
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

FEATURE RECOGNITION IN GEOMETRIC
REVERSE ENGINEERING

by

M uham mad Arshad
B.E. (M ech), NED University o f Eng. & Tech. 1993

A thesis

presented to Ryerson University

in partial fulfillment o f the

requirements for the degree o f

M aster o f Applied Science

in the program o f

M echanical Engineering.

Toronto, Ontario, Canada, 2004

© M uham mad Arshad, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EC52913

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
®

UMI Microform EC52913

Copyright 2009 by ProQuest LEG.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Borrower’s Page:

Ryerson University requires the signatures o f all persons using or photocopying this

thesis. Please sign below, and give address and date.

Number Print Name Address Signature Date

1

0

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Supervisor: Dr. Vincent Chan

Abstract

Title : Feature Recognition in Geometric Reverse Engineering.
Nam e : M uhammad Arshad
Program ; MASc., Mechanical Engineering, Ryerson University, 2004.

An artificial neural network based feature extraction system for finding three

dimensional features from physical objects is presented. As part o f a geometric reverse

engineering system, the feed-forward neural network allows for the efficient

implementation o f feature recognition.

Reverse engineering o f mechanical parts is the process o f obtaining a geometric

CAD model from the measurements o f an existing artifact. Ideally, the reverse

engineering system would automatically segment the cloud data into constituent surface

patches and produce an accurate solid model. In order to accomplish this intent, a neural

network is used to search and find the features in the initial scan data set.

In this work, feature extraction for geometric reverse engineering has been

accomplished. W ork has also been done to extract features from the multiple shapes. The

technique developed will reduce the time and effort required to extract features from

scanned data o f a physical object.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Title page.. i
A uthor’s declaration...ii
Borrower’s page..iii
A bstract... iv
Table o f contents...v
List o f figures...vii
List o f tables.. ix
Nomenclature table.. x

Chapter 1- introduction.....................;..1
1.1 The geometric reverse engineering.. 1
1.2 Traditional geometric reverse engineering... 2
1.3 Feature extraction in reverse engineering.. 3

1.3.1 Data collection...4
1.3.2 Data registration..4
1.3.3 Pre-processing... 4
1.3.4 Data segmentation.. 5
1.3.5 Normalization..5
1.3.6 Feature extraction... 5
1.3.7 Data classification.. 6
1.3.8 Post-processing... 6

1.4 Features recognition for geometric reverse engineering data.............. 6
1.5 Legal standing of revere engineering.. 11
1.6 Potential benefits..12
1.7 Scope o f this work...13

Chapter 2- Features extraction - Literature review.. 15
2.1 Introduction....................................... .•...15
2.2 T}-pes o f feature recognition... 16

2.2.1 Parametric m atching...16
2.2.2 Syntactic feature recognition..17
2.2.3 Volume decomposition..17

2.3 Feature extraction - Literature review...17
2.4 Feature recognition in reverse engineering.. 20

Chapter 3 - Artificial neural network - An overview...22
3.1 Introduction... 22
3.2 Types o f neural network... 22

3.2.1 Multi layer feed forward neural network......................................23
3.2.2 Hopfield networks... 23
3.2.3 Kohonen self organizing network.. 24

3.3 Artificial neural network - Literature review...25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 - Neural network based feature extraction.. 29
4.1 Introduction...29
4.2 Selection o f artificial neural network..29
4.3 Artificial neural network configuration.. 30
4.4 Feed-foi-ward neural network..32
4.5 Input and output vectors...34

4.5.1 Segmentation algorithm for single shape objects.......................35
4.5.2 Segmentation algorithm for multiple shape objects....................40

4.6 Back propagation training algorithm.. 43

Chapter 5- Testing o f the neural network algorithm.. 49
5.1 Training o f the neural network... 49
5.2 Testing o f the neural network... 53
5.3 Testing o f the algorithm with real reverse engineering data.................. 54

Chapter 6 - Conclusion and Future work... 62

Appendix A ... 64

Appendix B ... 75

Appendix C ... 78

References..101

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1: Block diagrams for feature recognition system...3

Figure 2; Picture o f “circle” test object.. 7

Figure 3; Picture o f “ellipse” test object.. 7

Figure 4: Picture o f “square” test object.. 8

Figure 5: Picture o f “rectangle” test object... 8

Figure 6: Picture o f “triangle” test object... 9

Figure 7: Picture of “diamond” test object... 9

Figure 8; Picture o f “wheel” test object... 10

Figure 9: Picture o f “Roland PIX - 30 3D Scanner” ...10

Figure 10: Systematic diagrams for feature recognition system....................................11

Figure 11 : Multi layer feed-forward neural network..23

Figure 12: Simple Hopfield network...24

Figure 13: Kohonen self-organizing network.. 25

Figure 14: Neural network configuration...31

Figure 15: Neural network for feature recognition...33

Figure 16: Digitized points from the physical object “wheel”...................................... 34

Figure 17: Isometric view o f the digitized physical object “wheel”35

Figure 18: Flow chart for the segmentation o f data for single object...........................36

Figure 19: Test object “diamond” and its segmented boundaries................................ 37

Figure 20: Test object “square” and its segmented boundaries..................................... 38

Figure 21 : Test object “ellipse” and its segmented boundaries..................................... 39

Figure 22: Flow chart for the data segmentation for multiple shapes object.............41

Figure 23: Test object “wheel” and its segmented boundaries...................................... 42

Figure 24: Flow chart for neural network-based feature recognition...........................48

Figure 25: Sample input vectors presented to neural network.......................................50

Figure 26: Test sample “circle” and its segmented boundary..54

Figure 27: Test sample “ellipse” and its segmented boundary...................................... 55

Vll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 28: Test sample “triangle” and its segmented boundary......................................56

Figure 29: Test sample “rectangle” and its segmented boundary.................................. 57

Figure 30: Test sample “diamond” and its segmented boundary................................... 58

Figure 31 : Test sample “square” and its segmented boundary....................................... 59

Figure 32: Input vectors derived from real reverse engineering data............................60

Figure 33. Test sample “square” and its segmented boundary....................................... 65

Figure 34. Test sample “circle” and its segmented boundary... 66

Figure 35. Test sample “ellipse” and its segmented boundary....................................... 67

Figure 36. Test sample “ellipse” and its segmented boundary....................................... 68

Figure 37. Test sample “rectangle” and its segmented boundary...................................69

Figure 38. Test sample “square” and its segmented boundary....................................... 70

Figure 39. Test sample “square” and its segmented boundary....................................... 71

Figure 40. Test sample “triangle” and its segmented boundary..................................... 72

Figure 41. Test sample “triangle” and its segmented boundary..................................... 73

Figure 42. Test sample “diamond” and its segmented boundary................................... 74

vm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1 ; Set o f classification values with sigmoid transfer function............................. 52

Table 2: Set o f classification values with hyperbolic-tangent transfer function.........52

IX

I Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nomenclature Table

A param eter - learning rate o f connectors between hidden and
output layer

a m ean distance from center to object boundary point

B param eter - learning rate o f connectors between hidden and
input layer

b m axim um distance from center to object boundary point

dW(1 ,i)j2 ,j) change o f the weight between the i“’ element o f the input layer

and the j element in the hidden layer.

dv(2 .i),(3 j) change o f weight between the j''' element o f the hidden layer

and the i‘'' element in the output layer.

Eoutpui.i error at the output layer, neuron location i

Ehiddcn.i error at the hidden layer, neuron location i

k num ber o f iterations for the neural network training

Rj reflected vector at the output layer

W{I ,i),(2 ,i) connector weight between neurons at input and hidden layer.

V(2,i).(3 .i) connector weight between neuron at hidden and output layer,

n number o f comers for geometric objects

oc mean angle between two lines o f consecutive boundary points

À, (i,i) neuron value at input layer, neuron location i

X neuron value at hidden layer, neuron location i

X (3j) neuron value at output layer, neuron location i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1- Introduction

1.1 The Geometric Reverse Engineering

Reverse engineering is the process o f converting 3D surface data collected from a

laser scanner or touch probe mounted on a coordinate measuring m achine into a fomi

compatible with CAD/CAM packages. The gathered data, nonnally huge in size and

unstructured in nature are often called cloud data. Reverse engineering is used in industry

for a number o f reasons, such as modification o f prototype parts after testing, or the

custom fit o f prosthesis for better comfort in the case o f knee or hip replacements and the

reproduction o f broken machine parts whose drawings are not available.

There are two main applications o f reverse engineering:

1. To provide digital infonnation for a product for which no CAD model is available.

2. To support the redesign o f an existing product.

Either o f these goals could be achieved by making sure that the 3D scanned data

are complete and accurate. The dimensions o f the part or its shape can then be derived

from the digitized points. The fitting o f one or multiple surfaces to the point data is then

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

necessary to generate a CAD model. Beyond the domain o f prism atic and cylindrical

objects, feature handling is still a major research area.

In an ideal reverse engineering system, the cloud data w ould autom atically

fragm ent into constituent surface patches and generate an exact solid m odel. In order to

realize this objective, a neural network is employed to explore and find the features in the

initial data set.

Besides the encouraging progression o f several researchers, reverse engineering is

a diverse and complex problem, to which a direct distinct solution has not been

established.

1.2 Traditional Geometric Rev erse Engineering

Traditionally, the process o f reverse engineering employed a touch probe, which

was mounted on a coordinate measuring machine (CMM). In order to accurately define

the surface contours o f an object, which needs to be reverse engineered, a CM M operator

is required to manually guide the sensor to collect tliousands o f data points. This is a slow

process which requires expensive equipment and takes a considerable amount o f time.

On the other hand, advancements in machine vision technology provide a means

to collect 3D data from the object surface with non-contact sensors like an active laser-

based range finder. CAD models are then created from this data for any computer-

based design, analysis or manufacturing tasks. The adoption o f m achine vision-based

reverse engineering in the last 15 years has been the result o f dem ands for increased

quality control and lower product cost coupled with ever increasing manufacturing

throughput requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Feature Extraction in Reverse Engineering

D etection and localization o f 3D objects in scenes represented by single or

m ultiple 2D images has becom e a well-established teclinology. A related, but not so

deeply investigated problem deals with the identification o f 3D objects directly from 3D

data. A num ber o f engineering applications rely on robust and efficient shape feature

recognition in 3D data, where these data can be either digitized points or synthetic data

from a CAD m odeling system.

The dim ension o f the part or its shape can be derived from the digitized points.

The generation o f a CAD model requires the fitting o f one or multiple surfaces to the

point data and to construct an appropriate surface or solid model. This step can only be

fully automated for some special cases. The level o f automation depends on the intended

purpose o f the CAD model.

Technical feature recognition systems are composed o f consecutive blocks, each

perform ing its predefined task in the processing. This system can be described as a

b lock diagram. In the simplest form, it is shown in Figure 1.

Classification Post
processing

Pre-
Processing

Feature
Extraction

SegmentationData
Collection

Normalization

Data
Registration

Figure 1. Block diagrams for feature recognition system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.1 Data Collection

D ata collection is the first stage in any feature recognition system. Before an input

vector is m ade up o f a set o f measurements, these measurements need to be taken. For

exam ple, video cameras and scanners are used in the case o f character recognition and a

luicrophone, in the case o f speech recognition. Data collection devices m ust be able to

record the object, ideally, with the highest reliability available. Noise is considered a

disadvantage in order to perform the successful operation o f any system.

1.3.2 Data Registration

Elementary model fitting can be performed in data registration. The objective

could be achieved by somehow fixing the internal coordinates o f the recognition system to

the actual data acquired. A priori knowledge surrounding the system is utilized in

designing the registration stage. For example, in the case o f optical recognition, the system

m ust locate in the input image and the area o f interest.

1.3.3 Pre - Processing

In the real world, especially in the case o f reverse engineering, data always has

some degree o f noise and therefore requires a preprocessing stage. The tenu noise is used

in broad sense, but can be simply defined as,

“Anything that hinders a recognition system to fulfill its commission may be

regarded as noise, no m atter how inlierent this ‘noise’ in the nature o f the data.”

Also, preprocessing enhances some o f the desirable properties in the data that are fed into

the recognition system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.4 Data Segmentation

The data, which have already been registered and preprocessed, are split into

subparts. This process is called data segmentation. In this work, data points which formed

the boundary o f the objects are segmented. This task is accomplished by developing

MATLAB codes. The segmentation processes are outlined in detail in sections 4.5.1 and

4.5.2.

1.3.5 Normalization

A common characteristic o f feature recognition systems is the inherent variance

o f the objects to be recognized. The main problem in feature recognition is how these

\'ariances are accounted. There are many possibilities, one is to use feature extraction or a

classification algorithm, which can deal with the variations in the outcomes o f the object.

The side effect o f nonnalization is a loss o f degrees o f freedom, i.e., the dimension

reduction in the intrinsic dimensionality o f the data.

1.3.6 Feature Extraction

The dimensionality o f data is reduced during the process o f feature extraction.

This is necessary as a result o f limitations in memory and computation time. A reliable

feature extraction scheme can maintain and enhance those features o f the input data

which make distinct feature classes separate from each other. Also, the system must be

restrained with respect to variation produced by both the humans and the measuring

devices used in the data acquisition stage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.7 Data Classification

Classification is the most crucial step in the process o f feature recognition. All the

previous stages are designed and tuned with the aim to have success in the classification

phase. In the simplest way, the operation o f classification is the transformation of

quantitative data to qualitative output information.

