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Abstract

Title : Feature Recognition in Geometric Reverse Engineering.
Name : Muhammad Arshad

Program : MASc., Mechanical Engineering, Ryerson University, 2004.

An artificial neural network based feature extraction system for finding three
dimensional features from physical objects is presented. As part of a geometric reverse
engineering system, the feed-forward neural network allows for the efficient
implementation of feature recognition.

Reverse engineering of mechanical parts is the process of obtaining a geometric
CAD model from the measurements of an existing artifact. Ideally, the reverse
engineering system would automatically segment the cloud data into constituent surface
patches and produce an accurate solid model. In order to accomplish this intent, a neural
network is used to search and find the features in the initial scan data set.

In this work, feature extraction for geometric reverse engineering has been
accomplished. Work has also been done to extract features from the multiple shapes. The

technique developed will reduce the time and effort required to extract features from

scanned data of a physical object.
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Chapter 1- Introduction

1.1 The Geometric Reverse Engineering

Reverse engineering is the process of converting 3D surface data collected from a
laser scanner or touch probe mounted on a coordinate measuring machine into a torm
compatible with CAD/CAM packages. The gathered data, normally huge in size and
unstructured in nature are often called cloud data. Reverse engineering is used in industry
for a number of reasons, such as modification of prototype parts after testing, or the
custom fit of prosthesis for better comfort in the case of knee or hip replacements and the

reproduction of broken machine parts whose drawings are not available. !

There are two main applications of reverse engineering:

1. To provide digital information for a product for which no CAD model is available.

2. To support the redesign of an existing product.

Either of these goals could be achieved by making sure that the 3D scanned data
are complete and accurate. The dimensions of the part or its shape can then be derived

from the digitized points. The fitting of one or multiple surfaces to the point data is then
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necessary to generate a CAD model. Beyond the domain of prismatic and cylindrical
objects, feature handling is still a major research area.

In an ideal reverse engineering system, the cloud data would automatically
fragment into constituent surface patches and generate an exact solid model. In order to
realize this objective, a neural network is employed to explore and find the features in the

initial data set.

Besides the encouraging progression of several researchers, reverse engineering is
a diverse and complex problem, to which a direct distinct solution has not been

established. [

1.2 Traditional Geometric Reverse Engineering

Traditionally, the process of reverse engineering employed a touch probe, which
was mounted on a coordinate measuring machine (CMM). (21 In order to accurately define
the surface contours of an object, which needs to be reverse engineered, a CMM operator
is required to manually guide the sensor to collect thousands of data points. This is a slow
process which requires expensive equipment and takes a considerable amount of time.

On the other hand, advancements in machine vision technology provide a means
to collect 3D data from the object surface with non-contact sensors like an active laser-
based range finder. ®! CAD models are then created from this data for any computer-
based design, analysis or manufacturing tasks. The adoption of machine vision-based
reverse engineering in the last 15 years has been the result of demands for increased
quality control and lower product cost coupled with ever increasing manufacturing

throughput requirements. 3)
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1.3 Feature Extraction in Reverse Engineering

Detection and localization of 3D objects in scenes represented by single or
multiple 2D images has become a well-established technology. A related, but not so
deeply investigated problem deals with the identification of 3D objects directly from 3D
data. A number of engineering applications rely on robust and efficient shape feature
recognition in 3D data, where these data can be either digitized points or synthetic data
from a CAD modecling system.

The dimension of the part or its shape can be derived from the digitized points.
The generation of a CAD model requires the fitting of one or multiple surfaces to the
point data and to construct an appropriate surface or solid model. This step can only be
fully automated for scme special cases. The level of automation depends on the intended
purpose of the CAD model. |

Technical feature recognition systems are composed of consecutive blocks, each
performing its predefined task in the processing. ! This system can be described as a

block diagram. In the simplest form, it is shown in Figure 1.

Data ‘ .| Data i Pre- ol Segmentation
Collection Registration Processing 1
Normalization Feature | Classification Post

Extraction 7| processing

Figure 1. Block diagrams for feature recognition system.
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1.3.1 Data Collection

Data collection is the first stage in any feature recognition system. Before an input
vector 1s made up of a set of measurements, these measurements need to be taken. For
example, video cameras and scanners are used in the case of character recognition and a
microphone, in the case of speech recognition. Data collection devices must be able to
record the object, ideally, with the highest reliability available. Noise is considered a

disadvantage in order to perform the successful operation of any system.

1.3.2 Data Registration

Elementary model fitting can be performed in data registration. The objective
could be achieved by somehow fixing the internal coordinates of the recognition system to
the actual data acquired. ! A priori knowledge surrounding the system is utilized in
designing the registration stage. For example, in the case of optical recognition. the system

must locate in the input image and the area of interest.

1.3.3 Pre - Processing

In the real world, especially in the case of reverse engineering, data always has
some degree of noise and therefore requires a preprocessing stage. The term noise is used
in broad sense, but can be simply defined as,

“Anything that hinders a recconition system to fulfill its commission may be

regarded as noise, no matter how inherent this ‘noise’ in the nature of the data.” [

Also, preprocessing enhances some of the desirable properties in the data that are fed into

the recognition system.
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1.3.4 Data Segmentation

The data, which have already been registered and preprocessed, are split into
subparts. This process is called data segmentation. In this work, data points which formed
the boundary of the objects are segmented. This task is accomplished by developing

MATLAB codes. The segmentation processes are outlined in detail in sections 4.5.1 and

4.5.2.

1.3.5 Normalization

A common characteristic of feature recognition systems is the inherent variance
of the objects to be recognized. 1) The main problem in feature recognition is how these
variances are accounted. There are many possibilities, one is to use feature extraction or a
classification algorithm, which can deal with the variations in the outcomes of the object.
The side effect of normalization is a loss of degrees of freedom, i.e., the dimension

reduction in the intrinsic dimensionality of the data.

1.3.6 Feature Extraction

The dimensionality of data is reduced during the process of feature extraction.
This is necessary as a result of limitations in memory and computation time. M1 A reliable
teature extraction scheme can maintain and enhance those features of the input data
which make distinct feature classes separate from cach other. Also, the system must be
restrained with respect to variation produced by both the humans and the measuring

devices used in the data acquisition stage.
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1.3.7 Data Classification

Classification is the most crucial step in the process of feature recognition. All the
previous stages are designed and tuned with the aim to have success in the classification

phase. In the simplest way, the operation of classification is the transformation of

quantitative data to qualitative output information.

1.3.8 Post-processing

After the classification stage, some data processing is performed in most feature
recognition systems M The post processing subroutine carries forward some a priori
information about the neighboring world into the system. This additional step helps in
improving the overall classification accuracy. The post-processing phase is genérally

possible if the individual objects or segment make up meaningful entities such as bank

account numbers or sentences.

1.4 Features Recognition for Geometric Reverse Engineering Data:

The “Feature” driven CAD modeling packages provide the vital link between
design and manufacturing. In the same way, “Feature” driven reverse engineering would
allow for more flawless application of the CAM software.

In this work, the features arc extracted from geometric reverse engineering data.
To test the proposed algorithms, seven different geometric objects are created: circle,
ellipse, square, rectangle, triangle, diamond and wheel. These objects are shown in

Figures 2, 3,4, 5,0, 7 and 8.

o
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Figure 2. Picture of “circle” test object.

Figure 3. Picture of “ellipse” test object
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Figure 4. Picture of “square” test object

Figure 5. Picture of “rectangle” test object
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Figure 6. Picture of “triangle” test object

Figure 7. Picture of “diamond” test object
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Figure 8. Picture of “wheel” test object

A Roland Dr. Picza PIX — 30 3D laser scanner is used to collect range data of
different accuracy levels and densities. Based on a piezo sensor, the PIX — 30 is a contact

scanner.

Figure 9. Roland PIX — 30 3D Scanner

10
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This scanner gathers the data from the surfaces of the object. The collected
measured data points are fitted with a suitable primitive geometric shape. A programming
method base on the human brain architecture, Neural Network, is used for the recognition
of important features on the object’s surface. These features provide a more intuitive
means for engineers to develop object definition.

MATLARB codes are developed first for data segmentation and then eventually for

feature recognition. In a simple form. the process is outlined in Figure 10.

Laser Scanning

v
Pre - processing

Y

Data segmentation /
Geometric Extraction

A 4

Features Extraction

Figure10. Systematic diagrams for feature recognition system.

1.5 Legal Standing of Reverse Engineering

The legal standing of reverse engineering has long been an issue for the
engineering discipline. Several U.S. Supreme Court rulings and congressional legislations
are in place which allow the use of reverse engineering for development and innovative

purposes. Reverse engineering has long been held as a lawful form of discovery in both
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legislation and court opinions ). The Supreme Court of USA has confronted the issue of
reverse engineering in mechanical technologies numerous times, upholding it under the
principle that it is an important technique of dissemination of ideas and encourages
innovation in the market place. The U.S Supreme Court addressed the first principle in
Kewanee Oil v. Bicron, a case concering trade secret protection over the manufacturing
of synthetic crystals by defining reverse engineering as “a fair and honest means of
starting with the known product and working backwards to divine the process which
aided in its development or manufacture.” 3]

There was another principle that encourages the innovative use of reverse
engineering articulated in Bonito Boats. v. Thunder craft. This case involving laws
torbidding the reverse engineering of the molding process of boat hulls. In this case, the
U.S Supreme Court said “the competitive reality of reverse engineering may act as a spur
to the inventor, creating an incentive to develop inventions that meet the rigorous

requirements of patentability.” °]

1.6 Potential Benefits

This research looks at automating the collection of surface data points and the
modeling of the surfaces in a computer aided design (CAD) program. The 3-D laser
allows the gathering of preliminary surface information that could subsequently be used
to locate important features on the object being examined.

Applications of this research range from the geometric reverse engineering of
physical models to quality controi. This research wiil allow manufacturers to reduce

design cycles and to quickly bring products to market.

12
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1.7 Scope of this work

This thesis is arranged in chronological fashion of the steps required to carry out
feature extraction.

Chapter 1 discusses reverse engineering and the conventional reverse engineering
techniques. This chapter describes the problem and proposes the methodology to extract
features for geometric reverse engineering data. Potential benefits of this research are
also discussed at the end of the chapter.

