an underlying that pays out continuous dividend yield q and

volatility σ. In this scenario, the investor knows that the market has undervalued

the option. To profit, Ahmad and Wilmott (2005) propose that an investor buy a

European call option and delta hedge it until the expiration time T. Alternatively, if

the implied volatility were larger than what the investor believes will be the actual

6



volatility, then the investor could sell the option and delta hedge to profit. The

usual prescription for delta hedging the purchase of a European call option, is to be

short an amount of the underlying stock ,∆, according to

∆(t, Pt; q, σ) = e−qtN(d1(t, Pt; q, σ)). (2.3)

The investor must then decide which value for σ to use in Eqn.(2.3). Ahmad and

Wilmott (2005) examine the differences in profits that arise from choosing σa or σi.

Their main results are summarized below. Note that we take the dividend yield to

be q = 0 throughout.

2.2 Delta Hedging with σa

To reiterate, we are considering a situation where σa > σi and so one possible

investment strategy is for an investor to purchase a European call option, and delta

hedge until expiration. We will see that when the investor delta hedges using σa,

their total profit will be deterministic, but the incremental profit will be a random

variable. Note that throughout, we use the superscript (...)a to denote functions

evaluated with σa and (...)i for those evaluated with σi. We also suppress much of

the function argument notation below for clarity. The investor maintains a portfolio

(of value (Πt)06t6T at time t) made up of a long position in the European option, of

value (Vt)06t6T , a short position in the underlying stock (of value ∆a
tPt), and some

amount invested in a risk free bond, (Mt)06t6T , that evolves (before rebalancing)

7



according to

dMt = Mtrdt.

After each time increment, the investor rebalances to be short ∆a
t of the stock and

have invested an amount into the risk free bond such that

Mt = −V i
t + ∆a

tPt.

Thus, we think of the investor as creating a new portfolio of value 0 at every re-

balancing time. If the investor needs to add money into the portfolio to achieve

this, we consider that amount a loss, and if the investor has to take money out of

the portfolio, we consider that amount a gain. In other words, the change in the

value of the portfolio after a time increment, but before rebalancing, is the investor’s

incremental profit(dΠ).

Theorem 2.1. When σa 6= σi and the investor delta hedges the sale or purchase (at

time t0) of an option with σa to take advantage of volatility arbitrage, the present

value of the total profit is given by

∫ T

t0

e−r(t−t0)dΠt =| V a
t0 − V

i
t0 | .

The investor will purchase the option and σa > σi and sell it when σi > σa. Proof.

We consider an investor who purchases a European call option because σa > σi. The

proofs for other options positions are nearly identical. Table 2.1 shows the value

of each component of the portfolio before and after a time increment, but before

rebalancing. Note that the profit is determined on a mark-to-market basis, meaning

8



Portfolio Evolution After One Time step

Component Value at Time t Value at Time t + dt

Option V i
t V i

t + dV i
t

Stock −Pt∆a
t −∆a

tPt −∆a
t dSt

Risk Free Bond −V i
t + Pt∆

a
t (−V i

t + Pt∆
a
t )(1 + rdt)

Table 2.1: The evolution of the value of the portfolio over a single time increment,but

before rebalancing, when hedging with ∆a
t . Note that V i = BS(t, S; 0, σi), ∆a =

∆(t, S; 0, σa) and dV i = dV (t, S; 0, σi) . We have suppressed the function argument

notation for simplicity. Note that we evaluate the option position using σi.

that the option component of the portfolio is priced using σi in Eqn.(2.2). This is

meant to represent the market’s estimate of the option position value. We can see

that the incremental profit will be given by

dΠt = dV i
t −∆a

t dPt − r(V i
t −∆a

tPt)dt. (2.4)

Looking at Eqn.(2.4), we use Ito’s Lemma to replace the dV i
t term, replace the dS

term using Eqn.(2.1) and use the Black-Scholes equation (shown in Appendix A) to

obtain an incremental profit of

dΠt =
1

2

[
(σa)2 − (σi)2

]
P 2
t

∂2V i

∂P 2
t

dt+ (∆i
t −∆a

t )
[
(µ− r)Ptdt+ σPtdBt

]
.
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We can go back and rewrite Eqn.(2.4) as

dΠt = dV i
t − dV a

t + r(V a
t −∆a

tPt)− r(V i
t −∆a

tPt)dt,

and since we should be perfectly replicating V a
t when delta hedging with ∆a

t , we

have

dV a
t −∆a

t dPt − r(V a
t −∆a

tPt)dt = 0.

Hence,

dΠt = ertd(e−rt[V i
t − V a

t ]).

If we integrate the incremental profit’s present value from time t0 to T to get the

total profit we get

∫ T

t0

e−r(t−t0)dΠt = ert0
∫ T

t0

d(e−rt[V i
t − V a

t ]) = V a
t0 − V

i
t0 . �

We described above a situation where an investor profits from buying a European

call option when σa > σi, but an investor could profit when σa < σi by selling a

European call option and delta hedging. In that case, the present value of the total

profit would be V i
t0 − V

a
t0 . The absolute values in Theorem 1 are to represent both

cases. The important results here are that the profit after each time step contains

dBt terms, so it is random and can result in losses on shorter timescales, while the

total profit is deterministic and given by the initial difference in the prices of the

option using the actual volatility and the implied volatility. A few trajectories of

simulated profit curves are shown on the left hand side of Figure 2.1. The profits

represent the cumulative additions of the present value of the incremental profits,
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as given on the right hand side of Eqn.(2.4). We can see that the total profits in

the simulations are not identical, as predicted in Theorem 1, due to the effects of

discrete hedging.

2.3 Delta Hedging with σi

If the investor were to follow the same strategy as in Section 2.2, but instead hedge

with ∆i
t, we will see that the incremental mark-to-market profit is guaranteed to be

positive, but the total profit is now a random variable.

Theorem 2. When σa 6= σi and the investor delta hedges the sale or purchase of

the option with σi to take advantage of volatility arbitrage, the incremental profit

between time t and t+dt, dΠt, is given by

dΠt =
1

2
| (σa)2 − (σi)2 | P 2

t

∂2V i
t

∂P 2
t

dt.

Proof. The investor’s incremental profit will be given by

dΠt = dV i
t −∆i

tdPt − r(V i
t −∆i

tPt)dt. (2.5)

Using Ito’s Lemma to replace the dV i
t term gives

dΠt =
1

2
[(σa)2 − (σi)2]P 2

t

∂2V i
t

∂P 2
t

dt. �

The absolute values are present in Theorem 2 to acknowledge the situation opposite

to that we just described, where σi > σa and the investor is selling the option and

11



buying stock. Integrating the present value of the profits from time t0 to T gives

the total profit

∫ T

t0

e−r(t−t0)dΠt =
1

2
[(σa)2 − (σi)2]

∫ T

t0

e−r(t−t0)P 2
t

∂2V i
t

∂P 2
t

dt.

Now, the profit from one time step to the next is deterministic (dPt terms have

cancelled) but the total profit made between t0 and T is now path dependent. We

can see that to maximize this profit the investor would hope for the stock price to

end up near the option strike price, as this would result in the largest value of
∂2V it
∂P 2

t

(Ahmad and Wilmott, 2005). There is a reassuring simplicity to this situation since

as long as the investor’s estimate of the actual volatility is on the correct side of the

implied volatility, he or she is guaranteed a profit over each time step. Ahmad and

Wilmott (2005) also derive the distribution of the final profit mean and standard

deviation in this situation (some results in Appendix A). The right hand side of

Figure 2.1 shows a few trajectories of the profit when hedging using this strategy.

The profits here are calculated as the cumulative sum of the present values of the

incremental profits, as described on the right hand side of Eqn.(2.5). We can see

that the investor never has to worry about the possibility of losses during the life of

the option.
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Figure 2.1: The Profit Curves when delta hedging a European call option with

Left: σa Right: σi. Parameters used are S0 = 50, µ = 0, σa = 0.3, σi = 0.2,

K = 50, r = 0.05 and q = 0. These results are generated by simulations of the

underlying stock where the investor rebalances 500 times over the life of the option.

2.4 Delta Hedging with σh and Extensions

Of course, it is possible to delta hedge using a volatility that is neither σa nor

σi. Using a different volatility (σh) to hedge can allow the investor to balance the

pros and cons of the two hedging strategies (Ahmad and Wilmott, 2005). However,

in general, the further your choice of hedging volatility is from σa the larger the

standard deviation of the total profit. Hence, the further your hedging volatility

is from σa, the more likely the investor is to lose money. Ahmad and Wilmott

(2005) show that an investor can still expect to profit from the volatility arbitrage

opportunity in Section 2.2 with a wide range of hedging volatilities. For this reason,

we can label the Black-Scholes delta hedging strategy as robust to misspecification
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of its only unobservable parameter. A more sophisticated approach is taken by

Jonsson et. al (2015), who derive formulas equivalent to Theorem 1 and 2, but in

a much more general framework that allows for non-constant values for all stock

parameters, a non-constant σi and even jumps.
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Chapter 3

HEDGING ILLIQUID CLAIMS AND VOLATILITY ARBITRAGE

3.1 Introduction

In the idealized Black-Scholes world of Ahmad and Wilmott (2005), it is possible

to create a dynamic hedging strategy, using the underlying stock and a risk free

bond, that perfectly replicates the payoffs of any European calls and puts with

expiration time T. However, if for some reason the buyer or seller of an option is

unable or unwilling to trade with the underlying, but does so instead with a second,

correlated stock, it will be impossible to achieve perfect replication. This scenario is

referred to as an incomplete market. There are many situations where it may not be

possible for an investor to hedge with the underlying directly. For example, it can be

difficult, perhaps as a result of transaction costs, to hedge a basket option using its

components stocks. Davis (2000) discusses his time working on the trading floor in

Tokyo, and mentions that traders had poor intuition when hedging with correlated

assets. He explains that when hedging a book of equity options, transaction costs

involved in trading the underlying make it much cheaper to instead hedge with index

futures. Davis (2000) reports that the traders were happy to use the index as a proxy

asset to hedge but often had little idea of the risks involved. Another example is

when the claim is on an asset with no liquid market. Davis (2000) proposes hedging
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a call option on Dubai oil with forward contracts on Brent crude oil. A third

example is executive stock options, where the owner of an option is prohibited by

law from trading the underlying stock. In 1998, stock options accounted for 40% of

American CEO’s pay, and the practice of stock options compensation for CEO’s was

rising worldwide as of 2002 (Henderson, 2001b). However, recently there has been

a broad trend away from stock option compensation for CEOs, as some investors

fear that they may incentivize short-term or risky actions on the part of the CEO

(McFarland, 2015). However, according to McFarland (2015), they are still an

important component of many CEO compensation packages.

