
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Cops and robbers on graphs and hypergraphs
William David Baird
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Applied Mathematics Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Baird, William David, "Cops and robbers on graphs and hypergraphs" (2011). Theses and dissertations. Paper 821.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/821?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Cops and Robbers on Graphs and Hypergraphs

by

William David Baird, B.Sc. Wilfrid Laurier University, 2009

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Applied Mathematics

Toronto, Ontario, Canada, 2011

c©Copyright by William David Baird, 2011

I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to

other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dis-

sertation by photocopying or by other means, in total or in part, at the

request of other institutions or individuals for the purpose of scholarly

research.

ii

Abstract

Cops and Robbers on Graphs and Hypergraphs
Master of Science, 2011

William Baird
Applied Mathematics
Ryerson University

Cops and Robbers is a vertex-pursuit game played on a graph where a
set of cops attempts to capture a robber. Meyniel’s Conjecture gives
an asymptotic upper bound on the cop number, the number of cops
required to win on a connected graph. The incidence graphs of affine
planes meet this bound from below, they are called Meyniel extremal.
The new parameters mk and Mk describe the minimum orders of k-cop-
win graphs. The relation of these parameters to Meyniel’s Conjecture
is discussed. Further, the cop number for all connected graphs of order
10 or less is given. Finally, it is shown that cop win hypergraphs, a
generalization of graphs, cannot be characterized in terms of retractions
in the same manner as cop win graphs. This thesis presents some small
steps towards a solution to Meyniel’s Conjecture.

iii

Acknowledgments

I would like to thank the many people at Ryerson who have helped

me in completing this work. The Faculty and Staff in the Department

of Mathematics have contributed in innumerable small ways to this

end product. In particular I would like to thank Steve Kanellis for

his technical guidance and patience. I would also like to thank Dr.

Pavel Pra lat for his guidance in the area of computer programming.

Special thanks also go to Dr. Peter Danziger and Dr. Dejan Delić for

being part of my thesis commitee and their part in my mathematical

development.

My deepest thanks go to my supervisor Dr. Anthony Bonato. From

early on in my undergraduate career Dr. Bonato has been a driving

force in my pursuit of mathematics. His love of the discipline and his

commitment to excellence are an inspiration to me. Without his guid-

ance, wisdom and mentorship this thesis would not have been possible.

I am also deeply endebted to my family and friends. My parents

Eric and Rose-Mary, and my sister Emily have all been a constant

source of support and inspiration. I also extend my thanks to my girl-

friend Shelbie, for her ceaseless encouragement and support. Finally, I

wish to thank my friends who have encouraged me through this entire

process.

iv

Contents

List of Figures vii

Chapter 1. Introduction 1

1.1. Introduction to Cops and Robbers 1

1.2. Graphs 3

1.3. Incidence Graphs 7

1.4. Asymptotic Notation 9

1.5. Outline of Thesis 10

Chapter 2. Meyniel Extremal Graphs 13

2.1. Steiner 2-designs 14

2.2. Projective Planes 15

2.3. Affine and partial affine planes 19

Chapter 3. Growth Rates and Minimum Orders of k-Cop-Win

Graphs 25

3.1. Introduction 25

3.2. Minimum orders and growth rates 26

3.3. Algorithms for computing cop number 29

3.4. The k-cop-win Algorithm 39

3.5. Lower bounds 43

Chapter 4. The Game of Cops and Robbers on Hypergraphs 49

v

4.1. Introduction 49

4.2. Definitions and Notation 50

4.3. Cops and Robbers on hypergraphs 52

Chapter 5. Conclusions and Future Work 57

5.1. Summary 57

5.2. Open Problems 58

Appendix A. Source Code 61

A.1. Cop-win Checker 63

A.2. Cops and Robbers Game Simulator 70

A.3. 2-cop-win Checker 84

Bibliography 99

vi

List of Figures

1.1 A cop-win graph, G. 2

1.2 A 2 cop-win graph, C4. 2

1.3 A graph G. 4

1.4 A subgraph of G. 4

1.5 An induced subgraph of graph G. 4

1.6 A corner in a graph. 6

1.7 An example of a dominating set in a graph. 6

1.8 A hypergraph. 7

1.9 The Fano plane. 8

1.10 The Incidence graph of the Fano plane. 9

2.1 The incidence graph of a projective plane of order q. 17

2.2 The robber has q + 1 escape routes. 19

2.3 The q + 1 cops can dominate the position of the robber. 20

2.4 The robber again has q + 1 escape routes. 21

3.1 The Petersen Graph. 30

3.2 The graph G, a cop-win graph. 35

3.3 A cop-win ordering for the graph G. 36

vii

3.4 The cop computes her second-to-last move, F2(a) = b, and

so moves to b. 38

3.5 The graph G, a cop-win graph. 40

3.6 The construction of G′. 44

3.7 The isomorphism h : G′ → J ′. 45

4.1 A hypergraph with hyperedges of cardinality 3 and 5. 49

4.2 The vertex a is internal, the vertex b is external. 50

4.3 A 5-regular 2-joined hypergraph. 50

4.4 The graph G(H) for H, the hypergraph in Figure 4.1. 51

4.5 A hyperpath. 51

4.6 A hypercycle. 52

4.7 The deleted hyperedges give the robber an escape route. 56

viii

CHAPTER 1

Introduction

1.1. Introduction to Cops and Robbers

A well-known, anonymous quote is “Philosophy is a game with

objectives but no rules. Mathematics is a game with rules but no

objectives”. Cops and Robbers is a game within Mathematics with

both rules and objectives. Cops and Robbers is a vertex-pursuit game

played on a graph for reasons that will be more clear as we give the

rules for the game.

