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ABSTRACT

AN EFFECTIVE SHAPE DESCRIPTOR FOR CONTENT
BASED IMAGE RETRIEVAL

©Yupeng Li 2006

Master of Applied Science
Department of Electrical and Computer Engineering
Ryerson University

In this work, we present a modified version of the Generic Fourier Descriptor (GFD) that
operates on edge information within natural images from the COREL image database for the
purpose of shape-based image retrieval. By incorporating an edge-texture characterization
(ETC) measure, we reduced the complexity inherent in oversensitivé edge maps typical of
most gradient-based detectors that otherwise tend to contaminate the shape feature descrip-
tion. We find that the proposed techniques not only improve overall retrieval in terms of
shape, but more importantly, provide a more accurate similarity ranking measure of retrieved
results, demonstrating the need for greater consideration for dominant internal and external
shape details. A feature database combined by color moments, color histograms, Gabor
wavelet and shape features is applied in our image retrieval system. Relevance feedback has
also been considered, bridging the gap between the high level concepts and the low level
visual features. The experimental results indicate that dynamically updating weights asso-

ciated with feature components by users’ feedback greatly improves retrieval performance.
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Chapter 1

Introduction

1.1 General Background

‘ N TITH the rapid development of computer hardware and software technology, multi-

media data processing has been applied in many sectors of society. Multimedia is
the coherent integration of multiple media sources, e.g. text, graphics, images, audio and
video. The use of images in human work and life is very common. It is widely applied in
distance education, military, commerce, digital museum and medicine, etc. Digital photog-
raphy, cheap storage (CDs and DVDs) and high-capacity public networks (Internet) have
led to an expedited increase in digital image applications. However, the huge amount of im-
ages stored around the world makes the utilization of images from existing databases more
difficult than ever. It is necessary to find effective tools for indexing and managing digital
images. As a result, image retrieval has become a very active research area since 1970s. It
mainly includes two retrieval models, one being text-based retrieval and the other content-
based retrieval. Figure 1.1 is an illustrative representation of image description based on

different information sources.

1.2 Text-Based Image Retrieval

Traditionally, images are stored in a database and indexed using textual information. Text-

based image retrieval is an extension of the modern Information Retrieval (IR). The advan-
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Figure 1.1: Image description using different information sources

tage of textual indexing of images is that it can provide the user with key word searching,
catalogue browsing and even with query interface such as Structural Query Language (SQL),
as shown in Figure 1.1. Text-based image search is often used to find information on the
World Wide Web (WWW). Lycos [1], Google [2] and Altavista [3] are very popular web
search engines. Users use Google search engine to search images by text queries and Ly-
cos search engine can provide multimedia information including video, music and images.
Similarly, Altavista search engine supports options of image, audio and video. Figure 1.2(a)
and (b) show the Graphic User Interfaces of Google and Lycos search engines respectively.
In spite of the popularity of text-based image retrieval on the website, it apparently has
numerous limitations:

(a) When the image database is very large, it is almost impossible to manually annotate
all the images.

(b) It is very difficult to find suitable textual words for the description of visual features
of image.

(¢) Manual image indexing is highly subjective, extremely laborious and only expresses

the personal opinion of the user.
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Figure 1.2: Google and Lycos search engines

(d) The users search the database by providing a textual description of the query which
is, sometimes, very difficult to annotate.

Because of the limitations of text-based image retrieval, researchers have attempted to
find alternative ways for indexing and retrieving images, which focus on the image indexing
techniques that have the ability of retrieving images based on their content and can be
automated. The technologies are now generally referred to as Content-Based Image Retrieval

(CBIR).

1.3 Content-Based Image Retrieval (CBIR)

The objective of CBIR is to find all the visual documents in the image libraries similar to
the query, based solely on the content information. A typical example from telemedicine
area is that a medical doctor in a remote area is studying a CT scanning image of a patient,
which shows a tumor like object. The doctor wants to search for similar cases from a medical

database in order to make a inferred diagnostic decision. Visual feature extraction, indexing



and similarity measures are the major basis in content-based image retrieval. Because digi-
tized images consist purely of arrays of pixel intensities with no inherent meaning, the useful
information should be extracted from the raw image data to represent the image content.
Thus, visual feature extraction is the essence of the CBIR. Generaliy, color, texture and
shape are three sets of most important feature descriptors in CBIR.

Color plays a significant role in image retrieval. Popular color representation schemes
include red-green-blue (RGB), hue-saturation-value (HSV), luminance system of CIE (In-
ternational Commission on Illumination) and others [63]. The most acknowledged scheme
used in display devices is RGB, which is typically employed in digital images. Since the
HSV scheme more accurately reflects human perception of color, the color feature extraction
usually employs this format.

Texture is a visual pattern where there are a large number of visible elements densely
and evenly arranged. A texture element is a uniform intensity region of simple shape which
is repeated. Texture has already been applied in pattern recognition and computer vision.

Shape-based image retrieval is one of the hardest problems in general image retrieval.
This is mainly due to the difficulty of finding an appropriate shape descriptor. One of our
main research objectives in this thesis is to focus on image indexing and retrieval using shape

features, finding an effective shape descriptor in natural image retrieval (Figure 1.1).

1.4 Relevance Feedback in CBIR

The focus of the early attempts in CBIR was to develop completely automated, open loop
systems without any user feedback. However, there is a significant semantic gap between
the high level concepts understood by the human perception and the low level features used
by computer for image representation. Different human beings based on their subjective
opinions may describe the same content differently, especially for those images including
more objects. For example, we have an image with a plane being in the centre of the

scene. One person may be concerned with the plane’s purpose ( passenger, fighter or private



plane), and another may consider the plane’s status (flying in the sky or stopping at the
airport). Hence, the user’s feedback is crucial in content-based image retrieval. The process
of collecting feedback information from the users by labeling the partial retrieval results
is called Relevance Feedback (RF). Researchers have developed different RF algorithms for
CBIR to improve the retrieval performance. Some of the key approaches will be reviewed in

Chapter 2.

1.5 Outline of Thesis

The remainder of this thesis is organized as follows:

Chapter 2: Related Work Previous works in the field of content-based image retrieval
are reviewed, including CBIR based on different shape descriptors, image retrieval systems
and relevance feedback. For the preparation of our proposed shape descriptor, the detection

and extraction of edge information in images are also discussed.

Chapter 3: CBIR based-on shape feature for natural images We present the algo-
rithm of generic Fourier descriptor (GFD) in details. The algorithm of edge-texture char-
acterization (ETC) is applied to remove textured parts from the edge map of an image
extracted by the Canny filter. A new shape descriptor: the modified generic Fourier descrip-

tor (MGFD) is proposed for natural image retrieval.

Chapter 4: Dynamic weight selection for CBIR using relevance feedback The
extraction of color and texture features in the literature are first reviewed. A feature database
consisting of color (color histograms and color moments), texture (Gabor wavelet transform)
and shape (modified generic Fourier descriptor) is described. The normalization approaches
for the feature database are also discussed. Dynamic weight updating by user’s feedback

and modified query give the best performance in CBIR.

Chapter 5: Conclusions We discuss the results and summarize the contributions of this

thesis. Recommendations for future research are also provided.

5



Chapter 2
Related Work

ONTENT Based Image Retrieval (CBIR) is used for retrieving semantically relevant
C images from an image database based on automatically derived image features [4].
The main goal of CBIR is to improve the efficiency of image indexing and retrieval, thereby
reducing human interaction in the indexing process.

One of the main tasks for CBIR systems is feature extraction of every image based on
its pixel values and similarity comparison. These features (color, texture and shape) become
the image representation for measuring the similarity between query and other images in the
database. The main objective of this thesis is to develop a new effective shape descriptor, in
order to better ﬁnderstand shape-based image retrieval system, some current shape descrip-
tors are reviewed in section 2.1. Edge detection and extraction of images are also covered
in this section. Nevertheless, shape features combined with other features will ultimately be
applied to CBIR systems, thus, some existent CBIR systems are discussed in section 2.2,
including relevance feedback in CBIR. Color and texture descriptors will be described briefly

in Chapter 4. We summarize this Chapter in section 2.3.

2.1 Shape Description Techniques

Shape is an important visual feature. It is widely applied in object recognition, matching,
registration and analysis areas, it is one of the primitive features for image content descrip-

tion. The aim of shape description is to uniquely characterize the shape using a shape



descriptor. However, shape content description is a difficult task, because it is not easy to
define perceptual shape features and make similarity measures between shapes. Moreover,
shape is often corrupted with noise, defection, arbitrary distortion and occlusion. As a re-
sult, the search for shape representation and description techniques becomes a challenging
task. In the following, shape description techniques are reviewed in details.

There are many methods to classify shape description techniques in the literature [5, 6,
63]. The most common and general classification is based on the use of shape boundary
points as opposed to shape interior points. The resulting classes are known as boundary
and global [7]. In our work, we adopt a hierarchical classification approach. The variety of
shape description techniques are first classified into contour-based method and region-based
method based on shape features extracted from contour only or the whole shape region. For
each class, the different algorithms are further identified between structural and global based
on the shape represented as a whole or sub-parts. The whole classification of main shape

representation techniques is shown in Figure 2.1.

|
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Figure 2.1: Classification of shape description techniques



2.1.1 Contour-Based Shape Description Techniques

Contour shape representation techniques only focus on shape boundary information. There
are éommonly two typical approaches for contour shape modeling: global and structural.
Global methods do not separate shape into sub-parts, the shape is described by a feature
vector derived from the integral boundary. Structural methods divide the shape boundary

into segments (primitives) using a particular criterion.

Structural Methods

Chain codes represent an object by a sequence of unit-size line segments with a given ori-
entation. Based on a selected starting point, a chain code can be produced by 4-, 8 or
N-directional chain code [8]. Due to high dimension of chain code and being sensitive to
boundary noise and variations, it is often used as an input to higher level analysis, not used
directly for shape description.

Polygon approach approximates shape as polygon [9], and the shape is described as string
of line segments which are then organized into tree data structure. The application of it for
general shapes is impractical.

Shape invariants can-also be viewed as a structural approach, because they also represent
shape based on boundary primitives. Common invariants include geometric invariants [10],
algebraic invariants [11] and differential invariants. Geometric and algebraic invariants are
appropriate for shape boundaries represented by straight lines or algebraic curves. Differ-
ential invariants can be used for the boundaries which may not be represented by lines or
algebraic curves.

