
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2010

A peer-to-peer delivery system for internet short
video sharing
Maryam Bashardoust Tajali
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Tajali, Maryam Bashardoust, "A peer-to-peer delivery system for internet short video sharing" (2010). Theses and dissertations. Paper
683.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/683?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F683&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

A PEER-TO-PEER DELIVERY SYSTEM FOR INTERNET
SHORT VIDEO SHARING

by

Maryam Bashardoust Tajali

B.Sc. Computer Science, Ryerson University, 2008

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

MASTER OF APPLIED SCIENCE

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

© Maryam Bashardoust Tajali 2010

ii

Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

Maryam Bashardoust Tajali

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Maryam Bashardoust Tajali

iii

A PEER-TO-PEER DELIVERY SYSTEM FOR INTERNET SHORT VIDEO SHARING

M.A.Sc. Electrical and Computer Engineering, 2010

Maryam Bashardoust Tajali

Department of Electrical and Computer Engineering

Ryerson University

Abstract

In this thesis, we considered the effect of the content delivery network architecture on the

popular short video sharing websites such as YouTube. The high number of users demanding

videos impacts YouTube scalability which requires a new content delivery structure. Considering

the high performance of P2P overlay networks, we propose an efficient peer-to-peer based

system for short video sharing in the Internet in which all participant peers are responsible to

distribute video replicas they have stored. This system comprises of a BitTorrent like network

and a central media streaming server. To proficiently utilize P2P in our system, we propose some

important approaches including an efficient and reliable indexing scheme, an efficient

downloading strategy, a reliable content distribution mechanism, and a fairness policy. The

simulations results demonstrate that the proposed system significantly increases client peers

download speed while reduces the server workload and the startup delay for an improved

playback quality.

iv

Acknowledgements

I thank my enthusiastic, dedicated and hardworking supervisor Dr. Abdolreza Abhari for

his guidance and encouragement on my research. His invaluable supervision and enlightenment

are very much appreciated for my success in my Masters degree. This task would not have been

accomplished without him. I am very grateful for his support that helped me to achieve my goal.

 I would like to extend my gratitude and appreciation to all advisory committee members

for their guidance, positive criticisms, and helpful suggestions.

 I am deeply grateful to my father, whose guidance lid up my way and filled me up with

encouragement in my life. I am very much appreciative and grateful to my mother who helped

me on every step in my life, encouraged me every day, and had always been there for me. I am

thankful to my sister, Soheila, my best friend, for all her support, guidance and kindness that

helped me achieve my successes all my life. I am also thankful to my brothers, Siamak and

Masoud, for their care, encouragement, and guidance to my way here. I feel so blessed to have

such a loving family and grateful for their support and encouragement along the way with me to

where I am today.

This work was made possible by the facilities of the Shared Hierarchical Academic

Research Computing Network and Compute/Calcul Canada.

v

To my beloved parents, Aghdas and Soheil

for their love and support

 to whom all my successes belong to…

In loving memory of

 my father, Soheil and

my aunt, Anis

vi

TABLE OF CONTENTS

Chapter 1

1. Motivations and Objectives

1.1. Introduction and Problem Statement..1

1.2. Scope and Motivation...2

1.3. Contribution..3

1.4. Thesis Organization..4

Chapter 2

2. Background Information and Related Works

2.1. Background Information..5

2.1.1. Web 2.0 and Social Networking Phenomenon.............................5

2.1.2. Video-on-demand (VoD) and User-generated-content (UGC)....6

2.1.3. YouTube...6

2.1.4. BitTorrent...7

2.1.5. Architecture of P2P Networks..8

2.1.6. Network Latency...9

vii

2.17. Overlay Delay, Playback Delay, and Startup Delay....................11

2.1.8. Discrete-event Simulation and Trace-driven Simulation...........11

2.2. Related Works..12

2.2.1. Peer-to-Peer Streaming Networks vs Client-Server Streaming

Networks..12

2.2.2. Peer-to-Peer Video on Demand..12

2.2.3. Peer-to-Peer Fairness..14

Chapter 3

3. Proposed Peer-to-Peer Model and Implementation Strategy

3.1. P2P-based System for Short Video Sharing...16

3.1.1. The Proposed Approach in the Designed P2P Structure...........16

3.1.2. Streaming Strategy...19

3.1.3. Indexing Scheme..20

3.1.4. Content Distribution Mechanism...21

3.1.5. Fairness Strategy..22

3.2. Implementation Strategy...23

3.2.1. Assumptions...23

3.2.2. P2P-based Short Video Sharing System Implementation..........24

3.3. Conclusion...31

viii

Chapter 4

4. Simulation and Results

4.1. Simulation...32

 4.1.1. Simulation Architecture...32

 4.1.2. Simulation Settings..34

 4.1.3. Trace Files Description..35

4.2. Results...38

 4.2.1. Performance Metrics..39

 4.2.2. Bandwidth Improvement..41

 4.2.3. Network Traffic Improvement...43

 4.2.4. Startup Delay Improvement...45

4.3. Conclusion...47

Chapter 5

5. Conclusion and Future Work

5.1. Conclusion...48

5.2. Future Work...49

ix

List of Tables

4.1. Users’ bandwidth capacity and distribution...34

4.2. Maximum number of connections for each seeder peer...35

4.3. Trace files statistic..37

4.4. The statistics of the videos in trace files...38

x

List of Figures

3.1. The principle working of the proposed P2P model for short video sharing................18

3.2. Illustration of the indexing data structure for all the videos in the network................26

3.3. Illustration of the indexing data structure for all the active peers in the network.......26

3.4. Download process from multiple seeder peers..28

4.1. A part of the log file..36

4.2. Comparison of average download speed per client peer...42

4.3. Comparison of average upload speed of the server...43

4.4. Comparison of total data uploaded by the server..44

4.5. Comparison of average fragments downloaded...46

xi

List of Flowcharts

4.1. Illustration of processing the simulated request..33

xii

List of Algorithms

1. Locating source peers………………………………………………….…………...27

2. Downloading the requested video’s fragments…………………………….……....29

3. Applying TFT policy…………………………………………………...…….…….30

1

CHAPTER 1

1. Motivations and Objectives

In this chapter, the motivation and the objectives of this research as well as the

problem statement will be explained. The introduction and the problem statement are

given in subsection 1.1. The scope and goal of this research are explained in subsection

1.2. The contributions are summarized in subsection 1.3. The thesis organization is given

in subsection 1.4.

1.1. Introduction and Problem Statement

In general, there are two types of multimedia streaming available for the users: live

streaming and video-on-demand streaming (VoD). In live streaming, the multimedia

content is fresh and is being viewed live. In VoD streaming the freshness of the file does

not matter, since the content has been created and uploaded on the host server and it can

be played at any time. For that reason, VoD streaming delivered by video sharing service

providers has become very popular among Internet users. A good example of a universal

video sharing service that is highly used by Internet users is YouTube [1].

Peer-to-peer (P2P) topology utilizes various connections among the computer nodes in

the network, which results an increase in the total available resources and the capacity of

the system, in view of the fact that every node contributes bandwidth, computing power

and storage space to the network. These networks are dynamic, because many

heterogeneous hosts join and leave the network frequently and freely. P2P technology

offers a wide range of facilities for the users, including multimedia streaming, online

gaming, etc. P2P is especially highly demanded for its file sharing applications over

2

Internet such as BitTorrent [2]. In file sharing applications based on P2P topology, files

are stored and served over the network among users which requires a balance between

uploading and downloading files.

Recently, the rapid growth of sharing and streaming of video-on-demand and user

generated multimedia content has emerged on a high number of platforms that provide

services for requesting users. According to statistics [3], online video will exceed 91% of

consumer traffic by 2014 which includes video-on-demand and the traditional web video

(provided by TV providers). Among all, VoD traffic will double every two and a half

years until 2014. An example of a highly viewed video sharing service on the Internet is

YouTube which is ranked third among all Internet websites based on the three-month

traffic ranking in 2010 by Alexa [4]. Moreover, according to 2010 statistics provided by

YouTube website [5], over 2 billion videos are being watched every day and hundreds of

thousands of videos are uploaded daily. This raises high concerns about YouTube and

similar video hosting websites’ scalability and high costs of administration and service

providing.

1.2. Scope and Motivation

In recent years, P2P file streaming and downloading applications have become very

popular Internet applications, since they are able to serve users adequately on large

scales. Recent researches and studies show the significant improvement in the

performance of multimedia delivery by adopting P2P topology [6, 7, 8]. Considering the

characteristics and the benefits of P2P networks, it can be said that it is worth to examine

whether or not P2P based video streaming systems have the capability of providing a

reliable and scalable platform for Internet users to view any multimedia content.

As it is mentioned in subsection 1.1., the new generation of the media streaming services

have severe scalability and Internet bandwidth consumption problems. Considering that

3

the traditional client-server architecture is not scalable enough with high number of users,

applying P2P technology to streaming applications can be useful to decrease the load on

the server by utilizing each peer’s capabilities in the system. We examine that if utilizing

P2P for short video sharing can potentially solve issues that both users and host websites

have.

1.3. Contribution

The main contributions of this research are presented as follow:

 YouTube is considered so that the system performance of this popular service

provider can be improved by deploying the proposed system.

 The proposed P2P system integrates a model similar to the popular BitTorrent

protocol and a central media streaming server. This model has specific design

approaches with the purpose of building an efficient and reliable P2P network.

In this research, we propose an efficient and reliable peer-to-peer based network for short

video sharing in the Internet in which peers download videos and distribute the replicas

among other peers in the network. In this model, peers download and upload during

multiple various streaming sessions. A central media streaming server manages all the

videos and peers in the network. Every node peer acts as both client and server for sharing

short videos in the network. The central server keeps the information about all the videos

and all the active peers in the network. Moreover the central server acts as a tracker by

storing and managing the detailed information about from which peers each media content

can be streamed. Also in the proposed design, some important issues on system reliability

and scalability are addressed by proposing an efficient downloading strategy that reduces

the startup delay and guarantees a smooth palyback without disruption, a fairness strategy

that potentially increases peers’ contribution, an efficient indexing scheme by using the

central server, and a reliable content distribution mechanism. We design and implement a

4

P2P based network simulator to efficiently serve short videos on the Internet considering

that P2P streaming applications scale very superior even in the large crowd scenarios.