The game is played as follows. First the players, a cop and a robber,

each select a vertex of a graph on which to begin the game. The cop

selects the first vertex. In alternating rounds the cop and the robber

take turns moving from vertex-to-vertex along edges. The object of

the game for the cop is to occupy the same vertex as the robber, while

the object for the robber is to prevent this from happening. We say

the cop has captured the robber if the cop occupies the same vertex as

the robber. A graph is said to be cop-win if after some finite number

of rounds a cop can move so as to capture the robber. Otherwise, the

graph is robber-win. Cop-win graphs, such as the graph in Figure 1.1,

have a well known characterization based on the successive deletion of

corners. This characterization will be discussed later in Section 3.3 of

Chapter 3.

1

Figure 1.1. A cop-win graph, G.

Cops and Robbers can be played with any number of cops. For

k > 0 an integer, if k cops are sufficient to capture a robber on a given

graph, then we say that graph is k-cop-win. For example, the graph

in Figure 1.2 is not cop-win. If the game is played on this graph with

just one cop, then the robber can evade the cop indefinitely. However,

if the game is played by two cops, then the cops win since there is no

way for the robber to escape.

Figure 1.2. A 2 cop-win graph, C4.

A 1-cop-win graph is simply a cop-win graph. We define the cop

number of a graph G, written c(G) = k, to be the minimum number of

cops required for the graph G to be k-cop-win. For example a cop-win

graph, like the graph in Figure 1.1, has c(G) = 1. The graph in Figure

1.2 satisfies c(C4) = 2. This parameter is well-defined since placing

a cop on every vertex will always result in a win (in one move) for

2

the cops. This fact gives a trivial upper bound on the cop number:

c(G) ≤ |V (G)|.

Cops and Robbers was introduced by Nowakowski and Winkler in

[15] and independently by Quilliot in his Ph.D. Thesis [18]. Both sets

of authors give a characterization of cop-win graphs. Later on, Aigner

and Fromme [1] considered the game played with multiple cops.

Cops and Robbers belongs to a family of combinatorial games called

vertex-pursuit games or graph searching games. These games provide

a simplistic model for network security. We can think of the robber as

an intruder in a network and cops as network monitors.

1.2. Graphs

The graph on which Cops and Robbers is played is crucial to the

outcome of the game. In this section we give preliminary definitions

and terminology that will be useful throughout the remaining chapters.

A graph G consists of a non-empty set of vertices, written V (G), and

a set of edges, written E(G). Edges are unordered pairs of vertices. If

two vertices are connected by an edge, then we say they are adjacent. If

u and v are adjacent, then we write uv ∈ E(G) or u ∼ v. The order of

G is the number of vertices, |V (G)|. A graph is reflexive if all vertices

have a loop. We will assume all our graphs are reflexive as this allows

the cops and robbers to pass or stay on the same vertex, although we

will omit reference to loops in figures. All the graphs we consider are

of finite order.

A subgraph H of a graph G is a graph such that the vertices of H

are a subset of the vertices of G and the edges of H are a subset of the

3

vertices of G. An induced subgraph J is a graph with vertices a subset

of the vertices of G and containing all edges of G with both ends in the

vertex set of J. That is, an edge uv is in the edge set of J if and only

if uv is in the edge set of G and both u and v are vertices in J. Figure

1.3 shows a graph G, Figure 1.4 shows a subgraph of G, and Figure 1.5

shows an induced subgraph of G.

Figure 1.3. A graph G.

Figure 1.4. A subgraph of G.

Figure 1.5. An induced subgraph of graph G.

4

The degree of a vertex u in a graph G is the number of edges

incident with it, and is written degG(u) (we drop the subscript G if

it is clear from context). The maximum degree of a graph G, denoted

∆(G), is the degree of a vertex with largest degree in G. Similarly, the

minimum degree of G, denoted by δ(G), is the degree of the vertex with

the smallest degree in G. A graph is said to be k-regular if all vertices

in the graph have degree k.

A path of order n, written Pn, is a graph with vertices v1, v2, . . . , vn,

so that vi is adjacent to vi+1, where 1 ≤ i ≤ n − 1. A cycle, written

Cn, is formed by adding the edge v1vn in the path Pn. The graph in

Figure 1.2 is a cycle. The girth of a graph, written g(G), is the order

of a smallest cycle contained in G as a subgraph. Aigner and Fromme

in [1] give the following lower bound on cop number using girth and

minimum degree.

Theorem 1. Let G be a graph of minimum degree δ(G) ≥ n with

girth g(G) ≥ 5. Then c(G) ≥ n.

A graph is connected if for all vertices u and v there exists a path

from u to v. Usually when playing the game of Cops and Robbers we

consider graphs to be connected.

The neighbour set of a vertex v is the set of all vertices adjacent to

v, written N(v). The closed neighbour set of a vertex v is the union of

N(v) and v itself, denoted N [v]. A vertex u is a corner if there is a

vertex v such that N [u] ⊆ N [v]. Figure 1.6 shows a corner in a graph.

We say that a vertex v dominates or covers u.

5

Figure 1.6. A corner in a graph.

A dominating set S of a graph G is a set of vertices such that

all vertices of G are either in S or adjacent to a vertex in S. The

domination number, written γ(G), is the minimum number of vertices

required for a dominating set in G. Note that c(G) ≤ γ(G), as placing

a cop on each vertex of a dominating set ensures a win for the cops.

The circled vertices in Figure 1.7 show a dominating set in a graph.

Figure 1.7. An example of a dominating set in a graph.