There is no universally agreed definition of a feature. The word “feature” has a
different meaning for different researchers. The most commonly used feature definitions
are described in Chapter 2. This Chapter also discusses types of feature recognition and
the related literature review of features recognition techniques.

Chapter 3 describes different types of neural networks and discusses their
structure. This chapter also looks at the related literature on artificial neural network
techniques.

Chapter 4 discusses the selection of the artificial neural network method applied
in this work to extract the important features, its configuration and potential benefits.
This chapter also describes the algorithms that were developed for the segmentation of
the boundaries and then calculation of the parameters that form the input vector to the
neural network. Finally, the feed-forward neural network algorithm applied for feature
recognition is described.

The testing of the neural network algorithm is a very important part of this
technique. The algorithm 1s first tested with manually created synthetic data and then on

the real reverse engineered data derived from the test samples. After the successful

13
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training of the algorithm, the algorithm is tested on an unseen example. Chapter 5
presents the training and testing of the neural network algorithm.

Chapter 6 discusses the conclusion and future work.

14
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Chapter 2: Features Extraction — Literature Review

2.1 Introduction

Many techniques have been developed for feature identification from CAD
models. However, the literature is scarce in the area of extracting features from reverse
engineered data. Most of the methods are based on matching algorithms, in which the
data are compared with a predefined set of surfaces and edges. The features are usually
defined generically before any matching process may be initiated, as a combination of
topological entities.

The overall aim in feature recognition is to convert low level geometric
information into a high level description in terms of form, functional, manufacturing or
assembly features. This description could be for design, manufacturing, engineering
analysis or even for administrative purposes. (%1 1t is well known that recognizing features
that are required for machining may be considerably different from recognizing features
usefui for casting or for assembly purposes. in other words, features are context —

dependent entities. (7

15
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“Feature” is general term and has been used to describe a number of different
things. For example, Vandenbrande et. al. [8) define that a feature is a “region of an object
that is meaningful for a specific activity or application”. Schulte et. al.’”) considered a
feature as “geometry associated with a specific operation”. Another definition by Silver
(0] describes a feature as “A region of interest consisting of voxels satisfying a set of pre-
defined criteria”. Shah "' defines a feature as a physical constituent of a part that can be
mapped to a generic shape and “represents the engineering meaning of the geometry of a
part of assembly”.

For this work, a feature will be defined as “a recognizable topological pattern of a

set of edges”.

2.2 Tvpes of Feature Recognition

There have been various techniques developed to extract features from a
geometric modeling database. By and large, feature recognition can be divided into three
main categories. '

*  Parameter matching

=  Syntactic feature recognition

*  Volume Decomposition

2.2.1 Parametric Matching

In parametric matching, the features are first characterized in term of their
geometric and topological form. The algorithm searches the solid model data base,
measures against topological type, connectivity and adjacency to decide if any of the

characteristic fe tures are available.

16
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2.2.2 Swvntactic Feature Recognition

In syntactic pattern recognition, the geometry is represented in terms of a
language grammar that describes the order of the lines and curves. The description of the

object is then matched against grammar to recognize the features.

2.2.3 Voiume Decomposition

In the third category, i.e., volume decomposition, the removed base stock material
is identified and then broken down into distinct machining operations. This volume is

decomposed into smaller volumes or “features”, which conform to machining operations.

2.3 Feature Extraction - Literature Review

Free-form features are acquiring a great deal of attention since they are considered
the important constituent in product styling, aesthetic design and shape conceptualization.
Recently. some Computer-Aided Industrial Design (CAID) systems have surfaced, each
of which is in some means based on surface features or free-form features. 11314} Various
systems are dedicated to particular types of features, for example, protrusions and
depressions. (3]

To make these type of systems truly flexible and useful, free-form features (shape
patterns) are required to be extracted from existing objects, where these objects are either
physical (and to be 3D scanned) or virtual (and to be sampled). (%] The main obstacle is
the fitting of 3D shape patterns against 3D point sets. A necessary rcquirement of the
fitting method is that it should not only acquire placement and scale parameters for the

pattern, but also shape deformation parameters.

17
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In a graph based approach for feature recognition, boundary representations are
built upon a graph structure. Boundary representation model faces can be considered as
nodes of a graph while face-face relationships form the arcs of the graph. As described by
Wu and Liu "7, graph based approaches first represent an outline of the required
topological and geometrical constraints for recognizing the feature. Once the graph which
identifies a feature class has been defined, such a graph has to be searched in the object
structure, which is a graph as well. The problem of recognizing a given sub-graph in a
graph is fairly complex problem and its computing time in the worst case grows
exponentially. Many authors proposed various search strategies to work out this problem.
Some authors argued that the adjacency information available is usually not adequate for
feature recognition. For this reason a number of augmented graphs have been
recommended.

One of the main drawbacks of graph-based feature recognition techniques is the
difficulty in recognizing interacting features. This is due to the fact that a feature
characteristic pattern is changed when features intersect each other. Hint based reasoning
approaches!'®! have been developed to overcome this drawback. In the hint based
approach, developed by Requicha et. al. ['* '°! those characteristic traces that features
leave in the nominal geometry of the part are searched. These traces present hints for the
potential existence of volumetric features even when features intersect. These hints are
processed to generate the largest possible volumetric feature that is compatible with the
hint and does not intrude into the feature.

In the pioneering work of Kyprianou % feature grammars are described for the

extraction through syntactic feature recognition. Falcidieno et. al. ' took allowance of

18
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Kyprianou’s method for the identification and extraction of feature information from a
boundary representation of an object. The fundamental concept is to define a pattern
description language where suitable rules are defined in order to create an applicable
composition of primitives. The authors defined three basic primitives: convex edge,
concave edge and smooth edge. This graph parsing based feature recognition scheme was
focused on the identification of depression and protrusion features. Di Stefano [22]
introduced the concept of scmantema as the minimal element of meaning thar defines the
semantics of the representation. This approach requires the statement of the minimal set
of semantema that identifies the feature clearly.

Volume decomposition methodologies operate more directly on the three-
dimensional representation of volumes instead of working on the boundary representation

23

graph of solid models. 23] Such approaches have been generally employed for the
recognition of machining features. There are two main approaches for volume
decomposition, 23] alternating sum of volumes (ASV), where an object is articulated in
terms of a hierarchical structure of convex components, and delta volume decomposition,
where the intent is to recognize the volume to be machined and then decompose it into a
set of non-overlapping entities corresponding to different machining operations.

In the pioneering work of Woo, (4] ASV decomposition is applied to indicate a
non-convex object by a hierarchical structure of convex components. This approach has
been proven non-convergent in certain cases. Kim (251 proposed an enhanced convex
decomposition approach to address this issue. Kim and Wang et. al. % proposed the

alternating sum ot volumes with partitioning (ASVP) approach. This is a convex

decomposition method based on a convex hull, set difference and cutting operations. In
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this scheme, the boundary faces of a part are arranged in an outside-in hierarchy and
volumetric components are related with these faces. The ASVP decomposition is
transformed, by means of combination operation between components, into a set of
feature volumes (Form Feature Decomposition - FFD) corresponding to significant high
level constituents of the product shape. FFD is then transformed into a Negative Feature
Decomposition (NFD) by means of positive-to-negative conversion. The machined face
information is obtained from negative feature stand for removal volumes.

Kailash et. al 7! described a method dedicated to machining feature extraction of
casting and forging components. In this scheme. machining removal volumes were first
obtained by subtracting the final part model from a row part model. Machined faces (M-
faces) are then recognized and collected-into groups (M-groups). Finally, M-groups are
mapped into all possible machining process forms. This feature identification approach is

process oriented as M-group is mapped to various processes.

2.4 Feature Recognition in Reverse Engineering

It is difficult to classify feature extraction methods into precise, organized groups
as there is a considerable overlap between the various techniques. The majority of the
methods, as discussed in Section 2.2, use a matching algorithm which compares data with
predefined generic features. Features extraction algorithms may include the following
specific tasks: !

i.  Generic definition of a features topology.

ii.  Searching the database to match topological patterns.

20
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iti.  Extracting the recognized features from the database (removing a portion
of the model associated with the recognized feature).
iv.  Determining the feature parameters (hole, dieyneter, number of corners).

The features must be generically defined by a combination of topological entities
required to illustrate the features before any matching process may be initiated. For
example, a hole could be described as combination of two circular edges surrounding a
cylindrical surface. Secondly, the tqpological database would be searched for
connectivity and adjacency to determine which of these features are present in the solid
moaul.

The features will be further limited in scope to specific machining operations for
the creation of hole. square, diamond, ellipse, triangle, rectangle and wheel. There are, of
course, many reasons for limiting this definition. As this work is primarily concerned
with reverse engineering, the emphasis is on the reconstruction of the solid parts, not on
the design of parts. The reverse engineering algorithm is to model the part with some

rudimentary editing features. [t is not meant as a replacement for a CAD package.
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Chapter 3 — Artificial Neural Network : An Overview

3.1 Introduction
This chapter presents different types of neural networks. The related literature

review on the artificial neural network is the main focus of this chapter.

3.2 Types of Neural Network

There are many types of neural networks. Each type has the characteristics of
parallel processing from an interconnected network of computational elements. Several
structures of neural networks are possible by connecting the elements together. There are
two most commonly used structures from the neurons connection point of view: multi-
layer neural network and fully connected neural network (Hopfield network). These
networks differ from one another in architecture and training algorithm. The following

three are the most commonly used networks. 28]
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3.2.1 Multi Laver Feed Forward Neural Network

The multi layer feed-forward neural network has many successful applications
and is the most commonly used neural network. As shown in Figure 11, the neurons are

arranged in several layers. Any number of neurons and number of layers are possible. *®

Input vectors Hidden layers  Output vectors

Figure 11: Multi layer feed-forward neural network
The layers are classified into three types: input, hidden and outer layers. Any
number of hidden layers is possible but the connections are allowed only in the feed-

forward directions.

3.2.2 Honpfield networks

In the early 1980°s, John Hopfield’s pioneering work gave credibility to the
fledging neural network field. Contrary to the multi layer feed-forward neural network, a
Hopfield network is defined as a feed-back system with the output of one complete
forward operation of the network serving as the input to the next network operation. The
Hopfield network is aiso calied the recurrent network as this network operates as a feed-

back system. (291 This scheme is illustrated in Figure 12.