1.3.8 Post-processing

After the classification stage, some data processing is perfom ied in m ost feature

recognition systems The post processing subroutine carries forward some a priori

infonnation about the neighboring world into the system. This additional step helps in

improN’ing the overall classification accuracy. The post-processing phase is generally

possible if the individual objects or segment make up meaningful entities such as bank

account numbers or sentences.

1.4 Features Recognition for Geometric Reverse Engineering D ata:

The “Feature” driven CAD modeling packages provide the vital link between

design and manufacturing. In the same way, “Feature” driven reverse engineering would

allow for more flawless application o f the CAM software.

In this work, the features arc extracted from geometric reverse engineering data.

To test the proposed algorithms, seven different geometric objects are created; circle,

ellipse, square, rectangle, triangle, diamond and wheel. These objects are shown in

Figures 2, 3, 4, 5, o, 7 and S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s *

Figure 2. Picture o f “circle” test object.

P
Ï t

Figure 3. Picture o f “ellipse” test object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4. Picture o f “square” test object

Figure 5. Picture o f “rectangle” test object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4- ,/ V

^ 'k ç^r A

V . Tj"*jpp

Figure 6. Picture o f “triangle” test object

S B

Figure 7. Picture o f “diamond” test object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8. Picture o f “wheel” test object

A Roland Dr. Picza PIX - 30 3D laser scanner is used to collect range data of

different accuracy levels and densities. Based on a piezo sensor, the PIX - 30 is a contact

scanner.

Figure 9. Roland PIX - 30 3D Scanner

10

Reoroduced with permission of the copyright owner. Further reproduction prohibited without permission.

This scanner gathers the data from the surfaces o f the object. The collected

measured data points are fitted with a suitable primitive geometric shape. A programming

method base on the human brain architecture, Meural Network, is used for the recognition

o f important features on the object’s surface. These features provide a more intuitive

means for engineers to develop object definition.

MATLAB codes are developed first for data segmentation and then eventually for

feature recognition. In a simple form, the process is oudined in Figure 10.

Laser Scanning

Features Extraction

Pre - processing

Data segmentation /
Geometric Extraction

Figure 10. Systematic diagrams for feature recognition system.

1.5 Legal Standing of Reverse Engineering

The legal standing o f reverse engineering has long been an issue for the

engineering discipline. Several U.S. Supreme Court rulings and congressional legislations

are in place which allow the use o f reverse engineering for development and innovative

purposes. Reverse engineering has long been held as a lawful form o f discovery in both

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

legislation and court opinions The Supreme Court o f USA has confronted the issue of

reverse engineering in mechanical technologies numerous times, upholding it under the

principle that it is an important technique o f dissemination o f ideas and encourages

innovation in the market place. The U.S Supreme Court addressed the first principle in

Kewanee Oil v. Bicron, a case concerning trade secret protection over the manufacturing

o f synthetic crystals by defining reverse engineering as “a fair and honest means of

starting with the known product and working backwards to divine the process which

aided in its development or manufacture.”

There was another principle that encourages the innovative use o f reverse

engineering articulated in Bonito Boats, v. Thunder craft. This case involving laws

forbidding the reverse engineering o f the molding process o f boat hulls. In this case, the

U.S Supreme Court said “the competitive reality o f reverse engineering may act as a spur

to the inventor, creating an incentive to develop inventions that meet the rigorous

requirements o f patentability.”

1.6 Potential Benefits

This research looks at automating the collection o f surface data points and the

modeling o f the surfaces in a computer aided design (CAD) program. The 3-D laser

allows the gathering o f preliminary surface information that could subsequently be used

to locate important features on the object being examined.

Applications o f this research range from the geometric reverse engineering o f

physical models to quality control. This research will allow manufacturers to reduce

design cycles and to quickly bring products to market.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.7 Scope of this work

This thesis is arranged in chronological fashion o f the steps required to carry out

feature extraction.

Chapter 1 discusses reverse engineering and the conventional reverse engineering

tecliniques. This chapter describes the problem and proposes the methodology to extract

features for geometric reverse engineering data. Potential benefits o f this research are

also discussed at the end o f the chapter.

There is no universally agreed definition o f a feature. The word “feature” has a

different meaning for different researchers. The most commonly used feature definitions

are described in Chapter 2. This Chapter also discusses types o f feature recognition and

the related literature review o f features recognition techniques.

Chapter 3 describes different types o f neural networks and discusses their

stmcture. This chapter also looks at the related literature on artificial neural network

techniques.

Chapter 4 discusses the selection o f the artificial neural network method applied

in this work to extract the important features, its configuration and potential benefits.

This chapter also describes the algorithms that were developed for the segmentation o f

the boundaries and then calculation of the parameters that form the input vector to the

neural network. Finally, the feed-forward neural network algorithm applied for feature

recognition is described.

The testing o f the neural network algorithm is a very important part o f this

technique. The algorithm is first tested with manually created synthetic data and then on

the real reverse engineered data derived from the test samples. After the successful

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training o f the algorithm, the algorithm is tested on an unseen example. Chapter 5

presents the training and testing o f the neural network algorithm.

Chapter 6 discusses the conclusion and future work.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Features Extraction - Literature Review

2.1 Introduction

Many techniques have been developed for feature identification fi'om CAD

models. However, the literature is scarce in the area o f extracting features from reverse

engineered data. M ost o f the methods are based on matching algorithms, in which the

data are compared w ith a predefined set o f surfaces and edges. The features are usually

defined generically before any matching process may be initiated, as a com bination o f

topological entities.

The overall aim in feature recognition is to convert low level geom etric

information into a high level description in terms o f form, functional, m anufacturing or

assembly features. This description could be for design, manufacturing, engineering

analysis or even for administrative purposes. It is well known that recognizing features

that are required for machining may be considerably different from recognizing features

useful for casting or for assembly purposes. In other words, features are context -

dependent entities.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Feature” is general term and has been used to describe a num ber o f different

things. For example, V andenbrande et. al. define that a feature is a “region o f an object

that is m eaningful for a specific activity or application”. Schulte et. al.̂ ^̂ considered a

feature as “geom etry associated with a specific operation” . A nother definition by Silver

describes a feature as “A region o f interest consisting o f voxels satisfying a set o f pre­

defined criteria” . Shah defines a feature as a physical constituent o f a part that can be

mapped to a generic shape and “represents the engineering m eaning o f the geom etry o f a

part o f assem bly”.

For this work, a feature will be defined as “a recognizable topological pattern o f a

set o f edges” .

2.2 Types o f Feature Recognition

There have been various techniques developed to extract features from a

geometric m odeling database. By and large, feature recognition can be divided into three

m ain categories.

■ Parameter m atching

■ Syntactic feature recognition

■ Volume Decomposition

2.2.1 Parametric M atching

In parametric matching, the features are first characterized in tenn o f their

geometric and topological form. The algorithm searches the solid model data base,

measures against topological type, connectivity and adjacency to decide if any o f the

characteristic fe tures are available.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Syntactic Feature Recognition

In syntactic pattern recognition, the geometry is represented in term s o f a

language gi-ammai- that describes the order o f the lines and cui-ves. The description o f the

object is then matched against grammar to recognize the features.

2.2.3 Volum e D ecom position

In the third category, i.e., volume decomposition, the removed base stock material

is identified and then broken down into distinct machining operations. This volume is

decom posed into sm aller volumes or “features” , which confonn to m achining operations.

2.3 Feature Extraction - Literature Revie\v

Free-fonn features are acquiring a great deal o f attention since they are considered

the im portant constituent in product styling, aesthetic design and shape conceptualization.

Recently, som e Computer-Aided Industrial Design (CAID) systems have surfaced, each

o f which is in some means based on surface features or free-foim features. Various

systems are dedicated to particular types o f features, for example, protrusions and

depressions.

To m ake these type o f systems truly flexible and useful, free-form features (shape

patterns) are required to be extracted from existing objects, where these objects are either

physical (and to be 3D scanned) or virtual (and to be sampled). The main obstacle is

the fitting o f 3D shape patterns against 3D point sets. A necessary requirem ent o f the

fitting method is that it should not only acquire placement and scale param eters for the

pattern, but also shape defoim ation parameters.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a graph based approach for feature recognition, boundary representations are

built upon a graph structure. Boundary representation model faces can be considered as

nodes o f a graph w hile face-face relationships form the arcs o f the graph. As described by

W u and Liu graph based approaches first represent an outline o f the required

topological and geometrical constraints for recognizing the feature. Once the graph which

identifies a feature class has been defined, such a graph has to be searched in the object

structure, which is a graph as well. The problem o f recognizing a given sub-graph in a

graph is fairly com plex problem and its computing time in the worst case grows

exponentially. M any authors proposed various search strategies to work out this problem.

Some authors argued that the adjacency information available is usually not adequate for

feature recognition. For this reason a number o f augmented graphs have been

recommended.

One o f the main drawbacks o f graph-based feature recognition techniques is the

difficulty in recognizing interacting features. This is due to the fact that a feature

characteristic pattern is changed when features intersect each other. Hint based reasoning

a p p r o a c h e s ^ h a v e been developed to overcome this drawback. In the hint based

approach, developed by Requicha et. al. those characteristic traces that features

leave in the nominal geom etry o f the part are searched. These traces present hints for the

potential existence o f volumetric features even when features intersect. These hints are

processed to generate the largest possible volumetric feature that is compatible with the

hint and does not intrude into the feature.

In the pioneering work o f Kypnanou feature grammars are described for the

extraction tlirough syntactic feature recognition. Falcidieno et. al. took allowance o f

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K yprianou’s method for the identification and extraction o f feature inform ation from a

boundary representation o f an object. The fundamental concept is to define a pattern

description language where suitable rules are defined in order to create an applicable

com position o f primitives. The authors defined tliree basic primitives: convex edge,

concave edge and smooth edge. This graph parsing based feature recognition scheme was

focused on the identification o f depression and protrusion features. Di Stefano

introduced the concept o f scmantema as the minimal element o f meaning that defines the

semantics o f the representation. This approach requires the statement o f the minimal set

o f semantema that identifies the feature clearly.

Volume decomposition methodologies operate more directly on the three-

dimensional representation o f volumes instead of working on the boundary representation

gi'aph o f solid models. Such approaches have been generally employed for the

recognition o f machining features. There are two main approaches for volume

decomposition, alternating sum o f volumes (ASV), where an object is articulated in

ternis o f a hierarchical structure o f convex components, and delta volume decomposition,

where the intent is to recognize the volume to be machined and then decompose it into a

set o f non-overlapping entities corresponding to different machining operations.

In the pioneering work o f W oo, ASV decomposition is applied to indicate a

non-convex object by a hierarchical structure of convex components. This approach has

been proven non-convergent in certain cases. Kim proposed an enhanced convex

decomposition approach to address this issue. Kim and Wang et. al. proposed the

alternating sum of volumes with partitioning (ASVP) approach. This is a convex

decomposition method based on a convex hull, set difference and cutting operations. In

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this scheme, the boundary faces o f a part are arranged in an outside-in hierarchy and

volumetric components are related with these faces. The ASVP decom position is

transformed, by means o f combination operation between components, into a set o f

feature volumes (Form Feature Decomposition - FFD) corresponding to significant high

level constituents o f the product shape. FFD is then transfonned into a N egative Feature

Decomposition (NFD) by means o f positive-to-negative conversion. The machined face

information is obtained from negatiye feature stand for removal volumes.

Kailash et. al described a method dedicated to machining feature extraction of

casting and forging components. In this scheme, machining removal volumes were first

obtained by subtracting the final part model from a row part model. Machined faces (M-

faces) are then recognized and collected into groups (M-groups). Finally, M -groups are

mapped into all possible machining process forms. This feature identification approach is

process oriented as M-group is mapped to various processes.

2.4 Feature Recognition in Reverse Engineering

It is difficult to classify feature extraction methods into precise, organized groups

as there is a considerable overlap between the various techniques. The m ajority o f the

methods, as discussed in Section 2.2, use a matching algorithm which compares data with

predefined generic features. Features extraction algorithms m ay include the following

specific tasks:

i. Generic definition o f a features topology.

ii. Searching the database to match topological patterns.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii. Extracting the recognized features from the database (removing a portion

o f the model associated with the recognized feature).

iv. Determining the feature parameters (hole, diameter, number o f comers).

The features m ust be generically defined by a combination o f topological entities

required to illustrate the features before any matching process may be initiated. For

example, a hole could be described as combination of two circular edges suirounding a

cylindrical surface. Secondly, the topological database would be searched for

connectivity and adjacency to determine which o f these features are present in the solid

monel.

The features will be further limited in scope to specific machining operations for

the creation o f hole, square, diamond, ellipse, triangle, rectangle and wheel. There are, o f

course, many reasons for limiting this definition. As this work is primarily concerned

with reverse engineering, the emphasis is on the reconstruction o f the solid parts, not on

the design of parts. The reverse engineering algorithm is to model the part with some

rudimentary editing features. It is not meant as a replacement for a CAD package.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 — Artificial Neural Netw ork : An Overview

3.1 Introduction

This chapter presents different types o f neural networks. The related literature

review on the artificial neural network is the main focus of this chapter.

