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Abstract 
With increasing concern towards the environmental impact of energy production, distribution, and 

consumption in the modern world, the overall energy landscape is changing. This Master’s Thesis 

investigates methods of addressing these inevitable transformations through the incorporation of 

renewable energy and energy storage on the residential-scale using energy management systems 

(EMSs). A simulated residential house model was developed in order to compare a variety of 

different energy management techniques on the same basis. The simulated EMS investigation has 

covered: deterministic EMSs, those in their most basic forms; adaptive EMSs, utilizing machine 

learning and predictive control algorithms; and, a transactional EMS. The deterministic EMSs 

produced the least annual cost savings, but are the simplest to implement. Adaptive EMSs have 

shown the highest estimated cost savings, with increased controller complexity as a trade-off. The 

transactive EMS has shown intermediate cost savings, with additional potential benefits such as 

demand response and community integration capabilities. Experimental work has been conducted 

verifying critical claims of the systems, focusing on battery output control and inter-agent 

controller communication. The most interesting areas warranting future research involve 

implementing predictive control experimentally – and on a wider scale – and investigating 

transactive control on the community level. 
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1. Introduction and Objectives 
The increasing world energy demand requires the active development of sustainable energy 

systems in all sectors. Of the many contributing factors, the buildings sector’s role in energy 

consumption is of great interest. In 2012, residential buildings accounted for 22% of the United 

States’ energy consumption (DOE, 2012), and 17% of Canada’s energy consumption (NRCan, 

2014). Excluding electricity consumption, the building sector also contributed to 11% of Canada’s 

total greenhouse gas (GHG) emissions in 2012 (NRCan, 2014). Scenarios developed by the United 

Nations Framework Convention on Climate Change project building energy demand is expected 

to rise by 15% from 2013-2030; the majority this increase will be supplied by electricity (IEA, 

2015). Increased effort towards developing sustainable practices in the residential sector will 

therefore have a substantial impact on reducing world energy demand and GHG emissions. 

 

This information is not lost on the world – increasing concern towards carbon emissions and 

climate change is already changing the ways in which energy is produced, distributed and 

consumed. The rise of renewable energy is leading to more distributed generation – moving away 

from large, centralized generation facilities towards smaller generators spread out over a large 

area. Not only is electricity generation changing, but so is the way it is getting used; historical data 

shows that while the number of households and businesses in Ontario is increasing, the energy 

intensity of buildings is decreasing due to conservation and efficiency measures (Ontario Ministry 

of Energy, 2013). 

 

Along with changes in the way energy is being generated and consumed comes the need for smarter 

energy management techniques on both the macro and micro scales. These technologies are 

already in use today, and can range in both size and complexity – from individual smart thermostats 

in homes to widespread demand response programs across a local distribution network.  

 

As technology advances, the lines between the consumer and utility are becoming more blurred. 

Households with distributed generation (DG) are no longer viewed simply as consumers, but as 

prosumers who both consume and produce energy. This creates a need for greater interaction 

between the consumer and utility – interactions enabled by smart grid technologies.  
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These technological revolutions cannot be implemented in an ad hoc manner – their effective 

management will be a significant task. The introduction of residential energy storage adds another 

dimension to the management problem. Household batteries can be used for a variety of purposes: 

they can be used as dispatchable loads and capacity if managed by utility companies, or used by 

homeowners as backups during blackouts, to store excess renewable electricity generation, and 

much more.  

 

This is the primary topic of interest of this work: the effective management of residential battery 

energy storage in conjunction with loads and on-site renewable energy generation. This work 

explores just a few of this vast number of battery and energy management possibilities. 

 

1.1 Objectives 

This research involves the investigation of simulated and experimental energy management 

systems (EMSs). Throughout this work, EMS is used as an umbrella term to refer to any software 

responsible for decision making and control of energy consumers and/or producers in a home. The 

detailed objectives of this work are as follows: 

 

• Identify different EMSs whose performance may be investigated, through reasonable 

means, by either simulation or experimental trials. 

• Develop a simulated residential building model by which the selected EMSs may be tested 

and compared on the same basis. 

• Perform experimental trials when possible to validate claims made in simulation work. 

• Compare the different EMSs and identify the advantages, disadvantages, and potential 

practical applications of each system. 

 

It is the author’s opinion that the ease of implementation of an EMS is the most important aspect 

of its design; an EMS should be “plug-and-go”, in the sense that the average homeowner should 

be able to install and commission one in a reasonable amount of time, without frustration. 

Complications involved with the setup and operation of an EMS will act as a significant barrier to 

their uptake for residential purposes. Therefore, a strong emphasis has been made on the ease of 

implementation of each of the EMSs investigated.  
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2. Literature Review 
Various energy management systems are already being implemented in homes across the world 

today; it is not uncommon to find a programmable or “smart” thermostat in somebody’s home. 

However, EMSs can have a much greater reach than only the control of the heating and cooling 

systems of a home. With the advent of the internet, an unprecedented communication boom is 

occurring. Most people take daily advantage of the inter-personal communication brought about 

by the internet, but there are a great number of technical applications that can be improved through 

inter-system communication. With respect to the energy sector, this future, highly-communicative 

technology is referred to as the Smart Grid – an EMS on the largest scale. 

 

2.1 The Smart Grid 

Worldwide electricity demand is increasing at an unprecedented rate; projections show 150% 

growth under IEA’s ETP 2010 Baseline Scenario (IEA, 2011). This dramatic increase in demand 

brings forth a critical need to improve upon the state of the electrical distribution system on a 

global scale. The current electricity distribution grid in most developed countries is outdated; it 

was designed to deliver energy in a single direction – from centralized electricity generation to the 

consumer – with minimal communication on the consumer’s end. 

 

Our ability to exchange information is evolving at an extraordinary rate. The Smart Grid of the 

future will use information transactions to control the flow of electricity, through intelligent 

decision making processes, taking both generators and consumers into consideration (Gelazanskas 

& Gamage, 2014). The adoption of the Smart Grid is not a transformation that will occur over 

night; rather, it will be an evolutionary process that develops over time. Figure 2-1 displays the 

progression of the electricity grid towards the future Smart Grid. 
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Figure 2-1: The evolution of the smart grid (IEA, 2011) 

 

The Smart Grid will have many benefits over the current distribution grid. Along with increased 

reliability and consumer participation, it will be able to accommodate renewable distributed 

generators (DGs) and energy storage technologies. Energy storage solves the intermittency 

problem with renewables, allowing sustainably generated energy to be utilized at any time of day. 

The current state of electricity grids around the world is ill-equipped to deal with the variability 

and unpredictability of DGs, particularly solar and wind power. The issue of DG integration will 

require many different smart decision-making systems of varying size and planning capabilities. 

(IEC, 2012). While the Smart Grid refers to the state of the electricity grid as a whole, EMSs are 

responsible for the decision-making and control of smaller subsets of the overall system. EMSs 

will be the means of deployment for Smart Grid-enabled technologies and processes. 

 

The distributed nature of renewable energy generation allows electricity generation to be located 

nearby the consumer, or even on-site. This will allow buildings to generate their own power, 

reducing their reliance on the large-scale distribution grid, with the potential to be net producers 

of energy. 

 

2.2 Net-Zero Energy Buildings 

Net-Zero Energy Buildings (NZEB) are gaining increasing interest as means of effectively 

eliminating building energy consumption. A NZEB consumes as much energy as it produces, 

through the interaction of onsite renewable energy systems and the utility grid (Marszal et al., 
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2011). Although the time basis for net-zero energy calculations has varied in the past, more 

recently a “common definition” for NZEBs specifies that the site’s delivered energy must be less 

than or equal to the exported renewable energy on an annual basis (DOE, 2015). The concept of 

net-zero energy may be applied to a single building, or be expanded to encompass an entire 

community, based on how the boundary is defined. Figure 2-2 illustrates the site boundary around 

a NZEB or community. 

 

 
Figure 2-2: Net-zero energy site boundary (DOE, 2015) 

 

In order to calculate the net energy transfer across the site boundary, source energy calculations 

must be performed. Source energy takes into account energy consumed through the extraction, 

processing, and transportation of the primary fuel used to produce the electricity or heat. Source 

energy across a building boundary may be calculated in Equation 2-1  (DOE, 2015): 
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Where the subscripts del and exp represent delivered and exported energy respectively, and r is 

the source energy conversion factor. Based on this calculation, a building would be considered 
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Net-Zero if !"#$%&' £ 0. General source energy conversion factors are shown in Table 2-1. It should 

be noted that imported and exported electricity are given the same conversion factor in calculations 

because they are subject to the same distribution losses once outside of the site boundary (DOE, 

2015). 

 

Table 2-1: National source energy conversion factors (NREL, 2007) 
  U.S. 

National 
Transportation & Distribution Losses 9.90% 
Fossil Fuel Energy 2.500 
Renewable Energy 0.177 
Total Energy 3.365 

 

Various projects aim to reduce energy demand for entire residential communities. One such 

community in the Southwest United States aims to reduce peak electricity demand by 65% through 

the integration of rooftop solar PV arrays and battery energy storage systems (Boehm, 2011). 

 

NZEBs take advantage of high-efficiency appliances and heating, ventilation, and air conditioning 

(HVAC) systems. Heat pumps are of particular interest for NZEBs. This type of heating and 

cooling appliance can come in many forms, all of which function by moving heat from one place 

to another. The most common forms for houses are air- and ground-source heat pumps (ASHPs 

and GSHPs). They can heat a home by transferring heat from the air or ground, respectively, into 

the space of a building, and cool the same space by operating in reverse. While not all heat pumps 

are electrically driven, both ASHPs and GSHPs are all-electric systems. These are of particular 

interest with regards to NZEBs, as they can be complemented by on-site renewable generation. 

 

While an EMS does not require a NZEB to run, the building industry is moving towards the 

development of net- (or nearly-) zero energy buildings. These types of buildings will house the 

EMSs of the future, and as such, special consideration should be taken in the design of an EMS 

for the requirements of NZEBs.  
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2.3 Microgrids 

NZEBs and communities can be connected to the smart grid through what is known as a microgrid. 

A microgrid is a component of the Smart Grid containing DGs, energy storage, and loads, with the 

capability of operating in conjunction with or independently from the main utility grid. The term 

islanding is used to describe a microgrid disconnecting from the main grid and operating 

autonomously. A microgrid is connected to the main distribution grid at what is called the point-

of-common-coupling (PCC), which is typically on the low-voltage side of the local substation 

transformer (Lidula & Rajapakse, 2011). A microgrid can help bring sustainable, reliable energy 

to areas that do not have typical access to a main distribution grid, potentially providing additional 

social and economic benefits to isolated areas (IEA, 2015). The size of a microgrid may vary 

greatly; it may range from a few houses in size, to a community, to an entire town. 

 

The distributed energy resources in a microgrid may include a wide variety of technologies. 

Examples include solar photovoltaics (PV), solar thermal, wind turbines, fuel cells, combined heat 

and power (CHP), diesel generators, or small-scale hydroelectric turbines. It is worth noting that 

among these technologies, some generate DC electricity (PV, fuel cells), while others generate AC 

electricity (turbines, generators). Because of this, microgrids also require inverters/converters in 

order to accommodate its loads and generation sources. Hybrid AC/DC microgrids, containing 

both AC and DC components, are of the most interest in literature (Unamuno & Barrena, 2015). 

Figure 2-3 displays an example of a general microgrid configuration. 

 
Figure 2-3: Example hybrid microgrid configuration (Unamuno & Barrena, 2015) 
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Energy storage devices are a key component of microgrid operation; they allow islanding and load 

smoothing when connected to the main distribution grid. They can also smooth out the generation 

of intermittent DGs. A variety of energy storage devices exist with potential microgrid 

applications. Of particular interest are batteries, flywheels, and super capacitors. These storage 

devices may all be used together in a single microgrid as complements to each other, reducing 

excessive strain on a single unit. 

	

Increasing interest in plug-in electric vehicles (EVs) will play an integral role in future smart 

buildings and communities. Not only do EVs have the potential to reduce transportation-associated 

greenhouse gas (GHG) emissions, they may also act as a form of energy storage: vehicle-to-grid 

(V2G) based storage. An EV charger with bidirectional capabilities can allow a homeowner to 

utilize their EV battery as a tool for peak load shifting and energy cost reductions. V2G storage 

has significant advantages over conventional vehicle charging. It has also shown potential as a 

more efficient means of renewable energy utilization, when compared to stationary energy storage, 

depending on travel patterns and the accessibility of workplace chargers (Tarroja, Zhang, Wifvat, 

Shaffer, & Samuelsen, 2016). Simulations have also demonstrated EV energy storage methods 

capable of reducing electricity costs by an average of 11% (Onda, Yamamoto, Takeshit, Okamoto, 

& Yamanaka, 2014). 

 

In order to operate its various components effectively, a microgrid requires a control strategy to 

manage its distributed loads, storage devices, and loads. While an EMS does not need to be a 

component of a microgrid for operation, much of the research regarding microgrid control involves 

EMSs. It is therefore useful to view EMS control and microgrid control as synonymous for the 

purposes of this review, since microgrids are composed of all the components for which an EMS 

is responsible. This interpretation does however neglect certain important control aspects of 

microgrids, such as voltage/frequency control and anti-islanding. However, these aspects of 

microgrid control require significant electrical engineering, and are therefore out of the scope of 

this work. Moving forward, it should be noted that any mention of “microgrid control” refers 

specifically to the EMS used within a microgrid. 
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2.4 Energy Management Systems 

Effective EMSs will play a significant role in the development of the smart grid. Innovative EMS 

designs should be composed of plug-and-play components (in terms of both hardware and 

software), allow increased functionality of controlled components, and support services such as 

historical databases and user interfaces (Zhang, Mao, Ding, & Chang, 2008). The objective of an 

effective EMS is often to minimize a cost function. This makes the development of new EMSs 

attractive to both consumers – by reducing utility cost – as well as the utility provider – through 

the development of more robust distribution systems. The optimization of an EMS is key to 

unlocking its full potential. Figure 2-4 highlights the components of a general microgrid EMS. 

There is no standard for the design of an EMS, and it is therefore an area of great interest for the 

development of the smart grid. They may use a variety of tools and techniques to optimize energy 

management. 

 

 
Figure 2-4: General optimizing microgrid EMS (Minchala-Avila, Garza-Castañón, Vargas-

Martínez, & Zhang, 2015) 
 

2.4.1 Demand Response 

Demand response (DR) strategies will play an integral role in smart building energy management, 

and the evolution of the Smart Grid. They will aid in facilitating the effective addition of DGs to 

the electrical distribution grid (CEA, 2013). Through DR strategies, the smart grid will have the 

capability to manage consumer energy consumption patterns based on incentives and disincentives 

(Siano, 2013). The concept of demand response is illustrated in Figure 2-5 



 10 

 
Figure 2-5: An example demand response period effect on household power consumption 

 

One form of DR utilizes time-of-use (TOU) electricity pricing information for decision making. 

An internet-scale distribution model has been shown to realize 12 – 32% electricity cost savings 

using optimized load shifting algorithms (Mathew, Sitaraman, & Shenoy, 2014). Load shifting is 

a form of DR that consists of moving elastic energy demand to off-peak times through price-based 

signaling.  

 

Local Distribution Companies (LDC) have already implemented real-world DR programs. In 

Ontario, Canada, the Independent Electricity System Operator (IESO) ran a large-scale Demand 

Response Pilot Project. Through this project, the participating resources totaling 80 MW in size, 

were required to modify their electricity consumptions for a minimum of 100 hours per contract 

year (IESO, 2015). The program uses five-minute and hourly load tracking, as well as unit 

commitment to better manage and understand how DR can help benefit electricity requirements. 

Other programs such as Toronto Hydro’s DR3 aim to engage large-scale businesses, with peak 

demands greater than 50 kW, in reducing their electricity demand at peak times through financial 

incentives (Toronto Hydro, 2012). 
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Residential-scale DR initiatives have also been implemented in the real world. In Ontario, Canada, 

a group of LDCs have implemented the peaksaver PLUS program (Poulad, Fung, He, & Colpan, 

2016). This program involved signaling participating residential thermostats to pause during 

certain summer peak hours, halting air conditioner operation (Hydro Ottawa Ltd., 2016). With 

participation in the range of 28,000 – 35,000 residential units per LDC, all participating LDCs 

have now closed registration and halted program expansion (Powerstream, 2016).  

 

DR can be complemented well by renewable energy and storage. Experimental studies on a single 

unit solar house in Madrid has shown weekday energy consumption savings of 1.2 – 2.2 kWh 

utilizing DR with PV generation and battery storage (Castillo-Cagigal et al., 2011). Neural network 

controllers utilizing active DR with PV energy generation also demonstrate the potential for 

implementation in the residential sector (Matallanas et al., 2012).  

 

A component of DR is load scheduling. This involves load categorization, which typically sorts 

home appliances into three categories (Liu, Ivanescu, Kang, & Maier, 2012). Those are appliances 

having: 

i) real time energy consumption modes, relating directly to consumer behavior (e.g. 
microwaves and printers);  

ii) periodic nonreal-time energy consumption modes, in which energy consumption is 
periodic and fluctuating while in use (e.g. refrigerators); and,  

iii) nonperiodic nonreal-time energy consumption modes, which are similar to (ii) but have a 
task deadline (e.g plug-in electric vehicles and pool pumps). 

 

Load scheduling also requires load prioritization, which must be dynamically allocated based on 

appliance status (Liu, Ivanescu, Kang, & Maier, 2012). Load scheduling algorithms for smart 

building energy management with renewable energy sources have been shown to have the 

potential of reducing electricity costs paid to the utility by 41 – 94% (Radhakrishnan & Selvan, 

2014). A case study on dynamic load management has shown a successfully imposed load limit 

of 1500 W during demand response events (Fernandes, Morais, Vale, & Ramos, 2014). 

 

DR does not have to mean sacrificing thermal comfort at times when peak reduction is requested; 

demand-side management models with consumer preference for residential smart grids have 

shown success in energy cost reduction using peak-to-average ratio constraints (Liu et al., 2014). 
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One study shows that smart grid incentives, in conjunction with fuzzy logic controllers and 

wireless sensors, can produce residential energy savings of 14.5% without sacrificing thermal 

comfort (Keshtkar, Arzanpour, Keshtkar, & Ahmadi, 2015). 

 

2.4.2 Transactive Energy 

While direct load control strategies considering TOU pricing schemes have had success 

incentivizing consumers at peak hours, empirical evidence shows that they do little to address 

energy consumption at non-critical hours (Faruqui & Sergici, 2010). In order to address this 

shortfall, yet maintain fast demand response and consumer comfort, demand response methods 

based on microeconomic theories have been proposed for electrical system applications 

(Schweppe et al., 1980). The concept of applying a free market economic model to energy supply 

and demand is known as Transactive Energy. 

 

A transactional energy network is comprised of energy control systems that conduct live energy 

transactions through a digital market in which consumers and producers bid and negotiate energy 

exchanges (PNNL, 2014). The transactional energy framework allows for decentralized, self-

organizing control agents that communicate through local digital infrastructure. This type of 

energy system shows significant potential for future smart building control. 

 

The concept of transactional energy has been extensively researched by Pacific Northwest 

National Laboratories (PNNL). They show that this type of energy network can be easily imagined 

through example of a thermostat. In a transactive energy network, a thermostat would bid on an 

amount of energy at a calculated unit dollar amount. The dollar amount would be based on dynamic 

factors such as current occupancy levels, thermal comfort margins, or deviation from zone set 

point. The transactive energy marketplace takes all participating loads and generation capacity into 

consideration to determine the price at which energy is traded – the market clearing price. This 

decision can be made externally by the utility, or internally based on an exchange of internal 

services through smart building implementation. Thermostat bids are then granted or turned down 

based on whether they lie above or below the market clearing price. This process repeats with each 

market cycle. (Katipamula, Hatley, Hammerstrom, Chassin, & Pratt, 2006). Figure 2-6 illustrates 

this example. 
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Figure 2-6: Illustration of Biding Strategy of Thermostat in Cooling Mode in Transactive Energy 

Network (Katipamula, Hatley, Hammerstrom, Chassin, & Pratt, 2006). 
 

Thermostats operating with transactive control capabilities have been shown to be more active 

participants in DR than conventional TOU thermostats, yielding improved load shifting, cost 

savings, demand elasticity, and occupant thermal comfort (Chassin, Stoustrup, Agathoklis, & 

Djilali, 2015). Transactive thermostats allow for optimal pre-heating or cooling if predictive 

algorithms are available (Katipamula, Hatley, Hammerstrom, Chassin, & Pratt, 2006). Improved 

total demand elasticity may be achieved by applying these techniques to additional household 

loads. 

 

Transactive energy network test projects have been investigated through real-world 

experimentation. The Olympic Peninsula Project evaluated a transactive energy system on a 

network of 112 residential houses, two industrial buildings, and one commercial building. The 

project lasted one year from 2006-2007, and gave consumers live in-home energy monitoring 

capabilities. Thermostats, water heaters, clothes dryers, and commercial HVAC systems were 

integrated into the transactive energy system. Consumers were allowed to define thermal comfort 

margins for their thermostats – higher thermal comfort constraints would mean that the thermostats 

would be less likely to react to pricing incentives from the utility. Through customer engagement, 

this project was able to achieve reductions in the annual average peak electricity demand by 15%, 

with peak daily reductions of 50% (Snowdon & Ambrosio, 2010). 
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2.5 Experimental Microgrids 

Microgrids have been developed and implemented in the world today, although they are in their 

early stages of optimization. Their increasing interest is reflected in the development of standards 

aimed to promote their adoption (IEEE, 2011). Microgrids in the real world typically have one of 

three control strategies: centralized, autonomous, and agent based. 

 

2.5.1 Centralized Experimental Microgrids 

A microgrid utilizing centralized control has a complex central controller, and typically lacks 

flexibility with respect to the addition of new DGs This is currently the most established control 

method in real world implementation (Lidula & Rajapakse, 2011). 

 

The DeMoTec microgrid test facility in Germany utilizes a centralized controller. This microgrid 

network is composed of two battery storage devices, two diesel generators, PV, and wind 

generation, with a total generation capacity of 200 kW. A supervisory control and data acquisition 

system (SCADA), a system commonly implemented for process monitoring, is used to control the 

components of the microgrid. This microgrid also features automatic switching, which allows for 

its segregation into three separate islanded units (Barnes et al., 2005). 

 

The Bronsbergen Holiday Park in the Netherlands supplies energy to its 208 homes with a grid-

connected microgrid. It is operated under the More Microgrids initiative implemented by the 

European Union. The buildings in this park are outfitted with a total 315 kW PV modules, with 

two central battery bank storage units. This microgrid uses a centralized control unit to monitor 

the active and reactive power flow between the microgrid and utility (Kroposki et al., 2008). Also 

operating under the More Microgrids initiative is the CESI RICERCA DER test microgrid in Italy. 

This microgrid also utilizes centralized control with solar, wind, CHP, and diesel generation, along 

with both flywheel and battery energy storage (Lidula & Rajapakse, 2011). 

 

The New Energy and Industrial Technology Development Organization (NEDO) supports the 

development of microgrids in Japan. One example is the Kyoto Eco-Energy Project, a virtual 

microgrid. It is virtual in that its distributed energy resources and loads are each connected to 

separate substations, and are only linked by a centralized internet control system (Lidula & 
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Rajapakse, 2011). Another project supported by this initiative is the Aichi Project. This microgrid 

is comprised of PV, fuel cells, and battery storage. Centralized control is implemented through the 

battery inverter for load matching (Barnes et al., 2005). 

 

2.5.2 Autonomous Experimental Microgrids 

Autonomous microgrids allow plug-and-play operability with regards to the addition of new 

components, such as DGs, without requiring a system redesign. This eliminates the need for a 

complex centralized controller (Lidula & Rajapakse, 2011). 

 

The CERTS test bed in Columbus, Ohio, operates without the use of a central controller, and thus 

supports plug-and-play capabilities. Its power sources operate in a peer-to-peer manner such that 

losing a component of the system does not interrupt operation (Lidula & Rajapakse, 2011). This 

system uses a centralized communication system to communicate set points to the distributed 

resources, however this component does not operate dynamically with the system (Barnes et al., 

2005). 

 

2.5.3 Agent Based Experimental Microgrids 

The agent based control approach allows for centralized coordination along with distributed local 

control, combining centralized and decentralized control strategies (Lidula & Rajapakse, 2011). 