The advantage of structural approach is its capability of dealing with occlusion problem
in the scene and allowing partial matchiﬁg. However, it is based on the cost of several
drawbacks. The main drawbacks of structural approach are: (1) generation of primitives
and features; Due to no formal definition for an object or shape, the number of primitives
required for each shape is unknown. (2) Computation complexity; (3) Failing to catch global

shape features which are equally important for the shape description.



Global Methods

Common simple global descriptors (area, circularity, eccentricity and bending energy) [12]
can usually only discriminate with large dissimilarities, thus, they are not suitable for use as
shape descriptors alone and are only combined with other shape descriptors to discriminate
shapes. Other simple global shape descriptors proposed by Peura and livarinen [13] include
convezity, ratio of principle axis, circular variance and elliptic variance.

Shape signatures, including complex coordinates, polar coordinates, tangent angle, cur-
vature and chord-length, etc., represent shape by a one-dimensional function derived from
shape boundary points. They usually achieve translation and scale invariance by normaliza-
tion. Also, shape signatures can be quantized into a signature histogram, which is rotation
invariant [11]. Shape signatures are sensitive to noise. Small changes in the boundary can
cause large error in the matching. Thus, they should not be used directly for shape retrieval.

The problem of noise sensitivity and boundary variations in many spatial domain shape
description methods stimulates the use of scale space analysis [14, 15, 16]. The scale space
representation of a shape is achieved by tracking the position of inflection points in shape
boundary filtered by low-pass Gaussian filter with variable widths. The inflection points in
the representation are expected to be significant object characteristics. The result is usually
an interval tree, consisting of inflection points. The matching is actually a point to point
matching for two scale space images. It is not practical for complex shapes in the database,
because complex shape can result in a very high interval tree.

The above shape descriptors are analyzed only in the spatial domain. Spectral descrip-
tors, including Fourier descriptors (FD) and wavelet descriptors (WD), can overcome the
problem of noise sensitivity and boundary variations by analyzing shape in the spectral do-
main. FD is one of the most popular shape descriptors used in literature [17, 18, 19, 20, 21,
22, 23, 25, 26, 27]. Traditional FD algorithms are only applied on closed and non-occluded
curves, Lin et al. proposed the description of partial shape using FD [19], Arbter et al.
developed the affine-invariant FD into the affine shape description [22]. In order to describe

disjointed or articulated contour shapes, Rauber proposed a Universidade Nova de Lisboa



(UNL) FD, which is acquired by applying 2-D Fourier transform on the UNL transformed
shape image [24]. The modified Fourier descriptor was proposed by Rui et al. [26], it is both
robust to noise and invariant to geometric transformation. The FD can capture both coarse
(globe) and fine (local) features on shape boundary. However, for ’phe‘local shape features,
it can not detect the locations of local features. Eichmann et al. [31] developed short-time
Fourier descriptor (SFD) to locate local boundary features.

In [32], Zhang and Lu compared the retrieval performance based on shape using FD and
SFD. The results showed that FD outperformed SFD in the retrieval performance. The
reason is that SFD may capture the local boundary features more accurately than FD,
- and local boundary distortions will not affect the whole set of SFD features. However, it
can not detect global boundary features which are also important for shape representation.
Furthermore, the lower frequency FD features employed in shape description are robust to
local distortion, because significant effects from local distortions mainly concentrate on the
very higher frequency FD features.

In recent years, shape description using wavelet descriptors (WD) has proposed by some
researchers [28, 29, 30]. Comparing WD with FD, WD is of multi-resolution in the spatial
domain, however, the increase of spatial.resolution sacrifices frequency resolution. Moreover,
the complicated matching scheme of wavelet description makes it impractical for online shape
retrieval. ‘

In a word, the advantages of FD over many other shape descriptors are: (i) it involves
low computation by using the fast Fourier transform (FFT). (ii) The resulting descriptor
is compact and any matching is very simple. (iii) Only a few lower coefficients of the
Fourier transform are necessary to describe shape information. (iv) FD also overcomes noise

sensitivity and captures both global and local features.

2.1.2 Region-Based Shape Description Techniques

Contour-based shape description is successfully used in many applications such as object

recognition, character recognition and shape coding, etc. Contour-based shape descriptors

10



are useful if a shape contour is available. However, the description of shape from non-
rigid and complex shapes becomes very difficult. Therefore, contour-based shape descriptors
have limited applications. Alternatively, complex shape can be described using region-based
shape description methods. Region-based methods can capture both boundary and interior

information, we usually do not need to find shape contour.

Structural Methods

Similar to the contour structural methods, region-based structural methods divide shape
regions into parts used for shape representation and description. The two main region
structural methods are convez hull and medial azis [33]. The extraction of convex hull is
a single process which finds significant convex deficiencies along the boundary. The shape
can be represented by a string of concavities. The shape description can be obtained by a
recursive process to result in a concavity tree: the convex hull of an object is first extracted
with its convex deficiencies, then the convex hulls and deficiencies of the convex deficiencies
are found, and repeat until all the derived convex deficiencies are convex.

Like the convex hull, region skeletons can also be applied for shape representation and
description. A skeleton can be defined as a connected set of medial lines along the limbs of
a figure [33]. The skeleton methods are represented by the medial axis transform (MAT).
Finding a polygonal approximation of the shape contour has been suggested as a way of
overcoming the problem of medial axis being sensitive to boundary noise and variation.
Region structural methods suffer from similar problems to contour structural approaches,
whilst both types of region structural methods here also need to know shape boundary

information. Thus, they are seldom employed as shape descriptors in shape retrieval.

Global Methods

Global methods regard shape as a whole, the resulting shape description is a numeric feature
vector. Hu first proposed the seven normalized geometric moments invariant to translation,
rotation and scaling for two-dimensional pattern recognition applications [34]. Geometric

moment descriptors (GMD) have been used in many applications (35, 36]. The advantage of

11



using GMD is its compact shape representation and lower computation. However, we do not
know the physical meaning of the extracted moment invariants except the physical meaning
of the lower order central moments (mean, variance and skew), in addition, it is difficult to
obtain higher order moment invariants.

Teague [37] introduced two different continuous orthogonal moments ( Zernike and Legen-
dre moments). Zernike moments have better performance than Legendre in shape description
due to their better feature representation capability and low noise sensitivity [38]. The idea
of Zernike moments is to expand a signal into series of orthogonal bases. Because the compu-
tation of Zernike moment descriptors (ZMD) does not need to know boundary information,
it is suitable for complex shape representation. In addition, Zernike moment invariants can
be determined to arbitrary order, this overcomes the shortcoming of geometric moments, in
which high order moment invariants are difficult to establish. ZMD has been adopted by
MPEG-7 as region-based shape descriptor.

Grid descriptor (GD) is proposed by Lu and Sajjanhar [39]. A grid of a certain number
of cells is overlaid on a shape. The grid is scanned from left to right and top to bottom,
forming a bitmap. The cells covered by the shape are assigned 1 and those not covered
are assigned 0. The shape can be represented as a binary feature vector. Chakrabarti et
al. [40] improve the grid descriptor by using an adaptive resolution (AR) representation.
GD performs its simple shape representation and intuition, and it is also agreed with shape
coding method in MPEG-4. However, the computation is expensive.

Mukundan et al. [41] has used discrete orthogonal moments to eliminate the problems
associated with continuous orthogonal moments. Chebyshev moments (CM) based on the
discrete orthogonal Chebyshev polynomial. Their experimental results show CM is superior
to geometric, Zernike and Legendre moments in image reconstruction capability.

Recently, Zhang and Lu [42, 43] have proposed a new region-based shape descriptor:
generic Fourier descriptor (GFD). The GFD is extracted from spectral domain by applying
9-D Fourier transform on polar raster sampled shape image (detailed introduction in Chapter

3). Comparing the performance in image retrieval between GFD and ZMD, the results

12



show that their proposed GFD outperforms ZMD. Although GFD has better performance
in shape retrieval, the retrieved images are only from binary shapes of main trademarks in
MPEG-7 region shape database. It is not suitable to describe natural images due to their
computational complexity, we try to find some methods to extract shape characteristics and
represent it using GFD. Edge detection is one of the best methods to extract edge shape
information from natural images. In the following, some different methods of edge detection

are reviewed.

2.1.3 Edge Detection

Edge detection is fundamental in image processing. It is a primary tool in image segmenta-
tion, image retrieval based on shape, pattern recognition and scene analysis. Therefore, the
accuracy of the edge detection is the key point which people want to research, this topic has
attracted many researchers and many achievements have been made.

Generally, edges in images are the areas which have strong intensity contrast, a jump in
intensity from one pixel to the next [63]. Using edge detection reduces the amount of the
data and filters out useless information, while keeping the important boundary properties
in an image. The group of classical edge detectors includes the Sobel, Prewitt and Canny
filters [47].

Recently, a few researchers have proposéd some new methods to detect the edges of
the images. Setarehdan and Soraghan [44] proposed a new fuzzy multiscale edge detection
(FMED) algorithm, employing wavelet transform to produce the multiscale representation
of the signal. Comparing the performance between FMED and Sobel edge detector, the
results show FMED has produced more accurate and robust estimates of the edge locations.
Uchiyama et al. [45] have developed the new parameters of Hopfield Neural Network (HNN)
for edge detection of image. From their simulation results, the edge detection method using
HNN can detect the edges of the blur images more accurately than the conventional method.
In [46], an effective edge detection method based on scale correlation in wavelet transforms

is proposed by Bao and Zhang. In order to filter noise, the production of two adjacent
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Option Descriptions & Uses
Sobel Detects horizontal or vertical edges. All pixels not on the
detected edges are changed to black.
Detects horizontal or vertical edges. Low error rate and well
Canny localized edge points are achieved. The detection result has
a better performance.
Detects variant edge types (step, line, between step and line)
Phase Congruency | in images, the local energy model postulates that features are
perceived at points of maximum phase congruency in an image.
The more accurate and localized edge information is detected.

Table 2.1: Edge detection representations based on three different edge detectors

wavelet subbands is defined as a correlation function to amplify edges. This approach not
only achieves better edge detection, but also improves the dislocation of neighboring edges.
Kovesi develops a new edge detector: phase congruency detector [48]. He reasons that edges
are not just steps, but rather, a wide variety of edge types is contained within an image,
many of which are somewhere between a step and line. Congruency of phase at any angle
produces a clearly perceived feature. This detector can correctly detect and localize the edge
information of images. The descriptions of three typical edge detectors (Sobel, Canny and
Phase Congruency) are represented in Table 2.1.
" In order to intuitively compare the detection results among them, an example of edge
detection of Lena image using three edge detectors above is shown in Figure 2.2. The Sobel
detector in Figure 2.2(a) detects a rough edge map, in which much useful edge information
is lost. The Canny filter in Figure 2.2(b) gives a better detection result. It extracts almost
all edge information of Lena image. However, many edge features have twin responses,
such as the profiles of her face, nose and hat, etc. Moreover, her shoulder and the peak of
her hat have the broken lines due to the intensity values being similar to the background.
Phase congruency in Figure 2.2(c) has the best detection result: the single responses of edge
features, clear and continuous edge boundaries. Although phase congruency is the best edge

detector among them, it may be suitable to use in image segmentation and other areas, it
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could be impractical to use in image retrieval because of its computation complexity. Based
on the accuracy and simple computation of edge extraction, Canny filter is more suitable for

the extraction of edge information in our image retrieval system.