Simulated data from current popular multimedia serving website YouTube was used to

conduct experiments. The trace-driven simulations and experiments performed during this

research provide significant results which show the effectiveness of the proposed system to

reduce the server workload, to decrease the startup delay, and to improve the download

speed of the client peers.

1.4. Thesis Organization

The rest of the thesis is structured as outlined below:

Chapter 2 presents the background information and related works systematically. In

Chapter 3, the proposed P2P based short video sharing model and the implementation

strategy are provided. Chapter 4 presents the statistical analysis of the simulations and the

experiments performed. The thesis conclusion and potential future work is discussed in

Chapter 5.

5

CHAPTER 2

2. Background Information and Related Works

This chapter presents all the required background information and the significant related

works in the area of this research. The background information is given in subsection 2.1. The

related works are explained in subsection 2.2.

2.1. Background Information

2.1.1. Web 2.0 and Social Networking Phenomenon:

In recent years, the term Web 2.0 has been associated with web applications that are dynamic

and include more user interactions as opposed to Web 1.0 which was static and users could only

view the content that was created before. Web 2.0 websites allow users to interact and

collaborate with each other and contribute to the website by creating user-generated-content in a

virtual community. The examples of Web 2.0 technologies can be social networking sites, web

applications, video sharing sites, wikis, and blogs [9]. However the main success occurred within

the last few years by creation of popular social networks such as YouTube, MySpace [10],

Twitter [11], Flicker [12], and Facebook [13].

6

2.1.2. Video-on-demand (VoD) and User-generated-content (UGC):

VoD systems allow users to select videos from a large collection and then watch it with user

interactivity functions such as start, pause, fast forward, etc. VoD systems either stream the

content so that it can be watched in real time, or download it so it can be watched later. This is

done through a set-top box which can be a computer, a mobile phone, or any other device that

can receive multimedia content. Unlike live streaming systems, in VoD streaming systems the

freshness of the file does not matter, since the content is already pre-coded. Therefore users have

more control over the content which makes VoD systems increasingly popular among Internet

users such as YouTube [14]. As it is mentioned before, online video will exceed 91% of

consumer traffic by 2014 which includes video-on-demand and the traditional web video.

UGC refers to any kind of media content such as text, photo, or video that is produced by end-

users and is publicly available on the Internet [15]. In recent years, the new generation of the

video sharing websites operates as UGC-based sites such as YouTube [16] and provide a user

interactive platform for the end-users to upload their own video files, tag them with keywords,

rate and comment the videos, and etc. Unlike traditional video sharing sites, YouTube and

similar websites have become very successful because of the unique features they offer users.

For example in YouTube, videos are connected to related videos and popular videos are

noticeable based on the view count of each video.

2.1.3. YouTube:

In recent years, video sharing applications have become very popular among Internet users. The

example of the video sharing services can be YouTube, Metacafe [17], Tudou [18] (the largest

video sharing website in China) and other similar video hosting websites. Among all these,

YouTube is the most popular video sharing service on the Internet and it has been rapidly

growing since 2005 when it was created. Alexa Internet [4] ranks YouTube third of the Internet

sites in the world based on the three-month traffic ranking in 2010. According to 2010 statistics

provided by YouTube website [5], over 2 billion videos are being watched every day and this

number is rapidly increasing. Therefore it can be said that at present, YouTube has a significant

7

impact on Internet traffic. However, according to recent researches, YouTube has severe

scalability issues because of its current central architecture that services high number of users

daily [6, 19]. Therefore, by knowing that there is an ongoing rapid growth of the highly

demanded video sharing services, their costly high bandwidth consumption needs to be

considered and their scalability issues need to be addressed.

2.1.4. BitTorrent:

In recent years, BitTorrent has become the most popular file distribution protocol on the Internet

[8, 20]. A torrent file contains information about the files to be downloaded and the tracker.

Clients who are downloading a specific torrent are grouped in a swarm and each client can

participate in several swarms at a time. Each swarm is managed by a simple server called tracker

which keeps track of all the clients in the swarm and manages the clients. Peer who has the entire

file is called seeder and peer who is downloading the file is called leecher. Moreover, each

media file is divided into a number of small pieces (256 KB) where even these pieces are split

into sub-pieces (16 KB) so that a piece is downloaded from several peers at the same time [8].

After client downloads .torrent file, it contacts the tracker to get the list of the other peers who

are seeding or downloading the same file and then joins that swarm. To download the first piece,

it selects pieces randomly and downloads sub-pieces from multiple peers until the first piece is

completed as quickly as possible [20]. Then BitTorrent uses rarest-first strategy for download,

meaning that the client keeps track of the number of copies of each piece and downloads the

pieces with the fewest copies first.

In BitTorrent protocol, tit-for-tat (TFT) mechanism is employed to achieve the fair bandwidth

exchange [20, 21, 22]. This policy can be used to reduce the impact of free-riders in the system

and to monitor the sharing weight of each user. This ensures a balance between the download

and the upload for each user so that the sharing ratio of the user is close to the overall 1 (sharing

ratio: total bytes uploaded / total bytes downloaded). Considering that there is no central resource

allocation, each peer maximizes its own download rate by downloading from other peers. To

upload, a local client uses “optimistic unchoking” algorithm by which it randomly selects a

remote client to upload to or when it receives data from it. Thus, the local client increases its

8

seen performance by uploading data to remote clients. To conclude, BitTorrent handles peers

diverse upload bandwidths in two ways: TFT policy rewards peers with higher upload rates and

the distribution of sub-pieces speeds up the download process.

2.1.5. Architecture of P2P Networks:

P2P systems are overlay networks used for indexing and peer discovery. These networks are

formed dynamically by wide range of diverse nodes that are connected to the network in ad-hoc

fashion way. Each node in an ad-hoc network has the freedom of joining or leaving the network

without impacting the system notably. Moreover, every node acts as a server and a client at the

same time in the network [23]. Generally based on how the nodes in P2P overlay networks are

connected to each other, P2P architecture can be classified as two types: structured P2P networks

and unstructured P2P networks [24]:

 In structured P2P networks, the connections between the peer nodes are fixed and determined

by specific algorithms, providing a structure pattern of overlay links. In these systems,

Distributed Hash Table (DHT) is used for indexing in the network. Each data content is

identified by a key and DHT uses hash functions to assign keys to peer nodes in the network

in order to determine which peer is responsible for which content. This results an efficient

routing structure between peers when a search query is fired to locate those specific peers

that are holding the desired data content even if the data file is rare. An example of such a

system is Chord [25].

 In unstructured P2P, the overlay links are formed randomly without taking into account any

algorithms for optimizing the network connections or for organizing the existing network

connections. To search for a desired content, flooding mechanism is applied. This way the

peer submits the query which goes through the network to find as many peers as possible that

have the content and share it. If the data is popular, the query is most likely to be successful

in finding high number of provider peers. However, the main disadvantage of such network

architecture is that the queries may not always be resolved. For example in the case that the

data is not a popular content, which means it is not being shared by many peers in the

network then there is not a high chance that the search would be successful. Moreover

9

flooding causes significant network traffic and hence a poor search efficiency. The examples

of popular unstructured P2P networks can be Napster [26], KaZaA [27], Gnutella [28], and

BitTorrent. Researches show that in general, for today’s mass market data sharing

applications, unstructured overlays perform better with more support than structured overlays

because peers are extremely transient [29].

In particular, there are three models for this P2P architecture: Pure P2P, hybrid P2P and

centralized P2P. Pure P2P networks consist of peer nodes with equal efficacy and ability,

meaning that no special node exists in the network for example Gnutella 0.4. In Hybrid P2P,

there are special nodes with specific infrastructure functions called supernode for example

KaZaA. In centralized P2P systems, there is a central authority that manages and handles

indexing functions for the entire network and every peer node operates as both client and

server for file sharing such as Napster and BitTorrent. The centralized architecture has some

similarities with the structured architecture, however in centralized systems the connection

between peer nodes are not determined by using any specific algorithm or function. In

BitTorrent system the peer nodes share their files independent from the central server which is

called tracker. This gives such a system an advantage of being fault tolerance meaning that if

one of the provider peers disconnects from the network, there are other provider peers that

have the same desired content and are able to share it.

2.1.6. Network Latency:

Network latency or delay, is basically the time needed for a packet of data to be transferred from

the sender computer to the receiver computer. In some cases, latency is measured based on the

round-trip time which is the time it takes to send a packet from the sender to the receiver and to

receive back a response from the receiver to the sender [30]. It makes the most sense to measure

network latency by the round-trip time. This is because computers are constantly in the process

of sending and receiving bytes and are communicating with each other. Once a computer

receives some information, it will send some information back to the sender as well. When a

source node sends a packet, this packet travels through a path with several routers to get to the

destination node. There are several different factors that contribute to network latency. The most

10

important factors are processing, queuing, transmission, and propagation delays [30]. IP network

delays range between a few milliseconds to several hundred milliseconds. There are some

methods to improve each delay factor in a way that the user does not experience any noticeable

delay. Each delay factor is explained below:

 Processing delay: this is the time taken by routers to process the packet’s header and to

transmit the packet [30] which is actually the time between receiving the packet by the router

and then putting it into the transmission queue. It takes time for each gateway node (router)

to examine or change fields in the packet’s header. This delay depends on the processing

power of network devices [31]. Moreover, computer hardware might be a contributor to

network latency. In this case for example by upgrading to a faster processing network

devices or hardware, a faster transmission can be obtained.

 Queuing delay: it is the amount of time a packet waits in the routers’ queues [30]. Normally a

packet traverses through a collection of routers and switches. This delay depends on the

intensity of the traffic arriving to the queue [30]. Meaning that the time each packet spends in

the queue depends on the number of other packets that are arrived earlier and are waiting to

be transmitted, so each packet experiences a different delay depending on the traffic.

 Transmission delay (store-and-forward delay): in network latency, transmission delay refers

to the time taken to push all the bits of a packet into the medium link [30]. It should be

considered that the medium to transmit data whether wireless, optical fiber line, phone line or

others, has delay itself also. Transmission delay is a function of the packet’s length and the

link’s speed (bit-rate) and does not depend on the distance between computer nodes [30].