A graph G is called bipartite if the vertices of G can be partitioned

into two colour classes, say red and blue, such that no red vertex is

adjacent to any other red vertex and no blue vertex is adjacent to any

other blue vertex. Alternatively, a bipartite graph is one whose vertex

set is partitioned into sets of vertices containing no edges between them.

We call such sets of vertices independent sets.

6

Hypergraphs are a generalization of graphs. A hypergraph H con-

sists of a non-empty set of vertices, written V (H), and a set of edges

(or hyperedges), written E(H). Edges are sets of vertices of any cardi-

nality. The order of an edge in a hypergraph is the number of vertices

contained in the edge. We will discuss hypergraphs further in Chapter

4.

Figure 1.8. A hypergraph.

1.3. Incidence Graphs

An incidence structure consists of a set of points and lines, denoted

P and L respectively, together with an incidence relation of pairs of

points and lines. Incidence structures are generalizations of familiar

geometric structures such as planes.

We will deal with several specific incidence structures. A Steiner

2-design or a 2-(v, k, 1) design is an incidence structure with v-many

points, with lines (sometimes called blocks) containing k points, such

that any pair of points is contained in exactly one block. It is assumed

7

that 2 < k < v. A finite projective plane of order n is a Steiner 2-design

on n2 + n + 1 points, that has blocks of size n + 1. Projective planes

are then 2-(n2 + n + 1, n + 1, 1) designs. They can also be defined

as a set of n2 + n + 1 points with the properties that any two points

determine a unique line and any two lines determine a unique point.

Note that every point has n + 1 lines incident with it, and every line

contains n + 1 points. The smallest example of a projective plane is

the Fano plane (see Figure 1.9). It is a projective plane of order n = 2.

Projective planes are known to exist if the order n = pk, where p is

prime, and k ≥ 1. All known projective planes have such orders. In

fact it is conjectured that only the only possible orders for projective

planes are prime powers (see [6]).

Figure 1.9. The Fano plane.

An affine plane of order n is a 2-(n2, n, 1) design. An affine plane of

order n exists if and only if a projective plane of order n exists. A partial

affine plane is an incidence structure obtained from an affine plane by

the deletion of one or more lines. An incidence graph is a graph that

is constructed from an incidence structure as follows. The vertices of

the graph are the points and lines, and there is an edge between two

8

vertices if they are incident with each other; that is, there is an edge

between a vertex representing a point and a vertex representing a line if

and only if the point is on the line. Incidence graphs are bipartite since

no points are incident with any other points and no lines are incident

with any other lines hence, the graph is the union of two independent

sets. Figure 1.10 shows the incidence graph of the Fano plane from

Figure 1.9.

1

2

3

4

5

6

7

123

147

156

246

257

345

367

Points Lines

Figure 1.10. The Incidence graph of the Fano plane.

1.4. Asymptotic Notation

Asymptotic notation gives a simple and succinct method for de-

scribing how a function f(x) behaves for large values of x. This no-

tation is especially useful for describing the running time of an algo-

rithm, though we will also use it to describe the asymptotic behaviour

of other functions. Let f(x) and g(x) be real-valued functions. We

9

write f(x) ∈ O(g(x)) if and only if there exists a constant c > 0 and

an integer N > 0 such that for x > N , f(x) ≤ cg(x). Equivalently,

f(x) ∈ O(g(x)) if

lim
x→∞

sup
f(x)

g(x)
.

exists and is finite. It is a common abuse of notation to write f(x) =

O(g(x)) or simply f = O(g). If f = O(g), then g = Ω(f). If f = O(g)

and f = Ω(g), then f = Θ(g). We say that f = o(g) if

lim
x→∞

f(x)

g(x)
= 0.

If f = o(g), then g = ω(f). Equivalently, g = ω(f) if

lim
x→∞

g(x)

f(x)
=∞.

Note that if f = o(1), then

lim
x→∞

f(x) = 0.

We say f and g are asymptotically equivalent, written f ∼ g if

lim
x→∞

f(x)

g(x)
= 1.

1.5. Outline of Thesis

Perhaps the deepest open problem in the study of Cops and Robbers

is Meyniel’s Conjecture. The conjecture, due to Henri Meyniel [11], is

that for a connected graph G,

c(G) = O(
√
|V (G)|).

10

In Chapter 2, we give some background on Meyniel’s Conjecture, dis-

cuss some results related to the conjecture and give the cop number of

incidence graphs of projective and partial affine planes. We introduce

so-called Meyniel extremal graphs which realize the upper bound in

the conjecture, and give infinitely many new examples of such families

satisfying certain regularity conditions. In Chapter 3 we consider the

minimum orders of a k-cop-win graph and their relation to Meyniel’s

Conjecture. We also present experimental results about the cop num-

ber of connected graphs of order 10 or less, as well as the algorithms

used to obtain these results. The implementations of the algorithms

used in this chapter are included as an appendix. Chapter 4 discusses

the game of Cops and Robbers played on hypergraphs and its relation-

ship to the game played on graphs. Our final chapter summarizes open

problems in the area and describes some future directions.

11

CHAPTER 2

Meyniel Extremal Graphs

Difficult mathematical challenges often serve to motivate study in a

particular area. For Cops and Robbers, one such problem is Meyniel’s

Conjecture. The conjecture states that if G is a graph of order n, then

c(G) = O(
√
n).

Equivalently, for n sufficiently large there exists a constant d > 0 such

that

c(G) ≤ d
√
n.