3.2 Types of Neural Network

There are many t}^es o f neural networks. Each type has the characteristics of

parallel processing from an interconnected network o f computational elements. Several

structures o f neural networks are possible by connecting the elements together. There are

two most commonly used structures from the neurons connection point of view; multi­

layer neural network and fully connected neural network (Hopfield network). These

networks differ from one another in architecture and training algorithm. The following

three are the most commonly used networks.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Multi Layer Feed Fonvard Neural Network

The multi layer feed-forward neural network has many successful applications

and is the most commonly used neural network. As shown in Figure 11, the neurons are

airanged in several layers. Any number o f neurons and number o f layers are possible.

Input vectors Hidden layers Output vectors

Figure 11; Multi layer feed-forward neural network

The layers are classified into tlii'ee types: input, hidden and outer layers. Any

number o f hidden layers is possible but the connections are allowed only in the feed­

forward directions.

3.2.2 Hopfield networks

In the early 1980‘s, Jolm Hopfield’s pioneering work gave credibility to the

fledging neural network field. Contrary to the multi layer feed-forw^ard neural network, a

Hopfield network is defined as a feed-back system with the output o f one complete

forward operation of the network ser\dng as the input to the next network operation. The

Hopfield network is also called the recument network as this network operates as a feed­

back system. This scheme is illustrated in Figure 12.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 12. Simple Hopfield Network

Each forward operation o f the network is called an iteration. The process is repeated until

the output remains constant. Hopfield showed in his work that if the weight matrix is

symmetrical with zero diagonal elements and the elements are updated asynchronously.

the network will always converge.

3.2.3 Kohonen self organizing network

In the early I980’s. Teuve Kohonen developed an algorithm to mimic the brain’s

ability to organize itself in response to external stimuli. Kohonen called his algorithm a

se lf organizing feature map. Kohonen’s algorithm represents a type o f neural network

that is capable o f learning without supervision. In this technique, the weights

strengthen themselves. The first layer is the input and the second layer, the output. It is a

two dimensional grid where the self organizing takes place as illustrated in Figure 13.

In the winner take all competition, the output neuron with the highest value wins.

The structure o f the output vectors is laid out in a grid like pattern, this allows the concept

o f neighborhoods.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output

(:) + 0 iC:)
1 0 ,to

Input

Figure 13. Kohonen self-organizing network

Once the winner clement is found, the weights for that output element and its

neighborhood are updated. The connectors are iterated until the t'alue converges, i.e.. no

more winning neurons are declared.

3.3 Artificial Neural Network - Literature Review:

For classification problems, the neural network is able to give statistical

information about the classification and is easy to train, but it is often not clear how the

neural network has arrived at its answer. On the other hand, the operations o f rule-based

algorithms are traceable, but the set o f rules chosen may be more difficult to train and

may not generalize as well as a neural network.

Recognition is one o f the most complex problems in the computer and machine

vision area. The major concern associated with the use of artil'icial neural networks for

feature recognition is the formulation o f an appropriate codification o f the topological

and geometrical entities in order to present a numerical input to the network.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to m eet the neural network input requirements, Prabhakar and Henderson

defined a feature as a mathematical function, in which geometrical and topological

data were variables, derived from the solid model o f the part. In this method, these

variables represented the net input and were aiTanged in a two dimensional matrix called

the adjacency matrix. Each element (i,j) o f the adjacency matrix represents the

relationship o f face j to face i. Non-adjacent faces i and j were represented by zeros

whereas different integer values denote different t>Tpes o f edges. The sign of the

adjacency matrix element indicates whether the edge is concave or not. The process o f

recognition is then reduced to row-by-row parsing o f the adjacency matrix.

Zulkifli et. al. proposed a method to recognize the interacting features. The

authors used a B-rep solid model as input for the feature recognition system. This method

is based on a layering technique to find interacting features. After selecting the principle

direction, this technique searches for any volume that exists between two successive

layers o f the part. These volumes are then checked to find out if they represent the result

o f interacting features. This task is accomplished by means o f a Kohonen self- organizing

feature m ap (SOFM) neural network, which is used to create maximal rectangular regions

which are then intersected with the resultant area. Primitive features are then obtained

fi'om resulting regions. Also, the second stage o f SOFM was applied on the resulting

regions to decompose them into primitive regions. As described by the authors, this

technique is limited to apply only for the features that have identical thickness and a

common bottom face.

Chan et. al. present a method in which stereo pairs o f images are used to plan

the path for a co-ordinate measuring machine (CMM). The Kohonen self-organizing map

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(SOM) network is used for the segmentation o f the CCD images. The authors incorporate

the charged coupled device (CCD) camera and a CMM touch probe digitizer together to

accomplish this aspect o f reverse engineering. In this reverse engineering system, an

accurate solid data were obtained from the automatic digitization o f the object using the

CCD images.

Methods that require no explicit models, e.g., neural networks, case-based

reasoning and inference have been developed, but their ability is saturated at a certain

level. Two methods to evade the limits have been attempted, one is to build a more

concrete model and the other is to fuse these methods together. Y ata’s digit is a

remarkable and promising success in the latter method. The main idea is to utilize many

neural networks at the same time that construct total model ’’Multi-Model Neural

Networks” (KfNNs). Despite its very simple and easy implementation, the preliminary

results showed that NfNNs significantly increase sensitivity. In 2001, Yoshihara et. al.

applied a multi-model neural network to identify exon-intron boundaries (splice site) in

DNA base sequences. The MNNs provide a higher identification rate o f 95%, as

compared to 83.4% with a single NN.

None o f the reverse engineering packages address the automation o f feature

extraction due to the size, incomplete and unstiuctured nature o f scanned data. The

reverse engineering packages having provision for feature recognition rely on an

interactive user interface Thompson et. al. proposed a REFAB (Reverse

Engineering - FeAture-Based) system. In the proposed system, the authors used an

interactive graphics workstation that segments the reverse engineering data into features.

REFAB allows a user to specify the types o f manufacturing features and approximate

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

location o f each feature in the object. The REFAB system then fits a feature to the

scanned data by using an interactive refinement process.

M achine vision systems facilitate sophisticated industrial applications, such as

classification and process control. Artificial neural networks (ANNs) and m achine vision

bonded together provide a new scheme for solving complex computational problems in

m any areas o f science and engineering. Farhad et. al. investigated several novel uses

o f machine vision and ANNs in the processing o f single camera m ulti-positional images

for 2D and 3D object recognition and classification. The authors used the boundary

contour infonnation as a method o f representing the industrial component. A number o f

shortcomings were found most importantly the identification o f unique start point, vital

for rotation invariance.

28

I Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 - Neural Network Based Feature Extraction

4.1 Introduction

The objective o f this work is to recognize features in the scan data. This chapter

will look at the artificial neural network in depth, its implementation on physical objects

to extract features and potential benefits for this specific problem.

4.2 Selection of Artificial Neural Network

Current commercial reverse engineering software packages have not been

addressing the automation o f feature identification. Artificial neural networks are a good

choice for feature extraction ft-om the reverse engineered data due to the nature o f scan

data which have the following inherent traits:

♦ Noise in the scan data set.

♦ Unstructured and large in size.

♦ Incompleteness o f the data.

♦ Defects in the scan object.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D ue to the nature o f reverse engineering data, a robust method is required for the

im plem entation o f a feature recognition algoiithm. Rule based algorithms rely on

searching through a set o f rules, selecting the rules which will advance the search state

ftom one state to the next until the final s'ates are found. These algorithm s need concise

and accurate data to test the topology. As reverse engineering data is often incomplete

and often cairy a substantial amount o f noise, a neural network based algorithm is

considered to be more robust. Artificial Neural Networks (ANNs) have shown

considerable prom ise in a w ide variety o f application areas and have been particularly

useful in solving problems for which traditional techniques have failed or proved

inefficient. Neural networks have seen m any successful applications in machine vision

feature recognition problems. The neural network technique is used in this work because:

It has proven robustness in many 2- D machine vision problems.

Has the ability to learn and work in m any different situations.

It is not susceptible to incomplete data sets as much as rule based algorithms.

• H igher computational ability because o f m assive parallelism

Amenable to machine learning

4.3 Artificial Neural Network Configuration

The neural network in this work has an input layer, hidden layer, an output layer,

weights, bias and a transfer function. The inputs are multiplied by weights, bias is added

and the transfer function operates on the total to give the output. Generally, linear transfer

functions are best suited to linear problems, and non-linear transfer functions are best

30

I Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

suited to non-linear problem s. Graphically, the neural network configuration is sho'v\m in

Figure 14.

Transfer functionW |

♦O utput
Net

Bias

Wn

In Figure 14:

Figure 14. Neural network configuration.

N et = E (Xj Wj + bias) .(4.1)

f 1 if net > threshold

Output = i

lO if net < threshold

W eights are updated: W| (t+1) = W| (t) + sxj

W here.

and

z = EiTor = desired output - cal. output

(xi, x2, x3, ... x„) are input vectors.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The com monly used transfer functions for classification are step functions, linear

functions, sigmoid functions, hyperbolic-tangent functions.

D ue to the w ide range o f problems to which neural networks have been applied

to, it is difficult to generalize which types o f transfer functions are best suited to certain

types o f problems. For this work, a hj'perbolic-tangent transfer function is used between

the hidden and output layer to m ap the result at the output layer. The hyperbolic-tangent

transfer function has the properties to vary from -1 to +1.

4.4 Feed-Forward Neural Network

The neural network selected for this work is a feed-forward (back propagated)

based network with one hidden layer. The number o f input elements should equal the

number o f parameters needed to define each feature, whereas the number o f output

elements should represent the number o f different tjqies o f features which can be found as

shown in Figure 15.

For this work, the neural network has four elements in the input vectors and seven

elements in the output vector. The four elements define the geometry o f the objects and

fonn the input vector that was presented to the neural network. These parameters are

discussed and calculated in Section 4.5. Also, each neuron at the output layer defines the

feature type to recognize the target object from seven different objects.

The term back-propagation refers to the training o f the algorithm rather than the

network architecture. In a feed forward network, the networks feed the input forward, that

is, towards the output. It is thought that adding an additional layer, a so-called hidden

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

layer, would soften the effects o f input noise. However, whether or not to use one hidden

layer or two or more hidden layers has still not been worked out.

Input Output Output
Weights Weights Neuron

Input layer Hidden layer Output layer

Figure 15. Neural network for feature recognition.

The number o f elements in the hidden layer camiot be determined except tlmough

experimentation. Nezis and Vosniakos found that increasing the number o f hidden

layers did not change the results, but did increase the training times significantly. They

also found that increasing the number o f elements in the hidden layer resulted in better

mapping, however at the penalty o f increased training times. For this work, one hidden

layer was used to soften the effect o f input noise. There are seven neurons employed in

the hidden layer that was mapped on the output layer to generate the output values.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Input and Output Vectors

Before implementation, the neural network algorithm must receive the topology

and its associated geometry in a form that can be presented to the input layer. Therefore,

to search for features in the database, fragments o f the topology geometry database must

be coded into a format understandable to the neural network. However, with reverse

engineered data, the geometry m ay also prove to be an important indicator o f the possible

features, as the faces that make up a feature may not be fully defined.

Since the reverse engineering scanned data is huge and unstructured in nature,

two different segmentation algorithms, one for a single object and the other for multiple

objects, are developed for the cloud data to segment the boundary o f the object and hence

calculate the parameters that make the input vectors. The digitized wheel object and its

isometric view are shown in Figure 16 and 17.

■ ie iB iiiB B B a o o B Q aiiiB a iia i> « * a B aiia i« O K B ae iitia ic aa ao B « D Q iB B e ao <

laaaBiegiMaaa'

iBBBBiBaeseaaaBi

aaaaaaaQBaaaaaM aBaaaaaaeoBQ D H oiaaaciaaPB BaaapaaaaaaBBQ sasaaBQ i

to a aa ao e aa aa B B aa aa B aa aB B a B p a aa saa aa aa aa aa ae ea B a ae aa c

Figure 16. Digitized points from the physical object “wheel”

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m m

Figure 17. Isometric view o f the digitized physical object “wheel” .

