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ABSTRACT 
 
Bridges formed of concrete deck slab over built-up steel-box girders are frequently used in 

bridge construction for their economic and structural advantages. Box girder bridges impose 

structural challenges to get the straining actions for the design of girders.  The objective of this 

study is to determine the load distribution characteristics for continuous composite multiple–box 

girder bridges under CHBDC truck loading. An extensive parametric study was conducted using 

the three-dimensional finite element to evaluate the moment and shear distribution factors when 

bridges subjected to CHBDC truck loading. The parameters considered in this study are the span 

length, number of lanes and number of boxes. Then, simple empirical formula for the bending 

moment and shear force were developed for the structural design. Correlation of the developed 

expressions based on FEA results with available CHBDC and AASHTO-LRFD formula showed 

that the former allow engineers to design such bridges more economically and reliably. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 General  
 
In recent years, box girder bridges became a popular solution for medium-and long–span 

bridges in modern highways and even in railway bridges. This type of bridges is aesthetically 

pleasing and less vulnerable to environmental conditions compared to open-section Bridge. 

Accordingly, maintenance costs could be significantly reduced throughout the life of the 

structure. 

Box girders are more advantageous than the I-girders due to (i) its high bending stiffness 

combined with a low dead load, yielding a favorable ratio of dead load to live load, (ii) its 

high torsional stiffness which allows freedom in the selection of both the supports and bridge 

alignment, (iii) the possibility of utilizing the space inside the box girder. 

 

Box girder bridges may be made of reinforced concrete, prestressed concrete or steel. Steel 

box girders may be used to support orthotropic steel decks, or concrete deck slab. 

A composite steel box girder is a tub girder that consists of independent top flanges and cast-

in-place reinforced concrete decks. Box girder bridges have single or multiple boxes as 

shown in Figure 1.1. The composite box section has a superb torsional rigidity. On the other 

hand, the non-composite steel section becomes critical when subjected to large torsional 

demand. The naked steel girder usually supports only the loading during the early stages of 

bridge construction prior to hardening of the concrete deck. The non-composite dead load 

stress may account for up to 60 – 70 % of the total stress for typical box Girder Bridge 

(Topkaya and Williamson 2003). 

The use of multiple box girders, shown in Figure 1.2 in bridge deck construction can lead to 

considerable economy due to their superb torsional stiffness that may be 100 to more than 

1000 times that of comparable I-girders (Heins and Hall 1981). Figure 1.3 shows view of a 

twin-box girder bridge built in USA. 
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1.2 The Problem  
 
The live load distribution factor equations are among the most important bridge design 

parameters because they assist in providing accurate distributed moment and shear forces, for 

the design of girders. The current practice in North America has adopted the load distribution 

factors for the design of multiple box-girder bridges due to their simple use and cost 

efficiency in the design process. In addition, there is neither need for any complex analysis 

nor for computer software programs to obtain the straining actions on the bridge girders. 

However, the equations’ ease of use should not compromise the accuracy and reliability of 

the design.  

Simplified methods of analysis specified in the Canadian Highway Bridge Design Code 

(CHBDC, 2006) for live load distribution factors are based upon the results obtained from 

some bridge structures using grillage, semi-continuum method for which the idealized 

structure was essentially an orthotropic plate theory. One major problem with the orthotropic 

plate method is the evaluation of the flexural and torsional stiffnesses of the flanges and 

girders of the bridge. AASHTO LRFD (2007) specifies empirical studies revealed that for 

shorter or longer bridges the load distribution factor expressions lose accuracy (Zokaie, 

2000). Investigations for the load distribution factors calculated based on North American 

bridge codes have shown that these values may be very conservative in some cases and in 

others they may be unconservative (Yousif, 2007; Samaan, 2004; Nour, 2003). Accordingly, 

more precise expressions for load distribution factors are required to be developed in the 

bridge codes.   Therefore, detailed parametric study is undertaken to evaluate the load 

distribution factors for multiple box girder bridges by utilizing the finite element method.  

 
1.3 Objectives 
 
The objectives of this study are: 

1- Conduct a parametric study, using the finite element modeling, two-span continuous 

box girders under different CHBDC truck loading conditions to determine their load 

distribution factors. The results are correlated with the available CHBDC and 

AASHTO-LRFD equation to determine their level of accuracy. 
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2- Develop more reliable expressions for the moment and shear distribution factors for 

such bridges based on the data generated from the parametric study.  

 
1.4 Scope 
 
In order to achieve the above mentioned objectives for this type of bridges, the scope of this 

study is as follows: 

1- A literature review of previous research work and codes of practice related to the 

structural behavior and load distribution of straight multiple box girder bridges. 

2- Development of the finite element modeling for this type of bridges using the 3D 

finite element analysis. 

3- A parametric study on different parameters governing the bending moments and shear 

forces distributions among girders due to the CHBDC moving truck for both ultimate 

and fatigue limit states. In order to get the load distribution factors, the maximum and 

minimum flexural stresses in the bottom steel flanges near the mid-span and at the 

pier location were determined, respectively. The maximum shear forces at the 

external and internal support locations were obtained. The technique of 3D finite 

element modeling was utilized to obtain these results. The maximum stresses and 

shear forces for the 2D-idealized girder were calculated. Then the load distribution 

factors for moments and shear forces were calculated for all bridges considered in the 

study. The effect of the span length, number of lanes and number of boxes on the load 

distribution factors are also investigated and compared for different bridge 

prototypes. 

4- Deducing of simplified live load distribution factors formulas for multiple box girder 

bridges that can be utilized for the design of the steel box girders. Using the fit curve 

regression method, simplified formulas for shear and moment distribution factors for 

all bridges considered in this study were developed and compared with the existing 

ones available in the CHBDC. The equations induced in this study were function of 

the span length, number of lanes and number of boxes. 

5- Comparison between the available CHBDC code equations, AASHTO code equations 

and the results obtained from finite element analysis results for straight bridges to 
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determine the accuracy of the available equations in the North American bridge 

codes. Figure 1.4 shows the organization chart of the research work. 

1.5 Arrangement of the thesis  
 
In Chapter 2, some previous work and literature review on multiple box girder bridges are 

presented. Chapter 3 includes a description of the finite-element procedure and the 

commercial available software program “SAP2000”, the linear static analysis method used in 

the study and the finite-element modeling of composite multiple box-girder bridges. Chapter 

4 presents the configurations of the composite box-girder bridges considered in the analyses, 

Truck loading conditions and parametric study for load distribution factors. Results obtained 

from the parametric study for all bride prototypes are presented in Chapter 5. In addition, 

Chapter 5 presents correlations between the results obtained from the finite-element analysis 

and those calculated based on the expressions specified in the CHBDC simplified methods of 

analysis as well as AASHTO-LRFD for bending moment and shear force distribution factors 

at ULS and FLS. The results calculated based on the proposed empirical equations for load 

distribution factors are also included in the correlations.  Finally, Chapter 6 summarizes the 

findings of this research, outlines conclusions reached and provides recommendations for 

future researches. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
2.1 General    
          
In the past, a significant amount of research was conducted to predict the behavior of 

different types of box girder bridges in the elastic range. The connection between the 

concrete deck and steel box girder, torsional warping, distortional warping and interaction 

between different kinds of cross-sectional forces make it difficult to accurately predict the 

behavior of all types of composite box-girder bridges. Bridge continuity added to the 

difficulty of the prediction of the behavior of this type of bridges. In the digital computer age, 

that difficulty in the analysis and design of continuous box girder bridges has been overcome 

by the use of the various software programs in the design. Since the overall behavior of 

continuous box girder bridges is always elastic under service loads, methods of linear 

structural analysis, such as orthotropic plate theory, folded plate and finite element, may be 

applied. The goal of work in this study is to develop a simplified method to design such 

bridges, enhance the available design specifications and to better understand the structural 

behavior of box–girder bridges.  

 

2.2 Analytical Methods for Box Girder Bridges 
 
Several methods are available for the design and analysis of box girder bridges. Each method 

is usually simplified by mean of assumptions in the geometry, material, boundary conditions 

and the relationship between its components. The accuracy of such solutions depends on the 

validity of the assumptions made. The Canadian Highway Bridge Design Code (CHBDC 

2006) as well as the American Association of State Highway Transportation Officials 

(AASHTO-LRFD 2007) has recommended several methods of analysis of box-girder 

bridges. The following subsections present a brief review of these methods includes: Grillage 

Analogy, Orthotropic Plate, Folded Plate, Finite Strip, Finite Element and Thin–walled beam. 
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2.2.1 Grillage Analogy Method  
 

Grillage analysis has been applied to multiple boxes with vertical and sloping webs and 

voided slabs, based on stiffness matrix approach. In this method, the bridge deck is idealized 

as a series of “beam” elements in the transverse direction (or grillages) connected and 

restrained at their joints. The continuous straight bridge is modeled as a system of discrete 

straight longitudinal beam members, representing the longitudinal beams at the web 

locations, intersecting orthogonally with transverse grillage members. As a result of the fall-

off in stress at points remote from webs due to shear lag, the slab width is replaced by a 

reduced effective width over which the stress is assumed to be uniform. The equivalent 

stiffness of the continuum is lumped orthogonally along the grillage members. The main 

advantage of this method is the entire bridge superstructure can be modeled using beam 

elements which did not require high demand calculations. However, grillage analysis cannot 

be used to determine the effect of distortion and warping. Moreover, the effect of shear lag 

can hardly be assessed by using grillage analysis. The effect of the continuity of the slab in 

the longitudinal direction is ignored in this method. By using fine mesh of elements, local 

effects can be determined with a grillage. Alternatively, the local effects can be assessed 

separately and put in the results of grillage analysis. 

 

2.2.2 Orthotropic Plate Theory Method 
 

An orthotropic system is defined as a plate that exhibit significant different bending stiffness 

in two orthogonal directions and is presented for use in bridge analysis. Structural continuity 

between all supporting members and their flexibilities may be considered. The stiffness of 

the diaphragms is distributed over the girder length. The stiffness of the flanges and girders 

are lumped into an orthotropic plate of equivalent stiffness. Few researchers, (a many thesis 

Baker, T.H. 1991; Gangarao et al. 1992 ; Mangelsdorf et al. 2002 ; Huang et al. 2002 ; 

Higgins, 2004 ; and Huang et al. 2007 have utilized orthotropic thin plate theory for 

analyzing orthotropic bridge decks. However, the estimation of the flexural and torsional 

stiffnesses is considered to be one major problem in this method. The Canadian Highway 

Bridge Design Code (CHBDC) has recommended using this method mainly for the analysis 
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of straight box girder bridges. The accuracy of the method is reduced significantly for 

systems consisting of a small number of components under vehicular loadings. 

 

2.2.3 Folded Plate Method 
 

 Spatial structures with large flat panels are common in engineering design, such as welded 

girders span of bridges. A folded plate structure or sometimes called prismatic shell is 

composed of a series of individual plane surfaces, jointed together to produce a stable 

construction capable of carrying loads. The lines of intersection between the individual plates 

are usually termed “fold lines or “joints”. The method can be used for simple and continuous 

spans, with considering the end diaphragms infinitely stiff in their plane. The prismatic 

folded plate theory by Goldberg and Leve, 1975 considers the box girder to be made up of an 

assemblage of folded plates. This method uses two-dimensional elasticity theory for 

determining membrane stresses and classical plate theory for analyzing bending and twisting 

of the component plates. The analysis is limited to straight, prismatic box girder composed of 

isotropic plates with no interior diaphragms and with simply supported end conditions. 

Meyer and Scordelis (1971) later presented a folded plate analysis for simply supported, 

single-span box girder bridges with or without intermediate diaphragms. Canadian Highway 

Bridge Design Code restricts the use of this method to bridges with support conditions 

closely equivalent to a line support.  

 

2.2.4 Finite Strip Method 
 

The finite-strip method (FSM) is one of the most efficient methods for structural analysis of 

bridges, reducing the time required for analysis without largely affecting the degree of 

accuracy. FSM is therefore an ideal platform for traditional time-consuming fracture 

analysis.  The finite strip method may be regarded as a special form of the displacement 

formulation of the finite element method. The finite strip method discretizes the bridge into a 

longitudinal number of rectangular strips, running from one end support to the other and 

connected transversely along their edges by longitudinal nodal lines. The stiffness matrix is 

then calculated for each strip based upon a displacement function in terms of Fourier series. 

