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Abstract

Noel C. Jacob, Master of Applied Science, Ryerson University, Toronto, 2009

Polymerization reactors are characterized by highly nonlinear dynamics, multiple operating regions,
and significant interaction among the process variables, and are therefore, usually difficult to control
efficiently using conventional linear process control strategies. It is generally accepted that nonlinear
control strategies are required to adequately handle such processes. In this work. we develop,
implement, and evaluate via simulation a nonlinear model predictive control (NMPC) formulation
for the control of two classes of commercially relevant low-density polyethylene (LDPE) autoclave
reactors, namely, the single, and multi-zone multi-feed LDPE autoclave reactors.

Mathematical models based on rigorous. first-principles mechanistic modeling of the underlying
reaction kinetics. previously developed by our research group, were extended to describe the dynamic
behavior of the two LDPE autoclave reactors. Unscented Kalman filtering (UKF) based state
estimation, not commonly used in chemical engineering applications, was implemented and found to
perform quite well. The performance of the proposed NMPC formulation was investigated through
a select number of simulation cases on the mathematical ‘plant’ models. The resulting closed-
loop NMPC performance was compared with performance obtained with conventional linear model
predictive control (LMPC) and proportional-integral-derivative (PID) controllers. The results of the
present study indicate that the closed-loop disturbance rejection and tracking performance delivered

by the NMPC algorithm is a significant improvement over the aforementioned controllers.
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Chapter 1

Introduction

Continuous polymerization reactors have long been known to exhibit highly complex and nonlinear
dynamical behavior. For example, Schmidt and Ray [73] demonstrated the existence of multiple
steady states in continuous isothermal methyl methacrylate (MMA) solution polymerization reac-
tors. Hamer, Akramov, and Ray [26] extended the results of Schmidt and Ray to the nonisothermal
case, and showed the presence of multiple steady states and limit cycle oscillations in continuous
MMA and vinyl acetate (VA) polymerization systems. Russo and Bequette [71] produced conditions
for observing input and output multiplicities in continuous styrene polymerization reactors. Ham
and Rhee [25] studied the behavior of LDPE autoclave reactors and found, using an appropriate
compartmental mixing model, the possibility of up to nine different steady states. However, linear
control methodologies which have traditionally been used for chemical process control are funda-
mentally incapable of dealing with the highly nonlinear behavior observed in many polymerization
systems, oftentimes resulting in poor control performance.

Furthermore, it is well known that the maximization of profitability of most chemical processes
demands operation in the vicinity of process constraints. For example, the rate of polymer produc-
tion, or equivalently monomer conversion, in LDPE autoclave reactors is ‘maximized’ by operation
at high temperatures. However, ethylene decomposes extremely rapidly around 300°C leading to
thermal runaway. which is a safety constraint on the operation of the reactor. Other examples of

process constraints include environmental regulations, product quality specifications, and input sat-



2 1 Introduction

uration constraints, to name a few. Unfortunately, most conventional linear and nonlinear control
algorithms do not account for the presence of constraints, potentially leading to poor performance,

and in certain situations, instability.

Over the past two decades, model predictive control (MPC) technology has emerged as a general
purpose control strategy for process control. MPC based on linear process models, or linear model
predictive control (LMPC), has been extraordinarily successful in the chemical process industries
with numerous reported applications, especially in refinery and petrochemical operations, where
the degree of process nonlinearity is not ‘too severe’. The principal appeal of MPC as a control
strategy for chemical processes stems from its ability to explicitly handle process and operational
constraints within its [ramework, leading to more efficient and profitable operation. Despite the
success of conventional LMPC, it is not recommended for systems that exhibit a high degree of
process nonlinearity, or for systems that are required to operate over a wide region, which is the
case for most continuous polymerization reactors. For such systemns, it is essential to design control

systems that take the nonlinear system dynamics into account over the operating range.

Nonlinear model predictive control (NMPC) is an alternative to conventional LMPC, especially
for situations where LMPC performs, or is expected to perform poorly. NMPC inherits many of the
advantageous properties of LMPC, such as explicit handling of constraints, and intuitive treatment
of multivariable (MIMO) systems. However, instead of a local linear model, the NMPC' controller
utilizes a nonlinear representation of the plant dynamics in the controller framework, making it (at
least theoretically) appealing for processes with significant nonlinearity. While this would appear
to be only a natural extension of MPC technology, it is clear from the significantly fewer industrial
applications that NMPC has not had the level of industrial impact that LMPC has had in the

process industries [62, 63].

Furthermore, while academic contributions to the theoretical understanding of NMPC have been
substantial, relatively little work has been done by way of application (both experimental and sim-
ulation based) of ‘modern” NMPC algorithms for the control of chemical processes, especially with
respect to continuous polymerization systems. Thus, the motivation behind the present study is to

investigate the performance of NMPC for the control of LDPE autoclave reactors.
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1.1 Research Objectives

The goal of this study was to develop and test, through simulations, a nonlinear model predictive
control scheme for the control of low-density polyethylene (LDPE) autoclave reactors. The ultimate
prize, from an industrial perspective, to be gained from the implementation of advanced process
control strategies-such as NMPC-on continuous polymerization reactors is that it permits good
control of ‘polymer quality’ indices in the production (polymerization) stage. In the current highly-
competitive industrial environment. good polymer quality control can result in a marked reduction in
degree of product variability, and frequency of downstream blending operations due to production
of off-spec product, potentially leading to significant cost savings [84]. The indicator of polymer
quality chosen in this study is the polymer weight-averaged molecular weight. Industrially, the most
frequently used indicator of polymer grade and end-use properties is the melt flow index (MFI)
or melt index (MI). However, for a particular polymer type, it is usually possible to develop fairly
accurate correlations relating MFI to polymer weight-averaged molecular weight, thus allowing direct
conversion between the two quantities. For example, the review papers of Shenoy and Saini [74, 75]

list a number of published MFI correlations for polyethylenes, which is of interest in this study.

In this work, we consider two classes of industrially relevant LDPE autoclaves, namely, single-
zone (or compact), and multi-zone multi-feed reactors. In both cases we are primarily interested in
applying an NMPC formulation for the control of the reactor temperature (in case of the multi-zone
reactor, the temperature profile). and the polymer weight-averaged molecular weight (controlled
outputs). The flowrates of the feed initiator and monomer stream(s) were the control inputs (ma-
nipulated variables) selected to drive the controlled outputs to their setpoints. The closed-loop
disturbance rejection and setpoint tracking performance of the NMPC controller, for both LDPE
autoclave reactors, was investigated and compared with the performance of conventional LMPC' and

PID controllers.



1.2

1 Introduction

Thesis Organization

Chapter 2 reviews some recent, relevant, industrial and academic contributions to the appli-
cation of NMPC for the control of continuous polymerization systems, with special emphasis

paid to LDPE autoclave reactors.

Chapter 3 briefly outlines the development of the nonlinear process models used in this work.
The relevant reaction mechanism, together with the single and multi-zone LDPE autoclave

reactor models are presented.

Chapter 4 begins with a brief introduction to nonlinear model predictive control. followed by

a detailed presentation of the controller formulation (algorithm) used in this work.

Chapter 5 provides details on the extended Kalman filtering (EKF), and unscented Kalman

filtering (UKF) nonlinear state estimation algorithms employed in this study.

Chapter 6 addresses a number of issues relating to the implementation and closed-loop simu-
lation of the NMPC controller, for e.g. model discretization, simulation structure, controller

tuning, etc.

Chapter 7 presents and discusses simulation results obtained from testing the NMPC control
system on both the single and multi-zone LDPE autoclaves. Wherever possible, the closed-loop

NMPC results are compared with conventional PID and LMPC controllers.

Chapter 8 concludes this thesis with a few comments, and presents some recommendations for

future work and improvements.



Chapter 2

Literature Review

The two basic requirements of any model predictive control (MPC) formulation are. first, an internal
prediction model, also referred to as process, or controller model, and, second, a finite horizon
optimal control, or dynamic optimization, problem that must be solved online to determine control
input trajectories which minimize a given, usually quadratic, cost functional. The origins of MPC
can be traced back to the early 1970s with the development, in industry, of the so called model
predictive heuristic control (MPHC), and competing dynamic matrix control (DMC) algorithms [62].
Ever since, MPC has been a ‘hot’ research area, with published research articles numbering many
thousands. The interested reader is referred to the papers of Qin and Badgwell [62, 63] for a historical
perspective on the current state of MPC technology. In [63], the authors provide a nice overview of
industrial applications of commercial NMPC software, which is of relevance to this thesis.

The MPC control methodology is very ‘general’, resulting in the development of numerous pro-
posed control formulations in the published literature. Furthermore, tremendous progress has been
made in understanding theoretical MPC concepts, such as closed-loop stability, optimality, et cetera.
Obviously, a comprehensive review of these topics is outside the scope of this work, and the reader
is referred to the excellent survey papers of DeNicolao et al. [14], and Mayne et al. [49] for more
information. Linear model predictive control (LMPC), i.e. MPC based on linear process models, has
enjoyed tremendous commercial success, with reportedly over 2000 industrial applications, especially

in industries with ‘moderate’ degrees of process nonlinearity, such as the refinery and petrochemical
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business [63]. The literature dealing with theoretical and practical/implementational LMPC issues
is vast, and is not reviewed here. The text of Maciejowski [43], and the maTLaB MPC Toolbox 2

software [4] provide a good introductory treatment of LMPC concepts.

While significant progress, mainly due to academia, has been made in understanding closed-loop
NMPC properties (see for example [48, 51, 50, 10, 49, 14, 83]). this has not translated as yet into
wide industrial acceptance, as is quite clear from the significantly smaller number of applications
compared to LMPC. Furthermore, academic contributions, both experimental and simulation-based,
toward the application of recent NMPC technology has been somewhat limited. The latter is very
surprising, especially in the context of chemical/process and polymer reaction engineering, since
these processes exhibit strong nonlinear characteristics. which are quite difficult to handle using
conventional control methodologies. However, there have been very good reasons for the reluctance in
embracing NMPC despite its potential benefits. For instance, until recently, the online computation
burden involved with solving a potentially large nonlinear programming (NLP) problem online was
prohibitively expensive. Another practical concern is the presence of nonconvexity and local minima
in the underlying optimization problem, which in certain cases can have disastrous consequences,

for example reactor light-off.

One can conclude that there still exists a strong need to demonstrate, via experiment and simula-
tion. the effectiveness and robustness, or lack thereof of current NMPC formulations for the control
of chemical process systems, especially polymerization systems where the potential for benefits from
NMPC is large. This is the motivation behind the present research into the NMPC control of
LDPE autoclave reactors. In this review, we focus primarily on literature dealing with NMPC ap-
plications and simulation-based studies on continuous polymerization systems. However, since the
amount of published research on NMPC control of continuous polymerization reactors is actually
relatively small, we also include in this review a few relevant NMPC studies and applications on
other chemical processes. Note that we do not review the growing literature on NMPC control of

batch polymerization systems, where the impact NMPC could be just as significant.



2.1 NMPC of Continuous Polymerization Reactors 7

2.1 NMPC of Continuous Polymerization Reactors

Aln, Park, and Rhee [1] compared experimentally the closed-loop performance of NMPC, LMPC,
and PID controllers for the control of monomer conversion and polymer weight-averaged molecular
weight in a lab-scale continuous methyl methacrylate (MMA) solution polymerization reactor. Their
extended Kahnan filter (EKF) based NMPC scheme utilized a detailed first-principles nonlinear
process model coupled with input/output disturbances to predict future plant behavior. Estimates
of conversion and molecular weight were obtained inferentially using online density and viscosity
measurements, respectively. The results showed significant improvement in closed-loop performance
of the NMPC controller, over the LMPC and PID controllers, for both servo and regulatory control.

The research group of Prof. Bequette at Rensselaer Polytechnic Institute has worked extensively
on modeling and control of styrene polymerization systems. In particular, the articles Russo and
Bequette [70], Schley, Prasad, Russo, and Bequette [72], and Prasad, Schley, Russo, and Bequette [61]
describe the application of an EKF based nonlinear quadratic dynamic matrix control (NL-QDMC)
approach, proposed by Lee and Ricker [42], for the control number-averaged molecular weight and
other polymer properties, such as polydispersity, in continuously stirred styrene polymerization
reactors. They show, through simulations, that NL-QDMC controller performs adequately well in
disturbance rejection and setpoint tracking situations.

BenAmor, Doyle I1I, and McFarlane [5] reports on an industrially-relevant simulation-based study
in which the problem of grade transition control in polymerization reactors is considered through
the coupling of an industrial real-time optimization (RTO) package-Rigorous Online Modeling and
equation-based optimization (ROMeo)-with an NMPC control system. The goal of their work
was “to demonstrate that these (control) algorithms can be incorporated into the framework of
commercial grade software for online applications”. The performance of their RTO-NMPC-based
control scheme in polymer grade transition situations was tested using continuously stirred MMA,
and gas-phase fluidized bed polyethylene reactor models. The simulation results showed that their
receding horizon estimation (RHE) based controller provided good tracking performance, even in
the presence of reasonable model mismatch and measurement noise.

Ali, Abasaeed, and Al-Zahrani [2] applied an NL-QDMC control scheme due to Ali and Zafiriou [3]
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for the stabilization of gas-phase polyethylene reactors. They showed, using simulations, that multi-
loop PI control resulted in unacceptable closed-loop performance, potentially leading to reactor
light-off, even for relatively small process disturbances. Furthermore, using PI controllers, it was not
possible to utilize all available degrees of freedom due to the nonsquare nature of the reactor model.
The designed NL-QDMC scheme was shown to posses excellent closed-loop disturbance rejection

and setpoint tracking properties, in addition to being able to take advantage of the nonsquare plant.

2.2 Control of LDPE Autoclave Reactors

While several research papers have been published dealing with advanced control of styrene and
MMA polymerization reactors, comparatively very little has been done in the area of high-pressure
LDPE autoclave reactors. - One of first published works on the control of LDPE autoclaves was
that of Marini and Georgakis [15, 46], where they considered the problem of temperature control
in imperfectly-mixed single-zone autoclaves. They show that classical PI controllers are incapable
of stabilizing the system over a wide operating range, and, from system dynamics considerations.
propose a so called ‘reaction rate controller’, which is able to adequately control the reactor tem-
perature over a wide range. This work, however, did not ‘directly’ consider molecular or end-use
properties of the polymer, which is very important in industrial applications.

Berber and Coskun [6] investigated, via simulations, the control of reactor temperature profile in
a three-zone multi-feed autoclave using a linear QDMC controller. The temperatures in each zone
were controlled by manipulating initiator feed rates to the respective zones. Again, direct online
control of polymer molecular properties was not considered in the study. Their siimulations showed
that the QDMC control scheme delivered superior closed-loop regulatory and servo performance
compared to PI control. It must be noted that the results in their study indicate an unusually slow,
damped response under PI control, which might have more to do with over-conservative tuning than
poor performance.

Ham and Rhee [25] used a two-compartment four-cell compartmental mixing scheme to model
the dynamical behavior of so called slim-type LDPE autoclave reactors. They performed one and

two-parameter continuation analyses in order to study the steady state characteristics of the reactor
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model. In addition, they developed PID and pole placement controllers for the control of the reactor
temperature. The showed, through simulations using the multi-compartment reactor model, that
the pole placement controller yielded better closed-loop performance than the PID controller in
reactor startup and setpoint tracking situations.

Singstad, Nordhus, Strand, Lien, Lyngmo, and Moen [76] presents details about a collabora-
tive project between SINTEF Automatic Control and STATOIL Petrochemicals and Plastics on the
development and commissioning of a multivariable nonlinear control system for STATOILs LDPE
autoclave reactors in Bamble, Norway. The multilevel control scheme is designed to control tempera-
ture profile and production rates at the basic level, and polymer quality properties at the supervisory
level. The control strategy is based on the well known feedback linearization, or internal nonlinear
decoupling, approach, whereby the nonlinear model is transformed into an equivalent linear system
by appropriate nonlinear transformations. Results from the implementation of this strategy on the
actual plant show a considerable reduction in production of off-spec product. Singstad et al. [76] also
presents simulation results which show the feedback linearization strategy provides superior control

performance compared to multi-loop PID control.