Although it was first introduced by Frankl in 1987 [11] the problem

went largely unstudied for many years. In this initial paper Frankl

proved that c(G) = o(n); In particular, he proved that if G is a graph

of order n, then

c(G) = O

(
n

log log n

log n

)
.

This bound has been improved upon incrementally since the introduc-

tion of the topic. The best known upper bound on the cop number is

the following, which was recently proven independently by three sets

of researchers.

13

Theorem 2. [13, 12, 21] For a graph G of order n,

(2.1) c(G) ≤ O

(
n

2(1−o(1))
√

log2 n

)
.

Note that although the bound in (2.1) is currently the best known

upper bound for general graphs, it is still far from proving Meyniel’s

conjecture.

In the search for proof or disproof of the conjecture it is interesting

to see if there are graphs that meet the bound predicted by Meyniel’s

Conjecture from below. These graphs would be, in a sense, the graphs

with largest possible cop number relative to their order. We present

here a new infinite family of graphs, so-called Meyniel Extremal graphs,

that have cop number meeting the Meyniel bound from below. To

make this precise, an infinite family of graphs (Gn : n ≥ 0) is Meyniel

extremal if there is a constant d > 0 such that for sufficiently large n,

c(Gn) ≥ d
√
|V (Gn)|.

2.1. Steiner 2-designs

In order to describe Meyniel extremal families, we need some back-

ground from combinatorial designs. If t, v, k and λ are positive integers,

then a t-(v, k, λ) block design or a t-design, is an incidence structure

with the following properties. It contains v points, each block contains

k points, and every set of t points is contained in exactly λ blocks.

A Steiner 2-design is a t-design in which and two points uniquely de-

termine a block. Thus, Steiner 2-designs are 2-(v, k, 1) designs. For a

14

general t-design, with b blocks, it can be shown that (see [6])

b

(
k

t

)
= λ

(
v

t

)
.

In a Steiner 2-design this gives that

b

(
k

2

)
=

(
v

2

)
.

Rearranging yields

(2.2) b =

(
v
2

)(
k
2

) =
v(v − 1)

k(k − 1)
.

Thus, the number of blocks in a Steiner 2-design is v(v−1)
k(k−1) . Let

r be the number of blocks incident with each point, also called the

replication number. It can be shown that

(2.3) r =
v − 1

k − 1
.

Thus, each point is incident with v−1
k−1 blocks.

2.2. Projective Planes

With the notation of the previous section we can describe projective

planes. Projective planes of order q are Steiner 2-designs with q2+q+1

points and q+ 1 points on a line. Thus, projective planes are 2− (q2 +

q+ 1, q+ 1, 1) designs. Projective planes are also often defined as a set

of q2 + q + 1 points with the following properties.

15

(1) There is exactly one line incident with every pair of distinct

points.

(2) There is exactly one point incident with every pair of distinct

lines.

(3) There are four points such that no line is incident with more

than two of them.

Note that the second axiom means that any pair of distinct lines

intersect and thus, there are no parallel lines in projective planes. From

the definition we know that projective planes contain q2 + q+ 1 points

and that each point is incident with q+ 1 lines. Using this information

with the formulas derived above for general Steiner 2-designs, we find

from Formula (2.2) that the number of lines is q2 + q + 1 and from

Formula (2.3) that each point is incident with q + 1 lines (and so by

duality for projective planes, each line contains q + 1 points).

Recall that incidence structures such as t-designs and projective

planes can be used to construct incidence graphs. Given an incidence

structure P we will denote its incidence graph G(P). Also recall that

since edges only exist between points and blocks, G(P) is bipartite.

The following lemma is part of folklore, and we include it for com-

pleteness.

Lemma 3. If P is a Steiner 2-design, then

g(G(P)) ≥ 6.

Proof. Since bipartite graphs cannot contain odd cycles the girth

of G(P) must be even. Suppose there exists a cycle of length four in

16

Points P Lines L

q+1 lines

q+1 points

|P|=q2+q+1
|L|=q2+q+1

Figure 2.1. The incidence graph of a projective plane
of order q.

G(P). The vertices of a cycle of length four would be vertices corre-

sponding to two points and two blocks in the design. This implies that

two points are incident with two distinct blocks, which is a contradic-

tion since two points determine a unique line. Therefore, G(P) has

girth at least 6. �

Lemma 3, along with a theorem due to Aigner and Fromme [1] can

be used to give our first explicit family of Meyniel extremal graphs.

Theorem 4. [16] If P is a projective plane of order q, then

c(G(P)) = q + 1.

17

We include a proof of Theorem 4 from [16] for completeness.

Proof. Since δ(G(P)) = q + 1 and by Lemma 3 g(G(P)) ≥ 6 the

cop number is greater than or equal to q + 1 (see [1]). We now prove

the upper bound.

We place q+ 1 cops, say C1,C2,...,Cq+1, on a fixed set of points and

consider cases for the location of the robber.

Case 1: Robber in L. Suppose the robber R begins in the vertices

corresponding to lines in the plane. Call the vertex that R occupies

L(x1,x2,. . .,xq+1), where x1, x2,..., xq+1 represent the points on the line.

Since lines are incident with q+ 1 points, L(x1,x2, . . . , xq+1) has degree

q+1 in the graph G(P). Thus, the robber has q+1 escape routes from

which he can leave the line.

Each pair of points (x1, C1),(x2, C2),. . .,(xq+1, Cq+1) determines a

unique line by properties of projective planes. Let these lines be

L(x1, C1), L(x2, C2),. . . ,L(xq+1, Cq+1), respectively. The cops can then

each move to these q + 1 lines.