The displacement functions of the finite strips are assumed as a combination of harmonic 
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varying longitudinally and polynomials varying in the transverse direction. Therefore, the 

strip method is considered as a transition between the folded plate method and the finite 

element method.  In 1968, the finite strip method was first introduced by Cheung in 1971; 

Cheung and Cheung applied the finite strip method for curved box girder bridges. In 1974, 

Kabir, and Scordelis, developed a finite strip computer program to analyze curved continuous 

span cellular bridges, with interior radial diaphragms, on supporting planar frame bents. Free 

vibration of curved and straight beam-slab and box-girder bridges was conducted by Cheung, 

and Cheung, 1972 using the finite strip method. In 1978, the method was adopted by Cheung 

and Chaung, to determine the effective width of the compression flange of straight multi-box 

and multi-cell box girder bridges. In 1984, Cheung, used a numerical technique based on the 

finite strip method and the force method for the analysis of continuous curved box girder 

bridges. In 1989, Ho et al. used the finite strip to analyze three different types of simply 

supported highway bridges, slab-on-girder, two-cell box girder, and rectangular voided slab 

bridges. Sennah and Kennedy (2002) and Ozakca et al. (2003) stated that the shape 

optimization of folded plates can be carried out on box girders by integrating finite strip 

method.  

The advantage of the finite strip method is that it requires small computer storage and 

relatively little computation time. Although the finite strip method has broader applicability 

as compared to folded plate method, the method is still limited to simply support prismatic 

structures. For multi- span bridges, Canadian Highway Bridge Design Code restricts the 

method to those with interior supports closely equivalent to line supports and isolated 

columns supports. Any plate or shell structure subjected to translational displacement along 

the transverse edges of the strips cannot be analyzed by this method. 

 
2.2.5 Thin-Walled Beam Theory Method  
 
Thin-walled beam theory was established by Vlasov (1965) and then extended by Dabrowski 

(1968). The theory is based on the usual beam assumptions. The theory assumes non- 

distortional cross–section and, hence, does not account for all warping, distortion or bending 

stress. The theory cannot predict shear lag or the response of deck slabs due to local wheel 

loads. In 1985, Maisel extended Vlasov’s thin-walled beam theory to account for torsional, 

distortional, and shear lag effects of straight, thin-walled cellular box beams. Li (1992) and 
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Razaqpur and Li (1997) developed a box girder finite element, which includes extension, 

torsion, flexure, distortion and shear lag analysis of straight and curved multi-cell box girders 

using thin- walled finite element based on Vlasov’s theory. Razaqpur et al. (2000) used the 

straight thin-walled box beam element, along with exact shape functions were used to 

eliminate the need for dividing the box into many elements in the longitudinal direction. The 

results of the proposed element agreed well with those results obtained from full three-

dimensional shell finite element analysis. The theory was incorporated into a computer 

program to solve linear elastic analysis and nonlinear material analysis. For both static and 

dynamic analyses of multi-cell box girder bridges, Vlasov’s thin-walled beam theory was 

cast in a finite element formulation and exact shape function was used by El-Azab (1999) to 

derive the stiffness matrix.  

 

2.2.6 Finite Element Method  
 
The finite–element method of analysis has rapidly become a very popular technique for the 

computer solution of complex problems. In the finite element analysis the structure is 

represented as an assemblage of discrete elements interconnected at a finite number of nodal 

points, the individual element stiffness matrix, which approximates the behavior or stress 

patterns. Then, the nodal displacements and hence the internal stresses in the finite element 

are obtained by the overall equilibrium equations. The finite elements may be one-

dimensional beam–type elements, two-dimensional plate or shell elements or even three-

dimensional solid elements.  

 

In 1971, Chu and Pinjarkar developed a finite–element formulation of curved box-girder 

bridges, consisting of horizontal sector plates and vertical cylindrical shell elements. The 

method can be applied only to simply supported bridges without intermediate diaphragms. In 

1972, William and Scordelis presented an elastic analysis of cellular structures of constant 

depth with arbitrary geometry in plan using quadrilateral elements. In 1974, Bazant and El 

Nimeiri attributed the problems associated with the neglect of curvilinear boundaries in the 

elements used to model curved box beams by the loss of continuity at the end cross- section 

of two adjacent elements meet at an angle. Fam and Turkstra (1975) described a finite-

element scheme for static and free-vibration analysis of box girders with orthogonal 
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boundaries and arbitrary combinations of straight and horizontally curved sections using a 

four- node plate bending annular element with two straight radial boundaries, for the top and 

bottom flanges. In 1976, Moffatt and Lim presented a finite-element technique to analyze 

straight composite box- girder bridges with complete or incomplete interaction with respect 

to the distribution of the shear connectors. Chang and Zheng (1987) used a finite–element 

technique to analyze the shear lag and negative shear lag effects in cantilever box girders. 

Shush-kewich (1988) showed the three–dimensional behavior of a straight box girder bridge, 

as predicted by a folded plate, finite-strip, or finite-element analysis, can be approximated by 

using some simple membrane equations in conjunction with a plane frame analysis. In 1995, 

Galuta and Cheung combined the boundary element with the conventional finite element 

method to analyze box girder bridges. The bending moments and vertical deflection were 

found to be in good agreement when compared with the finite strip solution. Elbadry and 

Debaiky (1998) presented a numerical procedure and a computer program for the analysis of 

the time dependent stresses and deformations induced in curved, pre-stressed, concrete 

cellular bridges due to changes in geometry, in the static system, and in the loading 

conditional during construction. In 1998 Sennah and Kennedy conducted an extensive 

parametric study on composite multi-cell box girder bridges using the finite element analysis 

to study their vibration characteristics. In 2009, Fang-LI applied a 3D finite element 

technique in web cracking analysis of concrete box–girder bridges. The results obtained from 

the finite-element method were in good agreement with the experimental findings. Therefore, 

many investigators have been attracted to adopt the finite-element method to analysis the 

complex mechanics of arbitrary box girder bridges. Canadian Highway Bridge Design Code 

has recommended the finite-element method for all type of bridges.  

 

2.3 Experimental Studies 
 
In order to verify the results obtained from the analytical solutions and the developed 

computer programs few experimental studies were conducted on box girder bridges. In some 

cases, experimental studies were conducted on field testing of existing box girders. However, 

the majority of experimental tests have conducted in the laboratories on small scale bridge 

models. In 1993, Ng et al. tested on two- span, continuous composite concrete, deck-

aluminum, four-cell model, under OHBDC, truck loading conditions. The prototype bridge 
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was a two-lane, concrete curved, four-cell, box-girder structure and continuous over two 

spans. The experimental results reported were in good agreement with the elastic behavior 

results predicted by a 3D finite-element modeling.  In 1998, Sennah tested five straight and 

curved deck steel three-cell bridge models under various static loading conditions and free 

vibration tests. Four models were simply-supported and the fifth was a two-equal-span 

continuous bridge model. The results obtained from the experimental work were utilized to 

verify the finite element model. In 2003, Androus performed experiments on a curved and 

straight composite multiple box girder bridge models up-to-complete collapse. Results 

obtained from these tests good trend agreement between the experimental and theoretical 

results supports the reliability of using the finite element modeling and the cross-bracing did 

not have a significant effect on the bridge natural frequencies. In 2004, Samaan tested four 

loading stages on continuous curved concrete deck on steel multiple box girder bridges 

namely: at construction phase’ under elastic loading of the composite bridge model, free-

vibration of the composite bridge model, elastic loading of the composite bridge model, and 

loading of the bridge up-to-collapse. The results obtained from the experimental work were 

used to verify the elastic response and finite element model.  In 2007, Sennah et al. 

conducted an experimental study on two continuous twin-box girder bridge models of 

different curvatures .The first model was straight while the second one was curved in plan. 

The experimental finding was used to verify and substantiate the finite–element model.  

 

2.4 Available Code Provisions and Related Literature  

2.4.1 AASHTO Methods  
 
AASHTO specifications introduced simplified empirical methods for load distribution 

factors which are more convenient and cost efficient to use as compared with the theoretical 

methods. AASHTO defines the load distribution factor as the ration of the moment or shear 

obtained from the bridge system to the moment or shear obtained from a single girder loaded 

by one truck wheel line (AASHTO,1996) or the axle loads (AASHTO LRFD, 2007). It 

should be noted that AASHTO Standard specifications consists of a HS-20 Truck or a Lane 

load. While, the live load in the LRFD specifications consists of a HS-20 Truck in 

conjunction with a Lane load.  
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AASHTO Standard specifications contain simple procedure used in the analysis and design 

of highway bridges. AASHTO adopted the simplified formulas for distribution factors based 

on the work done in the 1940 by Newmark et al. (1948). AASHTO simple formula, S/D, has 

been used for live load distribution factors in most common cases to calculate the bending 

moment and shear in bridge design, where S is the girder spacing and D is a constant that 

depends on the type of the bridge superstructure and bridge geometry. This formula allows 

the designer to simply calculate the part of live load to be transferred to the girders without 

any consideration for the bridge deck, girder stiffness, and span. Further, some bridge 

designers apply the above-mentioned formula even to more complicated bridges such as 

skewed, curved, continuous, and large spans with wide and different girder spacing, even 

though, the formula is developed for simple bridges with typical geometry. A major 

shortcoming of the AASHTO Standard Specifications is that the changes in bridge structures 

that have taken place over the last 55 years led to inconsistencies in the load distribution 

criteria. Upon review of these formulas, it was found that these formulas were generating 

valid results for bridges of a typical geometry (i.e. beam spacing near 1.83 m and span length 

of about 18.29 m . The formulas could result in highly unconservative shear distribution 

factors (more than 40%) in some cases and highly conservative results (more than 50%) in 

some other cases. The unconservative distribution factors may lead to unsafe bridge designs 

(Zokaie and Imbsen, 1993). 

Nour (2003) used the commercially available finite element program “ABAQUS” to 

determine the load distribution factors in straight and curved concrete deck-on–steel multiple 

box girder bridges. He examined the AASHTO distribution factors by conducting 

theoretically investigation based on AASHTO standard of 1996. He concluded that the load 

distribution factors decrease with increase the number of boxes. Also, he observed that cross 

bracing with a maximum spacing of 7.5m enhances the transverse load distribution factors. It 

was concluded in his study that the curvature of the bridge is one of the most critical 

parameter that influences the design of girders and bracing members in curved multiple-box 

girder bridges.  

 

Most of the formulas of the AASHTO standard are based only on the beam spacing and do 

not take into account any other parameters such as span length, lateral stiffness and lane 
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width. Later editions of the standard specifications included more accurate equations that 

take into account more bridge parameters for calculating distributions factors for few bridge 

types.   

 

2.4.2 AASHTO-LRFD Method  
 
The live load distribution formulas in AASHTO-LRFD (2007) have resulted from the 

National Cooperative Highway Research Program (NCHRP) 12-26 project, entitled 

‘‘Distribution of Live Loads on Highway Bridges’’ (Zokaie et al. 1991). This project was 

initiated in 1985, long before the LRFD specifications were developed, to improve the 

accuracy of the S/D formulas contained in the AASHTO specifications (AASHTO Standard 

1996). The equation for live load distribution factors contained in the AASHTO-LRFD 

Specifications present a major change to the AASHTO Standard Specifications. The 

equations are more accurate but vastly more complex than the Standard method. In case 

composite steel box girders, the live load distribution factor for each box girder is specified 

to be determined by applying to the girder the fraction WL of a wheel load according to the 

following:  

 

WL= 0.1+ 
B

L

N
N7.1 + 

LN
85.0

                                                                                      (2.1) 

Where: 

WL is the live load distribution factor for each box-girder  

Nb is the number of box girder; and  

NL is the number of lanes taken as the integral part of the ratio
6.3
CW  , as Wc is the clear 

roadway with in m. 
The drawback of this equation is that it was developed for number of lanes equal to the 

number of boxes. Also, the equation, dated back to 1968, was developed using the finite-

difference method that does not capture all the 3D effects of the bridge superstructure.  

When the parameters of a bridge exceed the ranges of applicability of the equations, the 

AASHTO LRFD Specifications mandate that a refined analysis such as grillage analysis or 

finite element analysis should be performed for the distribution factors of bridge beams. In 
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such cases, designers have to work on a case by case basis. Therefore, the design community 

would welcome simpler and less complex live load distribution factor equations.  

 Samaan, (2004) used the AASHTO-LRFD to conduct dynamic and static analyses of 

continuous curved composite multiple-box girder bridges as well as CHBDC. The finite 

element program “ABAQUS” was adopted in that study. Expressions for load distribution 

factors for curved bridges were proposed. Experimental program was also conducted to 

verify the results obtained from the finite element analysis. It was recommended to use cross-

bracing with spacing less than 10 m to enhance the distribution of loads among bridge 

girders. It was shown in his study that load distribution factors are not affected by using 

either vertical or inclined webs in the finite element modeling of box girders. It was 

concluded that the bridge span length, number of lanes, number of boxes and span-to-radius 

of curvature ratio are the most crucial parameters that affect the load distribution factors. 