Chapter 3

Model Development

The polymerization of ethylene in a LDPE autoclave reactors follows the well-established free-radical
chain growth reaction mechanism. Free-radical polymerization takes place in the presence of one or
more initiators, such as benzoyl peroxide (BPO) and dioctanoyl peroxide (DCT), which dissociate
into primary radicals in the reaction mixture. Primary radicals react readily with free monomer
molecules generating growing (or live) polymer radicals which sequentially add monomeric units to
the polymer chain. In this Chapter, we briefly describe the polymerization reaction mechanism and
the resulting process model used in this study. For a more comprehensive discussion of free-radical
polymerization, the reader is deferred to the texts of Kumar and Gupta [39], and Rudin [69]. The
details presented in this Chapter lean heavily on the work of Dhib, Gao, and Penlidis [16], Dhib and
Al-Nidawy [15]. and Khazraei and Dhib 37|, which deal specifically with the issue of free-radical

polymerization in the context of LDPE reactors.

3.1 Reaction Mechanism

The free-radical LDPE production takes place at extremely harsh temperature and pressure condi-
tions when the thermodynamics of the reaction favor the polymerization of ethylene. Commercial au-
toclave and tubular reactors usually operate in the vicinity of around 150-270°C and 1400-2000bar.

In order to develop first-principles, mechanistic process models capable of adequately describing the
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dynamic behavior of LDPE autoclave reactors, it is first necessary to postulate an experimentally
verified kinetic reaction mechanism. The overall reaction mechanism can be classified into four dis-
tinet parts, namely, initiation, propagation, termination, and chain transfer. In this Section, these

reactions will be discussed in greater detail.

3.1.1 Initiation

The initiation stage refers to the generation of monomeric radicals R; from free monomer molecules
in the reaction mixture. In general, initiation can occur in one of two ways, chemical and self
initiation. Though the effect of chemical initiation usually outweighs that of self initiation, both are

considered in this reaction mechanism.

Chemical Initiation

Free-radical polymerizations are usually aided through the addition of chemical compounds known
as initiators to the reacting mixture. The function of initiators is to supply primary radicals I?,, to
the system, which then combine with monomer molecules to generate monomeric radicals. Primary
radicals are usually generated by the homolytic decomposition of initiator molecules as seen in
equation (3.1a) below. The most common initiators are azo and peroxide based, though redox

initiators are used occasionally [39].

L (3.1a)

K,

R.+M ' Ry (3.1b)

We assume that the peroxide initiator-dioctanoyl peroxide-is used to initiate polymerization in the

LDPE autoclave reactors modeled in this study.

Self Initiation

At high temperatures, monomer molecules spontaneously react to form monomeric radicals. This

process is called self initiation, and can be represented by equation (3.2) below.

Kin

3M 2R, (3.2)
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3.1.2 Propagation

In the propagation stage, live polymer radicals grow in size through the sequential addition of
monomer molecules at the active center of the growing chain. This process can be represented for
polymer chains of any length by equation (3.3) below [15, 37]

K,

Rp+ M Besi (3.3)

3.1.3 Termination

Termination refers to reactions in which two live polymer radicals mutually annihilate each other
resulting in the formation of dead polymer. There are two types of termination reactions, combina-
tion and disproportionation. In this work, we assume that chain termination occurs primarily via
the combination mechanism.

B by oy P (3.4)

3.1.4 Chain Transfer

Chain transfer reactions are reactions in which the active center of growing radical chains are trans-

ferred to another molecule, or another location on the growing polymer chain.

Transfer to Monomer

The active center of growing polymer chains can be transferred to free monomer molecules, which
act as transfer agents, resulting in the formation of dead polymer and monomeric radicals.

Kim

Rn+M P, + R, (3.5)

Transfer to Polymer

Dead polymer chains can revert back into growing polymer radicals by transfer of the active center
from the growing radical to the dead polymer. Transfer to polymer reactions are responsible for the
formation of long chain branching (LCB), which can significantly affect polymer microstructure and

molecular weight distribution (MWD).

Ry By oty B o (3.6)
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3-Scission to Secondary Radicals

Beta scission of live polymer radicals essentially results in the formation of dead polymer chains P,

together with monomeric radicals R as seen in equation (3.7) below.

Ky

P,, = 1\)1 (37)

Intramolecular Transfer

Intramolecular transfer, also known as backbiting, refers to the reaction in which the active center
at the end of a growing polymer radical is transferred to an internal ~-CHy~ group in the polymer

chain, resulting in the formation of short chain branched (SCB) polymer microstructure.

Ky

R, [?hn (38)

3.2 Process Modeling

Depending on the chosen reactor configuration, the reaction mechanism postulated in the previous
Section can be utilized to develop kinetic models describing the dynamic behavior of the reaction
system. Prior to presenting details on the mathematical modeling of LDPE autoclaves. it is beneficial
to discuss some characteristic features of these reactors. The principal feature of the industrial LDPE
autoclave is that the reactor operates, to a very good approximation, adiabatically. This can be
attributed to the fact that the thick reactor walls required to withstand the high operating pressures
prevent heat transfer from the reaction mixture [88]. Consequently, external cooling jackets which
are common in other stirred polymerization reactors cannot be used to remove heat from the system.
The only cooling source available to the reactor is the cool monomer feed stream(s), which typically
enter at about 30-40°C. The author is only aware of one publication, that of Lee. Ham, Chang,
Kim, and Rhee [41], which investigated the behavior of compact LDPE autoclaves model with
internal cooling jackets. However, such configurations are not common in industry. and therefore,
not considered in this study.

The decomposition of ethylene into byproducts such as ethane, methane, carbon, and hydrogen

becomes significant at temperatures in the range of 300°C. The decomposition reactions are highly
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exothermic, occur extremely rapidly, and if initiated, can result in reactor runaway in the order of
just a few seconds. The problem of ethylene decomposition is critically important in LDPE autoclave
reactors, as opposed to, for example, tubular reactors, due to the adiabatic nature of the reactor.
However, ethylene conversion is maximized by operation at higher temperatures, therefore, commer-
cial LDPE autoclaves are usually operated close to the boundary where decomposition dynamics
become dominant. Once initiated, ethylene decomposition is essentially impossible to control, and
reactor runaway is inevitable, therefore. from a process control perspective, the modeling of decom-
position kinetics is of limited usefulness, and was therefore, not attempted in this work. Zhang,
Read, and Ray [88], Villa, Dihora, and Ray [85], and Lee, Yeo, and Chang [40], are examples of

modeling studies which account for ethylene decomposition kinetics in the reaction mechanism.

The residence time in most LDPE autoclave reactors is normally in the 1-2min range, and is,
quite often, lower depending on the particular reaction conditions. The monomer conversion attained
is relatively low, often only in the 10-20% range. Higher residence times (and conversions), while
desirable, are accompanied by higher operating temperatures (due to the absence of reactor cooling),
which is undesirable, since it moves the system closer to instability. In the following subsections, we
present. briefly, first-principles based dynamic modcls developed for two classes of LDPE autoclave
reactors, namely, single-zone autoclaves, and multi-zone multi-feed autoclaves.

e I

fmr

1
a1, Lé‘

Figure 3.1: Single-zone (compact) LDPE autoclave reactor showing the controller, measurements,

and control inputs,



16 3 Model Development

3.2.1 Single-Zone Autoclave Model

Single-zone, or compact, LDPE autoclaves are well-agitated high-pressure vessels with relatively
low L/D ratios, usually in the neighborhood of around 2-5m/m [41]. The pressurized monomer
and initiator feed streams typically enter from the top of the reactor, while the produced polymer
and unconsumed reactants are siphoned ofl [rom the bottom. Figure 3.1 shows a simple schematic
of a typical single-zone autoclave reactor. In certain situations, chain transfer agents (CTA), such
as solvents, are also fed to the reactor in order to modify properties of the polymer obtained,
however, we did not consider such cases in the present study. Despite the high agitation power input
supplied to the reactor, the compact autoclave cannot be considered completely well-mixed. In fact,
experimental results and computational fluid dynamics (CFD) simulation studies [66] point to the
existence of concentration and temperature gradients inside the reactor.

Compartmental mixing models, in which the reactor volume is partitioned into two or more well-
mixed compartments (or cells), are by far, the most commonly employed practice in the modeling of
imperfect mixing in LDPE autoclaves, see for example [45, 85, 87, 41]. The choice of compartment
shape and size can be made based on reactor design considerations, experimental evidence, or from
CFD studies. In the following, for the sake of simplicity, we present the dynamic model pertaining
to the case of the perfectly-mixed reactor. Note that this model can be extended quite easily to
include multiple compartments.

The following assumptions were made in the modeling of the LDPE autoclave reactor

o The reaction mixture is perfectly mixed, i.e. there are no concentration or temperature gradi-

ents inside the reactor.

e The density of the reaction mixture, while temperature and pressure dependent, does not

change appreciably with time, i.e. there is negligible mass accumulation in the reactor [59].

e Heat effects due to mechanical agitation, chemical and thermal initiation, termination, and

chain transfer reactions are negligible compared to the heat of polymerization.

e The reaction mixture behaves as a single-phase system, i.e. the contribution of the polymer

phase to the overall kinetics is minimal.
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o Diffusional effects on the polymerization kinetics are negligible, i.e. the cage and Trommsdorff

gel effects are absent.

Using these assnmptions, simple molar and energy balances on the reacting species can be performed
to yield equations (3.9) to (3.12) for the single-zone reactor. Here, I is the initiator concentration
in the reactor, M is the free monomer concentration, M; is the ‘total’ monomer concentration, and

T is the reactor temperature.

’r{l’—f:rﬁ(qf,l,- =i}V 48]
% =1y + (g My —aM)/V (3.10)
% =rr +(qsTy — qT)/V e

The total monomer concentration M, refers to the ‘combined’ concentration of free monomer, and
bound monomer in growing and dead polymer chains. The notation gy, denotes the feed flowrate
of component X, and Xy denotes the corresponding feed concentration. The total feed and exit
flowrates are given by ¢, and g, respectively. The notation ry refers to the rate of produc-

tion/consumption (or rate of change) of component X.

ri=—2K4l (3.13)
™ = '1\,1,]\1/\0 (3.14)
ran =0 (3.15)

(—AH,) K,M,

3.1€
pCy )

rp =

The heat of polymerization (—=AH)) is a function of the reactor temperature and pressure conditions

given by the correlation [37]
(-AH,) = 84185 + 0.209(T — 273) + 6.105P (3.17)

The density of the reaction mixture p is also a function of the reactor temperature and pressure
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given by the correlation [20]

Il P 1
p=1995.8 — 261.1log <FI(J)O> + 257.7log <7> —63.3log <m> log <i;> (3.18)

The heat capacity C), of the reaction mixture is given by the correlation [36]
Cp = 0.518(1 — xas) + (1.041 + 8.3 x 10747z, (3.19)
Here, 22 denotes the fractional monomer conversion achieved in the reactor defined by
ap = (M, — M)/M, (3.20)

The temperature and pressure dependence of the reaction rate constants K is given by a modified

form of the Arrhenius rate equation.
K = Aexp (—E./RT — AvP/RT) (3.21)

Here, A is the preexponential factor, E, is the activation energy, Av is the activation volume, and
R is the universal gas constant. The kinetic rate law parameters for the above equation are given
in Table 3.1.

Equations (3.9) to (3.12) obtained from molar and energy balances adequately describe the
open-loop dynamics of the reactor temperature, and the initiator, and free and ‘total’ monomer con-
centrations. However, molar and energy balances do not provide any information on the properties
of the polymer (LDPE) produced. In fact, it is impossible to use molar balance techniques to obtain

information about the polymer as at any point in time there exists a distribution, known as a chain

Table 3.1: Reaction rate constant data [15]

A E, Av
Ky 1.83x10™  3.06x10* 5.9
Kin 6.04x103% 3.87x10% 0.0
K, 5.12% 10° 4.21x10? -5.6
Kie 2.53x10° 3.37x10% 9.2
Kpm 120104 1.44x10*  -20.0
Kyp 1.80x10° 9.40x10? 0.0
Kg 1.40x10° 1.93x 104 9.9

K, 3.27x10° 7.47%x103 0.0
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length distribution (CLD), of growing and dead polymer chain lengths in the reactor. In general,
techniques based on population balances on the live and dead polymer chains are required to obtain
such information.

In this study, we employed the method of moments approach in order to model the dynamics of
the LDPE properties. This technique is a powerful, yet compact way to obtain important information
on average molecular properties of the polymer, such as the number and weight-averaged molecular
weights, and the frequencies of short (SCB) and long chain branching (LCB). In the following, the
notation A, refers to the i*" moment of the CLD of the live polymer chains R,,, while y1; refers to

the i*" moment of the CLD of the dead polymer chains P,.

o

A= i n' Ry Wi = Z ntP, (3.22)
=1

ti=1

Using the above definitions, it is possible to develop equations describing the dynamics of the leading
moments of the CLDs of the growing and dead polymer chains. Since the lifetime of live polymer
radicals are usually much smaller than mean residence times in LDPE autoclave reactors. the CLD
of the live polymer chains achieves equilibrium very rapidly relative to the remainder of the sys-
tem. Therefore, in order to reduce the dimensionality of the resulting process model, we make the
assumption that the distribution of live polymer radicals in the reactor reaches steady state instan-
taneously in the reaction mixture., commonly known as the quasi steady state assumption (QSSA).
Using the QSSA, the dynamical (differential) equations corresponding to the leading moments of

the live polymer CLD can be replaced with algebraic equations for the moments given by [37]

Mo =V Ri/Kie (3.23)

\ o Rit (KM 4 KM + Ky + 2K )Mo (3.24)
T U Kieho + KpmM + K + K pp + K -

b s Ry + k’p]”(2>\1 + Ao) + (A’fm]\'[ + Ky + ]\’f]-,/lyg)/\() (3 25)
A Kicho + KpmM + K+ Kpppy + K &

where the rate of radical initiation R; is given by
Ry = 2f Kql + 2K M (3.26)
The dynamics of the leading moments of the dead polymer CLD is given, generally, by

dpi/dt = vy, = (qrpi;, — qua)/V (3:27)
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where

Poo = KieA2/2 + (KpmM + Ky) Ao (3.28)
Ty = K Ao + A’fm]u/\l + 1{),(/\1 s /\0) - A’fp(/\l/t.l s /\0/1,2) (329)
Py = A'tp(/\()/\g -+ /\f) + [('fmlu)\g =+ 1\"5(/\2 — 2)\] + /\U) + A'fp()\?/ll — /\0/13) (330)

When chain transfer to polymer occurs, i.e. equation (3.6). the dead polymer moment equations of
order > 1 depend on the next higher moment, for e.g. v, depends on iy, making this system of
equations open ended. In order to solve this problem, some sort of moment closure technique is
required. Here, we make use of the approximation of Hulburt and Katz [28], with which the third
moment of the distribution 3 is approximated algebraically by lower order moments through the

equation

1 -
3= 2 (2uopz — p3) (3.31)
Mo

The number M,,, and weight M, averaged molecular weights are related to the moments by equa-
tions (3.32) and (3.33), respectively. Usually, the magnitudes of the dead polymer moments greatly

exceed the equivalent live polymer moments. leading to the simplifications shown.

- M1+ Ay I .
M, = My—— = My— 3.32
" ON() + Ao U,UO ( )
e 2 + Az 2
L= My——= = My— 3.33
v o T O w58

3.2.1.1 Notation

In the following Chapters, we will be utilizing, almost exclusively, the notation followed in the control
and estimation literature. Therefore, it is useful to introduce some notation that will be used later
on in context of the single-zone LDPE autoclave reactor model. The differential equations (3.9 —

3.12, 3.27) of the reactor model can be expressed concisely as

i(t) = fla(t),ult).t) (3.34)
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where x(t) € R" is the vector of system states, and u(t) € R™ is the vector of control inputs. Here,

the state and control input vectors are given by

(I M M, T po m p)

Il

(3.35)
7
U = [qfl f ]
The vector of plant measurements y; € R? and controlled outputs z; € R™ are given by
— T
y=2=[T ™,]" = [T Moua/m] (3.36)

3.2.2 Multi-Zone Multi-Feed Autoclave Model

Multi-zone multi-feed LDPE autoclaves are well-agitated high-pressure vessels consisting of multiple
reaction zones, separated by disks, in series with one another. In general, each zone possesses a pair
of feed initiator and monomer streams, which can be manipulated in order to control the reaction
conditions in the particular zone, such that the polymer produced possesses the desired molecular
properties [59]. In comparison with single-zone reactors, multi-zone reactors are usually much longer
with L/D ratios as high as 20m/m [59]. Figure 3.2 shows a simple schematic of a typical multi-
zone multi-feed LDPE autoclave reactor. Each zone in the multi-zone reactor is typically modeled
as a single perfectly-mixed compartment (see for example [11]), or as a series of perfectly-mixed
compartments (see for example [59]).