 

Kodiak Island, composed of seven communities totaling 15000 people, is located off the south 

coast of Alaska. It currently provides its electricity needs through a microgrid utilizing wind and 

hydro power, along with complementing flywheel and battery energy storage. Nearly the entire 28 

MW demand is met by this configuration (ABB, 2014). This isolated microgrid uses ABB’s 

Microgrid Plus System control system – a networked, modular control system responsible for 

determining the microgrid’s most economic mode of operation, while maximizing renewable 

energy integration (ABB, 2016). This microgrid solution provider, ABB Group, has also 

implemented microgrids in other remote communities such as Faial Island, Azores, and Coral Bay, 

Australia (ABB, 2016). 
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Am Steinweg, Germany, is home to a residential microgrid test bed. This microgrid is comprised 

of 101 apartments, a CHP, 35 kW of PV, and a battery bank. This microgrid does not operate 

entirely independently from the grid, but is reported to have this capability at times of excess 

renewable generation. The microgrid utilizes a Power Quality Management System (PoMS) 

consisting of a central unit with decentralized communication units. Controllable devices 

communicate with the central unit through the decentralized units using TCP/IP communication 

protocol (Erge et al., 2005). 

 

The laboratory-scale microgrid system at the National Technical University of Athens (NTUA), 

Greece, utilizes a transactional energy control structure, with four agent types. The Production 

Unit is responsible for control of the battery. The Consumption Unit is responsible for the 

controllable loads in the microgrid, making load predictions every 15 minutes, and communicating 

those needs to the production units. The Power System communicates the buying and selling price 

of the main utility grid, but does not participate in market activity. The Microgrid Central 

Controller coordinates tasks between the different agents and records information on the 

transactions that occurred. The control systems for this microgrid were developed using WinCC 

and LabVIEW software (Barnes et al., 2005). 

 

2.6 Optimal EMS Control Techniques 

A variety of optimization and solution-based approaches are being actively investigated 

throughout literature. These optimization techniques can use a wide variety of objective functions, 

although they typically aim to minimize operating costs associated the utility grid, or fuel 

consumption. However, they may also be derived to minimize other parameters such as carbon 

emissions or energy storage utilization (Khan, Naeem, Iqbal, Qaisar, & Anpalagan, 2016). This 

section presents some of the more prominent techniques for optimal EMS and microgrid control.  

 

2.6.1 Mixed Integer Linear Programming 

Mixed-integer linear programming (MILP) is an optimization technique that handles problems 

involving both discrete and continuous variables. Using this programming technique, a cost 

function can be minimized to achieve optimal power flow within a microgrid. The cost function is 
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subject to the constraints of the system, such as renewable generation limits and energy storage 

capacity. This is a well-established method of programmatic optimization. 

 

MILP is an effective tool that has been successfully used to determine optimal microgrid operation 

for systems utilizing wind, solar PV, fuel cells, and battery storage (Morais, Kádár, Faria, Vale, & 

Khodr, 2010). It has been used to determine optimal microgrid configuration with respect to capital 

and operational costs (Palma-Behnke et al., 2013). This technique can be used for optimization 

purposed in conjunction with additional energy management strategies. One example involves the 

use of MILP to determine optimal microgrid configuration in conjunction with DR strategies in 

order to minimize operational costs (Alharbi & Bhattacharya, 2013). 

 

2.6.2 Mixed Integer Nonlinear Programming 

As many physical phenomena in nature are not linear, mixed integer nonlinear programming 

(MINLP) techniques also have applications for microgrid operational optimization. This type of 

system is more complicated, but does not involve the approximations made by a linear system. A 

nonlinear programming method, in conjunction with fuzzy logic for pricing schemes, has been 

shown to achieve revenue for a microgrid under an air pollution reduction policy (Manjili, Rajaee, 

Jamshidi, & Kelley, 2012). Experimental microgrid test-bed validation has shown that MINLP can 

achieve faster processing speeds, along with 15% cost of energy reductions, when compared to a 

conventional EMS (Marzband, Sumper, Domínguez-García, & Gumara-Ferret, 2013). 

 

2.6.3 Stochastic Programming 

Stochastic programming is a method of optimization that accounts for uncertainties in a system. 

This programming technique presents a potential solution to account for the intermittency of 

renewables in a microgrid. Monte Carlo simulations have been used to optimize microgrid 

operation by accounting for renewables, component availability, and failure rates, investigating 

the operation of both an isolated microgrid, as well as a set of three interconnected microgrids 

(Giacomoni, Goldsmith, Amin, & Wollenberg, 2012). Researchers have used stochastic 

optimization models in order to develop an energy and reserve scheduling program for a microgrid 

with active consumer demand response initiatives. This model has shown that higher consumer 

involvement leads to decreased microgrid operating costs, and decreased diesel generator usage 
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(Zakariazadeh, Jadid, & Siano, 2014). Comparisons of stochastic and deterministic approaches in 

microgrids shows that the stochastic model better accounts for intermittency in renewable 

generation, and provides better energy scheduling to minimize power losses (Su, Wang, & Roh, 

2014). 

 

2.6.4 Heuristic Programming 

Heuristic programming is an artificial intelligence (AI) technique used to solve complex problems. 

These approaches use “common sense” based on past experience and measurements to select a 

desired action. Heuristic approaches have been developed for smart grid consumption scheduling 

using non-cooperative game theory (Ma, Hu, & Spanos, 2013). A heuristic approach to microgrid 

automation has been developed in order to minimize cost (Khederzadeh, 2013). Heuristic 

approaches have been used to determine energy consumption trends, such that a microgrid may 

relay household consumption forecasts to the utility grid (Hino, Shen, Murata, Wakao, & Hayashi, 

2013).  

 

2.6.5 Artificial Neural Networks 

Electrical load forecasting will play an integral role in optimizing building energy management. 

Many AI techniques such as genetic algorithms (GAs) and artificial neural networks (ANNs) have 

shown promise in microgrid and load forecasting applications, with ANNs receiving significant 

attention (Bansal & Pandey, 2005).  

 

ANNs can be a useful tool in microgrid load and generation forecasting. They represent an adaptive 

forecasting approach that can handle systems with a large number of inputs. In an ANN, weights 

are applied to the system inputs through “neurons”, such that a desired output may be achieved. 

An ANN requires calibration for the system it is applied to, a process known as training. This 

technique can be used to optimize microgrid predictions, improving their reliability. Figure 2-7 

shows a general example of an ANN that may be used for solar energy predictions based on certain 

inputs. 
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Figure 2-7: An example of an ANN used for solar PV generation predictions 

 

ANN can be used for day, season, or year-ahead load forecasting for microgrid operation. Day-

ahead forecasting proves useful for EMS transactions between microgrids, or a microgrid and the 

utility. Seasonal and yearly forecasting may aid in maintenance planning (Reddy, Kumar, Kumar, 

& Raju, 2012). Recurrent neural networks (RNN) allow for bidirectional data flow, and have also 

been applied to microgrid operation. A RNN for microgrid operation has been shown to optimize 

power supply, by minimizing energy purchased from the utility grid and maximizing renewable 

energy generation (Gamez Urias, Sanchez, & Ricalde, 2015). This optimized forecasting technique 

can reduce the risk of unforeseen energy shortages, and greatly aid in microgrid planning and 

scheduling. 

 

2.6.6 Genetic Algorithms 

GA optimizes a problem utilizing the principles of genetics and natural selection; it searches a 

large population for individual optimal solutions, typically minimized cost. This is a powerful 

optimization technique, particularly for systems containing a large number of variables. It can be 

used in conjunction with other AI techniques.  

 

GA initiates by defining a random set of binary variable strings, known as chromosomes, 

representing potential optimal solutions. Each chromosome is a potential solution in the search 

space with an associated cost function. In GA, the chromosome elements are represented as bits 

with binary encodings – 0 or 1. A fitness function (which can be the cost minimization function) 

is used to assign each chromosome in the population a score. After the fitness of all the candidate 
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solutions has been determined, chromosomes are randomly selected (usually weighted by their 

ranking) to perform crossover, and a new population is created. The process repeats and continues 

to generate offspring with greater and greater fitness until convergence on a solution (Mitchell, 

1999). Figure 2-8 illustrates a general crossover process. Typically, a decoder function is used 

throughout this process to translate the binary chromosomes into real-world values. 

 

 
Figure 2-8: Example of GA crossover 

 

With respect to microgrid operation, the fitness function will almost always be a cost function. GA 

has been used for optimization of systems under a carbon trading program (Sadegheih, 2011). This 

tool is very powerful for large systems with many variables that would typically have long 

computation times. It could therefore prove useful for large-scale microgrid applications. 

Simulations on a microgrid with a network of capacitors as energy storage show that GA 

effectively and quickly determine optimal solutions (Gholami, Shahabi, & Haghifam, 2011). GA 

has been utilized to determine PI controller parameters for stable operation of a microgrid with 

wind power and a diesel generator (Nandar, 2013). It has also been used to optimize battery energy 

storage in microgrids (Corso, Di Silvestre, Giuseppe, Riva, & Zizzo, 2010). GA effectively 

converges on multi-objective operational solutions for microgrids, optimizing operating costs, 

battery lifetime, and controllable load management (Khan, Naeem, Iqbal, Qaisar, & Anpalagan, 

2016). 

 

2.6.7 Model Predictive Control 

Model Predictive Control (MPC) is a robust control technique utilized across many different 

industries. MPC uses dynamic models to predict the future state of the system. Predictions are 

optimized such that the optimal control option can then be applied (Rawlings & Mayne, 2016). 
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Historical data may also be used to aid in state estimations. Future system states are dynamically 

estimated over a prediction horizon and a control input is chosen to minimize an objective (cost) 

function (Allgöwer, Findeisen, & Nagy, 2004). Figure 2-9 illustrates the concept of MPC. 

 

 
Figure 2-9: Model Predictive Control Concept 

 

MPC algorithms will play a large role in future smart and microgrid applications (Minchala-Avila, 

Garza-Castañón, Vargas-Martínez, & Zhang, 2015). These algorithms prove to be particularly 

helpful in predicting intermittent renewable energy production. Supervisory MPC has been applied 

to integrated solar/wind microgrid models. One such model showed successful grid integration in 

conjunction with control of a water desalination system, with the ability to smooth water 

production using predictive algorithms (Qi, Liu, & Christofides, 2011). MPC algorithms have been 

shown to contribute to increased controller robustness for solar PV/wind systems under varying 

environmental conditions (Qi, Liu, Chen, & Christofides, 2011). Utilizing MPC techniques can 

also improve system resilience by helping to mitigate potential battery or generator failures by 

accounting for component health in state predictions (Ionela & Zio, 2014). 

 

Optimal load switching using MPC has been shown to be successful in solar/wind microgrid 

systems with hybrid hydrogen/capacitor/battery energy storage. The addition of hydrogen storage 

to the system mitigates high battery stress current scenarios (Garcia-Torres, Valverde, & Bordons, 

2016). MPC allows optimal battery/fuel cell utilization ensuring equipment health is maintained, 

increasing microgrid system lifetime (Valverde, Bordons, & Rosa, 2012). Experimental validation 
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has demonstrated that MPC strategies promoting constant fuel cell current output, allowing the 

battery to smooth PV and load variability leads to improved performance, with the potential for 

system size reduction (Bifaretti et al., 2015). 

 

Due to system nonlinearities, applying MPC to complex microgrids can potentially lead to large 

computation times. However, it has been shown that this may be addressed by breaking down the 

overall energy management problem into unit commitment and optimal power flow components. 

This yields separate linear and nonlinear models, which produces computation times within 

practical real-world application limits (Olivares, Cañizares, & Kazerani, 2014) 

 

MPC algorithms can achieve 25.3% and 28.5% energy and cost saving potentials respectively (Ma, 

Qin, Salsbury, & Xu, 2012). These savings were realized through automatic pre-cooling, resulting 

in a load shifting effect. Houses also have the potential for thermal storage, which can then manage 

electricity demand for heating or cooling purposes. MPC algorithms utilizing thermal energy 

storage have successfully shown improvements in building heating performance (Candanedo & 

Athienitis, 2011).  

 

MPC strategies have been applied to an experimental microgrid system in Athens, Greece. This 

microgrid consists of solar PV, distributed generators, and battery storage units. MPC-MILP 

strategies produced 28.5% energy savings relative to baseline with a prediction horizon of 24 

hours, which were increased to 34.7% savings using an extended horizon of 72 hours (Parisio, 

Rikos, & Glielmo, 2014). 
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2.6.8 Literature Review Conclusions 

Clearly, research has already explored a vast variety of different EMS and microgrid control 

systems of varying complexity. However, much of the literature investigates the use of a single 

type of control system in a single application. This means that EMSs cannot be directly compared, 

because there is a shortage of data available with respect to the operation of different types of 

EMSs operating under identical conditions. This research aims to directly compare different EMS 

control strategies by applying them to the exact same system. 

 

Of course, not all EMS control strategies can be investigated in a reasonable amount of time, and 

only a select few EMS models have been selected for investigation. The EMS models developed 

for this work are described in detail in Chapter 3. They have been designed in part with influence 

from various components of this literature review, and otherwise are based on the author’s 

discretion.   
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3. Methodology 
This work has investigated a variety of different EMS options for residential buildings. Various 

control and logic options were explored using both simulation tools and experimental trials. The 

primary focus of the EMSs investigated is battery bank management and control for residential 

buildings.  

 

Simulations in MATLAB, using a variety of different software tools, were utilized to investigate 

the impact of various cases. This section describes how the various logic behind decisions made 

by the different EMSs, while Chapter 4 describes the simulation methods in detail. Simulation 

work was necessary in order to investigate the long-term impact of different EMSs. 

 

Experimental work was conducted in order to validate the application of different EMSs. Since 

experimental trials could not be conducted over a period of a year, their results represent the 

validation of different EMS options – or their proof-of-concept.  

 

The energy management techniques investigated in this thesis are broken down into four main 

types: baseline, deterministic, optimal, and adaptive. Baseline simulations were run without 

control logic, in order to quantify the expected energy consumption and cost for different scenarios 

involving loads, with and without renewables. The latter three cases involve the addition of a 

battery bank, with control logic primarily focused on managing charging and discharging. 

 

For the purposes of this work, a deterministic EMS is defined as one with predefined operations 

that do not change throughout the year. This means that decisions, with regards to battery or load 

control, are all defined at the beginning of the year/simulation, and do not change as time passes. 

An example would be a programmable set-back thermostat, allowing greater deviation from its set 

point for the same six hours a day (when occupants are at work/asleep) for an entire year. 

 

An adaptive EMS is one whose control and logic outputs are dependent on the conditions of the 

building at any given point in time. While they do have predefined rules, the outcome of these 

rules will always be unknown until the point in time at which the system is evaluated. An example 

of this type of control would be predictive or transactive control. 
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The optimal EMS is investigated mainly for comparison purposes, and is likely not achievable in 

reality. However, the optimal EMS is used in some cases as a training platform for the adaptive 

EMSs. This optimized case analyzes the building’s load and generation profile after-the-fact, and 

determines what the optimal battery decision (charging or discharging) would have been. By 

knowing both the baseline and optimal savings the EMSs investigated can be ranked. It can also 

give insight as to whether adding “smarts” to an EMS is worthwhile – if a simpler EMS is “close 

enough” to the optimal case, is increasing the intelligence of the control system worth it?  

 

3.1 Baseline Scenarios 

Baseline simulations defined the electricity consumption and operating costs associated with the 

normal operation of residential buildings. All buildings investigated in this work operate using all-

electric appliances – including those used for space heating and water heating. This simplification 

meant that energy conversion factors between natural gas and electricity could be ignored. It also 

simplified energy and associated cost and GHG emission calculations. The cost of electricity, and 

calculation of the grid emission factor, are described below. 

 

3.1.1 Ontario Electricity Prices 

Residential electricity charges in Ontario, Canada, are applied on a time-of-use (TOU) basis. This 

passive form of DR is designed to incentivize consumers to use less electricity during peak periods 

of the day. The hourly schedule for this pricing scheme, as of May 1st, 2017, is shown in Figure 

3-1. 

 

 
Figure 3-1: Ontario TOU pricing schedule including electricity prices and total cost per kWh in 

brackets (OEB, 2017) 
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In addition to the advertised price of electricity, the local distribution companies (LDCs) also 

charge delivery and regulatory fees for electricity. Some LDCs also charge an additional 

transmission fee. Both of these charges have variable (¢/kWh) and fixed ($/month) components. 

The breakdown of these costs for the Toronto Hydro jurisdiction are shown in Table 3-1 and Table 

3-2. In addition to these costs, a 5% tax is applied to the final billed amount, accounting for an 8% 

provincial tax rebate recently put into effect. 

 

Table 3-1: Toronto Hydro variable electricity prices as of May 1st, 2017 (OEB, 2017) 

TOU period 

Advertised 
electricity cost 

(¢/kWh) 

Variable 
delivery cost 

(¢/kWh) 

Variable 
regulatory cost 

(¢/kWh) 
Total variable 
cost (¢/kWh) 

Off-peak 7.7 
2.95 0.59 

11.2 
Mid-peak 11.3 14.8 
On-peak 15.7 19.2 

 

Table 3-2: Toronto Hydro fixed electricity prices as of May 1st, 2017 (OEB, 2017) 
Charge type Cost ($/month) 
Fixed delivery cost 28.63 
Fixed regulatory cost 0.26 
Total fixed cost 28.89 

 

The costs shown in Table 3-1 and Table 3-2 are used for all costs calculations with respect to 

energy drawn from the grid. Neglecting maintenance costs, it is assumed that there is no operating 

cost associated with the operation of DGs and battery banks. When a finding or result references 

the “variable cost” of operation, it has used only the values in Table 3-1, and neglects all fixed 

costs. This has been done for some cases that do not represent the entire electrical load of the 

house.  

 

3.1.2 Ontario Grid Emission Factor  

In 2014, Ontario phased out its last coal-fired electric generation. Prior to the coal phase-out, the 

emission factor of the Ontario electricity grid was in the range of 189 – 221 gCO2eq/kWh, in the 

years 2004 – 2006 (Gordon & Fung, 2011). Currently, the only remaining fossil fuel used for 

electricity generation in the province is natural gas, making for much cleaner electricity 
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production; the life-cycle emission factor of natural gas is less than half of that of coal (Moomaw 

et al., 2011). Figure 3-2 shows the fuel mix of the Ontario electricity grid for the year 2015 based 

on total kWh generated by each generation type currently employed. 
 

At any given time of day, the actual fuel mix of the Ontario grid varies, meaning that greenhouse 

gas (GHG) emissions associated with electricity use change hour-to-hour. Generation supply data 

for the year 2015 was provided by the Independent Electricity System Operator (IESO) in order to 

analyse the GHG emission changes on an hourly basis. Using hourly GHG emission factors, the 

effect of load shifting on associated GHG emissions could be determined. Table 3-3 displays the 

emission factors used to determine the emissions associated with electricity. These emission 

factors are based on lifecycle analysis of each generation source, and should therefore represent 

accurate and conservative values. 

 

 
Figure 3-2: Ontario Electricity Grid Generation by Fuel Type (IESO, 2016) 

 

Using generation data from the IESO for the Ontario electricity grid, the emission factor of the 

grid (gCO2eq/kWh) could be determined using the values in Table 3-3. Hourly emission factor 

averages based on the 2015 dataset are presented in Figure 3-3. The annual average emission factor 

for this year was 58.1 gCO2eq/kWh. The exact values in Figure 3-3 were not used in calculations, 
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rather, they illustrate which hours of the day have the highest associated emission factors. Hourly 

emission factor data was used for all calculations. 

 

Table 3-3. Lifecycle emission factors of electricity generation sources (Moomaw et al., 2011) 
Generation 

Source 
Lifecycle GHG emission 
factors (g CO2 eq./kWh) 

Coal 1001 
Natural Gas 469 
Nuclear 16 
Hydro 4 
Wind 12 
Biofuel 18 
Solar 46 

 

 
Figure 3-3: Hourly averaged emission factors based on 2015 IESO generation data 

 

Using the Ontario electricity grid pricing scheme and emission factor profile, the annual 

operational costs and emissions associated with different control options can be quantified. 

Baseline scenarios involved no control of loads or DGs, and never had battery banks. In all cases, 

it was assumed that DGs operated on a zero-feedback basis. This means that their instantaneous 

power generation was used to offset any load at that moment in time. If there was an excess in 
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renewable generation, it was assumed that the device’s inverter either throttled the generation to 

match the load, or exported the excess power to the grid without price incentives. Neither feed-in-

tarrif (FIT or microFIT), nor net metering contracts were investigated, so that all financial savings 

found could be attributed to control actions alone. 

 

3.2 Deterministic Energy Management System Description 

The deterministic EMSs investigated in this work are another form of baseline. They represent – 

in the author’s opinion – the simplest form of battery control. Two types of deterministic battery 

control were analyzed, both of which involved load shifting based on the Ontario TOU pricing 

schedule. 

 

3.2.1 Basic Load Shifting 

The most basic form of load shifting involves using the battery bank to offset a building’s load on 

the grid during peak TOU hours. The battery bank was used to perform load shifting by matching 

the load of the building between the hours of 7:00 – 19:00, shifting all mid- and on-peak 

consumption to off peak times of day. After 19:00, the battery bank was allowed to recharge from 

the grid using the cheapest electricity available. This practice could be performed both with and 

without renewables. 

 

The addition of DGs to the basic load shifting case represents the absolute simplest configuration 

a homeowner could implement when combining renewable generation and battery energy storage 

– a configuration in which those two components are not connected at all. In this case, the electrical 

load would first be offset by renewable generation, and any remaining load on the grid would be 

matched by the battery bank. The battery bank would then be recharged at 19:00, and any excess 

renewable generation at off-peak times would be used to offset battery charging or household load. 

 

While this may not be the most realistic configuration of components, it is still of interest to 

investigate any savings that may be associated with this setup, as it represents the absolute least 

one could do to integrate these two types of systems. An example of where this might occur is if a 
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homeowner had an existing grid-tied renewable energy system, and later added a battery bank on 

a different branch of their home circuit without the capability of dynamic charging. 

 

3.2.2 Load Shifting with Excess Charging 

The second deterministic EMS represents what is potentially a more common case – the integration 

of renewables with battery energy storage such that excess renewable energy is stored in the battery 

bank. This method is similar to the load shifting with zero-feedback option, however, in this case 

excess renewable electricity generation is used to charge the battery bank, instead of simply being 

throttled to match the load. This method of system integration ensures that all of the renewable 

electricity generation is utilized. In addition to using excess electricity generation to recharge the 

battery bank, load shifting between 7:00 and 19:00 is again implemented. This practice still 

involves recharging the battery bank overnight, however, the amount of energy required to 

recharge the battery will, in theory, be reduced. 

 

3.3 Optimized Battery Management System 

The problem of optimal battery control has an immense solution space; the problem must be 

simplified in order to efficiently solve this issue. A custom MATLAB genetic algorithm code was 

developed to perform the optimization procedure. 

 

In order to simplify the problem, it was assumed that the battery could operate in one of two states: 

discharge enabled and charge enabled. Breaking down the problem into these two states neglects 

the option of doing nothing. Initially, a triple-base chromosome GA model was applied to the 

problem. As opposed to conventional chromosomes, formed of a series of 0’s and 1’s, a model 

was used with a third option, represented by the number 2. This drastically increased the solution 

space size, along with the complexity of the code. However, after various test trials, it was 

determined that the third option (2) was rarely selected, and that the triple-base GA model only 

achieved a 0.1% improvement in energy savings over its traditional, double-base counter part. It 

was therefore deemed appropriate to neglect the third option of doing nothing. 
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When operating in discharge enabled mode, the battery bank will act as it does during the day time 

when using the load shifting with excess charging protocol – discharging to meet the net load if 

the load exceeds the generation, or charging if the generation exceeds the load. During charging 

enabled mode, the battery will charge using the grid and whatever renewable generation is being 

produced at that time. 

 

At this point, the problem has been broken down into a matter of determining whether to enable 

charging (state 0) or discharging (state 1) at every given time step throughout the simulation 

timespan. In order to solve this issue in a reasonable amount of time, the solution space was broken 

down into hourly time segments over the course of the year. The problem was tackled day-by-day, 

with a solution space size of 224 for every day of operation. A custom genetic algorithm (GA) code 

was developed to determine the optimal solution for the battery management problem.  