Expressions for fundamental frequency and impact factors of multiple box girder bridges 

were also proposed.   

AASHTO-LRFD formulas were evaluated by Zaher Yousif et al. (2007). They made 

comparison between the distribution factors of simple span concrete bridges due to live load 

calculated in accordance with the AASHTO-LRFD formulas and the finite-element analysis. 

Their evaluation showed that AASHTO-LRFD formula seem to give very comparable results 

to the finite elements for bridges with parameters within the intermediate ranges and tends to 

deviate within the extreme ranges of these limitations. 

 

2.4.3 Canadian Highway Bridge Design Code (CHBDC) 
 
The Canadian code proposed a simplified analysis method using the load distribution factors 

to determine the shear and bending moments for steel box girder bridges. The method was 

developed based upon the results obtained from some bridges analyzed using grillage, semi-

continuum and orthotropic plate methods (CHBDC commentary, 2006). The method was 

created based on the assumption that the steel box girders are sufficiently braced against any 

distortion through the cross bracing placed inside the boxes.   

In 2003, Androus applied the CHBDC truck loading to examine the behavior and load 

distribution characteristics of straight and curved composite multiple box-girder bridges. His 

experimental tests proved that the presence of external cross bracing ensured better 
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distribution of the stresses under ultimate loading conditions.  Results from his work showed 

that bridge curvature is the most critical parameter that influences the design of girders and 

bracing members in multiple-box bridges .Also, the study showed that bending stress 

distribution factors decrease with the increase in number of box girders. On the other hand, 

the bending stress distribution factors for the outer and inner girders increase with increase in 

the span length of the bridge.  

 

In 2005, Hassan used CHBDC truck load to investigate the shear distribution in straight and 

curved composite multiple box-girder bridges by using the finite-element modeling. It was 

observed that the bridge span length slightly affects the shear distribution factor of straight 

bridges. However, its effect significantly increases with increase in bridge curvature. On the 

other hand, the shear distribution factor is significantly affected by the change in number of 

boxes. 

The Canadian Highway Bridge Design Code specifies equations for the simplified method 

of analysis to determine the longitudinal bending moments and vertical shear in composite 

steel multiple-box girder bridges due to live load for ultimate, serviceability and fatigue 

limit states using load distribution factors. The CHBDC distribution factor equations used 

to evaluate the maximum longitudinal moments and shear forces for multi-box girder 

bridges are as follows:   

The longitudinal bending moment per girder, Mg, for ultimate and serviceability limit states 

is specified as:  

Mg = Fm Mg avg (2.2) 

Where: 

Mg avg  = the average moment per box girder determined by sharing equally the total 

moment on the bridge cross section among all box girders in the cross section  

Fm   = an amplification factor for the transverse variation in maximum longitudinal 

moment intensity  

N
RnMM LT

gavg =  (2.3) 
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Where    MT = the maximum moment per design lane 

 n  = the number of design lanes 

 RL = a modification factor for multilane loading 

 N = the number of longitudinal box girders  

 S = center–to-centre girder spacing, m 

 We = the width of the design lane, m 

 Wc  = the bridge deck width, m 

 Cf  = a correction factor from tables  

 F = the width dimension that characterizes the load distribution for the bridge 

 

Expressions for F and Cf for longitudinal moments in multi-spine bridges obtained from 

Table (2.1) depending on a factor, β 

5.0]][[
XY

X

D
D

L
Aπβ =   (2.7) 

Where : 

A = width of the bridge for ULS and FLS; but not greater than three times the spine 

spacing S for FLS  

DX = total bending stiffness, EI, of the bridge cross-section divided by the width of the 

bridge 

DXY = total torsional stiffness, GJ, of the bridge cross–section divided by the width of the 

bridge 

For bridges having more than four design lanes, the values of F shall be calculated from the 

following: 
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80.2
4

LnRFF =  (2.8) 

Where F4 is the value of F for four design lanes obtained from table (2.1) 

 

For the longitudinal bending moment per girder, Mg, for Fatigue Limit State: 

Mg =Fm Mg  avg  (2.9) 

Where: 

Mg avg = the average moment per box girder determined by sharing equally the total 

moment on the bridge cross-section among all box girders in the cross section  

Fm  = an amplification factor for the transverse variation in maximum longitudinal 

moment intensity  

 

N
MM T

gavg =  (2.10) 
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Where : 

MT  = the maximum moment per design lane,  

n = the number of design lanes 

RL = a modification factor for multilane loading  

N = the number of longitudinal box girders 

S = center–to-centre girder spacing in meter  

We = the width of the design lane in meter  

Cf  = a correction factor obtained from tables 

F = the width dimension that characterizes the load distribution for the bridge. 

Expressions for F and Cf for multi-spine bridges are shown in Table 2.1. 
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For the longitudinal vertical shear per girder, Vg, for ultimate, serviceability and fatigue limit 

states: 

 

Vg = Fv Vg avg  (2.13) 

 

Where: 

Vg avg  = the average shear per girder  

Fv = an amplification factor for the transverse variation in maximum longitudinal 

vertical shear intensity  

N
RnVV LT

avgg =  (2.14) 

F
SNFV =  (2.15) 

Where: 

VT = the maximum vertical shear per design lane 

n = the number of design lanes  

RL = a modification factor for multilane loading  

N = the number of longitudinal box girders  

S = is center – to- center girder spacing in meter 

We = the width of the design lane in meter  

F = the width dimension that characterizes the load distribution for the bridge and can 

be obtained from provided tables.  

For bridges having more than four design lanes, the values of F shall be calculated from the 

following:  

80.2
4

LnRFF =  (2.16) 

Where F4 is the value of F for four design lanes obtained from Table (2.2) 
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CHAPTER 3 

 
FINITE-ELEMENT ANALYSIS 

 
3.1 General 
 
The Finite Element Method (FEM) is one of the most important methods used currently in 

the engineering analysis and design. The approach was developed by utilizing the method of 

numerical analysis and minimization of variation calculus to obtain approximate solutions to 

vibration systems. The method is employed comprehensively in the analysis of solids and 

structures and of heat transfer and fluids and in several engineering applications. The rapid 

progress in using the method began by the advance in the digital computer since the method 

would require significant computations.  

As the name indicates, the method takes a complex problem and breaks it down into a finite 

number of simple problems. A continuous structure theoretically has an infinite number of 

simple problems, but the finite-element method approximates the behavior of a continuous 

structure by dividing it into a finite number of elements. Then, each element is considered to 

be a simple problem. Each element has a certain number of nodes that define the element 

geometric boundaries. The entire continuous structure geometry is defined by the final 

geometry of all elements. Each node has a certain number of degrees of freedoms. Nodes 

also defined where boundary conditions and load applications need to be applied. In general, 

the finer the mesh, the closer the geometry of the structure can be approximated as well as 

the load application and the stress and strain gradients. However, there is a tradeoff: the finer 

the mesh, the more computational power is needed to solve complex problems. Mesh 

optimization approach is adopted to create the larger mesh size that would not reduce the 

accuracy of the results.  

 

There are many commercially-available finite-element software programs packages utilized 

for structural engineering applications. “SAP2000 software” Wilson and Habibullah, 2010 is 

considered one of the most used finite-element program package for structural engineering 
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analysis and design. The package has the capability to preprocessor, analyze, and post 

processor the structure. The program is used for general purpose applications including 

bridges, buildings offshore structures and many others. The program was adopted throughout 

the parametric study conducted in this study.  

 

3.2 Finite-Element Procedure 
 
The analysis of an engineering application needs the idealization of the physical problem into 

a form of mathematical model that can be solved. The finite-element method offers a way to 

solve a complex problem in engineering and mathematical physics by means of subdividing 

it into a series of simpler interrelated problems. The key step in engineering analysis is to 

select the appropriate mathematical model. Since most refined mathematical model can not 

reproduce exactly the physical problem, the finite-element analysis can only predict the 

approximate response of the problem. However, a refined mathematical model will increase 

our insight into the response of the engineering problem. The finite-element model gives 

approximate values of the unknowns at discrete number of points in a continuum. 

Essentially, it gives a consistent technique for modeling the whole structure as an assemblage 

of discrete parts or finite-elements. This numerical method of analysis starts by discretizing a 

physical model. Discretization is the process where a body is divided into an equivalent 

system of smaller units (elements) interconnected at points (nodes) common to two or more 

elements and/or boundary lines and/or surfaces. All elements are combined in formulated 

equations to obtain the solution for the entire structure. Using a displacement formulation, 

the stiffness matrix of each element is derived and the global stiffness matrix of the entire 

structure can be formulated by the direct stiffness method. This global stiffness matrix, along 

with the given displacement boundary conditions and applied loads is then solved, thus the 

displacements and stresses for the entire system are determined. The global stiffness matrix 

represents the nodal force- displacement relationships and is expressed in a matrix equation 

form as follows: 

 

[P] = [K] [U]                                                     (3.1) 

Where:   [P] = nodal load vector; 
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[K]= global stiffness matrix; 

[U]= nodal displacement vector  

The basic of the displacement-based finite-element solution is the principle of virtual work. 

The principal states that the equilibrium of a body requires that any compatible small virtual 

displacements imposed on the body in its state of equilibrium, the total internal virtual work 

is equal to the total external virtual work. 

 

3.3 SAP2000 Computer Program  
 
The commercially-available finite-element software SAP2000 is a powerful engineering 

program to provide a wide range of useful engineering capabilities suitable for practical 

structural engineering applications. SAP2000 is based on the idea of transferring the physical 

structural members into objects using the graphical user interface. The software is capable of 

modeling any complicated structure by dividing it into small and manageable pieces. The 

finite-element program contains several types of objects. Point objects that are automatically 

created at the corners or ends of all other objects or to model isolators, damper or multi-linear 

spring. Line objects are to represent Frame, Cable and Tendon elements. Connecting two 

joints using link elements can be modeled using Line objects. Area objects are to model Shell 

elements with three- or four–node three-dimensional element, which combines separate 

membrane and plate-bending behavior. The membrane behavior includes translational in-

plane stiffness components and rotational stiffness components in the direction normal to the 

plane of the element. The plate bending behavior includes two-way, out of plane, plate 

rotational stiffness components and translational stiffness component in the direction normal 

to the plane of the element. Shell elements are to represent slab, walls or any other thin-

walled members. 

 
The geographical interface of the program is used to draw the model and select the 

appropriate objects to represent the actual physical structure. As closer the representation of 

the physical member to the finite-element model as more accurate the results obtained by the 

finite-element analysis. The number of elements should be sufficient to accurately describe 

the geometry of the actual structure. The locations of the structural boundaries and the type 
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of the boundary conditions used should be carefully considered. Changes in thickness and 

material properties need to be considered and introduced in the finite-element model.  

For moving load analysis case, lanes, vehicle and vehicle class shall be modeled and defined. 

The line or the area where the traffic load can act upon the bridge superstructure should be 

first identified. The lane width can be specified in the program as well as the distance 

between the vehicle and the lane edge. Multiple lanes can be defined per the actual traffic 

pattern on the bridge. Truck and/or lane loads can be represented in the program by number 

of concentrated and/or distributed forces. Each truck axes can be represented by single or 

double loads with s defined axle width. The minimum or the maximum distances between 

each axes can be specified in the program. Vehicle class can be used to combine several 

vehicles together to run on the bridge at the same time. It can also be used to define the 

dynamic amplification factor for the truck loading used in the analysis. In the moving load 

analysis case, the program creates first the influence surface for each straining actions. Once 

the influence surfaces calculated, the envelope for each bridge response can be evaluated. 

The vehicles are automatically located at each possible location along the lanes and within 

the width of the lanes to produce the maximum and minimum response quantities throughout 

the structure.  

 

As mentioned before, the linear static analysis of a structure involves the solution of the 

system of linear equations represented by equation 3.1. For each Load Case, the program 

automatically creates a corresponding stiffness matrix of the full structure and accordingly 

solving the system of linear equations. The software considers each loading position on the 

bridge to obtain the influence surface as a linear static analysis case. Load combinations 

option available in the software can be used to combine the results of Analysis Cases to 

obtain the determined values used for the design of the structural members. Moving Load 

Analysis available in SAP 2000 is used to determine the response of a bridge structure 

subjected to vehicular live loads. The maximum and minimum displacements, forces and 

stresses due to multiple-lane loads on bridges can be obtained using the “SAP2000 software” 

Wilson and Habibullah, 2010. Multiple lane reduction factors are defined in the Moving 

Load Analysis case.  
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3.4 Finite-Element Modeling of Composite Multiple Box Girder Bridges 
 
The finite element technique was adopted to model two-equal-span continuous concrete 

deck-on multiple steel box-girder bridges. Three-dimensional finite-element models were 

constructed in a way to represent the actual physical structural geometry, boundary 

conditions, load locations, and material properties of the bridge components, namely: 

reinforced concrete for the deck slab and steel for the webs, bottom flange, diaphragms and 

cross bracings. The following subsections explain the element type selected for each 

component, the material modeling, and the boundary conditions used on the developed FEA 

models were described below. 