3.2 Setting

Ahmad and Wilmott (2005) study methods of profiting from volatility arbitrage in

a Black-Scholes framework, where the volatility is the only unobservable parameter

influencing the value of an option. How would an investor profit from volatility

arbitrage in an incomplete market? Before we can answer that we must first establish

how to price options in this incomplete market. The financial setup here involves an

investor holding a certain amount of claims on some untraded asset, while trading

with a second correlated stock. We call (Pt)06t6T the price of the traded stock and

(St)06t6T the price of the non-traded stock and we take both to be observable at all
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times. Both prices follow log-normal diffusions:

dPt
Pt

=µdt+ σdB
(1)
t ,

dSt
St

=vdt+ ηρdB
(1)
t + η

√
1− ρ2dB(2)

t ,

where µ and v are constants representing the expected returns for the traded and

untraded stock respectively, and σ and η are constants representing the volatilities

of the traded and untraded stocks. (B
(1)
t , B

(2)
t ) 06t6T are independent Brownian

motions and ρ is the correlation between the two stocks, with −1 6 ρ 6 1. The

investor will be hedging a bundle composed of some number, λ, of identical Eu-

ropean options, each with non-negative payoff function h and expiration time T .

We work with the filtered probability space (Ω,F ,Ft,P), where (Ft)06t6T is gen-

erated by (B
(1)
t , B

(2)
t ). For mathematical convenience we will sometimes work with

Yt = ln (St).

The investor has the choice of investing their wealth at time t, (Wt)06t6T , in

some combination of an amount in a risk free bond, (Mt)06t6T , and an amount

in the traded stock, represented by the adapted process (πt)06t6T . The investor’s

wealth will then evolve according to

dWt = πt
dPt
Pt

+ (Wt − πt)rdt,

= rWtdt+ πt

[
(µ− r)dt+ σdB

(1)
t

]
.

The amount invested in a risk free bond at time t is given by Mt = Wt − πt.

We require that
∫ T
0 π2t dt <∞ a.s.We will also require a class of admissible hedging
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strategies to prevent doubling strategies. We do this in order to obtain a meaningful

optimization later in Eqn.(3.2) (Davis, 2000). To accomplish this, we borrow the

following definitions (see page 7 of Davis (2000)): We call L0 the set of trading

strategies. We define:

Lb = {π ∈ L0 : Wt ≥ zπ a.s. ∀t ∈ [0, T ], for some zπ ∈ R} ,

and

U = {U(WT + h(YT )) : π ∈ Lb}c ,

where {...}c represents the closure in L1(Ω,FT ,P). We then define the set of ad-

missible strategies to be L where

L = {πt ∈ L0 : U(WT + h(YT )) ∈ U} . (3.1)

Note that U is the investor’s exponential utility function and h is the option’s payoff

function, which we assume to be bounded from below.

3.3 Two Pricing Approaches in Incomplete Markets

In this incomplete market, we no longer have the Black-Scholes pricing formula to

unambiguously provide the price of options. Hence, we must make a pricing decision.

The first possibility we will consider requires us to solve the investor’s optimization

problem given by

Jλ(t, w, y) = sup
π∈L

(
−1

γ
Ew,y,t

[
exp

(
−γ(WT + λh(eYT ))

)])
, (3.2)

18



where Et,w,y represents P-expectation conditional on Wt = w, Yt = y. The su-

perscript (...)λ refers to the number of identical option payoffs to occur at time T .

Note that in Eqn.(3.2), the investor is optimizing the expectation of an exponen-

tial utility function with risk preference constant γ > 0, making the investor risk

averse. To price a bundle of λ identical options, we must consider two special cases

of the above optimization. For the first we consider only the optimal allocation of

resources between the traded asset and the risk free bond. The second is the same

optimization when the investor also has an option position composed of λ options

(Henderson, 2002).

Definition 1. The utility indifference price of a bundle of λ options, Ṽ (t, y; η, σ v, µ, v, ρ; γ, λ, T ),

is found by solving

J0(t, w + Ṽ , y; ) = Jλ(t, w, y),

for Ṽ .

Essentially, the utility indifference price is the amount of money which leaves an

investor indifferent between a portfolio containing the options and one without them

but with the addition of Ṽ to his or her starting wealth.

The second pricing approach is from Forsyth et al. (2005), who derive their

method by creating a portfolio that consists of a bundle of identical European options

and some amount of the traded stock, and then hedging in such a way as to minimize

the variance in the change of the portfolio’s value after a time increment. This is
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explained more thoroughly in Section 3.5. They then require the portfolio to be

mean self-financing by enforcing E[dΠ] = 0 and derive the pricing equation

∂V̂t
∂t

+ St
∂V̂t
∂St

(
v − (µ− r)ηρ

σ

)
+
η2S2

t

2

∂2V̂t
∂S2

t

− rV̂t = 0, (3.3)

with boundary conditions:

V̂ (T, ST ) = h(ST ),

V̂ (t, 0) = 0,

V̂ (t, St)→ St as St →∞.

We can see immediately that this is the same equation that describes the change

in the Black-Scholes price of a European option with a underlying stock that pays

continuous dividends of yield q = (µ−r)ηρ
σ − v + r (Forsyth et al., 2005). Hence, we

have a definition for our second option pricing method.

Definition 2. The minimum local variance price for a bundle of λ identical options,

V̂ (t, y; η, σ, µ, v, ρ;λ, T ), is given by:

V̂ (t, y) = λ

[
BS

(
t, y;

(µ− r)ηρ
σ

− v + r, η

)]
,

where BS (t, y; q, η) is the Black-Scholes price of a European option with an under-

lying that pays out a continuous dividend yield of q and has volatility η.
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3.4 Hedging Strategy 1 - Maximizing Utility of Terminal Wealth

The first hedging strategy will achieve the supremum given in Eqn.(3.2). It has

been shown that the optimization is only meaningful when λh(eYt) is bounded be-

low (Henderson, 2002). This eliminates short positions in call options.

Theorem 3. The dynamic strategy that achieves the supremum in Eqn.(3.2) is to

invest in the traded asset, at time t ∈ [0, T ], the amount

π̃(t, y) = e−r(T−t)
(µ− r)
γσ2

+ e−r(T−t)
ηρ

γσ

∂(ln g)

∂y
,

where g is as it appears in Eqn.(3.4).

Proof. See Appendix B.

The function g is given by

g(τ, y) = e
−(µ−r)2τ

2σ2

∫ ∞
−∞

G(0, y + (δ − 1

2
η2)τ + z)

e
− z2

2η2τ

η
√

2πτ
dz

1/(1−ρ2)

, (3.4)

where

G(0, y) = exp
(
−λγ(1− ρ2)h(ey)

)
,

and

δ = v − ηρ(µ− r)
σ

, τ = T − t.
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The first term on the right hand side of the hedging strategy in Theorem 3 corre-

sponds to the solution when optimizing the allocation of wealth between a single

traded asset and a risk free bond when the investor has an exponential utility func-

tion with risk preference constant γ. Thus, it is the investment strategy that would

achieve the supremum of Eqn.(3.2) with λ = 0. Here, we follow the lead of Monoyios

(2004) and consider the right term to be our maximal utility hedge. It can be shown

that the maximal utility hedge can also be written as

π̃(t, y) =
ρηSt
σ

∂Ṽt
∂St

.

The details of this proof can also be found in Appendix B. It is worth noting that the

Equation in Theorem 3 is valid only when −1 < ρ < 1. When | ρ |= 1, it is obvious

from the alternative formulation that the maximal utility strategy is equivalent to

the adjusted Black-Scholes described below.

3.5 Hedging Strategy 2 - Minimizing Portfolio Variance

Here we will seek a hedge which could be more appealing to an investor who is

more interested in managing the local risk of their portfolio than in maximizing

their terminal utility. The goal of this strategy will be to minimize the variance

in the incremental profit and loss of the investor. A key difference from the previ-

ous strategy is that it does not require the investor to quantify their risk preferences.

22



Theorem 4. The hedging strategy that minimizes the variance of the investor’s

incremental profit is to invest in the traded asset at time t ∈ [0, T ], the amount:

π̂(t, y) = −
(
ηStρ

σ

)
∂V̂t
∂St

= −
(ηρ
σ

) ∂V̂t
∂y

,

where V̂ is the option pricing formula of Definition 2.

Proof. This strategy can be derived from considering an investment scenario in the

setting of Section 3.2. We consider an investor with a long European call position,

invests πt in a tradeable stock, with some correlation with the option underlying,

and invests Mt in a risk free bond. The amount in the risk free bond is such that

Mt + V̂t + πt = 0.

So, money is constantly being injected into or removed from the portfolio. These are

considered to be the investor’s incremental profits and losses. Note that we calculate

profit using the option pricing formula for V̂ of Definition 2. The incremental change

in portfolio value, before rebalancing, is given by

dΠt =

[
∂V̂t
∂t

+ vSt
∂V̂t
∂St

+
η2S2

t

2

∂2V̂t
∂S2

t

]
dt+ ηS

∂V̂t
∂St

[ρdB
(1)
t

+
√

(1− ρ2)dB(2)
t ] + πt(µdt+ σdB

(1)
t ) + (−V̂t − πt)rdt.

Therefore,

Var [dΠt] = E

(ηS ∂V̂t
∂St

[ρdB
(1)
t +

√
(1− ρ2)dB(2)

t ] + πtσdB
(1)
t

)2
 .