Now on the next time-step the robber may remain at L(x1,x2, . . . , xq+1)

or move to any one of x1,x2, . . . , xq+1. To capture the robber the cops

need only to travel to x1,x2, . . . , xq+1, respectively and the robber will

be caught at this round or in the following round.

Case 2: Robber in P . Suppose the robber R begins in P . We

identify the vertex occupied by the robber as R.

Since any two points determine a unique line the point occupied

by the robber, R, and the points occupied by the cops C1,C2,...,Cq+1,

18

P L
x1

x2

x3

xq+1

R

Figure 2.2. The robber has q + 1 escape routes.

uniquely determine a set of q+1 distinct lines. These lines are denoted

L(R,C1), L(R,C2), . . . , L(R,Cq+1).

Since the degree of the vertex occupied by the robber is q + 1 this

set of q+1 lines dominates the position of the robber. In order to cover

the escape routes of the robber, the cops can move from their initial

positions C1,C2,...,Cq+1 to the lines L(R,C1), L(R,C2), . . . , L(R,Cq+1),

respectively. The cops then win in at most two rounds. �

2.3. Affine and partial affine planes

Affine planes are another well-known example of an incidence struc-

tures. An affine plane of order q is a 2-(q2, q, 1) design. By applying the

19

P L
x1

x2

x3

xq+1

R

C1

C2

C3

Cq+1

L(x1,C1)

L(x2,C2)

L(x3,C3)

L(xq+1,Cq+1)

Figure 2.3. The q + 1 cops can dominate the position
of the robber.

formulas (2.2) and (2.3) derived for Steiner 2-designs, it can be shown

that in an affine plane, any point lies on q+ 1 lines and there are q2 + q

lines in total. A projective plane can be obtained from an affine plane

by the addition of a point and a line at infinity. Similarly, an affine

plane can be obtained from an projective plane by the deletion of any

one line and all the points incident with it. In fact, an affine plane of

order q exists if and only if a projective plane or order q exists; see [6].

An affine plane can be defined axiomatically in a similar manner to

projective planes. An affine plane is a set of q2 points and q2 + q lines

with the following properties.

20

P L

L(C1,R)

R

C1

C2

C3

Cq+1

L(C2,R)

L(C3,R)

L(Cq+1,R)

Figure 2.4. The robber again has q + 1 escape routes.

(1) There is exactly one line incident with every pair of distinct

points.

(2) Given a point p and a line L, there is a unique line incident

with p and containing no point of L.

(3) There exist three non-collinear points.

Item (2) from the above list is sometimes referred to as Playfair’s Axiom

or Euclid’s Parallel Postulate. Like the incidence graph for a projective

plane, the incidence graphs G of an affine planes is bipartite and has

g(G) ≥ 6. There are 2q2 + q vertices in the incidence graph of an affine

21

plane of order q. By properties of affine planes the vertices correspond-

ing to points have degree q+1 and vertices corresponding to lines have

degree q. The incidence graph is then said to be (q, q + 1)-regular.

Using affine planes, we derive a new family of Meyniel extremal

graphs. For this, we need the notion of parallelism in affine planes.

In contrast to projective planes, where all lines intersect one an-

other, lines in affine planes do not necessarily intersect. If two lines in

an affine plane are equal or do not intersect, then they are said to be

parallel to one another. Parallelism is an equivalence relation on the

set of lines. Parallel classes (or parallel pencils) are the equivalence

classes that partition the set of lines. Affine planes are said to be re-

solvable since each line can be identified with a unique parallel class.

An affine plane of order q contains (q + 1)-many parallel classes, each

containing q lines. Note that every point in an affine plane is incident

with exactly one line from each parallel class.

A new incidence structure can be constructed from an affine plane

A by deleting the lines in some fixed set of k > 0 parallel classes. This

structure, a partial affine plane A−kof order q, contains q2 + q − kq

lines and q2 points. Each point in an affine plane is incident with

q + 1 lines and each of those lines belongs to a distinct parallel class

therefore, every point in A−k is incident with q + 1 − k lines. Thus,

the minimum degree, written δ(G), of a vertex in the incidence graph

is min (q, q + 1− k).

The new main result of this section is the following.

22

Theorem 5. If A−k is a partial affine plane of order q with 0 ≤

k < q parallel classes deleted, then G(A−k) are (q + 1 − k, q)-regular

graphs with cop number between q + 1− k and q.

If k = o(q), then the graphs described in Theorem 5 have order (1 −

o(1))q2 and cop number (1−o(1))q. In particular, we can set k = q1−ε,

for ε ∈ (0, 1) and obtain infinitely many distinct Meyniel families.

Proof of Theorem 5. Since

δ(G(A−k)) = min (q, q + 1− k)

and

g(G(A−k)) ≥ 6,

we know by the result of [1] that the cop number is greater than or

equal to min (q, q + 1− k).

This proves the lower bound, and so we now show that

(2.4) c(G) ≤ q.

To prove (2.4), we play with q cops. Fix a parallel class which was

not deleted, say `, and place one cop on each line of the parallel class.

As each point is on some line in `, the robber must move to some line

L 6∈ ` to avoid being captured in the first round.

Fix a point P of L, and let L′ be the line of ` which intersects L

at P. Move the cop on L′ to P. Now the robber cannot remain on L

without being captured, and so must move to some point. However,

each point not on L′ is joined to some cop, so the robber must move

23

to a point of L′. But the unique point on L′ joined to L is P, which is

occupied by a cop. �

We note that although the proof of Theorem 5 is elementary, it

gives a new family of Meyniel extremal graphs.