Since this delay is caused by the data rate of the medium link, this problem can be solved by

using faster mediums which reduce the latency and speed up the process. However, knowing

that in today’s networks, having high bit-rate connections is usual; this delay has a minimum

impact on the data transmission and therefore is negligible.

 Propagation delay: this is the time taken for the packet to traverse from the source node to the

destination node. This delay is a function of the physical distance between sender and

receiver routers and the link’s bandwidth between the sender and the receiver nodes [30]. In

11

general, the more distance between participant nodes, the more delay the transmission will

have but not a significant delay. It should be considered that this type of delay is harder to

control.

2.1.7. Overlay Delay, Playback Delay, and Startup Delay:

As it is mentioned before, P2P systems are overlay networks that are usually implemented as an

application network layer on top of the Physical network layer specifically Internet. There is an

important type of delay associated with the overlay networks. This delay is referred as overlay

delay which is the amount of time required for each computer node to establish connection to the

other machines.

During the playback, if the current playback trackbar position has not been downloaded yet, then

the playback stops for several seconds while more data is being downloaded and then viewer

continues watching the video. Playback delay occurs when the user’s download bandwidth is

lower than the requested video’s bit-rate [32]. Thus, the playback trackbar position should be

behind the download trackbar position to assure a continuous playback.

Startup delay is referred to the time that the user needs to wait for the player buffer to receive

data from the stream provider. The streaming bit-rate also has an effect on the startup delay.

2.1.8. Discrete-event Simulation and Trace-driven Simulation:

If the events aren’t guaranteed to occur at regular time intervals, event-driven simulation is an

appropriate choice to use. This approach handles these events in order of increasing time,

meaning that the events are prioritized. There are various types of event-driven simulation

models; however in this research discrete-event simulation based on trace-driven simulation is

the base for the simulated model. Discrete-event simulation uses a discrete-state model of the

system. It takes distinct values and models a system that progresses over the time where the state

variables of the system may or may not change instantly at specific and separate points of time

when an event occurs. A trace is a time-ordered record of events that is used as an input for the

simulation [33, 34].

12

2.2. Related Works

This section contains an overview on the related work:

2.2.1. Peer-to-Peer Streaming Networks vs Client-Server Streaming Networks

There are several research works on traditional streaming networks for examining of how P2P is

beneficial in terms of the server workload reduction for multimedia service providers on Internet.

Huang et al. [35] research on VoD in the Internet and its costly high bandwidth requirements.

Based on the nine-month trace from a client-server VoD deployed in MSN video [36], the

authors analyze some user behaviour and video popularity distribution and propose a peer-

assisted VoD system so that the workload of the server can be reduced. YouTube and similar

service providers are different than the traditional VoD services because of the limited control

the service provider has over the creation of user-generated-content [19, 37]. Zink et al. [37]

analyze user behaviour, access patterns for videos, and the popularity of videos from the users in

a campus network accessing YouTube servers. The results from using the collected data in a

trace-driven simulation present that caching reduces network traffic and saves considerable

bandwidth. Soraya et al. [19] study YouTube traffic over popular and regular videos, analyze

YouTube workload, and suggest that caching improves the network performance and scalability.

Some other significant research studies on P2P systems characteristics for future development of

P2P applications. Authors in [38, 39] measure and analyze a large amount of collected data from

PPLive and present valuable results on user behaviour and the system performance that can be

used to improve P2P VoD systems.

2.2.2. Peer-to-Peer Video on Demand:

In recent years, P2P file streaming and downloading applications have become very popular

among Internet users since they provide a scalable and reliable platform for content distribution

systems while they decrease the server workload. In P2P live streaming systems, the multimedia

content is fresh and is being viewed live such as CoolStreaming [40] and PPLive [41] that

13

provide live TV streaming (PPLive also provides VoD streaming). However in VoD streaming

systems the freshness of the file does not matter, since the content is made before it is viewed

[42]. Compare to the P2P live streaming systems, there are fewer P2P VoD streaming systems

such as PPLive, Joost [43], PPStream [44], and GridCast [45].

A common approach to obtain a scalable and reliable P2P VoD streaming system is proxy

caching or peers segment caching in the network [46, 47, 48]. Guo et al. [48] present PROP: a

scalable cache management mechanism based on structured P2P system that significantly

improves the quality of media streaming. Another approach proposed by Liang et al. [46] is a

distributed cache management model for large-scale P2P VoD which results efficient

management and usage of the cache content. In this system, overlay is comprised of some rings

where peers whose caching segments provide a full media file are organized into a ring so that

latency to locate a video clip is reduced. Jiang et al. [47] propose a chunk-based proxy scheme

for unstructured P2P VoD network. This scheme is evaluated by trace-driven simulations using

logs collected in GridCast. The results show that for large-scale P2P VoD systems, the proposed

approach significantly improves the quality of media streaming and the system scalability.

Most researches on VoD systems focus on constructing application-level multicast overlay in

which peers contribute to the system by uploading to the lower layer peers. Yang et al. [49]

design an efficient distributed VoD architecture that combines distributed server architecture

(DVoD) with multicast P2P system for a more scalable network. Guo et al. [50] propose P2Cast:

an architecture that is P2P based to stream video and extends multicast patching scheme. It

constructs an application overlay appropriate for streaming and provides a continuous playback

if disruption occurs. Gallo et al. [51] consider all types of video delivery (linear TV, VoD, time-

shifted TV (tsTV), network Personal Video Recorder (nPVR))1 and propose a distributed system

that uses IP multicast, distributed caching, and P2P content exchange for an efficient media

content distribution.

Other researches explore P2P VoD systems by presenting distinct approaches. Cheng et al. [6]

propose a P2P video sharing framework that explores the clustering in social networks called

NetTube. Based on measurements over YouTube videos, the authors present a bi-layer overlay in

which each peer caches the watched videos and pre-fetches predicted video files from the related

1LinearTV is the usual live TV program. tsTV is the broadcasted TV program with a time shift i.e. user
starts watching the program from the beginning when the program is broadcasted already.

14

videos of the first watched video. The results show that this system reduces the workload of the

server and improves the playback quality. Choe et al. [8] present Toast; a scalable VoD

streaming system based on BitTorrent that uses a streaming server to speed up the transfer. Xu et

al. [7] integrate an enhanced data-driven overlay network and a multi-way tree and propose

SDNet: a distributed storage-assisted overlay network to support P2P VoD services in which

videos’ segments are pre-fetched and stored in a distributed manner to achieve high search

efficiency and low latency.

The differences and similarities of the architecture of the proposed model with the similar works

in this area are presented in section 3.1.1.

2.2.3. Peer-to-Peer Fairness:

P2P file sharing networks depend on peers uploading and downloading data in the system. Some

peers called free-riders will not upload any data unless there is an incentive or policy to do so,

since users gain no personal benefits by uploading files [52]. The existence of free-riders and low

bandwidth peers diminishes the overall performance of P2P systems, in view of the fact that

these peers consume high download bandwidth while contributing very low upload bandwidth

in the network [21, 53, 54].

A common metric of fairness is the sharing ratio of a peer [54]. Sharing ratio is defined as the

total number of uploaded bytes divided by the total number of downloaded bytes. There is an

enforcement policy in some P2P communities that bans some peers if their sharing ratio is below

a specific threshold. This way users need to upload more data even when the target file is

downloaded completely. A fair sharing ratio among peers is obtained when each peer contributes

to the network as much data as it consumes. However it should be considered that in most P2P

networks high number of peers resides behind firewalls or NATs. Mol et al. [54] prove that

logically it is impossible to prevent free-riding when more than half of the peers are firewalled.

Firewall is a piece of software or hardware that is implemented to block unauthorized accesses to

the private networks while connecting to the Internet therefore increasing the overall security of

the system. NAT is a router used to translate between address spaces. Any peer behind firewall

or NAT, is able to initiate an outgoing connection to other peers and download or upload to

15

them. However, it cannot accept any incoming connections. As a result firewalled peers are

unable to connect to each other. Researchers in this area proposed different techniques that can

be used in some P2P networks to make two peers behind firewall able to establish a connection

[55, 56]. However it is considerable that when the number of firewalled peers increases, the

average sharing ratios of these firewalled peers decrease fast. So for that reason in such situations

free-riding cannot be avoided.

In BitTorrent, TFT mechanism is built to achieve the fair bandwidth exchange as it is explained

in section 2.1.4. However researches show that the current rate-based TFT cannot prevent

unfairness and poor network performance that is mainly caused by free-riders existence [57].

Bharambe et al. [53] propose a block-based TFT policy to reduce the unfairness in BitTorrent.

This policy achieves fairness in terms of the volume of the content served in the network.

Another research done to prevent free-riders and to improve the efficiency of optimistic

unchoking is the novel optimistic unchoking proposed by Ma et al. [22]. This algorithm uses

peer’s information obtained from the previous streaming and unchokes (uploads to) the peer with

the highest expected upload bandwidth.

To provide a better performance for contributing peers, Sherman et al. [21] present FairTorrent; a

distributed algorithm that is implemented in a BitTorrent client to reward peers based on their

contributions. So if a peer has uploaded the most data, it receives the best performance.

16

CHAPTER 3

3. Proposed Peer-to-Peer Model and Implementation Strategy

This chapter presents a reliable peer-to-peer based short video sharing system and the

implementation strategy. In subsection 3.1., the approach to design the proposed peer-to-peer

network for short video sharing in the Internet is discussed. Subsequently, subsection 3.2.

elaborates on the implementation strategy for the proposed P2P model. The conclusion of this

chapter is provided in subsection 3.3.