Taking the derivative of the expression for the variance with respect to πt and set-

ting it equal to 0 allows us to find the amount invested into the tradeable stock that
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minimizes the variance of the profit. The result is Theorem 4. �

3.6 Hedging Strategy 3 - Adjusted Black-Scholes

The third strategy will be referred to throughout as the adjusted Black-Scholes strat-

egy. We will consider an investor following this strategy to be ”naive” (Monoyios,

2005), since it can be derived by assuming the traded and untraded stocks Brownian

motions to be perfectly correlated. The purpose of including this hedging strategy

in our analysis is to contrast it with the two more sophisticated dynamic hedging

strategies. When ρ = 1, the market is complete, and the price of the options must

be the Black-Scholes price. Consider an investor who owns a portfolio composed of

an option, with value Vt, and some amount, πt, in the tradeable asset. After a single

time step, the change in the portfolio value will be

dΠ =

[
∂Vt
∂t

+ vS
∂Vt
∂St

+
η2S2

t

2

∂2Vt
∂S2

t

]
dt+ ηSt

∂Vt
∂St

dB
(1)
t

+πt(µdt+ σdB
(1)
t ),

So, if the investor invests

πt = −
(
ηSt
σ

)
∂Vt
∂St

,
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every dB(1) term cancels out, eliminating risk from the portfolio. Hence, this port-

folio must grow at the risk-free rate:

rΠtdt = r

[
Vt −

(
ηSt
σ

)
∂Vt
∂St

]
dt =

[
∂V̂t
∂t

+
η2S2

t

2

∂2V̂t
∂S2

t

+ vS
∂V̂t
∂St
− ηµSt

σ

∂V̂t
∂St

]
dt.

(3.5)

We divide both sides by dt, rearrange and enforcing the no arbitrage condition

v =

(
µ− r
σ

)
η + r,

which results from requiring that a risk-free portfolio created with the two stocks

described in Section 3.2, grow at the risk-free rate. Eqn.(3.5) then becomes:

∂V̂t
∂t

+
η2S2

t

2

∂2V̂t
∂S2

t

+ rSt
∂V̂t
∂St
− rV̂t = 0.

This is the standard Black-Scholes option pricing equation.

Definition 3. An investor who believes that ρ = 1 will hedge by investing in the

traded asset, at time t ∈ [0, T ], the amount:

πBS
t (t, y) = −

(η
σ

) ∂[BS(t, y; 0, η)]

∂y
.

We can see that the ”naive” investor does not require estimates of µ, v or ρ and

does not need to specify a value for γ.

3.7 Volatility Arbitrage in an Incomplete Market

One of the obvious differences in this incomplete market setting, as compared to the

Black-Scholes world of Ahmad and Wilmott (2005), is that there are now possibly
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six parameters that are unobservable and affect option values. These are σ, η, µ, v,

ρ and γ. Hence, if an investor forecasts that these parameters will have different val-

ues than the market predicts, an option can be identified as being mispriced. Below,

we will study the volatility arbitrage resulting from an investor possessing a more

accurate estimate of the future volatility of the untraded stock, ηa, than the market.

A significant complication in this setting is the investor must somehow determine

the market’s estimate for the untraded stock volatility, ηi, from the market price of

the option. In the Black-Scholes framework this is simple, as the formula can be

easily inverted to find the implied volatility. In this incomplete setting, an investor

must first take certain values as market estimates for the other parameters before

inverting either the utility difference price formula or the minimal variance price

formula to find ηi. Throughout, we will assume that the investor has determined ηi

by inverting the minimal variance price formula, from Definition 2, using the cur-

rent market price for the option bundle. A second complication arises from the fact

that the option price is not necessarily increasing with respect to η. Hence, a larger

value for η may in fact lead to a lower price for the option (Henderson and Hobson,

2002). For the minimal variance pricing approach, the reason for this is easy to

understand. In Section 3.3, we showed that the price is given by the Black-Scholes

option price with continuous dividend yield q = (µ−r)ηρ
σ − v + r . While a larger η

will, in one sense, act to increase the option value, if (µ − r)ρ > 0, then a larger η

will result in a larger continuous dividend yield, which acts to reduce the value of a
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call option. If this second effect is larger, the net change of a larger value for η will

be to decrease the call option’s value. The first two hedging strategies were chosen

from the literature because they can be viewed as incomplete market analogs to

the hedging strategies of Ahmad and Wilmott (2005). The maximal utility strategy

is similar to hedging with the actual volatility, since it concerns maximizing with

respect to the expiration time, and the minimal variance strategy is analogous to

hedging with the implied volatility since its purpose is to minimize local portfo-

lio properties. The adjusted Black-Scholes strategy was chosen to determine what

results a ”naive” investor would have with a much simpler strategy. Below, we per-

form an analysis similar to Ahmad and Wilmott (2005), in that we compare the

mark-to-market incremental and total profits. We also experiment with different

values of the hedging parameters, to determine how robust each strategy is to mis-

specification. We study both the effect this has on the investor’s profit distributions

as well as on the expected value of their terminal wealth.

3.8 Comparing the Hedging Strategies - Comparing Incremental Profits

Justifying the use of a hedging strategy based on the distribution of its incremental

profits can be done in a scenario where the buyer or seller of options is concerned

about risk and wants to ”limit the damage” and close their position early. It can

also be justified if there is a risk management department that is keeping track of

the mark-to-market profits and would be concerned about short-term losses (Ahmad
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and Wilmott, 2005). We begin this section by deriving a result in the incomplete

market setting that is analogous to Theorem 2.

Theorem 5. When ηa 6= ηi and the investor hedges the purchase or sale of an

option on an illiquid underlying according to the strategy in Theorem 4 (but using

V̂ i
t ) with the traded asset, the incremental profit is given by

dΠt =

(
S2
t

2

∂2V̂ i
t

∂S2
t

)
| (ηa)2 − (ηi)2 | dt± ηS ∂V

i
t

∂St
(
√

1− ρ2)dB(2)
t .

Note that the second term is positive when the investor’s profitable strategy is to

purchase the option and negative when it is to sell the option.

Proof. We consider an investor who has somehow inverted the pricing equation

of Definition 2 to obtain σi = 0.1. The investor, however, believes that the actual

volatility of the untraded asset will be σa = 0.2. Note that the proof for when

σi > σa is nearly identical. This means that the investor can attempt to profit from

volatility arbitrage by buying the bundle of options and hedging. If the investor acts

as in the proof for Theorem 4, but we instead consider the mark-to-market profit

(meaning we value the option position using η = ηi in Definition 2), we find the

incremental profit to be

dΠt =

[
∂V̂ i

t

∂t
+ vSt

∂V̂ i
t

∂St
+
η2S2

t

2

∂2V̂ i
t

∂S2
t

]
dt+ ηS

∂V̂ i
t

∂St
[ρdB

(1)
t

+
√

(1− ρ2)dB(2)
t ] + πt(µdt+ σdB

(1)
t ) + (−V̂ i

t − πt)rdt. (3.6)
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Therefore,

Var [dΠt] = E

(ηS ∂V̂ i
t

∂St
[ρdB

(1)
t +

√
(1− ρ2)dB(2)

t ] + πtσdB
(1)
t

)2
 .

Taking the derivative of the right side of the previous equation with respect to πt

and setting it equal to 0 allows us to find the amount invested into the tradeable

stock that minimizes the variance of the mark-to-market profit:

πt = −
(
ηStρ

σ

)
∂V̂ i

t

∂St
. (3.7)

Substituting this hedge into Eqn.(3.6) gives

dΠt =

(
∂V̂ i

t

∂t
+
η2S2

t

2

∂2V̂ i
t

∂S2
t

)
dt+ St

∂V̂ i
t

∂St

(
v − (µ− r)ηρ

σ

)
dt− V̂ i

t rdt+ ηSt
∂V̂ i

t

∂St
(
√

1− ρ2)dB(2)
t .

Using Eqn.(3.3), but for V̂ i
t , gives

dΠt =

(
S2
t

2

∂2V̂ i
t

∂S2
t

)[
(ηa)2 − (ηi)2

]
dt+ ηSt

∂V̂ i
t

∂St
(
√

1− ρ2)dB(2)
t . �

In the complete market scenario, ρ→ 1 and v → (µ−r)ηρ
σ +r, reduces to the result of

Theorem 2. For this reason, we associate the minimal local variance strategy with

Ahmad and Wilmott’s (2005) strategy of delta hedging with implied volatility. We

can see that the incremental profit has a deterministic component and a random

component, driven by the Brownian motion increment (dB
(2)
t ). The properties of

the investor’s incremental profit will depend heavily on the parameters driving the

stock motions, which will change the relative magnitudes of the deterministic and

probabilistic components. We can now experiment with some reasonable stock and

option parameters to see if the results are comparable to those in Section 2.3. In
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Sections 3.8 to 3.11, profits are calculated by creating a portfolio at time t = 0 that

is composed of: either a long or short position consisting of a number, λ, of identical

European call or put options, an amount invested in the traded stock, π0, and an

amount in a risk free bond, M0, with interest rate r, which brings the value of the

portfolio to be 0:

V̂ i
0 +M0 + π0 = 0

We can then consider the change in the value of the portfolio to be the investor’s

profit or loss. Once again, this profit or loss is considered to be mark-to-market as

we will calculate the value of the option positions using ηi (represented using the

subscript (...)i). We will require the investor’s portfolio be self-financing, meaning

that the amount invested in the risk free bond evolves according to

Mt+dt = Mte
rdt − St+dt

[
πt+dt
St+dt

− πt
St

]
.

Y0 γ ηa ηi σ µ v ρ r K T (years) λ

ln(50) 0.0001 0.2 0.1 0.1 0.05 0.05 0.95 0.05 45 1 100

Table 3.1: The stock and option parameters used in this section unless other-

wise specified. We consider an investor with γ =0.0001, similar to the investor

in Monoyios (2004).

Table 3.1 shows the stock and option parameters used in this section unless

otherwise stated. According to Table 3.2, the market has underpriced the bundle
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of European call options, and so an investor can attempt to profit from volatility

arbitrage by taking a long position in the calls and hedging until expiration. We

begin by looking at the incremental profits in the incredibly unrealistic situation

where the untraded stock is nearly perfectly correlated with the traded one (ρ =

0.9999). The incremental profit results for 10 000 trajectory pairs for Yt and Pt with

500 uniformly spaced rebalancing times are shown in Tables 3.3 and some of the

profit trajectories are plotted in Figure 3.1 (top).