In this study, we chose to model each reaction zone in the multi-zone autoclave as a single
perfectly-mixed compartn';ent virtually identical to the case of the single-zone reactor model pre-
sented in the previous Section. Note that the modeling assumptions outlined in the previous Section
for the single-zone reactor still hold for each reaction zone in the multi-zone reactor. Backmixing

interaction between adjacent zones are accounted for via the internal upward ¢,, and downward g,

Table 3.2: Single-zone autoclave model parameters

P 1700 bar T; 313.15K

/ 0.8798 Vo 15019 L

Mg 28.05 g/mol qr, 25 cm®/s
Iy 0.1216 mol/L Qfnr 20 L/s

M, 20.89 mol/L
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Figure 3.2: Multi-zone multi-feed LDPE autoclave reactor showing the control inputs. The controller

and measurement structure (not shown) is analogous to Figure 3.1.
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Table 3.3: Multi-zone autoclave model parameters

bl 1700 bar Ry 0.8

f 0.8798 Ry 0.6

My 28.05 g/mol 9% s 10.4 em3/s
I, ,, 0.1216 mol/L qfy s 11.4 cm?/s
My, ., 20.89 mol/L qf1 . 15.0 em3/s
Ty .. 313.15K Gy, 8658 L/s

Vi 350 L Uy, 5661 L/s

Va 350 L Qrys 5661 L/s

Vi 300 L

flow streams. The notation q,, denotes the flowrate of the upward stream from the (i + 1) zone

to the sth

zone, whereas the notation g4, denotes the flowrate of the downward stream from the ith
zone to the (i + 1)™ zone (see Figure 3.2). In order to quantify the effect of backmixing on reactor

dynamics, we developed the so called backmixing ratio R; € [0, 1] given by

Ri = q”A/qu, (337)

which, for any given reaction zone, is essentially the ratio between the upward flowrate into, and
the downward Howrate away from the zone. Note that the final zone does not have an associated
backmixing ratio, as it neither possesses an upward flowrate into, nor a downward flowrate away
from the zone. Other ratios have been proposed to model backmixing in LDPE autoclave vessels,
see for example Chien, Kan, and Chen [11], Pladis and Kiparissides [59], and Chan, Gloor, and
Hamielec [8], however, the present approach was devised as it possesses a number of interesting
properties. Notably, R, = 0 implies the complete absence of interaction, i.e. basically amounting

to physical separation between the i'" and (i + 1)'™ reaction zones, while R; = 1 implies perfect

mixing, i.e. the absence of concentration and temperature gradients between the /™™ and (i + 1)
zones. The backmixing ratios for the multi-zone reactor can be estimated fromn reactor operating
data, or from experimental studies.

As was done in the case of the single-zone LDPE autoclave reactor, molar, energy, and population

balance equations can be developed for each reaction zone in the N-zone multi-zone reactor. The

resulting expressions for the first. middle, and final zones can be summarized, respectively, by the



24 3 Model Development

following three equations.

I X Qry  Xf1+ qui1Xo — qga1 X

AN s g Qfx 1< f,1 T Qu1 A2 — Gd 1A (3.38)
di | %1
X; o X FiF QuiXis 1K1 — e Xs — Qua-1X;

d‘(l — Gfx ., Af, + Qu.i i+ Qi 1 qd, 1 Qu,i—1 (339)
dt ' Vi

Xy + Yxon XN+ aan-1XN-1— qun-1 XN — ¢XN (3.40)
dr - Xw %N o

Here, the notation X, refers to any state variable (concentration, temperature, or moments) in the
it reaction zone, ¢s, , is the feed flowrate of component X to the i" reaction zone and X, is the
corresponding feed concentration, and ry, is the rate of change (or production, consumption) of

1

component X in the i*" zone, for example

ri, = =2Kg I;

3.2.2.1 Notation

The state and control input vectors for the three-zone LDPE autoclave reactor considered in this

study are given by

r=[1 M M, T py m p]" (3.41)

U= [qfl Afm ]T
where, for example
I'= [11 I, 13]
i = [qfl.x qf1 2 qfl.z]

The measurement and controlled output vectors are given by

Yy=2z= [T Mu }T = [T 1’\10#23//113 ]T (342)



Chapter 4

Controller Formulation

Model predictive control (MPC), also known as receding horizon (RH) or moving horizon (MHC)
control, refers to a class of control algorithms that make use of an explicit process model to compute
future control actions. At any sampling instance, the current measurements are used to initialize
an open-loop optimal control problem that is solved over a finite horizon to determine an optimal
control input trajectory that minimizes a certain cost function. The cost function is designed so as
to achieve some performance criteria, for e.g. maximization of profits, minimization of environmental
impact, or as is often the case, minimization of deviations from a desired setpoint. However, only the
first control input in the optimal trajectory is applied to the plant. This procedure is then continued
repeatedly at all future sampling instants. The MPC methodology is different from ‘conventional’
approaches in that, in general, off-line computation of the MPC control law is impossible. Instead,
the control law is ‘derived’ online by the periodic solution of the aforementioned optimal control
problem.

Prior to proceeding further. it will be helpful to clarify some terminology that will be used
frequently in this and subsequent Chapters. The term plant is used here to refer to the actual process
under control, which in this case, is the LDPE autoclave reactor. The mathematical representation of
the plant, in the form of ODEs or DAESs, is referred to as the plant model, or equivalently, controller
model or internal model. In a simulation-based study such as this, both the plant and plant model are

mathematical models. However, as discussed in Chapter 6, the models are different and are handled
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‘separately’ in order to properly maintain this distinction. In general, the MPC formulation places
no restriction on the type of plant models that are acceptable. For example, in conventional linear
MPC implementations, step, finite impulse, and linear state space models have been used to model
the plant behavior. On the other hand, NMPC controllers use nonlinear internal models to represent
the process dynamics. These models can be rigorous mechanistic (i.c. first principles) models, such
as the LDPE autoclave reactor models developed in Chapter 3, or data-driven nonlinear empirical
models, for e.g. second order Volterra [58], and neural network based NARMAX muodels [82, 2],
among many others in the system identification literature. In the remainder of this Chapter, we
provide some necessary background on NMPC, aud present two formulations for the control of the
LDPE autoclave reactors.

The solution of optimal control problems involves finding optimal control policies which lead
to the minimization or maximization of some specified criteria. These criteria are usually lumped
together into a single objective (or cost) function, with each criterion weighted according to its
relative importance. This formulation has important implications in the field of control engineering.
as many control problems can be viewed as optimal control problems with the objective being the
minimization of deviations, or errors, between certain quantities and their respective setpoints. In
continuous-time, a general ‘MPC-relevant’ finite horizon optimal control problem bears the form of

Problem (4.1) shown below.

min 7 (@(t), u(t) = ® (et + o) + / T L e(r), u(r)) dr (4.1a)
subijos 1o
&(t) = f(x(t), u(t),t), x(0) = xo (1.1b)
st € X ult) el (4.10)
u(t) = u(t +Thr) YVt € [t +Tarot + Tp) (4.1d)

Here, J (x(t),u(t)) is a scalar-valued finite horizon cost functional in Bolza form, Tp is the length
of the finite horizon commonly referred to as prediction horizon in MPC parlance. and Ty, is the
length of the control horizon. The functions £ (z(7),u(7)) and @ (x(t + Tp)) are known as the

stage and terminal costs (or penalties), respectively. The solution to Problem (4.1) determines



27

the optimal control input trajectory w*(t), which minimizes the cost function (1.1a) subject to the
constraints (4.1b) to (4.1d). The second constraint (4.1c) forces the states z(¢t) € R", and control
inputs u(f) € R™ along the optimal trajectory to lie in the sets A and U, respectively. In this work,

we are interested primarily in simple bound constraints of the form

X = {a < 2(t) < 70}

U= {uL <u(t) < uu}

Constraints of this form are useful in process control, as it allows the engineer to ‘inform’ the
controller of actuator constraints, and process variable ranges, which usually take this form. The
final constraint (4.1d) is, perhaps, unique to MPC and is used as a means to limit ‘aggressiveness’
of the controller. Depending on the situation, additional constraints can be freely introduced, for
e.g. inequality path constraints on the outputs y or controlled outputs z, however, this formulation
is sufficiently general to handle most cases.

For the case of unconstrained linear systems with quadratic objective functions, i.e. the well
known linear quadratic regulator (LQR) problem, the optimal control problem can be solved analyt-
ically offline via a variety of techniques to obtain the state feedback expression wy = Kok, which
can then be used online to calculate optimal control profiles. However, similar analytic solutions
are unavailable for problems with constraints and model nonlinearity. For these cases, the optimal
control problem must be solved online to determine the optimal trajectories.

Historically, Problem (4.1) was solved ‘indirectly’ using principles from the caleulus of variations,
i.e. by solving the associated Euler-Lagrange equation, and dynamic programming approaches, i.e.
by solving the Hamilton-Jacobi-Bellman equation. However, the current online implementations of
these methods posses a number of disadvantages [21, 7], and as a result, are seldom used in prac-
tice. Instead, an approximate (numerical) solution to Problem (4.1) is usually sought by posing the
optimal control problem as a nonlinear programming (NLP) problem through appropriate param-
eterizations of the control inputs and (optionally) the states. The resulting problem is then solved
using conventional NLP methodologies, from which, sequential quadratic programming (SQP) based
methods are the most popular in the NMPC literature. This method is sometimes called *direct’ as

it involves a direct minimization of the cost function subject to constraints, as opposed to relying on
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——{ NMPC Plant g9(-) p——

Estimator

T

Figure 4.1: Illustration of the control structure

results from optimal control theory. In this study, we use orthogonal collocation on finite elements
(OCFE) to discretize both the control inputs and the states, and the resulting system is solved
using the commercial SQP package SNOPT. The reader is referred to Chapter 6. which deals more
elaborately with issues regarding implementation of the controller formulations.

In digital control, it is standard procedure to regard the control inputs as being constant within
each sampling interval, i.e. a zero-order hold (ZOH) is enforced in-between sampling instances.
Therefore, it is more convenient to represent the continuous-time nonlinear ODE plant model (4.1b)

as a set. of nonlinear difference equations, which is common in the MPC literature.

T = i, Uk be) (4.2)

with the initial state zy. Here, xx € R™ and up € R™ are the plant states and control inputs,
respectively, at the & sampling instant, and ¢, is the corresponding time. Now, using the discrete
model (4.2), Problem (4.1) can be redefined, so that computer implementation of the formulation

is made straightforward. In the following, we assume that both the control inputs and states are

discretized.
3+P-1
;i’l‘illll, J (xj;u5) = @ (z54p) + Z LBy, v (4.3a)
; =
subject to:
Eppr = Fleg, Uk, te)y £ = & (4.3b)
rRE€EX w el (1.3¢)

up =Ujam—1 VE=j+Mj+M+1,...,j+P-1 (4.3d)
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Here, J (x;,u;) is the finite horizon cost functional for the discrete problem, P is the length of
the prediction horizon measured in number of sampling periods, and M is the length of the control
horizon. The stage and terminal penalty functions, £ (rk.ux) and @ (z;+-p), in Problem (4.3) are
now defined in terms of discrete quantities, in contrast to Problem (4.1) where they are functions of
continuous variables. Note that the continuous-time objective (4.1a) could very easily have been in-
corporated into Problem (4.3) instead of (4.3a), by using a suitable numerical quadrature scheme to
evaluate the integral. However, in addition to being simpler to compute, when the cost is quadratic,
the discrete-time objective is identical to the case of the discrete-time LQR problem, making com-
parison between the two cases easier. The decision variable vectors x; and u; are the sequence of

states and control inputs at each sampling instance over the P-interval prediction horizon, i.e.

R T 7 P
xj = [Ij Tipr o0 Tjep-a I,7+P]
T [ 5 ™ 5 ]T
=% Y4y .. Ujppog Ujip

Figure 4.1 is a simple schematic showing the structure of the feedback loop with the NMPC controller.
The Plant block denotes the system we are interested in controlling, which is, in this case, the LDPE
autoclave reactor. The NMPC controller accepts as inputs, the setpoints z, of the controlled outputs
2, and the current estimate 7y of the plant state. The setpoints to the controller can be supplied
manually by operator intervention, or automatically using an upper real-time optimization (RTO)
layer [5]. Using the current estimate as the starting point, the NMPC controller solves a given
open-loop finite horizon optimal control problem to obtain an optimal control input trajectory uj
which minimizes the associated cost function. Only the first input in this trajectory uy is sent to
the plant.

The main requirement for solving the NMPC problem is the availability of the current plant
state. Usually, however, the complete state vector is not measured online, and in general, the
available measurements y; can be some nonlinear function of the state, or some subset of the state.
Furthermore. the measurements taken might be distorted by sensor noise. Therefore, the role of
the Estimator block (i.e. the state estimator) is to use the available measurements to construct an
estimate of the plant state Zj, which is then fed back to the controller. More information on the

state estimators used in this study can be found in Chapter 5.
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In the following Sections, we will present two NMPC formulations, namely, the nominal, and the

offset-free NMPC formulations for the control of the LDPE autoclave reactor.

4.1 Nominal Formulation

The process of modeling most systems of interest involves making simplifying assumptions on, and
approximations of the underlying phenomena. This is especially true for polymerization reactors,
which display complex phenomena, for e.g. nonideal mixing, multi-phase polymerization, and gel
formation, etc. It is an extremely difficult task to properly model these features, and oftentimes,
one must resort to empirical correlations to describe complicated behavior. Due to these factors, it
is essentially impossible to develop a process model capable of matching the plant dynamics exactly.
Fortunately, for process control, it is only essential that the ‘most important features’ of the plant’s
dynamic response are modeled. However, in the nominal formulation discussed here, we assume that
the plant model matches the plant dynamics perfectly. i.e. there is no plant-model mismatch, and
that unmeasured disturbances do not enter the system. Obviously, this formulation cannot generally
be used in practice, however, it is useful as an introduction to more sophisticated algorithms, such
as the offset-free formulation discussed in Section 1.2.

For this formulation, we postulate that the plant dynamics and measurements are described

perfectly by the model

g1 = fzr, vr, wi, tr)
Yk = h(zp, te) + vk (4.4)

2k = g(yx)

Here, y, € RP is the vector of plant measurements (or outputs), which in general, is some nonlinear
function A(-) of the state zx. The vector of controlled outputs z; € R" is modeled, somewhat gener-
ally, as a nonlinear function g(-) of the measurements. though in many cases they are coincident. The
vectors wy € R? and v, € R are the state (or process) and measurement noise, respectively. Both

wy and v are assumed to be zero-mean Gaussian white-noise processes with covariance matrices
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Qr and Ry, respectively, i.e.

wr ~ N(0,Qx)

v~ N (0, Ry.)

The process noise wy, can be viewed as another input to the system. In this case, however, the input
is Gaussian random, and we do not posses control over its magnitude. In order to continue using the
difference equation notation, we assume that the process noise is ‘sampled’ at the beginning of the
sampling period. and is then held constant over the duration of the interval [32]. The measurement
noise vy is assumed to be additive, though more general nonlinear relationships can be modeled, if
necessary.