(a) Original image (b) Sobel (c) Canny (d) Phase congruency

Figure 2.2: Lena’s edge maps using different edge detection approaches

2.2 Content-Based Image Retrieval System

Since the term content-based image retrieval (CBIR) was first used to describe automatic
retrieval of images from a database by color and shape features [49], CBIR has been a very
active research area. One or more options of random browsing, search by example, search
by sketch and search by text are supported in most image retrieval systems. Here, some of

current CBIR systems described in the literature will be reviewed.

2.2.1 Current CBIR Systems

The well-known and representative commercial CBIR system is the QBIC system devel-
oped by IBM [50]. It can support image retrieval by any combination of color, texture or
shape as well as text keyword. Image queries can be selected from example images or by
sketching a desired shape on the screen. QBIC is one of a family of systems that use high-
dimensional indexing techniques to realize a fast search. The available demos are at http://

wwwabic. almaden.ibm.com,/.

15



Photobook is the representative research CBIR system developed at MIT Media Lab [51].
Similar to QBIC, images in the database are described by color, texture, shape and other ap-
propriate features. The system can offer retrieval of textures, shapes and human faces. The
other two research systems developed at Columbia University are the visual feature search
engine: VisualSEEF [52] and World-Wide-Web-oriented text/image search engine: WebSEEk
[53]. VisualSEEk supports searching by image region, color, shape, spatial locations and key-
word. Users can make image queries by specifying areas of defined shape and color at absolute
or relative locations within the image. WebSEEk consists of three main modules including
an image/video collecting module, a subject classification and indexing module and a search-
ing, browsing and retrieval module. The queries are selected based on both text and visual
content. The corresponding demos are at http://wwuw.ee.columbia.edu/ sfchang/demos.html.

MARS (multimedia analysis and retrieval system) was developed at University of Illinois
by Huang et al. [54]. The system represents each object in an image by a variety of
features, and applies different similarity measures to compare query and stored objects.
User’s feedback is used to adjust weights and improve retrieval performance. MARS proposes
the relevance feedback architecture in image retrieval. In the following, we will review the

applications of relevance feedback in CBIR.

2.2.2 Relevance Feedback in CBIR

Recently, relevance feedback has been a powerful tool for interactive content-based image
retrieval. It is a process of automatically adjusting an existing query using information
from user’s feedback based on the relevance of previously retrieved images, bridging the gap
between the low-level features and the high-level concepts. Relevance feedback in CBIR
systems has attracted much attention within the research community.

Rui et al. use the relevance feedback to dynamically update weights associated with the
component features [66]. This method is applied successfully in MARS system [55]. Tian
et al. [56] proposed a novel approach by providing both positive and negative feedback for
Support Vector Machines (SVM) learning instead of MARS [55] only using user’s positive
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feedback to update weight vector. This approach releases the user from manually providing
preference weights. Su et al. [57] proposed approach is based on a Bayesian classifier, positive
and negative feedback examples have the different usages, positive examples for estimating a
Gaussian distribution that represents the desired images for a given query, negative examples
for updating the ranking of the retrieved images. The Principal Component Analysis (PCA)
technique is also used to reduce the dimensionality of feature spaces.

A graphic-theoretic model for incremental relevance feedback is proposed by Zhuang et
al. [58], they first introduce a two-layered graph model to represent the correlations between
images. Based on this model, which is enriched with semantic correlations between images
selected from user’s feedbacks by a learning strategy, they propose the link analysis approach
for image retrieval and relevance feedback. The Kernel-based approach is another popular
choice for implementing relevance feedback in CBIR system, however, most kernel approaches
have regarded the input as a long flat vector. This may increase the chances of “polluting”
the feature elements that uniquely represent the selected images. Alternately, Chung and
Fung propose a two layer kernel configuration with an objective and improve the retrieval
performance [59).

Muneesawang and Guan have adopted a non-linear radial basis function (RBF) method
which can better characterize the behavior of human users in an interactive retrieval session
and implement an adaptive metric which progressively models the notion of image similarity
through continual feedback from the users. This proposed approach is applied on an image
database compressed by the wavelet transform and vector quantization coders [60]. Yap
and Wu develop a fuzzy relevance feedback to integrate the user’s fuzzy interpretation of
visual content into the notion of relevance feedback. A fuzzy radial basis function network
(FRBFN) is constructed based on the user’s feedback, and the underlying parameters and

network structure are also optimized using a gradient-descent training strategy [61]
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2.3 Summary

In this Chapter, we have first provided a substantial review on some existing shape rep-
resentation techniques. Generally, there are two kinds of shape description techniques:
contour-based and region-based. Contour-based methods usually involve less computation
than region-based counterparts. However, contour shape descriptors are more easily affected
by noise and variation than region-based shape descriptors because they use less shape in-
formation than region-based methods. Region-based methods are usually more robust and
application independent. However, they usually need more computational power and more
storage than the contour-based descriptors. In addition, edge detection algorithms and CBIR
systems are also reviewed. The Canny filter is a better edge detector due to its accuracy and
simple computation of edge extraction. Relevance feedback is popularly applied in CBIR
systems for improving retrieval performance.

Apparently, every shape technique has its advantages and disadvantages. MPEG-7 has
a set of principles to evaluate the suitability of shape technique: good retrieval accuracy,
compact features, general application, low computation complexity, robust retrieval perfor-
mance and hierarchical coarse to fine representation. The Generic Fourier Descriptor (GFD)
satisfies these six principles and has demonstrated better performance [43]. Thus, in Chapter

3, we will introduce GFD algorithm and our proposed shape description method in detail.
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Chapter 3

CBIR Based-on Shape Feature for
Natural Images

N Content Based Image Retrieval (CBIR), shape information is widely considered to play
Ia key role in the characterization of scenes, however, it is difficult to measure its property,
this is why most researchers seldom extract shape features and apply them in natural image
retrieval. Most research has been restricted to collections of simplified shape contour images,
such as those of binary logos and trademarks. In such collections, scenes often involve only
a single object with a well defined shape, wherein a single class is often comprised of a set of
images with only minor variations to the dominant shape, that whilst altered, remain well
defined.

In collections involving natural scenes however, such as those found in the well known
COREL database, scenes are generally much more complex, involving many combinations
of objects, of a variety of shapes and sizes that may or may not be embedded in equally
complex backgrounds. Shape information often becomes contaminated by the mixture of
content in a scene, rendering shape based retrieval results, relatively poor. In this Chapter,
we propose an enhanced region-based technique to better deal with CBIR applications in
the domain of natural image databases. The structure of our proposed approach is shown
in Figure 3.1.

In this Chapter, we will focus on image indexing, detailing our proposed methods for

shape description. In general, there are two components in CBIR: image indexing and
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Figure 3.1: The frame structure of our proposed image retrieval

retrieval depicted in Figure 3.1. The block on the far left is the original image database. At
first we extract the edge map of every image in the database using Canny edge detection
filter (discussed in Chapter 2). Next, we eliminate the contaminating textured regions from
the edge map of every image using an Edge-Texture Characterization (ETC) [62] approach
and form the edge map database with texture removed. Extracted shape features using
Generic Fourier Descriptor (GFD) [43] form the final index that will be used for shape based
image retrieval. The image retrieval part of the system, as with many traditional approaches,
involves recalling indexed images that are closest to a given query. We will evaluate by the
performance of such indexing, considering different query images selected randomly from the
image database.

The rest of this Chapter is organized as following. In Section 3.1, we will introduce the
edge-texture characterization (ETC) algorithm, including the ETC method, the extraction

of texture regions and experimental results. In Section 3.2, the generic Fourier descriptor
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will be explained in detail. Experimental results and simulations will be depicted in Section

3.3. Section 3.4 is our summary.

3.1 Edge-Texture Characterization (ETC) Measure

From Figure 2.2 (Lena’s edge maps) in Chapter 2, we can see that excessive texture regions
contaminate the edge description of dominant objects in a scene. This directly effects the
exact shape description of an image so that we can not extract an accurate or meaningful
shape feature. This will cause the rate of image retrieval based on shape to decrease. To
remove the contaminating effect of over texture regions, we employ a further refinement in
the shape image prior to extracting the shape description, by attempting to establish (and
thus ignore) Canny responses resulting more from texture rather than more dominant edges.
In this way, we attempt to supply a set of edges that better reflect more regional boundaries
within an image rather than every intensity variation. The edge-texture characterization
(ETC) approach introduced in [62] provides a fuzzy discrimination between edge and texture
regions and is adopted in this work. Generally, pixel value arrangements corresponding to
textures and edges will exhibit different values for this measurement.

The principal of ETC is founded in examining the changes in variance occurring in a
windowed local region when it is blurred by an average filter. In smooth regions the variance
does not really change much, however the response in textured versus edge images is quite
marked. Thus it becomes easy to distinguish between smooth feature types and those edge
or texture. However, due to the possibility that both edges and textures may exhibit similar
levels of image activities in terms of gray level variations around their neighborhoods, it is
usually difficult to distinguish these two feature types. In order to separate edge and texture
features well, we introduce some noise into the original image. Because of the different
noise masking capabilities of these two feature types, it is usually not desired to apply
similar values of regularization parameters to both of them. The optimal parameter values

to texture regions usually result in a noisy appearance for the edge due to its surrounding
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smooth regions, and those values suitable for edges usually cause blurring in texture regions.
We are able to separately estimate two different parameter values that are optimal to edges
and textures respectively, and apply the correct parameter to the current pixel in accordance
with its associated ETC measure value. Even if there is the possibility of distinguishing
between edges and textures, due to the changes in variance occurring in every windowed size
filter, the textured pixels separate from one another and can not form different small texture
areas, which can be removed from the edge map. To overcome the problem, we also develop

a texture extraction algorithm based on the ETC measure using morphological operations

[63].