Call Option Values

ρ = 0.9999 η = 0.2 η=0.1

Utility Indifference 835.24 731.44

Minimum Local Variance 834.97 731.44

ρ = 0.95 η = 0.2 η=0.1

Utility Indifference 831.11 731.44

Minimum Local Variance 834.97 731.44

Table 3.2: The different valuations for the bundle of options resulting from different

values of ρ and η. Here, the larger η results in a larger option value, meaning an

investor can attempt to profit from a misspecification by buying call options.
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Incremental Profit

ρ = 0.9999 Minimal Variance(Eqn.(3.7))

Profit Mean 0.21

Profit Std 0.95

Profit Median 0.08

Table 3.3: Properties of the incremental profit distribution. The mean is fairly large

compared to the standard deviation and thus the investor sees smooth profit curves

as in the right hand side of Figure 2.1. The incremental profit is calculated as in

Eqn.(3.6). Statistics are generated from 10 000 trajectory pair simulations. Note

that the properties for a single trajectory pair will be path dependent.
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Incremental Profit

ρ = 0.95 Maximal Utility Minimal Variance(Eqn.(3.7)) Black-Scholes

Profit Mean 0.20 0.20 0.20

Profit Std 13.59 13.03 13.19

Profit Median 0.02 0.03 0.03

Table 3.4: Properties of the profit distribution on an incremental basis with a slightly

less significant correlation for each of the hedging strategies. The standard devia-

tion is now noticeably larger than the mean, meaning that the noise has made it

difficult to justify any particular strategy over the other. These results are from the

simulation of 10 000 trajectory pairs with 500 uniform rehedging times. Note that

we consider the modified Minimal Local Variance Strategy here from Eqn.(3.7) and

evaluate the other two with ηi. The incremental profit is calculated as in Eqn.(3.6).

Statistics are generated from 10 000 trajectory pair simulations. Note that the

properties for a single trajectory pair will be path dependent.

We can see that the investor has successfully recreated the smooth mark-to-

market profit curves that Ahmad and Wilmott get when they hedge using implied

volatility. However, once we enter even slightly more realistic values for the corre-

lation ρ, the smoothness of the trajectories disappears. The reason is that even for

ρ = 0.95, the Brownian component of the incremental profit expression in Theorem

5 dominates the deterministic component. Table 3.4 shows the properties of the
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incremental profit distribution for the three hedging strategies. We can see that the

standard deviations of the incremental profits do not differ enough with respect to

the means to justify one strategy over the others. In essence, hedging with a corre-

lated stock is much too messy for realistic stock parameters to justify any particular

hedging strategy.
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Figure 3.1: Above: Some of the profit trajectories when ρ = 0.9999 and the stock

and option parameters are as in Table 3.1. Below: Profit trajectories when ρ

= 0.95. Even with a very strong correlation the investor loses the smooth profit

property. Incremental profits are calculated as in Eqn.(3.7).
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3.9 Comparing the Hedging Strategies - Comparing Total Profits

Since there is no obvious way of discerning between the hedging strategies based on

the profits they generate over the short-term, we turn our attention to comparing

the distributions of the total mark-to-market profits they result in. The investor

manages the portfolio of options, stock and money in the risk free bond the same as

in Section 3.8. Since we have abandoned comparisons on the basis of incremental

profit, when we refer to the minimal variance hedging strategy, we mean the strategy

as outlined in Theorem 4. We begin by with a justification for why an investor

would hedge with a correlated stock at all, by looking at a situation where the

investor leaves the options naked. The parameters used are shown in Table 3.5

(unless otherwise stated) and the market’s valuation of the options is compared to

the investor’s in Table 3.6.

Y0 γ ηa ηi σ µ v ρ r K T (years) λ

log(50) 0.0001 0.2 0.1 0.1 0 0 0.95 0 45 1 100

Table 3.5: Stock and option parameters used in the first part Section 3.9 unless

otherwise specified.
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Call Option Values

ρ = 0.95 η = 0.2 η=0.1

Utility Indifference 676.25 534.64

Minimum Local Variance 679.46 535.62

ρ =0.55 η = 0.2 η = 0.1

Utility Indifference 657.07 528.67

Minimum Local Variance 679.46 535.62

Table 3.6: Different valuations for the bundle of call options resulting from different

values of ρ and η.

The table above shows that the market undervalues the options, and so an

investor may profit from purchasing the options and hedging away some of the risk.

We can see that simply purchasing the underpriced options and leaving them naked

is a profitable strategy on average, but results in a large standard deviation and

actually results mostly in losses. We can see in Figures 3.3 and 3.4 that hedging with

the correlated stock results in improvements in the profit distribution, most notably

in the standard deviation and median. However, even with a very strong correlation,

ρ = 0.95, the standard deviation of the profits is larger than their mean. This

seems to be an inevitable reality when hedging with a correlated stock, even when

rebalancing fairly frequently. In essence, an investor trying to make money from

the market’s misspecification of the stock parameters will have to accept significant
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risk. It will likely require a significant misspecification of η in order for the investor

to be comfortable with the resulting profit distribution. Figure 3.4 shows the profit

distributions resulting from the three hedging strategies when ρ = 0.55. We can

see that the maximal utility and minimal local variance hedging strategies result

in more right-skewed profit distributions than the adjusted Black-Scholes strategy.

The standard deviation of the profits when using the adjusted Black-Scholes hedge is

larger than the other two strategies and this results in a significantly larger median

profit, although still fairly small in comparison to the profit standard deviation. The

drawback is that it results in large losses more often than the other two strategies.

Figure 3.2: The distribution of total profit when long a bundle of European call

options, ρ = 0.95 and the investor does not hedge. The total profit is found by

summing the incremental profits calculated using Eqn.(3.6).
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Figure 3.3: The distribution of total profit when long a bundle of European call

options, ρ = 0.95 and the investor hedges using strategy Left: Maximal Utility,

Center: Minimal Variance, Right: Adjusted Black-Scholes. The total profit is

found by summing the incremental profits calculated using Eqn.(3.6).

Figure 3.4: The distribution of total profit when long a bundle of European call

options, ρ = 0.55 and we hedge using strategy Left: Maximal Utility, Center:

Minimal Variance, Right: Adjusted Black-Scholes. The total profit is found by

summing the incremental profits calculated using Eqn.(3.6).

We can perform the same analysis when an investor is shorting European options (if

ηi > ηa: Here we use ηi = 0.2 and ηa = 0.1). Repeating the same analysis as before,

with ρ = 0.55, results in the profit distribution shown in Figure 3.5. Remember that

the maximal utility hedge as defined does not exist when short European calls. We
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see that the minimal variance strategy results in a more left-skewed distribution than

the adjusted Black-Scholes strategy. Hence, the median profit is now largest with

the minimal local variance strategy. Once again, as we would expect, the standard

deviation of the profit is smallest when using the minimal variance hedging strategy.

Figure 3.5: Distribution of the total profit when short a bundle of 100 European

call options and using the hedging strategy: Left: Minimal Variance. Right:

Adjusted Black-Scholes. The total profit is found by summing the incremental

profits calculated using Eqn.(3.6).

If we want to include the maximal utility hedging strategy when an investor shorts

options, we can look at an investor being short a bundle of European puts. Table

3.7 shows the stock and option parameters used and Table 3.8 shows the difference

between the investor and the market’s valuation of the bundle. Figure 3.6 shows

the profit distributions resulting from each strategy. Note that we also include the

maximal utility results when the investor takes a larger value for γ = 0.001. We

can see that the larger value for γ reduces the skew of the profit distribution and

thus results in a lower median profit. Previous work comparing the maximal utility
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strategy with the adjusted Black-Scholes strategy (Monoyios, 2004) took the larger

median profit of the utility based strategy as the deciding factor in determining it

a superior strategy. It is worth noting that when the investor chooses to buy the

option to profit from volatility arbitrage, the skew reverses. We also note that simply

comparing the profit distributions has no input from the investor’s risk preferences.

These will be crucial when making a decision in an environment where there is

so much uncertainty as to the final result. Figure 3.7 shows the evolution of the

amount each strategy demands in the traded stock. Results such as these can be

relevant when considering an investor who must pay transaction costs to trade, and

may have incentive to minimize change in the amount of stock held throughout the

lifetime of the option position.

Y0 γ ηa ηi σ µ v ρ r K T (years) λ

ln(50) 0.0001 0.1 0.2 0.1 0.05 0.05 0.55 0.05 50 1 -500

Table 3.7: The stock and option parameters used in the rest of this section unless

otherwise specified.
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Call Option Values

ρ = 0.55 η = 0.2 η=0.1

Utility Indifference 1580.60 516.95

Local Minimum Variance 1393.40 481.98

Table 3.8: The different valuations for the bundle of puts resulting from different

values of η. Here, the larger η results in a larger option value, meaning can investor

can profit from a misspecification by selling call options.
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Figure 3.6: The distribution of total profit when short a bundle of European puts,

ρ = 0.55 and we hedge using strategy Top Left: Maximal Utility γ = 0.0001,

Top Right: Maximal Utility γ = 0.001, Bottom Left: Minimal Variance, Bot-

tom Right: Adjusted Black-Scholes. The total profit is found by summing the

incremental profits calculated using Eqn.(3.6).
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Figure 3.7: The amount of money invested in the traded stock by each hedging

strategy when the investor has sold 500 European call options.. The similarity

between the minimal variance strategy and the maximal utility strategy (γ = 0.0001)

explain why the profit results are so similar.

3.10 Comparing the Hedging Strategies - Robustness to Parameter Mis-

specification - Profit Distribution

When evaluating hedging strategies it is also important to consider their robustness

to misspecification of stock parameters. In the Black-Scholes world, hedging requires

the input of only one unobserved parameter: the volatility. Ahmad and Wilmott

(2005) show that the Black-Scholes hedge is quite robust to misspecification of this

parameter, and in fact you can profit safely from option misprices even if your

estimate of the volatility is not particularly close. The maximal utility and minimal

variance hedges both require estimates of five unobserved parameters, while the

adjusted Black-Scholes hedge requires only two. For this reason, it is reasonable
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to suggest that the profit distributions for the three strategies may be effected

differently by parameter misspecification. We study this by generating 10 000 stock

trajectory pairs with 500 uniform rebalancing times for each strategy, and each

value of a certain parameter. We use the parameters of Table 3.7, unless otherwise

specified.

Tables 3.9-3.13 summarize the results on the resulting profit distributions. We

can see that the adjusted Black-Scholes hedge profit standard deviation is much

more sensitive to misspecification of the η and σ parameters, and of course, does

not differ for different values of the other parameters. The two other strategies are

less sensitive to misspecification of the volatility parameters, which is the investor’s

reward for having to estimate an additional three parameters. These three parame-

ters do not seem to have much of an impact on the profit distributions. This should

be reassuring to an investor, due to the notorious difficulty in estimating the drift

terms. However, it is not entirely clear how to interpret these results. Comparing

the mean profits with the standard deviations, it is clear that losses, even significant

ones, are entirely possible here. For this reason, it is reasonable to evaluate the

robustness of the strategies in terms of the effect on the investor’s terminal utility.