4.5.1 Segmentation Algorithm for Single Shape Objects

This segmentation algorithm looks at the physical object with a single geometric

shape, like a circle, an ellipse, etc. This algorithm first segments the data points from the

cloud data that form the object’s shape. For this purpose, this algorithm compares the

data points that establish the depth of the physical object with those on the surface. These

segmented data points are then further processed to find the boundary points o f the object

and hence calculate the important parameters that form the input vectors. This whole

process was programmed in MATLAB. A flow chart for this segmentation process is

shown in Figure 18.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

Load data text file

z < Mean z

End

No

Yes

Eliminate
all points

Find mean o f z coordinate

Plot the points and generate the shape

Calculate the input vectors

Eliminate all the duplicated points

List all the z coordinate and the
corresponding x and y coordinates

Find centre o f the object by taking
mean o f x and y

Find the min. and max, o f x and y in
horizontal and vertical directions

Rearrange the points in the clockwise
direction

Figure 18. Flow chart for the segmentation of data for single object.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following Figures 19, 20 and 21, show the segmented boundaries o f the

objects obtained from the reverse engineering cloud data by using the above

segmentation scheme.

i D.i^ W @1 4 À / ‘, -y - f j s ^ . o .:

10 12 14 16 18 20 22 24 26

Figure 19. Test object “diamond" and its segmented boundaries.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ti*LMgKnTMBm*rfmrm
F ilé E d it ;^ iew in se r t % o o ls ^ in d o w H e lp

il,D ^ , « >t: Ai,^ a

“igure 20. Test object “square” and its segmented boundaries.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£ i)e E d ii .V iew . in s o j t % ooW W in d o w Help

IIQ e ^ A ^ / ; ! j® ë> T\-

I t H I H UM 14-

•4-H'H H++I4'4"f+-

10 15 20 25 30 35 4D 45

Figure 21. Test object “ellipse” and its segmented boundaries.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2 Segm entation A lgorithm for Multiple Shape Objects

This segmentation algorithm looks at the physical object with multiple geometric

shapes, like a wheel. Before initiating the segmentation algorithm, the object is divided

into four quadrants. The segmentation algorithm then searches the object shape in each

quadrant by comparing the data points that form the depth o f the physical object with

those on the surfaces. These segmented data are then further processed to find the

boundary points o f each object.. Once the shapes are segmented, all four quadrants are

then assembled together to calculate the important parameters that form the input vectors.

A flow chart for the segmentation o f multiple objects like wheel is shown in Figure 22.

The segmentation algorithm for single shape and multiple shape objects calculate

the four important parameters. These four parameters (a, b, oc, n) foimed the input

vectors. Due to the noise and incomplete data set, the parameter ‘a’ is calculated as the

mean distance and ‘b ’ as the maximum distance between the object boundary point and

the center.

The angle oc is calculated by using the law o f cosine between the two adjacent

points at the object boundary. For this purpose, the distance fonnula is used to calculate

the distance between the object boundary points and distance from centre. Also to mark

the corner, the two adjacent angles that were calculated at the object boundary are add^d.

This sum was subtracted from 180 degree. The output forms the corner if the difference

varies more than 5 degree.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

Load data text file

Find mean o f z

N o
If z >M ean z Eliminate all points

Y es

Find all c o iT e s p o n d in g x a n d y p o in t s .

Find min. and max. o f x
and y in horizontal and

vertical direction.

Find mean o f x
and y

Eliminate all the duplicated
points. If X >mean x

y < mean y

Rean ange & assembled the
points in clockwise

direction.
If X <mean x
y > mean yPlot the points and generate

the shape.

Find centre o f the object by
taking mean o f x and y If X <mean x

y < mean y

Calculate the input vectors

If X >mean x
y > mean y

1 r

End

Figure 22. Flow chart for the data segmentation for multiple shapes object.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The segmented boundary o f the wheel from the reverse engineering clouded data is

shown in figure 23.

D I X
File ' £ d il . -. V iew insert; ; CEoolsW -Wmdbw'^v H elpi-

60

50

20

10

GO30 40 5020

Figure 23. Test object “wheel” and its segmented boundaries.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The set o f parameters (a, b, oc, n) which are calculated from above scheme, forms

the input vector. This input vector is presented to the input layer o f the artificial neural

network to recognize the features.

Input vector = (a, b, oc, n) (4.2)

Where,

a = M ean distance from center

b = M aximum distance from center

oc = Mean angle between two lines

n - Number o f comers

To recognize a target object from the seven defined features, the desirable output

can form one o f seven vectors. The physical object which is associated with a circle will

be mapped by the recognition system as vector (1 0 0 0 0 0 0) and a diamond as vector

(0 1 0 0 0 0 0) and so on.

4.6 Back Propagation Training Algorithm:

In order to correctly recognize the feature, it is very important for the network to

perfonn the correct mapping o f the input parameters to produce the output classification.

To obtain this, the weights are adjusted to the optimal values. This could be achieved by

‘training’ the network.

One o f the problems o f training a multi-layer network is how the weights o f the

connectors are updated. The most popular method for training a feed forward network is

called back propagation.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The size o f the neural netw ork is dictated by the size o f the input and the output

vectors. Once the architecture has been fixed, the values o f the connecting weights

determine the behavior o f a feed-forward network.

Let;

X (i,i) = Input neuron value at neuron location i.

X (2 ,i) = Hidden neuron value at neuron location i.

X (3 ,i) = Output layer value at neuron location i.

W(i,i),(2 ,i) = Connector weight between neuron at the input and hidden layer.

V (2 .i),(3 .i) = Connector weight between neuron at the hidden and output layer.

W here i = 1 to n, depends on the respective layer as shown in the Figure 15. Therefore,

the neuron value on the hidden layer can be calculated as:

n

^ (2 , i) — S W ^ (l , m) (4 . 3)
m=l

Also, the output neuron values are calculated as the product o f connector weights and the

coiTesponding values at the hidden layer. A hyperbolic-tangent transfer function is used

to bias the output neuron towards unity, so that.

n n

^ (3 ,i) = (1 - e x p [- Z V (2 ,m),(3 ,i) • ^ (2 , i)]) / (1 + G X p [- Z V (2 ,m).(3 ,i) • ^ (2 .1)])
m =l m=l

(4 4)

The eiTors in the output vector are used to adjust the connector weights between

the output and the hidden layers and tlien between the input layer and the hidden layer,

i.e., this eiTor is back propagated to adjust the weights between the input and hidden

layers.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Firstly, the output error is calculated. This error is the difference o f the desired

output and the calculated output and is given as:

E output, i = desired output i - l (3j) (4.5)

The reflected vector is the product o f the error vector, E output,i and the calculated

output vector X oj). This product is scaled by the complement o f the output vector X pj)

for numerical stability. The reflected vector can be calculated as:

Ri ~ E output,! • 0̂ (3 J) . (1 - 1 (3 ̂i))(4.6)

The reflected vector is used to calculate the adjustments to the connectors

between the neuron in the hidden layer and the î '' neuron in the output layer.

The adjustment o f weights between the output and hidden layer can be calculated as:

dV(2,i),(3j) = A . Rj . X (2,i) (4.7)

W here.

• dv(2 .i).(3 j) is the change o f weight between the j '̂’ element o f the hidden layer 2

and the i”’ element o f on the output layer 3.

• X (2 ..i) is the i'*’ neuron value on the hidden layer

• Constant A is the learning rate.

The error o f the hidden layer is found by taking the product between the reflected

vector and vector consisting o f the connector weights between the hidden neuron X ,2 , j)

and the output. Again, this product is scaled by the product o f the neuron and its

complement for numerical stability.

n
E hidden j ^ (2,i) • (1 “ A. (2,i)) • E R^ . V(2,i),(3,m) (4-8)

m=l

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, the adjustment o f weights between the input layer and the hidden layer is

calculated as:

d W (ij) , (2j) = B . E (hidden,j) • ^ (I,i) (4 .9)

Where,

• dw(i,i),(2.j) is the change o f the weight between the i'‘' element o f the input layer

1 and the j element in the hidden layer 2.

• />. (1 ,i) is the i*'’ neuron value at the input layer.

• Constant B is the learning rate.

Adjusting the weight sets between the layers and calculating the outputs is an

iterative process and is repeated until the errors fall below a predeterm ined tolerance

value. The allowable tolerance level and learning rates A and B are determined through

experiment. Large error tolerances will result in a poorly performing neural network,

while a very small allowable error will result in an excessively long training time.

There are two most commonly used techniques for setting up the tolerance level

and learning rate for network training.

i. Starting with relatively large eiTor value and reduce it to a desired level, as

training is achieved at each succeeding level.

ii. I f the network fails to train the network at certain error tolerance value, then

incrementally lower the learning rate.

The following is the flow o f the feed forward (back-propagation) neural network

procedure:

1, Initialize the weights.

4 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Present the input data vectors.

3. Operate the neural network.

4. Compute the error between desirable and calculated output.

If the eiTor is smaller than the preset tolerance, stop the algorithm (Current

weights are the final weights).

5. Propagate the eiTors back to all the units towards the input layer.

6. Compute the adjusting value according to the eno r and adjust all the

weights.

7. If number o f iterations exceeds the predetennined number, stop

(unsuccessful, adjust learning rates and try the procedure again).

Once the training is concluded and the weights are adjusted, the network is

available to use for features identification.

A flow chart for the feature recognition from geometric reverse engineering data

is shown in figure 24.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

Initialize the weight

' " " V

Present the input vectors

Assigning the value for each shape

Calculate the weight values between
input and hidden layer

Calculate the hidden layer neuron
value

Calculate the output neuron values

Set the condition for the error

Calculate the error

Y es

H End

Adjust the weights between output
and hidden laver

 %_________________
Calculate hidden layer error

Adjust the weight between hidden
and input layer

Figure 24: Flow chart for neural network-based feature recognition.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 - Testing of the Neural Network Algorithm

In this chapter, the training and the testing o f the algorithrn are discussed. The

algorithm was first trained with manually created synthetic data and then tested with

noisy data. The algorithm was subsequently tested with real reverse engineered data to

fully test the robustness o f the neural network.

5.1 Training of the Neural Netivork

The neural network recognition algorithm must first be trained to recognize

features from the seven different shapes. Manually created synthetic data is presented to

the neural network for training. The desired output for the seven shapes formed the seven

dimensional vectors are as follows:

Circle: 1 0 0 0 0 0 0

Diamond : 0 1 0 0 0 0 0

Ellipse: 0 0 1 0 0 0 0

Rectangle: 0 0 0 1 0 0 0

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Square: 0 0 0 0 1 0 0

Triangle: 0 0 0 0 0 1 0

Wheel: 0 0 0 0 0 0 1

Figure 25 represents the sample input vectors and corresponding desired outputs.

6.0000 6.0000 0.0936 0

7.0000 7.0000 0.0887 4

9.0000 14.0000 0.0516 0

9.0000 12.0000 0.0494 4

7.0000 7.0000 0.0704 4

5.0000 6.0000 0.1093 3

28.0000 28.0000 0.0195 0

Figure 25. Sample input vectors presented to neural network.

In Figure 25, the first line shows the input vectors while the second line represents

the desired output vectors. The next two lines show the sets of input and output vectors.

The sample training vectors file were created by using random number generator.

The first set o f sample input vectors were the perfect dimensions for each shape. A

random number generator is then used to create the rest o f the input sample vectors. This

input sample file was presented to tire neural network for the training.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the solution to the input vectors during the training phase is known in

advance, the neuron values are coiTected by triggering the back - propagation training

algoritluu.

The transfer function performs the task to process the neuron values fi'om the

input layer to the hidden layer or from the hidden layer to the output layer to generate the

desired output. For this work, the h>'perbolic-tangent transfer function is used between

the hidden and output layers to train the neural network algorithm.

Adjusting the error tolerance to obtain the desirable results played an important

role in training the neural network. The eiTor tolerance must be set before the neural

network algorithm stops correcting the neuron connectors. One technique to train the

neural network algorithm is to start with a large error value and then successively lower

the value as the network starts learning. Through testing, an error value o f 0.05 and

learning rate values o f 0.4 for A and 0.2 for B showed good agreement and gave reliable

results.

Also, it is important to decide the number o f training vectors presented to the

neural network. It played an important role in the training o f the neural network used

in deciding the type o f feature that was being presented. For this purpose, synthetic data

are created to train the neural network algorithm. The neural network algorithm was also

tested after adding 10% noise in the synthetic data. The results are mixed, as the neural

network algorithm is able to recognize most of the desired features depending upon the

weight values to initiate the training. It was found that a minimum of 90 vectors is

required to train the neural network to recognize seven different types o f features.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

During training, it was also been found that the network was sensitive to the order

the training vectors presented. For example, i f the first vector pairs presented were to

represent a circle, the network biased towards the circle feature. Table 1 shows the output

for the learning rate values o f 0.4 for A and 0.2 for B. The initial weights between the

input and hidden layers and hidden to output layers are w = v = 0.005 for k = 400

iterations.

Desired Classification Network classification

C ir D ia Elps Rec S q rT ri \V1 C ircle D iam ond E llipse R ectangle Square T riangle Wheel

Circle 1 0 0 0 0 0 0(19776 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224
Diamond 0 1 0 0 0 0 0 LOOOO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ellipse 0 0 1 0 0 0 0 EOOOO 0.0000 0.0000 0.0000 0.0000 0.0000 (10000
Rectangle 0 0 0 1 0 0 0 TOOOO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Square 0 0 0 0 1 0 0 TOOOO 0.0000 0.0000 (10000 (10000 (10000 (10000
Triangle 0 0 0 0 0 1 0 TOOOO (10000 0.0000 (10000 0.0000 (10000 (10000
Wheel 0 0 G 0 0 0 I 1.0000 0.0000 (10000 (10000 (10000 (10000 (10000

Table 1 : Set of classification values with sigmoid transfer function.

Table 2 represents the outputs with the hyperbolic-tangent transfer function for

the same parameters (A=0.4, B=0.2, w = v = 0.005 and k =400).