 
3.4.1 Material Modeling 
 
 The material properties are very important to define in order to get accurate results. The 

bridge slab is made of reinforced concrete while the rest of the box girder is made of steel. 

Elastic material properties are defined and used throughout this study. Each material is 

defined with a unique name and properties. The required properties for SAP2000 are the 

modulus of elasticity, Poisson’s ration, and the weight density. The compressive strength of 

concrete (f'c) is considered 30 MPa and the weight density (γc) 24.5 kN/m3.  The modulus of 

elasticity of concrete (Ec) considered in the analysis is 26000 MPa based on the following 

equation: 

Ec= (3000 cf ' + 6900) ( γc/2300)1.5                                                                   (3.5) 

The Poison’s ratio for elastic strain of concrete is taken as 0.20. The modulus of elasticity of 

steel (Es) is taken as 200,000 MPa and the Poisson’s ratio for elastic strain of steel is taken as 

0.30. 

 

3.4.2 Geometric Modeling  
 
A three–dimensional finite-element model was developed to simulate each bridge considered 

in this study. Three–dimensional shell elements were selected to model the reinforced 

concrete deck slab, steel webs, steel bottom flanges, and three–dimensional beam elements 

were chosen in the finite-element model to represent the cross bracings. The arrangements of 
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elements in the transverse and longitudinal directions were selected to accurately simulate the 

actual structure geometric configurations.  

 

3.4.2.1 Modeling of Deck Slab, Webs, Bottom Flange and End- Diaphragms 
 
SAP2000 has a three- or four-node formulation for shell elements. The formulation combines 

the membrane and plate-bending behavior. The shell elements used in this study is a 

homogeneous one that combines the above-mentioned formulation. The element behavior 

includes two-way, out-of-plane, plate rotational stiffness components and a translational 

stiffness component in the direction normal to the plane of the element. The element has six 

degrees of freedom at each node, namely: three displacements (U1, U2, U3) and three 

rotations (φ1, φ2, φ3). Four-point numerical full integration formulation is used for the shell 

stiffness. Internal forces, moments, and stresses are evaluated at the 2 x 2 Gauss integration 

points and then extrapolated to the nodes representing the element. The four-node elements 

are more accurate than the three-node elements. Therefore, the four-node elements were used 

to model the plate components of the bridges studied herein. Figure 3.1 shows schematic 

diagrams of the four-node shell element used in this study 

 

3.4.2.2 Modeling of Connections 
 
The connection between the steel girder and concrete slab was assumed to be fully-

connected, no slip between the steel girder and the concrete slab was considered in the 

analysis. The steel girder and the concrete slab share the same nodes at the interface. The six 

degrees of freedoms at each node, three displacements (U1, U2, and U3) and three rotational 

(φ1, φ2, φ3), at the interface of the steel girder and the concrete slab are equivalent. Schematic 

view of the bridge model is showing the intermittent connections between steel box-girder 

and concrete slab in Figure 3.2. 

 
3.4.3 Boundary Conditions  
 
There were two different boundary constraints considered in modeling of the continuous 

concrete deck on multiple steel box-girder bridges, namely: the roller support and the hinged 

support. The roller support was modeled by releasing the horizontal movement of the node in 
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the required directions. However, the hinged support was constrained from any horizontal 

movement but released for all rotations. In modeling the bridge supports in this study, all 

supports were constrained in the vertical direction, but allowed to rotate around the support 

line. All other supports except the far most south ones are released in all horizontal 

directions. The far most south supports for the bridge ends are released in the longitudinal 

direction (X-direction) only. All internal supports at the pier location are released in the 

transverse direction (Y-direction) except the far most south support, which is restrained in all 

directions. The support arrangement was chosen to allow the bridge to move freely due to 

temperature variations as in practice. All support conditions were applied at the lower end 

nodes of each web, at the external and internal support lines, as shown in Figure 3.3. 

 

3.4.4 Aspect Ratio of shell elements 
 
In the finite-element modeling, the aspect ratio is defined as the ratio of the longest 

dimension to the shortest dimension of a quadrilateral element. In many cases, as the aspect 

ratio increases, the inaccuracy of the solution increases (Logan, 2002). Logan presented a 

graph showing that as aspect ratio rises above 4, the percentage of error from the exact 

solution increases greater than 15% consequently. Three-dimensional finite element models 

were used to analyze the box-girder bridges considered within this study. A sensitivity study 

was conducted to choose the finite-element mesh. The finite-element mesh is usually chosen 

based on pilot runs and is a compromise between economy and accuracy. In this study, 40 

elements in the longitudinal direction were used in the FEA model for bridges with span 

lengths of 20 m, 80 elements for bridges with span lengths of 40 m and so on. The number of 

elements was chosen to keep the maximum aspect ratio about 2.5 which is within the 

acceptable range and does not compromise the accuracy of the results.   

 
3.5 Finite Element Analysis of Bridge Models 
 
Pilot runs were also performed (Samaan 2004) to investigate the effect of vertical stiffeners 

and concrete steel reinforcement on the structural response of the finite-element models. It 

was found that the vertical stiffeners had an insignificant effect on the structural response of 

the finite-element model, so they were omitted in the modeling. Figure 3.4 illustrates the 
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final finite-element mesh used in the static and dynamic analyses of two–box girder bridges. 

The number of elements between webs varied depending on the number of girder and the 

number of elements in the longitudinal direction varied depends on the span length and 

aspect ratio. The aspect ratios of the elements used for the concrete deck slab and the bottom 

flanges ranged from 0.88 to 2.4 for all bridge prototypes. The aspect ratios of the shell 

element for the webs and end- diaphragms ranged between 0.93 and 2.5 for all bridge 

prototypes. The finite-element model was then adopted to conduct extensive parametric 

studies for static responses of continuous composite box girder bridges. Figure 3.5a and 

Figure 3.5b show views of the finite-element models for the straight bridge model with and 

without concrete deck slab, respectively. 
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Chapter 4 

 
PARAMETRIC STUDY  

 
4.1 General 
 
A parametric study was performed on continuous two-equal-span bridges having a concrete 

deck on multiple steel box girder bridges. The main objectives of the parametric study were 

to (i) Investigate the influence of major parameters affecting the various distribution factors, 

for both ultimate and fatigue limit states;(ii) Establish a data base for the distribution factors, 

for maximum stresses, shear force and support reaction forces necessary for design to 

correlate them with available CHBDC and AASHTO-LRFR equations; and (iii) Develop 

more reliable empirical formulas for load distribution factors for such bridges. 

 

The CL-625-ONT truck loading as well as the lane loading is considered in the design of 

bridges in Ontario. The lane loading consisted of superimposed load of 9 kN.m uniformly 

and centrally distributed within a strip of 3 m width along with 80% of the truck loading is 

shown in Figure 4.1 summarizes the configurations of the contains truck loading and lane 

loading. Whichever of the truck load types produces higher structural responses is applied. 

The modifications factors for multi presence of vehicles in lanes, shown in Table 4.1 are 

taken as 0.9, 0.8, 0.7, and 0.6 for two, three, four and five lane loading, respectively. 

 

Sensitivity study on a prototype bridge 2L-80-2b was conducted to evaluate the load 

distribution factors due to the Truck load and Lane load. Table 4.2 shows that all load 

distribution factors for the Truck load were slightly higher than those obtained from the Lane 

load. Therefore, it was decided to carry out all parametric study for the load distribution 

factors using the Truck load only. 
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4.2 Composite box-girder Bridge Configurations  

 
In this parametric study, Fifty five composite multiple box-girder bridges were analyzed to 

obtain the load distribution factors. The following main parameters were considered to 

influence the load distribution in that type of bridges: 

1- Number of  design lanes, n , as determined from Table 4.3; 

2- Number of boxes, N; and 

3- Span length , L 

Table 4.4 presents the cross-sectional configurations of bridges used in the parametric study. 

The symbols used in Table 4.4 represent designations of the bridge types considered in these 

parametric studies, namely: L stands for lane, b stands for box, and the number in the middle 

of the designation embodies the span length of the bridge in meters. For example, 3L-40-4b 

denotes a continuous two-equal-span bridge of three lanes, four boxes and each span being 

40 m long. The cross-sectional symbols used in Table 4.4 are shown in Figure 4.2. 

Five different lengths of 20, 40, 60, 80 and 100 m for each span were considered in the 

parametric study. The number of lanes was taken as 2, 3, 4 and 5 lanes. The total bridge 

widths were taken 9.00, 13.05, 17.00 and 20.50 m for two, three, four and five-lane bridges. 

The number of boxes ranged from two to three in the case of two-lane bridges, two to four in 

the case of three-lane bridges, three to five in the case four-lane bridges and three to five in 

the case five- lane bridges. Figure 4.3 presents the number of boxes along with the number of 

lanes considered in the parametric study. The practical span-to-depth ratio for box-girder 

bridges ranges from 20 to 30 (Hall, at el. 1999). For steel girders having a specified 

minimum yielding stress of 350 MPa or less, the preferred span–to-depth ratio of the steel 

girder is about 25. The thickness of steel plates forming the bottom flanges and the webs was 

taken 16mm. while the thickness of the concrete slab was taken 225 mm. 

 

The above range of parameters in this study was based on a survey of constructed box girder 

bridges (Heins 1978). Steel plate diaphragms of 16 mm thickness were provided at the pier 

and abutment supports. The depth of the diaphragms was the same as that of the steel box. 

Cross bracings make from back-to-back angles, 150 x 150 x 10 mm in cross-section, were 
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provided inside and between the spread boxes at a spacing of 10 m for all bridge 

configurations.  

 
4.3 Truck Loading Conditions of Composite Multiple Box-Girder Bridges  
 
For live loading conditions, the Canadian Highway Bridge Design Code specifies a truck 

with a gross weight of 625 kN (CL-625). According to CHBDC, the truck were applied to the 

two-equal-span continuous straight girder bridges to determine which case would produce 

the maximum moment near the mid-span and at the pier location and the maximum shear 

force at the support for bridges with span lengths of 20, 40, 60, 80 and 100 m. The design of 

the bridge is characterized by three limit states, namely: the Serviceability Limit State (SLS), 

the Ultimate Limit State (ULS), and the Fatigue Limit State (FLS). As such, truck loading 

conditions considered herein include loading cases for each of the three limit states of design. 

Since, bridge configurations considered in this study include two-to five–lane bridges which 

reflect two to five design lanes, different loading cases were considered to calculate bending 

moment and shear distribution factors. Figures 4.4 to 4.11 Schematically indicate all possible 

live load cases considered for the bending moment and shear at both exterior and interior 

girders. The following loading cases were considered:  

(1) Exterior girder-partial load with CHBDC truck loading 

(2) Exterior girder-full load with CHBDC truck loading 

(3) Middle girders-partial load with CHBDC truck loading 

(4) Middle girders-full load with CHBDC truck loading 

(5) Exterior girder-fatigue load with CHBDC truck loading 

(6) Middle girders-fatigue load with CHBDC truck loading 

In case of loading conditions for fatigue limit state design CHBDC specifies only one truck 

travelling at the center of the travelling lane.  

 

In order to determine the maximum strain actions investigated in this study, truck loading 

cases as shown in figures 4.1 through 4.11 were applied to each bridge in the transverse 

direction using the finite-element analysis. In the partial loading case, the wheel loads close 

to the curbs were positioned at a distance of 0.6 m from the curb edge and the external lane 

was loaded to produce the maximum stress and shear effects. The modification factors 
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applied directly while instructing SAP2000 software to consider each load case these factors 

are 0.9, 0.8, 0.7, and 0.6 for two, three, four and five lanes, respectively. 

 

4.4   Parametric Study for Load Distribution Factors  
 
To calculate the load distribution factors for the studied bridges, an extensive parametric 

study was carried out. The parametric study was conducted on two-equal-span continuous 

straight concrete deck on multiple steel box-girder bridges to achieve all the objectives 

outlined in Section 4.1. Key parameters investigated in this parametric study were also 

mentioned in the previous section. 