23

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 12. Simple Hopfield Network

Each forward operation of the network is called an iteration. The process is repeated until
the output remains constant. Hopfield showed in his work that if the weight matrix is
symmetrical with zero diagonal elements and the elements are updated asynchronocusly.

the network will always converge.

3.2.3 Kobonen self organizing network

In the early 1980°s, Teuve Kohonen developed an algorithm to mimic the brain’s
ability to organize itself in response to external stimuli. Kohonen called his algorithm a
self organizing feature map. Kohonen’s algorithm represents a type of neural network
that is capable of learning without supervision. 21 In this technique. the weights
strengthen themselves. The first layer is the input and the second layer, the output. It is a
two dimensional grid where the self organizing takes place as illustrated in Figure 13.

In the winner take all competition, the output neuron with the highest value wins.

The structure of the output vectors is laid out in a grid like pattern, this allows the concept

of neighborhoods.
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Figure 13. Kohonen self-organizing network
Once the winner clement is found, the weights for that output element and its
neighborhood are updated. The connectors are iterated until the value converges. i.e.. no

more winning neurons are declared.

3.3 Artificial Neural Network — Literature Review:

For classification problems, the neural network is able to give statistical
information about the classification and is easy to train, but it is often not clear how the
neural network has arrived at its answer. On the other hand, the operations of rule-based
algorithms are traceable, but the set of rules chosen may be more difficult to train and
may not generalize as well as a neural network. 3]

Recognition is one of the most complex problems in the computer and machine
vision arca. The major concern associated with the use of artificial neural networks for
feature recognition is the formulation of an appropriate codification of the topological

and geometrical entities in order o present a numerical input to the network.
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In order to meet the neural network input requirements, Prabhakar and Henderson
B defined a feature as a mathematical function, in which geometrical and topological
data were variables, derived from the solid model of the part. In this method, these
variables represented the net input and were arranged in a two dimensional matrix called
the adjacency matrix. Each element (i,j) of the adjacency matrix represents the
relationship of face j to face i. Non-adjacent faces i and j ‘were represented by zeros
whereas different integer values denote different types of edges. The sign of the
adjacency matrix element indicates whether the edge is concave or not. The process of
recognition is then reduced to row-by-row parsing of the adjacency matrix.

Zulkifli et. al. P2 proposed a method to recognize the interacting features. The
authors used a B-rep solid model as input for the feature recognition system. This method
is based on a layering technique to find interacting features. After selecting the principle
direction, this technique searches for any volume that exists between two successive
layers of the part. These volumes are then checked to find out if they represent the result
of interacting features. This task is accomplished by means of a Kohonen self- organizing
feature map (SOFM) neural network, which is used to create maximal rectangular regions
which are then intersected with the resultant area. Primitive features are then obtained
from resulting regions. Also, the second stage of SOFM was applied on the resulting
regions to decompose them into primitive regions. As described by the authors, this
technique is limited to apply only for the features that have identical thickness and a
common bottom face.

Chan et. al. 'l present a method in which stereo pairs of images are used to plan

the path for a co-ordinate measuring machine (CMM). The Kohonen self-organizing map
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(SOM) network is used for the segmentation of the CCD images. The authors incorporate
the charged coupled device (CCD) camera and a CMM touch probe digitizer together to
accomplish this aspect of reverse engineering. In this reverse engineering system, an
accurate solid data were obtained from the automatic digitization of the object using the

CCD images.

Methods that require no explicit models, e.g., neural networks, case-based
reasoning and inference have been developed, but their ability is saturated at a certain
level. Two mcthods to evade the limits have been attempted, one is to build a more
concrete model and the other is to fuse these methods together. P Yata’s digit is a
remarkable and promising success in the latter method. The main idea is to utilize many
neural networks at the same time that construct total model *Multi-Model Neural
Networks” (MNNs). Despite its very simple and easy implementation, the preliminary
results showed that MNNSs significantly increase sensitivity. In 2001, Yoshihara et. al. (33)
applied a multi-model neural network to identify exon-intron boundaries (splice site) in
DNA basc sequences. The MNNs provide a higher identification rate of 95%, as
compared to 83.4% with a single NN.

None of the reverse engineering packages address the automation of feature
extraction due to the size, incomplete and unstructured nature of scanned data. The
reverse engineering packages having provision for feature recognition rely on an
interactive user interface ?). Thompson et. al. 341 proposed a REFAB (Reverse
Engineering — FeAture-Based) system. In the proposed system, the authors used an
interactive graphics workstation that segments the reverse engineering data into features.

REFAB allows a user to specify the types of manufacturing features and approximate
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location of each feature in the object. The REFAB system then fits a feature to the
scanned data by using an interactive refinement process.

Machine vision systems facilitate sophisticated industrial applications, such as
classification and process control. Artificial neural networks (ANNs) and machine vision
bonded together provide a new scheme for solving complex computational problems in
many areas of science and engineering. Farhad et. al. 331 investigated several novel uses
ot machine vision and ANNs in the processing of single camera multi-positional images
for 2D and 3D object recognition and classification. The authors used the boundary
contour information as a method of representing the industrial component. A number of
shortcomings were found most importantly the identification of unique start point, vital

for rotation invariance.
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Chapter 4 — Neural Network Based Feature Extraction

4.1 Introduction
The objective of this work is to recognize features in the scan data. This chapter
will look at the artificial neural network in depth, its implementation on physical objects

to extract features and potential benefits for this specific problem.

4.2 Selection of Artificial Neural Network

Current commercial reverse engineering software packages have not been
addressing the automation of feature identification. Artificial neural networks are a good
choice for featuré extraction from the reverse engineered data due to the nature of scan
data which have the following inherent traits:

+ Noise in the scan data set.
¢ Unstructured and large in size.
¢ Incompleteness of the data.

+ Defects in the scan object.

29
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Due to the nature of reversé engineering data, a robust method is required for the
implementation of a feature recognition algorithm. Rule based algorithms rely on
searching through a set of rules, selecting the rules which will advance the search state
from one state to the next until the final s*ates are found. These algorithms need concise
and accurate data to test the topology. As reverse engineering data is often incomplete
and often carry a substantial amount of noise, a neural network based algorithm is
considered to be more robust. Artificial Neural Networks (ANNs) have shown
considerable promise in a wide variety of application areas and have been particularly
useful in solving problems for which traditional techniques have failed or proved
inefficient. Neural networks have seen many successful applications in machine vision
feature recognition problems. The neural network technique is used in this work because:

» It has proven robustness in many 2-D machine vision problems.

« Has the ability to learn and work in many different situations.

+ It is not susceptible to incomplete data sets as much as rule based algorithms.
« Higher computational ability because of massive parallelism

* Amenable to machine learning

4.3 Artificial Neural Network Conficuration

The neural network in this work has an input layer, hidden layer, an output layer,
weights, bias and a transfer function. The inputs are multiplied by weights, bias is added
and the transfer function operates on the total to give the output. Generlly, linear transfer

functions are best suited to linear problems, and non-linear transfer functions are best
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suited to non-linear problems. Graphically, the neural network configuration is shown in

Figure 14, B¢

X Wi Transfer function

>Output

Figure 14. Neural network configuration.
In Figure 14:

Net=Z% (x;w;+bias) 4.1)

(1 if net > threshold
Output = 3
) if net < threshold

Weights are updated: w; (t+1) = w; () + &x;

Where,
¢ = Error = desired output — cal. output
and

(x7. x2, X3, ... Xpn) are input vectors.
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The commonly used transfer functions for classification are step functions, linear
functions, sigmoid functions, hyperbolic-tangent functions.

Due to the wide range of problems to which neural networks have been applied
to, it is difficult to generalize which types of transfer functions are best suited to certain
types of problems. For this work, a hyperbolic-tangent transfer function is used between
the hidden and output layer to map the result at the output layer. The hyperbolic-tangent

transter tunction has the properties to vary from -1 to +1.

4.4 Feed-Forward Neural Network

The neural network selected for this work is a feed-forward (back propagated)
based network with one hidden layer. The number of input elements should equal the
number of parameters needed to define each feature, whereas the number of output
elements should represent the number of different types of features which can be found as
shown in Figure 15.

For this work, the neural network has four elements in the input vectors and seven
elements in the output vector. The four elements define the geometry of the objects and
form the input vector that was presented to the neural network. These parameters are
discussed and calculated in Section 4.5. Also, each neuron at the output layer defines the
feature type to recognize the target object from seven different objects.

The term back-propagation refers to the training of the algorithm rather than the
network architecture. In a feed forward network, the networks feed the input forward, that

is, towards the output. It is thought that adding an aditional layer, a so-called hidden
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layer, would soften the effects of input noise. However, whether or not to use one hidden

layer or two or more hidden layers has still not been worked out. P9

Input Output Output
Weights Weights Neuron

j 74
W A NI 7 e
XFNRRES)
ST Ko SR BT
RS FLHALEL
X {2

Input layer Hidden layer Output layer

Figure 15. Neural network for feature recognition.

The number of elements in the hidden layer cannot be determined except through
experimentation. Nezis and Vosniakos 37} found that increasing the number of hidden
layers did not change the results, but did increase the training times significantly. They
also found that increasing the number of elements in the hidden layer resulted in better
mapping, however at the penalty of increased training times. For this work, one hidden
layer was used to soften the effect of input noise. There are seven neurons employed in

the hidden layer that was mapped on the output layer to generate the output values.
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4.5 Input and Output Vectors

Before implementation, the neural network algorithm must receive the topology
and its associated geometry in a form that can be presented to the input layer. Therefore,
to search for features in the database. fragments of the topology geometry database must
be coded into a format understandable to the neural network. ['! However, with reverse
engineered data, the geometry may also prove to be an important indicator of the possible
features, as the faces that make up a feature may not be fully defined.

Since the reverse engineering scanned data is huge and unstructured in nature,
two different segmentation algorithms, one for a single object and the other for multiple
objects, are developed for the cloud data to segment the boundary of the object and hence
calculate the parameters that make the input vectors. The digitized wheel object and its

isometric view are shown in Figure 16 and 17.

Figure 16. Digitized points from the physical object “wheel”
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Figure 17. Isometric view of the digitized physical object “wheel”.