24

CHAPTER 3

Growth Rates and Minimum Orders of k-Cop-Win

Graphs

3.1. Introduction

Meyniel’s Conjecture is concerned with the cop number of a graph

of a given order. The conjecture posits that the asymptotic upper

bound on the cop number for a graph of order n is O(
√
n). In this

chapter we consider a different problem: How many k-cop-win graphs

of order n exist? In this chapter we define two new parameters mk

and Mk that describe the minimum orders of k-cop-win graphs. We

continue to define a new function fk(n) to describe the number of k-

cop-win graphs of order n. In this chapter the values of mk and Mk

for k = 1, 2, and 3 are given. The values of M3 and m3 were not

previously known. We also determine the values of fk(n) for n ≤ 10.

These values were computed by an exhaustive computer search that

characterizes the cop number of all connected graphs of order 10 or

less. In this chapter we also describe the algorithms used to complete

this computer search. We conclude this chapter with a novel lower

bound for the function fk(n).

25

3.2. Minimum orders and growth rates

For an integer k ≥ 1, define mk to be the minimum order of a

connected graph satisfying c(G) ≥ k. Define Mk to be the minimum

order of a connected k-cop-win graph. Note that in general these values

may not be the same; in fact mk ≤ Mk since it may be the case that

there exists a (k + 1)-cop-win graph of order n but there do not exist

any k-cop-win graphs of order less than or equal to n. Although mk

is monotonically increasing, Mk may not be monotonically increasing.

Only the first three values of mk and Mk are known. It is trivial to see

that m1 = M1 = 1 as a single vertex is cop-win. The cycle of order 4,

C4, is the minimum order 2-cop-win graph; thus,

m2 = M2 = 4.

Through a computer search we have determined that

m3 = M3 = 10.

Please see Section 3.3 below for the details of the computer search and

a complete discussion of our results.

The following theorem gives the asymptotic upper bound of the pa-

rameter mk and relates Meyniel’s conjecture to mk. If Meyniel’s con-

jecture holds, then it also gives the lower asymptotic bound for mk and

thus, the asymptotic behaviour of mk.

Theorem 6. Let k > 0 be an integer.

(1) mk = O(k2).

26

(2) Meyniel’s conjecture is equivalent to the property that

mk = Ω(k2).

Hence, if Meyniel’s conjecture holds, Theorem 6 tells us that

mk = Θ(k2).

Proof. For item (1), note that the incidence graph of a projective

plane has order 2(q2 + q + 1) and has cop number q + 1, where q is a

prime power [16]. This implies that

mq+1 = O(q2).

Fix k a positive integer. Bertrand’s postulate gives us a prime power

q such that k ≤ q ≤ 2k [7]. Hence,

mk ≤ mq ≤ mk+1 = O(q2) = O((2k)2) = O(k2).

Item (1) follows.

For (2), if mk = o(k2), then there exists a connected graph G with

order o(k2) and cop number k. This is a contradiction since Meyniel’s

conjecture implies that c(G) = o(k). Therefore, by Meyniel’s conjec-

ture we have that mk = Ω(k2).

For the reverse direction of item (2), suppose for contradiction that

mk = Ω(k2) and that Meyniel’s conjecture does not hold. We then have

that there exists a connected graph G with order n such that

c(G) = k = ω(
√
n).

27

This implies that
√
n = o(k), which gives n = o(k2). Therefore,

mk ≤ n = o(k2)

which is a contradiction. �

Determining whether Mk are non-increasing is an open problem.

The first few values of mk and Mk suggests that these parameters are

equal, for all k ≥ 1, but this is also an open problem.

Define fk(n) to be the number of non-isomorphic connected k-cop-

win graphs of order n. Define g(n) to be the number of non-isomorphic

(possibly disconnected) graphs of order n and gc(n) to be the number

of connected non-isomorphic graphs of order n. By definition of these

functions we have that fk(n) ≤ gc(n) ≤ g(n) for all k and n. The

table below presents the values of g, gc, f1, f2 and f3 for small orders.

The values of g and gc are from The On-Line Encyclopedia of Integer

Sequences [22]. The values for f1 are the result of applying the algo-

rithm to check whether a given graph is cop-win given in [15] to the

data from [14]. To compute the values for f2, the algorithm to check

whether c(G) is less than or equal to two given in [4] was applied to the

same data set. The value for f2 is then the number of graphs of order

n that have cop-number less than or equal to two, minus the number

of cop-win graphs of order n. The value for f3 was computed in a sim-

ilar manner. The algorithms used to complete these computations are

discussed in the next section.

28

order n g(n) gc(n) f1(n) f2(n) f3(n)

1 1 1 1 0 0

2 2 1 1 0 0

3 4 2 2 0 0

4 11 6 5 1 0

5 34 21 16 5 0

6 156 112 68 44 0

7 1044 853 403 450 0

8 12,346 11,117 3,791 7,326 0

9 274,668 261,080 65,561 195,519 0

10 12,005,168 11,716,571 2,258,313 9,458,257 1

As a result of the classification of all connected graphs of order

10 or less we determined that m3 = M3 = 10. Further, the graph

that realizes these minimum orders, the Petersen graph, is the unique

minimum order 3-cop-win graph. The Petersen graph is a very famous

graph that arises often as a counterexample in many areas of graph

theory. Similar to the unique minimum order 2-cop-win graph C4 which

is 2-regular and has girth 4, it is 3-regular and has girth 5.