Desired classification Network classification

C ir D ia Elps Rec S q rT ri W1 C irc le D iam ond Ellipse R ectangle Square T riang le W heel

Circle 1 0 0 0 0 0 0
Diamond 0 1 0 0 0 0 0
Ellipse 0 0 1 0 0 0 0
Rectangle 0 0 0 1 0 0 0
Square 0 0 0 0 1 0 0
Triangle 0 0 0 0 0 1 0
W heel 0 0 0 0 0 0 1

0.0615 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033
0.0036 0.9687 0.0030 0.0030 0.0030 0.0030 0.0030
0.0025 0.0107 0.9722 0.0022 0.0022 0.0022 0.0022
0.0018 (k0040 (10067 0.9676 (10017 0.0017 (h0017
0.0000 0.0079 0.0000 0.0078 0.9660 0.0000 0.0000
0.0000 O.OOOl 0.0000 O.OOOl 0.0134 0.0000 0.0000
NaN NaN NaN NaN NaN NaN NaN

Table 2; Set of classification values with hyperbolic-tangent transfer function.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where N aN in Table 2, is the IEEE arithmetic representation in MATLAB for

Not-a-Number. A NaN is obtained as a result o f mathematically undefined operations

like 0.0/0.0 and Inf-inf.

During the training, it has also been found that the network recognized the circle

feature by setting the initial weights w - v - 0.1. It has also been found that the network

is not able to distinguish the diamond feature from rectangle and square features if the

learning rate \a lues are set as A =B-0.2. By setting A = 0.4 and B=0.2, the network

clearly recognized the diamond, square and rectangle features. The neural network

algorithm was tested on a Dell PHI computer with 256 RAM, and the total processing

time to recognize the features is approximately four seconds.

The network trained for the geometric shapes recognized most o f the shapes as

shown in table 2, but failed to recognize the wheel. One of the possible reasons is that the

wheel has multiple shapes (circle, hexagon, etc.) and the network may not be able to

recognize all the shapes together.

5.2 Testing o f the Neural Nctrvork

After the training was concluded, the neural network should respond to the items

not in the training set. One o f the approaches to do this is to select the noise option. The

usefulness of the neural network is measured from its response to noisy data, but at the

same time the intention for the neural network is not to tolerate unlimited noise.

Therefore, to fully test the ability o f the network, the data coirupted with 10% noise was

presented to the network. For this purpose, a separate sample input file was created by

introducing 10% noise. This sample input file corrupted with noise was presented to the

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neural network. The outputs are significant as the network was able recognize most o f

the geometric shapes.

5.3 Testing o f the Algol ithm with Real Reverse Engineering Data

To test the robustness o f the segmentation algorithm developed in section 4.6 and

the neural network algorithm to recognize features, real reverse engineering data derived

from three test samples o f each object feature at different orientations and dimensions

were used. The results o f segmentation algorithm are shown in Figures 26, 27, 28, 29, 30

and 31.

? .0 l

'

/ i

10 15 30 25 a % 40

Figure 26. Test sample “circle” and its segmented boundary

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 '-tS'J'V'ï,'

/ T ♦ \ <**

Js)xl

, « i-rW + • + W 44* ._

10 1(i 20 :C 5(1 3^ ^0 $0

Figure 27. Test sample “ellipse” and its segmented boundary

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 a «5 >t K ^ /

Figure 28. Test sample “triangle” and its segmented boundary

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IS

î'ü lri«rt I«fc f nJ*-'

•ùt^aa \ h ^ / ,èér-.

Figure 29. Test sample “rectangle” and its segmented boundary

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ i <
«f» \ e' '

ÇJt W* ÏWî IwM ic e t ^n&Mü y *

:.3 iS Bô ̂ A / / T
'. . Jab

-I e £• 1i) 12 1.1 16 1S 2C

Figure 30. Test sample “diamond” and its segmented boundary

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

r

Jsijd

Figure 31, Test sample “square” and its segmented boundary

The results fi'Om both the segmentation and the neural network algorithms are

promising. The rest o f the test samples and segmentation algorithm results are shown in

Appendix A.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The neural network was used to recognize the features o f the object described in

Section 1.4. The outputs are satisfactory as the network is able to recognized m ost o f the

geometric object features. Figure 32 represents the input vectors derived from the real

reverse engineering data from the objects described in Section 1.4 and presented to the

network for feature recognition.

a=5.8159; b=6.1433; alpha=5.3634*pi/180; nc=0;

Circle = [1 0 0 0 0 0 0] ;

a=6.7775; b=7.8032; alpha=5.0817*pi/I80; nc = 4;

Diamond = [0 1 0 0 0 0 0];

a=9.1873; b=14.2755; alpha=2.9577*pi/180; nc = 0:

Ellipse = [0 0 1 0 0 0 0];

a=9.2376; b= l 1.5956; alpha=2,8298*pi/l 80; nc = 4;

Rectangle = [0 0 0 1 0 0 0];

a=7.6679; b=8.2436; alpha=4.0350*pi/l 80; nc = 4;

Square = [0 0 0 01 0 0];

a=4.5739; b=6.0755; alpha=6.2626*pi/180; nc = 3;

Triangle = [0 0 0 0 0 1 0];

a=28.3722: b=28.7355; alpha=l.l 181*pi/180; nc = 0;

Wheel = [0 0 0 0 0 0 I];

Figure 32. Input vectors derived from real reverse engineering data.

The segmentation algoritlmrs developed for this work are able to correctly

identify the boundaries o f the physical objects from the huge, noisy, incomplete and

unstructured scanned data and then calculate the important parameters o f each object that

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fonn the input vectors for the neural network. The feed-forward neural network used for

this work to recognize features from reverse engineered data are efficient in terais of:

1. Processing Time; The neural network algoritlim took approximately

four seconds for processing to correctly recognize the feature.

2. Efficiency; The neural network algoritlim when used with the

hyperbolic-tangent transfer function is more efficient in recognizing the

features o f the geometric object as compared to the sigmoid transfer

function which was biased towards one shape.

3. Tolerance Level; The neural network algorithm works within the

error tolerance level o f 0.05 and learning rates o f 0.4 for A and 0.2 for B.

The results o f the teclmique (Feed-Forward Neural Network) used in this work for

features recognition and the algorithms developed for segmentation to obtain important

param eters are promising to recognize the feature, both in terms o f efficiency and

processing time.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 - Conclusion and Future Work

In this work, a feed-forward neural network based feature extraction system for

geometric reverse engineering data is presented. Geometry and topology data associated

with the object boundary are derived from methods described earlier in Section 4.5, and

an appropriate input vector for the neural network algorithm was derived.

The main emphasis is to construct a CAD model fi'om geom etric reverse

engineering data by applying a feature recognition teclmique. Neural network feature

recognition from reverse engineering is promising. Its capability in handling the noisy

and often incomplete data set confinns its desirable feature over conventional rule-based

algorithms. Two segmentation algorithms, one for a single shape and the second for a set

o f multiple shapes (wheel), were developed to first segment the boundaiy o f the object

from huge and unstimctured cloud data and then calculate the important param eters that

form the input vector. A feed-forward neural network is used to recognize the features.

Both, the segmentation and neural network algorithms are programmed in MATLAB.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The testing o f the algorithm shows promising results, as the neural network was

able to recognize the features with an error tolerance o f 0.05.

Whether this technique can provide sufficient recognition capability to seiwe a

universal set o f features in any category o f physical parts and how the artificial neural

network should be structured for this purpose require further research. Although

considerable work to extract features from scan data for geometric shapes has been

realized. Expansion o f the number o f defined features, multiple shape objects as well

adding to the number o f surfaces o f which the feature can be composed, for example,

filleted comers and other types o f curved surfaces and finer details will be a future

extension.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Test samples and their segmented boundaries

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m m
' -»T {.' V'»»-__,

f*» - %JT4, % ,..;
: D ô= « *', >l -A A;/r V» J5 ^

awmi

10

f ^ S l u r l l ^ ** g Ja p { » ru j.< _0-Mic .) I C(\C:\PoC'.fnmW4n. llfflfigufpNo. i

Figure 33. Test sample “square” and its segmented boundary

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'^ F l g i a e t o . ! ..

Pie' E(S Vww InW' TWi ̂Wnikw.riHeÿz /:
jo Q

+ *.+++t++++K

15 20 a

j;s ta rt| l é S IbJ " ^/«ieMk_B-t.*:..i | : | #C;mo&mnKai.,.||8|]fK»MNo, l ;ip7;5ÏAM ’

Figure 34. Test sample “circle” and its segmented boundary

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4; » . , , I m4.5-u

O S H g

W -

-f '^""1 e * 5 Z 3 Mr... | * W T u n __ | ?>c ''Oar-irenu a-. . 1|Bf^u,!'N o. 1

Figure 35. Test sample “ellipse” and its segmented boundary

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mm»

f i t Cd> V*ew lm«l Tool: • Windcw Hcb

o a e a ^ t A / / ^ 0 c

10 15 20 25 33 40 4C M 55

i S t a r t | ^ i J ” • 1 ^^MATLAB__________ | ^ C lD c c u m e r i tS ^ . . . ||B n g u rc No. 1

Figure 36. Test sample “ellipse” and its segmented boundary

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 .

F<« Ê il Vcvj Initfil Toofc W 'jA V Heb '

; D ô : B s »(A y / ü' O

r*

S i i i j ” - Me. j C^WTL&B I Ji-C tCo-m ^n'. JWI- Nq. 1 » QiilAM

Figure 37. Test sample “rectangle” and its segmented boundary

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:■ '.-?V :i3

Fik Ell* V*s«v l»«eil T w it Wmjk'w Hr%* '

: 0 Ĝ B @ ̂ A / / i

10 11 12 13

^ S ta r 11 j û S IE) ^ >^-^OCKtxlKj «f-lc... I «^XMATLAO j ^ C ^ D o a r o n t s an... | j^ rkx « g No. l ,** B 12iM

Figure 38. Test sample “square” and its segmented boundary

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

' ■ . '

Fwg £ti* v ^ v , TocJj W fx tw He\?

o i ^ wa t A / /

1 0 :

J Start) ^APtCT^i<,B-m.- 1 c^HATUB_______ | ^ CACW/TOlb 1̂. ■ llHFtgure No. 1 ,« S.lSfM

Figure 39. Test sample “square” and its segmented boundary

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£<W Vnt* lm «i Tcwfa Wndow He*>

□ ©: H S ‘ *t A / / ^ & n

i i S U r t | .-© y ^ ftpcenda.g » ><V:.,. | K&TIAP_________ } % C \DocimenU an... jlB O q u rp No. 1 |« 8:16 Al/

Figure 40. Test sample “triangle” and its segmented b oundar

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fie Ed* View)p>w(T w t. Wi>dow ,ht*) .

:*D c ^ ’ c

.T S fd r tf ^ s .] [i J *• fj}A ?pgndr» .6 -M c... I tjtFMATLAg ' | ^C ;\C «X u7iefns a i .. .)) B R g u r e NO. 1 " 8 16 4 «

Figure 41. Test sumple “triangle” and its segmented boundary

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-':' -.<■ ' > : !■■:
ffîiîS

Ffe Edi» V«*< |nM4 % »i: WiVkw -

«b cs;b ;^!LV^‘>:"̂ i #%-

t i StM ll it> E i S “ @ A K «K k_e - l i t . . . I ■^tw U A E I Sfii:;iÔ oaroenlsjn.,. ilB n g u r e No. 1 " TÆSÂh

Figure 42. Test sample “diamond” and its segmented boundary

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Glossary o f Terms

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TeiTO Definition

AÎ4N

A Priori

B-rep

Back-Propagation

CAD

CAM

CCD

Cloud Data

CMM

Competitive learning

Connectors

Feature

Free-fonn surface

Kohonen SOM

Neuron

Artificial Neural Network - a computer algorithm
based on the architecture o f a biological brain.

Information that was known beforehand.

Boundary Representation - A method used by CAD
Programs to model a solid with its boundaries.

Method to update connector weights in multi-layer
neural networks based on the error.

Computer Aided Design - A computer program that
allows for design on a computer.

Computer Aided M anufactudng - a computer
program to aid in the planning o f a manufacturing
process.

Charged Coupled Device — a light sensitive
microchip used to capture images in video camera.

Term used to describe the cloud like structure o f
data collected by scanner or sensor.

Coordinate Measuring M achine - a precise machine
used in industry to measure surface points

Type o f neural network where in training, there can
only be one correct neuron.

W eighted links between neurons.

A combination o f geometric entities that together
have a meaningful purpose.

A surface not made o f any geometric primitives.

Self Organizing Map - A neural network based on
competitive learning among neighboring neurons

A node in a neural network.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Topology

Touch probe

Voxel bin

The spatial relationship o f different surfaces to each
other.

A sensor used for making measurements.

A cubic volume derived from a large volume.

7 7

Reproduced with permission of the copyright owner. Futthor reproduction prohibited without permission.

Appendix C

MATLAB Program codes

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% ---
% MATLAB code for segmentation o f data for single shape object
% --

clear all
close all

load circle.txt; %Loading Circle text file
X = circle(-.,l);
y = circle(;,2);
z = circle(:,3);
m z = mean(z); % Average (mean) o f z ordinate
[n f]=size(z);
pitch = 0.5 % Scanning pitch

c = 0 ;
for m = 1 :n
i f z(m) < mz

c = c+ 1 ;
zx(c,l)=x(m);
zy(c,I)=y(m);

end
end

% ------------------- Centre o f the geometric object----------------------------

zxm = mean(zx); % Mean o f x ordinate
zym = mean(zy); % M ean o f y ordinate

% -------------------------Boundary points for constant y-----------------------

y_min = min(zy); % Mininum values o f y
y_max = max(zy); % Maximum values o f y
a=zy.'; % y values in rows.