4.5.1 Segmentation Algorithm for Single Shape Objects

This segmentation algorithm looks at the physical object with a single geometric
shape, like a circle, an ellipse, etc. This algorithm first segments the data points from the
cloud data that form the object’s shape. For this purpose, this algorithm compares the
data points that establish the depth of the physical object with those on the surface. These
segmented data points are then further processed to find the boundary points of the object
and hence calculate the important parameters that form the input vectors. This whole
process was programmed in MATLAB. A flow chart for this segmentation process is

shown in Figure 18.
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Figure 18. Flow chart for the segmentation of data for single object.
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The following Figures 19, 20 and 21, show the segmented boundaries of the
objects obtained from the reverse engineering cloud data by using the above

segmentation scheme.
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Figure 19. Test object “diamond™ and its segmented boundaries.
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and its segmented boundaries.
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Figure 21. Test object “ellipse” and its segmented boundaries.
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4.5.2 Segmentation Algorithm for Multiple Shape Objects

This segmentation algorithm looks at the physical object with multiple geometric
shapes, like a wheel. Before initiating the segmentation algorithm, the object is divided
into four quadrants. The segmentation algorithm then searches the object shape in each
quadrant by comparing the data points that form the depth of the physical object with
those on the surfaces. These segmented data are then further processed to find the
boundary points of each object.. Once the shapes are segmented, all four quadrants are
then assembled together to calculate the important parameters that form the input vectors.
A flow chart for the segmentation of multiple objects like wheel is shown in Figure 22.

The segmentation algorithm for single shape and multiple shape objects calculate
the four important parameters. These four parameters (a, b, oc, n) formed the input
vectors. Due to the noise and incomplete data set, the parameter ‘a’ is calculated as the
mean distance and ‘b’ as the maximum distance between the object boundary point and
the center.

The angle « is calculated by using the law of cosine between the two adjacent
points at the object boundary. For this purpose, the distance formula is used to calculate
the distance between the object boundary points and distance from centre. Also to mark
the corner, the two adjacent angles that were calculated at the object boundary are ada.d.
This sum was subtracted from 180 degree. The output forms the corner if the difference

varies more than 5 degree.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Load data text file

v

Find mean of z

Eliminate all points

Find all corresponding x and y points.

2

wl F v

Find min. and max. of x
and y in horizontal and
vertical direction.

v

Find mean of x

and y

v

Eliminate all the duplicated
points.

v

Rearrange & assembled the
points in clockwise
direction.

!

Plot the points and generate
the shape.

v

Find centre of the object by
taking mean of x and y

v

Calculate the input vectors

If x >mean x
y <meany

If x <mean x
y > mean y

If x <mean x
y<meany

If x >mean x
y > mean y

Figure 22. Flow chart for the data segmentation for multiple shapes object.
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The segmented boundary of the wheel from the reverse engineering clouded data

shown in figure 23.
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Figure 23. Test object “wheel” and its segmented boundaries.
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The set of parameters (a,‘b, oc, n) which are caléulated from above scheme, forms
the input vector. This input vector is presented to the input layer of the artificial neural
network to reccgnize the features.

Input vector=(a,b,c,n) ... (4.2)
Where,

a = Mean distance from center

b = Maximum distance from center

oc = Mean angle between two lines

n = Number of corners

To recognize a target object from the seven defined features, the desirable output
can form one of seven vectors. The physical object which is associated with a circle will
be mapped by the recognition system as vector (1 0 0 0 0 0 0) and a diamond as vector

(0100000)and so on.

4.6 Back Propagation Training Algorithm:

In order to correctly recognize the feature, it is very important for the network to
perform the correct mapping of the input parameters to produce the output classification.
To obtain this, the weights are adjusted to the optimal values. This could be achieved by
‘training’ the network.

One of the problems of training a multi-layer network is how the weights of the
updated. The most popular method for training a feed forward network is

called back propagation.
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The size of the neural network is dictated by the size of the input and the output
vectors. Once the architecture has been fixed, the values of the connecting weights
determine the behavior of a feed-forward network.

Let:

A (1) = Input neuron value at neuron location i.

X 25y = Hidden neuron value at neuron location 1.

A @3,i = Output layer value at neuron location 1.

w1, = Connector weight between neuron at the input and hidden layer.

vaina.i = Connector weight between neuron at the hidden and output layer.

Where i = 1 to n, depends on the respective layer as shown in the Figure 15. Therefore,

the neuron value on the hidden layer can be calculated as:

n

Aap= %W Gme)®Aam e (4.3)

m=]
Also, the output neuron values are calculated as the product of connector weights and the
corresponding values at the hidden layer. A hyperbolic-tangent transfer function is used

to bias the output neuron towards unity, B850 that,

A @)= (I —expl- ZIV(Z,m),(Z&,i) LR /(1+exp[-Z lV(?.,m),(3,i) LN (2,i)])

m= m=

The errors in the output vector are used to adjust the connector weights between
the output and the hidden layers and then between the input layer and the hidden layer,

i.e., this error is back propagated to adjust the weights between the input and hidden

layers.
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Firstly, the output error is calculated. This error is the difference of the desired
output and the calculated output and is given as:
E quput, i = desired output ; - A 3,5
The reflected vector is the product of the error vector, E upu,i and the calculated
output vector h (3. This product is scaled by the complement of the output vector A (3
for numerical stability. The reflected vector can be calculated as:
Ri=E qupui- N n-I-Aan) 0 (4.6)
The reflected vector is used to calculate the adjustments to the connectors
between the j neuron in the hidden layer and the i neuron in the output layer.
The adjustment of weights between the output and hidden layer can be calculated as:
dV(g’;),@’j) =A. Rj A Q) eeeeeeeees 4.7)
Where.
e dvpisy is the change of weight between the i element of the hidden layer 2
and the i element of on the output layer 3.
e % (. is the i" neuron value on the hidden layer
e C(Constant A is the [earning rate.
The error of the hidden layer is found by taking the product between the reflected
vector and vector consisting of the connector weights between the hidden neuron A (5 j

and the output. Again, this product is scaled by the product of the neuron and its

complement for numerical stability.

E hiddenj = A (2.0) (1 -A .0 ) DY Rm . V(z,i)’(g,’m) .......... (4.8)

m=]
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Finally, the adjustment of weights between the input layer and the hidden layer is
calculated as:
dW(l,i),(ZJ) =B.E (hidden, j) * A (L) eeveennens (4.9)
Where,
e dwLi, is the change of the weight between the i element of the input layer
1 and the j ™ element in the hidden layer 2.

¢ . isthe " neuron value at the input layer.

e Constant B is the learning rate.

Adjusting the weight sets between the layers and calculating the outputs is an
iterative process and is repeated until the errors fall below a predetermined tolerance
value. The allowable tolerance level and learning rates A and B are determined through
experiment. Large error tolerances will result in a poorly performing neural network,
while a very small allowable crror will result in an excessively long training time.

There are two most commonly used techniques for setting up the tolerance level
and learning rate for network training. [29]

1. Starting with relatively large error value and reduce it to a desired level, as
training 1s achieved at each succeeding level.
ii.  If the network fails to train the network at certain error tolerance value, then

incrementally lower the learning rate.

The following is the flow of the feed forward (back-propagation) neural network
procedure:

1. Initialize the weights.
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2. Present the input data vectors.
3. Operate the neural network.
4. Compute the error between desirable and calculated output.
If the error is smaller than the preset tolerance, stop the algorithm (Current
weights are the final weights).
5. Propagate the errors back to all the units towards the input layer.
6. Compute the adjusting value according to the error and adjust all the
weights.
7. If number of iterations exceeds the predetermined number, stop
(unsuccesstul, adjust learning rates and try the procedure again).
Once the training is concluded and the weights are adjusted, the network is
available to use for features identification.
A flow chart for the feature recognition from geometric reverse engineering data

15 shown in figure 24.
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Figure 24: Flow chart for neural network-based feature recognition.
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Chapter 5 — Testing of the Neural Network Algorithm

In this chapter, the training and the testing of the algorithm are discussed. The
algorithm was first trained with manually created synthetic data and then tested with
noisy data. The algorithm was subsequently tested with real reverse engineered data to

fully test the robustness of the neural network.

5.1 Training of the Neural Network

The neural network recognition algorithm must first be trained to recognize
features from the seven different shapes. Manually created synthetic data is presented to
the neural network for training. The desired output for the seven shapes formed the seven
dimensional vectors are as follows:

Circle: 1000000

Diamond : 0100000

Ellipse: 0010000

Rectangle: 0001000
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Square: 0000100
Triangle: 0000010
Wheel: 0000001

Figure 25 represents the sample input vectors and corresponding desired outputs.

6.0000 6.0000 0.0936 0O
1000000

7.0000 7.0000 0.0887 4
0100000

9.0000 14.0000 0.0516 0
0010000

9.0000 12.0000 0.0494 4
0001000

7.0000 7.0000 0.0704 4
0000100

5.0000 6.0000 0.1093 3
0000010

28.0000 28.0000 0.0195 0O
0000001

Figure 25. Sample input vectors presented to neural network.

In Figure 25, the first line shows the input vectors while the second line represents
the desired output vectors. The next two lines show the sets of input and output vectors.

The sample training vectors file were created by using random number generator.
The first set of sample input vectors were the perfect dimensions for each shape. A
random number generator is then used to create the rest of the input sample vectors. This

input sample file was presented to the neural network for the training.
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Since the solution to the input vectors during the training phase is known in
advance, the neuron values are corrected by triggering the back - propagation training
algorithm.

The transfer function performs the task to process the neuron values from the
input layer to the hidden layer or from the hidden layer to the output layer to generate the
desired output. For this work, the hyperbolic-tangent transfer function is used between
the hidden and output layers to train the neural network algorithm.

Adjusting the error tolerance to obtain the desirable results played an important
role in training the neural network. The error tolerance must be set before the neural
network algorithm stops correcting the neuron connectors. One technique to train the
neural network algorithm is to start with a large error value and then successively lower
the value as the network starts learning. Through testing, an error value of 0.05 and
learning rate values of 0.4 for A and 0.2 for B showed good agreement and gave reliable
results.