As mentioned previously, the NMPC objective function is designed by weighting several, some-
times competing, performance criteria within a single cost function. In general, we require that the
controller maintain a number of controlled outputs (or process variables), for e.g. reactor tempera-
ture and liquid level, at some desired setpoints. Furthermore, we desire that the controller do this
by employing ‘minimal” control effort, and without taking ‘very large’ control moves. These notions
are incorporated into a quadratic cost function which penalizes deviations, or errors, between the
controlled output z; and its setpoint z,, the control input ux and its setpoint wu,, as well as the
control rate Auy over the entire prediction horizon. Therefore, the controller NLP that is solved at

each sampling instance is given by

j+P-1
iy leper sl 3 o=l =l + (1.50)
=)
subject to:
Zgees = FlBr R 0,88), Uk = B2k, 85 )s 26 = 9(ye) (4.5b)
Ty un, Aur < Tp,uk, Ay < zy,up, Auy (4.5¢)
W =Ujprr—1 VhE=j+Mj+M+1,... j+P—1 (4.5d)

Here, Q € R is the controlled output penalty matrix, R € R™*™ is the control input penalty
matrix, and S € R™*™ is the control rate penalty matrix. The norm notation used in the objective

function is simply a compact representation of the quadratic form, for e.g.

2k = 2ll% = (zx — 2a)T Q2 — 24) (4.6)
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The control rate Awuy in formulation (4.5) is simply the difference between the current and past
control inputs, i.e.

Aup = Up — Up—1 (4.7)

The setpoints z, and ug are not independent, and must correspond to a steady state (or equilibrium)

of the the plant model, i.e.

g 2 Pl s 05 )
Ys: = h‘(l‘sr ) (48)
zs = 9(Ys)

The closed-loop response of the NMPC controller is tuned using the quadratic penalty matrices Q,
R, and S. Details on the tuning parameters used in this study can be found in Chapter 7.

In the presence of plant-model mismatch and/or unmeasured disturbances, the nominal NMPC
formulation is known to cause steady state errors (or offsets) in the controlled variables. This feature
can be attributed partly due to the structure of the quadratic objective employed in the formula-
tion. For example, when an unmeasured disturbance enters a system at equilibrium, the steady
state control input setpoint uy that is required to maintain the controlled output z; at its setpoint
z¢ changes depending on the type and magnitude of the disturbance. The nominal formulation,
however, lacks any mechanism to estimate this disturbance, and to accordingly adjust setpoint wu,
to the necessary value. Consequently, the NLP solver is forced to compromise by balancing offsets
between the controlled output and its setpoint, and the control input and its ‘incorrect’ setpoint.
The extent of the offset will, obviously, depend on the relative weighting between the two in the
objective function. Note that, in this example, we have chosen to ignore coupled state estimation

issues which also arise due to model mismatch when using this formulation.

4.2 Offset-free Formulation

The nominal NMPC formulation discussed previously does not make any accommodation for mod-
eling inaccuracies or unmeasured disturbances within the controller architecture, leading to steady

state offset in the controlled output. In most chemical processes, such behavior is undesirable as it
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results in, for e.g. variable product quality and suboptimal operation, depending on the extent of
the plant-model mismatch, and/or the type and magnitude of the disturbance. Perhaps, in keeping
with the tradition of the popular PID controller, the most intuitive way of achieving offset-free op-
eration is to augment the model state vector with a number integral states x| corresponding to the

controlled outputs, i.e.
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(4.9)
Fpo=2(t) — zs(t) = e(t)

However, doing so has several disadvantages, most notably, the increased computational cost incurred

due to the inclusion of additional states, which have to be incorporated into the NLP that is solved

online, and the requirement for some anti-windup feature for the integral states in order to prevent

control performance degradation due to integral windup [52].

The most popular choice. by far, in the MPC literature is to augment the state vector of the
plant model with constant disturbance states [52, 57]. It is well known that this essentially duplicates
the function of integral control [23], while avoiding the need for an anti-windup feature [52]. Due
to this property, the disturbance states are occasionally referred to as integrating disturbances.
Obviously, since these states are artificially introduced quantities, they are not controllable, however,
a suitable disturbance model (i.e. controller model) can be designed such that their magnitudes can
be estimated from available plant measurements. The disturbance states essentially function as
‘model equalizers’ in the sense that they serve to ‘equalize’ the plant and model dynamics with
respect to the plant outputs. The flexibility provided by integrating disturbances permits structural

accommodation of the effects of ‘moderate’ plant-model mismatch and unmeasured disturbances

>
<5 Target Tt gy Ut,j Uk
¥ Regulator

f

Calculator

Figure 4.2: Internal view of the NMPC block
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from within the framework of the controller model.
In the offset-frece NMPC formulation, the actual plant dynamics and measurements are approxi-

mated ‘internally’, i.e. according to the controller, by the model

Zr+1 = f(@r, Uk, Dhs Why L)
Yk = h(Zk, P, b)) + U (1.10)
2 = g(yx)
Here, pr ¢ R™ is the vector of disturbance states, and all other quantities are as previously de-
fined. Disturbance models can be classified into input and output disturbance models depending
on where the disturbance py is modeled as entering the plant. For example, an input disturbance
model approximates the effect of model mismatch and /or unimeasured disturbances as an (artificial)
disturbance originating at the plant input. The model (4.10) is general and allows for both input
and output disturbances, as well as some combination of the two. Particular details on the design of
the disturbance model used in this work can be found in Chapter 7. The dynamics of the integrating
disturbance is modeled by
Pe+1 = pr + &k (4.11)
where €, € R™ is assumed to be zero-mean Gaussian white-noise with covariance matrix Si. In the
context of NMPC, this implies that the disturbance remains constant over the prediction horizon.
The disturbance model (4.10) is very general, and allows for the integrating disturbance states to
be introduced into the model dynamics and/or measurement equations in any arbitrary manner.
Ilowever, in this work, we use the simplified disturbance model (4.12), in which the disturbance

states are related linearly to the model dynamics and measurements as shown below.

Trpl = flak, v te) + Xups +wie

hlek, te) + Xype + U (4.12)

Il

Yk
2 = g(yx)
Here, X, € R"*"™ and X, € R?*"¢ are the user-supplied input and output disturbance matrices,
respectively. Figure 4.2 shows the internal structure of the NMPC controller block (see Figure 4.1)
for the offset-free formulation. Here, the controller consists of two components, namely, the Target

Calculator, and the Regulator subsystems. The target calculator uses the current estimates .y of
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the plant state and disturbance py to calculate steady state (equilibrium) targets for the state z; ;
and control input w, j, which is sent to the Regulator. The regulator solves an open-loop finite
horizon optimal control problem to obtain the optimal control input profile uy, which minimizes
a given (quadratic) objective function. The first control input in this trajectory wuy is sent to the
plant. In the following subsections, we will discuss in detail the functions of the target calculator

and regulator in the offset-free NMPC formulation.

4.2.1 Target Calculator

As mentioned previously, the principal limitation of the nominal formulation was that it possessed
no mechanism to adjust the setpoints 24, us to the controller, which, in the presence of modeling
errors, unmeasured disturbances, and/or process constraints, can lead to steady state offsets in the
controlled variables. The offset-free formulation overcomes this limitation through the use of the so
called target calculator. The role of the target calculator in this formulation is to identify a steady
state, or equilibrium, of the controller model (4.10) at which the controlled output zj achieves its
respective setpoint z.. In this Section. the notation z; ; and wu, ; refers to the controlled output and
control input setpoints, respectively, at the j*™ (i.e. current) sampling instance. and p; is the current
disturbance. The target calculation problem is fundamentally an algebraic problem, which can be

stated as

xrj = f(rjour g0y, 0.0)
yrg = M@t 5, p5.) (4.13)
g = !](,Ur.])

The first equation in (4.13) is the equilibrium condition for the disturbance model (4.10), given the
current disturbance p;. The final condition ensures that the equilibrium point corresponds to the
desired setpoints for the controlled variables. The only unknowns in the above equation are the
target states and control inputs, i.e. z; ; € R™ and u; ; € R, respectively. Clearly, for square plants
(i.e. where n. = m), in the absence of constraints, the algebraic problem (4.13) is well-posed, and any

multivariable root-finding algorithin, for e.g. Newton-Raphson, can be used to solve it. Difficulties



36 4 Controller Formulation

arise, however, for ‘thin’ (n. > m) and ‘fat’ (n. < m) plants, where the above system is not well-
posed. For thin plants, there are more equations than free variables, and in general, it is impossible
to find equilibriuim targets which satisfy the controlled output setpoint. For fat plants, there are
fewer equations than free variables, and in general, several equilibrium solutions exist which satisfy
the controlled output setpoint. Obtaining a solution to (4.13) is further complicated by the presence
of process constraints, which might be critical in determining whether the controlled output setpoint
is feasible.

Due to the reasons discussed previously, the problem of identifying steady state targets is resolved
in many proposed MPC algorithms by formulating it as an optimization (i.e. QP/NLP) problem.
For example, following the approach of Muske and Badgwell [52], and Pannocchia and Rawlings [57]

for linear MPC, a quadratic objective NLP such as

min  (z; — 2)T Q21,5 — 25) + (uej — us)T Rtz j — us) (4.14)

Te,jiut.j
can be defined, subject to the steady state controller model (4.13), and any necessary process
constraints. Obviously, the last condition in (4.13) is no longer applicable. Here, z; and ug are the
desired setpoints, which may or may not be achievable, and z; ; and u; ; are the feasible (achievable)
targets. The matrices Q and R in (4.14) can be chosen to penalize (relatively) deviations of the
controlled output target from its desired setpoint, and the control input target from its desired
setpoint. In practice, one is usually more concerned with maintaining the controlled output target
at or close to its setpoint, therefore, the elements in @ are usually selected to be much higher than
the elements in 2.

In this work, we adopt the exact penalty approach proposed by Rao and Rawlings [64] for linear
MPC, and Tenny, Wright, and Rawlings [83] for NMPC. Here, in order to accommodate situations
where achieving the controlled output setpoint is impossible, the requirement that the setpoint be
achieved exactly is relaxed by incorporating it into the target calculation NLP by defining the soft
constraint

2s NSz Sz+n (4.15)

where n € R™< is a nonnegative vector of slack variables. This constraint forces the controlled output

target z;,; to lie within some ‘radius’ 1 of the desired setpoint z,. This radius can be made arbitrarily
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small by appropriately penalizing 7 in the objective function, such that, for all intents and purposes,
the equality z;,; = z, holds when achieving the desired setpoint is feasible. In this study, the {; /13
penalty approach of Rao and Rawlings [64] is used to penalize 7 in the target calculation NLP.

Therefore, the NLP that is solved at each iteration is given by

min %HI]H?Q + Uy + %il.’_\u,,., li%: (4.16a)

Tyt 5.M

subject to:

Ty o= f(Tegwpis 0045), Yeg = M(&e s Pis i)y 205 = 9(Ye4) (4.16b)
2 =S 7 L Za+ N (4.16¢)

T UL S D ga iy STy, Uy (4.16d)

n>0 (4.16¢)

In practice, the {; /I3 penalty matrices Q € R™*" and Il € R"™ are chosen ‘sufficiently large’,
so that the soft constraint is guaranteed to be exact [64]. Here, the notation Awu, ; represents the

difference between the enrrent and past control input targets. i.e.
AUy ;= Uy 5 — Up j-1 (4.17)

Penalizing A, ;. via the quadratic penalty matrix R € R”*™ ensures that, if multiple control
input targets satisfy the controlled output setpoint, the targets selected are ones that are closest to

the previous target [83].

4.2.2 Regulator

The regulator in the offset-free NMPC formulation solves an open-loop optimal control NLP online
to calculate optimal control input trajectories which drive the system to, or equivalently, stabilize
the system about the current controlled output 2, ; and control input u, ; targets. Therefore, given
the current estimate of the integrating disturbance state p;, the resulting quadratic objective based
NLP that is solved at each sampling instance is given by

Jj+P-1
min fzpep = sald+ D Nk = sl + k= wny R+ 1 Aul3 (1.180)

X
k=j



38 4 Controller Formulation

subject to:

Tr+1 = f(xk" ulﬁpj:()',tk')', Yk == h(l’k,])j,tk), Ry = g(yk) (4181))
DL, Aty € Ep, Uk Dug < 2y, uy; Buy (4.18¢)
Up =UjpM—-1 YE=F+MIi4+M+1,..,3¥P=1 (4.18d)

Note that the structure of the regulator NLP is virtually identical to the case of the nominal NMPC
formulation. Furthermore. note that the model constraints (4.18b) above implicitly assume that the

integrating disturbance state p; remains constant over the prediction horizon.



Chapter 5

State Estimation

The operation of any state feedback control scheme, such as model predictive control, is dependent
on the availability of good state estimates at each sampling instance on which to base future control
decisions. However, it is rarely the case that physical measurements of all state variables are available.
and those that are available are [requently contaminated with measurement noise. Furthermore,
the system dynamics might be subjected to random disturbances (or noises) which can neither be
controlled nor modeled deterministically [47]. Therefore, the role of the state estimator in the control
system is to reconstruct unmeasured state variables from the available measurements, and also to
filter the measurements to account for the effects of noise [12]. In this context, state estimators are
oftentimes also referred to as filters.

The state estimation techniques developed for linear systems are based on the highly advanced
linear estimation theory [53]. The well known Kalman filter [34, 35|, originally proposed by R. E.
Kalman in 1960, produces minimum variance and maximum likelihood (optimal) recursive state esti-
mates for unconstrained linear systems [53]. However, the optimal solution to the nonlinear filtering
problem is infinite dimensional [33], and there currently exists no truly optimal solution which can
reasonably be implemented online. Therefore, a number of suboptimmal filtering strategies suitable
to online implementation have been suggested in order to solve the nonlinear filtering problem. In
the following Sections, we outline two such approaches that were utilized in this work, namely, the

extended Kalman filtering (EKF), and unscented Kaliman filtering (UKF) state estimation schemes.
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Note that in the context of the offset-free NMPC formulation, where the quantities that must be
estimated comprise both the state and disturbance vectors, the state vector z, in the discussions to

follow should be thought of as the augmented vector of states and disturbances. i.e.

r 1
Tp — ;;r{ ka]

5.1 Extended Kalman Filter

The Kalman filter [34, 35] is the optimal filter for unconstrained linear systems. The extended
Kalman filter (EKE), as the namne suggests, is an extension of the linear Kalman filtering algorithm to
nonlinear systems. However, the EKF is not an optimal solution to the nonlinear filtering problem,
but is essentially a convenient, improvisatory approach to the solution of a highly complicated
problem. The foundational principle of the EKF is that the state errors are ‘small’, i.e. the true
state is sufficiently close to the estimated state, such that the error dynamics can be described fairly
accurately by a first-order Taylor series expansion [12]. Practically, this amounts to application of
the well-known recursive linear Kalman filtering equations to locally linear approximations of the
nonlinear model.

Despite its ad hoc formulation, and absence of strong theoretical justification, the conceptual

simplicity of the EKF implementation has made it one of the most widely used algorithms for
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Figure 5.1: Continuous-discrete extended Kalman filter.
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nonlinear state estimation. Many published accounts of NMPC applications (see for example [1,
70, 72, 2]) have used EKF based schemes successfully for state estimation. In this Section, we
present the continuous-discrete (i.e. continuous model-discrete measurements) extended Kalman
filtering algorithm which was used in this work. This configuration is appropriate for most chemical
engineering applications, as chemical process models are naturally formulated in continuous-time,
and digital computer systems used to monitor most processes are only capable of sampling the plant
discretely. For details on other configurations, such as the continuous, and discrete EKF algorithms,
the reader is referred to the introductory text of Crassidis and Junkins [12]. Many variations on
the underlying EKF methodology have been suggested in order to improve its performance and
stability properties, for example. the iterated, and second-order EKF schemes [65], however, only
the original EKF scheme is covered here. Here, we shall consider continuous-time ODE plant models

with discrete measurements of the form

a(t) = fla(t) u(t), w(t),t)
(5.1)

h(zg, tr) + v

Yk
where x(t) € R" and u(t) € R™ are the plant state and control inputs, respectively. The vector
of process measurements yr € R? is assumed to be some nonlinear function hA(-) of the state. The
process (or state) noise w/(t) € R?, and measurement noise v, € RP are assumed to be zero-mean
Gaussian white-noise processes with symmetric covariance matrices Q(t) € R™*™ and Rj € RP*P,

respectively, i.e.