 

The use of GA fits the problem well – having reduced potential solutions, to 1’s and 0’s foregoes 

the need for a chromosome decoder, and allows potential chromosomes to be easily evaluated and 

operated on. A candidate solution to the optimization problem is referred to as a chromosome, 

which is a series of 24 bits (1’s and 0’s).  Figure 3-4 shows an example of a random chromosome’s 

effect on the electrical load of the house over the course of a day. The process of the custom GA 

code is as follows: 

1. Initialize random population of 50 chromosomes – approximately double chromosome 
length (Mitchell, 1999), 

2. Evaluate and rank the fitness of the population based on minimizing electricity cost, 
3. Perform elitist selection – save top candidate(s), 
4. Select two parent chromosomes based on ranked probability: 

a. if they are equal, generate a child chromosome at random, 
b. otherwise preform random crossover, 

5. Add child chromosome to population, 
6. Repeat steps 4 and 5 until the population size limit has been reached, 
7. Perform random mutations on all but the top solution, 
8. Return to step 2, unless the maximum number of iterations has been met, or convergence 

has been reached, 
9. Output solution. 
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This process follows the framework standard GA procedure (Mitchell, 1999). Specific parameters 

related to the GA and selection process are summarized in Table 3-4. These parameters were 

chosen such that they could locate the global optimum in a reasonable amount of time. The 

resulting GA can reach convergence in less than one second, requiring an average of 30 iterations.  

 
 Figure 3-4: Example of the resulting load of a chromosome evaluation 

 

Table 3-4: Genetic algorithm parameters 
Parameter Value Reason for selection 

Bit length 24 Equal to hours in a day 

Population size 50 (Mitchell, 1999) 
Recommended approximately 

double the bit length 

Elitism Only top solution survives 
Greater elitism numbers led 
to premature convergence 

Crossover probability 60 % (Mitchell, 1999) 
Trial and error, within 

reasonable range 

Mutation probability 1 %  (Mitchell, 1999) 
Trial and error, within 

reasonable range 
 

To determine the optimal annual battery management option, the GA was run on daily 

consumption/generation load profiles for an entire year. The output was a solution, 8760 bits in 
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length, dictating what state to operate the battery bank for every hour of the year to achieve the 

lowest electricity cost. 

 

3.4 Adaptive Energy Management System Description 

The adaptive EMSs investigated in this work involve some sort of intelligence and/or inter-device 

communication. Three types of adaptive EMSs have been investigated. The first system uses 

machine learning to make decisions based on historical data. The second uses weather forecasts to 

predict for future generation and consumption. The final adaptive EMS is a transactional energy 

system that involves load and battery bank control. 

 

3.4.1 Machine Learning Battery Management System 

The GA-optimized EMS was used to develop a classifier machine learning system (MLS) that can 

be trained using historical data. It requires no knowledge of the future system states, and can make 

decisions based on historical data training and current system conditions. 

 

As inputs, the MLS accepts hourly averaged electrical loads, renewable generation, TOU 

electricity prices, and hour of the day. It was designed to output the same 0 or 1 battery state 

identifiers as the GA optimization process produced. The training process for the MLS in the real-

world would follow the following steps: 

 

1. Collect historical load and renewable generation information, averaged by hour, to reduce 

data storage requirements, 

2. At defined intervals (midnight once per week or month) run the GA optimizer on historical 

hourly averaged load and generation profiles, 

3. Train the MLS using hourly averaged profiles, TOU electricity prices, hour of the day, and 

the output of the GA optimization program. 

 

Developed using the MATLAB Classification Learner Toolbox, the MLS used the medium k-

nearest neighbours (KNN) classification training protocol. This algorithm classifies the input 

objects based on their proximity to their nearest neighbours (k = 10 neighbours in the case of 
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medium KNN). While the medium KNN method produced optimal training results, all training 

protocols available in the toolbox resulted in classification accuracies above 93%. Table 3-5 shows 

the confusion matrix resulting from the training of the MLS on one month’s worth of data, while 

Figure 3-5 displays the receiver operating characteristic (ROC) curve for the same data. 

 
Table 3-5: Confusion matrix for battery control classifier using four weeks of data and medium 

KNN training 
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Figure 3-5: ROC curve for classifier training using one month of data under medium KNN 

training method 
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The impact of the MLS was examined based on length of training time. This includes retraining 

monthly using cumulative data, as well as by clearing the MLS’s memory each month for 

retraining. This comparison will give insight into the impact of seasonal changes on the 

performance of the MLS, as the data in Figure 3-6 indicates potential changes in accuracy. The 

lowest points in training accuracy are associated with months of the year in which the variability 

in weather is highest, and patterns are therefore more difficult for the MLS to determine. 

 

 
Figure 3-6: Training validation accuracy of the MLS for each month of the year 

 

3.4.2 Predictive Control Case Study Description 

To complement the MLS, which utilizes historical data to make decisions, predictive control was 

investigated. While the predictive controller developed utilizes historical data as well, it also uses 

weather forecasts to predict future on-site energy production and consumption.  

 

The most interesting component of predictive control is the error associated with weather forecasts 

and the models used by the controller. Simply put, the question to be asked is: does the error in 

forecasting and modelling hinder the performance of the controller in any way? Therefore, in order 

to truly understand the potential of predictive control, actual weather forecast data must be used. 
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CanMETEO software has been utilized to provide weather forecast data. Developed by NRCan, 

CanMETEO provides hourly weather forecasts with very high location resolution. The software 

was used to provide weather data forecasts up to 48 hours in the future.  

 

A LabVIEW application was developed that ran the CanMETEO software at 6-hour intervals. This 

application was run for just over 1 month (November 7th – December 15th, 2016) in order to collect 

forecast data for future analysis, as well as determine whether the software was stable enough to 

run an experimental control system. After 1 month of data collection, just over 40% of the forecast 

files collected were composed entirely of NULL values. The longest period of clean, continuous 

forecast data spanned a 10-day period in November. At this point in time, it is not clear whether 

this was caused by an issue with the LabVIEW software, the CanMETEO software, or a 

communication issue with the source server. Nevertheless, a real-world controller could not be 

implemented due to inconsistent operation. Instead, a case study was performed using the 10 days 

of continuous forecast data. 

 

While the forecast data contained a variety of weather-related parameters, only ambient 

temperature, wind speed, and solar radiation data was used for predictive decisions. These 

parameters were used to train ANN models of HVAC loads, and renewable generation. After 

various trials, it was determined that this type of black box modelling cannot accurately represent 

appliance or hot water loads. Therefore, predictive control was performed only on HVAC loads in 

a home. The ANNs for predictive control all used Levenberg-Marquardt backpropagation training, 

and their inputs and outputs are summarized in Table 3-6. 

 

Table 3-6: Predictive ANN inputs and outputs 
Predictive ANN Model Inputs Outputs 

HVAC ANN 
• Ambient temperature 
• Irradiance (DNI, GHI, diffuse) 
• Wind speed 

• HVAC power 
consumption 

PV ANN 
• Ambient temperature 
• Irradiance (DNI, GHI, diffuse) 
• Wind speed 

• PV power generation 
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Similarly, the wind speed data provided by the software did not accurately reflect wind conditions 

at the Living City Campus, and an accurate predictive model of a wind turbine could not be 

developed. Wind turbines were therefore neglected from the predictive control case study. In the 

end, two ANN models were developed for predictive control use: an HVAC electrical load model, 

and a solar PV generation model. These models were trained using simulation data, explained in 

Chapter 4. 

 

Once forecast data is obtained, and used to estimate future electrical consumption and generation, 

the GA optimization protocol was applied to the load and generation profiles. The GA assumed 

the use of a 25 kWh battery, an appropriate size for the HVAC-only load case. This generates 

battery state profiles that have been optimized, while taking into account the future state of the 

system 

 

In the real-world, the predictive controller’s operation would follow the following steps: 

 

1. Acquire and log hourly averaged HVAC, solar PV, and weather data, 

2. At predefined intervals (every midnight), or if data is outside of current training range, 

retrain the ANN models using data from the past day, 

3. Collect weather forecast data, 

4. Apply weather forecast data to newly updated ANN models, producing load and generation 

data, 

5. Run GA optimization tool to produce optimal battery management profiles for use over the 

following 24 hours. 

 

A case study was performed, and the described predictive control protocol was simulated over the 

10-day period for which forecast data was available. All other EMSs (except for transactive 

control) were run on this same 10-day period, under the same conditions, in order to compare their 

operation on the same basis. The EMSs were compared on the basis of variable cost and energy 

consumption. 
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3.4.3 Transactive Energy Management System Description 

One of the adaptive control schemes investigated in this work is a Transactive Energy Management 

System (TEMS). This is an agent-based control scheme using a centralized controller and 

distributed agents. It is a highly scalable system, whose operation only requires the main controller, 

and is not dependent on any single agent. The transactive energy framework represents general 

guidelines for the application of a transactional-based energy system; there are countless different 

application methods for this control structure. This work represents one interpretation of the 

transactional energy framework for building energy application, and by no means represents 

transactional energy in its entirety. 

 

The TEMS in this work is comprised of three main device types: loads, DGs, and battery banks. 

Agents, the smart communication devices that facilitate the entry of an energy consuming or 

producing device into the marketplace, are responsible for monitoring their respective devices, and 

communicating their bid to the main controller – the Energy Marketplace. The ways in which the 

Marketplace and each agent operate are described in the section below. 

 

3.4.3.1 Energy Marketplace 

The Energy Marketplace is the environment in which transactional energy contracts are negotiated. 

Bids from participant agents are collected at discrete time intervals and sorted based on whether 

they contribute to either the supply or the demand of the system. The bid of each agent is made up 

of the following four components: 

 

• Unique Bidder ID 

• Bid Price ($/kWh) 

• Bid Amount (kW) 

• Duration of Contract 

 

In reality, it does not matter if the bid amount is in kW or kWh, as long as the Marketplace 

evaluates bids at fixed time intervals. If the Marketplace evaluates bids every minute, then agents 

will always be requesting their bid amount in kW for at least one minute, which can be converted 

into kWh values. Using kW merely simplifies the units used in calculations. 
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Once all the bids have been collected the marketplace constructs supply and demand curves, 

mimicking those which are common to free market economic systems. Supply curves are arranged 

in ascending order according to price, ensuring that producers that are willing to sell their energy 

for the lowest price do so before more costly production. Demand curves are arranged in 

descending order according to price, ensuring that consumers with higher needs have their load 

requirements satisfied before those with less urgency. 

 

Figure 3-7 shows an example of a marketplace evaluation. This example shows five loads (L1 – 

L5), one DG (DG1) and the grid. Each evaluation determines the point at which the supply and 

demand curves meet, calculating the market clearing price. This is the price at which all energy is 

traded – regardless of initial bid price – during a given marketplace evaluation period. 

 

In Figure 3-7 (a), the supply of renewable energy is relatively low, and only the loads with the 

greatest needs are granted their bid requests. The market clearing price is calculated to be 0.11 

$/kWh, the off-peak TOU price of the grid. After this evaluation L1, L2, and L3 are awarded 

demand bid contracts, supplied by DG1 and the grid. Figure 3-7 (b) shows the same system at the 

following time step. Renewable energy production has increased, pushing the supply curve to the 

right. This increase in supply lowers the market clearing price to 0.05 $/kWh, allowing loads with 

lower bids to come online. At this point in time, L4 can power on, supplied entirely by renewable 

energy. 

 

Not pictured in Figure 3-7 are critical loads – those that must have their demand satisfied. In this 

work, the definition of critical load has been relaxed from its conventional meaning to mean any 

non-HVAC load. Without detailed occupancy preferences for every individual appliance, it is 

impossible to accurately determine the need-of-operation, and therefore a bid amount. Therefore, 

all non-HVAC loads have been neglected from the TEMS. Initially this was not the case, but after 

many trials under the assumption that non-HVAC loads were critical loads, it was determined that 

this neither added advantages nor disadvantages to the system, and merely complicated simulations 

and marketplace evaluation. 
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Figure 3-7: An example of supply and demand evaluation in the Energy Marketplace 
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3.4.3.2 ASHP Bidding 

The only loads used in the TEMS were the ASHPs used to heat and cool the houses. Since this 

only represents one load per household, some simulations involved multiple dwellings in order to 

introduce more demand into the Energy Marketplace. The bid of an ASHP can be linked directly 

to thermal comfort – specifically to deviation from the zone set point temperature. Figure 3-8 

shows a sample of a thermostat bid curve relative to different prices of electricity. 

 

 
Figure 3-8. Sample ASHP bid curve relative to different energy prices. 

 

The intersection of the bid curve with the various energy price curves indicates the point at which 

the ASHP is willing to pay a sufficient price for the respective energy source. Therefore, the slope 

of the curve reflects the thermal comfort preferences of the occupant; a steeper bid curve indicates 

that a homeowner is willing to pay a greater amount to maintain their zone at a certain temperature, 

than a homeowner who has set a shallower bid curve. An analysis was performed investigating the 

impact of slope of bid curve on annual energy consumption and zone temperature. 

 

Various test trials conducted in this work indicated that the exact shape of the bid curve 

(polynomial, exponential, etc.) had a minimal effect on annual energy consumption and cost, and 

straight-line bid curves were used for all calculations.  
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3.4.3.3 DG Bidding 

Bid amounts for DGs were fixed at a constant price based on type of generator. Table 3-7 

summarizes the bid price used for all solar supply bids. 

 

Table 3-7: Bid prices for solar PV in a TEMS 
Type of Generator Bid Price ($/kWh) 

Solar PV 0.05 
 

This price is of course not representative of the actual cost of solar energy. This amount has been 

chosen arbitrarily such that it is lower than the off-peak TOU electricity price, incentivizing its 

use. While the bid price is relatively low, the actual price at which all energy is traded after each 

marketplace evaluation is the market clearing price. While the detailed implications of this fact are 

not investigated in this work, the actual prices at which solar energy is traded has been identified. 

 

3.4.3.4 Battery Bank Bidding 

The bidding process for the battery bank is much more complicated than for a thermostat or DG; 

the battery bank can bid a variable price, for both the supply (discharging) and demand (charging) 

curves. Additional control logic was therefore required in order to properly integrate the battery 

bank as an active bidding agent. 

 

A custom fuzzy interference system (FIS) was developed and implemented in order to make the 

bidding decisions for the battery bank. This fuzzy logic controller was developed using the 

MATLAB Fuzzy Logic Designer Toolkit.  

 

It was decided to use two different inputs for the battery FIS: current battery capacity, current net 

load. Based on its control rules, the FIS then output the price of battery energy in either a negative 

(demand) or positive (supply) amount. The use of fuzzy logic fits the system requirement well, 

since it allows the controller to be designed in more abstract terms. It allows the battery bank’s 

energy content to be described in such terms as “Very Low” or “High”, which alleviates the need 

to define strict numerical limits on what may be defined as “Very Low” battery energy content. 

Similar work on battery charging/discharging control has been investigated in the past (Arcos 
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Avilés et al., 2012), and this work has adapted the previously developed principles for a transactive 

energy application. 

 

The membership functions (MFs) for the battery FIS were chosen to best represent the state of the 

battery, and the surrounding system that it serves. Figure 3-9 to Figure 3-11 show the two input 

and single-output MFs.  

 

 
Figure 3-9: Battery FIS input membership function – Battery capacity fraction 

 

 
Figure 3-10: Battery FIS input membership function – Net load fraction 
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Figure 3-11: Battery FIS output membership function – Bid price 

 

The battery capacity fraction is defined as the current ratio of the battery’s energy content to its 

total capacity – the inverse of depth of discharge (DOD) – and ranges from 0 to 1. The decision to 

evenly span the MFs for this input parameter was arbitrary. 

 

The net load fraction (NLF), calculated in Equation 3-1, is defined as the current net load divided 

by the battery’s maximum charge/discharge rate. For all calculations, it was assumed that the 

maximum charge/discharge rate was 6 kW. If the NLF is negative, it indicates that there is a deficit 

in on-site generation, while a positive value indicates a generation surplus.  
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Since the ASHP’s load is almost always entirely below 6 kW, the conditionality in Equation 3-1 

was only implemented if additional loads were brought into the TEMS.  

 

Initially the NLF evenly covered the input range, mirroring the battery capacity fraction MFs. 

However, after various trials, it was determined that the MFs shown in Figure 3-10 best 

Demand Supply

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

M
em

be
rs

hi
p

Output Variable - Bid Price



 45 

characterized the system. Additionally, three MFs, as opposed to five, sufficiently achieved the 

required results, while reducing the complexity of the rules used in the battery FIS. 

 

The output variable defined whether the battery would bid towards the supply or demand curve, 

and the amount that it would bid. A negative value indicates a bid for the demand curve, while a 

positive value indicates a bid for the supply curve. The shapes of the MFs shown in Figure 3-11 

were modified such that a demand bid would never exceed the mid-peak TOU price, and the supply 

bid would lie just below the price of off-peak electricity. 

 

After various trials, it was determined that without separate day and night control, the battery 

would rarely bid enough to charge from the grid overnight. Two different sets of rules were then 

developed to help the battery recharge from the grid when appropriate. Based on trial and error, it 

was found that the FIS rules summarized in Table 3-8 and Table 3-9 yield the best results at this 

point in time. This rule scheme has only been somewhat optimized, and is expected that a better 

bidding structure may exist. Based on this set of rules, the battery capacity could be reduced from 

five to two or three sets, and ignored altogether during the day. 

 

Table 3-8: Battery FIS control rules – Daytime 
 Battery Capacity Fraction 

NLF Very Low Low Mid High Very High 

Deficit Supply Supply Supply Supply Supply 

Zero Supply Supply Supply Supply Supply 

Surplus Demand Demand Demand Demand Demand 

 

Table 3-9: Battery FIS control rules – Nighttime 
 Battery Capacity Fraction 

NLF Very Low Low Mid High Very High 

Deficit Demand Demand Demand Supply Supply 

Zero Demand Demand Demand Supply Supply 

Surplus Demand Demand Demand Demand Demand 
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3.5 Methodology Summary 

Figure 3-12 summarizes the overall research methodology in the form of a flow chart. 

 

 
Figure 3-12: Research methodology flow chart 
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4. House Description and Model Summary 
Energy management control schemes for buildings can issue controls to loads, DGs, and energy 

storage devices. However, having these three arms of control compounds the difficulty of the 

problem. For the EMSs investigated in this work, certain simplifications were made. Firstly, it was 

assumed that the only possible control over DGs was zero-feedback throttling; when renewable 

generation exceeds the on-site load the generation is throttled back, via the inverter, to match the 

load such that no electricity is exported to the grid. This simplifies energy calculations, and 

neglects any possible revenue associated with feed-in-tariff (FIT or microFIT) or net metering 

contracts, allowing any changes in operating cost to be attributed entirely to the EMS. 

 

The second simplification was to treat most household loads as critical loads. Without estimating 

occupancy preferences for every individual appliance, it is impossible to impose flexibility over, 

for example, the dryer or lights in a home. There was one exception – the heating and cooling 

systems used in homes were treated as flexible loads. Since the operation of these loads can be 

linked directly to thermal comfort, expressed as a range of comfortable conditions, they inherently 

have flexibility in their operation. 

 

The final simplification was that if it was decided to charge the battery bank from the grid alone, 

the battery would be charged at the inverter/charger’s full charge rate. However, if a decision was 

made to charge the battery from renewables, it would be charged with the available amount of 

power. Using the full charge rate from the grid negates the need to calculate the optimal charge 

rate from the grid at every possible moment in time. 

 

While the battery’s state of charge can be easily calculated based on energy withdrawn or injected, 

the matter of determining the impact of the HVAC system on a home is much more complicated. 

An accurate building model is essential in order to produce meaningful results in terms of the 

application of an EMS controlling HVAC loads. 
 

A residential house model has been developed in MATLAB. This programming language, as 

opposed to building simulation software, was used because of its powerful optimization and AI 

capabilities. Having a building model in MATLAB ensured that any possible control action could 
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be applied, without having to worry about bending to the requirements of other building simulation 

software. 

 

The model is based on the Archetype Sustainable House A due to the vast amount of available 

data related to its operation. A physics-based grey box model has been developed and calibrated 

to represent the operation of the house and all its relevant internal components. This means that 

while some parameters use their real-world values, certain characteristics have been modified via 

calibration procedure such that the model accurately reflects real-world operation. The model 

description, along with inputs, outputs, and calibration procedure, are described in the following 

sections. 

 

4.1 Site Description 

The Archetype Sustainable House (ASH), located at the Living City Campus in Vaughan, Ontario, 

is composed of two semi-detached model homes named House A and House B. Originally 

developed from an architectural design competition for sustainable buildings, today the ASH acts 

as a test beds for all forms of sustainable building technologies and renewable energy.  

 

The houses are constructed from sustainable building materials, use heat recovery for both water 

and air, heat and cool using high-efficiency HVAC systems, and more. House A is utilized 

sustainable technologies that are commercially available today, while House B showcases more 

experimental and innovative technologies that are only just entering the market. Figure 4-1 shows 

the ASH at the Kortright Centre for Conservation. Table 4-1 summarizes the major structural 

features of both House A and B. 

 

Adjacent to the ASH is a solar PV test field and a small-scale wind turbine testing facility. The PV 

test site is a research facility features numerous different PV modules for demonstration, 

monitoring, and comparison purposes. Solar radiation is measured using various measurement 

devices, including pyranometers, silicon cell photodiodes, and a Kipp & Zonen Solys 2 Tracker, 

to ensure verify data repeatability. Detailed weather data is monitored using a Lufft WS600 

weather station. The nearby small-scale wind turbine testing facility features a variety of wind 

turbines under test. Wind speed, direction, and air temperature are measured at various heights on 
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a nearby meteorological (MET) tower. The ASH, solar PV test field, and wind turbine testing 

facility are all monitored using a distributed Data Management System (DMS). 

 

Table 4-1: Archetype Sustainable House structural features (Safa, Fung, & Kumar, 2015) 
Structural features House A House B 
Basement walls RSI 3.54 (R20) RSI 3.54 (R20) 
Basement slab RSI 1.76 (R10) RSI 1.76 (R10) 
Above grade walls RSI 5.64 (R32) RSI 5.64 (R32) 
Windows 2.19 W/m2K 1.59 W/m2K 
Roof RSI 7 (R40) RSI 7 (R40) 
Overall UA value 160 W/K 172 W/K 
ACH @ 50 Pa 1.204 1.091 
Floor areas – m2 (ft2) 
Basement 86.95 (936) 86.95 (936) 
First floor 86.95 (936) 86.95 (936) 
Second floor 86.95 (936) 60.19 (636) 
Third floor 83.60 (900) 86.95 (936) 
Total 344.0 (3708) 321.0 (3444) 
Zone volumes – m3 (ft3) 
Basement 234.0 (8264) 234.0 (8264) 
First floor 292.5 (10296) 292.5 (10296) 
Second floor 238.5 (7840) 238.5 (7840) 
Third floor 222.0 (7840) 271.8 (9600) 
Total 986 (34,824) 1036 (36,584) 

 

 
Figure 4-1: The Archetype Sustainable House A (left) and House B (right) at the Living City 

Campus 
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4.1.1 Data Management System 

The DMS used at the Living City Campus is a set of custom distributed monitoring applications 

designed and implemented using National Instruments (NI) hardware and software (LabVIEW), 

the DMS is responsible for all on-site data acquisition (DAQ). The DMS is responsible for 500 

monitoring points, logging at 1 – 5 second intervals. All experimental work was integrated into 

the existing DMS. 

 

 
Figure 4-2: Data Management System hierarchy (Saxena, 2017) 

 

4.1.2 Mechanical and Renewable Energy Systems 

The relevant mechanical systems used in Houses A and B are summarized in Table 4-2. 

Simulations were based on the heating and cooling, DHW, and ventilation systems used in House 

A, and the renewable energy systems of House B. 

 

Not included in Table 4-2 is the energy storage capacity at the Living City Campus. Located 

adjacent to the ASH, in the wind test facility control building, is a 1600 Ah (50 VDC) lead-acid 

battery bank. This energy storage device is controlled by a Xantrex XW 6048 kW inverter/charger. 