3.1.1 The Edge-Texture Characterization (ETC) Algorithm

The goal is to determine whether a pixel belongs to a texture region or edge, the ETC
measure is based on the consideration of a local window of pixels about a subject pixel
in the image, the ratio k£ = &/’ between the standard deviation of original & versus that
of blurred intensities &', yields a measure of deviation & due to the underlying nature of
the image content in that region. A simple range of values captured by this measure can be
attributed to a texture region, thus we can establish a regional mask over the texture regions
so that they may be later ignored in the shape descriptor calculation. The equations of &

and &' are defined as:

Z (zij — %) (3.1)

I (3.J)eN

iJ)EN
In the equations 3.1 and 3.2, N denotes a neighborhood set around the current pixel, z; ;

|N| (,Z (zi; — &) (3.2)

denotes the gray level value of pixel (Z, 7) in the set, and ; ; is the corresponding smoothed
gray level value under K X K averaging. Z and Z’ are the mean of the gray level values of the
original and smoothed variables in the neighborhood set. In general, most of the estimated

k values are restricted to the interval [0, K].
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3.1.2 The Extraction of Texture Regions

Having distinguished smooth, shape and texture features using the ETC approach, the next
step is to extract the texture regions from the edge map and eliminate their contamination
of the overall shape information. Even with the ETC as an indicator of textured pixels,
there are still occasional pixels that are confused and thus leave holes or ‘pitting’ in the
region mask. In order to fix this problem, morphological operations are a very useful tool
for extracting image components, they are often applied for image pre- and postprocessing.

The two fundamental morphological operations are dilation and erosion, our algorithm
of extracting texture regions are based on these operations. Dilation operations are used
to ‘grow’ or ‘thicken’ objects in a binary images, the manner and extent of this thickening
is controlled by a structuring element. ‘Shrinking’ or ‘thinning’ objects in é. binary image
is achieved through erosion operations. As with dilation operations, a structuring element
can control the manner and extent of shrinking. The structuring element thus plays an
important role in morphological operations. Various combinations of dilation and erosion
are often used in practical image processing. Generally an image will go through a series
of dilations and/or erosions using the same or different structuring elements. Our detail

morphological operations will be depicted in the following experimental section.

3.1.3 Experimental Results

The ETC calculation, as with many texture based measure, is performed in gray scale mode,
thus, before calculating the ETC values, some preprocessing is necessary for natural color
images. Figure 3.2(a), Lena, is an original color image. We first change it into a 2-D gray
level image, Figure 3.2(b), and form the noisy image, Figure 3.2(c). After adding Gaussian
White noise with mean 0.005, we finally smooth it with a 5X5 averaging filter as shown in
Figure 3.2(d). Figure 3.3 (Flower image) shows another preprocessing procedure.

In order to demonstrate the capability of the ETC algorithm to distinguish between
smooth, edge and texture regions, and especially for the edge and texture areas which are

not easily separated, we extract the ETC-maps, which are the descriptions of the ETC values
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as gray level images as shown in Figure 3.4 and 3.5. In our experiments, we select a 5X5
averaging filter as a windowed local region, so the estimated k values are restricted in [0, 5].
Those image pixels corresponding to the calculated & values were found empirically, to fall
roughly within 3 continuous ranges R1 = [0,1.2], R2 = [1.2,1.8] and R3 = [1.8, 5]. The pixels
demonstrating the k values within the ranges R1, R2 and R3 are approximately related to
smooth pixels, edge pixels and texture pixels respectively. This can be verified by visually
displaying the binary maps in Figure 3.4 and 3.5.

Figure 3.4 shows the ETC-map and the feature segmentation binary maps for the Lena
image. From the ETC-map in Figure 3.4(a), we can see that the feather texture area of the
hat in the image exhibits the brightest response in the map, corresponding to the highest
values of k. This supports our previous affirmation that texture pixels should exhibit higher
values of k. It is also found that the edges correspond to middle values of k, and the smooth
areas display darkest in the map.

In order to show the results of estimating the smooth, edge and texture regions using
different the ranges of k values, we construct binary maps in Figures 3.4(b)-(d), where the
white pixels are those with their ¥ values corresponding to the ranges R1, R2 and R3 in
Figure 3.4(b)-(d), respectively. Those pixels with their k£ values within the interval R1
correspond to the smooth regions in Figure 3.4(b), Figures 3.4(c) and (d) show the edge
pixels and texture pixels with their k£ values within interval R2 and R3 respectively.

Figure 3.5 shows the same performance for the image Flower. From the ETC-map in
Figure 3.5(a), it can be seen that the brightest part is the center of the flower, which is the
texture area. Figures 3.5(b)-(d) indicate the smooth, edge and texture regions respectively.

We have applied our ETC method to the two images, Lena and Flower, which contain
substantial texture information. For Figure 3.4(d) the image Lena, the extracted texture
regions mainly concentrate around the feathers of her hat, which would typically be perceived
as textures by our observer. Similarly, for Figure 3.5(d) the image Flower: the extracted
texture regions are mainly located around the flower stamen. Our final target is to remove

the texture areas which contaminate the edge shape information in the edge map. Based
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(a) Original image (b) Gray level image

(c) Noisy image (d) Averaging image

Figure 3.2: The preprocessing procedure of Lena image
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(a) Original image (b) Gray level image

(c) Noisy image (d) Averaging image

Figure 3.3: The preprocessing procedure of Flower image
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(a) ETC-map (b) Smooth region map

(c) Edge map (d) Texture map

Figure 3.4: ETC measurement of Lena image
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(a) ETC-map (b) Smooth region map

(c) Edge map (d) Texture map

Figure 3.5: ETC measurement of Flower image
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(c) Closing operation(dilation and erosion) (d) Edge map(texture removed)

Figure 3.6: Texture removing procedure of Lena edge map
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(a) Original edge map (b) Erosion operation

(c) Closing operation(dilation and erosion) ‘ (d) Edge map(texture removed)

Figure 3.7: Texture removing procedure of Flower edge map
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on the ETC algorithm alone, we can not remove them well, because there are separated
texture regions with scattered patches and the complete texture areas are not formed in
Figure 3.4(d) and 3.5(d). Choosing a fixed threshold may not be ideal for all images thereby
resulting in such scattered texture regions. To ensure clarity in the final edge map, we seek a
thorough removal of such regions - thus employ morphological operations to eliminate noisy
estimated and extract a clean and well closed region.

Figures 3.6 and 3.7 show us the procedure of removing the texture areas from the edge
maps. Figures 3.6(a) and 3.7(a) are the original edge maps by using the Canny filter, Figures
3.6(d) and 3.7(d) are the edge maps after removing the texture regions. Figures 3.6(b), (c)
and Figures 3.7(b), (c) are the maps which are formed by using morphological operations.

In morphological operations, the selection of the structuring elements is very crucial. We
implement many kinds of structuring elements in our experiments and find that the following
structuring elements with related parameters give us the best performance. We first select a
horizontal ‘line’ with length 10 and degree 0 and a vertical ‘line’ with length 5 and degree 90
as the structuring elements, applying respectively the erosion operation to ‘shrink’ the maps
in Figures 3.4(d) and 3.5(d) and get Figures 3.6(b) and 3.7(b) maps. Then, we choose the
‘disk’ as a second structuring element with radius 5 for the closing operation, being a dilation
followed by an erosion, to ‘thicken’ and ‘shrink’ Figures 3.6(b) and 3.7(b) maps and achieve
the more complete texture regions in Figure 3.6(c) and Figure 3.7(c), although there is still
some sparse noise in the maps, it does not affect the texture description and removal. From

Figures 3.6(d) and 3.7(d), more accurate edge shape information has been made available.

3.2 Generic Fourier Descriptor (GFD)

In Section 3.1, we applied the ETC algorithm and morphological operations on edge maps
of the image database and achieved more accurate edge shape information. The next step is
to find a better shape descriptor to characterize the edge shape. Generic Fourier Descriptor

(GFD), proposed by Dr. D. S. Zhang [43], will be applied for the task. In order to show
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why we select GFD as our shape descriptor, some shape descriptors introduced in Chapter
2 will be discussed briefly.

In the past studies, contour-based shape descriptors are usually available for representing
contour shape with a continuous single boundary. The one-dimensional Fourier Descriptor
(FD) has been successfully applied to many shape description applications. The good char-
acteristics of FD, such as simple calculation, simplicity for matching, robustness to noise and
compact coarse to fine representation, make it a popular shape descriptor. One of the major
problems in attempting to use the contour-based standard Fourier descriptor as a feature for
assessing the similarity between images based on shape, lies in its dependence on the prior
knowledge of boundary information. In particular, it assumes that for each image, we have
an ordered description of the points that form the connected path responsible for a partic-
ular boundary. As such, when considering the boundary of regions of interest, some form
of higher level segmentation becomes necessary. Unfortunately, even if such segmentation is
available, it is often the case that multiple boundaries will occur within the image (either
due to internal shape content or multiple regions of interest). In previous work [64], the FD
has been applied to the description of raw edge information of natural images found in the
COREL database, and has met with limited success in terms of shape identification.

Region-based shape descriptors can be applied to more general applications and are more
robust in describing shape with complex boundaries compared with contour-based shape de-
scriptors, because they exploit more edge distribution to derive shape features. Spatial
domain shape features, such as, Zernike moment descriptors (ZMD) have been proposed as
a preferred technique over other region based techniques such as geometric moments (e.g.
Hu’s moments) [65]. Derived from a complex set of orthogonal polynomials over the unit
disk, a more rotationally invariant description of shape information is achieved, independent
of boundary information. Limitations exist in terms of computational complexity and a ten-
dency to capture spatial moments in the radial directions rather than spectral features, thus
spectral information is not captured evenly at each order resulting in the loss of significant

features useful for shape description. As an alternative, a region-based 2-D polar Fourier
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transform (PFT) attempts to better capture the spectral content of angular and radial infor-
mation by transforming the polar description of an image into a rectangular image of radial

vs. angular distribution of image intensities, upon which a standard 2-D FT may be applied.