E{w(t)w”(r)} = Q(t)é(t — 7)

E {1'“'}‘} = Rpdy;

(5.2)

Prior to proceeding further, it will be useful to explain some of the terminology and notation that
is used throughout the remainder of this Chapter. Here, the true state x(f) refers to the plant
state. i.e. the state of the actual systemm which is under observation/control. In reality, one does
not have access to the true state. The only accessible information about the plant are the available
measurements yy, from which an estimate of the plant state #(t) can be inferred. Therefore, from a
strict notational point of view, all state and controlled output notation used in Chapter 4 should be

thought of as state and controlled output estimates, respectively. The state (or estimation) error &
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is defined as the difference between the true and estimated states, i.e. T(t) = x(t) — &(t). The state

error covariance matrix P(t) € R"*™ is given by the following expectation
Plt) = E{&(t)E"(t)) (5.3)

A characteristic feature of discrete Kalman and Kalman-like filters is the recursive predictor-corrector
structure of the estimation algorithm. The notation &, refers to the predicted state estimate at
time t) given measurements up to time ¢4 1, while 2y, refers to the corrected (or updated) estimate
at ty after the latest measurement y; is available. The covariance matrix notations Pyj,—y and Pyx
are defined similarly.

Figure 5.1 depicts schematically the prediction and correction stages of the continuous-discrete
EKF algorithm. In between sampling instances, the continuous-time nonlinear plant model is numer-
ically integrated forward in time in order to obtain a prediction of the plant state estimate Fy;_;.
However, as seen in the figure, whenever a measurement becomes available (i.e. at each t), the
predicted state estimate is corrected (updated) instantaneously to obtain &y, reflecting the effect
of the most recent measurement. In the following subscctions, we will briefly outline the prediction

and correction stages of the continuous-discrete EKF algorithmni.

5.1.1 Prediction

In the prediction step, the previous state Zx_ 15— and covariance Py _jx—1 updates are propagated
over the sampling interval to give predictions of the current state #jx—; and covariance Pyj_1,
respectively. According to the continuous-discrete EKF algorithm, the predicted state estimate (also
known as the predicted, or a priori mean) is obtained by directly propagating (i.e. integrating) the
nonlinear system over the sampling interval. However, the predicted error covariance is obtained by
propagating the matrix Riccati diflerential equation associated with the continuous-discrete linear
Kalman filtering algovithi, together with the nonlinear system. Therefore, the state and error

covariance predictions can be obtained by integrating the following system

i(t) f (&), u(t),0,t)
P() F(-)P(t) + P(O)FT() + G(HQH)G" (")
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over the sampling interval [t;_,,t;]. Here, the matrices F(-) € R"*" and G(-) € R"*7 are Jacobians

of the continuous-time nonlinear model given by

F()=0f(2(t),u(t),w(t),t)/0F
(5.5)
G()=af(2(t),u(t), w(t),t)/Ow
Finally. the predicted state estimate can be used to calculate the predicted output (or measurements)

U using the equation

Uk = h(Tgpp—1,tk) (5.6)

For online implementation, it should be noted that since the state error covariance matrix P(f) is
symmetrical, integration of the entire matrix differential equation in (5.1) need not be performed.
Instead, only the upper or lower triangular matrices of the differential equation (i.e. only n(n-+1)/2
equations) need be integrated together with the nonlinear plant model. Naive implementations of
the EKF prediction algorithm can result in poor performance for large-scale systems. Numerical
implementations utilizing the special structure of the EKF equations, such as the ESDIRK scheme
proposed by Jorgensen, Kristensen, Thomsen, and Madsen [29], should be preferred in situations

where naive implementations are expected to fair poorly.

5.1.2 Correction

In the correction (or update) step, the predicted state and error covariance are corrected using the
most recent measurements yx. The EKF update algorithm is completely identical to the cases of the
discrete and continuous-diserete lincar Kalman filters, except here, the output matrix of the linear
systemn is replaced with the output Jacobian of the nonlinear system. Therefore, the EKF state and
covariance update equations are given by

Tppk = Trfk-1 + Kilyk — k)

(5.7)

Pope = [ I = KiH(&xp5-1-tk) | Prji—1

where H(Zp5-1,tx) = Oh(Zg)k-1,tr) /0T is the output Jacobian matrix of the nonlinear model, and

K is the Kalman gain given by

Kiy = Pajy HT (Epee1y te) [ H @rpe-1 te) Peppor HT (B b)) + R ] (5.8)
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5.2 Unscented Kalman Filter

The EKF algorithm described previously is conceptually simple, relatively easy to implement, and
performs reasonably well on several systems of interest. However, the error introduced by lin-
earization in the EKF procedure can occasionally lead the filter to perform poorly, and in certain
situations, can cause the filter to diverge completely [32]. For example, Hascltine and Rawlings [27]
provide a number of examples showing the failure of the EKF for relatively simple chemical engi-
neering systems. Furthermore, calculation of analytic Jacobian matrices required by the EKF is
highly time-consuming and prone to human-error. Finite difference Jacobians are an obvious solu-
tion to this problem, however, they are computationally expensive to evaluate and can introduce
additional errors. The unscented transform [30, 31, 33. 32] (UT) on which the unscented Kalman
filter (UKE) is based was developed to overcome problems associated with lincarization in the EKF,
while maintaining the computational advantages of the Kalman-like recursive predictor-corrector
structure.

The UT is founded on the notion that “it is easier to approximate a probability distribution
than it is to approximate an arbitrary nonlinear function or transformation” [33, 32]. Following this
approach, a deterministic set of so called sigrma points about the prior conditional mean are initiated
and transformed through the nonlinear process model to yield a cloud of transformed points. The
statistics of the transformed points can then be used to develop an estimate of the transformed mean
and covariance [32]. Julier, Uhlmann, and Durrant-Whyte [33], and Julier and Uhlmann [32] show
that this procedure results in a filter which is more accurate than the EKF, and whose performance,
in fact, lies between those of the modified, truncated second-order filter, and the Gaussian second-
order filter. Furthermore, the UKF behaves, in every practical sense, as a black box filter, requiring
only that the nonlinear process model be supplied, making it much easier to implement than the
EKF which requires, additionally, that the Jacobian be specified, and the second-order filters which
require both the Jacobian and the Hessian.

Despite its many practical advantages, the UKF has received surprisingly relatively very little
attention, until very recently, from the chemical engineering and process control community. Ro-

manenko and Castro [67] applied the UKF algorithm of Julier, Uhlmann, and Durrant-Whyte [33]
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for state estimation of a highly nonlinear nonisothermal exothermic CSTR. They showed, through
simulations, that the UKF greatly outperforms the EKF, especially in high noise situations where
the effects of linearization begin to affect quality of EKF state estimates. In a follow-up study, Ro-
manenko, Santos, and Afonso [68] compared EKF and UKF performance on a simulated pH system
having a nonlinear measurement model. They showed, using a number of example cases, that the
UKF provides better state estimates than the EKF for this application. Recently, Prakash, Desh-
pande. and Patwardhan [60], and Marafioti, Olaru, and Hovd [41] have applied the UKF for state
estimation in context of nonlinear model predictive controllers. Kolas, Foss, and Schei [38] have sug-
gested a number of modifications to the standard UKF algorithim to handle constrained estimation
problems. They showed that the modified UKF performs well, even for systems with multimodal
probability density functions, using the EKF-failure examples of Haseltine and Rawlings [27].

In this Section, we first present a general UKF algorithin corresponding to the situation where
the process and measurement noise vectors appear nonlinearly in the system and measurement
models, respectively. When the process and/or measurement noise vectors are assumed additive,
as is quite often the case, certain simplifications to this procedure can be made, which shall be
discussed towards the end of this Section. Therefore, consider the general discrete-time nonlinear

model

Trt1 = fTk, uk, wi. tr) -

Yk = h(zp, up, vi, ty)
where wy € R7 is the process noise. and all other quantities are as previously defined. We start by
defining a ‘new’ vector i}, k10 by augmenting the state vector with the process and measurement
noise vectors to give

17 (5.10)

w0 ws [l an ik
Lr_1k—1 = [‘Ek—llk'—l We-1 Vg
where .l'z_”k“l € R"T9%P is known as the augmented state vector. The model (5.9) can be easily

rewritten in terms of ‘1'25—1|A:~1* therefore

Tiarpe = STk wk, tr)

Uk = B (2, uns 1)
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The covariance matrix P k=1 of the augmented state vector can, in the general case, be represented
by the matrix
Peoiw—r B B
P ijp-1 = B Q. PEY (5.12)
PP, B e
However, in many practical situations, the state error, and process/measurement noise vectors are
not correlated among one another, therefore, the above augmented covariance matrix can be simpli-
fied, yielding

Pk k-1 o4 onxp

k—1lk—1 = 09%" Q. 077 (5.13)
QrPxn orx4 [{k—l

where, for example, the notation 0"*7 indicates a zero matrix with n rows and ¢ columns.

5.2.1 Prediction

The prediction step in the UKF algorithm consists of two sub-steps, first, the generation of a set of
sigma points, second, followed by propagation of the sigma points through the nonlinear model to
obtain a set of transformed points, which are then used to develop an a priori estimate of the plant
state. These sigma points are not generated randomly, unlike for e.g. particle filters, but are chosen
‘arefully such that they satisfy certain criteria, namely, they must have a mean equal to the previous
state estimate i‘jf,_llk_l, and a sample covariance equal to the previous covariance P,‘\,‘Lllkil. Using
the notation of Romanenko and Castro [67], letting n® = (n+ ¢+ p), a set of (2n® + 1) zero-mean

sigma points can be computed from the columns of the matrix

AT [ p2n"+1)x1 [(n® + K)P:_]IA__[ - /(n* + K)PE ] (5.14)

Here, k € R is a scalar parameter that can be used to ‘fine tune’ higher order moments of the
distribution, and can be used to reduce overall prediction errors [33]. If the distribution of xy is
assumed to be Gaussian, Julier, Uhlmann, and Durrant-Whyte [33] recommend that & be chosen
such that n® + x = 3, however. a different choice of x might be required if a different distribution of

ry is assumed. Note that in equation (5.14) it is assumed that the structure of the matrix square
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root is of the form P = \/ﬁ\/ﬁT Using this convention, the columns of X,:_”k,_l form the set of
sigma points. However, if the root is of the form P = \/}_’T VP, the rows of /P together with the
zero row vector 0'* 27"+ forms the complete set of sigma points [33, 32]. To evaluate the matrix
square root, Julier and Uhlmann [32] recommend mumnerically efficient and stable methods, such as
Cholesky factorization, for which efficient algorithms already exist. The sigma point set in (5.14) is
zero-mean, but has the same variance as the augmented state 27y k-1 The mean must be corrected
by the addition of the previous estimate Y-y tO all points in the set, i.€. to every column in
Xy k1" Therefore, using Kronecker product notation, (true mean) this can be represented very

nicely by

11 x(2n%+1)

(<}
e
T
Newi?

’ * S
Ap-1lk-1 = Xk—l|k—l + T k-1 (

2n®41)

where the notation 11 ( refers to a matrix of ones with one row and (2n® + 1) columns. Note

that the past estimate (mean) Iy ., , in (5.15) is given by

5 2 ¥ p 1T .
Ey e = [mz—llk—l U e i5:16)

Each sigma point in the set Xy ;. is propagated through the nonlinear model, i.e. integrated
forward in time, over the sampling interval [tx_1, 1], to generate a set of transformed points Xyp_;.

Therefore, with some abuse of notation, this operation can be represented by
‘Yklh—l = f”("yk—l|k—1~ Wk 1 Tl ) (5 17)

The a priori state estimate Iy —1 can then be calculated as a weighted average of the transformed
P k=1 _ o

points, i.e.

2 +1
Brk-1= Y Wik (5.18)

=1

Here, the notation & jx—; refers to the i column of App—1. and W; is the associated weight. The
weights W; are chosen according to the algorithm
k/(n*+k) ifi=1
W, = (5.19)
1/2(n* + k) ifi#1
In general, the weights can be positive or negative depending on the choice of &, however, in order

to provide unbiased estimates, they must satisfy the condition ), W; = 1, which can readily he
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verified from the above equation [32]. The predicted error covariance Prji— ) is given by a weighted
outer product of the transformed points, i.c.

2n"+1

Prje—1 = Z Wi X kpe=1 — Sapk—1 | [ Xikh—1 — Tpe—1 (5.20)
=1

]T
The propagated set of sigma points Xj ;,_; are then mapped through the nonlinear measurement

model h%(-), yielding a set of outputs Y given by
Vi = h*( Xyjr—1, te) (5.21)

The predicted output g is calculated in the same way as the predicted state estimate Typp_y, i.e.
by taking the weighted sum of the outputs Vi, therefore

2n" +1

Je= Y Widis (5.22)
=1

Finally, the innovation covariance P, and the cross correlation P, matrices can be calculated from
the following expressions

2n*+1 .
Py= D Wi[Vik = dx][Vik = ] (5.23)
sl
2n%+1 i
Bey= Z Wi Xike-1 = Exjk—1 ] [ Vik — 9k | (5.24)

i=1
If the process and/or measurement noise vectors are additive, take for example, the disturbance
model (4.12), the model state vector need not be augmented with the appropriate process and/or
measurement terms. Instead, for additive process noise, the covariance matrix @ can be added
directly to equation (5.20), i.e.
2nt+1
P == ‘/‘7 X ol A’ & T fd 2r’
k=1 = Qk + [ Xikik=1 — Erpeo | [ Xikp—1 — Erjk—1] (5.25)
i=]
Likewise, for additive measurement noise, the covariance matrix 12, can be added directly to equation

(5.23). i.e.
2n®+1

Py=Ri+ > Wil¥ik =] [Vin - s ]" (5.26)

2=l
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5.2.2 Correction
The UKF state and covariance updates can be calculated using the following equations

Tyip = Tppp-1 + Ki(ye — k)

(5.27)
P""“" B P’-‘U\'—I = }\”\"P’/I\’Z
where the Kalman gain K for the unscented filter is given by
Ky = PPy (5.28)
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Chapter 6

Controller Implementation

The heart of the NMPC algorithm is the online solution of a computationally tractable optimal
control problem over a finite horizon to determine the control profiles to be implemented. At each
sampling instant, the current plant measurements are sent to a state estimator, such as an extended
(EKF). or unscented Kalman filter (UKF'), which constructs an estimate of the plant state. The
estimated state is then supplied to the NMPC controller to initialize the finite horizon optimal control
problem. Only the first control input g in the optimal sequence is sent to the plant. This procedure
is then performed repeatedly whenever new plant measurements are obtained. In both the nominal
and offset-free NMPC formulations discussed in Chapter 1. we assumed implicitly that a discrete-
time process model zy+1 = f(xk, uk, ty) was readily available. However, the autoclave reactor models
outlined in Chapter 3 are defined in continuous-time, and therefore, must be discretized in order to
make the NMPC formulations amenable to solution using conventional NLP software. In this study,
we employed a ‘complete discretization’ approach using orthogonal collocation on finite elements
(OCFE), i.e. both the control inputs and the state variables were discretized, as opposed to only
the control inputs, which is the case in control vector parameterization (CVP) based approaches.
In this Chapter, we provide a detailed description the particular OCFE scheme implemented in this
study.

Orthogonal collocation belongs to a family of numerical integration schemes collectively known

as the method of weighted residuals (MWR). The underlying assumption of MWR methods is that
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the solution to any system of differential equations can be approximated by a linear combination of
chosen trial (or basis) functions, i.e.

N

B(t) =) awpu(t) (6.1)

=

where Z(t) is the solution profile, @,(t) are appropriate trial functions, and a; are unknown coef-
fcients. In general, MWR methods can be applied to help solve ODE, DAE, and PDE systems,
however, the discussion in this section is focused mainly on ODE systems. For an arbitrary ODE
system given by &(t) = f(z(t).u(t),t), a residual function R(t) can be defined by substituting the

trial solution (6.1) into the ODE model to give
R(t) = 2(t) — f(&(t), u(t),0) (6.2)

The residual function is a measure of the accuracy with which the trial solution approximates the
true solution. The coeflicients a; in equation (6.1) are determined by forcing the integral of the

weighted residual function to be zero over the required domain, i.e.