A Connext ComBox allows for communication and control of the inverter/charger via Modbus 

communication protocol, such that the battery may be remotely controlled. 
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Table 4-2: Archetype Sustainable House system summary 
System House A House B 

Solar PV None 4.08 kW 
Wind Turbine None 2.4 kW 

Heating and Cooling 
Variable capacity ASHP 

packaged with AHU 

GSHP with horizontal and 
vertical loops, desuperheater, 

and buffer tank 

Domestic hot water 
Outdoor air source heat pump 

water heater and auxiliary 
mini gas boiler 

Indoor air source heat pump 
water heater (ASHPWH) 

Ventilation 
Heat recovery ventilator 

(HRV) 
Energy recovery ventilator 

(ERV) 
 

4.2 House Model Inputs 

The Archetype Sustainable House A was used as the basis for the model developed in this work 

due to the availability of data regarding its HVAC operation. The model uses real-world weather 

data and house parameters as inputs. 

 

4.2.1 Weather Data 

Weather data collected at the Living City Campus was used for all simulations. This data was 

critical for two reasons. First, it ensured that an accurate calibration of the house model could be 

performed, since the data was collected at the location of the ASH-A. Second, the data was 

available at very high resolutions (up to 1 second), allowing the simulation to capture the 

variability of real-world weather conditions. The weather parameters used as model inputs are 

summarized in Table 4-3. 

 

Table 4-3: Weather data used for simulations 
Parameter Unit Sensor 
Ambient Temperature  ˚C Lufft WS 600 
Humidity Ratio gwater/gair Lufft WS 600 
Wind Speed m/s Lufft WS 600 
Direct Normal Irradiance (DNI) W/m2 Kipp & Zonen Solys 2 Tracker 
Diffuse Irradiance W/m2 Kipp & Zonen Solys 2 Tracker 
Global Horizontal Irradiance (GHI) W/m2 Kipp & Zonen Solys 2 Tracker 
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4.2.2 House Data 

The actual specifications of the ASH-A were used as model inputs. However, some parameters 

were modified in order to calibrate the grey-box house model. A summary of the fixed versus 

calibrated ASH-A specifications is presented in Table 4-4. Values specific to wall orientation are 

summarized in Table 4-5. 

 

Table 4-4: Summary of fixed and calibrated parameters for the ASH-A model 
Parameter Fixed/Calibrated Value 
Wall overall heat transfer coefficient Calibrated - 
Wall exterior solar absorption Fixed 0.9 
Floor interior solar absorption Calibrated - 
Wall thickness Calibrated - 
Wall thermal conductivity Calibrated - 
Wall density Calibrated - 
Wall heat capacity Calibrated - 
Window overall heat transfer coefficient Calibrated - 
Window solar heat gain coefficient Fixed 0.56 (NRCan, 2017) 
Zone volume Fixed 986 m3 

 

Table 4-5: Orientation-specific ASH-A values (Alibabaei, 2016) 
Wall Direction Azimuth Wall Area Window Area 

North 180 39.7 m2 9.6 m2 

East -90 65.3 m2* 0.0 m2 

South 0 39.7 m2 11.0 m2 

West 90 65.3 m2 10.3 m3 

Roof 0 107.3 m2 - 
Floor 0 80.2 m2 - 

*The east wall is a shared wall with House B. 

  



 53 

4.3 Weather-Based Calculations 

4.3.1 Solar Radiation Calculations 

Solar radiation calculations are critical, not only for determining the thermal response of a 

building, but also for the estimation of solar PV generation. Actual solar irradiance data, collected 

at the Living City Campus, was used for all solar calculations. This data includes the direct normal 

irradiance (DNI), M=NO, the diffuse horizontal irradiance (diffuse), M),PP, and the global horizontal 

irradiance (GHI), M>QO, all in W/m2. These values are recorded at 1 second intervals on a Kipp & 

Zonen Solys 2 Tracker. However, the data only applies to the orientation of the tracker itself, and 

must be translated, using solar geometry, such that it may be applied to surfaces with different 

orientations. 

 

In order to determine the amount of solar radiation incident on a surface, the angle of incidence of 

solar radiation must be determined. This angle must be calculated for every surface contacted by 

solar radiation. All solar radiation calculations used in this work are standard in the solar energy 

industry (Duffie & Beckman, 2006). 

 

4.3.1.1 Incidence Angle 

The incident solar radiation on a given surface is proportional to the cosine of the angle of 

incidence, R, on that surface. Numerous angles – functions of location, orientation, and time of 

day and year – are required to determine the angle of incidence. Table 4-6 summarizes all angles 

used for calculations, while Figure 4-3 gives a visual representation of some of the relevant angles. 
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Figure 4-3: Relevant solar calculation angles (Duffie & Beckman, 2006) 

 
Table 4-6: Relevant solar angles (Duffie & Beckman, 2006) 

Angle Symbol Description 

Latitude S 
The location north or south of the equator, with 
north being positive. 

Declination T 
The position of the sun at solar noon with respect 
to the plane of the equator, with north being 
positive. 

Tilt angle U The angle between the surface and horizontal. 

Surface azimuth angle V 
The deviation of the normal to the surface from due 
south, with east being negative and west being 
positive. 

Hour angle W 

The angular displacement of the sun to the east or 
west of the local meridian due to rotation of the 
earth, with solar noon zero, morning negative and 
afternoon positive. 

Zenith angle RX 
The angle between the vertical and the line to the 
sun. 

Solar altitude angle Y" 
The angle between the horizontal and the line to the 
sun. 

Solar azimuth angle V" 

The angular displacement from south of the 
projection of the beam radiation on a horizontal 
surface, with east being negative and west being 
positive. 

Angle of incidence R 
The angle between the solar beam radiation on a 
surface and the normal to the surface. 
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The first step of the calculation procedure is to calculate the solar time, since all angles are relative 

to solar noon, and not the local time. Equations 4-1 to 4-3 are used to calculate solar time. 

 

ZF[\.	G9]I = ZG\^_\._	G9]I + 4 6"? − 6*#& + 	! (4-1) 
 

! = 229.2 0.000075 + 0.001868iFKj − 0.032077K9^j − 0.014615iFK2j
− 0.04089K9^2j  

(4-2) 

 

j = (^ − 1)
360
365 (4-3) 

Where 6"? is the standard meridian for the time zone, 6*#& is the longitude of the location, ! is the 

equation of time in minutes, and ^ is the day of the year. Knowing the location and time dependent 

angles, the angle of incidence (R) can then be calculated using Equation 4-4.  

 
cos R = sin T sinS cos U − sin T cosS sin U cos V + cos T cosS cos U cosW

+ cos T sinS sin U cos V cosW + cos T sin U sin V sinW 
(4-4) 

 

4.3.1.2 Incident Solar Radiation 

The solar radiation incident on any given surface (with tilt angle U) is calculated using the isotropic 

sky model, shown in Equation 4-5. 

 

M?#? = M=NO cos R + M),PP
1 + cos U

2 + M>QOst
1 − cos U

2  (4-5) 

 

Where M?#? is the total incident solar radiation on the surface, M=NO is the direct normal beam 

radiation, M),PP is the diffuse radiation, and M>QO is the global horizontal irradiance, all in W/m2. st 

is the ground reflectivity, which was assumed to be 0.2 for all calculations (Enriquez, Zarzalejo, 

Jiménez, & Heras, 2012). 

 

4.3.2 Equivalent Sol-Air Temperature 

The sol-air temperature (u"@) is an equivalent temperature that would cause the same radiative heat 

transfer effects in the absence of any radiation. Using the sol-air temperature, the heat transfer 
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through wall sections may be calculated using only conductive and convective terms. The sol-air 

temperature is calculated in Equation 4-6  (Al-Saud, 2009). 

 

u"@ = u@Bv +	
YM
ℎ#
−
w∆ℛ
ℎ#

 (4-6) 

 

Where Y is the absorptance of the surface, M is the total solar radiation incident on the surface 

(W/m2), w is the emissivity of the exterior surface, and ∆ℛ is the difference in longwave radiation 

incident on the surface and the radiation emitted by a black body at the outdoor air temperature 

(W/m2). The radiation emitted by a black body is calculated in Equation 4-7. 

 
!z = 	{uv| (4-7) 

 

{ is the Stefan-Boltzmann constant (5.670x10-8 W/m2·K4), and uv is the temperature of the black 

body in Kelvin. Once the sol-air temperature has been calculated, it replaces the ambient 

temperature (u@Bv) in heat flow calculations, accounting for the radiative effects on the heat flow 

through the walls and windows of the building. 

 

4.3.3 Convective Heat Transfer Coefficient 

Changes in the convective heat transfer coefficient on the exterior of a building are primarily 

affected by the air flow, or wind speed, over the surface. Analytical correlations can be derived 

from heat and momentum transfer principles using dimensionless parameters. For simplicity, 

empirical correlations, summarized in Equation 4-8, which are commonly used for building 

applications have been used in this work, (Defraeye, Blocken, & Carmeliet, 2010). 

 

ℎ& } = 4.0} + 5.6, } < 5.0	] K
7.1}1.�Ä, } ≥ 5.0] K  (4-8) 

 

Where	ℎ& is the convective heat transfer coefficient (W/m2·K), and } is the wind speed over the 

surface. For the interior walls, the calculation of ℎ& assumed negligible wind speed, and a value of 

5.6 W/m2·K was assumed. 
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4.4 House Model 

A simplified, lumped parameter grey-box house model has been developed for simulation 

purposes. The model is primarily based on thermodynamic principals, and in-part on the work 

conducted by other graduate students in this research group (Alibabaei, 2016). The model has been 

calibrated on both a short- and long-term basis; the former, to capture the relatively slow thermal 

response of the house, and the latter, to ensure that simulated annual heating and cooling loads are 

accurate. Data from ASH-A was used for calibration purposes. 

 

The purpose of the model is to quantify the building’s zone temperature response to changes in 

weather, and use this information to determine the resulting heating or cooling load. An energy 

balance has been performed on all of the wall and window sections of the building. The overall 

energy flows have been broken down into four main components: 

 

1. Heat flow through the windows (ÅÇ)), 

2. Solar heat gain through windows (Å"#*@%,),% and Å"#*@%,),PP), 

3. Heat flow through the walls (ÅÇ), and 

4. Ventilation heat gains or losses (ÅA'/?). 

 

Knowing the heat flows into and out of the building, the change in zone temperature can be 

calculated. Additional heat sources, such as the heat generated by appliances or occupants, have 

been neglected for this model. 

 

4.4.1 Heat Flow Through Windows 

The light – and therefore energy – that windows allow into the building has an impact on the heat 

flows throughout the rest of the building. Therefore, energy balance calculations are first 

performed on the windows of the building. Figure 4-4 illustrates the simplified window model 

used in calculations.  
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Figure 4-4: Window heat flow diagram 

 

The total heat flow through the windows of the house is calculated in Equations 4-9 and 4-10. Due 

to their relatively low thermal mass, any heat gain of the windows themselves was neglected. The 

total conductive and convective resistance of the windows (É?#?,Ç),,) is calculated in Equation 

4-11. 

 

ÑÇ),, = 	
u"@,, − 	uX
É?#?Ç),,

 (4-9) 

 

ÑÇ),?#? = 	 ÑÇ,/)#Ç,,

NÖÜ

,0á

 (4-10) 

 

É?#?,Ç),, = 	
1

ℎ#àÇ),,
+ 	

1
âÇ)àÇ),,

+ 	
1

ℎ,àÇ),,
 (4-11) 

 

Where ÑÇ),, is the heat flow through the windows on the ith side of the house (W) and ÑÇ),?#? is 

the total heat flow through all the windows of the house. 5Ç) is the number of windows on the 

house and àÇ),, is the total window area on the ith side of the house. ℎ# and ℎ, are the exterior and 

interior convective heat transfer coefficients respectively (W/m2·K) and âÇ) is the overall heat 

transfer coefficient for the window (W/m2·K), including any air gap in the case of double glazed 

windows.	ℎ# and ℎ, are calculated using the correlation in Equation 4-8, while âÇ) is obtained 
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from the window manufacturer data sheet. The sol-air temperature for the windows is calculated 

separately from that of the walls, in accordance with the properties of the windows. 

 

The absorptance of the windows is required to calculate the sol-air temperature, and is a function 

of incidence angle, R. Once the incident angle of solar irradiance is known, the absorptance of the 

windows was calculated using the correlations in Equations 4-12 to 4-13 (Parkin, 2015). 

 

Y = 1 − Iäãå çéèêëí (4-12) 
 

Rt* = sinäá
ìá
ìî
	sin R  (4-13) 

 

Where ï is the extinction coefficient of glass (m-1), 6 is the thickness of the glass (m), and Rt* is 

the angle of light within the glass, calculated using Snell’s Law (Equation 4-13). ìá and ìî are the 

refractive indexes for air and glass, respectively.  

 

4.4.2 Solar Heat Gain Through Windows 

The impact of solar heat gains through the windows on the rest of the house is of critical 

importance, particularly during the cooling season. The solar heat gain through the windows is 

split into its direct and diffuse (including total horizontal and ground reflected) components. The 

solar heat gain through the windows is calculated in Equations 4-14 to 4-15 (NFRC, 2006). 

 
Å"#*@%,),%,, = Zñóò, ∙ àÇ),, ∙ M),%,, (4-14) 

 
Å"#*@%,),PP,, = Zñóò, ∙ àÇ),, ∙ M),PP,, (4-15) 

 

Where Å"#*@%,),%,, and Å"#*@%,),PP,, are the direct and diffuse components of solar heat gain (W), 

respectively, Zñóò, is the solar heat gain coefficient, and àÇ),, is the window area of the ith 

window. M),%,, and M),PP,, are the direct and diffuse incident radiation on the ith window (W/m2). 

Typically, separate solar heat gain coefficients would be used for direct and diffuse radiation, both 

a function of incidence angle. However, for simplicity, a fixed value of 0.56, obtained from the 

manufacturer data sheet, was used. 
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The solar radiation on all interior surfaces (walls, ceiling, and floor) must be calculated in order to 

perform energy balances on those surfaces. It has been assumed that all direct transmitted solar 

radiation first contacts the floor where a portion is absorbed, and a portion is reflected. The 

reflected portion is assumed to be entirely converted into diffuse radiation. Equation 4-16 

calculates the solar radiation on all interior surfaces except the floor, while Equation 4-17 

calculates the solar radiation on the floor (McQuiston, Parker, & Spitler, 2005). 

 

Å"#*@%,,/?,, =
Å"#*@%,),PP + 1 − YP*##% Å"#*@%,),%

à?#?
 (4-16) 

 

Å"#*@%,,/?,P*##% =
Å"#*@%,),PP + 1 − YP*##% Å"#*@%,),%

à?#?
+
YP*##% Å"#*@%,),%

àP*##%
 (4-17) 

 

Where YP*##% is the absorptance of the floor, à?#? is the total interior surface area (m2), and àP*##% 

is the total floor area (m2). Å"#*@%,,/?,, and Å"#*@%,,/?,P*##% are the absorbed solar radiation by the 

interior walls and ceiling, and floor respectively (W/m2). These values are later used in the inner 

wall surface energy balance, described in the following section. 

 

4.4.3 Heat Flow Through Walls 

The wall segments are modeled as lumped resistive-capacitive thermal networks. The lumped 

capacitive method is a simple method for performing heating and cooling calculations. Typically, 

the validity of this method for a given case is tested using the Biot number (j9), a dimensionless 

parameter that represents the ratio of convective resistance to conductive resistance. The Biot 

number is defined in Equation 4-18. (Bergman, Lavine, Incropera, & Dewitt, 2011). 

 

j9 =
ℎ6
ï  (4-18) 

 

When j9 < 0.1, the conductive resistance is much less than the convective resistance, indicating a 

relatively uniform temperature within the solid. Typically, the lumped capacitance method is only 

valid when j9 < 0.1.  
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In the case of the walls used in the house model, 0.1 < j9 < 100, which falls outside the typical 

allowable range. However, research has found that validity of the lumped capacitance method can 

be extended to larger Biot numbers, up to 100. This research was conducted for building-integrated 

thermal storage applications, which requires highly-accurate thermal models. It has been found 

that the lumped capacitance method is valid for Biot numbers as large as 100 (Xu, Li, & Chan, 

2012). The greatest accuracy was reported when the system had a smaller dimensionless time 

value, ö. For this system, ö = 0.00014, which is sufficiently small and indicates that the lumped 

capacitance model is an acceptable approach. 

 

Figure 4-5 displays the simplified wall model used to determine the heat flow through the walls of 

the house. Energy balances around the three wall nodes for the ith wall section are shown in 

Equations 4-19 through 4-21. 

 
Figure 4-5: Wall heat flow diagram 

 
Å"#*@%,'3?,, + Å&#/A,'3?,, + Å%@),'3?,, = Å&#/),'3?,, (4-19) 

 

ò,
_uB,,
_G = Å&#/),'3?,, − Å&#/),,/?,, (4-20) 

 
Å&#/),,/?,, + Å"#*@%,,/?,, = Å&#/A,,/?,, (4-21) 
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Where the subscripts ext and int indicate the exterior and interior of the building respectively, and 

cond and conv refer to conductive and convective heat flows respectively. All heat flows are in 

watts. Equations 4-22 through 4-25 define the conductive and convective heat flows through the 

wall section. Note that because Equation 4-22 uses the sol-air temperature, Å&#/A,'3?,, accounts for 

both convective and radiative heat flows. 

 
Å&#/A,'3?,, = ℎ&,#àÇ,,(u"@,, − u"#,,) (4-22) 

 

Å&#/),'3?,, =
(u"#,, − uB,,)

Éá
 (4-23) 

 
Å&#/A,,/?,, = ℎ&,,àÇ,,(u",,, − uX) (4-24) 

 

Å&#/),'3?,, =
(uB,, − u",,,)

Éî
 (4-25) 

 

u"#,, and u",,, are the exterior and interior wall surface temperatures respectively (˚C). At this point 

in the calculation, neither of these surface temperatures are known, but are required in order to 

calculate the change in thermal mass temperature at the following time step. Equation 4-26 is used 

to calculate the exterior surface temperature, while Equation 4-27 is used to calculate the interior 

wall surface temperature. 

 

ℎ&,#àÇ,,(u"@,, − u"#,,) =
(u"#,, − uB,,)

Éá
 (4-26) 

  
(uB,, − u",,,)

Éî
+ Å"#*@%,,/?,, = ℎ&,,àÇ,,(u",,, − uX) (4-27) 

 

Once the two wall surface temperatures are known, the interior convective heat flows are summed, 

and used in the zone air temperature balance, covered in Section 4.4.6. The change in thermal mass 

temperature, for use in the following time step, is calculated in Equations 4-28 and 4-29 using a 

numerical method based on the stability criterion (ö)  (Çengel & Ghajar, 2010). These equations 

are derived from the energy balance at the middle node in Figure 4-5. Where _õ is the half-wall 

length, and ö is the dimensionless time, also known as the Fourier number, 7F. 
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ö = 	
ï
si4

_G
_õî (4-28) 

 
uB,,?úá = ö u"#,,? + u",,,? + 1 − 2ö uB,,? (4-29) 

 

4.4.4 Ventilation Heat Flow 

The house model accounts for both natural and forced ventilation. The details of forced ventilation 

are described with respect to HRV operation in Section 4.5.1. Natural ventilation – Infiltration – 

is the leakage of air into or out of a building. Heat gains or losses can be attributed to infiltration 

due to differences in indoor and outdoor air temperature. The air change method has been used to 

calculate infiltration. Equation 4-30 is used to calculate the volumetric flow rate of infiltration air 

(Howell, Coad, & Sauer, 2013). 

 

Ñ = àòñ@AtùX
1	

3600	 
(4-30) 

 

Where	Ñ is the volumetric flow rate of air (m3/s), àòñ@At is the average air changes per hour of 

the house (ach), and ùX is the total zone volume (m3). The average air changes per hour are 

computed using àòñû1, the air change at 50 Pa, described in Equation 4-31 (Zhang, Fung, & 

Jhingan, 2014). 

 

àòñ@At =
àòñû1

51ñáZî6ü
 (4-31) 

 

Where 51 is the leakage-infiltration ratio, ñá is the building height correction factor, Zî is the site 

shielding factor, and 6üis the leakiness corretion factor. These four factors are all climate- and 

building-specific. For Toronto, Canada, 51 can be taken to be 19 (Zhang, Fung, & Jhingan, 2014). 

Typical values for all other parameters in Equation 4-31 are shown in Table 4-7 and Table 4-8. 
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Table 4-7. Typical air change rates for different building types (Zhang, Fung, & Jhingan, 2014) 
House Type Air change at 50 Pa – †°¢£§ 

Loose 10.35 
Average 4.55 
Present 3.57 
Energy-Efficient 1.5 
Archetype House A 1.204 (Fung, Dembo, & Zhou, 2009) 

 

Table 4-8. Typical infiltration correction factor values (Sherman, 1986) 
Number of Stories  Height correction factor – ¢• 
1 1 
1.5 0.9 
2 0.8 
3 0.7 
Condition Shielding correction factor – ¶ß 
Well Shielded 1.2 
Normal 1.0 
Exposed 0.9 
Condition Leakiness correction factor – ®© 
Small cracks (tight) 1.4 
Normal 1.0 
Large holes (loose) 0.7 

 

Once the volumetric flow rate of air is known, the sensible heating or cooling from infiltration 

(Å,/P,"'/") is calculated using Equation 4-32. The same method for calculating the infiltration heat 

flow can be used to calculate the load associated with the HRV, and the total ventilation heat flow 

is calculated in Equation 4-33. 

 
Å,/P,"'/" = Ñs@,%i4,@,%(u@Bv − uX) (4-32) 

 
ÅA'/?,"'/" = Å,/P,"'/" + ÅQ™´,"'/" (4-33) 

 

4.4.5 Latent Cooling 

A latent heating or cooling process causes a change in humidity ratio of air, but not temperature. 

Along with temperature, humidity plays a significant role in the thermal comfort of a space. Figure 

4-6 displays ASHRAE summer and winter thermal comfort zones based on temperature and 
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humidity. Since there is no recommended lower humidity limit, only an upper limit on humidity 

ratio has been applied to this model. Therefore, the model developed only considers the impact of 

latent cooling on the house, and not latent heating. 

 

 
Figure 4-6: ASHRAE summer and winter thermal comfort zones (Howell, Coad, & Sauer, 2013) 
 

The change in humidity ratio is assumed to arise entirely from ventilation air into the zone. Similar 

to Equation 4-32, the latent heat due to ventilation (both forced and natural) is calculated in 

Equation 4-34. 

 
ÅA'/?,*@? = Ñs@,%ℎPt(J# − JX) (4-34) 

 

Where ℎPt is the specific enthalpy of evaporation of water (2256.7 kJ/kg), and J# and JX are the 

humidity ratios of the outdoor and zone air respectively (kg water/kg dry air). This additional 

cooling load is only calculated when the zone air humidity ratio rises above 0.012 the upper limit 

based on ASHRAE thermal comfort standards. For this model, all of the energy required for latent 

cooling is assumed to be provided by the ASHP.  
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4.4.6 Zone Air Energy Balance 

Once the heat loss of gain from the walls, windows, and infiltration have been calculated, the 

change in zone air temperature can be determined. The energy balance on the air for the single-

zone house is displayed in Equation 4-35 

 

ò@,%
_uX
_G = Å&#/A,,/?,Ç,,

NÖ

,0á

+ Å&#/A,,/?,Ç),,

NÖÜ

,0á

+ ÅA'/?,"'/" + ÅA'/?,*@? + Å"$4 (4-35) 

 

Where 5Ç is the number of walls in the zone, and 5Ç)is the number of windows in the zone, and 

Å"$4 is the supplied heat by the HVAC system. ò@,% is the thermal capacitance of air, defined in 

Equation 4-36 

 
ò@,% = 	s@,%ùX#/'i4,@,% (4-36) 

 

The internal thermal mass of the building (furniture, appliances, etc.) must also be considered. For 

simplicity, the zone was assumed to have a homogenous temperature distribution. To account for 

these additional building internal components, i4,@,% was replaced with an equivalent heat capacity 

of the zone –  iX,'¨. This parameter was calibrated to match experimental data along with the other 

building parameters listed in Table 4-4.  

 

4.5 Mechanical System Model 

The HVAC model used in this work is comprised of an ASHP, an HRV, and an AHU. These are 

the three primary mechanical devices utilized in House A. All HVAC model components are based 

on experimental data. 

 

Figure 4-7 displays a representative example of the power consumption of the three primary 

mechanical systems in House A. For this model, it was assumed that the HRV had a constant 

ventilation rate. The multi-speed AHU fan ran on high speed when there was a call for heating or 

cooling, and low speed otherwise. 
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Figure 4-7: House A mechanical system power consumption 

 

4.5.1 Heat Recovery Ventilator Model 

House A uses a HRV to achieve energy savings when ventilating stale air. The HRV installed in 

the house is a vänEE 3000 HE, with a rated power of 500 W. A model of this HRV was required 

in order to quantify both the power consumed by the HRV, and the temperature of the air supplied 

to the zone by the HRV. Experimental data collected over 2016 was used to develop a model for 

use in this work. 