3.1. P2P-based System for Short Video Sharing

This section presents the detailed information of the proposed P2P system. First, the main

differences of the proposed system with similar researches are discussed and then the details of

this model and the significant design approaches are provided:

3.1.1. The Proposed Approach in the Designed P2P Structure

As it is explained in 2.2., there have been numerous researches on P2P systems characteristics

and performance. P2P systems can effectively handle the high number of requests in the network

since every peer operates as a client and a server. Most of the P2P systems developed for VoD

streaming are based on the proxy caching or distributed peers caching in order to reduce the

workload of the server [46, 47, 48]. Another technique for VoD delivery is based on overlay

multicast technology and some form of P2P network [49, 50, 51]. There are other works that

have proposed a unique P2P VoD system and have provided useful results shown by extensive

17

analysis and simulations [7, 8]. The great majority of these works consider traditional VoD and

utilize caching or overlay multicast to solve scalability and server load problems. However as it

is mentioned in 1.1., the new generation of video-on-demand and user generated multimedia

content has imposed significant increase on Internet traffic in recent years. Unlike all the works

done in this area (except [6]), we focus on YouTube and content distribution websites in order to

turn them into scalable and reliable service for Internet users. The approach in [6] is similar to

this work as the main focus is designing a peer-assisted model that suits YouTube and provides

the scalable delivery service for short video sharing. However, our distinct approach is modeling

a P2P network based on BitTorrent protocol by utilizing a central streaming server for short

video sharing on Internet which enhances the system performance by reducing server workload

in a scalable and reliable way. It should be considered that this research is among other few

researches performed in the area of short video sharing enhancement.

The proposed P2P-based short video sharing system integrates a P2P system similar to the

popular BitTorrent protocol where peers download and upload during multiple streaming

sessions. A central streaming server manages all the videos and peers in this network. The

system has an unstructured centralized architecture in which peers are self-organized in an

unstructured P2P overlay network; meaning that all the peers get seeder peers and videos

information from the server in order to form connections to the seeder peers in the network.

Furthermore, peers in this P2P network are least dependent on other peers in the network,

therefore they join and leave (after applying TFT policy) the system freely. The dedicated server

contains all the videos and keeps the information of all the videos and all the active peers in the

network. This central streaming server also acts as a tracker by storing and managing the detailed

information about from which peers each media content can be streamed. So when a new client

peer joins the network, it contacts the server to get information about the seeder peers that have

the requested video. If the video has not been downloaded by other peers, server uploads the

video to the client. Otherwise, the video is already watched by other users and can be distributed

by these peers as seeder peers and also server if required. Thus, the requesting peer connects to

the seeder peers and starts downloading the video fragments from multiple seeder peers

simultaneously and saves a complete replica of the requested video in its local disk. Figure 3.1.

illustrates how this network operates.

18

Consider the scenario that there is a fixed number of videos available in the network and peers

constantly join the network, download videos and keep replicas for future distribution, and never

leave the network. After a period of time, majority of videos have been downloaded and have

several seeder peers. Therefore, server does not need to upload any video to any client because of

high number of available seeder peers who already watched videos. It is clear that this ideal

scenario is almost not achievable because not all the videos are going to be requested in the real

system and also client peers cannot be connected to the network forever. However, the concept

of the proposed system clearly results a system in which peers cooperate in videos’ distribution

by adding their own upload bandwidth to the network, therefore reducing the workload of the

server.

In should be noticed that in this research, “client peer” or “client” is the requesting peer and

“seeder peer” or “source peer” is the provider peer who has the complete video file.

 Figure 3.1. The principle working of the proposed P2P model for short video sharing

Downloaded fragments from seeder peers
Downloaded fragments from server
Not yet downloaded fragments

Client Peer

Seeder Peer

Seeder Peer Peer

Peer

Central Server

19

3.1.2. Streaming Strategy

Researches show that the default BitTorrent download strategy does not work well for VoD

streaming because it does not consider when pieces are needed by the user [8] (as the download

mechanism is explained in 2.1.4.). To address this issue, the proposed download strategy

considers downloading pieces of the media content in a buffer window in order, which are

required for a continuous playback by user. This decreases the startup delay and can potentially

reduce the chance of pausing during view of the video.

This network has a dynamic structure in which every peer enters the network, sends requests to

watch different videos, downloads those videos and saves a copy of every new streamed video,

and then leaves the system if it has uploaded as much data as it has downloaded. In this system,

when multiple peers connect to a seeder peer to download a multimedia content, its upload

bandwidth gets split equally among all the connected peers. In the proposed P2P network, every

video is composed of number of fragments; each of 16 KB size similar to sub-pieces size in

BitTorrent. For every video, each replica of that video has the same number of fragments as the

original video. This is because it is assumed that there is no incomplete download of any video

and every seeder peer of a video has all its fragments.

Central Streaming Server:

In the proposed P2P system, when a client peer joins the system, it contacts the server to get the

list of available seeder peers for its requested video. If the video is going to be downloaded for

the first time, then the server uploads all the video’s fragments that will be needed earlier by the

viewer. For example peerID 2 (P2) requests videoID 4 (V4) that has 5 fragments: f1, f2, f3, f4, f5.

When P2 starts streaming V4, it actually downloads from f1 to f5. For example the downloaded

order can be f1, f2, f3 in 1st second and f4, f5 in 2nd second or f1, f2, f3, f4, f5 in 1st second. These

different scenarios can occur depending on the available upload bandwidth that server or the

seeder peer provides for this download as it is explained in details in section 3.2.2. As soon as

the client receives the complete replica of the video, it saves it on its local disk space and

becomes a seeder peer for that video. Moreover, during download from multiple seeder peers,

20

client can receives some fragments from the server relative to the server’s available upload

bandwidth. This ensures that the client receives all the required fragments as soon as possible for

the video playback and to distribute the fragments to other requesting peers as a seeder peer later.

Multiple Seeder Peers:

When a client peer requests a video that has multiple seeder peers other than server, then it

connects to those seeder peers and downloads the requested video’s fragments concurrently and

keeps a complete replica of the requested video. The number of fragments streamed from each

seeder peers is based on its available upload bandwidth. During this download session, server

may help seeder peers by streaming some fragments to the client so that all the video’s fragments

are received fast enough. This potentially has a positive effect on reducing the startup delay and

improving the playback continuity. It also should be noticed that in general, the client peer

downloads all the video’s fragments that will be needed earlier for viewing and saves the

complete replica on its local disk space and starts distributing the video’s fragments

subsequently. Hence, the users are able to provide their replicas to each other and reduce the load

on the server by contributing their upload bandwidth and storage space in the network.

3.1.3. Indexing Scheme

Data indexing in the system is done by hashing indexed key-words. Hashing-based indexing

makes the search system to be entirely controlled. As it is mentioned before, the central server

stores all the information of all the videos and all the peers in the network. Server constantly

monitors peers’ contribution in the network and updates the relevant information after every

completed download process. Unlike other approaches, the proposed model performs indexing

functions for both peers and videos which makes the entire network very easy to manage. The

main indexing functions based on videos id in order to locate the source peers. So when a peer

requests for the seeder peers of a specific video, server promptly responds with the list of seeder

peers of that video. Moreover, by using the other indexing based on peers id, it is easy to get

information about videos a certain peer has stored and manage the peers in the network.

21

In general, the main operations on the indexing tables are managed by central streaming server.

We refer to the indexing hash table of peers as peerMap and the indexing hash table of videos as

videoMap. Each line in the peerMap contains information about one peer and each line in the

videoMap contains information about one video. The following provides the details of each

operation:

Peer joins: When a peer joins the network and requests a video, a line is created in the peerMap

for this peer containing its information.

Peer leaves: Peer leaves the network if and only if it has uploaded as much data as it has

downloaded. Upon leaving the network, this peer is removed from the list of the seeder peers for

every video it shares in the videoMap.

Peer searches for seeder peers: Server provides a list of the seeder peers for the requested

video from the videoMap.

Peer downloads a new video: As soon as the client peer’s download is completed, server adds

the client peer to the list of the seeder peers of the current video in the videoMap.

3.1.4. Content Distribution Mechanism

In this research, YouTube popular daily videos that are requested by the users are considered.

The data used to conduct the experiments was synthetically generated similar to YouTube video

characteristics. In 2010, YouTube increased the duration limit of the uploaded videos from 10

minutes to 15 minutes which still fits in the short video category. The focus of this research is on

short videos that are noticeably smaller in size compared to the long length VoD and a small

number of these videos are watched daily by a client. Considering the large storage devices

currently available, it is rational to assume that it is possible for the client to save all the

requested videos on its hard disk. Therefore, every client contributes its upload bandwidth and its

22

storage space for the short video distribution in the network. As it is explained in 3.1.2., every

client peer in the proposed model keeps a replica of the viewed video on its local disk space

when receives the complete video file. This additional storage space builds a dynamic P2P

replication system for content replication that meets users’ needs.

There are several policies available in order to manage a cache of information stored on the

computer and to keep the storage space well-used. Least Recently Used (LRU) and Least

Frequently Used (LFU) policies can potentially be applied to manage a limited disk space. In the

proposed P2P network, LFU is the best fit to be implemented for discarding replicas that have

been requested least often than other replicas, daily or weekly (i.e. 5 videos with the lowest

access number are deleted every week).

3.1.5. Fairness Strategy

The major issue of BitTorrent download strategy occurs because of optimistic unchoking

mechanism. Researches show that 20% of maximum download rate of a peer can be consumed

by a free-rider using this strategy [57]. To address the free-riders problem, the strategy used in

the proposed model is a mechanism that enforces each peer to upload as much data as they have

downloaded. Thus, if a peer has not uploaded the amount of data equal or more than the amount

of data it has downloaded yet; it will remain in the network to distribute videos it has stored. This

increases the durability of each peer and hence increases the overall stability and bandwidth of

the network.

In the proposed P2P short video sharing system, each peer is required to apply tit-for-tat policy

in order to have a fair sharing of network usage. We assume that every peer in the network can

accept incoming connections and no peer resides behind NAT gateway or firewall. Therefore, all

the peers cooperate with each other to distribute the short videos in the network. To apply this

enforcement in the real system, a service provider can set specific rules that users should follow.

For instance if some users do not contribute in videos’ distribution, they may be banned from

future usage of the network resources.

23

3.2. Implementation Strategy

The implementation of the proposed P2P short video sharing system is based on some

assumptions presented in subsection 3.2.1. Subsequently, in subsection 3.2.2., the comprehensive

details of the proposed system implementation are described.