Also, it is important to decide the number of training vectors presented to the
neural network. © **1 It played an important role in the training of the neural network used
in deciding the type of feature that was being presented. For this purpose, synthetic data
are created to train the neural network algorithm. The neural network algorithm was also
tested after adding 10% noise in the synthetic data. The results are mixed, as the neural
network algorithm is able to recognize most of the desired features depending upon the
weight values to initiate the training. It was found that a minimum of 90 vectors is

required to train the neural network to recognize seven different types of features.
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During training, it was also been found that the network was sensitive to the order
the training vectors presented. For example, if the first vector pairs presented were to
represent a circle, the network biased towards the circle feature. Table 1 shows the output
for the learning rate values of 0.4 for A and 0.2 for B. The initial weights between the

input and hidden layers and hidden to output layers are w = v = 0.005 for k = 400

iterations.

Desired Classification Network classification

Cir Dia ElpsRec SqrTri Wl Circcle  Diamond  Ellipse  Rectangle  Square Triangle  Wheel

Circle 100 0 00009776 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224
Diamond 0 1 0 0 0 0 01.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ellipse 00 1 0 00 010000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rectangle 0 0 0 1 0 0 01.0000 0.0000 0.0000G 0.0000 0.0000 0.0000 0.0000
Square 00 0 0 1 0010000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Triangle 00 0 0 O 1 01.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Wheel 00 0 0 00 11.0000 0.0000 6.0000 0.0000 0.0000 0.0000 0.0000

Table 1: Set of classification values with sigmoid transfer function.

Table 2 represents the outputs with the hyperbolic-tangent transfer function for

the same parameters (A=0.4, B=0.2, w = v = 0.003 and k =400).

Desired classification Network classification

Cir Dia Elps Rec Sqr Tri Wi Circle  Diamond Ellipse  Rectangle  Square Triangle Wheel

Circle 10 0 0 0 00 00615 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033
Diamond 01 0 0 0 0 0 0.0036 0.9687 0.0030 0.0030 0.0030 0.0030 0.0030
Ellipse 00 1T 0 0 OO0 0002500107 09722 0.0022 0.0022 0.0022 0.0022
Rectangle 0 0 0 1 0 0 0 0.0018 0.0040 0.0067 0.9676 0.0017 0.0017 0.0017
Square 00 0 01 00 0.0000 0.0079 0.0000 0.0078 0.9660 (.0000 0.0000
Triangle 00 0 0 0 1 0 0.0000 0.0001 0.0000 0.0001 0.0134 Q.0000 0.0000
Wheel 00 0 0 0 01 NaN NaN NaN NaN NaN  NaN NaN

Table 2: Set of classification values with hyperbolic-tangent transfer function.
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Where NaN in Table 2, is the IEEE arithmetic representation in MATLAB for
Not-a-Number. A NaN is obtained as a result of mathematically undefined operations
like 0.0/0.0 and Inf-inf.

During the training, it has also been found that the network recognized the circle
feature by setting the initial weights w = v = 0.1. It has also been found that the network
is not able to distinguish the diamond feature from rectangle and square features if the
learning rate values are set as A=B=0.2. By setting A = 0.4 and B=0.2, the network
clearly recognized the diamond, square and rcctangle features. The neural network
algorithm was tested on a Dell PIII computer with 256 RAM, and the total processing
time to recognize the features is approximately four seconds.

The network trained for the geometric shapes recognized most of the shapes as
shown in table 2, but failed to recognize the wheel. One of the possible reasons is that the
wheel has multiple shapes (circle, hexagon, etc.) and the network may not be able to

recognize all the shapes together.

5.2 Testing of the Neural Network

After the training was concluded, the neural network should respond to the items
not in the training set. One of the approaches to do this is to select the noise option. The
usefulness of the neural network is measured from its response to noisy data, but at the
same time the intention for the neural network is not to tolerate unlimited noise.
Therefore, to fully test the ability of the network, the data corrupted with 10% noise was
presented to the network. For this purpose, a separate sample input file was created by

introducing 10% noise. This sample input file corrupted with noise was presented to the
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neural network. The outputs are significant as the network was able recognize most of

the geometric shapes.

5.3 Testing of the Algorithm with Real Reverse Engineering Data

To test the robustness of the segmentation algorithm developed in section 4.6 and
the neural network algorithm to recognize features, real reverse engineering data derived
from three test samples of each object feature at different orientations and dimensions
were used. The results of segmentation algorithm are shown in Figures 26, 27, 28, 29, 30

and 31.

Figure 26. Test sample “circle” and its segmented boundary
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Figure 27. Test sample “ellipse” and its segmented boundary
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Figure 28. Test sample “triangle” and its segmented boundary
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Figure 29. Test sample “rectangle” and its segmented boundary
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Figure 30. Test sample “diamond” and its segmented boundary
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Figure 31. Test sample “square” and its segmented boundary

The results from both ths segmentation and the neural network aigorithms are
promising. The rest of the test samples and segmentation algorithm results are shown in

Appendix A.
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The neural network was used to recognize the features of the object described in
Section 1.4. The outputs are satisfactory as the network is able to recognized most of the
geometric object features. Figure 32 represents the input vectors derived from the real
reverse engineering data from the objects described in Section 1.4 and presented to the

network for feature recognition.

a=5.8159; b=6.1433; alpha=5.3634*pi/180; nc=0;
Circle=[1000000];

a=6.7775; b=7.8032; alpha=5.0817*pi/180; nc = 4;
Diamond=[0100000];

a=9.1873: b=14.2755; alpha=2.9577*pi/180; nc = 0:
Ellipse=[0010000];

a=9.2376; b=11.5956; alpha=2.8298*pi/180; nc = 4;
Rectangle=[{0001000]:

a=7.6679; b=8.2436; alpha=4.0350%pi/180; nc = 4;
Square =[0 0001 00];

a=4.5739; b=6.0755; alpha=6.2626%pi/180; nc = 3;
Triangle=[0 00001 0];

a=28.3722; b=28.7355; alpha=1.1181*pi/180; nc = 0;
Wheel =[0000001];

Figure 32. Input vectors derived from real reverse engineering data.

The segmentation algorithms developed for this work are able to correctly
identify the boundaries of the physical objects from the huge, noisy, incomplete and

unstructured scanned data and then calculate the important parameters of each object that
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form the input vectors for the neural network. The feed-forward neural network used for
this work to reco gnize features from reverse engineered data are efficient in terms of:

1. Processing Time; The neural network algorithm took approximately
four seconds for processing to correctly recognize the feature.

2. Efficiency; The neural network algorithm when used with the
hyperbolic-tangent transfer function is more efficient in recognizing the
features of the geometric object as compared to the sigmoid transfer
function which was biased towards one shape.

3. Tolerance Level; The neural network algorithm works within . the
error tolerance level of 0.05 and learning rates of 0.4 for A and 0.2 for B.

The results of the technique (Feed-Forward Neural Network) used in this work for
features recognition and the algorithms developed for segmentation to obtain important
parameters are promising to recognize the feature, both in terms of efficiency and

processing time.
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Chapter 6 — Conclusion and Future Work

In this work, a feed-forward neural network based feature extraction system for
geometric reverse engineering data is presented. Geometry and topology data associated
with the object boundary are derived from methods described earlier in Section 4.5, and
an appropriate input vector for the neural network algoﬁthm was derived.

The main emphasis is to construct a CAD model from geometric reverse
engineering data by applying a feature recognition technique. Neural network fiature
recognition from réverse engineering is promising. Its capability in handling the noisy
and often incomplete data set confirms its desirable feature over conventional rule-based
algorithms. Two segmentation algorithms, one for a single shape and the second for a set
of multiple shapes (wheel), were developed to first segment the boundary of the object
from huge and unstructured cloud data and then calculate the important parameters that
form the input vector. A feed-forward neural network is used to recognize the features.

Both, the segmentation and neural network algorithms are programmed in MATLAB.
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The testing of the algorithm shows promising results, as the neural network was
able to recognize the features with an error tolerance of 0.05.

Whether this technique can provide sufficient recognition capability to serve a
universal set of features in any category of physical parts and how the artificial neural
network should be structured for this purpose require further research. Although
considerable work to extract features from scan data for geometric shapes has been
realized. Expansion of the number of defined features, multiple shape objects as well
adding to the number of surfaces of which the feature can be composed, for example,
filleted comers and other types of curved surfaces and finer details will be a future

extension.
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| Appendix A

Test samples and their segmented boundaries
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Figure 33. Test sample “square” and its segmented boundary
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Figure 34. Test sample “circle” and its segmented boundary
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Figure 36. Test sample “ellipse” and its segmented boundary
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Figure 37. Test sample “rectangle” and its segmented boundary
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Figure 38. Test sample “square” and its segmented boundary
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Figure 39. Test sample “square” and its segmented boundary
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Figure 40. Test sample “triangle” and its segmented boundary
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Figure 41. Test sumple “triangle” and its segmented boundary
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Figure 42. Test sample “diamond” and its segmented boundary
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Appendix B

Glossary of Terms
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Term

Definition

ANN

A Priori

B-rep

Back-Propagation

CAD

CAM

CCD

Cloud Data

CMM

Competitive learning

Connectors

Feature

Free-form surface

Kohonen SOM

Neuron

Artificial Neural Netwnrk — a computer algorithm
based on the architecture of a biological brain.

Information that was known beforehand.

Boundary Representation — A method used by CAD
Programs to model a solid with its boundaries.

Method to update connector weights in multi-layer
neural networks based on the error.

Computer Aided Design — A computer program that
allows for design on a computer.

Computer Aided Manufactuving - a computer
program to aid in the planning of a manufacturing

process.

Charged Coupled Device — a light sensitive
microchip used to capture images in video camera.

Term used to describe the cloud like structure of
data collected by scanner or sensor.

Coordinate Measuring Machine — a precise machine
used in industry to measure surface points

Type of neural network where in training, there can
only be one correct neuron.

Weighted links between neurons.

A combination of geometric entitics that together
have a meaningful purpose.

A surface not made of any geometric primitives.

Self Organizing Map — A neural network based on
competitive learning among neighboring neurons

A node in a neural network.
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Topology The spatial relationship of different surfaces to each

other.
Touch probe A sensor used for making measurements.
Voxel bin A cubic volume derived from a large volume.
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Appendix C

MATLAB Program codes
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%
% MATLAB code for segmentation of data for single shape object
%

clear all
close all

load circle.txt; %Loading Circle text file

x = circle(:,1);

y = circle(:,2);

z = circle(:,3); .

mz = mean(z); %Average (inean) of z ordinate
[n fl=size(z);

pitch = 0.5 % Scanning pitch

c=0;

form=1:n

if z(m) <mz
c=ctl;
zx(c¢,1)=x(m);
zy(c,1)=y(m);

end

end

Y mmmmmmmmem e Centre of the geometric object

zxm = mean(zx); % Mean of x ordinate
zym =mean(zy); % Mean of y ordinate

% Boundary points for constant y
y_min = min(zy); % Mininum values of y
y_max =max(zy); % Maximum values of y
a=zy." % y values in rows.