% nl -number o f different points on y after eleminate the noise.

y 1 =y_min :pitch; y_max;
[fl,n l]= size(y l);

for j = 1 :nl
y_num = find(a==yl(j));
x_val = zx(y_num);

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x_min = min(x_val);
x_max = max(x_val);

p(j) = x_min;
q(j) = x_max;

end

% -------------------------- Boundary points for constant x-

x_m inl = niin(zx); % Mininum values of y
x_m axl = max(zx); % M aximum values o f y
al=zx.'; %x values in rows.

X1 -x _ m in l :pitch:x_maxl ;
[f2 ,n2]=size(xl); % size o f the data

for u = 1 :n2

x_num = tind(al= =xl(u));
y v a l = zy(x_num);
y_m inl == min(y_val);
y m a x l = m ax(yval);

pp(u) = y_m inl ;
qq(u) = y_m axl;

end
% ------------------- Elimination o f duplicate points-------

s=0 ;
for k = l:n 2

for g = l:n l
if (((x 1 (k)==p(g)|x 1 (k)==q(g))&(yl (g)==pp(k)|y 1 (g)= q q (k)))
l((xl (k)==p(g)|xl (k)==q(g))&(yl (g)~=pp(k)|yl (g)~=qq(k)))
l((x 1 (k)~=p(g)|xl (k)~=q(g))&(yl (g)==pp(k)|yl (g)==qq(k))))

s=s+l ;
X (s)=xl(k);
Y(s)=yi(g);

end
end
end

%------------- Re-arrange the boundary points in clockwise o rder-

X C=X([l:6 9 10 13 14 16 17 19:2:51 54 53 57 63 62 61 67:-l:64 60 59 58 56 55 52:-2:18
15 11 12 7 8]);
YC=Y([l:6 9 10 13 14 16 17 19:2:51 54 53 57 63 62 61 67:-l:64 60 59 58 56 55 52: 2:18
15 11 12 7 8]);

%n3 -no.of boundary points after eleminate the same points.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[f3,n3]=size(XC);

%------------------- Distance between boundary points and centi'e-

for w =l :n3
dl(w') = sqrt((YC(w)-zym)^2 + (XC(\v)-zxm)^2); %distance from the center

end

% Calculating the angles between the lines-------------------

%d2 distance between 2 adjacent point.
% angl, angle between 2 lines by using cosine rule(from center).
%ang2 , angle between 2 lines by using cosine rule (from 1 st coner)
for w l = l:(n 3 'l)

d2(w l) = sqrt((YC(wl)-YC(wl+l))^2 + (X C (w l)-X C (w l+ l)r2);
an g l(w l) = acos(((d l(w l)) '^ 2 +(dl(w l+ l))^2-

(d2(w])r2)/(2*d l (w l)*d] (w l+1)))* 180/pi;
ang2 (w l) = acos(((dl(w d)) ^ 2 +(d2(wl))^2-

(d 1 (w] +1))^2)/(2*d 1 (w l)*d2(wl)))* 180/pi;
end

%------------------------Calculating the corner formed------------------------------

%adding the 2 adjacent angles on the a boundary point to find the corner.

for w2=l:(n3-2)
ang3(w2) = (ang2(w2+l)+(180-(ang2(w2)+angl(w2))));

end
%ang3.'

num_of_coners=fmd(ang3==l 80);
[fc,nc]=size(num_of_coners);

dispC Y X')
[XC.',YC.']
dispCDistance from center')
d l . ’
dispCang(ccnter)')
angl.'

plot(XC,YC,'x')
hold on
plot(zxm,zym,'x')

disp('Mean distance horn center')
mean(d 1)

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dispCMaximuin distance from center')
m ax(dl)
dispCMean angle between two lines')
m ean(angl)
disp('Number o f coners')
nc-4

%iprintf('\n')
% fprintf(’ %12.1f\t % 12.If\n %12.1f\t %12.1frn',F0,FLF2,F3)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%--
% MATLAB codes for data segmentation for multiple shape object (wheel)
% ---

clear all
close all

load wheel.txt; %Loading wheel text file
X = w heel(:,l);
y = wheel(;,2);
z = wheel(:,3);
mz - mean(z); % Average (mean) o f z ordinate
[n f]=size(z);
pitch = 0.5 % Scanning pitch

%mean o f z < z values
c = 0 ;
for m = I ;n
if z(m) > mz

c = c+ 1 ;
zx(c,l)=x(m);
zy(cj)=y(m):
zz(c,l)=z(m);

end
end

70------------------------Centre o f the wheel0 /

zxm = mean(zx); % Mean o f x ordinate
z>TO = mean(zy); % Mean o f y ordinate

% Find the min & max y values o f the d a ta -------------------
y m i n = min(zy);
y m a x = max(zy);
ay=zy.'; % y values in rows.

yl=y_min:pitch;y_max;
[fy l,ny l]= size(y l);

% — Boundary points on the outer circle & innner circles for const y —
sy=0;
for Jy = 1 :nyl

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y_niam = find(ay==yl (jy));
x_val = zx(y_num);
x_min(jy) = min(x_val);
x_max(jy) = max(x_val);

[ny2 fy2]=size(x_val);
for iy= l:(ny 2 - l) ;
i f ((x_val(iy+1)-x_val (iy))> I)

sy=sy+l ; % sy no .of pts inside the big circle
X bl(sy) = x v a l(iy);
Xb2(sy) = x_val(iy+l);
Y bl(sy) = yl(jy);

end
end

px(jy) = x__min(jy); %outer circle pts
qx(jy) = xm axfjy);

end

% — Separate the RHS points belongs to 2 circles and groubed as 1 st & 4the Quadrant -

ey l= 0 ;
ey2 = 0 ;
ey3=0;
ey4=0;
ey5=0;
fo rty = l:(sy -l)

if ((Yb 1 (ty)>=33)&(Xbl (ty)>zxm))
e y l= e y l+ l;
Y C bl(eyl)=Y bl(ty);
X C bl(eyl)=X bl(ty);
XCbl2(ey1)=Xb2(ty);

elseif ((Yb 1 (ty)>zym)&(Xb 1 (ty)<27.5))
ey2 =ey2 + l ;
YCb2(ey2)=Ybl(ty);
XCb2(cy2)=Xbl(ty);
XCb22(cy2)=Xb2(ty);

elseif ((Ybl(ty)<25.5)& (Xbl (ty)<zxm))
ey3=ey3+l ;
YCb3(ey3)=Ybl(ty);
XCb3(ey3)=Xbl(ty);
XCb32(ey3)=Xb2(ty);

elseif ((Yb 1 (ty)<zym)&(Xb 1 (ty)>3 5))
ey4=ey4+l ;
YCb4(ey4)=Yb 1 (ty);
XCb4(ey4)=Xbl (ty);
XCb42(ey4)=Xb2(ty);

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
cy5=ey5+l ;

YMb(ey5)=Yb 1 (ty);
X M bl(ey5)=X bl(ty);
XMb2(ey5)=Xb2(ty);

end
end

% Min. & max. x values o f the data
x_min = min(zx);
x_max = max(zx);

%x values in rows.

X1 =x_min ; p i tch ; x j n ax ;
[fx l,nx l]= size(x l);

% Boundary points on the outer circle & innner circles
sx= 0 ;
fo rjx = 1 :nxl

x_num = find(ax==x 1 (jx));
y_val = zy (x n u m):
y min(jx) = min(y_val);
y_max(jx) = max(y_val);

[nx2 fx2]=size(y_val);
for ix=l ;(nx2 -l):
if ((y_val(ix+l)-y_val(ix))>l)

S X --S X + 1 ;

Y l(sx) = y_val(ix);
Y2(sx) = y_val(ix+l);
XI (sx) = xl(jx):

end
end

py(jx) = y_min(jx);
qy(jx) = y_max(jx);

end

e x l= 0 ;
ex2 = 0 ;
ex3=0;
ex 4=0;
ex5=0;
for tx=l ;(sx-l)

if ((Y 1 (lx)>=33)& (Xl (tx)>zxm))
e x l= e x l+ l;
X C l(exl)=X l(tx);

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y C l(ex l)= Y l(tx);
Y C12(exl)=Y2(tx);

elseif ((Y 1 (tx)>zym)& (X l (tx)<27.5))
ex2 =ex 2 -i 1 ;
XC2(ex2)=X l(tx);
Y C2(ex2)=Yl(tx);
YC22(ex2)=Y2(tx);

elseif ((Y l(tx)< 25)& (X l (tx)<zxra))
ex3=ex3+l;
XC3(ex3)=Xl(tx);
YC3(ex3)=Y l(tx);
YC32(ex3)=Y2(txl:

e lseif ((Y l(tx)<zyin)& (X l(tx)>35,5))
ex4=ex4+l ;
X C 4(ex4)=X l(tx);
Y C 4(ex4)=Y l(tx);
YC42(ex4)=Y2(tx);

else
ex5=ex5+l;

XI\/l(ex5)=Xl(tx);
Y M l(cx5)=Y l(tx);
YM2(ex5)=Y2(tx):

end
end

%-- Eleminating the duplicate points and Re-aiTanging the points in clockwise direction -

m3=0;
m4=0;
ni5=0;
m6=0;
m7=0;
for m l= l x x l

for n i2 = l :ey]
if

(((XC 1 (m I)==XCb l(m 2) |XC 1 (m 1)= X C b 12(m2))&(YCb 1 (m 2)= Y C 1 (m 1)| YCb 1 (m2)
= Y C 12 (m I))) |((XC 1 (m l)= X C b 1 (m2)|XC 1 (m 1)= X C b 12(m2))&(YCb 1 (m 2)-=Y C I (
m l)|Y C bl(m 2)-=Y C 12(m l)))|((X C l(m l)-=X C bl(m 2)|X C l(m l)-=X C bl2(m 2))& (Y C b
1 (m 2)= Y C 1 (m 1)| YCb I (m 2)= Y C 12(m 1))))
m 3=ni3+l;
X A l(m 3)=X C l(m l);
Y Al(m 3)=Y Cbl(m 2);
end
end
end
for in 8 = l :exl

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(Y C l(m 8)= m in (Y C l))
m 4“m 4 + l ;

XA2(m 4)=XCl(m S):
YA2(m 4)=YCl(m 8);
end
end
for m 9 = l;ex l

if(Y C 12(m 9)>=49.5)
m 5= m 5+ l;

XA3(m 5)=XCl(m 9);
YA3(m5)=YC12(m9);
end
end
for in 1 0 - 1 ;eyl

i f (XCb 1 im 10)=m in(X C b I))
m 6 =m 6 + l ;

X A4(m 6)=XCb 1 (m 10);
YA4(mCl)=YCb](mlO);
end
end
for m l 1 = 1 : 1

if (XC 'b ;. l(m 11)==max(XCb 12))
m 7=ni7+1,

X A 5(m 7)=X C bl2(m ll);
Y A 5(m 7)=Y C b](m ll);
end
end
X A 6=[XA4 X A l XA5 XA2 XA3];
Y A 6=[Y A4 Y A l YA5 YA2 YA3];
XA=XA6([1:10 13:15 18 20 21 23:2:35 84:95 39:2:51 54 57 56 62 61 69:-l:66 73:-l:70
65 64 63 60 59 58 55 53 52 50:-2:38 37 83:-l :74 36:-2:22 19 16 17 11 12]):
Y A=YA6([1:10 13:15 18 20 21 23:2:35 84:95 39:2:51 54 57 56 62 61 69:-l:66 73:-l:70
65 64 63 60 59 58 55 53 52 50:-2:38 37 83:-l:74 36:-2:22 19 16 17 11 12]);
[XA.'YA.'];
% -----------------------------
n3=0;
n4=0;
n5=0;
n 6 = 0 ;
n7=0;
for n l= l:e x 2

for n2 = l :ey2

if
(((X C 2(n l)= X C b2(n2)|X C 2(n l)=X C b22(n2))& (Y C b2(n2)= Y C 2(n l)|Y C b2(n2)= Y
C 22(nl)))|((X C 2(nl)=X C b2(n2)|X C 2(nl)=X C b22(n2))& (Y C b2(n2)-=Y C 2(nl)|Y C b2

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(n2M =YC 22(nl)))|((X C2(nl)-^X Cb2(n2)|XC2(nl)-=X Cb22(n2))& (YC b2(n2)=YC2(n
l)|Y C b2(n2)==YC22(nl))))
n3= n3+];
X B l(n3)=X C 2(nl);
YBi(n3)=YCb2(n2);
end
end
end
for n 8 = l :ex2

if(Y C 2(n8)= m m (Y C 2))
n4=n4+ l;

XB2(n4)=XC2(n8):
YB2(n4)=YC2(n8);
end
end
for n9=l ;ex2

i f C\^C22(n9)=max(YC22))
n 5 = n 5 + l;

XB3(n5)=XC2(n9);
YB3(n5)=YC22(n9);
end
end
for n lO = l;e } 2

i f (XCb2(nl 0)==mm(XCb2))
n 6 =n6 + l ;

XB4(n6)=XCb2(nlO);
YB4(n6)=YCb2(nlO);
end
end
for n l l = l;ey 2

i f (XCb22(nl 1)=m ax(X C b22))
n7=ii7+l ;