 

Based on measured data at the ASH, the HRV has been shown to have a stable average power 

consumption of 432 W. Measurements over 2016 also show a stable, average ventilation rate of 

101.7 cfm (0.048 m3/s). Therefore, fixed HRV ventilation rate and power consumption values have 

been used for all simulations. Flow measurements were recorded with a Dwyer STRA duct 

mounted airflow measurement station, with an accuracy of 2%. 

 

An ANN was used to model the heat exchange process occurring in the HRV. The ANN used fresh 

outdoor air temperature and exhaust zone temperature as inputs. The output of the model was the 

temperature of the air supplied to the zone by the HRV. The ANN was trained on annual hourly 
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data from 2016. When used in simulations, the HRV model uses the ambient temperature from the 

weather data and the calculated zone temperature as its two inputs. It outputs an air temperature 

used for forced ventilation heat flow calculations. 

 

An analysis of the performance of the HRV ANN was performed based on hidden layer size. The 

ANN was trained on the 2016 data set, varying the number of neurons from 1 to 20, and always 

using a single hidden layer. Training was performed in MATLAB using the Levenberg-Marquardt 

algorithm with 70% of the data used for training, 15% used for testing, and 15% used for 

validation, distributed randomly. This training method was used for all other ANNs in this work 

unless otherwise specified. 

 

Thirty training iterations were performed for each hidden layer neuron size to generate confident 

results. The root-mean-square error (RMSE) and the coefficient of determination (R2) were both 

used as metrics to judge the performance of the ANN. Figure 4-8 plots the RMSE and R2 against 

the number of neurons in the ANN, where the error bars represent the standard deviation of the 30 

training trials at each hidden layer size.  

 

 
Figure 4-8: Heat recovery ventilator ANN performance 
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The final HRV model consisted of 18 neurons in a single hidden layer – the simplest network size 

that can achieve sufficient accuracy (RMSE = 0.716, R2 = 0.985). 

 

4.5.2 Air Handling Unit Model 

Heating and cooling is distributed throughout the house via the single-zoned AHU. The ASHP has 

a direct expansion coil in the AHU, and control over the two-speed distribution fan. This is 

illustrated in Figure 4-7, where it can be clearly seen that the AHU and ASHP operate in 

synchrony. As such, the AHU model was simply assumed to consume a constant amount of low-

speed power when not in operation (266W), and a constant amount of power when a heating or 

cooling call is made (336W). These values are based on 2016 averages recorded by the DMS. 

 

4.5.3 Air Source Heat Pump Model 

The simplified ASHP model used in simulations is based on experimental work previously 

conducted at the ASH (Safa, Fung, & Kumar, 2015). The heat pump model has been broken down 

into two components: heating and cooling modes. Table 4-9 highlights the technical specifications 

of the ASHP installed in House A. 

 

Table 4-9: ASHP technical specifications (Safa, Fung, & Kumar, 2015) 
Mode Rated Capacity Rated COP Rated Conditions 

Heating 11.06 kW 3.27 
Indoor: 21.1˚C dry-bulb, 15.6˚C wet-bulb 
Outdoor: 8.3˚C dry-bulb, 6.1˚C wet-bulb 

Cooling 9.82 kW 3.52 
Indoor: 26.7˚C dry-bulb, 19.4˚C wet-bulb 
Outdoor: 35.0˚C dry-bulb, 23.9˚C wet-bulb 

 

4.5.3.1 Heating Mode 

The ASHP modeled in this work is a two-stage variable capacity cold climate Mitsubishi Zuba. 

This heat pump has an internal controller responsible for optimizing the power consumption of the 

heat pump by modifying the variable-drive compressor. The internal algorithms used by the heat 

pump are proprietary, and the mechanisms by which the heat pump controls its capacity ratio are 

unknown. Therefore, the internal details of the heat pump are not captured by this model. Instead, 

a simplified model has been developed based on experimental operating conditions.  
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Figure 4-9 displays the power consumption of the ASHP based on outdoor air temperature. At 

temperatures below -15˚C, second stage operation begins and power consumption dramatically 

increases. The correlations shown in Figure 4-9 have been used to determine the ASHP power 

consumption in heating mode based on outdoor air temperature. For this model, the effects of 

indoor air temperature on the heat pump’s operation have been ignored. 

 

 
Figure 4-9. ASHP experimental power consumption in both first (right) and second stages (left) 

(Safa, Fung, & Kumar, 2015) 
 

Figure 4-10 displays the experimentally determined COP of the ASHP in heating mode. In heating 

mode, the COP of a heat pump is calculated in Equation 4-37 where ÑQ is the heat delivered and 

≠'*'& is the work input, or power consumption. 

 

òÆ<Ø'@?,/t = 	
ÑQ
≠'*'&

 (4-37) 
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Figure 4-10: ASHP experimental COP as a function of outdoor temperature (Safa, Fung, & 

Kumar, 2015) 
 

Extracting the experimental correlations shown in Figure 4-9 and Figure 4-10, the heat delivered 

to the zone is calculated using Equations 4-38 through 4-40. 

 

≠'*'& u@Bv = −0.4852u@Bv − 2.6789, u@Bv < −15˚ò
−0.0428u@Bv + 1.6941, u@Bv ≥ −15˚ò (4-38) 

 
òÆ<Ø'@?,/t(u@Bv) = 0.1158u@Bv + 3.7253 (4-39) 

 
Å"$4 = ÑQ = òÆ<Ø'@?,/t≠'*'& (4-40) 

 

4.5.3.2 Cooling Mode 

In cooling mode, the variable-capacity ASHP has a single stage of operation. Again, its internal 

control algorithm is unknown, and assumptions have been made in order to model the heat pump’s 

operation simply as a function of outdoor temperature. Figure 4-11 displays the reported 

experimental COP of the ASHP in cooling mode (Safa, Fung, & Kumar, 2015). For a heat pump 

operating in cooling mode, the COP is calculated in Equation 4-41, where Ñ& is the cooling 

provided by the heat pump. 
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òÆ<&##*,/t = 	
Ñ±
≠'*'&

 (4-41) 

 

 
Figure 4-11: COP in cooling mode as a function of outdoor temperature (Safa, Fung, & Kumar, 

2015) 
 

For cooling mode, neither power consumption (as displayed in Figure 4-9), nor cooling output of 

the heat pump has been provided. However, during cooling mode, the capacity ratio of the heat 

pump was reported to range between 52 – 57% (Safa, Fung, & Kumar, 2015). The capacity ratio 

is the percent of the rated capacity of the heat pump at a given temperature condition. It has been 

assumed that the experimentally reported capacity ratio is equivalent to 5.1 – 5.6 kW, based on the 

rated capacity of the heat pump in cooling mode. It was also assumed that the upper and lower 

ends of the reported capacity ratios were associated with the upper and lower temperature 

conditions at which the heat pump was monitored. Figure 4-12 summarizes these assumptions, and 

provides a correlation for the cooling provided by the heat pump (Ñ&) in terms of outdoor 

temperature. The calculation procedure for the heat pump model in cooling mode is summarized 

in Equations 4-42 through 4-44. 
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Figure 4-12: ASHP cooling provided as a function of outdoor temperature 

 

Ñ±(u@Bv) = 0.0289u@Bv + 4.6443 (4-42) 
 

òÆ<&##*,/t u@Bv = −0.0588u@Bv + 6.6964 (4-43) 
 

≠'*'& =
Ñ±

òÆ<&##*,/t
 (4-44) 

 

4.6 House Model Calibration 

Once the structure of the model was complete, the parameters listed as “Calibrated” in Table 4-4 

were optimized such that the model matched real-world operation as best as possible. Two separate 

calibration functions were optimized in parallel, in order to accurately capture both the model’s 

short-term response to weather conditions, along with its long-term (annual) energy consumption. 

 

The short-term calibration was performed using data obtained from a “cool-down test”. In early 

April 2017, the mechanical systems in ASH-A were turned off over the course of a weekend. This 

allowed the house temperature’s natural rise and fall to be monitored. The average ambient 

temperature over the course of the 60-hour cool-down test was 5.4˚C. Figure 4-13 shows the 
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temperature and solar irradiance over this test period. A one-minute time step size was used for 

the short-term calibration. The goal of the short-term calibration was so that the model could 

properly capture the thermal response speed of the real-world house. 

 

For the short-term calibration, the RMSE between simulated and actual data was used as the 

performance metric to minimize. The optimization function evaluated the RMSE starting at minute 

500, to the end of the simulation. Neglecting the first 500 minutes of the simulation minimized 

any error associated with selecting incorrect initial simulation conditions. Since there is no 

measurement of the thermal mass temperature at the ASH-A this parameter had to be estimated, 

which primarily impacted the beginning of the simulation. 

 

 
Figure 4-13: Ambient conditions over cool-down test period 

 

The long-term calibration used the annual weather dataset obtained from the Living City Campus 

averaged at one-hour time intervals. This simulation assumed fixed thermostat set-points of 22˚C 

in the heating season and 24˚C in the cooling season. The goal of this calibration procedure was 

to minimize the difference between simulated and actual annual heating and cooling energy 

consumption. The long-term calibration used the ASHP model as the heating and cooling source 

for the building. The consumption targets were based on the heating or cooling energy delivered 
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from TRNSYS models of the ASH-A (Safa, Fung, & Kumar, 2015). These targets, and the 

calibrated simulation output, are summarized in Table 4-10. The calibration function used output 

the percent difference between simulated and actual heating and cooling outputs, which were used 

as the performance metrics to minimize. 

 

Both the short- and long-term simulations were run in parallel, and the MATLAB function 

“fmincon” was used to search for the house parameters that achieved the best-fit for both modes 

of operation simultaneously. 

 

Figure 4-14 and Figure 4-15 show the summary of both the short- and long-term calibration 

procedures. The short-term model accurately reflects real-world operating conditions, with a 

RMSE = 0.31˚C, equivalent to a 1.9% error based on the average temperature over this period. 

The maximum simulated temperature deviation from the actual temperature over this period was 

0.66˚C. The long-term calibration also produced a working model that accurately represents the 

annual heating and cooling energy consumption of the ASH-A. Table 4-10 summarizes the 

simulated and target energy consumption of the model.  

 

 
Figure 4-14: Short-term calibration performance – RMSE = 0.33˚C (1.9%) 
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Figure 4-15: Annual simulated heating and cooling energy output 

 

Table 4-10: Long-term calibration heating and cooling outputs and targets 
Season Simulated Output (kWh) Annual Target (kWh) Percent Difference 

Heating 16,174 16,251 -0.47% 

Cooling  2,295 2,354 -2.51% 

 

Table 4-11 summarizes the calibrated house parameters. Some parameters are very close to real-

world values, while others vary more noticeably. Deviations from real-world values can be 

attributed to assumptions that do not fully capture real world conditions. Assumptions such as 

homogeneous wall construction, uniform and empty interior zone space, and infiltration constants 

all contribute to deviations from real-world values.  

 

Nevertheless, all the calibrated parameters are within possible ranges for real-world building 

materials. Since these parameters produce a model that accurately simulates the operation of ASH-

A, they have been for all building simulations in the remainder of this work. 
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Table 4-11: Calibrated house model parameters 

Parameter 
Calibrated 

Value Notes 

Initial thermal 
mass temperature 19.9˚C 

• Used for all wall sections, the ceiling, and the floor.  
• Only had a significant impact on the short-term 

calibration. 
Wall thermal 
conductivity 0.011 W/m•K • Used for all wall sections, the ceiling, and the floor.  

• Actual value estimated to be 0.039 W/m•K 

Wall heat capacity 1613 J/kg•K 
• Used for all wall sections, the ceiling, and the floor.  
• Within realistic range (710 – 5,280 J/kg•K for 

mineral fiber) 

Wall thickness 0.487 m • Used for all wall sections, the ceiling, and the floor 

Solar absorption of 
the floor 0.400 

• Used when calculating the interior solar gains.  
• Within realistic range for building materials (0.4 – 

0.9) 

Solar emissivity of 
the exterior walls 0.050 

• Used to calculate the sol-air temperature on all 
exterior surfaces. 

• Within realistic range for building materials (0.05 – 
0.95) 

Wall overall heat 
transfer coefficient 

1.400 
W/m2•K 

• Less insulating than nominal value  
(0.177 W/m2•K), may account for thermal bridging  

Ceiling overall heat 
transfer coefficient  

0.390 
W/m2•K 

• More insulating than nominal value  
(0.142 W/m2•K) 

Floor overall heat 
transfer coefficient 

0.142 
W/m2•K 

• More insulating than nominal value  
(0.284 W/m2•K) 

Window overall 
heat transfer 
coefficient 

1.500 
W/m2•K 

• More insulating than nominal value  
(1.69 W/m2•K) 

Equivalent zone 
heat capacity 3.0 kJ/kg•K 

• Slightly higher than the actual value for air (1.005 
kJ/kg•K at room temperature), however this is an 
equivalent value that represents the air along with 
all other building internals. 
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4.7 Domestic Hot Water 

The simulated domestic hot water (DHW) system was based on the water heater currently installed 

in the ASH-B. This simulation was made possible in large part by previous work conducted in this 

research group (Amirirad, 2016). The water heater is a heat pump water heater (HPWH), with the 

heat pump unit attached directly to the top of the tank. The specifications of the water heater are 

presented in Table 4-12. 

 

Table 4-12: A.O. Smith HPWH Specifications (A.O.Smith Enterprises Ltd., 2015) 
Manufacturer and model A.O.Smith – SHPT-50 
Capacity 189 L (50 gal) 
Rated energy factor – Heat pump mode 2.78 
Rated energy factor – Hybrid mode 2.75 
Rated energy factor – Electric mode 0.89 
Tank height 1.60 m 
Tank diameter 0.56 m 
Exterior surface area 2.65 m2 
Rated compressor power consumption 624 W (2.8 A at 240 V) 
Electric mode power consumption 1500 W (Amirirad, 2016) 
Overall U value (calculated) 0.877 W/m2•K (Amirirad, 2016) 

 

For the simulations conducted in this work, the water heater was operated in electric mode. This 

was done such that the effect of a HPWH on the heating and cooling consumption of the building 

not distract from other changes in energy consumption that are a result of the investigated EMS 

control schemes. 

 

Figure 4-16 displays the compressor power consumption when the water heater is operating in heat 

pump mode over a one-week period. Based on the average of six months of data collection, the 

power consumption of the HPWH is approximately 564 W when operating in heat pump mode, 

and 1500 W in electric mode. 
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Figure 4-16: A.O.Smith power consumption in heat pump mode over a one-week period 

 

4.7.1 Domestic Hot Water Model Inputs 

A water draw profile was obtained from IEA Annex 42 data for use in simulations of Canadian 

and European homes (Knight, Kreutzer, Manning, Swinton, & Ribberink, 2007). The profile was 

based on an average draw of 200L of hot water per day. A one-minute draw profile schedule was 

used.  

 

Water inlet data was obtained experimentally from the ASH. Measurements of water inlet 

temperature to the house were averaged over each month, and are displayed in Figure 4-17. 
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Figure 4-17: Monthly average water inlet temperature (Amirirad, 2016) 

 

4.7.2 Domestic Hot Water Model Procedure 

A lumped capacitance model was used to model the water heater. In this case, the significant 

thermal mass is the water contained in the tank. Equation 4-45 defines the basis for this model. 

 

òB,Ç
_uÇ
_G = Å,/,Ç − Å#$?,Ç − Å*#"",?@/ã (4-45) 

 

Where òB,Ç is the thermal capacitance of water, Å,/,Ç is the heat energy provided to the tank by 

the water heater, Å#$?,Ç is the energy extracted from the tank by withdrawing water, and Å*#"",?@/ã 

is the heat loss of the tank to the surroundings. Equations 4-46 to 4-48 show the breakdown of 

each of these three heat components. 

 
Å,/,Ç = ≠,/,'*'& ∙ ì?@/ã,?#? (4-46) 

 

Where ≠,/,'*'& is the electrical energy consumed by the water heater, and ì?@/ã,?#? is the overall 

efficiency of the water heater. For this work, the rated energy factor of 0.89 was used as the overall 

efficiency of the water heater. 
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Å#$?,Ç = ]i4,Ç u#$?,Ç − u,/,Ç  (4-47) 

 

Where ] is the mass flowrate of water, defined by the water draw schedule, i4,Ç is the specific 

heat capacity of water (4.18 kW/kg•K), and u#$?,Ç and u,/,Ç are the outlet and inlet water 

temperatures, respectively. The outlet water temperature was taken to be equal to the average tank 

temperature at each time-step. 

 
Å*#"",?@/ã = âà uÇ − u@Bv  (4-48) 

 

Where â is the overall heat transfer coefficient of the tank, which has been experimentally 

measured to be 0.877 W/m2•K (Amirirad, 2016). à is the outer surface area of the tank, and uÇ 

and u@Bv are the water and ambient temperature, respectively.  

 

4.8 Renewable Energy Systems 

Two types of residential renewable energy systems were considered for this work: solar PV and 

small-scale wind turbines. The solar PV system was modeled using an ANN black box model, 

trained with experimental data collected at the ASH. Due to insufficient available wind data, the 

small-scale wind turbine was modeled simply using its manufacturer’s power curve. 

 

4.8.1 Solar Photovoltaic Model 

The power generated by a roof-mounted solar PV system was modeled using data collected at the 

ASH. The ANN was generated and trained in MATLAB. Data from the second half of 2016 was 

used to train the ANN, covering summer and winter outdoor conditions. Direct, diffuse, and global 

horizontal irradiance were all used as inputs to the ANN, along with ambient temperature. The 

output of the ANN was power generated by the solar PV system. 

 

Using only a single hidden layer, an analysis on the number of neurons used by the ANN was 

performed. The analysis used only the coefficient of determination (R2) as a performance metric, 

as the RMSE did not accurately represent the performance of this model. Figure 4-18 displays the 
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performance of the solar PV ANN as a function of hidden layer size, where the error bars indicate 

the standard deviation of 30 training trials. 

 

 
Figure 4-18: Solar PV ANN Performance 

 

A neural network with 25 neurons in a single hidden layer was selected as the most accurate 

candidate. The performance of the final solar PV ANN, with R2 = 0.9764 from training, is shown 

against measured solar PV output in Figure 4-19. 

 

It has been assumed that PV generation scales proportional to system size (number of panels, or 

total rated output). Therefore, this ANN has been used to represent any house-sized solar PV 

system (~1 – 10 kW) by multiplying its output by the ratio of the target system size to the trained 

system size. While House B has 4.08 kW of roof-mounted PV, simulations conducted throughout 

this report utilize a variety of system sizes to represent different cases, and perform sensitivity 

analyses. 
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Figure 4-19: Solar PV ANN Performance on sample hourly dataset (R2 = 0.9906) 

 

4.8.2 Small-Wind Turbine Model 

The first step of the wind turbine power output estimation model was to calculate the wind speed 

at the hub height of the turbine. The Lufft WS600 weather station, which measured the wind data 

used for this work, is mounted at a height of 3.66m (12ft), while the small-scale wind turbine 

adjacent to the ASH is mounted at approximately 18.3m (60ft). Equation 4-49 was used to correct 

for as the wind speed for the turbine hub height (Gipe, 1999). 

 

} = }#
ℎ
ℎ#

@

 (4-49) 

 

Where } is the wind speed at the hub height of the turbine (ℎ). }# is the wind speed measurement 

taken at ℎ#, the height of the measurement device. \ is the surface roughness exponent, which was 

assumed to be 0.25 for all calculations, a value applicable to a suburban or woodland setting (Gipe, 

1999). 
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The power output of the wind turbine was then estimated based on experimental verification 

conducted by the Small Wind Certification Council (SWCC). Figure 4-20 displays three small-

wind turbine power curves considered for this work.  

 

 
Figure 4-20: Experimentally determined small wind turbine power curves (SWCC, 2016) 

 

4.9 Battery Model 

A simplified battery model was used for all EMS simulations. The model took into consideration 

battery charging and discharging efficiencies, but neglected certain operating parameters such as 

battery temperature. The battery’s energy at a given time step would be evaluated based on a 

charging or discharging command, and the amount of associated energy. Equations 4-50 and 4-51 

display how the internal energy of the battery is calculated at each time step when charging or 

discharging, respectively. 

 

!v@??,,/??úá = !v@??,,/?? + ì&<t%,)∆G (4-50) 
 

!v@??,,/??úá = !v@??,,/?? −
<t%,)
ì)&

∆G (4-51) 
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Where !v@??,,/??  is the internal energy of the battery at time step G, <t%,) is the power on the grid-

side of the battery’s inverter/charger, and ì& and ì)& are the charging and discharging efficiencies 

respectively. For all calculations, the charging and discharging efficiencies were assumed to be 

85% and 95%, respectively, based on experimental data. These values were obtained from 

experimental measurements taken at the ASH, and they represent the lower-end of battery 

performance, relative to rapid advances in the industry. 

 

A side note on battery health, and ensuring longevity. Lead-acid batteries are notorious for their 

very particular charging procedure; their lifespan is directly proportional to how they are used, 

particularly in terms of rate of charge, cycling, and depth of discharge.  

 

Charging a lead-acid battery is analogous to filling a bucket to the brim with water using a fire 

hose – while a high flow rate will effectively fill the bucket at first, a point is reached when the 

flow is too great, and water begins to spill out over the brim. In the case of a lead-acid battery, this 

phenomenon is called gassing, which is damaging to the battery and shortens its lifespan. At higher 

rates of charge, battery gassing begins at lower and lower states of charge. Because of this, lead-

acid battery banks are charged in three stages: bulk, absorption, and float, each stage with a slower 

rate of charge than the preceding (De Bruyn, 2017). Lithium ion batteries on the other hand are far 

more flexible with their charging and discharging procedure, a fact made clear by rapid rates of 

charge possible from a Tesla Supercharger.  

 

For the most part, the EMS analyses ignore battery charging requirements, and assume that the 

battery banks can handle any rate of charge or discharge, whenever required. Some of the control 

methods investigated may cause the rate of charge to fluctuate to a degree that would be damaging 

to a lead-acid battery. It is therefore assumed that cases with rapid changes in charging and 

discharging states would require lithium ion batteries in the real world. However, in all cases the 

same charging and discharging efficiencies (85% and 95%) have been used. These efficiencies are 

lower than typically expected of lithium ion batteries, and therefore produce a conservative, worst-

case scenario estimate of potential savings. 
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4.10 Non-HVAC Load Simulation 

Non-HVAC loads were simulated using stochastic modelling approaches. This method of load 

profile simulation is in accordance with that which is set out by the IEA Annex 42 (Armstrong, 

Swinton, Ribberink, Beausoleil-Morrison, & Millette, 2009). Each appliance was simulation at 5-

minute intervals for one year. At each time step, a randomly generated number would be compared 

to the TOU probability curve of the given appliance (Section 4.10.1). If the random number was 

within the probability of occurrence, then the appliance turned on, and remained on until its cycle 

time was reached. Otherwise, the appliance remained off. The non-HVAC load simulations 

considered occupant behaviour (captured in the TOU probability curves), instantaneous power 

draw, appliance cycle duration, annual energy consumption, and number of cycles per year. 

 

Simulations for three different cases were carried out, representing low, medium, and high energy 

consumers. Household characteristics for each of the three cases, including their number of 

appliances, are summarized in Table 4-13. The use factors were chosen such that the low, medium, 

and high energy houses agreed with the actual annual energy consumption of Canadian homes 

(NRCan, 2013). 

 

Table 4-13: Summary of the three house configurations used for the simulation of non-HVAC 
loads (Armstrong, Swinton, Ribberink, Beausoleil-Morrison, & Millette, 2009) 

 Low Energy House Medium Energy House High Energy House 

Load 
No. 