3.2.1. Assumptions

In the proposed P2P system, we assume that there is no incomplete streaming for requested

videos in order to have complete and equal size replicas of each video around the network. As it

is mentioned before, every video is divided into a number of fragments. For every video, all the

replicas have the same number of fragments as the original video. This means that if P12

becomes a client peer and requests V45, then it downloads V45 fragments from available seeder

peers and it stays in the network to share the video file after. Hence, P12 keeps a complete

replica of V45. As a result, V45’s fragments are equally available in the P2P network. Meaning

that if V45 has 3 fragments (f1, f2, f3) and there are 4 replicas of this video available around the

network, then there are four f1, four f2, and four f3 fragments available for distribution in the

network.

Furthermore, we assume that the client peer has enough disk space to store all the videos it has

watched. Since, a short video sharing network is simulated in which the videos have small sizes,

so storing them does not require an enormous amount of disk space even in scenarios that user is

watching high number of videos daily. For that reason, no replacement strategy mentioned in

3.1.4. has been implemented in this research as we assume each client employs sufficient disk

space to keep the received replicas.

Usually, video bit-rate of YouTube videos is mostly around 330 kbps [6]. Meaning that most of

the videos have been encoded at this speed to be streamed at this speed or higher speeds. This

needs to be guaranteed to ensure a continuous playback and a good viewing quality. If the peer’s

streaming rate is less than the requested video’s bit-rate, then the user needs to wait for a few

second until more data is transferred to his computer then continues to watch the video. One

24

reason that this situation occurs is when peer’s maximum download rate is less that the requested

video’s bit-rate, so user faces several pauses during watching the video. In this simulation, we

assume that every client peer assures the minimum streaming rate and is able to receive the

requested video with required video’s bit-rate so it does not encounter playback delay. Also

because of our distinct streaming strategy where users receive all the small fragments rapidly, the

startup delay is small and the playback can be continuous.

When it comes to multimedia content sharing, the most types of delays that can potentially affect

the streaming time are transmission delay and propagation delay. In the proposed short video

sharing system, transmission delay is negligible because of streaming small size fragments over

considerably high bit-rate connections knowing that nowadays majority of Internet users have

high bit-rate connections. In addition, we assume that the seeder peers are very close to the client

peers, therefore the propagation delay is not significant. For these reasons, it has not been taken

into account any network latency or time required to establish connections to other machines in

the simulation.

3.2.2. P2P-based Short Video Sharing System Implementation

The proposed P2P based system for short video sharing is simulated to evaluate this model. The

language used for the simulation of this P2P network simulator is Java 6.0 due to its portability

and extensibility in Eclipse IDE. The implemented simulator is a discrete-event simulation

model in which events occur at various times during the simulation process. Each request for a

specific video file is a discrete event, because it happens at an instantaneous time. These events

are prioritized and are handled by increasing time. As it is explained in 2.1.9., a discrete-event

simulation models a system in which a number of events occur at distinct points of time that may

change the state of the system. A discrete-event simulation of the proposed P2P short video

serving system has the following state variables: the number of peers in the network and the

status of the server. The number of the peers in the network changes when a peer joins the

network or leaves the network after it is done downloading and uploading. In the modeled

system, server performs management and indexing functions. The status of the server can be idle

or busy which changes whenever a peer joins or leaves or requests a video. Moreover, this

25

simulator is built as a discrete-event simulator that operates as a trace-driven simulator. Events

are the time-ordered requests of videos in a log file which is used as an input for the simulation.

The more details of the simulation are explained in section 4.1.

The simulator clock starts working when the simulation starts and then it moves forward with the

intention that the time in the simulation is synthetically equal to the time that the peer’s request

takes place in the trace. At each point of simulation time, the clock increases by 1 unit of

simulated time. This way, from the beginning to the end of the simulation process, the time is

artificially equal to the real time in the network.

In this network, the central streaming server has a constant upload bandwidth. Peers join the

network with diverse upload and download bandwidths to collaborate in distributing video files

(random bandwidth capacity is generated for each peer). The simulator model uses an input trace

and simulates peer activities including joining, leaving, indexing, video downloading, uploading,

and TFT policy that are explained next.

Joining and Indexing:

In the proposed model, the main indexing functions based on the videos. We added another

indexing in terms of peers in order to achieve an efficient indexing scheme that is managed by

server. All the videos in the network are stored in videoMap that maps videoIDs as keys to

corresponding associated values which are videos’ information. Figure 3.2. demonstrates an

overall view of the used data structure and indexing hash table.

26

In addition, when a client peer joins the network, a line is created in the peerMap with peerID as

the key to keep the detailed information of this peer shown in Figure 3.3. The indexing tables

build an efficient indexing scheme in the proposed system so that the server easily handles and

manages the information of all the videos and active peers in the network. The data structure

used for keeping the information of the peers is shown below:

Figure 3.3. Illustration of the indexing data structure for all the active peers in the network

Figure 3.2. Illustration of the indexing data structure for all the videos in the network

Videos’ Hash Table

K Videos

V2

V82

...

V543

V543 size duration seeder peers
list

... completed
fragments list per
client

V2 size duration seeder peers
list

... completed
fragments list per
client

... V82 size duration seeder peers
list

completed
fragments list per
client

... size duration seeder peers
list

... completed
fragments list per
client

Peers’ Hash Table

M Peers

P6

P6207

...

P19

P6207 requested
video ids list

request
time

Max
upload
speed

... video
replicas
list

Max
download
speed

P6 requested
video ids list

request
time

Max
upload
speed

... video
replicas
list

Max
download
speed

... requested
video ids list

request
time

Max
upload
speed

... video
replicas
list

Max
download
speed

P19 requested
video ids list

request
time

Max
upload
speed

... video
replicas
list

Max
download
speed

27

After the client peer enters the system, it contacts the server with requested videoID. Server then

responds back with the list of the seeder peers of that specific video. Subsequently, the client

peer establishes connections with all the seeder peers and starts downloading video’s fragments

in a small buffer window in order of the fragment ids. Algorithm 1 shows the indexing process

upon contacting the server.

Downloading and Uploading:

During downloading a video file by a client peer, every seeder peer transfers N fragments to the

client peer using as much upload bandwidth as it has available that takes one unit of time

artificially equal to 1 second. The client peer then receives all the required fragments in sequence

and keeps them in a buffer for viewing. Once a client peer downloads a complete video, it starts

uploading the requested fragments of that video to other client peers. Algorithm 2 presents a

general form of the download process in the simulated P2P network.

Suppose P16 requests downloading V5 which is composed of three fragments (each fragment is

16 KB size): f1, f2, f3. There is one seeder peer available for streaming with available upload

bandwidth of 96 KBps (768 kbps). Maximum number of fragments can be transferred through

this bandwidth is 6 fragments (96/16 = 6). So considering the available upload bandwidth, six

fragments can be easily streamed using this bandwidth in 1 second. However, in this case the

client peer only needs to download 3 fragments only from P16 to receive the complete video

which takes 1 second without the server’s assistant for a fast download.

for each video V in the video list videoList do

 if Vid is equal to the requested video id then

 send the seeder peers list peers to client peer C

 end if

end for

Algorithm 1. Locating source peers

28

In another scenario, suppose P16 requests downloading the next video V42 which is composed

of 10 fragments: f1, f2, f3, f4, f5, f6, f7, f8, f9, f10. The source peers to stream from are P3, P25,

and P83 with available upload bandwidths 96 KBps, 96 KBps, and 48 KBps respectively. Total

number of fragments that can be received in 1 second is 15 which is the summation of the

maximum number of fragments that can be transferred using each seeder peer’s upload

bandwidth (6+6+3). Since the total required fragments are 10, the complete video can be

buffered in 1 second by downloading from two of the seeder peers if enough upload bandwidth is

provided at the same time (without downloading from P83) as it is demonstrated in Figure 3.4.

It should be noted that, when multiple peers connect to a seeder peer to download fragments, its

upload bandwidth gets split equally among all the connected peers. To download all the

fragments of a video, the client peer receives more fragments from higher upload bandwidth

seeder peers. This means that each seeder peer contributes to the download process in

accordance with its available upload bandwidth. Furthermore, in order to receive the complete

replica of the video as fast as possible, the client peer downloads some number of fragments

from the server relative to the server’s available upload bandwidth by requesting starting and

ending fragments id. For example, if the server has 100 KBps upload bandwidth available, a

client peer who is going to download a relatively large size video that takes more time to be

Figure 3.4. Download process from multiple seeder peers

P16

P3

P25

P83

96 KBps

96 KBps

48 KBps

f1 f2 f3 f4 f5 f6

f7 f8 f9 f10

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

29

downloaded, can download maximum 6 fragments (100/16 = 6) from the server along with other

seeder peers and receive as many fragments as the total upload bandwidths provide

simultaneously and the download bandwidth of client permits. This mechanism guarantees that

the client would receive all the required fragments as soon as possible to have a small startup

delay and a continuous playback without disruption. Therefore, in the proposed model, the

download rate is higher than the playback rate which results a good viewing quality and a

continuous playback. It should be considered that in general, when all the participant nodes can

continuously playback the video with a very small start up delay, then it can be said that such a

P2P streaming system performs well and satisfies the required Quality of Service (QoS).

while the completed fragments list fragmentsCompleted is buffering fragments

for each seeder peer P in peers do

max_num_frag = getAvailableUploadSpeed(Pid) / frag_size

for each fragment f in the missing fragments list fragmentsMissing do

 receive f in fragmentsCompleted

end for

end for

end while

add C to peers of V

getAvailableUploadSpeed(peer_ id)

get peer_id maximum upload speed / number of connections to peer_id

Algorithm 2. Downloading the requested video’s fragments

30

Tit-for-Tat Policy:

TFT policy is enforced in the model similar to BitTorrent protocol. Meaning that there is a

balance between the download and the upload for each peer. Peers in the network are required to

upload as much data as they have downloaded so that free-riders are prevented to the possible

extent in the network. After tit-for-tat policy is performed by the peer, then the peer leaves the

system in order to have a dynamic P2P network. Algorithm 3 demonstrates the tit-for-tat policy

applied in the proposed P2P system.

for each seeder peer P in peers of V do

 if not P.isActive() then

 removeSeederPeer(P)

 end if

end for

isActive()

P uploaded bytes >= downloaded bytes

active false

removeSeederPeer(peer)

for each V in videoList do

 remove peer from peers of V, if it exists

end for

Algorithm 3. Applying TFT policy

31

3.3. Conclusion

In this chapter, an efficient and reliable peer-to-peer based short video sharing system is

proposed which is a hybrid model of a P2P network that combines the BitTorrent system and a

central media streaming server. This model is proposed to solve scalability and bandwidth issues

that YouTube and similar video hosting websites face. Subsequently, a number of distinct and

efficient approaches are proposed for indexing scheme, downloading strategy, content

distribution mechanism, and fairness strategy. Afterwards, to evaluate the proposed system, the

P2P network simulator is designed and implemented to serve multimedia content on the Internet

efficiently. In this chapter, the assumptions and implementation approaches to simulate the

system are presented. Next chapter presents how the proposed model has an enhanced

performance for short video sharing in the Internet by discussing the simulation’s results.