/.th, w;R(t)dt =0 (6.3)

to

Vi = 1,2,...,N. The choice of weighting function w; in equation (6.3) is characteristic of a par-
ticular MWR technique. For example, if w; = t*~!, then the MWR technique is referred to as the
method of moments, since the first N moments of the residual function are forced to be zero. A
detailed discussion of other MWR techniques can be found in the seminal texts of Finlayson [22],
and Villadsen and Michelsen [86].
The collocation method forces the residual to be zero at N distinet points ¢, (known as collocation
points) in the domain, i.e.
R(t:) =0 (6.4)
Vi=1,2,...,N. In the language of equation (6.3), the weighting function for the collocation method

can be thought of as the shifted Dirac delta function (¢ — ¢;) which has the following property

/tK 8(t — ti)R(t)dt = R(t;) = 0 (6.5)

to

If the collocation points are chosen at locations corresponding to the roots of an orthogonal poly-
nomial, the collocation procedure is referred to as orthogonal collocation. By positioning the collo-

cation points at the roots of an orthogonal polynomial, the collocation method attains a number of
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interesting properties. References [50, 22, 86] and citations therein discuss these properties in some
detail.

Henceforth, in this Section, particulars of the actual orthogonal collocation method used in the
NMPC implementation, along with its extension to finite elements will be discussed. Here, we will
make extensive use of the notation found in the work of Cuthrell and Biegler [13]. Consider the
system (6.6) modeled by a set of ordinary differential equations over the unit time interval ¢ € [0,1]
given by

#(t) = f(z(t), ut) (6.6)

with initial state x(0) = r¢, and where x(t) € R" is the vector of system states, and u € R™ is
the vector of control inputs. Note that, here, the control input « is considered to be constant over
the given interval. It will become clear from future discussions that keeping w constant over the
interval helps us enforce zero-order hold in between sampling instances. Following the principles of
the method of weighted residuals, here, we assume that the solution to ODE system (6.6) can be

approximated by a linear combination of Lagrange basis polynomials given below

K K
t— 1ty .
Txe1(t) =) zig(t) ¢ty =] = (6.7)
i=0 I;:';:é“ ‘ k

where (K -+ 1) is the number of collocation points, r g . (t) is the polynomial approximation to the
solution, r; are unknown coefficients, and f, is the time corresponding to the (k& + 1) collocation
point. Note that the tilde over the polynomial approximation is dropped for notational convenience.
Continuous control inputs u(t), if required, can be handled in a likewise fashion, however, the case
with constant control inputs is only considered here.

The interpolating polynomial (6.7) in Lagrange form possesses two unique properties that bear
mentioning. First, the interpolating polynomial z x 1 (f) evaluated at collocation point ¢; reduces to
the coefficient x;, i.e. xx+1(t;) = x;. This property is advantageous as it implies that evaluation of
the coefficients x; is equivalent to evaluation of the state variables at time ¢;, making evaluation of the
Lagrange polynomial 2. 1(t) unnecessary unless one is interested in determining the evolution ()f'
state profiles in between collocation points—which is not the case in the present application. Second,

the coefficients r; are physically meaningful quantities corresponding to the actual state variables
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of the ODE system [13], as opposed to some arbitrary constants (see equation (6.1)) depending on
the structure of the trial function. This property is somewhat related to the first, and is especially
useful in the implementation of the target calculator and regulator NLPs. By virtue of the fact that
the coefficients of the Lagrange basis polynomial and state variables (at the collocation points) are
equivalent, the definition of bound and path constraints on the states, as well calculation of the
respective objective functions is made significantly simpler.

In this case, the residual function R(t) can be expressed as was done previously, i.e. by sub-
stitution of the Lagrange basis polynomial (6.7)-the trial function-into the ODE model (6.6) to
yield

-

R(t) = Zl'id')i(t) = flzr41(t),u,t) (6.8)

i=0

According to the principle of collocation, the residual (6.8) is required to be zero at all (K + 1)
collocation points, therefore

.
R(t;) =Y zidi(t;) — flj u,t5) =0 (6.9)

=0

Vj = 1,2,..., K. Furthermore, we also require that the initial value problem be provided with
the initial state vector xg, i.e. the state vector corresponding to tg. The only remaining issue is
to specily the locations of the (K + 1) collocation points t; on the solution element [0.1]. In this
implementation, two collocation points were positioned at the lower and upper boundaries of the
element, i.e. at tg = 0 and tx = 1, respectively. The remaining (K — 1) interior collocation points are

™ order shifted Legendre (orthogonal)

positioned at locations corresponding to the roots of a (£ —1)
polynomial. Figure 6.1 is a sample schematic showing a single collocation element with interior
collocation points corresponding to the roots of a third order shifted Legendre polynomial.

The set of nonlinear algebraic equations (6.9) must be solved simultaneously in order to obtain
the Lagrange coefficients z;, which in this case, are also the system states at times ¢;. The derivatives
cf)i(t_,) in equation set (6.9) depend only on the i*" Lagrange basis polynomial and the location of
the collocation point ¢;, and can be evaluated beforehand. In this study, the Octave interface to the
Villadsen and Michelsen [86] routines was used to evaluate Q")L-(tj), and also to identify roots of the

orthogonal shifted Legendre polynomials. With respect to implementation of the NMPC algorithm,

the equation set (6.9) can be thought of as nonlinear ‘model constraints’ for the regulator NLP,
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to t to t3 ta

Figure 6.1: Single collocation element with interior collocation points corresponding to the roots of

a third order shifted Legendre polynomial.

i.e. these equations represent the process dynamics, which are accommodated as nonlinear algebraic
constraints within the framework of the regulator NLP. The notation used in equation set (6.9)
is rather cumbersome, however, it can be expressed quite elegantly using the matrix notation of

Meadows and Rawlings [50], therefore

$oX - F(X,u) =0 (6.10)
where
I 1 0 e 0
bi(t1)  da(ts) ... dx(ty)
b= | ¢ (t2)  Galta) ... oxl(t2)
di(tk) daltx) ... ox(lk) ]
and
Toa  Zo2 ... Tom @p
T, BLE i Bia fT (2T u,t
x=| O ) FIX,u) = b )
| Tra TK2 v ZKn ] i fT(.'l"[I;-,ll».fK) |

Here. n is the dimensionality of the system state vector, and &g is the collocation weight matrix.
The notation z;; € R used above denotes the j' state variable at the i*" collocation point, and

™ collocation point. The collocation procedure

x; € R" denotes the entire state vector at the ¢
described previously is commonly known as global collocation, and was restricted specifically to the

[0, 1] interval. Therefore, it is necessary to expand this procedure to an interval [to, Lx] of arbitrary
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Figure 6.2: Collocation on finite elements with interior collocation points corresponding to the roots

of a third order shifted Legendre polynomial.

length. This can be achieved by, first, positioning the collocation points on [ty k] at locations
that correspond proportionally to the points on the [0, 1] interval, and second, by dividing (scaling)
all but the first row of the collocation weight matrix ®, in (6.10) by the length of the collocation

element, i.e. by (tx — to).

In this study, the global collocation approach using a single collocation element is employed to
discretize the nonlinear model (6.6) over a single sampling period, i.e. over a unit horizon. This
strategy can be extended to a horizon of any desired length using orthogonal collocation on finite
elements (OCFE). The priucipal feature of OCFE is that, here, orthogonal collocation is applied
consecutively on smaller, possibly unequal, segments called elements with the requirement that the
state profiles be continuous across the element boundaries. Figure 6.2 is a schematic showing the
OCFE methodology applied to a P-interval prediction horizon. In this study, each collocation ele-
ment in the sequence was required to be of identical length, equivalent to the sampling interval 7.
The primary advantage of using a single collocation element per sampling period is that it readily
yields state information at the element boundaries, which is required for evaluating the regulator cost
function in the NMPC formulation. However, this approach can become computationally cumber-
some for ‘long’ prediction horizons. In such situations, it is usually beneficial to increase the length
of the collocation element with respect to the sampling interval, as this reduces the total number of

collocation points required, which in turn also reduces the online computational load incurred.

The nonlinear algebraic equations for the OCFE discretized problem, can be expressed analo-

gously to the case of the global collocation approach, therefore

&% — F(X.u)=0 (6.11)
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Here, @ is defined identically to the global collocation case (see equation (6.10)). whereas <i>,¢(,

consists of all rows in @y with the exception of the first row. i.e.

q’:;él) =

o1(t1)  da(tr)

b1 (t2) (/.)'2(12)

o1tk) oa(tk)

ék‘(?l)

)

oK (tk)

The vector u represents the sequence (or profile) of the control inputs over the P—interval prediction

horizon, i.e.

u = [11,7; ulT U u}:_]_

- 3

[t is important to note the ahnost block diagonal (ABD) structure of the collocation weight matrix P

in equation (6.11). This structure arises from the overlap of collocation points at the finite element

boundaries. For example. given a prediction horizon P = 3, the resulting collocation weight matrix
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obtained is given below.

1 0 0
o1(t))  Ga(t) ... ox(ty)
o1(tx) daltx) ... Grltk)
2. b1(th) da(ty) ... k(1)
or(tx)  ooltk) ... ox(tk)
Gi(t))  daltr) ... Sx(t1)
I oi(tx)  oltx) ... Orl(tk) |



Chapter 7

Results and Discussions

Compared to widely-used process control approaches, such as conventional PID and LMPC control,
NMPC is significantly more complicated to implement, and requires much higher computational
expenditure to solve the resulting NLPs. Therefore, prior to implementation, it is extremely impor-
tant to justify the selection of NMPC over established approaches. In this Chapter, we evaluate, via
simulations, the performance of the NMPC formulation for the control of both single and multi-zone
LDPE autoclave reactors. Wherever appropriate, we contrast the NMPC performance directly with
that of PID and LMPC algorithms. Before presenting the results, we will brielly outline the PID

and LMPC controller algorithms used in this study.

PID Controller Algorithm

The standard proportional-integral-derivative (PID) control algorithm basically involves the su-
perposition of the proportional, integral, and derivative controller modes. Given a single-input

single-output (SISO) loop pairing, the basic analog PID controller algorithm is given by

TF 4

t
wlt) = Ke <c(t) + i / e(t)dt + p de;{”) + Uy {7.1)
0 at

Here, e(t) is a scalar defined as the error between a particular controlled output and its setpoint,
therefore, for the it controlled output, €,(t) = z, (t) — z,(t). The closed-loop performance of the

PID controller is governed by three (scalar) tuning parameters, namely, the controller gain K.,
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integral time 7y, arid derivative time 7p. The proportional term in the PID controller algorithm
produces a signal proportional to the error in the controlled outputs, while the integral and derivative
terms produces signals proportional to the integral and derivative of the error, respectively. The net
controller output is the sum of the three signals. The analog PID algorithm (7.1) is not suitable for
online implementation on conventional digital computer systems, therefore, the algorithm is usually

discretized (zero-order hold) and expressed in the iterative velocity form shown below [80, 81]

i T T y 2r LT
Ay = K. (1 4o —%) &y~ K, (1 " —T‘Z) erat + A,.,—;’—ek-z (7.2)

I
where T is the chosen sampling/control interval. Note that the velocity form requires storage of the
past error e, _1 for PI, and the past two errors ey _1, e, _o for PID control.

The tuning parameters used in the PID controller siimulations were obtained using the simple
internal model control (SIMC) tuning rules recommended by Skogestad [77, 78, 79]. Like most
published PID tuning rules, for e.g. Ziegler-Nichols. the SIMC tuning rules require that the process
dynamics be approximated by a first (FOPD'T'), or second order plus dead time (SOPDT) transfer
function model. The reader is referred to the works of Skogestad [77, 79] for details on the derivation
and evaluation of the SIMC rules. For both autoclave reactor models, we found from step tests (not
shown) on the linearized model that an FOPDT model provides an adequate approximation of the
linearized model dynamics, therefore, the tuning rules in [77, 79] corresponding to the FOPDT model
were used. Note that manual detuning of the PID control loops was required in order to obtain good,

stable closed-loop responses for the nonlinear plant model.

LMPC Controller Algorithm

The offset-free LMPC formulation used in this work is the exact linear analog of the offset-free NMPC
formulation discussed in Section 4.2. The linear disturbance (i.e. internal) model employed by the
controller allows for, in general, integrating disturbance inputs on both the states and measurements,
as was the case with the nonlinear disturbance model (4.10), therefore
Zprl = Pxp 4 Dup 4 Typr + Wi
yr = Ceg + Cypr + vx (7.3)

2 = Hyxk
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where the discrete-time linear model Jacobian matrices ® € R™*™ and " € R™*™ are defined by
¢ = Of(rp,up)/0rk|(z,.uy and T' = Of (xx, ux)/Ouk|(z. u,) evaluated at the desired equilibrium
conditions. Here, the function f(xg,uy) represents the discrete-time nonlinear process model. In
practice, however, the discrete model Jacobians are derived from continuous model Jacobians using
the well-known formulas

B g™t

T (7.4)
T= / eATdrB
0

where A € R"*" and B € R™*™ are the Jacobian matrices of the continuous-time nonlinear model
evaluated at the desired steady state conditions, and eA7 is the matrix exponential operator. Soft-
ware implementations of the matrix exponential operation, such as the c2d function in MATLAB,
are available to convert continuous-time linear time invariant (LTI) plant models to discrete-time
LTI models. The disturbance matrix 'y € R™*"¢ models the effect of the integrating disturbance
input px on the system dynamics. The output matrices C' ¢ RP*™ and Cy ¢ RP*™¢ relate the state
x and disturbance py vectors to the measurements y, respectively. The controlled output matrix
H € R"™*P relates the measurements to the controlled outputs z;. The integrating disturbance

states are assumed to remain constant over the prediction horizon, therefore
Pr+1 = P + &k (750

Similar to the offset-free NMPC algorithm, the offset-free LMPC algorithm consists of target calcu-
lator and regulator components. In this case, the role of the target calculator is to identify steady
state (equilibrium) targets of the of the linear disturbance model (7.3), which satisfy the controlled
output setpoint z4. and other necessary process constraints. In this study, we implemented a target
calculator formulation similar to ones proposed by Muske and Rawlings [54], and Pannocchia and

Rawlings [57] for LMPC shown below.

min (g, — ws)T R (usj — us) (7.6a)
subject to:
Fes@® T 2t Capik
ol | (7.6b)

HC 0 . —HCupji + 2
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TLy UL S @ 4sUt g S Ty, Uy . (7.6¢)

The first equality in equation (7.6b) is the steady state condition for the disturbance model, while
the second equality condition requires that the controlled output z; achieves its setpoint z4 at the
target steady state. The regulator formulation employed in the offset-free LMPC formulation is
virtually identical to the case of the offset-free NMPC formulation. By defining the following two
deviation variables, wy = 2y — x;; and vx = ug — uy;, the regulator quadratic program (QP) that

is solved at each iteration is given by

v{}}.izllj lss pler rquic + j§1f|ll;k|l%T11TQllc‘ + loell% + || Avg]|3 (7.7a)
e=j
subject to:
W1 = Pwy + Loy (7.7b)
wr, v, Avy < wg, v, Avg < wy, vy, Avy (7.7¢)
Uk =VjeM-1 Vk=j+M,j+M+1,...,j4+P-1 (7.7d)

In order to facilitate comparison between the closed-loop responses of the NMPC, LMPC controllers,
wherever appropriate, the two controllers were supplied identical tuning parameters. In the following
Sections, we present results of the simulation studies performed in this work in order to observe and
compare the performance of the NMPC formulation for the control of the single and multi-zone

LDPE autoclave reactors.

7.1 Single-Zone Autoclave

Prior to discussing the closed-loop controller simulation results. it is beneficial to investigate the
steady state behavior of the the single-zone LDPE autoclave reactor model. Figures 7.1 and 7.2 are
continuation diagrams showing the bifurcation behavior of the well-mixed single-zone LDPE auto-
clave reactor model, with the reactor residence time ¢ = V/q as the primary bifurcation parameter.
The secondary bifurcation parameter is the feed initiator concentration Iy or the feed temperature
Ts. The bifurcation analysis of the autoclave reactor was performed by first converting the single-

zone reactor model outlined in Chapter 3 into an equivalent dimensionless form. General details on
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Figure 7.1: Bifurcation diagram showing the effect of feed initiator concentration /; on steady state

model behavior.

how this procedure is carried out can be found in references [73, 26] among others. The MATLAB
continuation toolbox MATCONT [18, 17] was then used to perform continuation analyses on the
dimensionless reactor model. Note that solid lines (—) in the figures indicate stable equilibrium
branches, while dashed lines (- —) indicate unstable branches.