X B5(n7)=X Cb22(nll);
Y B5(n7)=YCb2(nll);
end
end
XB6=[XB4 XB1 XB5 XB2 XB3];
YB6=[YB4 Y B l YB5 YB2 YB3];
XB=XB6([1:11 14 15 18 19:2:39 40 89:94 41:2:61 65 64 70 69 68 80:-l:71 67 66 63 62
60:-2:42 88:-l:81 38:-2: 20 16 17 12 13]);
YB=YB6([1:11 14 15 18 19:2:39 40 89:94 41:2:61 65 64 70 69 68 80:-l:71 67 66 63 62
60:-2:42 88:-l:81 38:-2: 20 16 17 12 13]);
[XB.’,YB.'];
%---
p3=0;
p4=0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p5=0;
p6=0;
p7=0;
for p l= l;ex3

for p2=l:ey3
if

(((X C 3(pl)==X C b3(p2)|X C 3(pl)=X C b32(p2))& (Y C b3(p2)=Y C 3(pl)|Y C b3(p2)=Y
C 32(pl)))|((X C 3(pl)=X C b3(p2)|X C 3(pl)=X C b32(p2))& (Y C b3(p2)--Y C 3(pl)|Y C b3
(p2)-=YC32(pl)))|((XC 3(p])-=X Cb3(p2)|X C3(pl)-=XCb32(p2))& (YC b3(p2)=Y C3(p
l)|Y C b3(p2)=Y C 32(p l))))
p3=p3+l ;
X Dl(p3)=X C3(pl);
YDl(p3)=YCb3(p2);
end
end
end
fo rp8= l:ex3

if(Y C 3(p8)=m in(Y C 3))
p4=p4+] :

XD2(p4)=XC3(p8);
YD2(p4)-YC3(p8);
end
end
for p9=l ;ex3

i f (YC32(p9)==max(YC32))
p5=p5+l;

XD3(p5)=XC3(p9);
YD3(p5)=YC32(p9);
end
end
for plO =l:ey3

if (XCb3(p 10)=m in(X C b3))
p 6 =p6 + l;

XD4(p6)-XCb3(plO);
YD4(p6)=YCb3(plO):
end
end
for p i 1 = 1 :ey3

i f (XCb32(pl l)=m ax(X C b32))
p7=p7+l ;

XD5(p7)=XCb32(p11);
YD5(p7)=YCb3(pll);
end
end
XD6=[XD4 X D l XD5 XD2 XD3];
YD6=[YD4 Y D l YD5 YD2 YD3];

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XD=XD6([1 2 7:11 15 16 18 19 22:2:36 38:43 94 95 44:46 48:2:62 65 64 68 73 72 71
83:-l:74 70 69 67 66 63:-2:47 93:-l:84 37:-2:23 20 21 17 12:14 3:6]);
YD=YD6([1 2 7:11 15 16 18 19 22:2:36 38:43 94 95 44:46 48:2:62 65 64 68 73 72 71
83:-l:74 70 69 67 66 63:-2:47 93:-l:84 37:-2:23 20 21 17 12:14 3:6]);
[XD.',YD.'l;
%--------------------------------------

q,;.=0 ;
q4=0;
q5=0:
q6 = 0 ;
q7=0;
fo rq l= l:e x 4

for q2=l :ey4
if

(((XC4(ql)=X C b4(q2)|X C 4(q 1)=X C b42(q2))& (Y C b4(q2)=Y C 4(q 1)|Y C b4(q2)=Y
C 42(q])))|((X C 4(ql)=X C b4(q2)|X C 4(ql)=X C b42(q2))& (Y C b4(q2)-=Y C 4(ql)|Y C b4
(q2)-=YC42(ql)))|((XC4(qI)-=XCb4(q2)!XC4(ql)-=XCb42(q2))&(YCb4(q2)==YC4(q
l)|Y C b4(q2)= Y C 42(q l))))
q3= q3+ l;
X El(q3)=XC4(ql);
YEl(q3)=YCb4(q2):
end
end
end
for qS=l :ex4

if(Y C 4(q8)=m in(Y C 4))
q4= q4+ l;

XE2(q4)=XC4(q8);
YE2(q4)=YC4(q8);
end
end
for q9=l:ex4

i f (YC42(q9)=m ax(YC42))
q5=q5+l;

XE3(q5)=XC4(q9);
YE3(q5)=YC42(q9);
end
end
for qlO =r.ey4

i f (XCb4(q 10)=m in(X C b4))
q 6 =q6 + l ;

XE4(q6)=XCb4(qlO);
YE4(q6)=YCb4(qlO);
end
end

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for q l l= l;ey4
if(X C b42(q ll)>=52)

q7=q7+l;
XE5(q7)=XCb42(qll);
YE5(q7)=YCb4(qll);
end
end
XE6=[XE4 X E l XE5 XE2 XE3]
YE6=[YE4 Y E l YE5 YE2 YE3]
XE=XE6([]:10 14:16 18 21 22:2:38 86:96 40:2:54 58 57 62 61 74:-l:67 66:-l:63 60 59
56 55:-2:39 85:-l:75 37:-2:23 19 20 17 11:13]);
YE=YE6([1:10 14:16 18 21 22:2:38 86:96 40:2:54 58 57 62 61 74:-l:67 66:-l:63 60 59
56 55:-2:39 85:-l:75 37:-2:23 19 20 17 11:13]);
[XE.\YE.'];

%---
r3=0;
r4=0;
r5=0;
r6 = 0 ;
1-7=0;
for r l= l:ex 5

fo rr2= l;ey5
if

(((XM (r])=X M bl(r2)|XM (rl)=XM b2(r2))& (Y M b(r2)==Y M l(rl)|Y M b(r2)=Y M 2(rl
)))|((X M (rl)=X M bl(r2)|XM (rl)=X M b2(r2))& (YM b(r2)-=Y M l(rl)|YM b(r2)-=YM 2(
rl)))|((XM (rl)-=XM bl(r2)|XM (rl)-=XM b2(r2))& (Y M b(r2)=Y M](rl)tYM b(r2)=YM
2(rl))))
r3=r3+l ;
XFl(r3)=XM(rI);
YFl(r3)=YMb(r2);
end
end
end
for rS=l:ex5

if(Y M l(r8)= m in (Y M l))
r4=r4-t-l ;

XF2(r4)=XM(r8);
YF2(r4)=YM 1 (1-8);
end
end
for r9=l :ex5

i f (YM2(r9)==max(YM2))
r5=r5+l ;

XF3(r5)=XM(r9);
YF3(r5)=YM2(r9);

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end
end
for rlO =r.ey5

if (XMb 1 (r 10)==min(XMb 1))
i'6 = r6 + l;

XF4(r6)=XMbl(rlO);
YF4(r6)=YM b(rlO);
end
end
for r l l = l :ey5

if (XMb2(rl 1)=m ax(X M b2))
r7=r7+ l;

XF5(r7)=XM b2(rll);
Y F5(r7)=Y M b(rll);
end
end
XF6=[XF4 XFl XF5 XF2 XF3];
YF6=[YF4 Y Fl YF5 YF2 YF3];
XF=XF6([1:4 6:9 U:2:17 18 42:45 22:2:26 29 34 33 38:-I:35 32:-l:30 28 27:-2:21 20 19
41 40 39 16 14 12 10 5]);
Y F -Y F 6([l:4 6:9 11:2:17 18 42:45 22:2:26 29 34 33 38:-l:35 32:-l:30 28 27:-2:21 20 19
41 40 39 16 14 12 10 5]);
[XF.',YF.'];

%--
s3=0;
for s l= l;jx

for s2 =l :jy
if

(((xl(sl)=^=px(s2)|x l(s l)= = qx(s2))& (yl(s2)==py(sl)lyl(s2)=^qy(sl)))|((x l(sl)== px(s2)|
x l(s l)= = q x (s 2))& (yl(s2)~= py(sl)|y l(s2)~=qy(sl)))|((xl(sl)~=px(s2)|x l(sl)~ = qx(s2))&(
y l(s 2)= p y (s l) |y l (s 2)==qy(sl))))
s3=s3+l;
X G l(s3)= x l(sl);
Y G l(s3)=yl(s2);

end
end
end
XG=XG1([1:10 18:23 28:31 35:37 41:43 46:48 51 52 55 56 59 61 62 65 67 68 71:2:79
80:2:242 245 244 247:2:251 254 257 256 260 263 262 267 266 270 274 273 279:-l :277
285:-l:283 291:-1:289 299:-l:296 314:-1:308 322:-l:315 307:-l:300 295:-l:292 288:-
1:286 282:-l:280 276 275 272 271 269 268 265 264 261 259 258 255 253 252:-2:246
243:-2:81 78:-2:72 69 70 66 63 64 60 57 58 53 54 49 50 44 45 38:40 32:34 24:27
11:17]);
YG=YG1([1:10 18:23 28:31 35:37 41:43 46:48 51 52 55 56 59 61 62 65 67 68 71:2:79
80:2:242 245 244 247:2:251 254 257 256 260 263 262 267 266 270 274 273 279:-l :277

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

285:-l:283 291:-1:289 299;-l:296 314:-1:308 322;-l:315 307:-1:300 295;-l:292 288:-
1:286 282:-l:280 276 275 272 271 269 268 265 264 261 259 258 255 253 252:-2:246
243:-2:81 78:-2:72 69 70 66 63 64 60 57 58 53 54 49 50 44 45 38:40 32:34 24:27
11:17]);
[XG.',YG.'];

%------------ Distance between center and a boundary po in t--------------
ma=(m3 +m4+m5+m6+m7) ;
nb=(n3+n4+n5+n6+n7);
pd=(p3+p4+p5+p6+p7)
qe=(q3+q4+q5+q6+q7):
fl~ (1-3 +r4 -i-r5 +r6+r7) ;

%-------------- 1 St Qiiard circle---------------- --
for w a=l ;ma

da(wa) = sqrt((YA(wa)-mean(YA))'^2 + (XA(wa)-mean(XA))^2);
end

%-------------- 2 nd Quaed c irc le ----------------
for w b=l :nb

db(wb) = sqrt((YB(wb)-mean(YB))'^2 + (XB(wb)-mean(XB))^2);
end

%---------------3rd Quaed c irc le ------------------
for wd=l :pd

dd(wd) = sqrt((YD(wd)-mean(YD))'^2 + (XD(wd)-mean(XD))^2);
end

%--------------- 4th Quaed c irc le -------------------
for w e=l :qe

de(we) = sqrt((YE(we)-mean(YE))^2 + (XE(we)-mean(XE))^2);
end

%---------------- middle c irc le ----------------------
for w f=l :rf

df(wf) = sqrt((YF(\vf)-mean(YF))^2 + (XF(wf)-mean(XF))^2);
end

%---------------- outer c irc le ----------------------
for w g=l :s3

dg(wg) = sqrt((YG(wg)-mean(YG))'^2 + (XG(wg)-mean(XG))^2);
end

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% ----------------------Calculating the angles between the lines-

%Finding the distance between 2 adjacent point.
% Finding the angle between 2 lines by using cosine rule(from center).
% Finding the angle between 2 lines by using cosine rule (from 1st coner o f the triangle).

for w al= l ;(m a-l)
d a l(w a l) = sqrt((Y A(wa 1)-Y A(wa 1+1))'^2 + (X A (w al)-X A (w al+l))^2);
angA l(w al) = acos(((da(wal))^2 +(da(w al+l))^2-

(dal(w al))'^2)/(2 *da(w al)*da(w al+l)))*! 80/pi;
angA 2(w al) = acos(((da(wal))^2 +(dal(w al))^2-

(da(w al+ 1))'^2)/(2 *da(wal)*dal (wal)))*! 80/pi;
end

for w b l= l :(nb-l)
d b i(w b l) = sqrt((Y B (w bl)-Y B (w bl+l))^2 + (X B(wbl)-X B(w bl+l))'^2);
angB l(w bl) = acos(((db(wbl))^2 +(db(w bl+l))'^ 2 -

(db 1 (wb l))^2)/(2*db(wb 1)*db(wb 1+1)))* 180/pi;
angB2(w bl) = acos(((db(wb 1))^2 +(dbl(wbl))'^2-

(db(wb l+l))^2)/(2 *db(wb 1)*db 1 (wb I)))* 180/pi;
end

for w dl=] :(pd-l)
ddl(w dl) = sqrt((YD(wdl)-YD(wdl+]))'"2 + (XD(wdl)-XD(wdH-l))^2);
ar.gD l(w dl) = acos(((dd(wd 1))^2 +(dd(wdl+l))'^2-

(dd 1 (wd 1))'^2)/(2 *dd(wdl)*dd(w dl+ 1)))* 180/pi;
angD 2(wdl) = acos(((dd(wdl))^2 +(ddl(wdl))'^2-

(dd(w dl+ l))'^2)/(2 *dd(w dl)*ddl(w d !)))*] 80/pi;
end

for wel = l ;(qe-l)
d e l(w e l) = sqrt((Y E(w el)-Y E(w el+l))^2 + (XE(we 1)-XE(we 1+ 1))^2) ;
angE l(w el) = acos(((de(wel))^2 +(de(w el+l))^2-