%n] -number of different points on y after eleminate the noise.

yl=y min:pitch:y max;
[f1,n1]=size(y1);

for j= 1l
y_num = find(a==y1(}));
x_val = zx(y_num);
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Xx_min =min(x_val);
x_max = max(x_val);
pG) =x_min;
q(j) = x_max;
end

% Boundary points for constant x

x_minl = min(zx); % Mininum values of y
x_maxl =max(zx); % Maximum values of y
al=zx." %x values in rows.

x1=x_minl:pitch:x_max]1; ,
[f2,n2]=size(x1); % size of the data

foru=1:n2
x_num = find(al==x1(u));
y_val = zy(x_num);
y_minl = min(y_val);
y_max1 = max(y_val);

pp(u) =y minl;

qq(u) =y _maxl;

end

s=0;
for k=1:n2
for g=1:n1
if (x1&)==p(g)x1(k)==q(g))&(y1(g)==ppk)ly1(g)==qq(k)))
I(x1(k)==p(g)Ix1(k)==q(g)&(y1(g)~=ppkK)|yl(g)~=qq(k)))

J((x1 (k3~=p(g)lxl &)=q(g)&(y1(g)==ppk)lyl(g)==qq(k))))
s=5+1;

X(s)=x1(k);
Y(s)=y1(g);
end
end
end

Ygmmmm e Re-arrange the boundary points in clockwise order---------------~

XC=X([1:6 91013 14 16 17 19:2:51 54 53 57 63 62 61 67:-1:64 60 59 58 56 55 52:-2:18
1511127 8));

YC=Y([1:691013 14 16 17 19:2:51 54 53 57 63 62 61 67:-1:64 60 59 58 56 55 52: 2:18
1511127 8]);

%n3 -no.of boundary points after eleminate the same points.
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[f3,n3]=size(XC);

Ygmmmmmmm e Distance between boundary points and centre----------------
for w=1:n3
dI(w) = sqrt((Y C(w)-zym)"2 + (XC(w)-zxm)"2);  %distance from the center
end
% Calculating the angles between the lines-------=---------

%d2 distance between 2 adjacent point.
%angl, angle between 2 lines by using cosine rule(from center).
%ang2, angle between 2 lines by using cosine rule (from st coner)
for wi=1:(n3-1)
d2(w1) =sqrt((YC(w1)-YC(w1+1))"2 + (XC(w1)-XC(w1+1))"2);
angl(w1) = acos({((d1(w1))*2 +(d1{(w1+1))"2-
(d2(wiN 2)/(2*d1(wl)y*d1(w1+1)))*180/pi;
ang2(w1) = acos(((dH (w2 +(d2(w1))2-
(d1(wi+1)"2)/(2*d1(w1)*d2(w1)))*180/pi;
end

% Calculating the corner formed- ———-
%adding the 2 adjacent angles on the a boundary point to find the corner.

for w2=1:(n3-2)

ang3(w2) = (ang2(w2+1)+(180-(ang2(w2)+angl(w2))));
end
%ang3.'

num_of coners=find(ang3==180);
[fe.ne]=size(num_of_coners);

disp(’ Y X"
[XC.YC]

disp('Distance from center')
dt.'

disp(‘ang(center)')

angl.'

plot(XC,YC,'x")
hold on

plot(zxm,zym,'x")

disp('"Mean distance from center')
mean(dl)
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disp(‘'Maximum distance from center")
max(dl)

disp(‘Mean angle between two lines')
mean(angl)

disp('Number of coners')

nc-4

Yofprintf("\n")
Yofprintf(’ %12. 11\t %12.1Rn %12.11\t %12.11\n',FO,F1,F2,F3)
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% -

% MATLARB codes for data segmentation for multiple shape object (wheel)
%o

clear all
close all

load wheel.txt, %Loading wheel text file

x = wheel(:,1);

y = wheel(:,2);

z = wheel(:,3); )

mz = mean(z). %Average (mean) of z ordinate
[n f]=size(z);

pitch=0.5 % Scanning pitch

%mean of z < z values

c=0;

form=1:n

if z{m) > mz
c=ctl;
zx(c,1)y=x(m);
zy(c,1)=y(m):
zz{c,1)=z(m);

end

end

%% Centre of the wheel -

zxm = mean(zx); % Mean of x ordinate
zym = mean(zy); % Mean of y ordinate

O gmmmmmmm e Find the min & max y values of the data ------=----m-----

y_min = min(zy):
y_max = max(zy);

Al

ay=zy." % y values in rows.

y1=y_ min:pitch:y_max;
[fyl.nyl]=size(yl);

%---- Boundary points on the outer circle & innner circles for const y ----
sy=0;
for jy = I'nyl
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y_num = find(ay==y1(y));
x_val = zx(y_num);
x_min(jy) = min(x_val);
x_max(jy) = max(x_val);

[ny2 fy2]=size(x_val);
for iy=1:(ny2-1);
if ((x_val(iy+1)-x_val(iy))>1)
sy=sy+1; % sy no.of pts inside the big circle
Xbl(sy) = x_val(iy);
Xb2(sy) = x_val(iy+1);
Ybl(sy) = yl(Qy):
end
end
px(y) = x_min(jy);  %outer circle pts
qx(jy) = x_max(jy);
end

%---- Seperate the RHS points belongs to 2 circles and groubed as Ist & 4the Quadrant --

eyl=0;
ey2=0;
ey3=0;
ey4=0;
ey5=0:
for ty=1:(sy-1)
if (Yb1(ty)>=33)&(Xb1l(ty)>zxm))
eyl=eyl+l;
YCbl(eyl)=Ybl(ty);
XCbl(eyl)=Xbl(ty);
XCb12(eyl)=Xb2(ty);
elseif ((Yb1(ty)>zym)&(Xb1(ty)<27.5))
ey2=ey2+1;
YCb2(ey2)=Ybl(ty);
XCb2(ey2)=Xbl(ty);
XCb22(cy2)=Xb2(ty);
elseif ((Yb1{ty)<25.5)&(Xb1(ty)<zxm))
ey3=ey3+1;
YCb3(ey3)=Ybl(ty);
XCb3(ey3)=Xbl(ty);
XCb32(ey3)=Xb2(ty);
elseif ((Yb1(ty)<zym)&(Xbl(ty)>35))
eyd=ey4+1;
Y Cb4(cyd)=YDbl1(ty);
XCb4a(ey4)=Xbl1(ty);
XCb42(eyd)=Xb2(ty);
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else
eyS=ey5+1;
YMb(ey5)=Ybl(ty);
XMbl(ey5)=Xbl(ty);
XMb2(ey5)=Xb2(ty);
end
end

Vpgmmm e Min. & max. x values of the data ~-~-—----
X_min = min(zx);

X_max = max{zx);

ax=zx." %x values in rows.

x1=x_min:pitch:x_max:
[fx 1.nx1}=size(x1):

sx=0;

for jx = 1:nx1
x_num = find(ax==x1(jx));
y_val = zy(x_num):
y_min(jx) = min(y_val);
y_max(jx) = max(y_val):

[nx2 fx2]=size(y_val):
for ix=1:(nx2-1):
if ((y_val(ix+1)-y_val(ix))>1)
sx=sx+1;
Y1(sx) =y _val(ix);
Y2(sx) = y_val(ix+1):
X1sx) =x1(x):
end
end
py(x) = y_min(jx);
qy(ix) = y_max(jx);
end

ex1=0;
ex2=0;
ex3=0;
ex4=0;
ex5=0;
for tx=1:(sx-1)
i (Y 1{Ix)>=33)&(X1(tx)>zxm))
exl=ex1+1;
XCl{ex1)=X1(tx);
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YCl(ex1)=Y 1(tx);
YC12(ex1)=Y2(tx);

elseif ((Y1({tx)>zym)&(X1(tx)<27.5))
ex2=ex2- 1;
XC2(ex23=X1(tx);
YC2(ex2)=Y 1(tx);
YC22(ex2)=Y2(tx);

elseif ((Y1(tx)<25)&(X1(tx)<zxm))
ex3=ex3+1;
XC3(ex3)=X1(tx);
YC3(ex3)=Y1(tx);
YC32(ex3)=Y2(tx):

elseif ((Y1(tx)<zym)&(X1(tx)>35.5))
exd=ex4+1:
XC4(ex4)y=X1(tx):
Y C4(ex4)=Y 1 (tx):
Y C42(ex4)=Y2(tx);

else

ex5=ex5+1;

XM(ex5)=X1(tx):
YMI(ex5)=Y 1(tx):
YM2(ex5)=Y2(tx):

end

end

%-- Eleminating the duplicate points and Re-arranging the points in clockwise direction -
m3=0;
m4=0;
m5=0;
mo6=0;
m7=0:
for mi=1:.exl

for m2=1:eyl

if

((XC1{m1)==XCb1(m2)|IXCl(m1)==XCb12(m2))&(YCbl(m2)==YCl(m1)|YCbl(m2)
==YC12(m1)N((XC1(m1)==XCb1(m2)|XC1(m1)==XCb12(m2))&(YCb1(m2)~=YC1(
mDYCbl(m2)~=YC12(mI)M)((XC1(m1)~=XCb1(m2)[XC1(m1)~=XCb12(m2))&(YCb
I(mM2)==YCl(mHYCb1(m2)==YC12(m1))))

m3=m3+1;

XA1T(m3)=XCl({m1l);