3.3. Algorithms for computing cop number

Cop-win graphs have been well understood since the introduction of

the game Cops and Robbers. Both Nowakowski and Winkler [15], and

Quilliot [18] give a characterization of cop-win graphs based on the idea

of a cop-win ordering or elimination ordering. These characterizations

can be used to define cop-win graphs in an algorithmic manner. A

29

Figure 3.1. The Petersen Graph.

cop-win graph can be recognized by the repeated deletion of a vertex

with certain adjacency properties called a corner. A corner is a vertex

whose closed neighbour set is contained in the closed neighbour set of

some other vertex in the graph. More succinctly, a corner is a vertex v

such that N [v] ⊆ N [u], for some u ∈ V (G). Corners play an important

role in the mechanics of the game of Cops and Robbers. If a robber is

on a corner, then the cop can dominate the neighbour set of the robber.

If the cop is on a vertex that dominates a corner, then no matter where

the robber moves the cop can capture the robber on the next time-step.

A critical, though elementary, fact we prove now is the following.

Lemma 7. [5] A cop-win graph contains a corner.

Proof. Consider the last move of the robber before being captured

by the cop. If the cop can capture the robber on the next move, then

the cop is in a position that is both adjacent to the robber and adjacent

to all of the neighbours of the robber. Hence, the robber is on a corner

dominated by the vertex occupied by the cop. �

30

Moreover, this result implies that when a corner is deleted from

a cop-win graph the resulting graph contains a corner. In a cop-win

graph this process can be repeated until only a single vertex remains.

The order in which corners are deleted is the cop-win or elimination

ordering. If a graph can be reduced to a single vertex (that is, to

K1) by the successive deletion of corners, then it is called dismantlable.

Cop-win graphs are exactly those that are dismantlable.

Theorem 8. [5] A graph G is cop-win if and only if it is disman-

tlable.

Proof. By induction on the order of G, we show that if G is a

cop-win graph, then G is dismantlable. In the base case G has order

1 and so must be isomorphic to K1, which is dismantlable. Suppose G

has order n ≥ 1, where n is some fixed integer. Since G is cop-win, it

must contain a corner, say u, by Lemma 7.

Let v dominate u. Let H = G − u. We claim H is cop-win. If

H is cop-win, then H itself will contain a corner, and this will prove

the forward direction by induction. We consider two parallel Cops and

Robbers games: one played in G and one in H. The game in H may

be considered as being played in G; since H is an induced subgraph of

G. The strategy in G may not be sufficient alone to capture the robber

in H. For example, the robber may need to leave H to be captured in

G.

Let the cop in H be labeled C ′. Let C ′ move as C does in G;

however, when C moves to u, then C ′ moves to v. We claim this is a

winning strategy for C ′ in H. Let the cop play in G with R restricted

31

to H. Suppose that the cop is about to win in G. But then N [R] is

contained in N [C] in G. As v dominates u, we must have that N [R] is

contained in N [C ′]. Hence, the robber loses in the next round played

in H.

Now suppose G is dismantlable. By induction on the order of the

graph we show that G is cop-win. As before in the base case G is

isomorphic to K1 and hence, is cop-win. Suppose G has order n+1 and

is dismantlable for some fixed integer n ≥ 1. Since G is dismantlable, it

contains a corner. Label the corner u and the vertex dominating it v.

The graph resulting from the deletion of u, G− u is also dismantlable.

Since G − u has order n, it is cop-win by induction hypothesis. We

will show that G is cop-win. A single cop has a winning strategy on

G− u, since it is a cop-win graph. A cop can play this strategy on G

with the following modification: if the robber is on the vertex u, the

cop plays as if the robber is on v the vertex that dominates u. We say

the cop moves to capture the shadow of the robber in G−u. If the cop

is able to capture the shadow of the robber on the vertex v, then the

cop can capture the robber on the vertex u in the graph G because u

is a corner dominated by v. Since the cop has a winning strategy on

G− u the cop has a winning strategy for G. Therefore, if a graph G is

dismantlable, then it is cop-win. �

This characterization of a graph in terms of the deletion of corners

gives an algorithm for recognizing cop-win graphs. This algorithm is

given below in pseudocode. In natural language it can be summarized

as follows: While the graph G contains a corner, delete the corner to

32

obtain G′. Set G=G′ and repeat the process. When the graph G no

longer contains a corner, and if G ∼= K1, then the initial graph G is

cop-win; otherwise, G is not cop-win.

Algorithm 1 CHECK COP-WIN

Require: G = (V,E)
1: while |V (G)| > 1 do
2: if G contains a corner, x then
3: V (G)← V (G) \ {x}
4: E(G)← E(G) \ {(a, b) ∈ E(G) : a = x or b = x}
5: else
6: return FALSE
7: end if
8: end while
9: return TRUE

The process of dismantling the graph by successive deletion of cor-

ners gives a linear ordering of the vertices, called a cop-win (or elimina-

tion) ordering. The cop-win ordering can be used to construct a win-

ning strategy for the cop. The No-backtrack strategy, first described by

Clarke and Nowakowski [9], defines a strategy for the cop that results

in the capture of the robber in at most n moves.

Given a cop-win ordering of G, [n] = [1, 2, . . . , n], define

Gi = G � {n, n− 1, . . . , i}

for i ∈ [n]. The graph Gi is the induced subgraph of G restricted to

vertices not appearing in the cop-win ordering before i. Note that

G1 = G and Gn is just the vertex n. If u is a corner dominated (or

covered) by v in G, then a retraction is a mapping f : G → G − u

33

defined by

f(x) =

 v if x = u,

x otherwise.

Each deletion of a corner in the graph G corresponds to a retraction.