32

CHAPTER 4

4. Simulation and Results

This chapter presents the performed simulations and experiments followed by the results.

In subsection 4.1., the architecture and the settings of the simulation model are explained and the

comprehensive details of the input trace files are described. The results of the simulations are

systemically presented in subsection 4.2. This chapter is concluded in subsection 4.3.

4.1. Simulation

4.1.1. Simulation Architecture

As the architecture of this simulator is inclusively described in subsection 3.2.2., our simulator is

built as a discrete-event simulator that performs a trace-driven simulation. Here, events are the

time-ordered requests of videos in a trace file which is the input for the simulator. Each request

for a specific video file occurs at an instantaneous time and is handled by the server. At the

beginning of the simulation, the simulator clock starts working and increases by 1 unit of time as

the simulation advances forward. Therefore, the time in the simulation is synthetically equal to

the time that the peer’s request takes place in the trace. As a result, from the beginning to the end

of the simulation process, the time is artificially equal to the real time in the network. For

example a request read from trace is made at time 603 by P9; then the request is handled by

server when the simulation clock is at time 603. Flowchart 4.1. illustrates the simulation process

of handling the generated requests in the trace.

33

Flowchart 4.1. Illustration of processing the simulated request

No

No Yes

Yes

No

No

Yes

Download fragments
from server

If there is one
seeder peer

Download fragments
from seeder peers

If client received a
complete replica

Trace of the
generated data

Increase the
time

Retrieve next
peer request

Is peer in the
peerMap?

Handle the
requested video

Is the simulation
time equal to the

request time?

Receive the seeder peers list from
server for requested video

Add peer to
peerMap

Connect to
server

Add client to the seeder
peers list of the
requested video

No

Yes

34

4.1.2. Simulation Settings

The proposed P2P network is composed of one central media streaming server, multiple seeder

peers, and multiple client peers. The maximum upload speed of the server is set to 500 KBps

(4000 Kbps). The limited streaming capacity of the server makes service providing low cost for

the video hosting companies which is ideal. Every peer is randomly assigned a specific upload

and download bandwidth. Based on the study done on the bandwidth capacity of the Internet

users [35], a table is provided that shows the distribution of the bandwidths between the users in

4 input traces used in this system:

 Dialup/ISDN DSL Cable/Ethernet

Upload Bandwidth 256 kbps = 32 KBps 384 kbps = 48 KBps 768 kbps = 96 KBps

Download Bandwidth 256 kbps = 32 KBps 1500 kbps = 187 KBps 3000 kbps = 375 KBps

Share in the Network 7% 33% 60%

Number of Peers in
Log #1

889 4191 7620

Number of Peers in
Log #2

857 4043 7352

Number of Peers in
Log #3

867 4088 7435

Number of Peers in
Log #4

1050 4950 9000

Table 4.1. Users’ bandwidth capacity and distribution

35

For each peer including server, a limit is set for the number of parallel connections. Server may

upload to 20 client peers at highest simultaneously. Peers in the network have various

connections limit in accordance with their upload bandwidth; meaning that they are able to

upload to that exact maximum number of client peers concurrently. Table 4.2. shows maximum

number of connections for each peer in the network.

4.1.3. Trace Files Description

This section presents the process of generating log files containing user requests which are used

to conduct the experiments. The simulated data is generated using a distribution simulator

software [58] developed based on the real data distribution in the popular multimedia serving

website YouTube. Figure 4.1. shows a part of a trace file that is fed into the simulator as the

input file. The number of the peers requesting short videos, the number of requested videos, and

the number of requests are distinct in each trace. For each client peer a random value is given

between 1 to 8 which represents the total number of video requests at specific times. There are

40000 unique popular short videos on the server side. The mean of the videos’ sizes is around 10

MB and the mean of the videos’ durations is approximately 5 minutes. In total, four log files are

input into the simulator to simulate the user traffic in the proposed P2P model in order to

compare the results with the client-server system. Three traces contain users’ requests for short

videos for the duration of one week and the largest trace represents users’ requests for unique

short videos for a two weeks period. This trace is the continuation of one of the one week trace

(trace #1) that is intentionally used to present the improvement of the system performance as the

time progresses.

 Dialup/ISDN DSL Cable/Ethernet

Upload Bandwidth 256 kbps 384 kbps 768 kbps

Maximum Concurrent Connections 2 3 6

Table 4.2. Maximum number of connections for each seeder peer

36

To generate arrival time for each request in the log files, Poisson distribution is used. In general,

Poisson distribution is used to model the number of arrivals over a fixed time interval where the

arrivals are independent of one another. In this network, the streaming request arrival pattern

follows Poisson distribution where for each peer the next request time is determined after the

current access time. This ensures that for every client peer’s successive request, the request

arrival time occurs after the previously requested video is entirely streamed so that there are no

incomplete video download during the simulation process. The abandon time for each peer is

actually the time that the peer has performed required data upload and thus it is allowed to leave

the network.

Statistics of Log Files:

The general information regarding to every trace used to conduct the experiments are presented

in Table 4.3. The example of the last two statistics is when C1 and C8 request to watch V6 for

Arrival
time

Peer
ID

Video
ID

File
size
(KB)

View
count

Duration
(sec)

Average
rating

Rating
count

Selection
probability

Related
videos
Number

Child
pointer

44 124 29386 9832 338815 492 1.000000 412 1225336748 6 16558

54 118 13973 7347 47482 469 2.000000 1145 574848974 5 12901

67 261 33304 7315 24216 140 4.000000 5 1388856255 0 0

75 1429 1743 10716 25965 313 4.000000 259 70263256 2 18675

89 2121 1743 10716 25965 313 4.000000 259 70263256 2 18675

110 1314 35156 3443 48297 68 4.000000 22 1465339454 6 5187

Figure 4.1. A part of the log file

37

the first time, they save a replica of V6. If C1 has another request to watch V6 again, it will not

make a replica of it because it already has the file. So, there are two requests to make a replica

and one request to watch a video that is already saved on client’s machine. Table 4.4. provides

statistics of the requested videos in each trace.

Number

of

requests

Number

of

clients

Number

of

videos

Number

of videos

requested

once

Number of

videos

requested

more than

once

Number of

video requests

to save a

replica

Number of video

requests to watch

already saved

replicas

Log

#1
36141 12700 16112 10016 6096 33550 2591

Log

#2
35010 12252 15799 9905 5894 32876 2134

Log

#3
37594 12390 16570 10066 6504 34959 2636

Log

#4
67335 15000 24000 10838 13162 61440 5895

Table 4.3. Trace files statistics

38

4.2. Results

In this section, the results of the simulations are presented through performance analysis of this

model. A specific high performance system was used to perform simulations in this research

[59]. The total of 4 log files are input into the simulator to simulate the network traffic. The log

files with one week users’ accesses are referred as the short traces and the log file with two

weeks users’ accesses is referred as the long trace. It is shown how the proposed P2P model

results an overall improvement in the system performance for the media server and the client

 Mean of video sizes

(MB)

Mean of video view

counts

Mean of video durations

(min)

Log #1 10.83 81573.2 4.28

Log #2 10.46 120600.3 4.45

Log #3 10.09 142264.2 4.36

Log #4 10.72 82070.95 4.28

Table 4.4. The statistics of the videos in trace files

39

peers in the network. The main intention of this research is reducing server workload the same as

other researches in this area. First the bandwidth consumption is presented. Then, the results of

the network traffic in terms of the data bytes are provided. And in the end, the startup delay of

the video is examined.

4.2.1. Performance Metrics

The designed and implemented P2P network simulator takes each trace file as the input and

simulates the user traffic as the output. The results are acquired by analyzing and comparing the

simulated network traffic of the proposed P2P short video sharing system and the traditional

media streaming networks in terms of performance analysis.

To measure the performance of the proposed system, several performance metrics are applied on

the simulated user traffic. The results are analyzed using the following metrics:

 Server average upload speed for each client peer: Us

 Client peer average download speed for each requested video: Dc

 Total data bytes uploaded by server for each requested video: Bs

 Total number of fragments download in the 1st second by client peer: Fc

 Total number of client peers during simulation process: C

 Total number of client peers downloaded from server: c C

40

Average download speed per client peer:

To obtain the average download speed per client peer, the summation of all requesting peers’

average download speed is divided by the total number of requesting peers.

Avg. Dc = ∑ Dci / C

Average number of fragments received in the 1st second of streaming by client peer:

The average of received fragments in the 1st second of streaming is determined by the summation

of all the fragments downloaded in the 1st second of downloads done by all the client peers

divided by the total number of client peers.

Avg. Fc = ∑ Fci / C

Average upload speed of the server:

To calculate this average value, total server upload speed is divided by the total number of

requesting peers received data from server during simulation time.

Avg. Us = ∑ Us / c

Total data uploaded by the server:

This is the summation of all the video fragments bytes uploaded by the server in all downloads

from server.

Total Bs = ∑ Bs

i = 1

C

i = 1

C

i = 1

c

i = 1

c

41

4.2.2. Bandwidth Improvement

The overall bandwidth improvement for both client peers and streaming media server is

examined. In general, users who desire to watch a video expect the video to be streamed fast

enough so that they can move the playback trackbar to different parts of the video. The

architecture of the proposed model provides a reasonably fast download and increases the

download speed of each client peer. This is because of the peers’ bandwidth contribution to the

system. Moreover, the proposed replication mechanism allows users to efficiently collaborate on

distributing videos over the network.