We do this next.
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ηh Optimal Minimum Local Variance Black-Scholes

0.05

Mean: 970.90

Std: 2045.00

Median: 2099.00

Mean: 970.93

Std: 2045.90

Median: 2099.60

Mean: 975.77

Std: 1955.00

Median: 1940.20

0.1

Mean: 975.17

Std: 1921.70

Median: 1904.60

Mean: 975.28

Std: 1925.40

Median:1915.90

Mean: 983.68

Std: 1840.80

Median: 1689.60

0.2

Mean: 980.57

Std: 1820.40

Median: 1510.20

Mean: 980.91

Std: 1818.80

Median: 1555.50

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.3

Mean: 984.33

Std: 1946.90

Median: 1207.80

Mean: 984.90

Std: 1901.50

Median: 1275.60

Mean: 1001.20

Std: 2688.40

Median: 1014.20

0.4

Mean: 987.61

Std: 2248.10

Median: 1059.00

Mean: 988.39

Std: 2128.40

Median: 1115.30

Mean: 1007.50

Std: 3470.00

Median: 879.68

Table 3.9: The distributions of the total profit when hedging the sale of a bundle

of 500 put options with the stock and option parameters given in Table 3.7, with

different values for η.
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σh Optimal Minimal Variance Adjusted Black-Scholes

0.05

Mean: 996.12

Std: 2236.70

Median: 1169.60

Mean: 996.80

Std: 2172.00

Median: 1222.40

Mean: 1022.80

Std: 3653.20

Median: 935.13

0.10

Mean:980.57

Std: 1820.40

Median:1510.20

Mean: 980.91

Std: 1818.80

Median: 1555.50

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.20

Mean: 972.80

Std: 1915.90

Median: 1853.30

Mean: 972.97

Std: 1924.10

Median: 1884.40

Mean: 979.47

Std: 1823.50

Median: 1607.10

0.30

Mean: 970.20

Std: 1991.90

Median: 2004.30

Mean: 970.32

Std: 1999.00

Median: 2027.00

Mean: 974.65

Std: 1886.10

Median: 1800.60

0.40

Mean: 968.91

Std: 2037.10

Median: 2088.20

Mean: 968.99

Std: 2043.00

Median: 2106.30

Mean: 972.24

Std: 1942.70

Median: 1922.20

Table 3.10: The distributions of the total profit when hedging the sale of a bundle

of 500 put options with the stock and option parameters given in Table 3.7, with

different values for σ.
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vh Optimal Minimum Local Variance Adjusted Black-Scholes

-0.15

Mean: 977.38

Std: 1894.60

Median: 1235.80

Mean: 977.75

Std: 1879.10

Median: 1262.50

Mean: 993.91

Std: 2060.00

Median: 1274.50

-0.05

Mean:978.81

Std: 1848.00

Median:1346.60

Mean: 979.24

Std: 1836.40

Median: 1385.10

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.05

Mean: 980.57

Std: 1820.40

Median: 1510.20

Mean: 980.91

Std: 1818.80

Median: 1555.50

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.15

Mean: 982.21

Std: 1829.40

Median: 1693.70

Mean: 982.31

Std: 1836.70

Median: 1732.80

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.25

Mean: 983.20

Std: 1869.70

Median: 1849.40

Mean: 983.00

Std: 1880.30

Median: 1881.10

Mean: 993.91

Std: 2066.00

Median: 1274.50

Table 3.11: The distributions of the total profit when hedging the sale of a bundle

of 500 put options with the stock and option parameters given in Table 3.7, with

different values for v.

48



µh Optimal Minimum Local Variance Adjusted Black-Scholes

-0.15

Mean: 983.29

Std: 1879.80

Median: 1877.60

Mean: 983.04

Std: 1890.40

Median: 1904.60

Mean: 993.91

Std: 2060.00

Median: 1274.50

-0.05

Mean:982.35

Std: 1832.30

Median:1709.60

Mean: 982.42

Std: 1840.20

Median: 1746.90

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.05

Mean: 980.57

Std: 1820.40

Median: 1510.20

Mean: 980.91

Std: 1818.80

Median: 1555.50

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.15

Mean: 978.65

Std: 1852.20

Median: 1333.70

Mean: 979.08

Std: 1839.90

Median: 1366.80

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.25

Mean: 977.16

Std: 1904.10

Median: 1227.70

Mean: 977.50

Std: 1888.70

Median: 1244.00

Mean: 993.91

Std: 2066.00

Median: 1274.50

Table 3.12: The distributions of the total profit when hedging the sale of a bundle

of 500 put options with the stock and option parameters given in Table 3.7, with

different values for µ.

49



ρh Optimal Minimum Local Variance Adjusted Black-Scholes

0.65

Mean: 983.47

Std: 1837.20

Median: 1427.80

Mean: 983.80

Std: 1829.30

Median: 1467.90

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.75

Mean:986.41

Std:1877.90

Median: 1372.60

Mean: 986.69

Std: 1865.90

Median: 1405.90

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.85

Mean: 989.38

Std: 1939.00

Median: 1327.70

Mean: 989.58

Std: 1927.10

Median: 1348.81

Mean: 993.91

Std: 2060.00

Median: 1274.50

0.95

Mean:992.39

Std:2016.40

Median: 1290.60

Mean: 992.47

Std: 2010.60

Median: 1297.40

Mean: 993.91

Std: 2060.00

Median: 1274.50

Table 3.13: The distributions of the total profit when hedging the sale of a bundle

of 500 put options with the stock and option parameters given in Table 3.7, with

different values for ρ.
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3.11 Comparing the Hedging Strategies - Robustness to Parameter Mis-

specification - Utility Loss

Our second means of evaluating the results of hedging with different parameter

values comes from a utility indifference argument, similar to that used to arrive at

the utility indifference price earlier. We borrow this methodology from Larsen and

Munk (2012), who introduce the value function:

Jλ(t, w, y)π = −1

γ
Ew,y,t

[
exp

(
−γ(WT + λh(eYT ))

)]
.

We use the superscript (...)π to designate that this function is to be evaluated using

a particular hedging strategy, not necessarily the optimal strategy as in Eqn.(3.2).

We can calculate the loss due to using a suboptimal hedging strategy by finding

the amount of money added to the initial wealth when we hedge with a subopti-

mal strategy, that leaves us indifferent between this strategy and using the optimal

hedging strategy. Our method here differs from that of Larsen and Munk (2012)

only in that we do not present the loss as a fraction of the initial wealth. This is

because with exponential utility functions, the loss is independent of initial wealth.

Definition 4. The utility loss due to a suboptimal strategy to hedge a position with

λ options with expiration time T is the L that solves:

Jλ(t, w, y; ) = Jλ(t, w + L, y)π.

Note that the loss is not calculated as a fraction of the initial wealth, as it is in Larsen

51



and Munk (2012). This is because we are only studying investors with exponential

utility functions, and thus the results of solving Eqn.(3.8) will be independent of

initial wealth. Our results have shown that an investor who plans to hedge with a

correlated stock as a means of securing a profit via volatility arbitrage will have to

accept significant risk. For this reason, the risk preferences of the investor are of

the utmost importance, which justifies analysing the effect of misspecified hedging

parameters on the expected utility of terminal wealth. We take the same stock

and option parameters as in the previous section. The results are summarized in

Tables 3.15-3.19. Once again, we note the sensitivity of the adjusted Black-Scholes

strategy to misspecification of the volatility terms. While one of the advantages of

the adjusted Black-Scholes strategy is that there is no need to specify v, µ or ρ,

we can see how little the utility loss is due to misspecification of these parameters.

It is also interesting to see how little utility loss there is from overestimating the

correlation between the two stocks. It seems to be more important for an investor to

choose a strongly correlated stock to hedge with in the first place, than to have an

accurate estimate of exactly how correlated they are. These results seem to justify

using the two more sophisticated strategies, even if the investor only possesses rough

estimates of the three extra parameters. It seems difficult for an investor to justify

utilizing the minimal variance hedge it does not result in notably smoother profit

trajectories. In addition, it does not incorporate the risk preferences of the investor,

which in such a risky environment is a critical flaw. For these reasons, it would
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seem the maximal utility strategy should be the preferred method of securing a

profit from volatility arbitrage in this incomplete market setting.

Loss Due to Misspecification

η Maximal Utility Minimal Variance Adjusted Black-Scholes

0.05 71.09 71.09 40.55

0.1 33.36 34.26 1.81

0.2 - 0 33.36

0.3 17.14 9.03 185.26

0.4 79.16 52.24 432.51

Table 3.14: Utility loss due to misspecification of η when hedging the sale of 500

European put options.
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Loss Due to Misspecification

σ Maximal Utility Minimal Variance Adjusted Black-Scholes

0.05 71.09 56.73 492.99

0.1 - 0 33.36

0.2 35.16 36.95 2.71

0.3 57.63 59.42 25.25

0.4 71.09 72.88 42.35

Table 3.15: Utility loss due to misspecification of σ when hedging the sale of 500

European put options.

Loss Due to Misspecification

v Maximal Utility Minimal Variance Adjusted Black-Scholes

-0.15 14.44 10.83 33.36

-0.05 5.42 2.71 33.36

0.05 - 0 33.36

0.15 1.81 3.61 33.36

0.25 10.83 14.44 33.36

Table 3.16: Utility loss due to misspecification of v when hedging the sale of 500

European put options.
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Loss Due to Misspecification

µ Maximal Utility Minimal Variance Adjusted Black-Scholes

-0.15 13.54 16.24 33.36

-0.05 2.71 4.51 33.36

0.05 - 0 33.36

0.15 5.42 3.61 33.36

0.25 16.24 13.54 33.36

Table 3.17: Utility loss due to misspecification of µ when hedging the sale of 500

European put options.