3.2.1 Polar Fourier Transform

The Fourier transform has been widely applied for multimedia processing and applications.
The advantage of analyzing images in the spectral domain rather than analyzing images in
the spatial domain is that it is easy to overcome the noise problem which is general to digital
images. On the other hand, the spectral features of an image are usually more compact than
the features extracted from spatial domain, comparing of only a few lower frequency Fourier
coefficients that can approximately characterize the shape information, this greatly reduces
the computational complexity. The one-dimensional FT has been widely applied to contour
shape to derive FD. And there is no related work on region based FD. The generic Fourier
descriptor based on region shape will be introduced from the two-dimensional Polar FT.
The continuous and discrete 2-D Fourier Transform of a shape image f(z,y)(1 < z <
M,1 <y < N, where M and N are the width and height of the image) are given by the

following two equations:

F(u,v) = A /y f(=z, y)exp[—j2n (uz + vy)]dzdy (3.3)
M N
F(u,v) = 21 z_:l (=, y)exp[—j2n(uz/M + vy/N)] (3.4)

where v and v are the uth and vth spatial frequency in the horizontal and the vertical
directions, respectively. The 2-D FT may be applied to any shape image without assuming
the knowledge of boundary information. However, it is not practical to apply the 2-D FT
directly on a shape image in the Cartesian space to derive FD, because the shape features
captured by the 2-D FT are not invariant to rotation. Rotation invariance of a shape is

crucial, because similar shapes may be located at different positions and orientations in
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an image. For example, two shapes are similar in the image plane, however, their Fourier
spectral distributions (phases) in frequency plane are completely different. Therefore, shape
images would be better considered in polar space using a polar Fourier transform (PFT). The
PFT is rotation-invariant, making it especially suitable for accurate extraction of orientation
features. Two PTF are discussed and described as follows:

In order to produce PFT, both the data f(z,y) and the spectra F'(u,v) are converted

into polar space, that is, let

z=r-cosf,y=r-sinf (3.5)

u=p-cosy,v=p-siny (3.6)

where (r,6) is the polar coordinates in the image plane and (p,®) is in the polar coordinates

in the frequency plane. The differentials of = and y are:

dz = cosfdr — rsin 6d0 (3.7)

dy = sin 6dr — rsin 6df (3.8)

By substituting equations 3.5-3.8 into 3.3, we obtain the polar Fourier transform (PFT1):

PFTi(p,9) = /r /a rf(r,0)exp[—j2nrpsin(f + )|drdf (3.9)

The discrete PFT1 is obtained as

PFTi(p1,%m) = D 3 f(1p,0:) - 7 - exp[—527rpp1sin(6; + Ym)] (3.10)

p i

where 7, = p/R,6; = i(2r/T)(1 < i < T);p =11 <1 < R) and ¥ = mb;. R and T
are the resolution of radial frequency and angular frequency respectively. The polar Fourier

coefficients PFT;(p1, %) are applied to derive a normalized FD for shape description.
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So far we have already achieved rotation invariance for the shape features by deriving the
PFT1 result from the polar Fourier transform of equation 3.3. However, there still exists one
problem: because of the appearance of ¥, within sine function sin(6;+%n,) in equation 3.10,
the physical meaning of it is no longer the mth angular frequency. The features extracted
by the PFT1 lose physical meaning in circular direction. In order to deal with this problem,
a modified polar FT (PFT2) is derived by regarding the polar image in polar space as a
normal two-dimensional rectangular image in the Cartesian space. Figure 3.8 displays the
rectangular polar images [43]. Figure 3.8(a) is the original polar image in polar space, Figure

3.8(b) is the rectangular polar image plotted in the Cartesian space.

(a)

Figure 3.8: (a)Original shape image in the polar space (b)Polar image plotted in the Cartesian
space

The polar image in Figure 3.8(b) is the normal rectangular image. Thus, if 2-D FT is
applied on this rectangular image, the polar FT has similar form to the normal 2-D discrete
FT of equation 3.4 in Cartesian space. As a result, the modified polar FT is defined as the

following equation:

PFTy(p,6) = ¥ 3 £(r, O)eaplizn(p + 7 d) (3.11)

where 1 < r < Rand 6; = i(2r/T) 1 < i < T);1<p< RO1< ¢ <T.Rand T are
the radial frequency resolution and angular frequency resolution respectively. Comparing

equation 3.10 and 3.11, PFT2 has a simpler expression form than PFT1. In addition, we
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need not constrain the shape into a unit circle. By comparison, ZMD must be defined in
a unit circle. The physical meaning of p and ¢ in equation 3.11 is similar to u and v in
equations 3.3 and 3.4. p and ¢ are simply the radial frequency and the angular frequency
respectively. And that the number of p and ¢ can be determined easily, because significant

shape features are usually represented by a few low frequency components.

3.2.2 Derivation and Implementation of Generic FD

In this section, the derivation and implementation of GFD are introduced in details. Given
a shape image I = f(z,y);1 <z < M,1 <y < N, we apply the PFT by first converting the
shape image I from Cartesian plane to polar plane I, = f(r,6);1 <r < R,1 < 6 < 27. The
origin of the polar plane is set to be the center of the shape, making the shape translation

invariant. The center point (z.,y.) is given by equations 3.12 and 3.13:

1 M
Te = M:c:l (312)

1 N
e = — 3.13
Y= !; y (8.13)

and (r,0) is given by equations 3.14 and 3.15
r=1/(z = ze)? + (y — yo)? (3.14)
6 = arctan L — %< (3.15)
T — T,

So PFT?2 is applied on I,. Due to the fact that the center of the shape image is the
origin of the polar plane, the acquired coefficients of PFT2 are translation invariant. Rota-
tion invariance is achieved by neglecting the phase information in the coefficients and only
keeping the magnitudes of the coefficients. So far we have achieved translation and rotation
invariance, we now address the issue of scale invariance. To obtain scale invariance, the first

magnitude value is normalized by the area of the circle (area) within which the polar image
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resides, and all the other magnitude values are normalized by the magnitude of the first
coefficient. The translation, rotation and scale normalized PFT2 coefficients are applied as
the shape descriptors. To sum up, the shape descriptor GFD derived from PFT?2 is shown

as follows

|PFT3(0,0)| |PFT3(0,1)] |PFTy(0,n)] |PFTy(m,0)] |PFTa(m,n)|
area  |PFT3(0,0)] " [PFT5(0,0)|’ " TPFT3(0,0)] " [PFT5(0,0)|
(3.16)

GFD = (

where m is the maximum number of the radial frequencies selected and n is the maximum
number of angular frequencies selected. Normally, in Fourier Transform, the first coefficient
or the DC component is used as the normalization factor and is eliminated after normal-
ization. However, this component is used in this work as an additional feature, because it
reflects the average energy of the shape which is useful for shape representation. For efficient
shape description, only a small number of the FD features are selected for shape represen-
tation. These selected FD shape features form a feature vector which is used to index the
shape. This met with good results in simplified binary shape databases, although no real

application to natural image data has been reported.

3.2.3 Modified Edge-Based GFD

In this current work, unlike in that of [43], we consider the Canny edge description of natural
image queries as input to a GFD inspired operator for shape description. Direct application
of [43] might see a binary image formed by thresholding from the original, such that a
‘caricature’ of the original could be utilized as the input to the GFD. The problem with this
is that the computation becomes quite expensive as more pixelé need to be considered in
" the shape image. In addition, achieving a consistent thresholding for a natural image is not
trivial as it is very sensitive to contrast, etc. By using an edge description we reduce the
computational load (less pixels to consider in the polar mapping). We call this proposed

approach a modified GFD (MGFD).
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3.3 Experimental Results

In order to test the retrieval performance of our proposed algorithm, we select three different
shape descriptors: the standard Fourier Descriptor (FD), Modified Generic Fourier Descrip-
tor (MGFD) and MGFD after removing texture part from the edge map. Our simulations
were carried out using a subset of the COREL image database consisting of 1,000 natural
color images (JPEG), from 10 classes that appeared to be more dominated by shape. Each
class included 100 conceptually similar images. Figure 3.9 shows an example of each class

in the database.

Class7

Class4

Class8 5 Class9 Class10
Figure 3.9: One sample image of each class in the database
Simulations were conducted to compare the retrieval effectiveness on this database when

indexed with one of three alternative shape descriptors. The first used the lowest 50 coefli-

cients from a standard FD (denoted FD) as a feature vector for each edge mapped image.
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Class | FD (%) | MGFD (%) | MGFD1 (%)
1 18.2 30.2 31.0
2 20.7 21.6 23.1
3 21.9 24.1 23.5
4 19.2 52.5 64.2
5 39.4 35.4 33.9
6 24.2 22.1 22.5
7 43.9 474 46.5
8 62.6 55.4 55.2
9 374 71.8 75.3
10 20.2 72.4 76.8
Average 30.8 43.3 45.2

Table 3.1: Retrieval performance from three different sets of shape features

The second feature vector is a set of 36 coefficients of the GFD, calculated for an equally
distributed set of 4 radii and 9 angles (denoted MGFD). The third feature vector is the same
as the second, however the GFD calculation is performed on the edge map of each image
after texture removed (denoted MGFD1). Each image in the database was then indexed
with each of the three different feature vectors. In retrieval, similarity was measured using
the Euclidean distance between the feature vector of a query image, and those of all other
images in the database. To measure general retrieval performance, statistical results were
calculated by considering 10 different query images from each class (forming 100 queries in
total). For each query, the first 16 most similar images were retrieved to evaluate the per-
formance of the retrieval. Table 3.1 shows the Retrieval Rate (the percentage of images in
the 16 retrieved, belonging to the same class as the query image). The column chart shown
in Figure 3.10 gives us more apparent retrieval performance. .

Table 3.1 and Figure 3.10 tell us that the retrieval results of most classes using the
proposed MGFD and MGFD1 outperform results using FD (Class 1, 2, 3, 4, 7, 9, 10). There
were, however, a few classes demonstrating slightly worse performance (Class 5, 6, 8). Such

classes exhibit a much higher variation in shape between images considered of the same class
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Figure 3.10: Column chart of retrieval performance

conceptually, thus many images from different classes that have similar shape distribution are
often confused, highlighting the limitations in using this performance measure to evaluate
shape based results. This being said, the proposed MGFD1 method gives a much better
representation in the classes in which an image shape structure is more consistent across the
images, a factor especially evident in classes 4, 9 and 10, illustrating sets of rock formation,
flag and aircraft images respectively.

Although the retrieval rate improves about 14.4 percent using MGFD1 over the standard
FD approach, in most classes, the retrieval rate is similar to the edge mapped application of
GFD (MGFD), with slightly better overall improvement. To effectively gauge each descriptor
more intuitively, we look at some explicit visual results, and offer a more subjective view of
their relative success, in terms of the shapes of images retrieved (regardless of class), and
their ranking in terms of similarity to the query.

The left top first image in each of the following figures is the query image we selected.