YA1(m3)=YCbl(m2);
end
end
end
for m8=1:ex1
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if (YC1(m&)==min(YC1))
m4=m4+1;
XA2(m4)=XC1(m8);
YA2(m4)=YC1(m8);
end
end
for m9=1:ex1
if (YC12(m9)>=49.5)
mS=mS5+1;
XA3(mS)=XCl(m9),
YA3ImS)=YC12(m9);
end
end
for m10=1:eyl
1 (XCb1(m10)==min(XCb1))
mé6=mo+1;
XA4(m6)=XCb1(m10);
Y A4(mS)=YCb1l(m10);
end
end
formll=1: 1
if (XCb: (m11)==max(XCb12))
m7=m7+1,
XAS(M7)y=XCb12(mll);
YAS(m7)=YCbl(mll);
end
end
XA6=[XA4 XAl XAS5 XA2 XA3];
YAG=[YA4 YAl YASYA2 YA3];
XA=XA6([1:1013:15 182021 23:2:35 84:95 39:2:51 54 57 56 62 61 69:-1:66 73:-1:70
65 64 63 60 59 58 55 53 52 50:-2:38 37 83:-1:74 36:-2:22 19 16 17 11 12]):
YA=YAG([1:10 13:1518 20 21 23:2:35 84:95 39:2:51 54 57 56 62 61 69:-1:66 73:-1:70
65 64 63 60 59 58 5553 52 50:-2:3%37 83:-1:74 36:-2:22 1916 17 11 12});
[XALYA]
%
n3=0;
n4=0;
n5=0;
n6=0;
n7=0;
fornl=l:ex2
for n2=1:ey2
if
((XC2(11)==XCb2(n2}|XC2(n1)==XCb22(n2))&(YCb2(n2)==Y C2(n1)|YCb2(n2)==
C22(nHNIXC2(n1)==XCb2(n2)|XC2(n1)==XCb22(n2))&(YCb2(n2)~=YC2(n1)|YCb2
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(n2)~=Y C22(n1)NH|((XC2(a1)~=XCb2(n2)|XC2(n1)~=XCb22(n2))&(YCb2(n2)==YC2(n
DIYCh2(n2)==YC22(n1))))
n3=n3+1;
XB1(n3)=XC2(nl);
YB1(n3)=YCb2(n2);
end
end
end
for n8=1:ex2
if (YC2(n8)==min(YC2))
n4=nd+1;
XB2(n4)=XC2(n8):
YB2(nd)=YC2(n8);
end
end
for n9=1:ex2
1if (YC22(n9)==max(YC22))
n5=n5+1;
XB3(n3)=XC2(n9);
YB3(n5)=YC22(n9);
end
end
for n10=1:ey2
1f (XCb2(n10)==min(XCb2))
n6=n6-+1;
XB4(n6)=XCb2(n10),
YB4(n6)=YCb2(n10);
2nd
end
fornli=l:ey2
if (XCb22(n11)==max(XCh22))
n7=n7+1;
XB5(n7)=XCbh22(nll);
YB5n7)=YCb2(nll);
end
end
XB6=[XB4 XB1 XB5 XB2 XB3};
YB6=[YB4 YB1 YBS YB2 YB3];
XB=XB6([1:11 14 1518 19:2:39 40 89:94 41:2:61 65 64 70 69 68 80:-1:71 67 66 63 62
60:-2:42 88:-1:81 38:-2: 2016 17 12 13]);
YB=YB6([1:11 14 15 18 19:2:39 40 89:94 41:2:61 65 64 70 69 68 80:-1:71 67 66 63 62
60:-2:42 88:-1:81 38:-2: 20 16 17 12 13]);
[XB..YB.'];
%
p3=0;
p4=0;
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p5=0,

p6=0;

p7=0;

for pl=1:ex3
for p2=1:ey3

if
(XC3(p1)==XCb3(p2){XC3(p1)==XCb32(p2))&(YCb3(p2)==YC3(p1)|YCb3(p2)==
C32(pHNI(XC3{p1)==XCb3(P2)|XC3(p1)==XCb32(p2))&(YCb3(p2)~=YC3(p1)[YCb3
(P2)~=YC32(pIIN((XC3(p1)~=XCb3 (p2)|XC3(p1)~=XCh32(P2N&(YCb3(p2)==YC3(p
DY Cb3(p2)==YC32(p1))))
p3=p3+1: |
XDH(p3)=XC3(pl):
YD Hp3)=YCb3(p2);
end
end
end
for p8=1:ex3
if (YC3(p8)==min(YC3))
pA=p4-+1;
XD2(p4)=XC3(p8);
YD2(p4)=YC3(p8):
end
end
for p9=1:.ex3
it (YC32(p9)==max(YC32))
pS=p5+1;
XD3(p5)=XC3(p9):
YD3(p5)=YC32(p9);
end
end
for pl0=L:ey3
if (XCb3(p10)==min(XCb3))
po=pb+1;
XD4(p6)=XCb3(p10);
YD4(p6)=YCb3(p10):
end
end
for pli=l:ey3
i (XCb32(pt 1)==max(XCb32))
p7=p7+1;
XD5(p7)=XCb32(pl1l);
YD5(p7)=YCb3(pll);
end
end
XD6=[XD4 XD1 XD5 XD2 XD3];
YD6=[YD4 YD1 YDS5 YD2 YD3];
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XD=XDG6([12 7:11 15 16 18 19 22:2:36 38:43 94 95 44:46 48:2:62 65 64 68 73 72 71
83:-1:74 70 69 67 66 63:-2:47 93:-1:84 37:-2:23 20 21 17 12:14 3:6]);

YD=YD6([1 2 7:11 15 16 18 19 22:2:36 38:43 94 95 44:46 48:2:62 65 64 68 73 72 71
83:-1:74 70 69 67 66 63:-2:47 93:-1:84 37:-2:23 20 21 17 12:14 3:6]);

[XD.,YD.];

9 -

q-=0;
q4=0;
gq5=0:;
q6=0;
q7=0;
for ql=l:ex4

for q2=1:ey4

if

(((XC4(q1)==XCb4(q2)|XC4(ql)==XCb42(q2))&(YCb4(q2)=YC4(ql)[YCb4(q2)==Y
C42(g)(XC4(q1)==XCb4(q2)|XC4(q1)==XCb42(g2))&(Y Cb4(q2)~=Y C4(ql)|YCb4
(g2)~=Y C42(q1)|((XC4(q1)~=XCb4(g2)IXC4(ql)~=XCb42(q2))& (Y Cb4(g2)==YC4(q
DYCb4(q2)==YC42(q1))))

q3=q3+1;
XE1(q3)=XC4(ql);
YE1(q3)=YCb4(q2):

end
end
end
for q8=1:ex4
if (YC4(g8)==min(YC4))
gd=qd+1.

XE2(q4)=XC4(g8);
YE2(q4)=YC4(q8);
end
end
for q9=1:ex4
if (YC42(g9)==max(YC42))
q5=q5+1;
XE3(g5)=XC4(q%);
YE3(q5)=YC42(q9);
end
end
for qi0=1:ey4
if (XCb4(q10)==min(XCbh4))
q6=q6+1;
XE4(q6)=XCb4(q10);
YE4(g6)=YCb4(q10);
end
end
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for q11=1:ey4
if (XCb42(q11)>=52)

q7=q7+1;
XES(q7)=XCb42(ql 1),
YES5(q7)=YCb4(ql1l);
end
end
XE6=[XE4 XE1 XES5 XE2 XE3];
YE6=[YE4 YE1 YE5 YE2 YE3];
XE=XE6([1:10 14:16 18 21 22:2:38 86:96 40:2:54 58 57 62 61 74:-1:67 66:-1:63 60 59
56 55:-2:39 85:-1:7537:-2:23 1920 17 11:13]);
YE=YEG([1:10 14:16 18 21 22:2:38 86:96 40:2:54 58 57 62 61 74:-1:67 66:-1:63 60 59
56 55:-2:39 85:-1:7537:-2:23 19 20 17 11:13]);
[XE.\YE.'];

%
13=0;
r4=0;
r5=0;
16=0;
17=0;
for ri1=1:ex5
for 12=1:ey5
if
(CXM(rD)==XMb1(12)| XM 1)==XMb2(r2))&(YMb(r2)==YM1(r1)[YMb(12)==Y M2(r]
INIEM(r1)==XMb1(r2)|XM(r1)==XMb2(12))&(YMb(r2)~=YM1(r1)[YMb(12)~=YM2(
rONEME1)~=XMDb1(2)[XM(r1)~=XMb2(r2))&(YMb(12)==YMI1(r1)|[YMb(r2)==YM
2(r1))))
r3=r3-+1;
XF1(r3)=XM(r1);
YF1(r3)=YMb(12);
end
end
end
for r8=1:ex5
if (YM1(r8)==min(YM1))
rd=r4+1,
XF2(rd)=XM(r8);
YF2(r4)=YM1(18);
end
end
for r9=1:ex5
if (YM2(r9)==max(¥YM2))
r5=r5+1;
XF3(r5)=XM(r9);
YF3(r5)=YM2(1r9);
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end
end
for r10=1:ey>5
if (XMb1(r10)==min(XMb1))

ré6=r6+1,
XF4(r6)=XMbl(r10);
YF4(r6)=YMb(r10);
end
end
for r11=1:ey5

if (XMb2(r1 1 )==max(XMb2))

r7=r7+1;
XF5(r7)=XMb2(r11);
YF5(7)=YMb(r11);
end
end
XF6=[XF4 XF1 XF5 XF2 XF3];
YF6=[YF4 YF1 YF5 YF2 YF3];
XF=XF6([1:4 6:911:2:17 18 42:45 22:2:26 29 34 33 38:-1:35 32:-1:30 28 27:-2:21 20 19
41 403916 14 12 10 5]):
YF=YF6([1:4 6:9 11:2:17 18 42:4522:2:26 29 34 33 38:-1:35 32:-1:30 28 27:-2:21 20 19
41403916 141210 5]);
[XFLYFE.'];

%
53=0;
for s1=1:jx

for s2=1:y

if

(((x1(s1)==px(s2)x1(s1)==qx(s2)) &(y 1(s2)==py(s D]y 1(s2)==qy(s I)O((x 1 (s1)==px(s2)|
x1(s1)==qx(s2))&(y1(s2)~=py(s)lyl (s2)~=qy(sI((x1(s1)~=px(s2)[x I (s]1)~=qx(s2))&(
y1(s2)==py(s1)|yl(s2)==qy(s1))))

83=83+1;

XGI(s3)=x1(sl);