The bifurcation diagrams in both cases display the classical S-shaped curve behavior consistent
with the well-known case of the nonisothermal CSTR. A characteristic feature of such curves is the
presence of an unstable equilibrium branch sandwiched between two stable branches. This results
in the occurrence of three equilibrium points in the normal residence time operating region of the
autoclave reactor, which is usually in the 1-2min range. The bottom low-temperature stable branch
is associated with extremely low monomer conversions (almost zero), and extremely high weight-
averaged molecular weights of polymer (around 1 x 10°g/mol). The operating point of the industrial
reactor is usually located on the upper high-temperature stable branch, or on the unstable branch

in the vicinity of the upper stable branch. In this region, the achievable monomer conversion is in
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Figure 7.2: Bifurcation diagram showing the effect of feed temperature T, on steady state model

behavior.

the 10-15% range, while the operating temperature is in the 150-275°C range. The weight-averaged
molecular weight of the polymer produced in this region is in the range of 0.5 x 10°-3 x 10°g/mol,
which is sufficient for most commercial LDPE products. Note that the bottom low-temperature
stable branch is the upper branch in the case of the molecular weight curves, while the upper high-
temperature stable branch is the lower stable molecular weight branch. At reactor temperatures
close to 300°C, unmodeled ethylene decomposition dynamics become dominant. leading to reaction
runaway. Zhang, Read, and Ray [88], and Villa, Dihora, and Ray [85] present results on the bifur-
cation analysis of single-zone LDPE autoclaves, which includes ethylene decomposition kinetics in
the process dynamics.

The general offset-free NMPC formulation discussed in Chapter 4 requires that the structure of
the disturbance model, as well as the controller tuning parameters (for e.g. the prediction, control
horizons, and the quadratic weighting matrices) to be defined. In general, the ability of the controller

to achieve offset-free control of the controlled variables, as well as the closed-loop stability and
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performance characteristics of the controller are governed by the choices of dis.turbam‘,e model and
tuning parameters. In the following subsections, we will discuss some of the major issues encountered
in the design of the NMPC/LMPC disturbance models, as well as the design criteria employed in the
selection of the NMPC/LMPC tuning parameters for the control of the single-zone LDPE autoclave

reactor.

7.1.1 Disturbance Model Design

The ability of the NMPC/LMPC formulations to regulate the controlled outputs at their setpoints
depends critically on the structure of the disturbance model employed. The two primary require-
ments in the design of any disturbance model a..re, first, that the integrating disturbance states are
observable from the available measurements, and second, that the disturbance states capture the
overall ellect of unmeasured process disturbances and plant-model mismatch on the controlled out-
puts. In context of LMPC control of chemical process systems, many authors, for example, Muske
and Badgwell [52], and Faanes and Skogestad [19], recommend the use of input disturbance models
in order to achieve ollset-[ree control of the controlled variables. Their recommendations are, in part,
due to the fact that, in most practical situations, disturbances to chemical processes are expected
to originate at the input, ahead of a dominant time constant, and very often at the control input, as
opposed to at the output, which is presupposed by output disturbance models [83]. However, as rec-
ommended by Tenny, Wright, and Rawlings [83], a careful study of the steady state plant behavior
and expected disturbance dynamics is necessary before choosing an appropriate disturbance model.

The structures of both the linear (7.3) and nonlinear (4.10, 4.12) disturbance models described in
this work permit a combination of input and output disturbances, which is, as we show later, what
was implemented in this study. The general nonlinear disturbance model (4.10) permits the inclusion
of disturbance states in any arbitrary fashion. however, in this study, we utilized the simplified
disturbance model (4.12) in which the disturbance states are assumed to affect the system dynamics
and measurements linearly. This model has the advantage that the matrices X, and X, in the
NMPC disturbance model coincide exactly with, respectively, the matrices T'y and Cy in the LMPC

disturbance model. thus allowing for a direct comparison of the two controllers. Unfortunately,
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the open literature is essentially silent on the actual design of disturbance models. except in the
case of LMPC (see for example, Pannocchia and Rawlings [57], Pannocchia [55], Pannocchia and
Bemporad [56], Muske and Badgwell [52]), and a case by case approach assisted by simulation is
usually required in order to determine if a particular disturbance model is sufficient.

Since only the two controlled outputs are measured online, namely, the reactor temperature
T, and the weight-averaged molecular weight of polymer M, using the results of Pannocchia and
Rawlings [57] for LMPC, we can only include up to a maximum of two integrating disturbance states
in the controller model. In summary, the NMPC/LMPC disturbance model matrices (see equations

(7.3, 4.12)) used in this work are shown below.

0001000 0 0
XIT=r7-= Xy =0y =

00 0 0 0 0 0 0 100

Two points must be made clear on the disturbance model matrices selected here. First, the dynamic
equation corresponding to the reactor temperature (i.e. the d7/dt = fr(x, u,t) equation) was aug-
mented with an input disturbance state (as is apparent from the X,, 1y matrices). This is in line
with the recommendations of [52, 19], albeit for LMPC. Second, the output/measurement equation
corresponding to the weight-averaged molecular weight was augmented with an output disturbance
state (as is apparent [rom the X, Cy matrices). We believe that the output disturbance choice is
more appropriate in this situation as the weight-averaged molecular weight M,, = Moy /u; is a
nonlinear function of the states. If an input disturbance approach was adopted, one would have to
add input disturbance states to one or more dynamic equations in the nonlinear controller model in
order to account for the effects of process disturbances and plant-model mismatch on the molecular
weight dynamics. This approach is somewhat awkward, and does not affect the molecular weight
dynamics/measurement ‘directly’, and therefore, was discarded in favor of the output disturbance

approach.

7.1.2 Controller Tuning Parameters

The selection of controller tuning parameters greatly affects the closed-loop stability and performance

characteristics of the control system. The tuning parameters which must be supplied to the offset-
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free NMPC formulation are the prediction P and control M horizons, the regulator quadratic penalty
matrices Q, R, and S, and the target calculator penalty matrices Q, LI, and R. Unfortunately, as
was the case with the design of the disturbance model, there are no clear guidelines available for the
selection of these parameters, and numerical simulations and/or experiments are usually required
to judge if the selected parameters are appropriate. In the process of implementing the regulator
NLP, we first converted the nonlinear process model into the so called scaled deviation form, by

introducing the following transformations for the states, control inputs, and controlled outputs.
Ty = (Ir - 217“)/.1‘,__

;= (u; — wi,)/ui,

zi = (2~ 2,) /%,
Here, for example, the notation x; € R refers to an individual state variable (i.e. not the entire state
vector), and x, € R is a given scaling factor, preferably the equilibrium value of the state variable.
In addition to improving the conditioning of the resulting NLP, the above transformations also help

simplify selection of the tuning matrices, if the scaling factors chosen are reasonable. In this study,
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Figure 7.3: Effect of prediction horizon on control performance. Closed-loop response to an unmea-

sured +5°C step disturbance in feed temperature T'.
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the scaling factors chosen (for all three quantities) correspond to the original steady state (equilib-

rium) values of the plant. The main advantage, from a tuning perspective, of the scaled deviation

transformations is that, if the scaling factors are chosen appropriately, the resulting scaled quantities

are all of the same order of magnitude. Therefore, one need not be concerned (as much) with scaling

the controlled outputs and control inputs in the regulator and target calculator objective functions
\

via the penalty matrices. The regulator tuning matrices used in all NMPC/LMPC simulations in

this study are shown below.

0 6 0 05 0 1

Since we are interested in ‘better’ control of the polymer weight-averaged molecular weight relative
to the reactor temperature, we penalize molecular weight deviations from its setpoint (six) more
than reactor temperature deviations from its setpoint (two). The control input penalty matrix R
and the control rate penalty matrix 8 above were assigned relatively lower weights, reflecting their
lower importance relative to the controlled output. The target calculator parameters employed in

this study are shown below.
Q=1x10"l, U=2x10°[1 1]' R=1I

Here, the notation /5 denotes a two-by-two identity matrix. The matrices Q and 1l are supplied with
sufficiently high values in order to ensure that the variable n (which is, informally, the discrepancy
between the controlled output target and its setpoint) in the target calculation is as small as possible,
subject to the process dynamics and constraints. For square plants, as is the case here, the choice
of matrix R is not critical, therefore, here it is assigned the identity matrix.

The remaining NMPC/LMPC tuning parameters which must be specified are the prediction and
control horizons. In general, long prediction horizons are desirable, as this allows the controller to
‘see’ future plant behavior and take appropriate control actions. Furthermore, long prediction hori-
zons might be required in order to stabilize plants operating at unstable operating points. However,
increasing the length of the prediction horizon in turn increases the online computational power
required to solve the resulting larger NLPs, which is obviously undesirable. Therefore, there is

singnificant incentive to keep the prediction horizon as small as possible, while at the same time



7.1 Single-Zone Autoclave 69

272 T T T T
M=
o — M=
e, 200 /N e M=6 1
&
E -
=
L 1 1
10 15 20 25
- Time, t [min.]
g 516 . : . T
3
50
b $ -
|
=]
X 4
5
|= P=6 M =
o M =27
3 ....... A/I -
'E; 1()5 1 o s L 1
= 0 5 10 15 20 25

Time, ¢ [min.]
Figure 7.4: Effect of control horizon on control performance. Closed-loop response to an unmeasured

+5°C step disturbance in feed temperature T,

cnsuring adequate closed-loop performance and stability. Figure 7.3 shows the effect of increasing
the prediction horizon on the closed-loop response of the controlled outputs. The control horizon in
each case is set equal to the prediction horizon to ensure consistency. It is clear from the figure that.
while increasing the prediction horizon from one to two yields some improvement in the closed-loop
control performance, any further increase in the prediction horizon does not yield any discernible
improvement in control performance. In this study, a prediction horizon P = 6 was selected for use
in all the closed-loop controller simulation cases presented here.

Figure 7.4 shows the effect of varying the control horizon on the closed-loop response of the
controlled outputs. In this case, for the sake of comparison, the prediction horizon is kept con-
stant at six. The results obtained from these simulations are consistent with known results from
LMPC, specifically, that reducing the control horizon relative to the prediction horizon results in a
corresponding decrease in ‘controller aggressiveness’. Here, the NMPC controller with a unit con-
trol horizon exhibits a relatively slow. gradual response with little, if any, overshoot, while longer

control horizons produces more aggressive control response with overshoot. However, much like the
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prediction horizon results discussed previously, increasing the control horizon beyond a value of two
produces no significant change in closed-loop response, i.c. there is negligible increase in controller
aggressiveness. In this work, we selected a control horizon M = 2 for use in all closed-loop controller

simulations performed.

7.1.3 Simulation Results

Industrial chemical processes are regularly affected by nonzero-mean unmeasured load disturbances
during the course of operation. These disturbances generally originate at the process and/or control
inputs, and have the ultimate, negative effect of driving the system away from the required operating
point, which is obviously undesirable. Disturbances to polymerization reactors can adversely affect
the properties, quality of the produced polymer, potentially leading to unmarketable product and/or
economic losses. Therefore, a critical requirement of any industrial process control system is its
ability to ctfectively compensate for (or reject) nonzero-nican process disturbances.

Figures 7.5 and 7.6 present simulation results comparing the closed-loop disturbance rejection
responses of NMPC, LMPC, and PID controllers for the single-zone LDPE autoclave reactor. We
show results of two kinds of process disturbances which can reasonably be expected to affect the
reactor during online operation. First, we considered the case of an unmeasured step disturbance in
the feed temperature T (see Figure 7.5), and second, the case of an unmeasured step disturbance
in the feed initiator concentration Iy (see Figure 7.6). In both cases, we assume that NMPC
controller model matches the plant dynamics perfectly, i.e. there is no plant-model mismatch, except
of course, for the unmeasured disturbance entering the plant. The simulation results show that both
linear and nonlinear MPC controllers perform adequately well, and are able to quickly return the
controlled outputs to their respective setpoints following the process disturbances. However, the
PID control system performs relatively poorly in both cases, providing a very slow, gradual return
ol the controlled outputs to their setpoints.

It is clear from Figures 7.5 and 7.6 that the ‘mixed disturbance’ based offset-free LMPC for-
mulation (i.e. one input disturbance on the temperature equation, and one output disturbance on

the molecular weight measurement equation) described previously performs reasonably well in the
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presence of unmeasured process disturbances. However, our simulations reveal interesting results
if an input disturbance model is used instead, as is the recommendation of many researchers for
LMPC. The results of this investigation are presented in Figure 7.7, here, we compare the closed-
loop controlled output responses of input disturbance based offset-free NMPC, LMPC formulations
following injection of a step disturbance in the feed initiator concentration. In this situation, the
output disturbance state on the M, measurement equation is eliminated, and instead, the dynamic
equation corresponding to the second ‘dead polymer’ moment iy is augmented with an input dis-
turbance state. The disturbance model matrices corresponding to this particular arrangement of
integrating disturbance states are given below.
YT [T _ 00010 00 T il — 0 0
iw — Sd — y = d =
000 00 01 0 0

The simulation results show that the closed-loop response of the input disturbance based NMPC
controller does not differ appreciably from the mixed disturbance based controller (see Figure 7.6).
However, the closed-loop response of the input disturbance based LMPC controller response does
appears to be sensitive to the disturbance model employed. Although this cannot be observed within
the time frame of the presented results, the input disturbance based LMPC controller does eventually
return the controlled outputs to their respective setpoints, however, in doing so it takes extremely
large excursions away from the desired operating point. which is obviously intolerable. Note that
there exist other (not shown) arrangements of input disturbance states where such erratic behavior
is not observed. However, it is clear, for this particular reactor. that the NMPC controller is more
robust (compared to the LMPC controller) with respect to the structure of the disturbance model
employed.

The performance of model-based control systems for any given application is impacted directly
by the quality of the available process model. This is especially true for NMPC/LMPC control
systems—where process models are used ezplicitly in the calculation of future control moves. In
general, plant-model mismatch has the ultimate effect of degrading overall controller performance,
and can even lead to control system instability depending on the extent of mismatch. Therefore,

it is imperative for any practical control system be robust with respect to (at least) moderate
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levels of plant-model mismatch. Mechanistic models of polymerization reactors, such as the one
presented in Chapter 3, are usually simplified representations of highly complicated physicochemical
reaction phenomena, and therefore, are particularly succeptible to modeling inaccuracies and errors.
The most common types of mismatch in polymerization reactor models can be broadly classified into
parametric and structural mismatch. Parametric mismatch arises from errors in estimation of model
parameters, for e.g. reaction rate parameters, while structural mismatch stems from assumptions
based on model structure, for e.g. well-mixed versus compartmental mixing model.

Figures 7.8 and 7.9 show the disturbance rejection response of the closed-loop NMPC control
system in the presence of parametric mismatch. Two cases of parametric mismatch were considered
here, in the first case, the magnitudes of all preexponential factors (i.e. all the model A’s) and
activation energies (i.e. all the model E,’s) in the internal NMPC controller model were modified
such that they were 5% higher than their ‘plant’ counterparts, while in the second case, these
parameter sets were modified such that they were 5% lesser. The results of our simulations indicate

that the ‘mixed disturbance’ based offset-free NMPC formulation is adequately able to return the
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Figure 7.9: Closed-loop response to an unmeasured —10% step disturbance in feed initiator concen-

tration /5. Comparison of NMPC controller responses with and without plant-model mismatch.
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Comparison of NMPC response with LMPC using input, input/output disturbance models.

controlled outputs to their setpoints in spite of the mismatch in the model parameters. However, it is
clear that this particular type of parameteric mismatch causes a noticable degradation in the closed-
loop controller performance, especially in the +5% case, where the misimatch appears to significantly
increase overshoots in the temperature response, and introduce oscillations in the molecular weight
response.