Appl. Factor 
kWh 
/yr 

No. 
Appl. Factor 

kWh 
/yr 

No. 
Appl. Factor 

kWh 
/yr 

Refrigerator 1 1.0 801.0 1 1.0 801.0 2 1.0 1602.0 
Freezer 0 0.0 0.0 1 1.0 614.0 1 1.3 798.2 
Dishwasher 1 0.8 57.6 1 1.3 93.6 1 1.7 122.4 
Washer 1 0.8 60.8 1 1.3 98.8 1 2.0 152.0 
Dryer 1 0.6 592.8 1 1.3 1284.4 1 2.0 1976.0 
Range 1 1.0 769.0 1 1.0 769.0 1 1.4 1076.6 
Misc. Appl. - 0.8 1516.8 - 1.3 2464.8  1.7 3223.2 
Lighting 141m2 0.5 1015.2 141m2 1.0 2030.4 282m2 1.0 4060.8 

Total 
(kWh/yr) 4813.2 8156.0 13011.2 

Daily Avg. 
(kWh/d) 13.2 22.3 35.6 
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4.10.1 Appliance Probability Curves 

Due to the availability of data, hourly appliance usage characteristics were obtained for American 

homes (U.S. Department of Energy, 2011), and not Canadian homes. However, for the purposes 

of this work, any direct effect of climate on non-HVAC loads has been ignored. Therefore, the 

major error associated with using American instead of Canadian data would be associated in 

occupant behavior characteristics, which are assumed to be similar enough to suffice for this work. 

 

Probability curves for each appliance were derived from their normalized time-of-use curves. 

These curves represent the shape of the probability curve, but the probability magnitude had to be 

derived based on annual energy end-use targets. These targets, along with the number of annual 

cycles, are summarized in Table 4-14. Note that the same refrigerator is assumed to be used in all 

houses, but the high-energy house has two units. 

 

Table 4-14: Annual appliance target characteristics (Armstrong, Swinton, Ribberink, Beausoleil-
Morrison, & Millette, 2009) 

Appliance Power (W) 
Cycle duration 

(min) 
Target energy 

(kWh/year) 
Target cycles 

per year 

Refrigerator 265 (peak) 70 (normal) 
105 (defrost) 

801 (low) 
801 (medium) 
1602 (high) 

---- 

Freezer 
---- 

202 (peak) 
263 (peak) 

70 (normal) 
105 (defrost) 

0 (low) 
614 (medium) 

798 (high) 
---- 

Dishwasher 467 30 to 45 
58 (low) 

94 (medium) 
122 (high) 

200 
322 
418 

Clothes Washer 505 30 
61 (low) 

99 (medium) 
152 (high) 

242 
392 
601 

Clothes Dryer 4115 30 to 60 
593 (low) 

1284 (medium) 
1976 (high) 

192 
416 
640 

Range 1600 15 to 70 
769 (low) 

769 (medium) 
1077 (high) 

678 
678 
950 
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Using the different appliance normalized TOU operation curves, the probability curves were 

derived using Equation 4-52 (Armstrong, Swinton, Ribberink, Beausoleil-Morrison, & Millette, 

2009). 

 

P@44* = 	
:≥¥µ
ò7  (4-52) 

 

Where P@44* is the probability curve for a given appliance, :≥¥µ is the faction of total daily usage 

(from TOU curves), and ò7 is the chance factor. Chance factors were calculated via a calibration 

process, in which annual energy consumption and number of cycles were compared to target 

values. To calibrate the chance factors, each appliance simulation was run 30 times at varying 

chance factor values, and the average annual energy consumption and number of cycles were 

compared to the target values shown in Table 4-14. 

 

The following sections summarize the calculated chance factors for each appliance under the low, 

medium, and high energy use houses, along with their calculated probability curves. 

 

4.10.1.1 Refrigerator and Freezer 

The refrigerator and freezer were simulated slightly differently than other appliances. It was 

assumed that the fridge would cycle on and off based on a fixed cycle length (70 min). The cycle 

was interpreted to be composed of 35 minutes of power consumption, followed by 35 minutes of 

idle time, repeated continuously throughout the year. The probability curve was then used in order 

to stochastically determine when the defrost cycle would run. Figure 4-21 displays the impact of 

the chance factor on the annual energy consumption of the refrigerator, and Table 4-15 shows the 

calibrated simulated annual energy consumption. 
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Figure 4-21: Refrigerator chance factor determination. Calibrated value – CF = 0.31 

 

Table 4-15: Refrigerator simulation performance (CF = 0.31) 

House type 

Target annual energy 

consumption (kWh/yr) 

Simulated average annual 

energy consumption (kWh/yr) 

All 801.0 801.9 ({ = 3.85, n = 30) 

 

Figure 4-22 shows a sample daily averaged simulated refrigerator load profile. Note that because 

the refrigerator was assumed to operate on a fixed-cycle basis, it’s operation is much less 

influenced by the occupant-driven probability curve than other appliances. 
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Figure 4-22: Sample refrigerator daily averaged load profile and probability curve 

 

The freezer’s power consumption was simulated using the same approach as the refrigerator 

simulation. However, two different freezers – with medium (202W) and high (265W) power 

consumption – were considered for the medium and high energy consumers respectively. The 

calculated chance factor, and energy consumption targets and outputs, are summarized in Table 

4-16. The sample profile of the freezer is very similar to that of the refrigerator, and is therefore 

not displayed. 

 

Table 4-16: Freezer simulation performance (CF = 0.31) 

House type 
Target annual energy 

consumption (kWh/yr) 
Simulated average annual 

energy consumption (kWh/yr) 

Medium 614.0 611.4 ({ = 3.07, n = 30) 

High 798.0 796.6 ({ = 3.96, n = 30) 

 

4.10.1.2 Dishwasher 

Unlike the refrigerator and freezer, the dishwasher did not operate on a fixed-cycle basis. Instead, 

simulations depended entirely on the occupant-driven probability curve to determine when the 

dishwasher was on or off. When the dishwasher was on, it consumed a constant amount of power. 
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Its cycle duration was randomly selected using a uniform distribution between 30 – 45 minutes. 

Three different chance factors were calculated for each of the three house types. Table 4-17 

summarizes the dishwasher simulation output and calibrated chance factors, while Figure 4-23 

shows a sample daily averaged load profile. 

 

Table 4-17: Dishwasher simulation performance 

 
Annual energy consumption 

(kWh/yr) Total number of cycles per year  
House 
type Target Simulated Target Simulated 

Chance 
Factor 

Low 58  
56.5  

({ = 3.86, n = 30) 
200 

194  
({ = 12.7, n = 30) 

22.1 

Medium 94 96.2  
({ = 4.92, n = 30) 

322 
329  

({ = 15.9, n = 30) 
13.1 

High 122 
124.4  

({ = 5.89, n = 30) 
418 

425  
({ = 19.9, n = 30) 

9.9 

 

 
Figure 4-23: Sample dishwasher daily averaged load profile and probability curve (medium 

energy house) 
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4.10.1.3 Clothes Washer 

Like the dishwasher, the clothes washer’s operation was simulated based entirely on its probability 

curve. It was assumed to have a cycle time of 30 minutes. The three chance factors, along with 

annual energy consumption and number of cycles for each condition, are summarized in Table 

4-18, while Figure 4-24 displays a sample daily averaged load profile. 

 

Table 4-18: Clothes washer simulation performance 

 
Annual energy consumption 

(kWh/yr) Total number of cycles per year  
House 
type Target Simulated Target Simulated 

Chance 
Factor 

Low 61 
60.5  

({ = 3.77, n = 30) 
242 

239  
({ = 14.9, n = 30) 

18.1 

Medium 99 99.1  
({ = 4.52, n = 30) 

392 
392 

({ = 17.9, n = 30) 
10.7 

High 152 
155.3  

({ = 4.91, n = 30) 
601 

615  
({ = 19.4, n = 30) 

6.8 

 

 
Figure 4-24: Sample clothes washer daily averaged load profile and probability curve (medium 

energy house) 
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4.10.1.4 Clothes Dryer 

The dryer power consumption was simulated based on its probability curve. Cycle times were 

randomly chosen using a uniform distribution between 30 – 60 minutes. The results of the 

calibration procedure are summarized in Table 4-19, while Figure 4-25 displays a sample daily 

averaged load profile. Any sequential operation between the clothes washer and dryer operation is 

ignored, and the dryer’s operation is simulated only using the probability curve. 

 

Table 4-19: Clothes dryer simulation performance 

 
Annual energy consumption 

(kWh/yr) Total number of cycles per year  
House 
type Target Simulated Target Simulated 

Chance 
Factor 

Low 593 
591.1  

({ = 45.3, n = 30) 
192 

191 
({ = 13.3, n = 30) 

22.3 

Medium 1284 
1294.8  

({ = 54.9, n = 30) 
416 

419 
({ = 16.8, n = 30) 

9.8 

High 1976 
1970.9  

({ = 71.7, n = 30) 
640 

639  
({ = 21.9, n = 30) 

6.1 

 

 
Figure 4-25: Sample clothes dryer daily averaged load profile and probability curve (medium 

energy house) 
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4.10.1.5 Range 

The range (including both the stove-top and oven) was simulated entirely based on its probability 

curve. Cycle times were randomly generated using a uniform distribution between 15 – 70 minutes. 

The performance of the range simulation is summarized in Table 4-20, while a sample daily 

averaged load profile is displayed in Figure 4-26. 

 

Table 4-20: Range simulation performance 

 
Annual energy consumption 

(kWh/yr) Total number of cycles per year  
House 
type Target Simulated Target Simulated 

Chance 
Factor 

Low and 
Medium 

769 
765.2  

({ = 29.2, n = 30) 
678 

677 
({ = 24.8, n = 30) 

5.9 

High 1077 
1078.2  

({ = 32.2, n = 30) 
950 

951  
({ = 23.7, n = 30) 

4.1 

 

 
Figure 4-26: Sample range daily averaged load profile and probability curve (medium energy 

house) 
 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600

Pr
ob

ab
ili

ty

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Time of Day (min)

Annual Averaged Power Consumption Probability Curve



 95 

4.10.1.6 Miscellaneous Appliances 

Numerous small appliances are grouped into the miscellaneous category. A selection of small 

appliances was chosen from the available data, summarized in Table 4-21. To calculate the 

miscellaneous appliance load, each individual appliance was simulated separately, and then the 

power consumption was aggregated into a single load profile.  

 

Table 4-21: List of miscellaneous appliances considered for simulation (U.S. Department of 
Energy, 2011) 

Appliance 
Operating 
power (W) 

Standby power 
(off) (W) 

Operating 
hours per day 

Units per 
house 

First TV 110 4 7.1 0.89 
Second TV 92 4 4.2 0.61 
Radio 2 1 0.96 0.49 
Cable Box 16 15 7.48 0.57 
Laptop PC (Plugged In) 25 2 6.5 0.28 
Desktop PC w/ Speakers 75 2 8.1 0.91 
Printer (Inkjet) 8.9 1.7 0.24 0.66 
Microwave 1500 3 0.19 0.88 
Coffee Maker 1100 0.4 0.10 0.61 
Toaster Oven 1300 0.82 0.07 0.34 
Toaster 1050 0.82 0.10 0.90 
Blender 192 0 0.10 0.79 
Hand Mixer 55 0 0.10 0.88 
Hair Dryer 1500 0 0.06 0.86 
Clock Radio 2 1.7 0.24 1.35 
Cell Phone Charger 2.6 0.3 1.2 1.74 
Fan (Portable) 31 0 1.0 0.95 
Iron 1350 0 0.11 0.92 
Vacuum Cleaner (Upright) 1080 0 0.11 0.98 

 

The standard miscellaneous probability curve was multiplied by both the operating hours per day, 

and the units per house, such that the shape of the probability curve would be the same for each 

small appliance, but they would be weighted appropriately against each other. The same chance 

factor was applied to each of the individual TOU curves, and the same procedure used to calibrate 

the other appliances was implemented. The number of cycles for each miscellaneous appliance 
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was ignored. Table 4-22 summarizes the miscellaneous appliance simulation performance, while 

Figure 4-27 shows a sample daily averaged load profile. 

 

Table 4-22: Miscellaneous appliance simulation performance 

 
Annual energy consumption 

(kWh/yr)  
House 
type Target Simulated 

Chance 
Factor 

Low 1516.8 
1523.6  

({ = 26.5, n = 30) 
13.7 

Medium 2464.8 
2453.7  

({ = 37.5, n = 30) 
6.6 

High 3223.2 
3222.4  

({ = 44.5, n = 30) 
4.4 

 
Figure 4-27: Sample aggregated miscellaneous appliance daily averaged load profile and 

probability curve (medium energy house) 
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curves were used, one for each season. Additional space heating associated with lighting has been 

neglected. 

 

Table 4-23: Lighting load summary (Armstrong, Swinton, Ribberink, Beausoleil-Morrison, & 
Millette, 2009) 

  Low 
energy 

Medium 
energy 

High 
energy 

Lighting load 1 (W) 30 60 120 
Lighting load 2 (W) 50 100 200 
Lighting load 3 (W) 60 120 240 
Lighting load 4 (W) 205 410 820 
Lighting load 5 (W) 100 200 400 
Target Consumption (kWh/yr) 1015 2030 4061 

 

The performance of the lighting load simulation is shown in Table 4-24. Each of the cases uses the 

same chance factor, since the annual targets are simply linearly scaled. A sample daily averaged 

lighting load profile is shown in Figure 4-28. 

 

Table 4-24: Lighting load simulation performance 

 
Annual energy consumption 

(kWh/yr)  
House 
type Target Simulated 

Chance 
Factor 

Low 1015 
1016.9  

({ = 9.4, n = 30) 
1.3 

Medium 2030 
2041.2  

({ = 21.9, n = 30) 
1.3 

High 4061 
4082.4  

({ = 30.7, n = 30) 
1.3 
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Figure 4-28: Sample lighting load daily averaged load profile and probability curve (medium 

energy house) 
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5. Experimental Setup 
Two main experiments were performed to verify specific components of the EMSs investigated in 

this work. The first experiment investigated the practicalities behind load shifting, an example of 

a deterministic EMS, while the second examined the communication protocol behind a transactive 

energy system, an example of an adaptive EMS. 

 

5.1 Load Shifting Experiment 

The load shifting experiment had two main goals. The first was to experimentally implement a 

load shifting procedure using all real-world devices. The second goal was to do so through the 

development of software with a general architecture, such that it might be applied to future studies 

utilizing more advanced EMS. The configuration of the components used in the experimental load 

shifting EMS are shown in Figure 5-1. For this experiment, the basic load shifting procedure 

described in Section 3.2.1 was performed on the ASHP in House A using the 1600 Ah lead-acid 

battery bank. Since the full 1600 Ah (~75 kWh) capacity is unrealistic for a conventional 

residential building, a 25 kWh limit was imposed, to represent a more realistic residential battery 

bank. The 4.08 kW roof-mounted PV and 2.4 kW wind turbines were used as the zero-feedback 

DGs under test. A Conext ComBox was used in order to monitor battery parameters and implement 

control actions. Communication with the ComBox was enabled through Modbus protocol. 

 
Figure 5-1: Diagram of experimental load shifting setup 
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All software was developed and implemented using LabVIEW. A state diagram of the software is 

pictured in Figure 5-2. The existing DMS was utilized to monitor the energy generation of the PV 

and wind turbine systems, along with the power consumption of the ASHP. The LabVIEW 

controller used Modbus to communicate and control the battery bank via the Combox and 

inverter/charger. This allowed specific battery parameters to be read through LabVIEW, and 

allowed certain control parameters to be written to the inverter/charger itself. The Combox allowed 

the exact rate of battery discharge to be set to the nearest 0.1 A. The charging rate was fixed at the 

maximum 6 kW capacity of the invertor/charger, and charging was only performed overnight. A 

strict charging process was obeyed in order to preserve the lifespan of the battery bank. 

 

For simplicity, an open-loop controller was initially developed to control the battery output current. 

It was determined that, although typically not as accurate as its closed-loop alternative, it was 

acceptable for this application since the battery output current could be communicated directly to 

the inverter via the control software. In later iterations of the control software, a closed loop PI-

controller was implemented with similar accuracy to the open-loop controller. 

 

The battery bank was used to match the net load between the ASHP, PV, and wind turbine, if the 

following three conditions were met: 

 

1. The hour was between 7:00 and 19:00, 

2. The output required by the battery was less than the output capacity of the inverter (6 kW), 

and, 

3. The battery had not yet expended all of its useful energy (25 kWh) within its current 

discharge cycle. 

 

An initial goal of this study was to implement PID control over the ASHP to minimize energy 

consumption, while still maintaining thermal comfort. Unfortunately, throughout the course of the 

experiment it was determined that the ASHP model under test did not allow for this control 

capability; only ON/OFF control could be implemented programmatically over the ASHP. 

However, the variable capacity ASHP continuously adjusted its output to meet the building load. 
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Therefore, the ASHP was running part-load for most of the heating season, except during the 

extremely cold outdoor temperature of -15 ºC or below. 

 

In order to try to reduce the power consumption of the ASHP further, thus reducing strain on the 

battery bank, a temperature setback was implemented during some phases of the experiment. This 

setback involved reducing the set point of House A to 18˚C between the hours of 10:00 – 17:00, 

under the assumption that homeowners would be away at work during these hours. 

 

A major assumption for all EMS simulations is that the battery bank was capable of actively 

tracking a load by matching the load’s power consumption with its output. This experiment was 

designed to show that not only is this possible, but it is achievable using simple, non-specialized 

components. 
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Figure 5-2: State diagram of battery control program
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5.2 Transactive Energy Management System Demonstration 

A demonstration of the TEMS was performed at the ASH. The purpose of the demonstration was 

not to show the full potential of the system, but rather act simply as a proof of concept, to show 

that different devices could communicate and transactional-based decisions could be made in real 

time. The simplified system consisted of one flexible load, the HPWH in House B, and one 

renewable generation source, the 4.08 kWp roof-mounted solar PV. The existing DMS was 

integrated into the Marketplace for monitoring purposes. 

 

The demonstration brought the MATLAB Energy Marketplace into a LabVIEW environment, and 

operated using the RTI Connext Data Distribution Service (DDS) communications framework. 

DDS is an open-source middleware framework that facilitates real-time, secure and reliable 

communication within distributed systems. It handles the sending, receiving, transportation and 

identification of data from the user, allowing the development of highly scalable systems. DDS 

uses a topic-based publish/subscribe approach. Simply put, this means that different agents can 

either write to (publish) or read from (subscribe) different data streams (topics). They can also 

both publish and subscribe to the same topic. Agents are not the devices themselves, but the smart 

communication devices that facilitate the entry of an energy consuming or producing device into 

the marketplace.  

 

The load agent used in the demonstration was the HPWH. This agent utilized a bid curve, pictured 

in Figure 5-3, that was a function of water tank temperature at the outlet of the tank. The bid curve 

was designed to pay for solar energy up until it was 2˚C above the tank’s set point, and only pay 

for on-peak electricity when the water temperature fell to 5˚C below the set point.  
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Figure 5-3: HPWH bid curve for Marketplace demonstration 

 

Water temperature was measured using an RTD-122 sensor submerged in the tank itself at the 

level of the hot water outlet. Power consumption of the water heater was monitored using a 

WattNode pulse meter. 
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use of the digital relay. The water heater agent would monitor the power consumption of the 

HPWH in order to ensure that it was off or on when it should have been. If the Marketplace did 

not grant the bid of the water heater, then the relay forced the SafePlug off, which turned off the 

water heater. This solution would not be suitable for long-term operation, however for the short 

demonstration performed it sufficed.  

 

The solar PV agent bid a fixed bid price of 5 ¢/kWh for all energy. Its power production was also 

measured using a WattNode pulse meter. The solar PV agent was merely a monitoring agent that 
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The main aim of the demonstration is to showcase that, by using the DDS communication protocol, 

agents can be added or removed from the TEMS at will, without halting system operation or the 

need for modifications to system design. If this proves to be possible it will enforce the scalability 

of the system, and its inherent plug-and-play nature. 
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6. Simulation Results and Discussion 
This Chapter details the results of the EMSs described in Chapter 3, on the simulated performance 

of the house model developed in Chapter 4. Additional sensitivity analyses regarding the 

economics and emissions associated with some of the discussed EMSs are presented in Chapter 8. 

 

6.1 Baseline Scenarios 

6.1.1 Space Conditioning Energy Consumption 

Table 6-1 summarizes the simulated ASHP energy provided, electricity consumption, and seasonal 

COP. These values are in close agreement with previous simulation work conducted on this same 

system (Safa, Fung, & Kumar, 2015), and will be used as the baseline for all comparisons. The 

energy consumed by the AHU and the HRV is summarized in Table 6-2. 

 

Table 6-1: Seasonal simulated heating and cooling energy consumption – Base case 

Season 
Heating or cooling 

provided (kWh) 
Electricity 

consumption (kWh) Seasonal COP 
Heating 16,174 4,744 3.41 
Cooling 2,295 439 5.23 

 

Table 6-2: AHU and HRV electricity consumption summary 

Season 
AHU electricity 

consumption (kWh) 
HRV electricity 

consumption (kWh) 
Heating 1,672 2,416 
Cooling 873 1,368 
Annual 2,545 3,784 

 

6.1.2 Domestic Hot Water Energy Consumption 

6.1.2.1 Electric Mode 

The annual energy consumption of the simulated water heater in electric mode compared to its 

target is displayed in Table 6-3. These results show good agreement with the target values. Unless 

otherwise indicated, the water tank will be assumed to operate in electric mode, and not heat pump 

mode. The target DHW energy consumption was obtained from the Department of Energy, 



 107 

because energy consumption values could be obtained under the exact conditions of this simulation 

work. 

Table 6-3: DHW electric mode simulation performance 
Simulated DHW energy 
consumption (kWh/year) 

Target DHW energy 
consumption (kWh/year)a Percent difference 

4088 3,990a +2.46% 
a. (Department of Energy, 2017) 

 

6.1.2.2 Heat Pump Mode 

The annual energy consumption of the simulated water heater in heat pump mode compared to its 

target is displayed in Table 6-4. These results are in good agreement with the previous work 

(Amirirad, 2016). 

 

Table 6-4: DHW heat pump mode simulation performance 
Simulated DHW energy 
consumption (kWh/year) 

Target DHW energy 
consumption (kWh/year)a 

Percent difference 

1,626 1,639a -0.79% 
a. (Amirirad, 2016) 

 

When operating in heat pump mode, the impact on the space heating and cooling load are also of 

interest. Table 6-5 summarizes the changes in heating and cooling energy consumption, associated 

with running the water heater in heat pump mode. As expected, a decrease in space cooling and 

increase in space heating can be seen.  

 

Table 6-5: Changes in space conditioning electricity consumption when operating the water 
heater in heat pump mode 

 Season DHW - Electric 
mode (kWh) 

DHW - Heat pump 
mode (kWh) Change 

Space conditioning 
Heating 4744 5098.6 7.5% 
Cooling 439 349.6 -20.4% 
Annual 5183 5448.2 5.1% 

DHW 
Heating 2843 1130 -60.3% 
Cooling 1245 496 -60.2% 
Annual 4088 1626 -60.2% 

Total annual consumption 9271 7074.2 -23.7% 
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6.1.3 Non-HVAC Load Energy Consumption 

Using the stochastic non-HVAC load simulation procedure, 30 distinct load profiles were 

generated for each of the three house types (low, medium, and high energy consumption), totaling 

90 load profiles. This number was chosen arbitrarily to represent sufficient demand variability. 

Figure 6-1 displays a sample profile from each house type. The profiles displayed show the power 

consumption from all non-HVAC loads averaged by hour from one annual data set from each of 

the three house types. Table 6-6 summarizes the simulated annual consumption compared to target 

values.  

 
Figure 6-1: Sample hourly averaged simulated non-HVAC load profiles 

 

Table 6-6: Non-HVAC load simulation performance 

House type 
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(kWh)a 
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Low energy 4,815 (! = 55.4, n = 30) 4,813 +0.04% 

Medium energy  8,149 (! = 82.8, n = 30) 8,156 -0.09% 

High energy 12,993 (! = 108.8, n = 30) 13,011 -0.14% 

a. (Armstrong, Swinton, Ribberink, Beausoleil-Morrison, & Millette, 2009)  
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6.1.4 Total Baseline Energy Consumption 

Accounting for all sources of energy in a typical residential home, the final simulated energy 

consumption for each house type is summarized in Table 6-7, while Figure 6-2 illustrates this same 

summary in terms of the overall percentage of energy end-use. The energy consumed by both the 

AHU and HRV has been added the space heating and space cooling consumption based on its 

season of operation. 