The order of similarity ranking is from left to right, top to bottom. In Figure 3.11(a), FD
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only retrieves 3 flag images, whilst in Figure 3.11(b), the whole boundary shape of the flags
(roughly rectangular due to the flags waving) as well as the internal Union Jack feature
becomes significant. MGFD not only extracts a more accurate exterior boundary feature
than FD, but also considers interior shape features, retrieving 8 flag images with a strong
feature in the top left of the flag. In Figure 3.11(c), some of the more textured details in
the flags are eliminated by the ETC algorithm, thus only dominant edges (both internal and
external) contribute to the search and improve the retrieval result. The proposed MGFD1
approach has the best performance, evident not only in a higher retrieval rate (11 flag
images), but more importantly, in the set of Union Jack based flags dominating the most
similar images, as opposed to the scattered flags found by the MGFD. This reflects a greater
accuracy in the ranking of similar result images by the MGFDL1.

In Figure 3.12(a) FD only retrieves 3 aircraft images. Like the flags, the aircraft images
exhibit some regularity in terms of shape, although it isn’t captured effectively by FD. In
Figure 3.12(b) MGFD retrieves 9 aircraft images, but due to the influence of the internal
texture part, the fruit images (the 9th, 10th, 12th and 16th images) are retrieved falsely.
Their apparent similarity may be in that the fruit is distributed in an elongated manner, yet
internal textures are erratic and confuse the similarity matching. In Figure 3.12(c), MGFD1
removes the texture ‘contamination’ (the grass and internal part of the plane) and retrieves
14 aircraft images.

In Figure 3.13 the concept of a cat does not necessarily coincide with a consistent silhou-
ette, in fact, in this class different numbers of cats may exist in some images. FD retrieves
3 cat images, MGFD also retrieves 3 cat images, but the 4th result, with 3 kittens is similar
to the query. Likewise, the distribution in the tree images (2nd and 3rd), fruit (9th) and
rock formations (7th, 15th) are more similar in terms of overall shape than the images with
one cat retrieved using the FD method. In the MGFD1 result, not only are 4 cat imagés
retrieved, but the rank of the 3 kittens image is improved from 4th to 2nd, (i.e. it is consid-
ered most similar to the query), as opposed to the MGFD result. The experimental results
demonstrated that the MGFD1 approach achieves a better result as a shape feature. This
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(c) MGFDI1

CLASS 9

Figure 3.11: Flag query
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Figure 3.12: Aircraft query - CLASS 10
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(¢) MGFD1

Figure 3.13: Cat query - CLASS 3

44



Figure 3.14: Fruit query - CLASS 1
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effect should mean that if MGFD1 is combined with other features (color, etc), we expect
that the other features will help capture more images from the same class, allowing MGFD1
to sift out and rank the captured set more accurately.

In the same way, the fruit query of Figure 3.14, shows that the clustered balloons are
considered to be similar to the clustered fruit objects. The MGFD1 result however, is still

more accurate (same fruit ranked 2th for MGFD1, 12th for MGFD).

3.4 Summary

In this Chapter, we presented our work on extracting effective shape features for CBIR.
The Edge-Texture Characterization (ETC) algorithm, morphological operations and GFD
are discussed in details. By using ETC method and morphological operations, the texture
regions contaminating the edge information are found and removed from the edge map of
the image, so that we can get more accurate edge shape information, i.e., shape information
related more to boundaries in the scene. The GFD algorithm is also explained in depth. We
proposed a modified generic Fourier descriptor (MGFD1) for image retrieval. Compared with
the GFD, where the authors extracted the shape feature from the whole shape image in the
MPEG-T region shape database, application to natural images instead of binary trademark
images makes the computation very expensive because of high resolution and complicated
shape information inherent in natural images. GFD in its original form is not suitable for
natural image retrieval. Our proposed MGFD1 overcomes this drawback.

The PFT was applied to the Canny edge maps of images, thereby decreasing the com-
putational complexity. The MGFD1 shape feature improved average image retrieval rate
(except where shapes varied dramatically). In such cases however, the similarity rankings
were more intuitive. It was argued that in the cases where retrieval rate was lower than
that of MGFD, the ultimate performance of the system still showed improvement as images
from the correct class, yet with different shape to the query, were rejected or ranked lower

in terms of similarity to the query - reflecting an order that more closely fits our perceived
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notion of shape.
In Chapter 4, we will discuss CBIR that combines color, texture and shape features for
natural image databases, with focus on dynamic weight selection based on-different queries

for CBIR.

47



Chapter 4

Dynamic Weight Selection for CBIR
using Relevance Feedback

In Chapter 3, we discussed CBIR based on shape features for natural images in detail. We
have proposed a modified generic Fourier descriptor (MGFD) to represent shape features,
achieving a better result in image retrieval. However, based on very large stored natural
image database, the retrieval rate using shape features alone is very low. Furthermore, using
only shape to index images is bound to retrieve images from completely different conceptual
classes which just happen to have a similar shape boundaries as the query image. An example
of this is seen in Figure 3.13(b) and (c). Many classes in an image database may be not
conceptually defined by shape only, thus in practical image retrieval, CBIR is often based
on a set of low level features representing color, texture and shape. Color histograms and
color moments are the popular ways for color representations (70, 71], Gabor wavelet filter
provides a good tool for the extraction of texture feature [72].

In image retrieval algorithms, similarity measures between query image and the images
in the database are linear combinations of their corresponding lower level similarities [66]. So
normalization and weighting of features in a combined low level feature database become two
key components in any retrieval algorithm. Relevance feedback builds the bridge between
the high level concepts and the low level features, achieving dynamic weight updating and
improved image retrieval rate. Figure 4.1 shows a CBIR system for weight selection using

relevance feedback. The yellow blocks will be discussed in this Chapter. This Chapter is
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Figure 4.1: The frame for weight selection using relevance feedback

organized as follows. Section 4.1 introduces the extraction of color and texture features.
Section 4.2 discusses the normalization of the low level feature database. The dynamically
updating weights and query modification based on the user’s feedback are given in Section
4.3 and 4.4 respectively. The experimental results with 10,000 natural images are shown in

Section 4.5. Finally, we summarize in Section 4.6.

4.1 Feature Extraction

Feature extraction is the basis of content based image retrieval, that is to say, the success
of image retrieval significantly depends on the results of feature extraction. Because of
the subjectivity of perception, a best representation for a given feature does not exist. The
combination of multiple representations for the given features can better characterize features
from different viewpoints. In our retrieval system, we extract three kinds of visual features:
color, texture and shape. Shape features have been discussed in Chapter 3 thoroughly, in
which we demonstrated that the modified generic Fourier descriptor is an effective shape

descriptor for natural images. In this section, feature extraction of color and texture will be

discussed briefly.

49

PROPERTY OF
RYERSON UNIVERSITY LIBRARY



4.1.1 Color Features

Color is a very important visual feature that is more readily perceived by the viewer. It is
one of the most widely applied visual features in image retrieval. Color features are very
robust to backgrbund complication and are independent of the size and orientation of the
image. There are many different techniques for éxtracting color features proposed in the
literature [67, 68, 69, 70]. Here, we present two such color feature representations as applied
in our image retrieval system: color histograms and color moments.

Color histograms are the most popular representation for color features. M. J. Swain
and D. H. Ballard first proposed the notion of color histograms [67]. Color histograms
represent the joint probability of the intensities of the three color channels (such as the RGB
color space). An advantage of color histograms is that they are invariant to translation
and rotation about the viewing axis, and change only slowly under change of angle of view,
change in scale and occlusion. Since histograms change slowly with view, a small number
of histograms can represent wéll, the color content of a three-dimensional object. Swain
and Ballard also proposed Histogram Intersection, as similarity measure of color histograms.
In order to solve the location problem, an algorithm called Histogram Backprojection was
introduced, which 'showed efficient performance in crowded scenes.

In order to reduce the number of colors and increase the computational efficiency, quanti-
zation of the color space plays an important role. However, quantization operations applied
to color histograms may produce problems in the presentation of color content in an image.
The number of quantization levels should be considered with such condition that perceptu-
ally different colors do not fall into the same bin. Generally, a uniform quantization of the
color space may be fit for perceptually uniform color spaces. But in case of perceptually
non-uniform color spaces such as RGB, CIE-LAB and HSV, a non-uniform quantization al-
gorithm should be found. Researchers have proposed many different ways to quantize the
color space. Smith and Chang [68] proposed to partition the HSV color space into 166 color
bins. To represent color features, we select HSV color space, due to its independent per-

formance in three color channels and easy transformation from RGB space. Because the V
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coordinate is easily affected by the lighting condition, we only use HS coordinates to form
16 X 3 two dimensional histograms. We place more importance on hue (16 levels) than on
the value of saturation (only 3 levels).

Besides color histograms, color moments as a color feature representation are also often
applied in image retrieval. To overcome the quantization effects in color histograms, M.
Stricker and M. Orengo proposed using the color moments approach [70]. Instead of extract-
ing the complete color distribution, the index contains only dominant features, which can be
extracted robustly from the images. From probability theory, a probability distribution is
uniquely characterized by its moments. Thus, the color distribution of an image can be ren-
dered as a probability distribution and characterized by its moments. Furthermore, because
most of the color information is collected within low-order moments, only the first three
moments of each color channel are necessary to be extracted as a significant representation
of color. The first moment p is the average value (mean): capturing the average color of the
image. The variance ¢ and the skewness s of each color channel are the second and third
central moments. We store the standard deviation ¢ and the third root s of the skewns of

each color channel in the index. The equations of calculating p, o and s are shown as follows.

1 X )
b= ;pij (4.1)
1 1 :
o; = (-J_V- ;(Pij — pi)?)2 (4.2)
1 X 1
8i = (N ;(Pij — pi)%)3 (4.3)

where in the equations 4.1-4.3, N is the number of all the pixels of each color channels in an
image, p;; is the value of the ith color channel at the jth image pixel. So the color moments

fmoments TE€Presenting color features in an image are organized as:

fmomenta = {”1)”’27.“3101’02)03’31’82’33} (4‘4)
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The test results show this approach has better performance within a CBIR, context [70]:
its index is the smallest, the retrieval process is the fastest and it overcomes the quantization

effects in color histograms.

4.1.2 Texture Features

Texture is another important feature of images. Although we removed textured regions
contaminating the edge content in the description of edge shape information, it is only based
on obtaining more accurate edge contour for the extraction of the shape feature (Chapter
3). Texture is still a very powerful visual characteristic of images and often applied in image
retrieval as a feature. It contains important information about the structural arrangement of
surfaces and their relationship to the surrounding environment [73]. Due to the importance
and usefulness of texture in pattern recognition, computer vision and image retrieval, more
and more research achievements are based on texture representations.