 

There are several assumptions considered in this parametric as follows: 

1- The reinforced concrete slab deck had full composite interaction with the steel girder. No 

slip between the concrete and steel surfaces was introduced in the finite-element models. 

2- The materials properties for steel and concrete used in the analyses were assumed to be 

elastic and homogenous. Thus, the effect of plastic deformation or buckling has not been 

investigated or captured in the finite-element analyses.  

3- The bridges were simply–supported at the bridge ends, similar to semi-integral abutment 

bridge type. No integral abutment bridge types were simulated. 

4- Solid end-diaphragms were used in the transverse direction and their material and 

thickness were taken to be the same as those of the webs.  

   
4.4.1 Load Distribution Factors for Longitudinal Bending Moment  
 
To calculate the longitudinal positive and negative stress load distribution factors, Fm

+ve and 

Fm
-ve , respectively, the maximum tensile and compressive stresses obtained for the exterior 

and interior girders from the finite-element analysis, (σ) FEA, were divided by the maximum 

stresses obtain from simple two span beam or idealize girder, (σ) beam.  

The idealized girder was formulated by partitioning the two-span-continuous composite 

multiple box-girder cross-section of the bridge to a number of individual continuous girders 

as shown in Figure 4.12. Each girder represents one box and is loaded by the truck load. The 

span lengths for the idealized girder are exactly the corresponding span lengths of the 
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bridges. The longitudinal Positive and negative moment in idealized girders near the mid-

span and at the pier location of the bottom of the girders (σ+) beam and (σ _) beam, respectively 

were determined Then, the maximum positive and negative stresses at the simple two span 

beam can be obtained from the following formulas: 

I
YM t

beam

+
+ =)(σ    (4.1) 

I
YM b

beam

−
− =)(σ    (4.2) 

Where: 

 

M+
  = the maximum positive moment near the mid-span for a straight continuous box-

girder due to CHBDC truck loading 

M- = the maximum negative moment at the interior support for a straight continuous 

box girder due to CHBDC truck loading 

Yt     = the distance from the neutral axis to the top flange  

Yb = the distance from the neutral axis to the bottom flange 

I       =   the moment of inertia of the box girder  

 

The maximum positive stress, (σ+) FEA was obtained from the three-dimensional finite-

element models using the finite-element analysis. The maximum positive stresses obtained at 

the bottom flange of the girder near the mid-span for the partially loaded lanes, fully loaded 

lanes and fatigue loading conditions as shown in Figures 4.4. Reduction factors according to 

CHBDC were implemented in the finite-element models to account for the number of loaded 

lanes. Consequently, the distribution factor for positive stress for each bridge model, (Fm)+ve 

was calculated in accordance with CHBDC as follows: 
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In a same manner, the maximum negative stress, (σ-) FEA at the bottom flange of the girder at 

the interior support was obtained by using the finite-element analysis. The distribution factor 

for negative stress, (Fm)-ve in the bridges was determined as: 
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Where  

N = number of boxes   

n  = number of design lanes, Table 4.3 

RL = modification factor for multi-design lanes based on the number of the design lanes, in 

accordance with CHBDC, Table 4.2 

R׳
L = modification factor for multilane loading based on the number of the loaded lanes, 

Table 4.2 

 
4.4.2 Load Distribution Factor for Vertical Shear  
 
In order to determine the shear distribution factor, Fv, for internal and external supports of 

two-equal-span bridges, the maximum shear force obtained from the finite-element analysis, 

(V) FEA, was divided by the maximum shear force obtained from two span beam analysis (V) 

beam. 

It must be noted that the maximum shear forces of the bridges were obtained by considering 

the absolute maximum values, regardless of the loading case or the location of the shear force 

in the box girders. The distribution factor for vertical shear in bridges was calculated 

according to CHBDC as follows: 
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Where:  

(FV) internal  = load distribution factor for vertical shear at internal support of two-equal- 

span bridge  

(FV) external = load distribution factor for vertical shear at external support of two-equal- 

span bridge  

(VFEA) pier = vertical shear at internal support from finite-element analysis  

(V FEA) end = vertical shear at external support from finite-element analysis 

(V beam) pier = vertical shear at internal support from two span beam 

(V beam) end = vertical shear at external support from two span beam n, N, RL and R׳
L are 

as defined before. 
 

Similarly, the fatigue load distribution factors for stresses and shear forces are evaluated 

using the equations 4.3 to 4.5, by considering the truck location for the Fatigue Limit 

State loading case. 
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Chapter 5 

 
RESULTS FROM THE PARAMETRIC STUDY  

 

5.1 General 
 
In this chapter the results from the parametric study are presented. Three dimensional finite–

element models are used in the analyses, in which 55 two-span composite multiple box-

girder bridges are investigated. Several loading conditions are considered to evaluate the 

results for the maximum structural responses of such bridges. The results from the parametric 

study are based on CHBDC truck loading conditions. Based on the data generated from the 

parametric study, the following load distribution factors are obtained: (i) the distribution 

factor for tensile stress at the positive moment region, (ii) the distribution factor for 

compressive stress at the negative moment region, (iii) the distribution factor for shear forces 

at supports. The effects of bridge span length, number of lanes and number of boxes on the 

structural responses of the bridges are discussed.  

 

A sensitivity study was conducted to determine the different factors that may influence the 

load distribution factors. In terms of bracing effect, pervious work (Nour, 2000; Androus, 

2003) showed that having internal bracings improved the ability of the cross-section to 

transfer loads from one girder to an adjacent one. However, the addition of external bracing 

didn’t have a significant effect on the stress distribution. Also, pervious work by Sennah 

(1998) revealed that changing the type of cross-bracing system didn’t have a significant 

effect on stress distribution. Such work showed that replacing the steel angle cross-section of 

bracing members by rectangular one, or changing the bracing cross-sectional area has no 

effect on moment distribution. In the case of straight reinforced and prestressed concrete 

multi-cell bridges, Nutt et al. (1988) and Sennah (1998) conducted sensitivity study that 

revealed that changing either the concrete slab thickness or the bottom flange thickness has 

an insignificant effect on the moment distribution. The sensitivity study also revealed that 

changing the span-to-depth ratio of steel boxes within the practical range of 20 to 30 found 

by Heins (1978) has also an insignificant effect on the stress distribution. It was also found 

(Samaan, 2004; Hassan, 2005; Nour, 2000) that the most crucial parameters that affect the 
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load distribution factors are the number of lanes, number of boxes and span length. Based on 

such findings, it was decided to consider the number of lanes, number of boxes and span 

lengths in this parametric study. Also, the parametric study was conducted using internal and 

external bracing in accordance with the minimum spacing required by CHBDC for all 

bridges, with X-type bracing having a 150x150 mm cross-section and using span-to-depth 

ratio of 25 for the steel boxes.  

 
5.2 Positive Moment Distribution Factors at Ultimate Limit State (Fm+) 
 
5.2.1 Effect of Span Length 
Figure 5.1 shows the distribution factors for maximum positive moment in three–lane, two–

box girder and three-lane, three-box girder bridges due to CHBDC truck loading at ULS. It 

can be observed that the moment distribution factor for straight bridges decrease from 1.60 to 

1.30 with increasing span length from 20 m to 40 m (a decrease of 23%). However, it 

decreases from 1.30 to 1.10 when span length increases from 40 to 60 m (a decrease of 18%). 

For span length more than 60 m, the moment distribution factor decreases by less than 3%. It 

can be observed that the change in number of boxes from 2 to 3 has insignificant effect on 

the positive moment distribution factors. 

 
5.2.2 Effect of Number of Lanes  

In Figure 5.2, the effect of number of lanes on the positive moment distribution factors at 

ULS is presented. The distribution factors for maximum positive moment for bridges with 

three boxes and span lengths 40, 60, 80 and 100 m, subjected to CHBDC truck loading, is 

illustrated.  It can be observed that the moment distribution factors for straight bridges is 

almost uniform with increasing number of lanes from 2 to 3 and it increases linearly with 

increase the number of lanes from 3 to 5 lanes. For example, for bridge with span length of 

40 m, it can observed that the moment distribution factor increases slightly from 1.28 to 1.3 

(an increase of 2%) when the number for lane changes from 2 to 3. However, when the 

number of lanes changed from 3 to 5, the moment distribution factor increases linearly from 

1.3 to 1.59 (an increase of 22%). 
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5.2.3 Effect of Number of Boxes  

Figure 5.3 shows the change in the maximum positive moment distribution factors for three-

lane bridges with span lengths 40, 60, 80 and 100 m, with change in number of boxed. It can 

be observed that the positive moment distribution factors at ultimate limit state are almost 

uniform irrespective of the number of boxes for bridges. For example, the positive moment 

distribution factor for 40-m span bridge remains almost 1.30 with slight change with increase 

in number of boxes from 2 to 4. 

 

5.3 Positive Moment Distribution Factors at Fatigue Limit State (Fm+) 

 

5.3.1 Effect of span length 

The effect of span length on positive moment distribution factors at fatigue limit state is 

presented in Figure 5.4. The graph shows that the distribution factors for positive moment in 

three-lane, two-box, girder and three-lane, three-box, girder bridges as affected by the change 

in span length from 20 to 100 m. It can be observed that the fatigue positive moment 

distribution factor significantly decreases with increasing the span length from 20 m to 40. 

This rate decreases with increase in bridge span. For example, in case of 3L-2b bridge, the 

moment distribution factor changes from 3.55 in case of 20 m span length to 2.18 in case 40 

m span length (a decrease of 38%). However, it changes from 2.18 to 1.67 with increase of 

span length from 40 to 60 m (a decrease of 23%). When span length changes from 60 to 100 

m, the moment distribution factor decreases from 1.67 to 1.45 (a decrease of 13%). 

 
5.3.2 Effect of Number of Lanes 

To examine the effect of number of lanes, positive moment distribution factors for fatigue 

limit state for selected bridges are obtained from the parametric study and plotted in Figure 

5.5.  For three-box girder bridges and span lengths of 40, 60, 80, and 100 m, the distribution 

factors for positive moment are plotted against the change in number of lanes from 2 to 5. 

For a bridge with span length of 40 m, it can observed that the positive moment distribution 

factor increases almost linearly from 1.8 to 3.35 with increase in number of lanes from 2 to 5 

(a increase of 86%). Similar observations were made for bridges with span lengths of 60, 80 
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and 100 m.  It is also interesting to note that the rate of increase in the positive moment 

distribution factors decreases with increasing the span length.   

 

5.3.3 Effect of Number of Boxes   

Figure 5.6 depicts the change in the position moment distribution factor for FLS design for 

span length of 40, 60, 80 and 100 m, as affected by the change in number of boxes. It is clear 

that the positive moment distribution factor slightly changes with increase in number of 

boxes from 2 to 4. For example, it can be observed that the positive moment distribution 

factor changes from 1.65 to 1.95 (an increase of 18%) when increase in number of boxes 

from 2 to 4 for bridges with span length of 60 m. It can be seen that the number of boxes 

slight effect on the moment distribution factors for fatigue state for bridges considered in this 

study.  

 
5.4 Negative Moment Distribution Factors at Ultimate Limit State (Fm-) 
 

5.4.1 Effect of Span Length  

The changes in the load distribution factors for maximum negative moment are obtained 

from the detailed three-dimensional finite-element models. The results for the three-lane, 

two-box, girder and three-lane, three-box, girder bridges are compared in Figure 5.7. It can 

be observed that the negative moment distribution factors significantly decrease linearly with 

increase in span length from 20 to 60 m and remain almost unchanged with increase in span 

length from 60 to 100 m. For example, in 3L-2b bridges, the negative moment distribution 

factor decreases lineally from 3.25 to 2.16 with increase in span length from 20 to 60 m, 

while it remains around 2.16 with increase in span length from 60 to 100 m.  

 
5.4.2 Effect of Number of Lanes 

In Figure 5.8, the distribution factors for maximum negative moment at ULS in three-box 

girder bridges with span lengths of 40, 60, 80 and 100 m are presented. It can be observed 

that the moment distribution factor for 100-m span bridges decreases from 2.50 to 2.30 with 

increase in number of lanes from 2 to 3 (a decrease of 8%). On the contrary, it increases 

linearly from 2.30 to 3.25 with increase in number of lanes from 3 to 5 (an increase of 70%). 

Similar trend was observed for bridges of spans 40, 60 and 80 m. As such, the effect of 
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number of lanes on negative moment distribution factors is shown to be more significant 

when the number of lanes changing between 3 and 5.  