 

Table 6-7: Total simulated energy end-use summary 

Energy End-Use 
Low Energy House 

(kWh/year) 
Medium Energy 

House (kWh/year) 
High Energy House 

(kWh/year) 
Space heating 8,832 8,832 8,832 
Water heating 4,088 4,088 4,088 
Appliances 3,798 6,108 8,911 
Lighting 1,017 2,041 4,082 
Space cooling 2,681 2,681 2,681 
Total Annual 
Consumption 20,416 23,750 28,594 

 

 
Figure 6-2: Total simulated energy end-use percentage breakdown 
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Figure 6-3 summarizes the energy consumption distribution over the three TOU pricing periods. 

Since appliance usage is the only variable between the three different cases, and the general shape 

of the appliance load curves is the same for all three cases, the distribution across TOU periods is 

nearly identical. For all other cases, only the medium consumption home’s distribution will be 

shown, unless there is a notable difference between building types. 

 
Figure 6-3: TOU consumption distribution for normal house operation 
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Figure 6-4 displays the TOU consumption distribution when using two renewable energy zero-

feedback systems. A clear decrease in mid- and on-peak consumption can be attributed primarily 

to on-site solar energy utilization at those times of day. 

 
Figure 6-4: TOU consumption distribution for the medium household using zero-feedback 

renewable energy systems 
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based on the whole billed amount. Table 6-11 in particular clearly illustrates the importance of 

energy conservation and efficiency when it comes to choosing appliances and how they are used. 

 

Table 6-10: Total simulated variable electricity costs associated with space conditioning and 
water heating 

Energy end-use Cost 
Space heating and cooling $729.73 
Air handling unit $359.00 
Heat recovery ventilator $533.59 
Domestic hot water (electric) $607.79 
Total $2,230.11 

 

Table 6-11: Total simulated variable electricity costs for each of the three appliance usage 
characteristics. 

Appliance use type Average cost 
Low consumption $697.83 (! = $9.34) 
Medium consumption $1,176.60 (! = $12.05) 
High consumption $1,872.30 (! = $15.93) 

 

6.1.6.1 Baseline Cost with Renewables on a Zero-Feedback Basis 

The baseline operating cost savings associated with the renewable energy systems was calculated 

on a zero-feedback basis. This means that the systems would never export any excess electricity 

generation to the grid – their instantaneous power generation is either used at the time it is 

generated, or the device’s inverter throttles the generation. This framework was assumed because 

it considers the renewable energy system’s minimum contribution to reducing the operating cost 

of a home. On a zero-feedback basis, ever-changing energy policies are ignored. Costs calculated 

on this basis are a safe estimate of the minimum savings potential associated with the addition of 

a renewable energy system. 

 

Figure 6-5 summarizes the annual electricity costs of the three different home types with each of 

the considered renewable energy systems, with some combinations of systems as well. This clearly 

illustrates that, on its own, solar PV has the most substantial impact of reducing electricity costs 

for a home owner, yielding annual savings of 20.6%, 19.4%, and 17.8% for the low, medium, and 

high consumption homes respectively. 
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Figure 6-5: Cost comparison of zero-feedback renewable generation systems 
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Table 6-12: Renewable energy system capital costs as installed 
System Capital cost (installed) 
Roof-mounted solar PV (5 kW) $20,115 (NREL, 2016) 
Skystream 2.4 kW wind turbine $16,200 – 20,250 (Southwest Windpower, Inc., 2013) 

Bergey 6 kW wind turbine $29,693 (Bergey Windpower Co., 2017) 
Bergey 10 kW wind turbine $64,800 – 87,750 (Bergey Windpower Co., 2017) 

 

6.2 Deterministic Energy Management Systems 

6.2.1 Load Shifting without Renewables 

The first case of load shifting investigated involves no renewable generation – only household 

loads and a battery bank. This most basic form of load shifting functions solely based on the TOU 

schedule presented in Section 3.1.1; during mid- and on-peak hours, the battery bank outputs 

power equal to the consumption of the home. Between 19:00 and 7:00, the battery bank is then 

allowed to recharge from the grid. 

 

The annual savings of this practice are highly dependent on both battery size and TOU prices. 

Assuming fixed TOU prices, load shifting saves more money annually as battery capacity is 

increased. The usefulness of the size increase can be found up until a point where the battery 

sufficiently covers all (or the majority) of the peak load for the entire year. Any increase in size 

after this plateau point needlessly increases the capital cost of the battery with no financial benefit 

to the homeowner. The determination of this optimal battery bank size is of interest, and is a 

function of the amount of load consumed by a home. 

 

Figure 6-6, Figure 6-7, and Figure 6-8 illustrate this concept for the low and high consumption 

homes respectively. It is clear that after a certain point, any increase in battery size becomes 

unnecessary. While these figures illustrate the region in which this plateau occurs, Table 6-13 

summarizes the optimal battery sizes, along with their annual savings for six different cases: the 

three whole-house electricity consumption cases, and the three different appliance loads alone. Six 

cases (as opposed to only the three whole-house cases) were used to show that a general trend 

holds true over a wide range of residential loads. Figure 6-9 showcases the relationship between 

battery bank size, household load, and the number of days annually that the battery bank is fully 

depleted using this particular control strategy. 
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Figure 6-6: Annual load shifting cost savings for load shifting based on battery size for the low-

energy consumption house 

 
Figure 6-7: Annual load shifting cost savings for load shifting based on battery size for the 

medium-energy consumption house  

0

50

100

150

200

250

300

350

400

$-

$50.00 

$100.00 

$150.00 

$200.00 

$250.00 

$300.00 

$350.00 

$400.00 

0 10 20 30 40 50 60 70 80

D
ay

s o
f F

ul
l B

at
te

ry
 D

ep
le

tio
n

A
nn

ua
l S

av
in

gs

Battery Bank Size (kWh)

Annual Savings

Days of Year Depleted

0

50

100

150

200

250

300

350

400

$-

$50.00 

$100.00 

$150.00 

$200.00 

$250.00 

$300.00 

$350.00 

$400.00 

$450.00 

$500.00 

0 10 20 30 40 50 60 70 80

D
ay

s o
f F

ul
l B

at
te

ry
 D

ep
le

tio
n

A
nn

ua
l S

av
in

gs

Battery Bank Size (kWh)

Annual Savings Days Depleted



 116 

 
Figure 6-8: Annual load shifting cost savings for load shifting based on battery size for the high-

energy consumption house 
 

Table 6-13: Annual load shifting savings summary for different load types 

Load type 

Annual 
consumption 

(kWh) 

Daily 
Average 
(kWh) 

Initial 
cost ($) 

Load 
shifted 
cost ($) 

Cost 
savings 

(%)  

5-day 
depletion 

battery bank 
size (kWh) 

Low Appliance 
Consumption 4,815 13.2 $1,096.73 $1,006.99 8.2 % 15.3 

Medium 
Appliance 
Consumption 

8,149 22.3 $1,599.41 $1,450.16 9.3 % 22.7 

High Appliance 
Consumption 12,993 35.6 $2,329.92 $2,093.69 10.1 % 32 

Low Whole-
House 
Consumption 

20,408 55.9 $3,438.35 $3,072.33 10.6 % 54.1 

Medium Whole-
House 
Consumption 

23,794 65.2 $3,941.02 $3,514.78 10.8 % 59.8 

High Whole-
House 
Consumption 

28,586 78.3 $4,671.53 $4,157.91 11.0 % 72.5 
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Figure 6-9: Optimal battery bank size for varying household loads based on basic load shifting 

control and number of days depleted annually 
 

For this analysis, the “optimal” savings plateau was assumed to occur at the point when the battery 

was depleted for only five days of the year. This number was chosen arbitrarily to represent 

sufficiently good load coverage, and Figure 6-9 displays the resulting change in battery bank size 

when different numbers of annual depletion days are considered. This analysis presents a clear 

correlation between the electricity consumption of a home and the optimal battery size to perform 

basic load shifting based on the Ontario TOU schedule. The correlation could be used as a sizing 

tool in the design phase when considering the installation of a residential battery bank. 

 

The resulting TOU distribution after using load shifting shows over 99% of grid consumption 

occurring during the off-peak period. Load shifting without renewables also results in increased 

annual consumption from the grid, due to the battery’s charging and discharging efficiency. While 

this practice does reduce electricity costs, it results in an average 12% increase in grid 

consumption, pictured in Figure 6-10. Therefore, load shifting without renewables could only be 

considered “green” in jurisdiction with a very low grid emission factor, or when the grid emission 

factor is lower at night than during the day, as it is in Ontario. 
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Figure 6-10: Changes in annual consumption using load shifting without renewables 
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6.2.2 Basic Load Shifting with Renewables 

The same plateau behaviour observed with basic load shifting case is observed when adding zero-

feedback DGs. However, the addition of renewables shows potential reductions in optimal battery 

bank sizes between 4 – 14 kWh depending on load and DG system size. Table 6-14 summarizes 

these potential savings for a system with a 5 kW PV system, while Table 6-15 shows potential 

savings with the addition of a 6 kW wind turbine. Note that the initial costs shown are based on 

zero-feedback operation without a battery bank, and cost savings relative to normal operation are 

even greater. When compared to normal operation (no renewables or battery storage), this 

configuration achieves 26 – 29% annual cost savings.  

 

Table 6-14: Annual load shifting/zero-feedback savings summary for different load types and 
optimal battery size assuming a 5 kW zero-feedback PV system 

Load type 

Annual 
consumption 

(kWh) 

Daily 
average 
(kWh) 

Initial 
cost ($) 

Load 
shifted 
cost ($) 

Cost 
savings 

(%) 

5-day 
depletion 

battery bank 
size (kWh) 

Low Appliance 
Consumption 4,815 13.2 $842.97 $796.56 5.5 % 11.6 

Medium 
Appliance 
Consumption 

8,149 22.3 $1,216.90 $1,133.38 6.9 % 17.4 

High Appliance 
Consumption 12,993 35.6 $1,797.22 $1,652.97 8.0 % 25.8 

Low Whole-
House 
Consumption 

20,408 55.9 $2,737.80 $2,490.04 9.0% 49.4 

Medium Whole-
House 
Consumption 

23,794 65.2 $3,183.48 $2,886.29 9.3 % 54.6 

High Whole-
House 
Consumption 

28,586 78.3 $3,848.51 $3,476.39 9.7 % 63.5 
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Table 6-15: Annual load shifting/zero-feedback savings summary for different load types and 
optimal battery size assuming 5 kW PV and 6 kW wind turbine zero-feedback systems 

Load type 

Annual 
consumption 

(kWh) 

Daily 
average 
(kWh) 

Initial 
cost 

Load 
shifted 

cost 
Cost 

savings 

5 days 
depleted 

battery bank 
size (kWh) 

Low Appliance 
Consumption 4,815 13.2 $808.70  $751.51  7.1 % 10.0 

Medium 
Appliance 
Consumption 

8,149 22.3 $1,163.08  $1,067.75  8.2 % 16.0 

High Appliance 
Consumption 12,993 35.6 $1,720.10  $1,564.77  9.0 % 24.0 

Low Whole-
House 
Consumption 

20,408 55.9 $2,592.20  $2,371.26  8.5 % 47.5 

Medium Whole-
House 
Consumption 

23,794 65.2 $3,026.80  $2,758.84  10.1 % 53.4 

High Whole-
House 
Consumption 

28,586 78.3 $3,678.60  $3,338.79  10.3 % 60.6 

 

Figure 6-11 shows the sensitivity of 5-day depletion battery bank size to the size of the renewable 

energy system used. This shows that doubling the PV array, from 5 to 10 kW, can reduce the 

battery size by an average of 2.6 kWh. 

 

Figure 6-12 illustrates the correlation between load amount and optimal battery size for load 

shifting with a 5 kW PV zero-feedback system with and without a 6 kW small-scale wind turbine. 

The addition of the 6 kW wind turbine reduces the optimal battery bank size by an average of 1.8 

kWh. 
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Figure 6-11: Sensitivity of battery bank size using basic load shifting to PV array size based on 5 

days of annual depletion 
 

 
Figure 6-12:Battery bank size with and without a wind turbine based on 5 days of depletion 

annually using basic load shifting 
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6.2.3 Load Shifting with Excess Charging 

Table 6-16 and Table 6-17 summarize the annual savings for each of the six cases when using load 

shifting with excess energy storage using a 5 kW PV system alone and with a 6 kW wind turbine, 

respectively. Again, the saving percentages shown are relative to the cost of running the standalone 

renewable energy systems under a zero-feedback configuration without a battery. This control 

method achieves additional savings of 4 – 10% when compared to basic load shifting. Relative to 

normal operating costs without renewables, load shifting with excess charging achieves 29 – 36% 

annual cost savings. Using the excess charging method increases the amount of on-site renewable 

energy utilization; the only case in which excess on-site generation cannot not be used is when the 

battery bank is fully charged.  

 

Table 6-16: Annual load shifting/excess energy storage savings summary for different load types 
and optimal battery size assuming a 5 kW PV system 

Load type 

Annual 
consumption 

(kWh) 

Daily 
Average 
(kWh) 

Initial 
cost  

Load 
shifted 

cost 
Cost 

savings  

5 days 
depleted 

battery bank 
size (kWh) 

Low Appliance 
Consumption 4,815 13.2 $842.97 $729.50 13.5 % 10.0 

Medium 
Appliance 
Consumption 

8,149 22.3 $1,216.90 $1,023.94 15.9 % 16.5 

High Appliance 
Consumption 12,993 35.6 $1,797.22 $1,499.39 16.8 % 24.9 

Low Whole-
House 
Consumption 

20,408 55.9 $2,737.80 $2,341.84 14.5 % 49.3 

Medium Whole-
House 
Consumption 

23,794 65.2 $3,183.48 $2,732.89 14.2 % 54.4 

High Whole-
House 
Consumption 

28,586 78.3 $3,848.51 $3,319.74 13.7 % 63.4 
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Table 6-17: Annual load shifting with excess charging savings summary for different load types 
and optimal battery size assuming 5 kW PV and 6 kW wind turbine systems 

Load type 

Annual 
consumption 

(kWh) 

Daily 
average 
(kWh) 

Initial 
cost 

Load 
shifted 

cost 
Cost 

savings 

5 days 
depleted 

battery bank 
size (kWh) 

Low Appliance 
Consumption 4,815 13.2 $808.70  $684.11  15.4 % 8.5 

Medium 
Appliance 
Consumption 

8,149 22.3 $1,163.08  $952.42  18.1 % 14.5 

High Appliance 
Consumption 12,993 35.6 $1,720.10  $1,394.52  18.9 % 22.5 

Low Whole-
House 
Consumption 

20,408 55.9 $2,592.20  $2,191.66  15.5 % 47.0 

Medium Whole-
House 
Consumption 

23,794 65.2 $3,026.80  $2,571.73  15.0 % 53.0 

High Whole-
House 
Consumption 

28,586 78.3 $3,678.60  $3,145.05  14.5 % 60.0 

 

The sensitivity of this EMS control method to DG system size is shown in Figure 6-13. While 

using load shifting with excess charging, doubling the PV system size results in an average battery 

bank reduction of 3.7 kWh, based on the 5-day depletion criterion. Figure 6-14 displays the 

operation of the system with and without a 6 kW wind turbine. 
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Figure 6-13: Sensitivity of battery bank size using load shifting with excess charging to PV array 

size based on 5 days of annual depletion 
 

 
Figure 6-14: Battery bank size with and without a wind turbine based on 5 days of depletion 

annually using load shifting with excess charging 
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6.2.4 Deterministic Energy Management Systems Summary 

In reality, two different battery sizing curves should be produced for each of the cases highlighted. 

This is due to the fact that the whole-house load profiles and appliance-only load profiles have 

different shapes, and therefore have different TOU distributions. While the whole-house profile 

does have contributions from the appliance curves, it’s hourly consumption is also dependent on 

the season, the weather, and hot water usage. This is the main reason for divergence from the 

trendlines. Nevertheless, very good correlations across these two types of residential load profiles 

are observed. 

 
Figure 6-15: Annual energy consumption for different house types and different load shifting 

procedures 
 

Figure 6-15 summarizes the annual energy consumption for all three house types under each of 

the different load shifting procedures investigated. Only one of the cases shows a lower energy 

consumption than the lowest zero-feedback case due to battery efficiency losses. 
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These load shifting cases are the only EMSs investigated in this work that are appropriate for lead-

acid batteries; they allow a long discharging periods during the day, and long charging periods 

overnight. All other cases are assumed to require lithium ion batteries for real-world operation.  

 

6.3 Optimized Energy Management System 

The optimized battery management case gives insight into the best times of day to enable charging 

and discharging, based on their definition in this work. It should be noted that according to the 

control protocol, if discharging is enabled and there is excess renewable generation, the battery 

will be charged using the available energy. Table 6-18 and Figure 6-16 show the optimal 

distribution of the two battery states determined by the GA.  

 

Table 6-18: Distribution of battery state selection for the three different house types 

House Type 
Time in discharging-

enabled state 
Time in charging-

enabled state 
Low consumption 88.8% 11.2% 
Medium consumption 85.9% 14.1% 
High consumption 81.7% 18.3% 

 

 
Figure 6-16: Hourly distribution of battery state selection for the medium-consumption house 
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Figure 6-17 compares the annual energy consumption associated with normal operation, load 

shifting with excess charging, and optimized battery management, while Table 6-19 summarizes 

the optimized costs for the three house types relative to zero-feedback costs. The optimized battery 

management protocol has minimized both the energy consumption – by maximizing on-site 

renewable utilization – and the annual cost – by using the cheapest energy available.  

 

It is interesting to note that the consumption from load shifting with excess charging approaches 

that of the optimized case as the load of the house increases. Since the higher consumption homes 

already utilize more on-site renewable generation – simply due to the reduced probability of 

generation exceeding the load – there is less room for optimization. 

 
Figure 6-17: Annual energy consumption comparison between normal operation, load shifting, 

and optimized battery management 
 

The optimized battery management protocol shows significant cost savings compared to zero-

feedback operation. Compared to normal operation without renewables, this case shows 35 – 43% 

annual cost savings. The battery sizes used for the low, medium, and high energy consumption 

houses were 47, 53, and 60 kWh – the optimal sizes listed in Table 6-17. 
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Table 6-19: Cost comparison of zero-feedback operation to optimized battery management using 
5 kW PV and 6 kW wind turbine systems 

Load type 

Annual 
consumption 

(kWh) 

Daily 
average 
(kWh) 

Zero-
feedback 
cost ($) 

Optimized 
Cost ($) 

Cost savings 
(%) 

Low Whole-
House 
Consumption 

20,408 55.9 $2,592.20 $1,954.46 24.6% 

Medium Whole-
House 
Consumption 

23,794 65.2 $3,026.80 $2,384.93 21.2% 

High Whole-
House 
Consumption 

28,586 78.3 $3,678.60 $3,050.55 17.1% 
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6.4 Adaptive Energy Management System Results 

6.4.1 Machine Learning Battery Management Results 

Various methods of MLS training were tested to find the optimal method of training. Figure 6-18 

compares the annual cost savings for different MLS’s based on the amount of data used for 

training; for example, the series labeled “One week training” represents an MLS that was trained 

using one week’s worth of data, and then run on an entire year. Monthly reset training reset the 

memory of the MLS every month, such that it has only been trained with the previous month’s 

data, while monthly cumulative training retrains the MLS every month, using cumulative data for 

the year. All of the cases shown in Figure 6-18 utilize 5 kW PV and 6 kW wind turbine systems 

for a medium-consumption home. 

 

 
Figure 6-18: Annual cost savings associated with training the MLS with different data sets 
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than load shifting with excess charging, while all cases show greater savings than basic load 

shifting. 

 

Table 6-20 summarizes annual energy costs associated with the three MLS’s that show the best 

performance for each of the three house types. Since each MLS is trained using data generated 

through the GA optimization process, the trends in savings follow those of the optimized cases; 

greater savings may be achieved in cases that initially have lower amounts of on-site renewable 

energy utilization.  

 

Table 6-20: Annual energy costs (and percent savings) associated with each house type using the 
MLS with different training methods and amounts of data 

House Type Zero-feedback  
Training with 1 

year of data 

Monthly 
cumulative 

training 
Monthly reset 

training 
Low Whole-
House 
Consumption 

$2,592.20 
$2,041.32  
(21.3 %) 

$2,086.54 
(19.5 %) 

$2,027.47 
(21.8 %) 

Medium Whole-
House 
Consumption 

$3,026.80 
$2,481.01 
(18.0 %) 

$2,530.44 
(16.4 %) 

$2,467.75 
(18.5 %) 

High Whole-
House 
Consumption 

$3,678.60 
$3,166.37 
(13.9 %) 

$3,191.04 
(13.3 %) 

$3,130.22 
(14.9 %) 

 

Figure 6-19 summarizes the annual energy consumption for the three MLS cases shown in Table 

6-20. All MLS cases show lower energy consumption than the baseline cases, with the same trend 

of decreased savings for an increase in house (load) size. Some of the cases show less grid 

consumption than the optimized cases. This is because the optimized cases were optimized for 

cost, and not energy consumption. 
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Figure 6-19: Annual energy consumption comparison between MLS's and baseline cases 
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6.4.2 Predictive Control Case Study Results 

Figure 6-20 and Figure 6-21 display the training performance of the HVAC electrical load and 

solar PV generation ANNs respectively, with error bars indicating the standard deviation of 30 

training trials. The final HVAC and Solar PV ANNs used 9 and 10 neurons, respectively. 

 
Figure 6-20: HVAC electrical load ANN based on hidden layer size for use in predictive control 

 
Figure 6-21: Solar PV generation ANN based on hidden layer size for use in predictive control 
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The performance of both ANNs over the 10-day forecast period is shown in Figure 6-22 and. The 

solar PV ANN shows much better performance than the HVAC ANN, simply because a solar PV 

system is subject to fewer disturbances than the HVAC system of a building. 

 
Figure 6-22: HVAC ANN output using weather forecast and actual weather data compared to 

"actual" (simulated) power consumption 

 
Figure 6-23: Solar PV ANN output using weather forecast and actual weather data compared to 

“actual” (simulated) generation 
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Table 6-21 displays the R2 values for the ANN performance data summarized in Figure 6-22 and 

Figure 6-23. Clearly, the solar PV ANN performs much better than that of the HVAC system. The 

error associated with using weather forecasts as ANN inputs reflects the error associated with both 

the weather forecast data and the performance of the ANN models. 

 

Table 6-21: Predictive ANN performance based on forecast or actual weather inputs 
 Correlation to simulated data (R2) 
ANN Inputs HVAC ANN Solar PV ANN 
Weather forecasts 0.691 0.888 
Actual weather 0.731 0.995 

 

Despite the inaccuracy of the consumption and generation profiles predicted by the ANNs, 

predictive control has produced the greatest cost savings of any EMS investigated in this work, 

based on the 10-day case study period. While the annual performance of this particular form of 

predictive control cannot be quantified, the savings are foreseeably promising.  

 

 
Figure 6-24: Comparison of EMS cost across the 10-day forecast period 
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process reduces the problem of battery control to two discrete states, the problem becomes 

generalized. Having a generalized problem solver reduces the impact of errors associated with 

weather forecasts and modelling. The GA optimization process can make near optimal decisions 

based on general trends, and does not require exact values to produce optimal results. This method 

of battery management should be further investigated using annual simulations, and real-world 

tests. 

 

Using an ANN to predict simulated ASHP power consumption seems to leave the results 

subjectable to reasonable scrutiny. However, using the ASHP ANN to model the real-world system 

represented by HVAC simulations gives clarity. Figure 6-25 displays the same ANN’s predicted 

power output of the ASHP used in House A, along with the actual power consumption of the heat 

pump, in the real world. ASHP data was unavailable during the case study period, and this data 

was obtained from the first quarter of 2016. 

 

 
Figure 6-25: ANN-predicted versus actual ASHP Power consumption 
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produce near-optimal results despite poor correlations in predicted and actual data, it is highly 

likely that the predictive controller used in this case study would produce very similar results to 

those that have been reported. Experimental trials should be conducted in order to properly validate 

this claim. 

 

6.4.3 Transactive Energy Management Simulation Results 

Because the TEMS was implemented at the ASH, the systems it considered reflect exactly those 

which are used at the ASH. This means that the solar PV system used for all TEMS simulations 

was 4.08 kW in size, and not 5 kW as in all other EMS simulations. The TEMS also only utilizes 

ASHPs as loads, and does not consider any other consumers of energy. When the TEMS is 

compared to the other EMSs investigated in this work, those EMSs have been applied to the exact 

same system, such that comparisons on the same basis can be made. 