(del(w el))'^ 2)/(2 *de(w el)*de(w el+!)))*! 80/pi;
angE2(w el) = acos(((de(wel))'^2 +(del(w el))^2-

(de(w el+1))^2)/(2*de(wel)*del (wel)))* 180/pi;
end

for w fl= l:(rf- l)
d fl(w fl) = sqrt((YF(wfl)-YF(wfl+l))^2 + (XF(wfl)-XF(wfl+l))^2);
angF l(w fl) = acos(((df(wfl))'^2 +(df(wfl+l))'^2-

(dfl (wfl))^2)/(2*df(wfl)*df(w fl+ l)))* 180/pi ;
angF2(w fl) = acos(((df(wfl))'^2 +(dfl(w fl))^2-

(df(w fl+1))^2)/(2*df(wfl)*dfl (wfl)))* 180/pi;
end

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for w gl=^l:(s3-l)
d g l(w g l) = sqit((Y G (wgl)-Y G (w gl + l))^2 + (XG(wgl)-XG(wgl+l))-^2);
angG l(w gl) = acos(((dg(wgl))^2 +(dg(w gl+l))'^ 2 -

(dgl (w gl))'^2)/(2 *dg(wgl)*dg(w gl+ 1)))* 180/pi;
angG 2(w gl) = acos(((dg(wgl))'^2 +(dgl(wgl))'^2-

(dg(wg 1 + 1))'^2) / (2 * dg(wg l)*dgl (wg 1)))* 1 8 0 /pi ;
end
%---

dispC YA XA ')
[XA.\YA.']
disp('Distance from center (da)')
da.'
disp('angAl (center)')
angA l.'

dispC YB XB ')
[XB.',YB.']
disp('Distance from center (db)')
db.'
disp('angB 1 (center)')
angB 1.'

dispC YD XD ')
[XD.',YD.']
disp('Distance from center (dd)')
dd.'
dispCangD 1 (center)')
angD l.'

dispC YE XE ')
[XE.',YE.']
dispCDistance from center (de)')
de.'
disp('angEl (center)')
angEl.'

dispC YF XF ')
[XF.',YF.']
dispCDistance from center (df)')
df.'
disp('angF 1 (center)')
angF l.'

dispC YG XG ')
[XG.',YG.']

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dispCDistance from center (dg)')
dg.'
dispCangGl (center)')
angG l.'

%--------------------
% 1st Quard circle
for wa2 = l;m a

(da(wa2)-mean(da))
end

% plot the boundary points.
p]ot(XA,YA,'g*')
hold on
plot(XB,YB,'x')
hold on
plot(XD,YD,'m+')
hold on
plot(XE,YE,'ro')
hold on
plot(XF,YF,'*')
hold on
plot(XG,YG,'kx')
hold on
plot(mean(XA),mean(Y A),'*')
plot(mean(XB),mean(YB),'*')
plot(mean(XD),mean(YD),'*')
plot(mean(XE),niean(YE),'*')
plot(mean(XF),mean(YF),'*')
p]ot(mean(XG),mean(Y G),'kx')

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%---
% MATLAB codes for Feed-Forward Neural Network (Back-Propagated) Algoritlim
% --

% w : Input-to-hidden layer weights
% V ; Hidden-to-output layer weights
% k : # o f iterations
% R : Reflected vector
% A ; Learning rate b/w hidden and output connectors
% B : Learning rate b/w input and hidden connectors
% hidden : Hidden neuron values
% output : Output neuron values

clear all
close all

tic % Start a stopwatch timer

load input_data.txt
load desired_output.txt

% - Initialize the weights

for i= l;4
for j= l :7

w (ij)=0.005;
end

end

for i= l:7
fo rj= l:7

v(ij)=0.005;
end

end

a = circle_datal(:,l);
b = circle_datal (:,2);
alpha = circle_datal (:,3);
nc = circle_datal(:,4);

p] =desired_output(1)
p2 =desircd_output(:,2)
p3=desired_output(; ,3);

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p4=desired_output(; ,4)
p5=desired_output(:,5)
p 6 =desired_output(:,6)
p7==desired_output(:,7)

[n l f]=size(a);

%Assigning the value to the shapes

for 11=] :nl

Desired = [p l(n) p2(n) p3(n) p4(ti) p5(n) p 6 (n) p7(n)];

input(])=a(n);
input(2)=b(n);
input(3)=alpha(n);
input(4)=ne(n);

% --------------------- Network Trainig

for k= 1:400

% caleulate the hidden neuron values
for i=I :7

hidden(i)=0 ;
for j= l :4

hidden(i)=hidden(i)+(w(j,i)*input(j));

end
end

% calculate output neuron value
for i= l:7

output(i)=0 ;

for j= l :7
output(i)=output(i)+(vG, i) *hidden(j)) ;

end
output(i)=(l-exp(-(output(i))))/(l+exp(-(output(i))));

end

%calculate total error
total_error=0 ;
for i=l :7

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

total_eiTor = total_eiTor + abs(Desired(i)-output(i));
end

% -------------------- Back propagation o f the enor ■

if total_eiTor < 0.05;
fprintf('lf\n', output)

else

% calculate reflected vector

for i= l ;7
• R(i)=(Desired(i}-output(i))*output(i)*(l-output(i));

end

%------------------------Update the w eigh ts----------------------

% update the weights b/w the hidden & the ouput layer
A=0.2;
for i= l :7

for j= l :7
v (ij) = v (ij) + (A*R(j}*hidden(i));

end
end

% calculate hidden layer error
for i= l:7

E_hidden(i)=0;
for j= l :7

E_hidden(i) = E_hidden(i) + (R(j)*v(i,j));
end
E_hidden(i)=hidden(i)*(l-hidden(i))*E_hidden(i);

end

% update the weights b/w the input & hidden layer
B=0.2;
fo r i= l;4

fo r j= l:7
w (ij) = w (ij) +(B*E_hidden(j)*input(i));

end
end

end
end

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dispC'The w eights b/w input & the hidden')
w
dispCThe w eights b /w the hidden & the output')
V

dispCThe output')
output

end
toe % Stop the stopwatch tim er and display the elapsed time

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1]. V.H. Chan, C. Brad el ey, G. W. Vickers, “A m ulti-sensor approach to automating

co-ordinate m easuring machine-based reverse engineering” computer in industry'

vol. 44, pp.105-115, 2001.

[2]. Vincent H. Chan, “Feature based reverse engineering employing automated m ulti­

sensor scanning” Ph.D dissertation, Department o f mechanical engineering.

U niversity o f Victoria, 1999.

[3]. http:.';\v\v\v.dat.x.co .uk dated 6/13/2003.

[4], J. Lampinen, J. Laaksonen, E. Oja, “Neural network system, techniques and

applications in pattern recognition”, Research reports, Laboratory o f

computational engineering, Helsinki University o f Technology, M iestentie 3,

Finland, 1997.

[5] w w .ch iH inaefF ec ts .o rg 'reverse / dated 09/26/2003.

[6]. Bhandarker M. P., Nagi, R, “ STEP-based feature extraction from STEP geometry

for Agile m anufacturing”, computers in industry, vol. 41, pp. 3-24, 2000,

[7]. Joshi S, Chang T. C., “Graph-based heuristics for recognition o f machined

features from a 3D solid model” Computer-Aided Design, vol. 20, no 2, pp. 58-

66, 1988.

[8]. J.H. Vandenbrande, A.A.G. Requicha, “Spatial reasoning for the automatic

recognition o f m achinable features in solid m odels” IEEE transactions on pattern

analysis and m achine intelligence, vol. 15, no. 12, ppl269-1285, 1993.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[9], M. Schulte, C. W eber, S Rainer, “Functional features for design in mechanical

engineering” . Computer in industry, vol. 23, no. 1, pp. 15-24, N ov’93.

[10]. D. Silver, “3D Feature Extraction for unstructured grids”

http://'WAv\v.caip.rutgers.edu/~silver/nasa/nasa2.html

[11]. J.J. Shah, “Assessment o f features technology”. Computer aided design, vol. 23,

no. 5, pp. 331-343, June’91.

[12]. V.H. Chan, M. Arshad, “Recognition o f Features in cloud data for Reverse

Engineering” , proceedings o f CSM E conference at Kingston, Canada, M ay 21-24.

2002 .

[13]. J. Rowe, “Surface modeling”. Computer graphics, vol. 20, no. 9, pp 47-52, 1997.

[14]. G. W}will, D. M cRobie. M. Gigante, “M odelling with features” , IEEE Computer

graphics and applications, vol. 15, no. 5, pp. 40-46, 1997.

[15]. J. C. Cavendish, “Integrated feature based surface design with free fonn

defonnation” , Computer aided design, vol. 27, no. 9, pp. 703-711, 1995.

[16]. J. S. M. Vergeest, I. Horvath, J. Jelier, Z. Rusak, “Free-fonn surface copy and

paste techniques for shape synthesis” , Proc. 3'̂ '̂ Int. symposium o f competitive

engineering. Delft University press. Delft, pp. 395-406, 2000.

[17]. Wu, M. C., Liu, C. R., “Analysis on machined feature recognition techniques

based on B-rep” Computer-Aided Design, vol. 28, no.8, pp. 603-616, 1996.

[18]. J. Han, “Survey o f feature research”. Technical report IRIS-96-364, Institute for

robotics and intelligence systems, USC. USA, 1996.

[19]. J. Han, A.A.G. Requicha, “Feature recognition ftom CAD m odels” , IEEE

computer graphics and applications, vol. 18, no. 2, 1998.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://'WAv/v.caip.rutgers.edu/~silver/nasa/nasa2.html

[20]. Kyprianou L. K., “Shape classification in Computer-Aided Design” , PhD

dissertation, Christ College, University Cambridge, Cambridge, U.K., July 1980.

[21]. B. Falcidieno, F. Giannini, “Automatic recognition and representation o f shape

based features in a geometric modeling system”, Teclmical report no. 10/88,

Instituto per la niatematica applicata. 1988.

[22]. P. Di Stefano. “A feature based representation scheme for design”, Proc, o f the

FE.A.TS 2001 International conference, Valenciennes, France, June 2001.

[23]. J. J. Shah, M. Mantyla, “Parametric and feature based CAD/CAM ”, John W iley &

Sons, 1995.

[24]. T. W oo. “Feature extraction by volume decomposition”, Proc. Conf. CAD/CAM

technology in mechanical engineering, Cambridge, MA, USA, 1982.

[25]. Y. S. Kim, “Recognition o f form features using convex decom position”,

Computer-Aided Design, vol. 24, no. 9, pp. 461-476, 1992.

[26]. E. W ang. Y. S. Kim. “Fonn feature recognition using convex decom position”,

results presented at the 1997 ASME CIE feature panel session, Computer-Aided

Design, vol. 13, no. 9, pp. 983-989, 1998.

[27]. S. B. Kailash. Y. F. Zhang, J. Y. H. Fuh, “A volume decomposition approach to

machining feature o f casting and forging components” , Computer-Aided Design,

vol. 33, no. 8, 2001.

[28]. http://aitech.ac.ip/-kurokawa/kurokawa/neural net/net final.htinl

[29]. S. T. W elstead, ’’Neural Network and fuzzy logic Applications in C/C++” , John

wiley & sons, Inc, Toronto., 1994.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://aitech.ac.ip/-kurokawa/kurokawa/neural

[30]. M. P. Carven, K. M. Curtis, B. R. hayes-Gill, C. D. Thursfield, “A Hybrid Neural

Network/Rule-Based Technique for on-line gesture and hand-written character

recognition” , Proceedings o f the fourth IEEE International Conference on

Electronics circuits and systems. Cairo, Egypt, vol.2, pp. 850-853, D ec 15-18,

1997.

[31]. S. Prablikar, M. R. Henderson, “Automatic form-feature recognition using neural

network-based techniques .on boundai'y representations o f solid models” ,

Computer-Aided Design, vol. 24, no. 7, pp. 381-393, 1992.

[32]. A. H. Zulkifli, S. Meeran, “Decomposition o f interacting features using a

Rohonen self-organizing feature map neural network” . Engineering applications

o f artificial intelligence, vol. 12, pp. 59-78, 1999.

. [33]. I. Yoshihara, Y. Kamimai, M. Yasunaga, “Feature Extraction from genome

sequence using Multi-Modal Network”. Faculty o f engineering, Miyazaki

University, Japan, Genome Informatics 12; pp. 420-422, 2001.

[34]. W illiam B. Thompson, J. C. Owen, H. J de St. Germain, S. R. Stark, T. C.

Henderson., “Feature-based reverse engineering o f mechanical parts” , IEEE

Transaction on Robotics and Automation, vol. 15, no. 1, 1999.

[35]. Farhad Nabhani, Terry Shaw, “Performance analysis and optimization o f shape

recognition and classification using ANN”, Robotics and Computer Integrated

M anufacturing 18 (2002), pp. 177-185.

[36]. V. H. Chan, “AI for Mechanical Engineers ", Class Lecture notes, June2002,

Ryerson University.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[37]. K. Nezis, G. Vosniakos, “Recognition 2 D shape features using a neural

network and heuristics” , Computer-Aided Design, vol. 29, no. 7, pp. 523-539.

1997

[38]. A. D. Kulkami, “Computer vision and fuzzy-neural systems”, Prentice Hall PTR,

Upper Saddle River, NJ, 2001.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