 
5.4.3 Effect of Number of Boxes  

Figure 5.9 shows the distribution factors for the maximum negative moment for three lanes 

and span lengths of 40, 60, 80 and 100 m due to CHBDC live load. In the figure, it can be 

observed that the moment distribution factor for straight bridges is almost uniform with 

increasing the number of boxes from 2 to 4. This means that the number of boxes girder has 

slightly effect on the negative moment distribution factor. For example, for two-equal span 

bridge with a span length of 60 m, the negative moment distribution factors change from 2.16 

to 2.25 (less than 5%) by increasing the number of boxes from 2 to 4.  

 

5.5 Negative Moment Distribution Factors at Fatigue Limit State 

 

5.5.1 Effect of Span Length 

The results for the change in the negative moment distribution factors at FLS for three-lane, 

two-box, girder bridges and three-lane, three-box, girder bridges are presented in Figure 5.10. 

It is clear that the distribution factors for fatigue limit state design significantly decrease with 

increase in span length from 20 to 60 m. However, insignificant increase is observed with 

increase in span length from 60 to 100 m. For example, for 3L-2b bridges, the negative 

moment distribution factor changes from 6.55 in case of 20-m span length to 2.9  in case 60-

m span length (a decrease of 55%). While it remains almost 2.9 for bridges with span lengths 

ranging from 60 to 100 m.   

 
5.5.2 Effect of Number of Lanes  

Figure 5.11 depicts the change of the negative moment distribution factors for fatigue limit 

state design with change in number of lanes for three-box girder bridges of 40, 60, 80 and 

100 m span lengths. It can be observed that the distribution factors increase when changing 

the number of lanes from 2 to 5. It is clear that the load distribution factors decrease by 

increasing the bridge span length. For example, the negative moment distribution factors for 

three lanes bridges decrease from 4.2 to 3.5 (about 17%) when the span lengths change from 
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40 to 100 m. The change rate of the load distribution factors generally increase by increasing 

the number of lanes for all span lengths considered in herein.  

 

5.5.3 Effect of Number of Boxes  

The distribution factors for negative moment for FLS design for three-lane bridges of span 

lengths of 40, 60, 80 and 100 m are depicted in Figure 5.12 for number of boxes ranging 

from 2 to 4. It can be observed that the moment distribution factor increases with increase in 

number of boxes. For examples, the 80-m span bridge has a negative moment distribution 

factor increasing from 1.55 to 1.7 (about 9%) with increase in number of boxes from 2 to 4. 

It is also interesting to note that the increase is almost the same for all span lengths.    

 
5.6 Shear Distribution Factors for Ultimate Limit State  

 

5.6.1 Effect of Span Length  

The parametric study was conducted to determine the maximum vertical shear force in each 

web at the support lines under different truck loading conditions at ULS, from which the 

shear distribution factor is obtained. Figure 5.13 presents the shear distribution factors 

obtained for three-lane, two-box, girder and three-lane, three-box, girder bridges. The figure 

shows that the distribution factors for shear are slightly increasing with increase in span 

length from 20 to 100 m. This means that the bridge span length has insignificant effect on 

the shear distribution factors at ULS design. For example, the shear distribution factor for a 

3L-3b bridge increases from 1.33 to 1.35 (an increase of 2%) with increase in span length 

from 20 to 40 m.  

 

5.6.2 Effect of Number of Lanes  

Figure 5.14 presents the load distribution factors for maximum vertical shear force evaluated 

for bridges having three-box girders and span lengths of 40, 60, 80 and 100 m, with the 

change in number of design lanes. It can be observed that the highest distribution factor for 

shear force occurs for two-lane bridges. These factors decrease with increasing the number of 

lanes from to 3. However, the distribution factors significantly increase with increase in 

number of lanes from 3 to 5. For example, the shear distribution factor for a 40-m span 
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bridge at ULS decreases from 1.68 to 1.35 (a decrease of 20%) with increase the number of 

lanes from 2 to 3. With increase the number of lanes from 3 to 5, the value changes from 1.35 

to 1.60 (an increase of 19%).  As it is considered later in this chapter, given the uneven trend 

in effect of number of lanes in shear distribution factor, it would be beneficial from the 

accuracy and best-fit point of view to deduce empirical expressions for shear distribution 

factors for each number of design lanes rather than considering number of lanes as a variable 

in the developed equations. 

 

5.6.3 Effect Number of Boxes  

In the parametric study, number of boxes reflects to the number of webs present in the bridge 

cross-section. Webs are the main members in resisting the shear forces in the bridge 

superstructure. Therefore, increasing the number of boxes affects the distribution factors for 

shear force.  Figure 5.15 shows the distribution factors for shear with the change in number 

of boxes for bridges with different span lengths. It can be observed that the distribution 

factors increase with increase in number of boxes. For example, the shear distribution factor 

at ULS for a 100-m span bridge increases slightly from 1.3 to 1.38 (an increase of 6%) when 

the number of box increases from 2 to 3 and it continues increasing but with greater rate from 

1.38 to 1.73 (an increase of 25%) with increase in number of boxes from 3 to 4. It is also 

interesting to note that the trend for all bridge spans is similar.   

 

5.7 Vertical Shear Distribution Factors for Fatigue Limit State  

 

5.7.1 Effect of Span Length  

Figure 5.16 depicts the distribution factors for fatigue limit state design for vertical shear for 

three-lane bridges with different number of boxes and span lengths. It can be observed that 

the distribution factors are almost the same with increase in span length. On the other hand, 

the load distribution factors increase with increase in number of boxes from 2 to 3.  

 
5.7.2 Effect of Number of Lanes  

Figure 5.17 shows the change in the vertical shear distribution factors for bridges having 

different span lengths and number of design lanes. The graphs show slight changes in vertical 
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shear distribution factors with increase in number of lanes. For example, the factors increase 

from 2.3 to 2.55 with increase in the number of lanes from 2 to 3 (an increase 10%) and it 

increases linearly from 2.55 to 2.8 with increase in number of lanes from 3 to 5 (an increase 

of 9%). However, it is interesting to observe that the distribution factors for fatigue limit 

vertical shear are almost constant with increase in span lengths from 40 to 100 m as 

mentioned before in section 5.7.1. 

 
5.7.3 Effect of Number of Boxes 

The distribution factors for fatigue limit state design for vertical shear as a function of 

number of boxes are presented in Fig. 5.18. It can be observed that the shear distribution 

factor increases linearly with the increase in number of boxes as observed earlier. For 

example, the shear distribution factor changes from 1.8 in case of two-box cross-section to 

3.2 in case of four-box cross-section (an increase of 77%). Similar behavior is observed in 

similar cases shown in the Appendix. 

 

5.8 Correlation between the Load Distribution Factors Obtained from the FEA and 

CHBDC Equation 

The following subsection presents correlation between the load distributions factors obtained 

from the finite-element modeling as those available in CHBDC to examine the level of 

underestimation of conservatism implied in the design of such bridges when using CHBDC 

load distribution factor expressions. 

 

5.8.1 Comparison at the Ultimate Limit State Design  

Since the CHBDC simplified method of analysis provides one expression for both shear and 

bending moment distribution factors at ULS and FLS as shown in Chapter 2, it is interesting 

to investigate the correlation between both factors calculated from the FEA and CHBDC 

Equations. Figures 5.19 and 5.20 present the comparison between the distribution factors for 

positive moment and negative moment, respectively, for two-equal–span bridges as obtained 

from the FEA and CHBDC. It should be noted that the results of positive moment 

distribution factor (Fm
+) obtained from CHBDC simplified method of analysis underestimates 

the structural response in most bridges considered in this study, with a difference up to 53%. 
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In addition, the negative moment distribution factor (Fm
-) obtained from CHBDC is always 

less than that obtained from FEA analysis as depicted in Fig. 5.20.   

 

Figures 5.21 and 5.22 depict similar graphs for the shear force distribution factors at internal 

and external supports for two-equal-span straight bridges, respectively, obtained from the 

FEA and CHBDC. In contrast to moment distribution factors, CHBDC values for shear 

distribution at ULS correspond very well. 

 
5.8.2 Fatigue Limit State Design   

Figures 5.23 and 5.24 illustrate the comparison between the positive moment and negative 

moment distribution factors for two-equal-span bridges, respectively, as obtained from the 

FEA and CHBDC. It can be observed that for CHBDC positive may underestimate the 

moment distribution factor for FLS for most of the bridges considered in this study. In 

addition, the negative moment distribution factor obtained from CHBDC is always less than 

that obtained from FEA analysis as depicted in Fig. 5.24. For example, the positive and 

negative distribution factors for 3L-40-2b bridge, are 1.75 and 2.08, respectively, as obtained 

from CHBDC expressions given in Chapter 2, while the corresponding values as obtained 

from finite element analysis are 2.19 and 3.96, respectively (an underestimation of 25.14% 

and 90.38%, respectively). 

 

Figures 5.25 and 5.26 present comparison between CHBDC and FEA results for the shear 

force distribution factors at the internal and external supports for two-equal-span bridges, 
respectively. The results calculated using CHBDC simplified method of analysis are 

conservative when compared to actual distribution factors calculated based on the finite-

element analysis.  

 
5.9 Correlation between the load Distribution Factors from the FEA and AASHTO-

LRFD Equation 

5.9.1 Ultimate Limit State Design  

Figures 5.27 and 5.28 present the correlation between CHBDC and FEA results for the 

distribution factors for positive moment and negative moment for two-equal-span, 
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respectively. It can be observed that the AASHTO-LRFD values for positive moment 

distribution factors are significantly higher than those obtained from FEA analysis. On the 

other hand, AASHTO-LRFD values for the negative moment distribution factors are 

generally greater than those obtained from FEA analysis. This indicates that AASHTO-

LRFD equation overestimates the structural response for the positive moment distribution 

factors and underestimate the response for he negative moment distribution factors. For 

example, the positive and negative moment distribution factors for 3L-40-3b bridge are 1.79, 

2.08, respectively, as obtained from AASHTO-LRFD expression given in Chapter 2. The 

corresponding values as obtained from the finite-element analysis are 1.30 and 2.54, 

respectively (an overestimation of 38% and underestimation 22%, respectively). 

 

The distribution factors for shear forces at ULS obtained from the FEA analysis and 

AASHTO-LRFD equation at the internal and external are shown in Figures 5.29 and 5.30, 

respectively. In both cases the AASHTO-LRFD values seem slightly conservative for some 

bridge geometries and highly conservative in others. For example, the internal and external 

shear distribution factors for 3L-40-3b bridge, are 2.08 and 1.75 as obtained from AASHTO 

expressions presented in Chapter 2. The corresponding values as obtained from finite–

element analysis are 1.35 and 1.26, respectively (an overestimation of 35% and 39%, 

respectively). 

 

5.9.2 Fatigue Limit State Design 

Distribution factors for positive and negative moments are presented in Figures 5.31 and 

5.32, respectively. The figures correlate values obtained based on the AASHTO-LRFD 

simplified method and those calculated from the finite-element analysis at FLS. It is clear the 

AASHTO-LRFD distribution factors for positive moment have no trend since ASSHTO-

LRFD equation underestimates the responses for some bridges and overestimates them in 

others. In case of negative moment distribution factors, AASHTO unconservatively predicts 

the responses of most bridge considered in this study. On the other hand, the distribution 

factors for shear forces at FLS obtained from the FEA analysis and AASHTO-LRFD 

equation at the internal and external supports are shown in Figures 5.33 and 5.34, 

respectively. In both cases, the AASHTO-LRFD values seem unconservative in most cases 
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of bridge when compared with those obtained from the FEA. For instance, the internal and 

external shear distribution factors in case of 3L-40-4b Bridge are 1.66 as obtained from 

AASHTO-LRFD expressions, while the corresponding values as evaluated based on the 

finite-element analysis are 3.18 and 2.82, respectively (a underestimation of 91.56% and 

69.87% respectively). 

 
5.10. Empirical Equations for the Load Distribution Factors  
 
Based on the results obtained from the parametric study on 55 bridge configurations, 

imperical expressions were developed for the distribution factors for positive moment (Fm+), 

negative moment (Fm-), shear forces at the internal and external supports for two-equal-span 

continuous composite box-girder bridges for ultimate and fatigue limit states designs. The 

developed empirical formulas for vehicular load include the following parameters:  

1- span length of the bridge (L) 

2- number of box (N) 

3- number of lanes (n) 

Using a statistical computer package for best fit based on the method of least squares, the 

empirical formulas for distribution factors are developed with minimum error. It should be 

noted that the highest values for a specific girder from all the loading cases are considered in 

this the creation of the empirical equations.  

The following expressions were derived in the same format, as those originally exist in 

CHBDC for multiple box girders. 