Loss Due to Misspecification

ρ Maximal Utility Minimal Variance Adjusted Black-Scholes

0.65 3.61 3.60 33.36

0.75 21.38 17.42 33.36

0.85 40.34 37.19 33.36

0.95 73.00 62.42 33.36

Table 3.18: Utility loss due to misspecification of ρ when hedging the sale of 500

European put options.
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Chapter 4

NON-PROBABILISTIC OPTION PRICING

4.1 Introduction to Non-Probabilistic Models - BJN Model

Britten-Jones and Neuberger (1996) identify what they believe to be a paradox in op-

tion pricing. The traditional basis for calculating prices, sophisticated probabilistic

treatments (Black-Scholes and its modifications), conflicts with the idea of arbitrage,

which is concerned only with events which are impossible or certain (in axiomatic

probability theory, sets of measure 0 or 1). They create a model which allows stock

prices to take discrete values along a trajectory, given by S := (Si)0≤i≤N(S), where

N(S) is the trajectory-dependent number of prices and Si is a positive number. The

constraints imposed on possible trajectories are mild: they must begin at the current

stock price (Sc), the absolute value of the difference in consecutive stock prices must

be less than d (a maximum jump size), and the sum of the squares of consecutive

price moves must be equal to Q (all trajectories should have measured quadratic

variation Q). Britten-Jones and Neuberger (1996) choose to use trajectories that

move through (v,S) space, where vi is the amount of quadratic variation remaining

in the trajectory at the i-th stock price (thus v0 = Q and vN(S) = 0). This acts

something like a ”volatility adjusted time”. Summarizing the requirements to be an

56



element of the allowed trajectories set P (Sc, Q, d):

S = {S0, S1, ..., SN(S)} ∈ (P (Sc, Q, d)iff:

S0 = Sc,

| lnSi+1 − lnSi |≤ d 0 ≤ i ≤ N(S)− 1,

N(S)−1∑
i=1

(lnSi+1 − lnSi)
2 = Q.

Not we take the interest rate, r = 0. With this set of allowable trajectories, we

define a sequence of remaining volatilities (vi)0≤i≤N(S)−1 by

v0 = Q,

vi = vi−1 − (lnSi+1 − lnSi)
2.

The trades are assumed to occur at no cost at the prices in the trajectory sequence.

Using arbitration arguments, they can then find an upper and lower bound for the

value of a European option, with expiration time T, which in general will be tighter

than the standard Merton bounds. To arrive at the bounds, we consider an investor

who has sold a European call option at a price V (v0, S0), and holds a number of the

underlying stock given by H = H(vi, Si)0≤i≤N(S)−1. The profit of the investor will

be given by

P&L = V (v0, S0)− V (vN(S), SN(S)) +

N(S)−1∑
i=0

H(vi, Si)(Si+1 − Si).

If given a specific price V (v0, S0), H is an arbitrage strategy if it leads to an investor

having a profit greater than or equal to 0, with at least one possible trajectory leading
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to a profit greater than 0. If we require that H is not an arbitrage strategy, we must

have

V (v0, S0) ≤ sup
π

V (ST )−
N(S)−1∑
i=0

H(vi, Si)(Si+1 − Si)

 . (4.1)

Because this must hold for all strategies H, we can define the minimum upper bound

as

V (v0, S0) ≡ inf
H

sup
π

V (ST )−
N(S)−1∑
i=0

H(vi, Si)(Si+1 − Si)


 . (4.2)

Intuitively, in Eqn.(4.1), we are defining an upper bound for the option as being a

price such that when an investor sells the option and uses the hedging strategy H,

the investor is guaranteed to cover the total option payoff. The total option payoff

is given by the sum of the option payoff and hedging losses. In Eqn.(4.2) we then

use the hedging strategy H which results in the smallest payout in the worst case

scenario for the investor.

This formula for calculating option bounds is not practical for use as it involves a

search over all possible stock trajectories and hedging strategies. Britten-Jones and

Neuberger (1996) note that if there exists a function V (v, S) that satisfies Eqn.(4.2)

for all S and v in the function’s domain, then the upper bound on the value of the

option when the stock price is Si and the reaming volatility is vi must be V (vi, Si).

This allows us the write out the problem in Eqn.(4.2) as a dynamic programming

problem with the Bellman equation

V (vi, Si) = inf
h
{sup [V (vi+1, Si+1)− h(Si+1 − Si)]} .
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They define a control variable zi representing the growth between adjacent prices

Si+1 = Si exp(zi),

meaning we can interpret the prices as one state variable, while the remaining volatil-

ity in a trajectory is the other state variable which evolves according to

vi+1 = vi − z2i ,

and so we can rewrite the Bellman equation as

V (vi, Si) = inf
h

{
sup

[
V (vi − z2i , Si) exp(zi)− hSi(exp(zi)− 1)

]}
,

with

z2i ≤ vi, z2i ≤ d2.

The terminal condition will be V (0, SN(S)) = (SN(S) −K)+ of course, where K is

the strike price of the call option, while the initial conditions will be given by the

choices for the state variables S0 and v0. Britten-Jones and Neuberger (1996) note

that the min-max nature makes it a non-standard dynamic programming problem.

They deal with this by finding the optimal hedging strategy and thus removing

the minimizing aspect of the problem. We repeat here the heuristic argument of

Britten-Jones and Neuberger (1996). We assume we have found the optimal hedge

h∗. So we have

V (vi, Si) =
{

sup
[
V (vi − z2i , Si) exp(zi)− h∗Si(exp(zi)− 1)

]}
,
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and therefore

V (vi, Si) ≥
{[
V (vi − z2i , Si) exp(zi)− h∗Si(exp(zi)− 1)

]}
. (4.3)

We define a function f to represent the difference between the left and right hand

sides of Eqn.(4.3).

f ≡ V (vi, Si)−
{[
V (vi − z2i , Si) exp(zi)− h∗Si(exp(zi)− 1)

]}
.

The function f(z) ≥ 0 ∀z with f(0) = 0, and so it must be that

f ′(0) = − ∂V
∂Si

Si + h∗Si = 0,

and therefore

h∗ =
∂V

∂Si
.

So the problem be be written in the more standard way

V (vi, Si) =

{
sup

[
V (vi − z2i , Si) exp(zi)−

∂V

∂Si
Si(exp(zi)− 1)

]}
, (4.4)

with the inequality constraint

z2i ≤ min(vi, d
2),

and the terminal condition

V (0, SN(S)) = (SN(S) −K)+.

Britten-Jones and Neuberger (1996) procedure for determining the option price

bounds is as follows. If we look at Eqn.(4.4), and take zi to be such that the
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supremum is achieved, then V (vi, Si) will be connected to the later value V (vi −

z2i , Si exp(zi)) by the linear relationship

V (vi, Si) =

{[
V (vi − z2i , Si) exp(zi)−

∂V

∂Si
Si(exp(zi)− 1)

]}
. (4.5)

We know that V (vi, Si) must be both an upper bound, and a lower upper bound.

Hence, the line we are looking for will be one such that all its points lie are on or

above the possible future option values V (vi− z2i , Si), and has the smallest possible

value at Si. The slope of this line will be h∗ and the value of the option will simply

be the line value at Si. This process, referred to as the convex hull algorithm, is

shown graphically in Figure 4.1.

Britten-Jones and Neuberger (1996) construct the stock trajectories on a grid

in (v,S) space with admissible prices Sl = S0e
lδ and allowable remaining quadratic

variations vj = jδ2 for an arbitrary step size of δ. The option value at a point on the

grid (i,j) is denoted Vj,l. From any point (l, j), the reachable points are (j−n2, l+n)

where

n2 ≤ min(j, d2),

which enforces the jump constraint and the the non-negativity of remaining volatil-

ity.
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Figure 4.1: The graphical depiction of the convex hull pricing a particular node on

a trajectory using all accessible node prices.

Britten-Jones and Neuberger (1996) explain that the derivation of the lower option

bound, V , is a trivial extension of the upper option bound. It is simply the negative

of the upper bound for the option with payoff V (0, SN (S)) = −(SN(S) − K)+.

Obviously, whenever market prices for options appear outside of the no-arbitrage

bounds, an investor could theoretically guarantee a profit by either buying or selling

an option, and following the hedging strategy as determined by the grid. Of course,

this assumes that the actual stock price trajectory that unfolds is an element of

P . Of course, in reality we will be mapping trajectories onto a grid which will

depend entirely on the choice of an arbitrary δ. The mismatch between the actual

stock trajectory and its mapping onto the grid can result in the investor failing to

convert an arbitrage opportunity into a profit. The difficulty presented by mapping

trajectories onto the grid inspires this next model, where we will use the parameters
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used to construct the grid to guide the investor’s behaviour.

4.2 The M0+Time Model

In reality, there are transaction costs that act as an disincentive to constantly re-

balancing a portfolio. It is fair to believe that an investor will only be motivated to

rebalance once the stock price has changed by a certain amount, or some amount of

time has passed since the last rebalancing. This acts as motivation for the M0+time

model. We reuse the δ parameter from our implementation of the BJN model. Pre-

sumably, this will be much larger than the smallest possible price movement (1¢).

We can interpret this δ as the scale of stock movements which prompt the investor to

rebalance. That is, any smaller price movement, relative to the previous rebalancing

time, will be ”ignored” by the investor. We assume the investor receives data from

a stock price chart given by x(t), where ti = di∆, di ∈ N, over some period of time

[0, T ]. Hence, ∆ is the temporal resolution of the stock chart. As in the previous

section, we take the interest rate to be r = 0. We also assume there is a sequence

of dynamically sampled times {ri} ⊂ {ti} such that

δ ≤ |x(ri+1)− x(ri)|, 0 ≤ i ≤ I, rI = T. (4.6)

We take Si = x(ri) and represent the trajectories as moving through (r, S) space,

where the r’s represent times when the investor rebalances. A finite sequence of posi-

tive numbers will be in the admissible trajectories set, A(δ, Sc,mmax,mmin, qmax, qmin),
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according to

S = {S0, S1, ..., SN(S)−1} ∈ A iff:

S0 = Sc,

δ ≤ Si+1 − Si ≤ mmaxδ OR mminδ ≤ Si+1 − S0 ≤ −δ,

qmin∆ ≤ ri+1 − ri ≤ min(qmax∆, T − ri).

Obviously, ri+1 − ri ≥ ∆, ∃K such that K∆ = T , and Sc is the current stock price

as in the previous section. We interpret mmax ∈ Z to represent the largest possible

upward stock move before the investor can rebalance and mmin ∈ Z to represent the

largest possible downward stock move before the investor rebalances. We consider

tmin ∈ N and tmax ∈ N to represent the minimum and maximum amount of time we

expect the investor to wait from the previous rebalancing time before rebalancing

again.