The proposed system is reliable because replicas have multiple seeder peers and scalable since

TFT policy enforces seeder peers to stay in the network. We study the peers’ resilience in the

proposed model with regards to effectiveness of the obligatory TFT policy. The analysis of TFT

results from the short traces shows that on average peers remain in the network for

approximately 2 to 2.5 days (simulated time that is artificially equal to the real time) to upload as

much data as they have received and then leave the network. The study on the long trace presents

that peers online duration is almost 3 days. This verifies that as the number of requests increases,

on average peers would stay somewhat longer in the network. This is because when the time

advances forward, more peers are able to upload as much data as they have downloaded and

therefore are allowed to leave the network. As a consequence, the average time peers stay in the

network will slightly increase. When peers stay longer in the network (online duration), then it

results a more stable overlay and a better quality of the streaming service. Therefore, the

proposed P2P network is practically stable.

The analysis on the bandwidth speed from the short traces shows that in the proposed system

client peers are receiving videos’ fragments by using about 48.98%, 53.85%, and 51.84% more

download bandwidth than the client-server system for trace #1, trace #2, and trace #3

respectively. As the time extends and the simulation progresses, more video requests take place

and more seeder peers are added in the network to distribute more video replicas. The results of

the long trace confirm the improvement of the download bandwidth by about 65.14% for client

peers. As a result, peers contribute approximately 3 times more bandwidth for downloading

videos compared to the client-server model. Figure 4.2. compares the simulations results in terms

42

of the average download bandwidth received by the client peers in the proposed P2P model and

the client-server system.

The most important performance goal is reducing the server load that we intend to achieve. In

the proposed architecture, server administrates and contributes in the network. Primarily, the

central media streaming server functions as a tracker by which client peers can locate the source

peers of the requested videos. Furthermore, the server’s upload bandwidth is employed as seeder

peers’ assistant during each download session because of high bandwidth every media server

utilizes.

The results of the simulations demonstrate that this architecture decreases approximately

27.67%, 26.27%, and 28.12% of the server’s upload bandwidth consumption for trace #1, trace

Figure 4.2. Comparison of average download speed per client peer

43

#2, and trace #3 correspondingly. As the simulation advances, certainly the usage of the server’s

upload bandwidth decreases further. This improvement is justifiable by considering the long

trace results of around 36.14% less consumption of the server’s upload bandwidth compared to

the client-server model. This is quite an improvement in reducing the load on the server even

when server is contributing in videos distributions in the network. Figure 4.3. compares the

consumption of the server upload speed in the proposed P2P architecture and the client-server

architecture.

4.2.3. Network Traffic Improvement

As it has been justified, the consumption of server upload bandwidth is noticeably reduced in the

proposed system. Furthermore, the total data that is uploaded by server is also decreased. The

Figure 4.3. Comparison of average upload speed of the server

44

results show that about 22.40%, 23.10%, and 24.31% less bytes are uploaded by server in this

model using trace #1, trace #2, and trace #3 respectively as the simulator inputs. In addition, the

analysis of the long trace results provides about 33.45% improvement in terms of reducing the

amount of data bytes uploaded by server compared to the client-server architecture.

With regards to the server role in the proposed P2P model, server uploads data to client peers

even when multiple seeder peers are providing video fragments to the user in order to have a

very fast download process. As the time advances forward and more and more requests occur,

the number of seeder peers available for a certain video increases. This eventually decreases the

use of the server upload bandwidth and the amount of data uploaded by server in a download

process in the view of the fact that seeder peers provide enough download bandwidth for a fast

reception of the complete replica. This undoubtedly offloads considerable works from server in

the network. Consequently, the proposed P2P architecture certainly decreases the network traffic.

Figure 4.4. compares the share of the server in the download sessions during simulations in this

P2P model and the client-server system.

 Figure 4.4. Comparison of total data uploaded by the server

45

4.2.4. Startup Delay Improvement

In the proposed P2P network, client peers download required fragments from multiple seeder

peers and server simultaneously. These fragments are received and buffered in order at client’s

machine. With regards to the proposed download strategy, it is considered to downloading the

pieces of the requested short video in order of the required fragments which will be needed for a

continuous playback by the user. In addition, the server’s upload bandwidth is utilized along with

other seeder peers’ upload bandwidths for fast download of the videos if necessary. This

promises that all the required fragments of the requested video are received as soon as possible.

Accordingly, in the proposed P2P network, the download rate is higher than the playback rate to

achieve a continuous smooth playback with a small startup delay and without any interruptions.

We assume that the minimum downloading rate is guaranteed for all the client peers with the

intention of neglecting playback delay.

Upon requesting a video, usually the player buffer is set to hold the 5 seconds of initial data; as a

result, the startup delay takes this time as a minimum which typically takes longer for viewers.

So, in this simulation because of the fast download, the buffering time of 1 second is considered

and therefore the number of fragments that the client peer receives in the 1st second of download

process is reported. The results from the short traces demonstrate that the startup delay using

trace #1, trace #2, and trace #3 is approximately 55.48%, 63.86%, and 56.85% improved

respectively in this model compared to the client-server network. Moreover, the results of the

long trace show about 67.83% reduction in the startup delay. The analysis of the long trace as a

more stable network shows that approximately 15% of each video is received in the 1st second of

download process considering the average received fragments in the 1st second in the proposed

P2P model (1453 KB) and the video sizes mean (around 10240 KB). This results of downloading

nearly 75% of the video in 5 seconds with regards to the minimum set startup delay if the client

continues to receive this average number of fragments in every second of download process.

Thus, the complete video file is downloaded in about 7 seconds if ignoring the network delay,

which is close to the typical minimum set startup delay with this significant difference that in this

time the complete video is received not the initial data. As a result, the distinct proposed model

decreases the startup delay and assures a good playback quality. Figure 4.5. compares the

46

average received fragments in the 1st second of download process in the proposed model and a

client-server system.

Figure 4.5. Comparison of average fragments downloaded

47

4.3. Conclusion

The evaluation and analysis of the proposed P2P short video sharing system show a noticeable

improvement in the system performance. In this chapter, the extensive simulations and

experiments performed provide the results that demonstrate the effectiveness of the proposed

architecture for short video distribution in a reliable and scalable fashion. In this model, peers

contribute their upload bandwidth in the network. This results a reliable and scalable system with

high number of video providers in which the download bandwidth received by the users is

significantly increased in a range of approximately 48.98% to 53.85% for one week of access

and about 65.14% for two weeks of access. Also, this model reduces the load on the server from

about 26.27% to 28.12% for one week and around 36.14% for two weeks. Moreover, the

network traffic is decreased in a range of about 22.40% to 24.31% for one week and about

33.45% for two weeks. At last, the startup delay is examined in the proposed model and the

results present that the startup delay is lessened approximately 55.48% to 63.86% for one week

of access and about 67.83% for two weeks of access, which results providing a good playback

quality.

48

CHAPTER 5

5. Conclusion and Future Work

This chapter presents the conclusion of this thesis by explaining our contributions and

approaches in subsection 5.1. Future work is presented in subsection 5.2.

5.1. Conclusion

The rapid growth of the highly demanded video hosting websites has a considerable impact on

the Internet traffic. Among all, YouTube holds the highest rank in traffic. In this thesis, an

efficient and reliable P2P short video sharing system is proposed that operates similar to famous

BitTorrent protocol. Our P2P system embraces a central media streaming server that performs

administration tasks, manages videos’ requests, and contributes in videos distribution in the

network. We proposed important approaches to efficiently utilize P2P in the proposed system

which include an efficient indexing scheme in terms of videos in order to locate source peers, an

efficient downloading strategy for a good quality playback, a reliable content distribution

mechanism, and a fairness policy to increase peers contribution in the network.

The proposed peer-to-peer system then is implemented in order to simulate the user traffic. We

have performed extensive simulations and experiments to examine the system performance in

this model. The simulations have been conducted by using a trace file containing generated users

requests for popular short videos resembling YouTube data distribution. The analysis of the

results presents that the proposed model improves the download bandwidth of client peers in a

49

range of approximately 48.98% to 53.85% for one week of access and about 65.14% for two

weeks of access. Also, the load on the server is reduced nearly about 26.27% to 28.12% for one

week and around 36.14% for two weeks, since peers are contributing their bandwidths and disk

spaces in the system. In addition, the network traffic is considerably reduced in a range of

approximately 22.40% to 24.31% for one week and about 33.45% for two weeks. Furthermore,

there is a significant reduction in the startup delay in a range of about 55.48% to 63.86% for one

week and about 67.83% for two weeks. Hence, a continuous playback without disruptions is

achieved for users.

With respect to the experiment’s results, it can be stated that the proposed peer-to-peer system

has a reliable and scalable architecture for short video sharing and is able to support thousands of

simultaneous users. The replication mechanism builds a fault tolerant system with high

performance to efficiently serve short videos. This model is potentially beneficial for multimedia

service providers and video hosting websites to reform their traditional client-server architecture

into a P2P system that improves the system performance while reduces the hosting costs in terms

of bandwidth consumption. Our simulation and analytical work provide valuable results that are

useful for future development of peer-to-peer multimedia streaming systems.

5.2. Future Work

The concept of research is extending any present work. We expect to study and explore on other

aspects of this research in the future work. First, it has not been taken into account any network

transmission latencies or time required to establish connections to other machines. The extension

of this proposed model will include various scenarios where users are facing with network delay

and overlay delay. We will study the impact of any delay on the streaming time and the quality

of the video and propose new approaches to minimize these latencies to the point that they are

almost not noticeable for the end users.

50

According to the unique characteristics that YouTube has, the related videos of every requested

video will be explored in order to design an efficient approach to eliminate any startup delay

associated with the related videos. We consider a distinct pre-fetching strategy based on videos’

view count for a smooth transition between videos with a minimum or no delay. Therefore, we

expect to design and extend this work in the future by taking related videos into consideration.

To address scalability issue further, server can be a super peer in the future work and real system

implementation of this model. Moreover, the results of the extensions of this model can be

compared with other P2P models.

This work has provided valuable results that can be further analyzed to develop future P2P

networks that promise low cost service providing systems which meet users’ requirements and

satisfies the required Quality of Service.