 

 1- For positive and negative moment distribution factors in the bottom flange along bridge 

span due to CHBDC live loading for Ultimate and Fatigue Limit States design: 

                                                         

mF  =  
)

100
1( fCF

SN
μ

+
       (5.1) 

 Where,  
Fm = the moment distribution factor  

S    = the girder spacing  

N   = the number of box girders 
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F    = a width dimension factor that characterizes load distribution for a bridge  

Cf = a correction factor  

6.0
3.3−

=
ewμ  ≤ 1.0    (5.2) 

Where, 

We = the width of a design lane, calculate with CHBDC clause 3.8.2.  

It should be noted that the values of F and Cf in CHBDC equations are a linear function of β 

in case of ultimate and fatigue limit state designs for longitudinal moments. However, the 

value of F in CHBDC expressions to obtain the longitudinal shear at ultimate and fatigue 

limit state design is a constant irrespective of the value of β, number of boxes and bridge 

span. Based on the data generated from the parametric study, it was observed that the number 

of boxes, number of design lanes and span length have an effect on the response and they 

should be includes in the developed expressions. As such, it was decided to use F and Cf as 

follows to develop more reliable expressions for structural design. 

F = (a + bβ) N-e 

Cf = C+ dβ 

Where:     a, b, c, d and e    = are new constants in the proposed empirical equation.  

Typical samples of the results from the finite-element analysis, parameters of empirical 

equations and variance between FEA and empirical equations are given more details in 

(Appendix A.1 to Appendix A.8). 

 
In this study, new empirical expressions were developed for the positive and negative 

moment distribution factors for ULS and FLS. Data generated from the parametric study was 

used to develop the new parameters F, Cf  and there constants a, b, c and e. Tables 5.1 and 5.2 

present the developed parameters of the empirical equations of positive and negative moment 

distribution factors at ULS, respectively. While Tables 5.3 and 5.4 present the developed 

parameters of the empirical equations for positive and negative moment distribution factors 

at FLS, respectively. These parameters were developed to be in a similar format to that used 

in CHDBC simplified method of analysis. These equations were developed with a condition 

that the resulting values underestimates the response by a maximum 5% to provide 
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confidence on the developed equations for the practice engineers (see Appendices A.1 to A.8 

for more details). 

 

The correlation between the developed formulas for positive moment and negative moment 

distribution factors and the values obtained from the finite-element analysis for the ultimate 

limit state design are shown in Figs. 5.35 through 5.42. While Figs. 5.43 through 5.50 depict 

the correlation for the same distribution factors at the Fatigue Limit State. It is obvious that 

all graphs show very good correlation between the estimated results from the developed 

formulas and calculated results from the finite-element analyses.  

 
 2- For the developed shear distribution factor equation, the following equation was 
proposed 

vF = F
SN

    (5.3) 

 
Few sets of equations to obtain F parameter were considered in this study after careful 

repetition of the regression analysis of the data generated from the parametric study. The first 

set of the equation for F is a multiplier of a linear function of span length (L) and exponential 

function of the number of boxes in a bridge cross-section as follows:  

 F = (a + b L) N-e (5.4) 

Figures 5.51 through 5.58 show the correlation between the shear distribution factors (Fv) at 

internal and external supports obtained from the proposed empirical equation and the finite-

element analysis at the Ultimate Limit State design. Tables 5.5 and 5.6 present the developed 

parameters of the empirical equation for shear distribution factors at ULS at inner and outer 

support, respectively. It can be observed that in the new parameter empirical equation the 

value of is a different with different number of lanes, but the value of b is a constant value 

with different number of lane. Figures 5.59 through 5.66 show the same distribution factors 

but for the Fatigue Limit State design. Tables 5.7 and 5.8 present the developed parameters 

of the empirical equation of the shear distribution factors at the FLS at inner and outer 

supports, respectively. It is noted that in Tables 5.7 and 5.8 that the equation of F doesn’t 

depend on the bridge span length in the case of the Fatigue Limit State. 

The second set of equation when F is as a function of (β) in linear equation is presented as 

follows:  
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F = (a + b β ) N-e  (5.5) 

 
Figures 5.67 through 5.74 show the correlation between the shear distribution factors (Fv) at 

the internal and external supports obtained from the new empirical equation, which is a 

function in β, and the values obtained from the FEA at the Ultimate Limit State. The 

Summary of developed parameters is presented in Tables 5.9 and 5.10.  Figures 5.75 through 

5.82 present correlation between the values obtained from the developed equation and those 

obtained from the FEA analysis. Good agreement is observed. It should be noted that the 

developed parameters used in the imperial equation are listed in Tables 5.11 and 5.12. 

The third set of equations when F is as a function of (β) in polynomial equation is considered 

as follows:  

 

F = (a + b β + c β2) N-e (5.6) 

    

 Figures 5.83 through 5.90 show the correlation between the shear force distribution factors 

(Fv) at the internal and external supports obtained from the new empirical equation, which is 

function of β in polynomial equation, and the finite-element analysis at the Ultimate Limit 

State. The Summary of developed parameters is presented in Tables 5.13 and 5.14. Figures 

5.91 through 5.98 show good correlation between the values obtained from the developed 

expressions and the FEA results. It is obvious that the results obtained based on the empirical 

equations developed for distribution factors for shear forces are very close to those obtained 

from the finite-element analyses.
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Chapter 6 

 
SUMMARY AND CONCLUSIONS 

 
6.1 Summary  

An extensive theoretical investigation was conducted to determine the effect of several 

variables on the moment and shear force distributions among box girders in two-equal-span 

continuous straight composite concrete deck-on multiple steel box-girder bridges due to the 

passage of CHBDC truck loading for both Ultimate and Fatigue Limit State designs. A 

detailed literature review was carried out to set up the basis for this research work. The 

results of the literature review indicated lack of expressions to describe the load distribution 

factors for such bridges. Different truck loading conditions were considered in this study to 

determine the maximum response from which empirical expressions for load distribution 

factors can be deduced. The influences of the key parameters, namely: span length (L), 

number of lane (n), and number of box (N), were investigated. Results obtained from the 

FEA analysis of 55 bridge prototypes were used to deduce empirical expressions for moment 

and shear distribution factors for such bridges.  

 

6.2 Conclusions  

Calculation of accurate distribution factors for design live loads is very important to bridge 

design. The design values need to be close to actual values to allow engineers to design 

bridges to be safe and as economical as possible.  

Based on the theoretical investigations carried out on continuous straight concrete deck-on 

multiple steel box-girder bridges, the following conclusions can be drawn:   

1- The bridge span length, number of boxes and number of design lanes play a 

significant effect on the value of the load distribution factors of such bridges. 

2- The moment distribution factors of these bridges decrease with increasing span length 

and increases linearly with increasing number of lanes. On the other hand, the 

moment distribution factors remain almost uniform with increasing the number of 

boxes.  
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3- Shear distribution factor is almost uniform with increasing span length and decrease 

with increase in number of lanes from 2 to 3. However, this trend changes by 

increasing the number of lanes from 3 to 5. On the other hand, the shear distribution 

factor increased with increased number of boxes. 

4- In case of ultimate limit state design, the CHBDC simplified method of analysis 

seems to be conservative for shear distribution factors when compared to data 

generated form the finite-element analysis. On the other hand, the CHBDC simplified 

method underestimates the moment distribution factors by up to 150% when 

compared to those obtained from the finite-element analysis.  

5- The CHBDC values are the most conservative (i.e. highest overestimation) for all 

distribution factors in case of fatigue limit state with a range up to 80% difference 

compared with the values calculated based on the finite-element analysis. 

6- Generally, the AASHTO-LRFD load distribution factors for ULS and FLS 

overestimate the structural response of bridges up to 80%. Few cases were observed 

to underestimate the structural response with a difference up to 80% when compared 

to the FEA results. 

7- Based on the data generated from the parametric study on two-span-length straight 

bridges, empirical expressions for the moment and shear distribution factors were 

developed. Correlations with FEA results show that the proposed expressions are 

more accurate and reliable than the available simplified method specified in the 

CHBDC simplified method of analysis.  

 

6.3 Recommendations for Future Research  

It is recommended that further research efforts be directed to address the following: 

1- Study the effect of material and geometric nonlinearly on the load distribution factors 

of such bridges. 

2- Investigate the effect of skewness of bridge superstructure on the load distribution of 

such bridges. 

3- Extension of the developed load distribution factors to integral abutment bridges.  
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 Figure 1.3 View of a Twin- box girder bridge 
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A) Plate bending moments  

 
b) Stress and membrane forces  

 

 
C) Global and local coordinates 

 

Figure 3.1 Sketches of the four-node shell element used in the analysis, “SAP2000 

software” Wilson and Habibullah, 2010  
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Figure 3.2 Schematic view of the bridge model showing the intermittent connections 

between steel box-girder and concrete slab 

 

 

Connection between concrete slab 
and steel box-girder  
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(a) The non-composite bridge model 

 

 
(b) The composite bridge model  

 

Figure 3.5 Typical finite-element meshes obtained from “SAP2000 Software” Wilson 

and Habibullah, 2010 
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CL-625-ONT Truck Loading  

 

 
CL-625-ONT Lane Load  

 

 
CL-W Truck 

 

 

Figure 4.1 CL- 625-ONT Truck Loading and Lane Load  
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Figure 4.4 Loading cases for two–design lane, two-girder bridges  

 

Exterior girder –
Partial load 

Exterior girder –
Full load 

Middle girder –
Full load 

Fatigue loading 
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Figure 4.5 Loading cases for three–design lane, three-girder bridges 

Exterior girder –
Partial load-1 

Exterior girder –
Full load 

Exterior girder –
Partial load-2 

Middle girder –
Partial load 

Middle girder –
Full load 

Fatigue loading-1 

Fatigue loading-2 
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Figure 4.6 Loading cases for exterior girder for four–design lane, three-girder bridges 

 

Exterior girder –
Partial load-1 

Exterior girder –
Partial load-2 

Exterior girder –
Partial load-3 

Exterior girder –
Full load 
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Figure 4.7 Loading cases for middle girder for four–design lane, three-girder bridges 

 

 

 

 

Middle girder –
Partial load-1 

Middle girder –
Partial load-2 

Middle girder –
Partial load-3 

Exterior girder –
Full load-1 

Exterior girder –
Full load-2 
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Figure 4.8 Loading cases for fatigue load for four–design lane, three-girder bridges  

 

 

 

 

 

 

 

 

Fatigue loading-1 

Fatigue loading-3 

Fatigue loading-2 
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Figure 4.9 Loading cases for exterior girder for five–design lane, four-girder bridges 

 

Exterior girder –
Partial load-1 

Exterior girder –
Full load 

Exterior girder –
Partial load-2 

Exterior girder –
Partial load-3 

Exterior girder –
Partial load-4 
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Figure 4.10 Loading cases for middle girder for five–design lane, four-girder bridges 

Middle girder –
Partial load-1 

Middle girder –
Partial load-2 

Middle girder –
Partial load-3 

Middle girder –
Partial load-4 

Middle girder –
full load-1 

Middle girder –
full load-2 
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Figure 4.11 loading cases for fatigue load for five–design lane, four-girder bridges 

 

Fatigue loading-1 

Fatigue loading-2 

Fatigue loading-3 
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Figure 5.1 Effect of span length on positive moment distribution factors at ULS due to 
CHBDC truck load 
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Figure 5.2 Effect of no. of lanes on positive moment distribution factors at ULS due to 
CHBDC truck load 
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Figure 5.3 Effect of no. of boxes on positive moment distribution factors at ULS due to 
CHBDC truck load 
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Figure 5.4 Effect of span length on positive moment distribution factors at FLS due to 
CHBDC truck load 
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Figure 5.5 Effect of no. of lanes on positive moment distribution factor at FLS due to 
CHBDC truck load 
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Figure 5.6 Effect of no. of boxes on positive moment distribution factor at FLS due to 
CHBDC truck load 
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Figure 5.7 Effect of span length on negative moment distribution factors at ULS due to 
CHBDC truck load 
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Figure 5.8 Effect of no. of lanes on negative moment distribution factors at ULS due to 
CHBDC truck load 
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Figure 5.9 Effect of no. of boxes on negative moment distribution factor at ULS due to 
CHBDC truck load 
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Figure 5.10 Effect of span length on negative moment distribution factor at FLS due to 
CHBDC truck load 
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Figure 5.11 Effect of no. of lanes on negative moment distribution factors at FLS due to 
CHBDC truck load 
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Figure 5.12 Effect of no. of boxes negative moment distribution factors at FLS due to 
CHBDC Truck load 
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Figure 5.13 Effect of span length on shear distribution factors at ULS due to CHBDC 
truck load 
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Figure 5.14 Effect of no. of lanes on shear distribution factors at ULS due to CHBDC 
truck load 
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Figure 5.15 Effect of no. of boxes on shear distribution factors at ULS due to CHBDC 
truck load 