In the 1970s, the co-occurrence matrix representation of texture feature was proposed
by Garalick et al. [73]. This approach studied the gray spatial dependence of texture.
The statistics originally proposed in [73] were evaluated by Gotlieb and Kreyszig, their
experimental results showed that, in general, contrast, inverse deference moment and entropy
had the biggesﬁ discriminatory power [74].

Since the introduction of the wavelet transform in early 1990s, many researchers have
applied the wavelet fransform to texture feature extraction. Smith and Chang [75] proposed
the statistics (mean and variance) obtained from the wavelet sub-bands as the texture rep-
resentation. It achieved over 90% accuracy on the 112 Brodatz texture images. Chang and
Kuo [76] used the tree structured wavelet transformation to explore the middle-band charac-
teristics and further improve the classification accuracy. Ma and Manjunath [72] evaluated
the texture image annotation by various wavelet transformation representations, including
orthogonal (OWT) and bi-orthogonal (BWT) wavelet transform, tree-structured decompo-
sition using orthogonal (TOF) and bi-orthogonal (TBF) filter banks, and Gabor wavelet

transform (GWT). Their experimental results indicated that the Gabor transform was the
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best match to the results from human vision studies. In a more recent paper, Chen et al.
evaluated the effects of different Gabor filter parameters on image retrieval. They found the
best combination of parameters was scale 6 and orientation 4 with 24 filters [77]. In our

image retrieval system, the texture feature is extracted by Gabor filter bank proposed in

[78).

Gabor Functions

A two dimensional Gabor function g(z,y) and its Fourier transform G(u,v) can be written

as follows,
1 1 22 2 .
9(z,y) = (2Mm0,y)e:vp[—§(;§ + -&2) + 21 W] (4.5)
_ 1.(u—W)? 2
G(u,v) = 633:0{—5[—'73— + 0—3]} (4.6)

where o, = 1/2mo, and o, = 1/2mo,. W defines the spatial frequency of the sinusoid.
Gabor functions form a complete but nonorthogonal basis set. Expanding a signal using this
basis provides a localized frequency description. A class of self-similar functions, referred to
as Gabor wavelets, is now considered. Let g(z,y) be the mother Gabor wavelet, then this
self-similar filter dictionary can be obtained by appropriate dilations and rotations of g(z, )

through the generating function defined as:

Gmn(z,9) = a"™G(Z',y),a > 1,m,n = integer 4.7)
z’ = a~™(zcosb + ysind) (4.8)
y = a™™(—zsinb + ycost) (4.9)

where § = nm/K and K is the total number of orientations. The scale factor a™™ in equation

4.9 is to ensure that the energy is independent of m.
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Gabor Filter Dictionary Design

The nonorthogonality of the Gabor wavelet implies that there is redundant information in
the filtered images, thus, we have to find a strategy to reduce this redundancy. Let U; and
Uy, denote the lower and upper centre frequencies of interest, respectively. Let K denote the
number of orientations and S be the number of scales in the multi-resolution decomposition.
That is to ensure that the half-peak magnitude support of the filter responses in the frequency

spectrum touch each other. The filter parameters o,, and o, are derived from the following

formulas:
o= (%’;)-ﬁ (4.10)
Oy = @("_F;)——l)zU—\/_l’;_z (4.11)
Ty = tan(2—7;c-)[Uh - 2ln(;—i)] [21n2 — %J-é (4.12)

where W = U, and m = 0,1,...,8 — 1. In Figure 4.2 [78], the contours show the half-
magnitude of the filter response in the designed Gabor filter dictionary. The filter parameters
used are U, = 0.4,U; = 0.05, K =6 and S = 4.

Feature Representation

For a given image I(z,y), its Gabor wavelet transform is defined as:

Wonn(@,8) = [ 1(@1,4)gmn * (& = 21,y = y2)drdys (413)

where * indicates the complex conjugate. It is assumed that the local texture regions are
spatially homogeneous, the mean p,, and the standard deviation oy, of the magnitude

of the transform coefficients are used to represent the region for classification and retrieval

purposes:

pn = [ [ 1Wonn(ay)ldzdy (414)
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Figure 4.2: Contours of the designed Gabor filter dictionary

= || [ (Wor,2)] = Py (4.15

We use U, and o0,,, as feature components to construct a feature vector. Due to the best
combination of filtering parameters being scale 6 and orientation 4 [77], for our experiments,

the texture feature vector is formed as follows:

frezture = {Hoo Oo0 flo1 .. fH3s O35} (4.16)

4.2 Normalization

Before performing the similarity measure in image retrieval, the values of the indexed data-
base formed by three kinds of features (color, texture and shape) have to be of the same
dynamic range, i.e., from 0 to 1. Otherwise, the linear combination of similarity measure
becomes meaningless, because the features owning higher values will overshadow the features

owning the lower values. The different components in a vector may be of totally different
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physical quantities, thus the feature database should be normalized before applying the sim-
ilarity calculation. The normalization process emphasizes each component of the feature
vector equally [66).

Let V be an M X N matrix representing the whole feature databaée of M images, and
N elements form the feature vector of an image. v,,, denotes the value of the nth feature
of the mth image. Our goal is to normalize the components in each column to the same
range so that every individual component gets equal emphasis in similarity measure. One
way of normalization to the range [0, 1] is to find the maximum and minimum value for the

sequence. The formula can be written as:

Um,n — MiNy,

_ (4.17)
max, — min,

'vm,n =

where min,, and maz,, are the minimum and maximum values of each feature column across
the space of all images in the database. Although it is very simple, we can not get desired
normalized results. For example, we consider a sequence [1.0, 1.3, 1.5, 1.6, 200], if this
sequence is normalized by equation 4.17, most of the [0, 1] range will be taken away by the
value 200. The other values [1.0, 1.3, 1.5, 1.6] will be warped into a very narrow range. A
better way to normalize the sequence is to use Gaussian normalization. We achieve feature
normalization by calculating the mean u,, and standard deviation o, of each column features

in the database. The normalized database will be derived by equation 4.18:

vm,n -
Umn = _T,un_ (418)
n

The probability of an entry’s value within the range [-1, 1] is about 99% (within three
standard deviations). The advantage of this normalization process is that a few abnormal
values occurring in the sequence (i.e. the outlier value 200) will not bias the importance
of the other values. Therefore, this normalization approach has been applied our feature

database.
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4.3 Weight Updating

The image feature database has been normalized according to the normalization approach
introduced in the last section, as such, there is equal emphasis on each component with in
the range [-1, 1] in the normalized database. The initial image retrieval is performed by
setting equal weight to every component in the feature database. However, we usually can
not achieve our desired results because of the gap between the high level concepts and the
low level features. Relevance feedback based interactive retrieval approaches (introduced in
Chapter 2) thus are often used in CBIR. Updating weights based on user’s feedback is an
efficient approach to improve the retrieval results.

Rui et al. [66] proposed a method which dynamically updated weights based on the
query object to model the high level concepts and perception subjectivity. They used inverse
standard deviation of feature vectors of relevant images marked by user’s feedback as a weight
vector of the query image. From the viewpoint of pattern recognition, for a feature to be
effective, its variance should be large among all the images in the database and small among
relevant images. Aksoy et al. [79] calculated the ratio of standard deviations of feature values
between the database and r relevant images selected by user. Their experiments indicated
the better performance based on weight updating. The equation for updating weights is

written as follows.

gj
Orj
where o; = std(f;), being the standard deviation of values f; of the jth feature components

j=1,.,N (4.19)

wj=

of the images in the whole feature database F. o,; = std(f;), being the standard deviation
of values f ; of the jth feature components of the r relevant images labeled by user’s feedback
in the feature database F'. N is the number of features in a feature vector. In equation 4.19,

we also need to normalize w; in the following formula:

wj
w; = 4.20
Ay (4.20)
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where wr; = Ef':l w;. Figure 4.3 shows the graphs of weight vectors based on two differ-
ent query images, obtained by equation 4.20. In these two graphs, we use different colors
corresponding to different sets of feature sequences. i.e., ‘brown’ for color moments, ‘green’
for color histogram, ‘red’ for texture and ‘blue’ for the shape feature set. Their values are
completely different, that is to say, the higher values in this weight vector contribute more
to the similarity measure than lower values. On the other hand, comparing the weight com-
ponents in two weight vectors based on different query images, Figure 4.3(a) and (b): the
value with the same order is completely different, that means their contributions for the
similarity measure are also different, thus dynamically updating weights based on different

query objects achieves better performance than fixed weights selection.
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Figure 4.3: The graph of weight vectors based on two different query images

4.4 Query Modification

In the Query by Example (QBE) search paradigm, the user selects a sample image as an

initial query to the retrieval system. Let us consider this scenario where the initial query

58



can not represent the relevant class of images, that is to say, it may be located at the edge
of the group of relevant images. Under this scenario, the system is not able to perform
significantly. The query modification approach can be used to modify the query based on
the user feedback. The modified query is then applied to the next retrieval iteration. The

query modification idea was first proposed by Salton for text retrieval [80].

O relevanitem ‘-modiﬂedquer'y:_
X nonrelevantitem A original query:

Figure 4.4: Query modification model

One simple way of modifying the query is based on the feature vectors of a set of relevant
images labeled by user’s feedback. The modified query can be taken as the central value of

the relevant sequence of feature vectors [81].

1 M
Frng =37 2 Xm (4.21)

m=1

where F,, is the feature vector of the modified query and X, is the feature vector of the

mth image in the relevant set. This query modification method is illustrated in Figure 4.4.
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Extracting mean p, standard deviation o and skew s from
Color Moments (9) three color channels (RGB) forms a color feature vector
with 9 components.

Color Histograms (48) 48-bin color histograms in HSV color space, H and S are
uniformly separated into 16 and 3 scales respectively.

Gabor wavelet (GW) filters with 4 scales and 6 orientations

GW Transform (48) are applied to the gray level image resized into 128 x 128

pixels in size. The mean and standard deviation of the
GW coefficients form 48 features.

36 coefficients of the generic Fourier descriptor, for calculating
Modified GFD (36) an equally distributed set of 4 radius and 9 angles.
( introduced in Chapter 3)

Table 4.1: Extracting algorithm of three types of feature descriptors

4.5 Experimental Results

Our approach is evaluated by using a database with 10,000 real-life images categorized in
100 classes from Corel Gallery 65,000 product [82], with each class containing 100 images.
In order to provide a fair evaluation for the retrieval performance, these classes are used as
a ground truth in our experiments, because different users could have quite different visual
opinions for retrieval results. The feature vector of every image is characterized by visual
descriptors using three types of features (color, texture and shape). Table 4.1 gives a simple
description of their extraction algorithms. The whole feature database, which is a matrix of
size 10,000 X 141, is normalized by equation 4.18 to realize the values range [-1, 1].