YG1(s3)=yl(s2);
end
end
end
XG=XGI([1:10 18:23 28:31 35:3741:43 46:48 51 52 55 56 59 61 62 65 67 68 71:2:79
80:2:242 245 244 247:2:251 254 257 256 260 263 262 267 266 270 274 273 279:-1:277
285:-1:283 291:-1:289 299:-1:296 314:-1:308 322:-1:315 307:-1:300 295:-1:292 288:-
1:286 282:-1:280276 275272 271 269 268 265 264 261 259 258 255 253 252:-2:246
243:-2:81 78:-2:72 69 70 66 63 64 60 57 58 53 54 49 50 44 45 38:40 32:34 24:27
11:17]);
YG=YGI1([1:10 18:23 28:31 35:37 41:43 46:48 51 52 55 56 59 61 62 65 67 68 71:2:79
80:2:242 245 244 247:2:251 254 257 256 260 263 262 267 266 270 274 273 279:-1:277
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285:-1:283 291:-1:280 209:-1:296 314:-1:308 322:-1:315 307:-1:300 295:-1:292 288:-
1:286 282:-1:280 276 275 272 271 269 268 265 264 261 259 258 255 253 252:-2:246
243:-2:81 78:-2:72 69 70 66 63 64 60 57 58 53 54 49 50 44 45 38:40 32:34 24:27

11:17%);
[XGLYG
Yommmmmm e Distance between center and a boundary point --~---------

ma=(m3+m4+m5+mo6+m7);
nb=(n3+n4+n5+n6+n7);
pd=(p3+pa4+p5+p6+p7);
qe=(q3+q4+q5+q6+q7);
=3 +rd+r5+r6+17);

for wa=1:ma

da(wa) = sqrt((YA(wa)-mean(Y A))"2 + (XA(wa)-mean(XA))"2);
end

Yprmmmmmm e 2nd Quaed circle ------=~=----
for wb=1:nb

db{wb) = sqrt((YB(wb)-mean(YB))"2 + (XB(wb)-mean(XB))"2);
end

Ofgmmmmm e 3rd Quaed circle ---=--=-nm="----
for wd=1:pd

dd(wd) = sqrt((Y D(wd)-mean(YD))"2 + (XD(wd)-mean(XD))"2);
end

for we=1:qe
de(we) = sqrt({YE(we)-mean(YE))*2 + (XE(we)-mean(XE))"2);
end

Yfpmmmmmmmmmmmnam middle circle
for w=1:rf

dfiwf) = sqrt((YF(wf)-mean(YF))"2 + (XF(wf)-mean(XF))"2);
end

O mmmm e outer circle
for wg=1:53

dg(wg) = sqrt((YG(wg)-mean(YG))*2 + (XG(wg)-mean(XG))"2);
end
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% Calculating the angles between the lines------=-=="n-----

%Finding the distance between 2 adjacent point.
%Finding the angle between 2 lines by using cosine rule(from center).
%Finding the angle between 2 lines by using cosine rule (from 1st coner.of the triangle).

for wal=1:(ma-1)
dal(wal) = sqrt((YA(wal)-Y A(wal+1))"2 + (XA(wal)-XA(wal+1))"2);
angAl(wal) = acos(((da(wal))"2 +(da(wal+1))"2-
(dal{wal))*2)/(2*da(wal)*da(wal+1)))*180/pi;
angA2(wal) = acos({(da(wal))*2 +(dal(wal))"2-
(da(wal+1))"2)/(2*da(wal)*dal(wal)))*180/pi;
end ) '

for wbl=1:(nb-1)
dbl(wbl) = sqrt((YB(wb1)-YB(wb1+1)"2 + (XB(wb1)-XB(wb1+1))"2);
angBl(wbl) = acos(((db(wb1))*2 +(db(wb1+1))"2-
(db1(wb1))"2)/(2*db(wb1)*db(wb1+1)))*180/pi;
angB2(wb1l) = acos({({db(wb1))*2 +(db1(wb1))"2-
(db(wbl+1))"2)/(2*db(wb1)*dbl(wb1)))*180/pi;
end

for wdl=1:(pd-1)
dd1(wdl) = sqrt((YD(wd1)-YD(wd1+1)"2 + (XD(wd1)-XD(wd1+1))"2);
angD1(wdl) = acos(((dd(wd1))*2 +(dd(wd1+1))"2-
(dd1(wd1))"2)/(2*dd(wd1)*dd(wd1+1)))*180/pi;
angD2(wd1) = acos(({(dd(wd1))*2 +(dd1(wd1))"2-
(dd(wd1+1))"2)/(2*dd(wd1)*dd1(wd1)))*180/pi;
end

for wel=1:(qge-1)
del(wel) = sqrt((YE(wel)-YE(wel+1))"2 + (XE(wel)-XE(wel+1))"2);
angE1l(wel) = acos({(de(wel))"2 +(de(wel+1))"2-
(del(wel))"2)/(2*de(wel)*de(wel+1)))*180/pi;
angE2(wel) = acos(((de(wel))"2 +(del(wel))"2-
(de(wel+1))"2)/(2*de(wel)*del(wel)))*180/pi;
end

for wfl=1:(rf-1)
dfl(wil) = sqrt((YF(wfl)-YF(wfl1+1))"2 + (XF(wfl)-XF(wfl+1))"2);
angF1(wfl) = acos(((df(wfl1))"2 +(df(wfl+1))"2-
(df1(wf1))2)/(2*dftwfl)y*df(wil+1)))*180/pi;
angF2(wfl) = acos(((df(wfl1))*2 +(dfl (wf1))"2-
(df(wil+1)"2)/(2*df(wfl)*df1(wfl)))*180/p1;
end
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for wgl=1:(s3-1)
dgl(wgl) = sqrt((YG(wgl)-YG(wgl+1))"2 + (XG(wgl)-XG(wgl+1))2);
angGl(wgl) = acos(({(dg(wgl)"2 +{dg(wgl+1))"2-
(dgl(wgl))"2)/(2*dg(wgl)*dg(wgl+1)))*180/pi;
angG2(wgl) = acos(((dg(wgl)"2 +(dgl(wgl))"2-
(dg(wgl+1))"2)/(2*dg(wgl)*dgl(wgl)))*180/pi;
end
%

disp( YA XA

XA YA

disp(‘Distance from center (da)")
da.'

disp('angAl(center)")

angAl.'

disp(' YB XB)
[XB.,YB.]

disp('Distance from center (db)")
db.’

disp('angB1(center)")

angB1.'

disp( YD XDY
[XD.,YD."
disp('Distance from center (dd)")

dd.'

disp("angD1(center)")

angD1!

disp(' YE XE)
[XE.,.YE.

disp(‘Distance from center {de)')
de.'

disp('angE1(center)")

angEl.

disp(’ YF XF?Y)
[XF.,YF.]

disp('Distance from center (df)")
df!

disp(‘angF 1 (center)")

angF1.'

disp(  YG XG')
[XG.,YG.]
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disp('Distance from center (dg)")
dg.'

disp(‘angG1(center)')

angGl.'

% 1st Quard circle
for wa2=1:ma

(da(wa2)-mean(da))
end

%plot the boundary points.
plot(XA,YA,'g*")

hold on

plot(XB,YB,'x")

hold on

plot(XD,YD,'m+")

hold on

plot(XE,YE,'r0")

hold on

plot(XF,YF,"™*")

hold on

plot(XG,YG,'kx")

hold on
plot(mean(XA),mean(Y A),"™")
plot(mean(XB),mean(YB),"*")
plot(mean(XD),mean(YD),"*")
plot(mean(XE),mean(Y E),™*")
plot(mean(XF),mean(YF),"*")
plot(mean(XG),mean(Y G),’kx")
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%
% MATLAB codes for Feed-Forward Neural Network (Back-Propagated) Algorithm
%

% w  :Input-to-hidden layer weights

% v : Hidden-to-output layer weights

% k : # of iterations

% R : Reflected vector

% A : Learning rate b/w hidden and output connectors
% B : Learning rate b/w input and hidden connectors

% hidden : Hidden neuron values
% output : Output neuron values

clear all
close all

tic % Start a stopwatch timer

load input_data.txt
load desired output.txt

Yommmmmmmm e Initialize the weights -----~==emmmee-

for i=1:4
for j=1:7
w(1,j)=0.005;
end
end

for i=1:7
for j=1:7
v(1,))=0.005;
end
end

a = circle_datal(:,1);

b =circle datal(:,2);
alpha = circle_datal(:,3);
nc = circle_datal(:,4);

pl=desired_output(:,1);
p2=desired_output(:,2);
p3=desired output(:,3);
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p4=desired_output(:,4);
pS=desired_output(:,5);
p6=desired_output(:,6);
p7=desired output(:,7);
[n1 fl=size(a);

%Assigning the value to the shapes

for n=1:n1

Desired = [p1(n) p2(n) p3(n) p4(n) p5(n) p6(n) p7(n)}:

input(1)=a(n);
input(2)=b(n);
input(3)=alpha(n);
input(4)=nc(n);

O/ Network Trainig ~—ne

for k=1:400

% calculate the hidden neuron values
for i=1:7
hidden(i)=0;
for j=1:4
hidden(i)=hidden(i)+(w(j,1)*input(j));

end
end

% calculate output neuron value
for i=1.7
output(i)=0;
for j=1.7
output(i)=output(i)+(v(j,i)*hidden(j));
end
output(iy=(1-exp(-(output(i))))/(1+exp(-(output(i))));

end

%calculate total error
total error=0,
for i=1:7
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total_error = total_error + abs(Desired(i)-output(i));
end

if total _error < 0.05;
fprint{('1f\n’, output)

clse

% calculate reflected vector

fori=1:7
- R(1)=(Desired(i)-output(i))*output(i)*(1-output(i));
end

Y Update the weights

% update the weights b/w the hidden & the ouput layer
A=0.2;
fori=1:7
for j=1:7
v(i.j) = v(i,j) + (A*R(j)*hidden(1));
end
end

% calculate hidden layer error
for i=1:7

E_hidden(i)=0;

for 1=1:7

E hidden(i) = E_hidden(i) + (RG)*Vv(i,j));

end

E_hidden(i)=hidden(i)*(1-hidden(i))*E_hidden(i),
end

% update the weights b/w the input & hidden layer
B=0.2;
for i=1:4
for j=1:7
w(i,j) = w(i,j) #(B*E_hidden(j)*input(i));
end
end
end
end
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disp('The weights b/w input & the hidden")
w

disp(‘'The weights b/w the hidden & the output’)
v

disp("The output')

output

end
toc % Stop the stopwatch timer and display the elapsed time
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