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

2 3 4
No. of  boxes (N)

Sh
ea

r 
di

st
ri

bu
tio

n 
fa

ct
or

 (F
v)

 a
t U

LS

span 40 m

span 60 m

span 80 m

span 100 m

 
 

Figure 5.16 Effect of span length on shear distribution factors at FLS due to CHBDC 
truck load 
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Figure 5.17 Effect of no. of lanes on shear distribution factors at FLS due to CHBDC 
truck load 
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Figure 5.18 Effect of no. of boxes on shear distribution factor at FLS due to CHBDC truck 
load 
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Figure 5.19 Correlation between positive moment distribution factor (Fm+) from FEA and 
CHBDC results at ULS 
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Figure 5.20 Correlation between negative moment distribution factor (Fm-) from FEA and 
CHBDC results at ULS. 
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Figure 5.21 Correlation between Shear Distribution factors (Fv) at internal support from 
FEA and CHBDC results at ULS. 
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Figure 5.22 Correlation between shear distribution factors (Fv) at external support from 
FEA and CHBDC results at ULS. 
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Figure 5.23 Correlation between positive moment distribution factors (Fm+) from FEA 
and CHBDC results at FLS 
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Figure 5.24 Correlation between negative moment distribution factor (Fm-) from FEA and 
CHBDC results at FLS 
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Figure 5.25 Correlation between shear distribution factors (FV) at internal support from 
FEA and CHBDC results at FLS 
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Figure 5.26 Correlation between shear distribution factor (FV) at external support from 
FEA and CHBDC results at FLS 
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Figure 5.27 Correlation between positive moment distribution factors (Fm+) from FEA 
and AASHTO results at ULS 
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Figure 5.28 Correlation between negative moment distribution factor (Fm-) from FEA and 
AASHTO results at ULS 
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Figure 5.29 Correlation between shear distribution factor (Fv) at internal support from 
FEA and AASHTO results at ULS 
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Figure 5.30 Correlation between shear distribution factor (Fv) at external support from 
FEA and AASHTO results at ULS 
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Figure 5.31 Correlation between positive moment distribution factors (Fm+) from FEA 
and AASHTO results at FLS 
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Figure 5.32 Correlation between negative moment distribution factor (Fm-) from FEA and 
AASHTO results at FLS 
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Figure 5.33 Correlation between shear distribution factor (Fv) at internal support from 
FEA and AASHTO results at FLS 
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Figure 5.34 Correlation between shear distribution factors   (Fv) at external support from 
FEA and AASHTO results at FLS 
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Figure 5.35 Comparison between positive moment distribution factors from the empirical 
equation and FEA for two lanes bridges at ULS 
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Figure 5.36 Comparison between negative moment distribution factors from the 
empirical equation and FEA for two lanes bridges at ULS 
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Figure 5.37 Comparison between positive moment distribution factors from the empirical 
equation and FEA for three lanes bridges at ULS 
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Figure 5.38 Comparison between negative moment distribution factors from the 
empirical equation and FEA for three lanes bridges at ULS 
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Figure 5.39 Comparison between positive moment distribution factors from the empirical 
equation and FEA for four lanes bridges at ULS 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
 FEA values

E
m

pi
ric

a 
E

qu
at

io
n 

va
lu

es

 
 

Figure 5.40 Comparison between positive moment distribution factors from the empirical 
equation and FEA for four lanes bridges at ULS 
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Figure 5.41 Comparison between positive moment distribution factors from the empirical 
equation and FEA for five lanes bridges at ULS 
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Figure 5.42 Comparison between negative moment distribution factors from the 
empirical equation and FEA for five lanes bridges at ULS 
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Figure 5.43 Comparison between positive moment distribution factors from the empirical 
equation and FEA for two lanes bridges at FLS 
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Figure 5.44 Comparison between negative moment distribution factors from the 
empirical equation and FEA for two lanes bridges at FLS 
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Figure 5.45 Comparison between positive moment distribution factors from the empirical 
equation and FEA for three lanes bridges at FLS 
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Figure 5.46 Comparison between negative moment distribution factors from the 
empirical equation and FEA for three lanes bridges at FLS 
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Figure 5.47 Comparison between positive moment distribution factors from the empirical 
equation and those from FEA for four lanes bridges at FLS 
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Figure 5.48 Comparison between negative moment distribution factors from the 
empirical equation and those from FEA for four lanes bridges at FLS 
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Figure 5.49 Comparison between positive moment distribution factors from the empirical 
equation and FEA for five lanes bridges at FLS 
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Figure 5.50 Comparison between negative moment distribution factors from the 
empirical equation and FEA for five lanes bridges at FLS 
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Figure 5.51 Comparison between vertical shear at internal support from the empirical 
equation and FEA for two lanes bridges at ULS as function of (L) 
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Figure 5.52 Comparison between vertical shear at external support from the empirical 
equation and FEA for two lanes bridges at ULS as function of (L) 
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Figure 5.53 Comparison between vertical shear at internal support from the empirical 
equation and FEA for three lanes bridges at ULS as function of (L) 
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Figure 5.54 Comparison between vertical shear at external support from the empirical 
equation and FEA for three lanes bridges at ULS as function of (L) 
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Figure 5.55 Comparison between vertical shear at internal support from the empirical 
equation and FEA for four lanes bridges at ULS as function of (L) 
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Figure 5.56 Comparison between vertical shear at external support from the empirical 
equation and FEA for four lanes bridges at ULS as function of (L) 
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Figure 5.57 Comparison between vertical shear at internal support from the empirical 
equation and FEA for five lanes bridges at ULS as function of (L) 
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Figure 5.58 Comparison between vertical shear at external support from the empirical 
equation and FEA for five lanes bridges at ULS as function of (L) 
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Figure 5.59 Comparison between vertical shear at internal support from the empirical 
equation and FEA for two lanes bridges at FLS as function of (L) 
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Figure 5.60 Comparison between vertical shear at external support from the empirical 
equation and FEA for two lanes bridges at FLS as function of (L) 
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Figure 5.61 Comparison between vertical shear at internal support from the empirical 
equation and FEA for three lanes bridges at FLS as function of (L) 
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Figure 5.62 Comparison between vertical shear at external support from the empirical 
equation and FEA for three lanes bridges at FLS as function of (L) 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
FEA values

Em
pi

ric
al

 E
qu

at
io

n 
va

lu
es

 



 110

Figure 5.63 Comparison between vertical shear at internal support from the empirical 
equation and FEA for four lanes bridges at FLS as function of (L) 
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Figure 5.64 Comparison between vertical shear at external support from the empirical 
equation and FEA for four lanes bridges at FLS as function of (L) 
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Figure 5.65 Comparison between vertical shear at internal support from the empirical 
equation and FEA for five lanes bridges at FLS as function of (L) 
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Figure 5.66 Comparison between vertical shear at external support from the empirical 
equation and FEA for five lanes bridges at FLS as function of (L) 
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Figure 5.67 Comparison between vertical shear at internal support from the empirical 
equation and FEA for two lanes bridges at ULS as function of (β) 
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Figure 5.68 Comparison between vertical shear at external support from the empirical 
equation and FEA for two lanes bridges at ULS as function of (β) 
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Figure 5.69 Comparison between vertical shear at internal support from the empirical 
equation and FEA for three lanes bridges at ULS as function of (β) 
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Figure 5.70 Comparison between vertical shear at external support from the empirical 
equation and FEA for three lanes bridges at ULS as function of (β) 
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Figure 5.71 Comparison between vertical shear at internal support from the empirical 
equation and FEA for four lanes bridges at ULS as function of (β) 
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Figure 5.72 Comparison between vertical shear at external support from the empirical 
equation and FEA for four lanes bridges at ULS as function of (β) 
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Figure 5.73 Comparison between vertical shear at internal support from the empirical 
equation and FEA for five lanes bridges at ULS as function of (β) 
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Figure 5.74 Comparison between vertical shear at external support from the empirical 
equation and FEA for five lanes bridges at ULS as function of (β) 
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Figure 5.75 Comparison between vertical shear at internal support from the empirical 
equation and FEA for two lanes bridges at FLS as function of (β) 
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Figure 5.76 Comparison between vertical shear at external support from the empirical 
equation and FEA for two lanes bridges at FLS as function of (β) 
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Figure 5.77 Comparison between vertical shear at internal support from the empirical 
equation and FEA for three lanes bridges at FLS as function of (β) 
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Figure 5.78 Comparison between vertical shear at external support from the empirical 
equation and FEA for three lanes bridges at FLS as function of (β) 
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Figure 5.79 Comparison between vertical shear at internal support from the empirical 
equation and FEA for four lanes bridges at FLS as function of (β) 
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Figure 5.80 Comparison between vertical shear at external support from the empirical 
equation and FEA for four lanes bridges at FLS as function of (β) 
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Figure 5.81 Comparison between vertical shear at internal support from the empirical 
equation and FEA for five lanes bridges at FLS as function of (β) 
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Figure 5.82 Comparison between vertical shear at external support from the empirical 
equation and FEA for five lanes bridges at FLS as function of (β) 
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Figure 5.83 Comparison between vertical shear at internal support from the empirical 
equation and FEA for two lanes bridges at ULS as function of (β2) 
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Figure 5.84 Comparison between vertical shear at external support from the empirical 
equation and FEA for two lanes bridges at ULS as function of (β2) 
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Figure 5.85 Comparison between vertical shear at internal support from the empirical 
equation and FEA for three lanes bridges at ULS as function of (β2) 
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Figure 5.86 Comparison between vertical shear at external support from the 
empirical equation and FEA for three lanes bridges at ULS as function of (β2) 
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Figure 5.87 Comparison between vertical shear at internal support from the empirical 
equation and FEA for four lanes bridges at ULS as function of (β2) 
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Figure 5.88 Comparison between vertical shear at external support from the empirical 
equation and FEA for four lanes bridges at ULS as function of (β2) 
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Figure 5.89 Comparison between vertical shear at internal support from the empirical 
equation and FEA for five lanes bridges at ULS as function of (β2) 
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Figure 5.90 Comparison between vertical shear at external support from the empirical 
equation and FEA for five lanes bridges at ULS as function of (β2) 
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Figure 5.91 Comparison between vertical shear at internal support from the empirical 
equation and FEA for two lanes bridges at FLS as function of (β2) 
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Figure 5.92 Comparison between vertical shear at external support from the empirical 
equation and FEA for two lanes bridges at FLS as function of (β2) 
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Figure 5.93 Comparison between vertical shear at internal support from the empirical 
equation and FEA for three lanes bridges at FLS as function of (β2). 
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Figure 5.94 Comparison between vertical shear at external support from the empirical 
equation and FEA for three lanes bridges at FLS as function of (β2). 
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Figure 5.95 Comparison between vertical shear at internal support from the empirical 
equation and FEA for four lanes bridges at FLS as function of (β2). 
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Figure 5.96 Comparison between vertical shear at external support from the empirical 
equation and FEA for four lanes bridges at FLS as function of (β2). 
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Figure 5.97 Comparison between vertical shear at internal support from the empirical 
equation and FEA for five lanes bridges at FLS as function of (β2). 
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Figure 5.98 Comparison between vertical shear at external support from the empirical 
equation and FEA for five lanes bridges at FLS as function of (β2). 
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Appendix A.1 Parameters of empirical equation of moment distribution factors at ULS  
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Appendix A.2 Parameters of empirical equation of moment distribution factors at FLS  
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Appendix A.3 Parameters of empirical equation of shear distribution factors as function of 

(L) span length at ULS  
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Appendix A.4   Parameters of empirical equation of shear distribution factors as function 

of (L) span length at FLS  
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Appendix A.5: Parameters of empirical equation of shear distribution factors as function of 

(β) at ULS  
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Appendix A.6: Parameters of empirical equation of shear distribution factors as function of 

( β) at FLS  
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Appendix A.7:  Parameters of empirical equation of shear distribution factors as function 

of (β2) at ULS 
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Appendix A.8: Parameters of empirical equation of shear distribution factors as function of 

(β2) at FLS  
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APPENDIX A.9 Comparison between the load distribution factor from the FEA and 

CHBDC equation in ULS 
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APPENDIX A.10 Comparison between the load distribution factor from the FEA and 

CHBDC equation in FLS  
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APPENDIX A.11 Comparison between the load distribution factor from the FEA and 

AASHTO-LRFD equation in ULS  
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APPENDIX A.12 Comparison between the load distribution factor from the FEA and 

AASHTO-LRFD equation in FLS  
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