 

The TEMS is capable of producing a variety of different results. While it does not achieve as 

significant cost savings as some of the other EMSs investigated, it is an all-in-one EMS that is 

capable of many different types of control. It should be once again clarified that this work 

investigated only one interpretation of a transactional energy system, and that there are many other 

potential implementations of the framework.  

 

A TEMS can be used as a means of DR implementation if signaling from the local utility is 

implemented. Figure 6-26 illustrates an example of the simulated reaction of the TEMS to a 

demand response signal requesting a 50% reduction in power consumption.  

 

The simulation pictured in Figure 6-26 used four models of House A in simultaneous operation, 

all with ASHPs for heating and cooling. It assumed that these houses were paired together forming 

two separate semi-detached buildings. Within the set, the house on the eastern side shared its west 

wall with the house on the western side. 
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Figure 6-26: Electrical loads of four houses using a TEMS with and without a DR signal 

 

Under the ambient conditions shown, the transactional energy system is able to manage the use of 

the ASHPs in the four-house community such that only two are permitted to be in operation at any 

given time. This is achieved by implementing a virtual demand cap on the amount of power 

allowed to be drawn from the grid at any point in time. This highlights the inherent ease of DR 

interactions between the utility and a TEMS. Implementing DR only required changing a single 

value in the TEMS: the grid’s bid amount, in kW, for the duration of the DR request. This requires 

no design changes to the TEMS whatsoever. Since it is built based on a publish-subscribe 

communication protocol, it is inherently built to receive and respond to this type of DR request. 

 

While this amount of load reduction is not achievable at every point throughout the year, 

simulations show that this system could achieve this amount of DR for 75% of the year, from 

March 9th – November 9th based on 2016 weather data, while maintaining zone temperature 

between 20 – 25˚C. The actual demand response capability of any given system will vary 

depending on local weather conditions and the insulative properties of the buildings. 

 

The TEMS can also act as a platform for implementing a dynamic temperature setback. Figure 

6-27 displays four bid curves used for TEMS simulations. Each bid curve represents more relaxed 
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thermal comfort preferences. These temperature setbacks and preferences can easily be applied to 

a TEMS, similar to modern “smart” thermostats. Table 6-22 summarizes the energy consumption 

and cost savings associated with each of the four bid curves shown in Figure 6-27. Actual savings 

would vary based on the preferences of the occupants, however, this data highlights the potential 

range of savings that could be achieved. 

 

While the average temperatures shown in Table 6-22 may seem unacceptable, these are the result 

of a full year of operation using a fixed bid curve. In reality, bid curves would change dynamically 

based on season and time of day. Additional intelligence could also be added to the system to learn 

the habits of the occupants, dynamically modifying the bid curve of the thermostat.  

 

 
Figure 6-27: Thermostat bid curves representing different thermal comfort preferences 
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Table 6-22: Summary of annual electricity savings and average zone temperatures associated 
with transactional energy-enabled temperature setbacks 

Trial 
Consumption 

(kWh) 

Annual 
variable cost 

($) 

Average indoor 
heating season 

temperature (˚C) 

Average indoor 
cooling season 

temperature (˚C) 
Normal ASHP 
operation 

5183 $729.73 22.0 23.8 

Bid curve 1 5021 $700.28 21.8 23.8 

Bid curve 2 4676 $645.03 21.1 24.4 

Bid curve 3 4353 $593.74 20.4 24.9 

Bid curve 4 4057 $547.62 19.7 25.4 

 

The addition of renewable generation and battery energy storage in a transactive energy network 

has the potential to produce electricity cost savings in certain scenarios. Table 6-23 compares the 

calculated savings of the TEMS to normal operation. For the 4.08 kW solar PV system, normal 

operation is considered to use a zero-feedback system. 

 

Table 6-23: Energy cost and consumption comparison of the TEMS to normal operation 

System 

Normal 
annual 

consumption 
(kWh) 

Transactional 
annual 

consumption 
(kWh) 

Normal annual 
variable cost 

Transactional 
annual variable 

cost 

ASHP 5183 5021 $729.73 $700.28 

ASHP, 
Solar PV (4.08 kW) 

4362 4187 $592.88 $563.15 

ASHP,  
Solar PV (4.08 
kW), 
Battery (25 kWh) 

4367 – 4749 4253 $477.25 – 535.47 $489.42 

 

The upper and lower ranges associated with the battery bank system represent basic load shifting 

and load shifting with excess charging, respectively. It should be noted that the battery bank 
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bidding procedure utilizes an unoptimized fuzzy logic controller to determine what price to bid, 

and whether to bid towards the supply or demand curve. There is very likely a battery bidding 

structure for the TEMS that will produce greater cost savings. 

 

While the resulting electricity cost of the TEMS is 2.6 % greater than that of load shifting with 

excess charging employed on the same system, the grid consumption associated with the TEMS is 

2.6 % lower than that of load shifting.  

 

The TEMS is not explicitly designed to optimize costs, and therefore the absolute lowest costs of 

all investigated systems should not be expected. Nevertheless, the inherent flexibility associated 

with the bidding structure of the ASHPs allows the TEMS to align loads with generation when 

practical, leading to reduced consumption from the grid, and greater on-site renewable energy 

utilization. Figure 6-28 showcases an example consumption-generation alignment made possible 

by the TEMS. By utilizing a flexible bidding structure, a TEMS can wait a certain amount of time 

before granting the bid of an ASHP, increasing the probability that it can be supplemented by on-

site renewable energy generation. This phenomenon could be further improved through the use of 

predictive control, to allow for preheating or precooling if a deficit of renewable energy generation 

was forecast. 

 

On-site renewable energy utilization with and without the use of a TEMS is summarized in Table 

6-24. Clearly the battery bank adds a significant amount of flexibility to the system, doubling the 

amount of on-site renewable energy usage. The system consisting of the ASHP and PV also has a 

certain amount of flexibility that allows for a 20% increase in on-site utilization. 
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Figure 6-28: An example of the TEMS using flexible loads to align consumption with generation 
 

Table 6-24: Annual on-site renewable energy utilization using for a single house with a 4.08 kW 
PV system 

System 
On-site Renewable 
Utilization (kWh) 

Simulated annual 
PV generation 

(kWh) 
Percent utilization 

(%) 

Normal operation 821 

4,468 

18.4 % 

Transactional 
ASHP and PV 987 22.1 % 

Transactional 
ASHP, PV, and 
battery bank 

1,645 36.8 % 

 

The final conclusion drawn from transactional energy simulations regards the trading price of 

renewable energy. The TEMS developed in this work functions like a free market economic 

system, meaning that the negotiated price of electricity is always determined based on the supply 

and demand of the system. In the Marketplace bid prices may vary between different agents, but 

once the supply and demand evaluation is complete, all energy is traded at the market clearing 

price for that moment in time. 
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Although a price of 5.0 ¢/kWh for solar energy may seem low, simulations show that solar energy 

is only traded at this price one third of the time. While the solar PV array in these simulations may 

be willing to sell its energy for 5.0 ¢/kWh, the annual average trading price for solar energy has 

been calculated to be 12.8 ¢/kWh.  

 

Table 6-25 summarizes the simulated average annual and seasonal traded price of solar energy. 

This clearly shows that when solar energy is in excess in the cooling season, when the market 

experiences increased supply and decreased demand, solar energy trades at a lower cost than in 

the heating season, when heating energy demand is greater, and solar energy supply is lacking. 

While it has not been thoroughly investigated, these costs can give insight into the revenue rate 

that could be possible if actual transactions were made between different participants, perhaps 

neighbors, in a transactional energy system. 

 

Table 6-25: Traded price of solar energy in a TEMS 
Fixed bid price 

(¢/kWh) 
Annual Average 

(¢/kWh) 
Heating Season 

(¢/kWh) 
Cooling Season 

(¢/kWh) 

5.0 12.8 14.5 7.7 

7.5 13.9 15.2 9.7 

10.0 14.9 15.8 11.8 

 
A transactional energy management system can be beneficial for a variety of purposes. It can act 

as a platform for DR and other forms of utility-consumer interaction, implement control based on 

thermal comfort preferences, reduce electricity cost and annual consumption by aligning 

consumption with generation, and act as the basis for inter-household energy trading. These are all 

achievable using the same system, with no modification to controller design required to produce 

any of the different results.  
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7. Experimental Case Study Results 

7.1 Load Shifting Control 

The load shifting experiment was performed intermittently between January – May, 2016. Figure 

7-1 shows an example of one day of net load tracking during mid- and on-peak hours. This 

particular day shows tracking with the initial open-loop controller. On this day, the average 

daytime outdoor temperature was -6.1˚C, and 93.5% of the ASHP load was met by the battery 

bank during mid and on-peak hours.  

 

 
Figure 7-1: Mid- and on-peak ASHP consumption, generation, and battery bank output. 

 

Table 7-1 highlights the accuracy of the controller over each experimental phase. Slightly less 

accurate tracking accuracy can be observed during set back (18˚C) operation. During the 

temperature set back, the inverter attempted to match the standby power consumption of the ASHP 

(~50 W). It was found that the inverter exhibited a somewhat wavering response at low target 

power levels. Additionally, a slight steady state error was observed at low power outputs. 
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The final controller iteration improved upon steady-state errors and the output at low power levels. 

The remaining tracking error is associated with slow network speeds, and slow inverter 

communication/response time. 

 

Table 7-2 shows the outcome of the temperature setback on the power consumption of the ASHP. 

While these results do show almost a 50% reduction in energy consumption, they cannot be taken 

at face-value since outdoor temperatures were warmer during the setback portion of the 

experiment. 

 

Table 7-1: Percentage of load shifted and days of operation 

Control Average percent of load met Days of operation 
Open-loop, normal ASHP 
operation 

94.3 % 6 

Open-loop, setback operation 93.3 % 11 

Closed-loop, both modes of 
operation 

98.0 % 3 normal, 3 setback 

 

Table 7-2: Effect of temperature setback on power consumption 

Mode of ASHP operation 
Average ASHP peak-hour 

energy consumption (kWh) 
Average daytime outdoor 

temperatures 

Normal 19.7 -3.1˚C 

Setback 8.9 1.1˚C 

 

Having shown that shifting 98% of an ASHP’s peak hour load is possible using hardware that was 

not designed for this purpose, it is clear that the assumption that the battery bank can effectively 

match the net load of a building is valid. These results were also obtained using a lead acid battery 

bank, and it is expected that more rapid current outputs are possible with lithium ion batteries. 
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7.2 Transactional Energy Management System Demonstration 

The integrated LabVIEW-MATLAB communication and control software was used to run the 

TEMS. Three applications were run separately and simultaneously, representing the Marketplace, 

HPWH and PV agents. During the demonstration, over 1000 successive bid evaluations were 

conducted in the marketplace. Figure 7-2 shows a state diagram which highlights how the TEMS 

functions. While the Marketplace application must be running, agents of any kind can be added or 

removed from the system at will. 

 

 
Figure 7-2: Energy Marketplace and Agent state diagrams relative to the DDS layer 

 

The PV and HPWH agents were periodically removed and re-added to the Marketplace throughout 

the continuous testing period, pictured in Figure 7-3, validating the simple plug-and-play nature 

of this control system. Currently, the Marketplace acts as the main controller, and is required for 
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operation. However, future TEMS implementations could involve fully distributed systems, with 

direct peer-to-peer communication, negating the need for a main controller. 

 

Figure 7-3 shows the Marketplace’s reaction to the removal of the solar PV agent. At the time 

when the solar PV agent was removed the bid price of the HPWH was less than that of grid energy, 

so it must be turned off. Since evaluations happened at 10-second intervals in this demonstration, 

the HPWH is shut off at the end of the first re-evaluation after the PV agent was removed. 

Eventually, the PV agent was turned back on, and once again began sending supply bids to the 

Marketplace. After a slight time-delay due to the HPWH’s own internal startup controls, the water 

heater is allowed to power back on. 

 

 
Figure 7-3: Example of the removal of the solar PV agent during the Energy Marketplace 

demonstration 
 

This demonstration validates the assumption that the communication protocol required for a TEMS 

is not a barrier for its implementation; open-source software is widely available that may be 

adapted for this purpose.  
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8. Financial and Emission Analyses 
Financial and emission analyses have been performed on the two deterministic EMSs investigated. 

These two cases have been selected because they represent conservative scenarios that do not over-

estimate EMS related savings. 

8.1 Financial Sensitivity to Electricity Prices 

At current battery prices, none of the battery control practices are financially viable; battery bank 

prices are simply too high. Table 8-1 compares three different battery bank costs, all at 55 kWh in 

size. The first is a lead-acid battery, while the Enphase and Tesla batteries are both lithium ion. 

The fact that the lithium ion batteries have double the lifespan of the lead-acid battery alone shows 

that they are the more cost effective option. 

 

Table 8-1. Battery System Comparison for 55 kWh Battery banks 
  Rolls  

AGM S2-1275a 

Enphase AC 

Batteryb 

Tesla 

Powerwallc 

Maximum DOD 50% >95% 100% 

Unit size ~2 kWh 1.2 kWh 6.4 kWh 

Units required 55 48 9 

Cost of system $35,750 (CAD) $59,130 (CAD) $32,230 (CAD) 

Lifetime 5 years 10 years 10 years 

a (Rolls Battery Engineering, 2011) 
b (Enphase, 2016) 
c (Tesla Motors, 2016) 

 

A sensitivity analysis was performed on the cost of electricity, to determine how great the price 

differential between mid-/on-peak and off-peak would have to be in order to make this process 

financially viable. This analysis was performed on the medium-consumption house only, and 

assumed a battery capital cost of $32,230, with a lifetime of 10 years. 

 

The analysis involved modifying the mid- and on-peak TOU electricity rates, while keeping the 

off-peak price of electricity fixed at 0.112 $/kWh. The TOU rates were modified by a multiplier 

(i.e. if the on-peak multiplier is 2, then the on-peak price of electricity is 2 times the current rate). 
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Table 8-2 throughTable 8-4 show the annual savings associated with load shifting. Note that if 

DGs are involved in load shifting, then the baseline case would involve a zero-feedback system. 

The shaded cells indicate the cases in which the battery bank would payback within its lifetime, 

based on a simple payback calculation. This analysis shows that the price of mid- and on-peak 

electricity would have to triple in order for the load shifting practices to become financially viable.  

 

Table 8-2: Annual savings associated with load shifting for a medium house without DGs based 
on different TOU prices 

 On-peak multiplier 
Mid-peak multiplier 1 1.25 1.5 2 3 

1 $426 $753 $1,079 $1,731 $3,036 

1.25  $995 $1,322 $1,974 $3,279 

1.5   $1,565 $2,217 $3,522 

2    $2,703 $4,008 

3     $4,980 
 

Table 8-3: Annual savings associated with basic load shifting for a medium house with a 5 kW 
PV system based on different TOU prices 

 On-peak multiplier 

Mid-peak multiplier 1 1.25 1.5 2 3 

1 $289 $512 $735 $1,180 $2,071 

1.25  $669 $892 $1,338 $2,229 

1.5   $1,050 $1,495 $2,386 

2    $1,810 $2,701 

3     $3,332 
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Table 8-4: Annual savings associated with load shifting with excess charging for a medium 
house with a 5 kW PV system based on different TOU prices 
 On-peak multiplier 

Mid-peak multiplier 1 1.25 1.5 2 3 

1 $442 $665 $888 $1,333 $2,225 

1.25  $823 $1,045 $1,491 $2,383 

1.5   $1,203 $1,649 $2,540 

2    $1,964 $2,855 

3     $3,486 

 

While electricity rates tripling may seem drastic, it is clear that prices will increase over time, often 

beyond the rate of inflation. Figure 8-1 displays historical electricity prices in Ontario. This rate 

of increase shows that it is not farfetched for the price of on-peak electricity to double over time, 

as seen between 2008 and 2016. 

 

 
Figure 8-1: Historical Ontario electricity TOU rates, not including marginal costs (OEB, 2017) 

 

 

0

2

4

6

8

10

12

14

16

18

20

El
ec

tri
ci

tty
 P

ric
e 

(¢
/k

W
h)

Date

Off-peak price

Mid-peak price

On-peak price



 150 

It is not absurd to believe that the capital costs of residential batteries will reduce significantly in 

the near future. As technological advances are made, the cost of residential batteries will only 

decrease. If the price of batteries were cut in half, then the price increase of on-peak electricity 

would only have to double. A price reduction of at half is frankly necessary if this technology is 

to ever achieve widespread adoption by the public; the price of the battery needs to drop to a 

reasonable amount, such that at least the average homeowner has the financial means to make the 

investment.  

 

8.2 GHG Emission Sensitivity 

A sensitivity analysis with regards to GHG emissions was performed by varying the time of day 

that charging the battery bank from the grid was allowed. This analysis was only performed on the 

baseline cases and deterministic EMSs, as these cases are the most likely to be implemented in the 

real world at this point in time. 

 

Table 8-5 summarizes the annual emissions associated with the various baseline control strategies 

investigated in this work. Annual emissions were calculated by multiplying electrical load profiles 

by the Ontario electricity grid’s hourly emission factors, described in Section 3.1.2.  

 

Table 8-5: Annual carbon emissions associated with grid electricity for different control strategies 
 Average Emissions (kg CO2eq./year) 

Control Method 
Low Consumption 

Home 

Medium 
Consumption 

Home 
High Consumption 

Home 

Normal 1217 1417 1710 

Zero-feedback with 5 kW 
PV 

968 1147 1416 

Normal load shifting 
without renewables 

1297 1485 1763 

Basic load shifting with 5 
kW PV 

1045 1227 1494 

Load shifting with excess 
charging with 5 kW PV 

967 1147 1418 
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These results show that both of the basic forms of load shifting (with and without renewables) use 

grid energy at hours with higher emission factors, compared to when load shifting was not 

employed. It is not until excess charging is used that emissions associated with load shifting drop 

below those of the respective baseline cases. 

 

The reason that load shifting has produced greater annual emissions is that the battery is scheduled 

to charge from the grid at 19:00. It is clear from Figure 3-3 that while electricity may be the 

cheapest after 19:00, emissions are at their peak. An analysis was performed to determine the 

optimal time of night to allow recharging from the grid. 

 

Table 8-6 shows the change in associated emissions with regards to the time of night that battery 

recharging from the grid may begin. The data shown is only for the medium energy consumption 

home using load shifting without DGs. This analysis shows that the optimal time of night to begin 

recharging is between 10:00 PM and midnight. 

 

Table 8-6: Emissions associated with load shifting for a medium house without DGs based 
nighttime charging time 

Initial Charging 
Time 

Normal Emissions 
(kg CO2eq./year) 

Load Shifting 
Emissions  

(kg CO2eq./year) 
Percent Change 

19:00 

1417.1 

1485.0 4.8% 
20:00 1433.1 1.1% 
21:00 1390.0 -1.9% 
22:00 1369.5 -3.4% 
23:00 1369.9 -3.3% 
0:00 1373.4 -3.1% 
1:00 1387.6 -2.1% 
2:00 1405.8 -0.8% 
3:00 1422.7 0.4% 

 

While a 3% reduction in emissions may seem insignificant, some conclusions can be drawn from 

this finding. The general public is only just starting to become aware of residential battery 

technology. While the uptake of batteries in homes has not yet begun, EV sales are increasing 

significantly. If enough drivers plug in their EVs when they arrive home from work a new peak 
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demand will develop. If the supply mix is unchanged, this peak demand will be supplied by the 

dirtiest energy of the Ontario fuel mix. 

 

Proper energy management will therefore be required with regards to overnight battery charging, 

for EVs and stand-alone batteries, such that a peak recharging demand is spread out over the entire 

night time. This could be very effectively managed by a community transactional energy system 

that ensures that only a certain number of batteries are allowed to recharge from the grid at any 

given time overnight. 
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9. Conclusions and Recommendations 
This work has investigated the performance of various types of energy management systems for 

residential buildings with a focus on simplicity and practicality. Various EMSs were examined, 

and each has shown to have advantages and disadvantages in different cases, which are 

summarized below. Simulating these EMSs on the same basis allows for the direct comparison 

between the different control strategies. 

 

Deterministic Energy Management Systems 

The deterministic EMSs investigated in this work use control principles based on fixed functions 

of time. They are the only candidates for use with lead-acid batteries, ensuring long, steady 

charging procedures overnight, a necessity for lead-acid battery longevity. These EMSs are also 

the simplest to design and implement – this work has shown that a load shifting EMS can be easily 

implemented using “off the shelf” components. While this type of EMS has the least associated 

savings of all those investigated, this control system is still capable of achieving anywhere from 5 

– 19% annual cost savings depending on load and renewable energy system size. 

 

Optimized Energy Management System 

The optimized EMS investigated in this work was designed as a comparison tool, which was later 

combined with the MLS and predictive control applications. On its own, the optimized EMS used 

a custom GA code to determine the best battery management decisions based on two potential 

states: charging-enabled and discharging-enabled. This optimized EMS showed maximum 

potential cost savings of 17 – 25% annually. 

 

Machine Learning Energy Management System. 

The MLS presents the case of an EMS that learns the historical operation of the system for which 

it is responsible. It performs GA optimization on historical data to determine what the best course 

of battery management would have been, and trains a machine learning classification system based 

on this information. The MLS achieves better cost savings than the deterministic EMS, in the range 

of 15 – 22% annually. The primary downfall of this system is that it requires internal memory to 
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store historical data, although with current technological advances this can hardly be seen as a 

realistic barrier to implementation. 

 

Predictive Control 

Complementary to the MLS, the predictive control investigated in this work uses weather 

forecasting, black-box modelling (using neural networks), and GA optimization to determine what 

the best course of action will be. Unfortunately, due to a lack of weather forecast data this control 

protocol could only be investigated in terms of a 10-day long case study. However, this control 

protocol did show the best-case of cost savings over the case study period, achieving 42.3% cost 

reductions, outcompeting the 40.3% savings of the MLS over the same period. While this control 

protocol does show great promise, additional work is required in order to accurately quantify 

annual potential savings. This EMS not only requires memory to store data, but also depends on 

an active internet connection for operation. 

 

Transactive Energy Management System 

The final EMS investigated used a transactional-energy framework. The TEMS developed in this 

work stands apart from the other EMSs in terms of both structure and its potential uses. While the 

TEMS has not shown the best cost savings of the EMSs investigated, it has shown promise for, 

multi-building application, DR initiatives, implementing temperature setbacks, and increasing on-

site renewable utilization. The experimental work conducted in this thesis has shown that this 

agent-based control system can be easily implemented using open-source software. The TEMS 

could be further enhanced by several measures, including the addition of predictive control to 

influence bidding prices. There is a vast amount of future work that could be conducted to 

determine additional potential benefits and applications of this type of system. 

 

The EMSs investigated in this work highlight but a small fraction of the possibilities that exist. 

However, the insight that has been gained can help guide the direction of the implementation of 

real-world systems. The areas of particular interest for future work involve predictive control and 

transactional energy.  
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While it does provide insight, the predictive control case study is not representative of annual 

performance. This control strategy should be further expanded, and applied to experimental cases 

in real-world buildings, under actual weather conditions. 

 

The transactional energy system used in this work covers only one of a vast number of potential 

control options. This system can be applied to systems of various shapes and sizes, and can be 

designed in various ways. In the future, it is recommended that this type of system be investigated 

on both the community level and involving a fully distributed peer-to-peer communication 

protocol. 

 

Unfortunately, with cost of modern battery banks, these practices are simply not economically 

viable at the current state. Much of the work conducted in this thesis is reliant upon the assumption 

that home owners are already eager – and more importantly are capable – of purchasing battery 

banks for themselves. Until battery bank capital costs decrease, this practice is simply not 

economically feasible. 

 

Nevertheless, the time to implement sustainable technologies is now. With the widespread 

implementation of renewable energy and battery energy storage, capital costs of sustainable 

systems will surely continue to drop. Reducing the initial financial burden on the homeowner is 

critical in order to allow individuals around the world to make the decision to bring renewable 

energy, storage, and sustainability into their own homes. 
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Appendix 
This work has involved many analyses of large data sets. As such, it would be unrealistic to make 

all of the data available in text form. Therefore, supplementary data is available through the 

accompanying electronic submission, or upon request. The following is a list of available data: 

 

• Appliance probability curves 

• Hot water draw profile 

• Annual consumption load profiles (HVAC, DHW, appliance consumption) 

• Annual weather data 

• Experimental load shifting data 

• MATLAB code 

o House model 

o EMS codes 
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