In our experiments, we evaluate the retrieval performance between the initial search with
equal weights and iterative search after user’s feedback and weight updating. Because of
the heterogeneity of the Corel test set, the extraction of some features is difficult, such
as shape [66]. In their retrieval experiments [66] and [79], the authors did not extract
shape features from their image databases. To indicate our proposed approach for shape
extracting, we also evaluate the retrieval performance between the feature database with

shape and without shape features. Moreover, fixed query (FQ) and modified query (MQ) are
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respectively applied in our system to compare retrieval performance. Thus, we will evaluate
the retrieval results based on four different scenarios: fixed query and feature database
without shape (FQ-NS) or with shape (FQ-S), and modified query and feature database
without shape (MQ-NS) or with shape (MQ-S). We select randomly the 300 queries (3
different queries from each class), an example with 50 images out of 300 queries is shown
in Fig 4.5. For each query, the top 16 most similar images were retrieved to evaluate the
performance. Table 4.2 shows us the retrieval rate, calculated by equation 4.22.
20 (ni/N;)

- =
Rate = 200

where N; is the number of the top 16 similar images based on the ith query, n; is the number

(4.22)

of images as same class as the ith query in N;.

Figure 4.5: The 50 query images from Corel database

Because most improvement is achieved after the 1st feedback (1st iteration), with de-
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Options | 0 Iteration | 1 Iteration | 2 Iteration | 3 Iteration
FQ-NS 39.5 49.8 51.1 52.8
FQ-S 42.3 524 54.9 57.5
MQ-NS 39.5 56.7 58.4 61.3
MQ-S 42.3 61.8 63.7 65.1

Table 4.2: Average retrieval rate (in percentage) for 300 queries in 10,000 image database

creased rate of improvement after the 2nd and 3rd iteration, we only show the results of
first 3 iterations in Table 4.2. We have summarized the results obtained by using the fea-
ture weighting scheme in the feedback loop. These results also show the comparison of the
performance based on 4 different scenarios. In the initial search, it is observed that using
the feature database with shape performs better than without shape and improves 2.8 per
cent. The retrieval results after user’s feedback are improved significantly compared with
the initial search (almost 23%). Query modification-approach gives us a better performance
in image retrieval compared with fixed query, as MQ-S gives a 7.6 per cent higher retrieval
rate than FQ-S. Furthermore, this is especially apparent with the shape feature extracted by
our proposed method (MGFD) as MQ-S performs 3.8 per cent better than MQ-NS after 3
iterations. Figure 4.6 depicts the average retrieval performance of the system for the different
scenarios.

Figures 4.7-4.12 show fhe retrieval performance of the system for a few example queries
which are modified iﬁ the feedback loop. In every example, we use a graphical user interface
(GUI) to display the top 16 similar images (ranking from left to right and from top to
bottom), the left-top single image is the query. Figure 4.7 and 4.8 show the performance
based on ‘Rock’ query inclﬁding and excluding the shape features. As the main area appears
to be dominated by shape in ‘Rock’ image, Figure 4.7(a) shows 12 relevant images retrieved
in an initial search, Figure 4.7(b) illustrates that the 16 ‘Rock’ images are retrieved after
user’s feedback. Especially for cat images (the 5th, 9th and 14th), the shape between ‘cat’

and ‘rock’ is different, due to improved contribution of shape after weight updating, thus
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the cat images are rejected. In Figure 4.8(a), due to loss of the shape information, only 8
rock images are retrieved, furthermore, the cat images (3rd and 4th ) having similar color
background and texture foreground are also retrieved. Also one more relevant image is
retrieved by user’s first feedback.

The retrieved results for a query of a plane flying in the cloudy sky are shown in Figures
4.9 and 4.10. An initial search finds 6 plane images, because one plane image (11th) depicting
“taking-off” doesn’t belong to the same class with query. According to ground truth, only
five similar images are considered to be retrieved. Due to the contribution of dynamically
updated weights through relevance feedback, Figure 4.9(b) retrieves 10 plane images, and
ranking is improved (the first 6 images are now planes). When ignoring shape information
of the plane, the cloud becomes the dominant component in color and texture, therefore,
only 3 planes are retrieved, whilst 6 cloud images belonging to other classes are found to be
similar images. Figure 4.10 (b) shows only mild improvement in the ranking of plane images.

Similarly, as the dominant features of the query ‘Sunrise’ appear to be color and texture
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in Figures 4.11 and 4.12, the initial search in Figure 4.11(a) has worse performance than
4.12(a). Fortunately, first feedback with shape quickly approaches the case without shape
features. ( Figure 4.11: from 6 to 10 similar images; Figure 4.12: from 8 to 11 similar
images). This is because in the initial search, there is equal weight value: 3 kinds of features
are given the same contribution for the retrieval. However, we find that due to having less
shape characteristics in the relevant images with query ‘Sunrise’, the elements based on
shape in weights vector have small values, they give lower contribution in the first feedback,
whilst this increases the weight values of the elements based on color and texture. Thus, the
retrieval results using the feature database with shape or non-shape are close after the first

feedback.

4.6 Summary

In this Chapter, we first introduced the representations of two primary features (color and
texture). Normalization, one basic data processing approach keeping equal emphasis on each
feature component, is discussed in our retrieval system. The experimental results indicate
that dynamically updating weights by user’s relevance feedback improves the retrieval per-
formance greatly. Furthermore, the modified query method gives an apparent contribution.
The shape feature obtained by MGFD provides noticeable improvement to the retrieval re-
sult. If we ignore the shape information, it could affect the retrieval results directly, especially
for the images which have apparent shape characterization. In Chapter 5, we will conclude

this work and discuss future work.
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Figure 4.7: The retrieval performance based on ‘Rock’ query (including shape features)
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Figure 4.8: The retrieval performance based on ‘Rock’ query (excluding shape features)
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(b) First feedback

Figure 4.9: The retrieval performance based on ‘Plane’ query (including shape features)
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(b) First feedback

Figure 4.10: The retrieval performance based on ‘Plane’ query (excluding shape features)
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Figure 4.11: The retrieval performance based on ‘Sunrise’ query (including shape features)
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Chapter 5

Conclusions

5.1 Summary of Thesis

N this thesis, techniques for image retrieval based on shape have been investigated. Shape
Idescription and representation are the basis of shape based image retrieval. In this
research, an effective shape descriptor called the modified generic Fourier descriptor (MGFD)
has been proposed.

Shape description techniques in the literature were reviewed. Some of the important
shape representation techniques have been comprehensively compared and discussed. The
purposes of the review and comparison are to identify advantages and disadvantages of
different shape descriptors and to develop an effective one for our image retrieval system.
The comparison found that region based shape descriptors are generally more promising
than contour based shape descriptors, although contour based shape descriptors are more
popular now. This is because region based shape descriptors are application independent,
more accurate and robust in representing shape. Moreover, shape features extracted in the
spectral domain are more effective than those extracted in spatial domain. The Generic
Fourier descriptor (GFD) satisfies all of these characteristics.

Based on GFD, we proposed MGFD and applied it to the retrieval of natural images.
Because of the limitation of image retrieval only based on shape feature, color and texture

features are combined with shape to form the feature database. The retrieval performance
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shows an apparent improvement after dynamically updating weights associated with feature

components based on user’s feedback.

5.2 Contributions

The main contributions of this research are summarized as follows:

e The proposed modified generic Fourier descriptor (MGFD) has been applied to natural
image retrieval. GFD proposed in [43] has been only used to extract the shape features
from the category of trademark images (the whole shape image) in the MPEG-7 region
shape database. Although it has been shown GFD is effective to extract shape features
in trademark images which are essentially binary, it is not practical for the GFD to
directly extract the shape features from natural images, because it makes computation
very expensive due to high resolution and complicated shape information inherent
in natural images. MGFD overcomes this drawback by.extracting the edge shape
informatioﬁ from images using an edge detector before using GFD to describe shape
characteristics of images. Compared with three different edge detectors, the best edge
detector in our study is Canny filter because of its better edge shape description and

simple computation.

e The textured regions contaminating the edge information are removed by using the
edge-texture characterization (ETC) algorithm. The ETC approach is mainly used
to distinguish shape and texture features in an image according to the different ratio
range between the standard deviation of the original versus that of blurred intensities
in a local windowed region. The textured regions found by morphological operations
are eliminated from the edge map extracted by the edge detector. The more accurate
edge map after removing the excessive textured regions establishes the foundation for

representing shape feature of images using GFD.

° Coinbining color moments, color histograms, Gabor texture and the proposed shape

features for image retrieval based on 10,000 images selected from Corel image database
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has been investigated. Relevance feedback with the scheme of dynamically updating
weights has also been adopted to bridge the gap between high level concepts and low
level visual features. The experimental results show that the combination of the shape
features extracted by MGFD and the dynamic updating of weights by user’s feedback

has a significant effect on improving retrieval performance.

5.3 Future Research Extensions

In content based image retrieval system, humans tend to compare the retrieval results using
high-level concepts. However, image similarity measures are based on low-level visual fea-
tures extracted automatically from images. In order to reduce this semantic gap, relevance
feedback techniques have been applied in our system. We only use positive examples from
user’s feedback to decide the weights selection and ignore the negative examples. We should
combine both examples to adjust weight vectors. Moreover, in relevant images, the users
might consider some of them as more relevant than others. The multi-class input obtained
from the users should be extended to relevance feedback.

In our system, the images relevant to the query have been found by the users in every it-
eration, this increases the users’ workload greatly. An algorithm to automatically distinguish
positive and negative examples from the retrieved images, instead of human participation,
is an attractive approach. The self-organizing tree map (SOTM) is a suitable method to
implement automatic machine interaction for CBIR [83]. We will use SOTM approach to
automatically determine relevant and irrelevant images, minimizing users’ subjectivity.

Our image retrieval system is only based on the characteristics of the whole image.
The user may be interested in a particular object (region of interest) in a query image,
so that the retrieval system should allow the user to feed-back the object rather than the
whole image. The shape information of the object may be very significant, and MGFD
might be the best shape descriptor to represent the shape of the object. However, the

extraction of the object is a challenging task. Image segmentation algorithm will play an
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important role in the extraction of the object. ‘GrabCut’ [84] and ‘GraphCut’ [85], recent
developments in interactive computer vision, may provide an effective tool to interactively

solve the segmentation problem.
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