Continuous polymerization reactors are usually required to produce multiple polymer grades,
and are consequently required to operate over a wide range of operating conditions. It is important
that the transition between the multiple operating points (or polymer grades) be efficient in order
to minimize production of off-spec product. NMPC is ideal for polymer grade change situations as
it incorporates a nonlinear process model, which (at least in theory!) describes the reactor behavior
over a wide operating region. Figure 7.10 compares the closed-loop tracking behavior of the NMPC
and PID controllers in response to multiple polymer grade change requests for the single-zone LDPE
autoclave reactor. Note that all three operating points shown are stable equilibriuins on the high-

temperature stable branch. The simulation results show that the NMPC controller is able drive
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the system to the desired operating points extremely quickly with marginal overshoot. The slight
overshoot observed in the reactor temperature response is likely due to its lower weight (with respect
to the polymer molecular weight) in the NMPC objective function. The PID controller, on the other
hand, takes longer to drive the system to the desired operating point, and does so with significant
oscillations in the closed-loop response. It should be mentioned that the same set of PID tuning

parameters were used for both the disturbance rejection and the tracking simulation tests.

Figure 7.11 compares the (controlled output) closed-loop tracking responses of the offset-free
NMPC formulation with and without parametric mismatch. The parametric mismatch used previ-
ously in the disturbance rejection simulations was also used in the tracking simulation tests presented
here. Note that we experienced numerical difficulties (ill-conditioning) in the target calculator NLP,
leading to terminal failure of the controller algorithm in the target calculation step. In order to
solve this problem, it was necessary to modify the values of the matrices @ and II in the target
caleulator objective function. The matrices @ = I and 11 = [2 2] were used in the ‘mismatch’
NMPC tracking simulations as they were found to not cause the mumerical difficulties encountered
when using the default values. Naturally, this is an ad hoc solution to the problem, and a careful
analysis of the source of the numerical instability is required if this algorithm is to be implemented
online. Nevertheless, the simulation results show that the closed-loop tracking performance of the
NMPC controller is not degraded ‘too much’ by the parametric mismatch, and in fact, appears to

be enhanced slightly in the +5% case.

The closed-loop tracking simulation results of the LMPC controller were intentionally omitted
from Figure 7.10, as the response exhibited a highly erratic and oscillatory character. Figure 7.12
compares the performance of the NMPC controller with that of the input disturbance, and mixed
(input-output) disturbance based LMPC controllers in reponse to the first grade change request.
The results show that the input disturbance based LMPC controller is successfully able to drive
the reactor to the next operating point, albeit with significantly more overshoot in the molecular
weight response than the NMPC controller. However. the mixed disturbance based LMPC controller,
which was shown to perform extremely well for disturbance rejection. is unable to track even the

first setpoint change. In fact, if plotted completely, the closed-loop response exhibits sustained,
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erratic oscillations about the setpoint. Note that both LMPC controllers were provided linear models
which were obtained by linearizing the nonlinear plant model about the original steady state. Better
performance can, perhaps, be attained if nonlinear strategies, such as gain or model scheduling, are

used together with LMPC for tracking control.

7.2 Multi-Zone Multi-Feed Autoclave

7.2.1 Disturbance Model Design

In Section 7.1.1, we argued for the use of a mixed disturbance model, i.e. a disturbance model
with a combination of input and output disturbances, for the single-zone LDPE autoclave reactor.
Following the same line of reasoning, we attest again, that a mixed disturbance model approach is
best suited to the multi-zone multi-feed autoclave reactor. In this case, since there are four available
online measurements (three temperatures, and one molecular weight), we can add up to a maximum
of four integrating disturbance states in the controller model. Here, three input disturbances were
added (one each) on the dynamic equations corresponding to the reactor temperatures in each zone,
and a single output disturbance was added on the polymer molecular weight measurement equation.
Accordingly, the offset-free NMPC/LMPC disturbance model matrices employed here are shown
below.

T T 03’\<9 13 03)<9 ‘ 03x3 03><1
‘Y‘u = l‘(I = }".'/ eas (-‘d =
017.9 01><3 leQ 01)3 100

where the notation 0" *™ denotes a zero matrix with n rows and m columns, and /,, an n x n identity

matrix.

7.2.2 Controller Tuning Parameters

The tuning parameters required by the offset-free NMPC/LMPC formulations for the control of the
multi-zone autoclave reactor were selected, in a large part, analogously to the case of the single-zone
reactor. The controller prediction (P = 6) and control (A = 2) horizons were chosen indentically.

The regulator tuning matrices used in all NMPC/LMPC simulations in this study are shown below.
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213 03x1 [3 03)(3
Q= R = 0.5 S =
01)’3 6 03><3 513

)

The controlled output penalty matrix Q was, again, chosen to be a diagonal matrix, with 2’s
corresponding to the reactor temperatures and 6 corresponding to the polymer molecular weight.
Likewise, the control input penalty matrix R is a diagonal matrix with 0.5’s along the main diagonal.
We wish to discourage the use ol large control moves in the feed monomer flowrates gas relative to the
feed initiator flowrates gy, therefore, the diagonal elements in S corresponding to the feed monomer
flowrates are supplied higher values (five) relative to the feed initiator flowrates (one).

Unlike the single-zone LDPE autoclave reactor, the multi-zone autoclave reactor is nonsquare,
possessing more control inputs (six) than controlled outputs (four). In this situation, there exist
multiple steady state (equilibriumn) targets, or equivalently, multiple combinations of control inputs,
which satisfy the controlled output setpoint z, at steady state. Therefore, it is important that the
controller guide the system to a steady state that is ‘profitable’, i.e. one that makes the most practical
sense from an operational perspective. For the multi-zone reactor, a profitable steady state is one at
which the target feed monomer flowrates gy are not shifted ‘too much’ from their design values (in
our simulations, the original steady state values), as this has broader production rate implications.
Instead, we require that the target feed initiator lowrates ¢; be manipulated preferentially in order
to return the controlled outputs to their setpoints. The quadratic penalty matrix R in the target
calculation NLP (see equation (4.16)) is an extremely convenient tool which can be used to achieve
this objective. The matrix R essentially penalizes deviations of the current control input target u; ;
from the previous target u; j—1, therefore, the elements of R can be selected such that ‘large’ moves
in the target feed monomer flowrates are avoided, or equivalently, ‘large’ moves in the target feed
initiator flowrates are [avored. The target calculator matrices used in this work are given below.

[3 03 x3

Q=1x10%I M=2x10*1 1 1 1}"’ R =
03):3 1x10413

Notice that the diagonal elements of R corresponding to the target feed monomer flowrates are sup-

plied relatively large values for reasons previously discussed. The other target calculator parameters
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Q and I are also supplied sufficiently high values, similar to what was done in the case of the single

zone LDPE autoclave reactor.

7.2.3 Simulation Results

The multi-zone multi-feed autoclave reactor is a nonsquare (fat) plant, having more control in-
puts (six) than controlled outputs (four). The state space based formulation of the NMPC/LMPC
controllers is ideally suited to handling multivariable and nonsquare plants, however, single loop
controllers-such as PID require special consideration, as ‘optimal’ loop pairings between inputs and
outputs must first be identified. Several techniques based on singular value decomposition (SVD)
and relative gain array (RGA) analysis among others have been developed to assist in the selection
of loop pairings [9, 80]. Chang and Yu [9] shows how RGA analysis can be extended to nonsquare
systems using the so called nonsquare relative gain (NRG) array methodology. These techniques
can be used to reduce nonsquare fat systems into square subsystems, which can be handled readily
by multi-loop PID controllers.

Fortunately, for the multi-zone autoclave reactor, we can rely on engineering judgement instead
of such rigourous analysis in order to select appropriate loop pairings. For instance, it is well known
that the initiator feed to each reaction zone is extremely effective in regulating the temperature in
the zone. In fact, it is current industrial practice to employ the feed initiator flowrates gy, as control
inputs to regulate the temperature profile in the reactor. Therefore, following the same approach,
in this study, we paired the initiator flowrates to each reaction zone with the reactor temperature
in the zone.

The sole remaining controlled output (i.e. the weight-averaged molecular weight of polymer A7 ,,)
must then be paired with one of the three remaining control inputs (i.e. one of the three feed monomer
flowrates gy, ). This is a relatively straightforward problem as there are only three input-output
pairing combinations possible. In this study, the best input-output pairing combination among the
three remaining options was selected by a simple comparison of the open-loop steady state gains.
The combination of the (input) feed monomer flowrate to the first zone gy, , and the (output)

polymer weight-averaged molecular weight M, was found to possess the highest open-loop gain
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Ky, , = AM,./Agy,, ,, therefore, this was selected as the final pairing.

Figures 7.13 and 7.14 present closed-loop simulation results comparing the disturbance rejection
(controlled output) responses of NMPC, LMPC, and PID controllers for the control of the multi-zone
multi-feed LDPE autoclave reactor. Figure 7.13 shows the closed-loop controlled output response
following the introduction of an unmeasured —5°C step disturbance in the feed temperatures T, , ,
to all three reaction zones, while Figure 7.14 shows the controlled output response following an
unmeasured 10% step disturbance in the feed initiator concentrations Iy, , , to all three zones. The
closed-loop results obtained for the multi-zone autoclave are qualitatively quite similar to the case of
the single-zone reactor. Both the NMPC, LMPC controllers appear to perform very well in returning
the controlled outputs to their respective setpoints following the process disturbances. However, the
closed-loop response of the PID control system is clearly slower than the responses of the other two
controllers. Nevertheless, the PID control system appears to fare better in regulating the multi-zone
autoclave relative to the single-zone reactor.

The effect of parametric mismatch on the closed-loop disturbance rejection performance of the
NMPC formulation is shown in Figures 7.15 and 7.16. Here, the two disturbance rejection simulation
cases presented previously were repeated, however, in this case, the rate law parameters (i.e. all the
model A’s, ,’s) in the internal controller model are perturbed from their nominal (plant) values by
+5% and —5%, respectively. The results indicate that this mismatch does not significantly degrade
the closed-loop performance. However, the closed-loop system appears to be affected more severely
in the +5% case compared to the —5% one.

Figure 7.17 shows the closed-loop tracking responses of the NMPC and PID controllers in re-
sponse to multiple polymer grade change requests for the multi-zone LDPE autoclave reactor. The
LMPC tracking results were, as was the case with the single-zone reactor, omitted since the offset-free
LMPC formulation is unable to guide the system to the desired operating points. The closed-loop
tracking results show that the NMPC controller is able to drive the plant to the desired operating
points relatively quickly, and with marginal overshoot. The closed-loop PID tracking response is
surprisingly quite good, although the overshoots in the response can be significant depending on the

magnitude of the ‘jump’ between operating points.
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Comparison of NMPC, LMPC, and PID controller responses.
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Closed-loop response to an unmeasured +10% step disturbance in feed initiator con-

centration /;. Comparison of NMPC, LMPC, and PID controller responses.
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Comparison of NMPC controller responses with and without plant-model mismatch.
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Comparison of NMPC and PID controller responses.

Closed-loop tracking response to multiple polymer grade (setpoint) change requests.



Chapter 8

Conclusions and Recommendations

EKF and UKF based NMPC formulations were developed and applied for the control of single
and multi-zone LDPE autoclave reactors. The closed-loop performance properties of the proposed
formulations for disturbance rejection and setpoint tracking were investigated through a number of
simnulation case studies. The effect of (parametric) plant-model mismatch on closed-loop NMPC
performance was also studied. Conventional LMPC and PID controllers were also designed for the
control of both LDPE autoclave reactors in order to compare the performance of NMPC with more
‘industrially accepted’ controllers.

Our results showed that, for both MPC controllers, a mixed disturbance model (input distur-
bance state(s) on the reactor temperature dynamical equation(s), and a single output disturbance
state on the weight-averaged molecular weight measurement equation) was adequately capable of
accounting for the effects of unmeasured load disturbances and ‘moderate’ plant-model mismatch on
the plant dynamics. Furthermore, using the single-zone reactor model, we showed that the closed-
loop response of the offset-free LMPC formulation is very sensitive to the distribution of disturbance
states between inputs and outputs, while the NMPC controller is more ‘robust’ in this regard.

The simulation results indicate that only marginal performance improvement can be gained from
implementing NMPC instead of LMPC for disturbance rejection around any given operating point.
In other words, the LMPC controller was shown to perform quite well if the system is operated in

a ‘small’ region around the operating point at which the plant model was linearized. Furthermore,
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both MPC controllers provided significantly superior performance relative to conventional multi-loop
PID controllers—which was found to reject process disturbances relatively slowly.

We showed that the offset-free LMPC formulation is unfit for setpoint tracking purposes for
both LDPE autoclave reactor types, except in certain special situations. The inability of the LMPC
controller to adequately track setpoint changes can be attributed directly to the high degree of
process nonlinearity. On the other hand, both NMPC and PID controllers were demonstrated to
be capable of driving the plant to the desired operating points. However, the PID controller caused
significant overshoots and oscillations in the closed-loop tracking response, especially in situations

where the ‘jump’ between operating points was large.

8.1 Recommendations

The offset-free NMPC formulation was demonstrated to perform quite well over a wide operating re-
gion and under a variety of operating conditions. However, the computational expenditure required
to solve the controller NLPs can be substantial, especially for systems with high dimensionality. such
as the multi-zone multi-feed LDPE autoclave reactor. On the other hand, while the offset-free LMPC
formulation performs reasonably well in the region close to the operating (linearization) point, its
performance was found to deteriorate significantly as the system moved away from the point of
linearization. In the case of the LMPC controller, however, relatively marginal computational effort
is needed to solve the controller QPs. Using gain, model scheduling techniques, the aforementioned
advantages of NMPC, LMPC can be incorporated into a scheduled LMPC controller that is both
computationally inexpensive, and also accounts for nonlinearity in the process dynamics. It is rec-
ommended that more research be performed to determine if acceptable performance can be obtained

using such techniques, especially in setpoint tracking situations.



Nomenclature

Ai i*" moment of the CLD of growing polymer radicals, see eq. (3.22)
i i™ moment of the CLD of dead polymer chains, see eq. (3.22)
p density of reaction mixture, g/L

AH, heat of polymerization (ethylene), kJ/mol

Av activation volume, see eq. (3.21), cm?/mol

1

R; backmixing ratio for the i*" reaction zone, see eq. (3.37)

M, number-averaged molecular weight, g/mol
M,  weight-averaged molecular weight, g/mol

A preexponential factor, see eq. (3.21)

Gy heat capacity of reaction mixture, J/g-K

By activation energy, see eq. (3.21). cal/mol

f initiator cfficiency

! initiator concentration, mol/L

Iy initiator feed concentration, mol/L

K reaction rate constant, see eq. (3.21)

K rate constant of reaction (3.1b), L/mol-s
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rate constant of back-biting reaction, see eq. (3.8), s !

rate constant of initiator decomposition reaction, see eq. (3.1a), s~}
rate constant of propagation reaction, see eq. (3.3), L/mol-s

rate constant of termination reaction, see eq. (3.4), L/mol-s

rate coustant of F-scission to secondary radical reaction, see eq. (3.7), s~
rate constant of chain transfer to monomer reaction, see eq. (3.5), L/mol-s
rate constant of chain transfer to polymer reaction, see eq. (3.6), L/mol-s
rate constant of thermal self initiation, see eq. (3.2), L?/mol?>-s

monomer concentration, mol/L

molecular weight of a single monomer unit, g/mol

monomer feed concentration, mol/L

total monomer concentration, mol/L

non-growing (dead) polymer chain having n monomeric units, mol/L

exit volhunetric Howrate, L/s

feed volumetric flowrate, L/s

th reaction zone, L/s

downward flowrate from the i*" to the (i + 1)
initiator feed volumetric flowrate, L /s
monomer feed volumetric flowrate, L/s

' reaction zone, L/s

upward flowrate from the (i + 1)™ to the i*!

universal gas constant, see eq. (3.21)

rate of radical initiation, see eq. (3.26), mol/L-s
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vr

rm

rr

R,

Rbn

T M,

‘/

TAr

rate of initiator consumption, mol/L-s

rate of monomer consumption, mol/L-s

growing (live) polymer chain having n monomeric units, mol/L

rate of temperature change. K/s

primary (initiator) radical concentration, mol/L

growing (live) radical generated in the back-biting reaction, see eq. (3.8). mol/L
rate of total monomer consumption, mol/L-s

reactor temperature, K

reactor feed temperature, K

reactor volume, L
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