Once again, the grid is constructed in (r, S) space, with the allowable stock prices

being given by Sl = S0 ± lδ where l ∈ Z, and the allowable times being given by

rj = j∆ where j ∈ N. At a specific node (j, l), the available nodes are (j+qj , l+ml)

where qj ∈ [qmin, qmax] ∩ N and ml ∈ [mmin,−δ] ∪ [δ,mmax] ∩ Z.

Considering a European call option with strike K, the Bellman equation here

will be will be very similar to that in the previous section,

V (ri, Si) = inf
h

{
sup

[
V (ri+1, Si+1)− h(Si+1 − Si)

]}
= inf

h

{
sup

[
V (ri + qi∆, Si +miδ)− h(miδ)

]}
.
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Repeating as we did in the previous section to find the optimal hedge, with mi here

replacing zi, gives

h∗ =
∂V

∂Si
,

which gives us the more standard dynamic programming problem

V (ri, Si) = inf
h

{
sup

[
V (ri + qi∆, Si +miδ)−

∂V

∂Si
(miδ)

]}
.

The terminal condition will be V (SN(S), T ) = (SN(S) − K)+ of course, while the

initial conditions will be given by the choices for the state variables S0 and r0.

The convex hull algorithm performs identically as in the previous section, with the

lone exception being the criteria for determining accessible nodes. It provides the

hedging strategy H = H(ri, Si)0≤i≤N(S)−1 as before.

4.3 M0 Model - Parameter Estimation

To price options an investor will need estimates of the parameters mmin, mmax,

qmin and qmax which will depend on the choice of δ. We now outline one possible

method for the investor to estimate the necessary parameters from historical data.

We assume the investor is estimating from N consecutive historical stock prices,

uniformly taken at ∆ intervals. We take the times thi to be the times of the historical

prices 0 ≤ thi ≤ T h where T h is the time of the most recent historical price. We then

select rhi ⊂ thi , as rebalancing times, which fulfil Eqn.(4.6) from the historical stock

price data (for example the past 6 months of hourly prices). The first rebalancing
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time in the past (which we call rh1 ) will correspond to the first price of the historical

data being used for estimation. The second rebalancing time, rh2 = th2 , where th2 is

the first time such that

δ ≤ |S(th2)− S(rh1 )|, 0 ≤ i ≤ I, rI = T.

This process repeats with the Mth, and final, historical rebalancing time rhM = thN .

We can then set

qmin = min(rhi+1 − rhi ),

qmax = max(rhi+1 − rhi ).

These correspond to the minimum and maximum time the investor would have

waited had he or she been rebalancing according to Eqn.(4.6) during the historical

time period. It is in the estimation of these parameters that the investor will have

to decide on their risk preferences. Larger values for the maximum parameters and

smaller values for the minimum parameter values will mean a higher likelihood of the

future trajectories matching the grids, but will also result in additional trajectories

and thus larger price bounds. Note that what we are attempting to represent here,

is an investor who rebalances as soon as his or her criteria for stock movement is

met, and hence we only consider estimating qmin and qmax. We could estimate mmin

and mmax as the largest negative and positive stock price jumps (in terms of δ) over

an hour interval in the same way. Here, we will allow the investor to determine this

to correspond with their own risk preferences.
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4.4 Pricing Options using Historic Data

We begin by taking δ = 0.8, ∆ = 1 hour, mmax = 2 and mmin = −2, and construct a

grid corresponding to 56 hourly ticks in the future, or approximately a week’s worth

of activity. Using this data, we estimate qmax and qmin from the 6 months preceeding

September 21, 2015 of hourly Facebook stock prices (Figure 4.2). Performing the

method of parameter estimation described in the previous section yields qmin = 1

and qmax = 15.

Figure 4.2: Six months of hourly Facebook stock prices taken between September

21, 2015 and March 21, 2016.

Using the convex hull algorithm described earlier, and the grid as outlined in

Section 4.2, we can price European call options and compare to the ask prices for

options with identical strikes and an expiration time of 7 days. This is done over a

range of strikes in Figure 4.3.
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Figure 4.3: The arbitrage bounds for European call options for a risk taking investor

compared with the market price. When the market price lies outside of the bounds

there is the chance for arbitrage.

We can see for strikes below $100, the market prices lie outside the arbitrage

bounds. Thus, if the investor can sell an option at the ask price, he or she is

guaranteed to be able to superhedge the resulting payoff and thus secure a profit,

assuming the future stock trajectory matches one generated to create the arbitrage

bounds. We can select a particular profitable strike price, K = $90, and map the

actual future stock price trajectory that occurred with the closest inside the pricing

trajectory set on the grid. This allows us to determine what the investor’s optimal

hedge would be at each rebalancing time, and thus calculate their profit. In Figure

4.4 (top), we plot the future trajectory which unfolded and the element of the pricing

trajectory set we map it to. We calculate the total profit according to

P&L = V0 − VT +
M−1∑
i=1

Hi(Si+1 − Si).

Here, the profit from selling the call option and hedging according to the mapped
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grid trajectory is calculated to be $1.01. Our choice of mmax = 2 means that we

assume the investor is capable of rebalancing before a price jump significantly above

$1.60 occurs since the last rebalancing. In the situation, this does does not cause

any issues with the trajectory mapping because no particularly large price jumps

occur. However, it is easy to imagine such a move occurring. The stock price data

is hourly, of course, but it also considers the time between the market closing at the

end of one day, and the market opening at the start of the next as a single hour.

However, there are obviously reasons to believe larger jumps are possible between

the interday prices and the intraday prices jumps. As an example, imagine that we

were to see the 56 hourly prices of the Facebook stock that occurred between January

27 2016 and February 8, 2016 (Figure 4.4 (bottom)). There is a stock movement

that greatly exceeds what mmax = 2 allows in the grid. It takes a while for the grid

prices to ”catch up” to the real stock prices here. It would not be reasonable for the

investor to profit in this case. The investor can perform a basic statistical analysis

to determine how much risk they wish to take. They can calculate what percentage

of price moves in the past will exceed a particular choice of mmin and mmax. For

example, in the 6 months of hourly data shown in Figure 4.4 (top), a little over

5% of hourly stock moves exceed $1.60, with most being not much more and thus

not causing much deviation from the grid. Notably, most of these larger hourly

stock movements occur between trading days, as we hypothesized. This suggests an

obvious means of extending the model. This would be specifying certain time slices

69



of the grid to correspond to the final hourly price of the day. Stock price movements

originating from these nodes could have their own parameter values which would be

estimated from past interday movements. This would allow the investor to include

larger price movements without them dominating the entire grid and thus the price

bounds.

Figure 4.4: Top: Mapping the future trajectory onto the grid. We can see that

the fairly close agreement allows an investor to be confident in obtaining a profit.

Bottom: Mapping a difficult trajectory onto the grid. It is easy to see that there

is much disagreement, and the investor would not be certain to profit.
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We can give the investor more latitude by repeating the previous analysis with

mmin = −4,

mmax = 4.

The comparison of the new arbitrage bounds and the market ask prices is shown in

Figure 4.5. We can see that the bounds are much larger and the investor has an

opportunity for guaranteed profit only at the lowest strike. Of course, if the future

trajectory had larger stock movements (> $1.60) the trajectory set with these new

parameters would be more suitable. This is an illustration of the essential tradeoff

the investor must make when pricing options in this framework. More cautious

values for the parameter values result in an easier time accommodating the mapping

of future trajectories, but result in less opportunities to find profit opportunities.

Figure 4.5: The arbitrage bounds for European call options for a more cautious

investor compared with the market price. When the market price lies outside of the

bounds there is the chance for arbitrage.
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4.5 Volatility Arbitrage in BJN Framework

We can look at the profit made while hedging in the Britten-Jones and Neuberger

trajectory-based framework. Recall that in the BJN framework, every trajectory

has the same realized quadratic variation. In this framework, we now attempt to

create a situation analogous to Chapter 2. We consider an investor who is able to

invert (through some iterative process) the current market price for a European call

option and obtain an implied quadratic variation(Qi). The investor attempts to

profit from a more accurate estimate for the future actual quadratic variation (Qa).

Corresponding trajectory sets can be created for both quadratic variations, as well

as pricing grids. We consider a situation where Qi > Qa, and thus, as long as δ is the

same for both pricing grids, any node that is reachable on the grid corresponding to

Qa should be reachable on that corresponding to Qi. We take S to be an arbitrary

trajectory S := (Sk)06k6N(S), where N(S), the number of steps in the trajectory,

will depend on the particular trajectory. We will denote the upper price bound of

the option at the kth stock price node by V k and use the superscripts (..)a and (..)i

to denote the price on the grid corresponding to the Qa price grid and Qi price grid

respectively. The hedge at the kth stock price node is denoted Hk.

We will consider the investor’s profit to be the difference between the increase

in the value of the portfolio and that of the upper bound for the implied value of

the option. We will value the investor’s option position using the Qi pricing grid,

and so consider the following to be the mark-to-market profit
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If the investor hedges using the Qa grid, the profit is guaranteed to be within a

certain range.

Theorem 6. If the investor hedges using the Qa grid, the total profit, which we

denote
∑N(S)−1

k=0 dΠk, with dΠk being the k + 1th incremental profit, must lie in the

interval

V
i
0 − V

a
0 ≤

N(S)−1∑
k=0

dΠk ≤ V
i
0 − V a

0

Proof. The incremental profit is given by

dΠ = Ha
k (Sk+1 − Sk)− (V

i
k+1 − V

i
k).

Therefore, looking at the convex hull pricing algorithm, we can say

∃Sk+1 s.t. dΠ = Ha
k (Sk+1 − Sk)− (V

i
k+1 − V

i
k) < 0.

Summing up the profits after each of price jumps

N(S)−1∑
k=0

dΠ =

N(S)−1∑
k=0

[
Ha
k (Sk+1 − Sk)− (V

i
k+1 − V

i
k)
]

=

N(S)−1∑
k=0

Ha
k (Sk+1 − Sk)− (VN(S) − V

i
1),

and since

V
a
1 +

N(S)−1∑
k=0

H i
k(Sk+1 − Sk) ≥ VN .