51

References

[1] YouTube – Broadcast Yourself

http://www.youtube.com/

[2] BitTorrent
http://www.bittorrent.com/

[3] Cisco Visual Networking Index: Forecast and Methodology, 2009-2014.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_p
aper_c11-481360_ns827_Networking_Solutions_White_Paper.html

[4] Alexa – the Web Information Company
http://www.alexa.com/

[5] YouTube Fact Sheet
http://www.youtube.com/t/fact_sheet

[6] Xu Cheng and Jiangchuan Liu. “NetTube: Exploring Social Networks for Peer-to-Peer
Short Video Sharing”. INFOCOM 2009, IEEE, pp. 1152-1160, 2009.

[7] Changqiao Xu, Gabriel-Mario Muntean, Enda Fallon, and Austin Hanley. “Distributed
Storage-Assisted Data-Driven Overlay Network for P2P VoD Services”. IEEE
Transactions on Broadcasting, vol. 55, no. 1, pp. 1-10, 2009.

[8] Yung Ryn Choe, Derek L. Schuff, Jagadeesh M. Dyaberi, and Vijay S. Pai. “Improving

VoD Server Efficiency with BitTorrent”. In Proceedings of the 15th International
Conference on Multimedia (MULTIMEDIA’07), pp. 117-126, 2007.

[9] San Murugesan. “Understanding Web 2.0”. IT Professional, IEEE, vol. 9, no. 4, pp. 34-

41, 2007.

[10] MySpace

http://www.myspace.com/

[11] Twitter
http://twitter.com/

[12] Flicker – Photo Sharing
http://www.flickr.com/

[13] Facebook
http://twitter.com/

52

[14] Bin Cheng, Lex Stein, Hai Jin, and Zheng Zhang. “Towards Cinematic Internet Video-on-
Demand”. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems (Eurosys’08), pp. 109-122, 2008.

[15] Ricardo Baeze-Yates. “User Generated Content: How Good Is It?”. In Proceedings of the
3rd Workshop on Information Credibility on the Web (WICOW’09), pp. 1-2, 2009.

[16] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, Sue Moon. “I Tube,

You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Content
Video System”. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement (IMC’07), pp. 1-13, 2007.

[17] Metacafe – Online Video Entertainment

http://www.metacafe.com/

[18] Tudou – Online Video Website
 http://www.tudou.com/

[19] Mojgan Soraya, Masood Zamani, and Abdolreza Abhari. “Modeling of Multimedia Files

on the Web 2.0'”. 21th IEEE Canadian Conference on Electrical and Computer
Engineering 2008 (CCECE'08), pp. 001387-001392, 2008.

[20] Bram Cohen. “Incentive Build Robustness in BitTorrent”. In Proceedings of the 1st
Workshop on the Economics of Peer-to-Peer Systems, pp. 1-5, 2003.

[21] Alex Sherman, Jason Nieh, and Clifford Stein. “FairTorrent: Bringing Fairness to Peer-to-

Peer Systems”. In Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies (CoNEXT’09,) pp. 133-144, 2009.

[22] Zuhui Ma and Dongyn Qiu. “A Novel Optimistic Unchoking Algorithm for BitTorrent”.

6th IEEE Consumer Communications and Networking Conference (CCNC 2009), pp. 1-4,
2009.

[23] Rudiger Schollmeier, “A Definition of Peer-to-Peer Networking for the Classification of

Peer-to-Peer Architectures and Applications”. In Proceedings of the First International
Conference on Peer-to-Peer Computing, pp. 101-102, 2001.

[24] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems Principles and

Paradigms (2nd ed.). USA: Prentice Hall, 2007, ISBN: 0136135536.

[25] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,

Frank Dabek, and Hari Balakrishnan. “Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications”. IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17-
32, 2003.

53

[26] Napster – Digital Music Service
http://www.napster.ca/

[27] Kazaa
http://www.kazaa.com/#

[28] Gnutella
http://rfc-gnutella.sourceforge.net/

[29] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.
“Making Gnutella-like P2P Systems Scalable”. In Poceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM’03), 2003.

[30] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach
Featuring the Internet (3rd ed.). USA: Addison-Wesley, 2004, ISBN: 0321227352.

[31] Mong-Fong Horng and Yau-Hwang Kuo. “Dynamic Slot Allocation to Control Delay in
TDMA Wireless Base Station”. In Proceedings of Eighth IEEE International Symposium on
Computers and Communication (ISCC 2003), pp. 1126-1131, 2003.

[32] Jean-Paul Wagner and Pascal Frossard. “Playback Delay Optimization in Scalable Video
Streaming”. IEEE International Conference on Multimedia and Expo (ICME 2005), pp.
860-863, 2005.

[33] Averill Law and W. David Kelton. Simulation Modeling and Analysis (3rd ed.). USA:
McGraw-Hill, 2000, ISBN: 0070592926.

[34] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. New York: Wiley-
Interscience, 1991, ISBN: 0471503361.

[35] Cheng Huang, Jin Li, and Keith W. Ross. “Can Internet Video-on-Demand be

Profitable?”. In Proceedings of the 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM’07), vol. 37, no.
4, pp. 133-144, 2007.

[36] MSN

http://video.msn.com/video.aspx/

[37] Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose. “Watch Global, Cache Local:
YouTube Network Traffic at a Campus Network – Measurements and Implications”. In
Proceedings of the 15th SPIE/ACM Multimedia Computing and Networking (MMCN’08),
vol. 6818, pp. 1-13, 2008.

54

[38] Yi Zheng, Dan Huang, Wei Zhu, Xiaobing Zhang, Yishuai Chen, and Changjia Chen. “A
Measurement Study of P2P VoD System”. International Conference on Research
Challenges in Computer Science (ICRCCS'09), pp. 174-177, 2009.

[39] Yan Huang, Tom Z.J. Fu, Dah-Ming Chiu, John C.S. Lui, and Cheng Huang. “Challenges,
Design and Analysis of a Large-Scale P2P-VoD System”. In Proceedings of the ACM
Conference on Data Communication (SIGCOMM’08). Vol. 38, no. 4, pp. 375-388, 2008.

[40] CoolStreaming – Broadcast Your TV

http://www.coolstreaming.us/hp.php?lang=en

[41] PPLive
http://www.pplive.com/en/index.html

[42] Kai Wang and Chuang Lin. “Insight into the P2P-VoD System: Performance Modeling

and Analysis”. In Proceedings of 18th International Conference on Computer
Communications and Networks (ICCCN 2009), pp. 1-6, 2009.

[43] Joost
http://www.joost.com/

[44] PPStream
http://www.ppstream.com/

[45] GridCast
 http://globalmediaservices.net/products/gridcast-tv/

[46] Weifang Liang, Jihai Huang, and Jianhua Huang. “A Distributed Cache Management

Model for P2P VoD System”. 2008 International Conference on Computer Science and
Software Engineering, vol. 3, pp. 5-8, 2008.

[47] Wenbin Jiang, Chong Huang, Hai Jin, and Xiaofei Liao. “A New Proxy Scheme for
Large-Scale P2P VoD System”. IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing (EUC'08), vol. 1, pp. 512-518, 2008.

[48] Lei Guo, Songqing Chen, and Xiaodong Zhang. “Design and Evaluation of a Scalable and

Reliable P2P Assited Proxy for On-Demand Streaming Media Delivery”. IEEE
Transactions on Knowledge and Data Engineering, vol. 18, no. 5, pp. 669-682, 2006.

[49] X.Y. Yang, P. Hernandez, F. Cores, L. Souza, A. Ripoll, R. Suppi, and E. Luque.

“DVoDP2P: Distributed P2P Assisted Multicast VoD Architecure”. 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006), 2006.

[50] Yang Guo, Kyoungwon Suh, Jim Kurose, and Don Towsley. “P2Cast: Peer-to-Peer

Patching Scheme for VoD Service”. In Proceedings of the 12th international conference
on World Wide Web, pp. 301-309, 2003.

55

[51] Diego Gallo, Charles Miers, Vlad Coroama, Tereza Carvalho, Victor Souza, and Per
Karlsson. “A Multimedia Delivery Architecture for IPTV with P2P-based Time-Shift
Support”. 6th IEEE Consumer Communications and Networking Conference (CCNC
2009), pp. 1-2, 2009.

[52] Daniel Hughes, Geoff Coulson, and James Walkerdine. “Free Riding on Gnutella

Revisited: The Bell Tolls”. Distributed Systems Online, IEEE, vol. 6, no. 6, 2005.

[53] Ashwin R. Bharambe, Cormac Herley, and Venkata N. Padmanabhan. “Some

Observations on BitTorrent Performance”. In Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’05), pp. 398-399, 2005.

[54] J.J.D. Mol, J.A. Pouwelse, D.H.J. Epema, and H.J. Sips. “Free-Riding, Fairness, and

Firewalls in P2P File-Sharing”. Eighth International Conference on Peer-to-Peer
Computing (P2P’08), pp. 301-310, 2008.

[55] Saikat Guha and Paul Francis. “Characterization and Measurement of TCP Traversal

through NATs and Firewalls”. In Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement (IMC’05), pp. 199-211, 2005.

[56] Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian Perrig.

“NATBLASTER: Establishing TCP Connections between Hosts behind NATs”. In
Proceedings of ACM SIGCOMM Asia Workshop, 2005.

[57] Dongyu Qiu and R. Srikant. “Modeling and Performance Analysis of BitTorrent-like Peer-

to-Peer Networks”. In Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM’04), pp. 367-
378, 2004.

[58] Abdolreza Abhari and Mojgan Soraya. “Workload Generation for YouTube”. Multimedia

Tools and Applications Journal, vol. 46, pp. 91-118, June 2009.

[59] Shared Hierarchical Academic Research Computing Network (SHARCNET)
http://www.sharcnet.ca/

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2010

	A peer-to-peer delivery system for internet short video sharing
	Maryam Bashardoust Tajali
	Recommended Citation

	title page.pdf
	author's declaration
	abstract
	acknowledgment
	dedication
	table of contents
	chapter 1
	chapter 2
	chapter 3
	chapter 4
	chapter 5
	references