We get
N(S)−1∑
k=0

dΠ ≥ VN(S) − V
a
1 + V

i
1 − VN(S) = V

i
1 − V

a
1.
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We can also use obtain an upper bound for the profit by noting that

V a
1 +

N(S)−1∑
k=0

H i
k(Sk+1 − Sk) ≤ VN(S),

and therefore

N−1∑
k=0

dΠ ≤ V i
1 + VN(S) − V

a
1 − VN(S) = V

i
1 − V a

1. �

These past few results are the BJN analogues to Theorem 1. We can also see that

when the investor hedges according to the Qi grid, the incremental profit is guar-

anteed to be positive.

Theorem 7. If the investor hedges using the Qi grid, the total profit, which we

denote
∑N(S)−1

k=0 dΠk, with dΠk being the k+1th incremental profit, must be positive

dΠk = H i
k(Sk+1 − Sk)− (V

i
k+1 − V

i
k) ≥ 0.

Proof. The incremental profit now will be given by

dΠ = H i
k(Sk+1 − Sk)− (V

i
k+1 − V

i
k).

The calculation of the option prices with the convex hull algorithm (Eqn.(4.5))

requires that

H i
k (Sk+1 − Sk) + V

i
k ≥ V

i
k+1 ∀S,

and therefore,

dΠ = H i
k(Sk+1 − Sk)− (V

i
k+1 − V

i
k) ≥ 0. �

74



So, when hedging using the amount determined by the Qi grid, the profit is guar-

anteed to be positive after each price jump. This is analagous to Theorem 2. We

can also look at the total profit in this situation obtained over the life of the option,

given by the sum of the profits after each price jump:

N(S)−1∑
k=0

dΠ =

N(S)−1∑
k=0

[
H i
k(Sk+1 − Sk)− (V

i
k+1 − V

i
k)
]

=

N(S)−1∑
k=0

H i
k(Sk+1 − Sk)− (V

i
N(S) − V

i
0).

Since

V
a
0 +

N−1∑
k=0

Ha
k (Sk+1 − Sk) ≥ VN ∀S.

We can say that

N−1∑
k=0

dΠ ≥
(
V
i
0 − V

a
0

)
+

N−1∑
k=0

(
H i
k −Ha

k

)
(Sk+1 − Sk) ∀S.
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Appendix A

DELTA HEDGING AND VOLATILITY ARBITRAGE

Result 1: Incremental Profit when hedging with σa

The incremental mark-to-market profit of an investor delta hedging using σa is given

by

dΠt = dV i
t −∆a

t dSt − r(V i
t −∆a

tSt)dt.

We can use Ito’s lemma to write the profit as

dΠt =
∂V i

t

∂t
dt+

∂V i
t

∂St
dSt +

1

2
(σa)2S2

t

∂2V i
t

∂S2
t

dt−∆a
t dSt − r(V i

t −∆a
tSt)dt.

Replacing the dSt terms with Eqn.(2.1) gives

dΠt =
∂V i

t

∂t
dt+µSt(∆

i
t−∆a

t )+
1

2
(σa)2S2

t

∂2V i
t

∂S2
t

dt−r(V i
t −∆s

tSt)dt+(∆i
t−∆a

t )σ
aStdBt.

Using the Black-Scholes equation to replace the
∂V it
∂t dt term gives

dΠt =
1

2

[
(σa)2 − (σi)2

]
S2 ∂

2V i
t

∂S2
t

dt+ (∆i
t −∆a

t )((µ− r)Stdt+ σStdBt). �

Result 2: Total Profit distribution when hedging with σi

As described in Section 2.2, the total profit when an investor hedges with σi will

be a random variable. The interested reader is referred to Ahmad and Wilmott

(2005) who provide lengthy derivations of the expected value and variance of the
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total profit. Below we provide their result for the expected value

P&LT =
Ke−r(T−t0

[
(σa)2 − (σi)2

]
2
√

2π

∫ T

t0

1√
(σ2)(s− t0) + (σi)2(T − s)

exp

(
−

ln(S0/K) + (µ− 1
2(σa)2)

2 [(σa)2(s− t0) + (σi)2(T − s)]

)
ds.
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Appendix B

HEDGING ILLIQUID CLAIMS AND VOLATILITY ARBITRAGE

Result 1: Deriving the optimal hedge and utility indifference price

We expect that the value function

Jλ(t, w, y) = sup
π∈L

(
−1

γ
Ew,y,t

[
exp

(
− γ{WT + λh(eYT )}

)])
,

= −1

γ
e−γWter(T−t)

g(T − t, y). (B.1)

will satisfy the Hamilton-Jacobi-Bellman (HJB) equation

∂Jλ

∂t
+ sup

π
MπJλ = 0, (B.2)

where Mπ is the Markov generator of price dynamics (Halperin & Itkin, 2012)

corresponding to a hedging strategy π. Mπ acts on Jλ by

MπJλ = (rW + π(µ− r))∂J
λ

∂w
+

1

2
σ2π2

∂2Jλ

∂w2
+ v

∂Jλ

∂y
+

1

2
η2
∂2Jλ

∂y2
+ ρησπ

∂2Jλ

∂w∂y
.

(B.3)

Since the function being maximized is simply quadratic with respect to π, we can

solve by taking the derivative with respect to π and setting it equal to 0. This yields

the optimal dynamic hedging strategy

π = −

[
(µ− r)∂Jλ∂w + ρση ∂

2Jλ

∂w∂y

]
σ2 ∂

2Jλ

∂w2

.
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It is easy to check that when Jλ is replaced in the previous equation using Eqn.(B.1),

we get the optimal hedging strategy as described in Theorem 3. Substituting this

optimal hedging strategy into Eqn.(B.3) and (B.2) gives us an equation for the

function g(T − t, y):

−ġ +

(
v − 1

2
η2
)
g′ +

1

2
η2g′′ − (σρηg′ + (µ− r)g)2

2σ2g
= 0. (B.4)

Following Henderson and Hobson (2001), we use the transformation

g(T − t, y) = eα(T−t)G(T − t, y +

(
δ − η2

2

)
τ)b,

and take

b =
1

1− ρ2
, α =

(µ− r)2

2σ2
, δ = r + η

(
v − r
η
− ρµ− r

σ

)
,

to convert Eqn.(B.4) into

Ġ =
1

2
η2G′′,

with the boundary condition G(0, y) = e−γλh(e
y)(1−ρ2). This is the linear heat equa-

tion with solution

G(τ, y) = E
[
G
(
0, y + ηZGτ

)]
,

for a Brownian motion ZGτ . Hence,

g(T − t, y) = e−(µ−r)
2(T−t)/(2σ2)

[
E

(
e
−λγ(1−ρ2)h

(
Ste

ηZGτ +δ(T−t)− 1
2 η

2(T−t)
))](1−ρ2)−1

,

which is Eqn.(3.4) in a slightly different form. �
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Result 2: Alternative Expression for Maximal Utility Hedge

Evaluating the partial derivatives of Jλ(t, w, y) in Eqn.(B.3)

∂Jλ

∂w
= −γer(T−t)Jλ,

∂2Jλ

∂w2
= γ2e2r(T−t)Jλ,

∂2Jλ

∂w∂y
= −γer(T−t)∂J

λ

∂y
,

and taking the derivative of both sides of the the expression in Definition 1 with

respect to y gives

∂J0(t, w + Ṽ , y; )

∂y
=
Jλ(t, w, y)

∂y
,

and

∂Jλ(t, w̃, y)

∂y
=
∂Jλ(t, w̃, y)

∂w̃

∂Ṽ

∂y
,

where

w̃ = w + Ṽ (t, y)

Substituting all of these expressions for the partial derivatives of J into Eqn.(B.4),

and evaluating at w̃, gives the alternative form for the optimal hedge mentioned in

Section 3.4. �

80



REFERENCES

Ahmad, R., Wilmott, P. (2005) Which Free Lunch Would You Like Today, Sir?:

Delta Hedging, Volatility Arbitrage and Optimal Portfolios. Wilmott Magazine,

Wilmott Magazine, pp 64-79.

Davis, M. (2000) Optimal Hedging with Basis Risk. Preprint, Technical Univer-

sity of Vienna

Forsyth, P.A., Vetzal, K.R., Wang, J., Windcliff, H.(2005) Hedging with a Cor-

related Asset: Solution of a Nonlinear Pricing PDE. Journal of Computational

and Applied Mathematics, 200(1), pp 86-115.

Halperin, I., Itkin, A.(2012) Pricing Options on Illiquid Assets with Liquid Prox-

ies using Utility Indifference and Dynamic-state hedging. arXiv:1205.3507

Henderson, V. (2002) Valuation of Claims on Nontraded Assets Using Utility

Maximization. Math. Finance 12, pp 351-73.

Henderson, V. (2001b) Stock Based Compensation: firm-specific risk, efficiency,

and incentives. Preprint, University of Oxford

Henderson, V., and Hobson, D.G. (2001) Real Options with Constant Relative

Risk Aversion. J. Econ. Dynamics Control 27, pp 329-55. Mathematical Finance,

Vol. 12, No.4, October, 2002.

81



Henderson, V., and Hobson, D.G. (2002) Substitute Hedging. Risk 15, pp 71-75.

Mathematical Finance, Vol. 12, No.4, October, 2002.

Hulley, H., McWalter, T.A. (2015) Quadratic Hedging of Basis Risk. J. Risk

Financial Manag., 8, pp 83-102.

Jonsson, M., Nielsen, S.E., Poulsen, R. (2015) The Fundamental Theorem of

Derivative Trading - Exposition, Extensions, and Experiments.

Larsen, L.S., Munk, C. (2012) The Costs of Suboptimal Dynamic Asset Alloca-

tion: General Results and Applications to Interest Rate Risk, Stock Volatility

Risk, and Growth/Value Tilts. J. Econom. Dynam. Control, 36, pp 266-293.

McFarland, J. (2015) In top CEO pay, stock option grants falling out of favour.

The Globe and Mail. Retrieved from http://www.theglobeandmail.com/report-

on-business/careers/management/executive-compensation/ceo-pay-

trends/article24815769/

Monoyios, M. (2004) Performance of Utility-based strategies for Hedging Basis

Risk. Quant. Finance, 4, pp 245-255.

Monoyios, M. (2007) Optimal Hedging and Parameter Uncertainty Appl. Math.

Financ. 18, pp 331-351.

Monoyios, M. (2010) Utility-based Valuation and Hedging of Basis Risk with

Partial Information Appl. Math. Financ. 17, pp 519-551.

82



Papayiannis, A. (2010). Hedging Strategies: Complete and Incomplete Systems

of Markets (Master’s). University of Manchester.

83