The No-backtrack strategy is defined by the cop-win ordering which can

be encoded in the composition of retractions. Let fi : Gi → Gi+1 be

the retraction mapping i onto the vertex that dominates i in Gi, for

each 1 ≤ i ≤ n−1. Define F1 to be the identity mapping on G, defined

by F1(x) = x for all x ∈ V (G). For 2 ≤ i ≤ n define

Fi = fi−1 ◦ . . . ◦ f2 ◦ f1.

Since the maps fi correspond to the deletion of corners, the maps Fi

correspond to the successive deletion of all corners the cop-win ordering

up to but not including i. Note that for all i, since the retractions fi

either map a vertex to itself or to an adjacent vertex, Fi+1(x) and Fi(x)

are equal or adjacent because they are composed of the retractions fi.

The No-backtrack strategy is as follows. The cop begins on Gn,

which is just the vertex n. In every round the cop plays a winning

strategy on the graph restricted to the vertices not appearing in the

cop-win ordering before i, namely Gi. The cop determines the position

of the “shadow” of the robber on Gi and captures the “shadow” of

the robber in Gi. In the first round the cop plays on Gn, in which

there is only one possible position for the robber, n. Note that every

vertex in G maps to vertex n under Fn. In the next round the cop

computes Fn−1(u) where u is the vertex of G currently occupied by the

34

robber. The vertex determined by the map Fn−1(u) is the shadow of the

robber on Gn−1. We think of the shadow as the position of the robber

in the restricted graph. The cop then moves to capture the robber on

Gn−1. In each remaining round the cop repeats this process. First,

the cop determines the position of the shadow robber by computing

Fi(u), where i is the current round numbered from n to 1 and u is the

vertex currently occupied by the robber and then moves to capture the

shadow robber. After n rounds the cop is playing on G1 = G and can

capture the robber.

We now consider an example. Consider the application of the cop-

win algorithm to the graph G in Figure 3.2 below. We note that the

order in which we delete corners is not unique. The graph G contains

four corners: a, c, d, and e. We could begin the algorithm by deleting

any one of these corners.

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

a d

b

e

c

f

Figure 3.2. The graph G, a cop-win graph.

Suppose we begin by deleting a, and note that it is dominated by

the vertices b and e. Again we could choose to record either of these as

the dominator for a, we will choose b. The function f1 then becomes:

35

f1(x) =

 b if x = a,

x otherwise.

It is useful to note that every retraction fi maps a corner to a vertex

that dominates it and keeps all other vertices fixed. In order to repre-

sent the retraction all that is necessary is the corner and dominating

vertex. Thus, the first retract could be written as f1 : a → b. It can

be easily checked that (a, e, b, f, c, d) is a valid cop-win ordering for the

graph in Figure 3.2. The cop-win ordering for the graph G is given in

Figure 3.3.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

1

2

3

4

5

6a d

b

e

c

f

Figure 3.3. A cop-win ordering for the graph G.

The following is a list of possible retractions that correspond to the

given cop-win ordering:

f1 : a→ b.

f2 : e→ b.

f3 : b→ f.

f4 : f → c.

f5 : c→ d.

36

The maps Fi are constructed from last used to first used. The

first map computed is F1 which is the same as f1. This function as

above maps a → b and leaves all other vertices fixed. In each step of

constructing the maps Fi we only need to compose the previous F map

with the next f map. This can be seen by noting that we can write Fi,

the composition of the first i − 1 f -maps as Fi = fi ◦ Fi−1. The next

map can then be computed as F2 = f2 ◦ F1. The retraction f2 maps

e→ b. The function F2 then maps both vertices a and e to vertex b and

leaves all others fixed. Here are the explicit mappings Fi for 1 ≤ i ≤ 5.

F1(x) =

 b if x = a,

x otherwise.

F2(x) =

 b if x = a or e

x otherwise.

F3(x) =

 f if x = a, b or e

x otherwise.

F4(x) =

 c if x = a, b, e or f

x otherwise.

F5(x) =
{
d for all x ∈ V (G)

37

Now, the maps, Fi can be used to determine the cops strategy. The

cop’s first move is determined by F5, so the cop will always begin on

the vertex d. It makes sense that the cops initial decision should not

depend on the robber’s actions since the cop chooses the start vertex

before the robber has been placed in the graph.

Suppose the robber chooses the vertex a, the vertex with the great-

est distance from the initial position of the cop. The next move of the

cop is then computed by finding F4(a), which indicates the cop should

move to the vertex c. Suppose the robber moves to the vertex e; since

F3(e) = f , the cop moves to f. Now, the robber’s only option is to

move to the vertex a. The map F2(a) = b, tells the cop to move to the

vertex b which dominates the position of the robber thus, the cop wins

in the next round regardless of the choice of the robber in the next

round.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

R

C

a d

b

e

c

f

Figure 3.4. The cop computes her second-to-last move,
F2(a) = b, and so moves to b.

38

3.4. The k-cop-win Algorithm

The problem of deciding whether a given graph is cop-win is rela-

tively easy computationally speaking. Although it is a more difficult

problem, there is an algorithm to check whether a graph has cop num-

ber k or less for a fixed k. This algorithm, originally due to Berarducci

and Intriglia [2], relies on the idea of a graph product. The graph

product of two graphs, G and H, is a new graph. The vertices of the

product are the Cartesian product of the vertices of the original graphs.

That is, each vertex of the product graph is an ordered pair of vertices

from the constituent graphs. There are several different types of graph

product. The difference between these types of graph product is in how

the edges of the product graph are determined. The edges of all graph

products are determined by the edges of the original graphs. The most

common graph product is the Cartesian product, denoted G�H. Sup-

pose (g1, h1) and (g2, h2) are two vertices in V (G�H). An edge exists

between (g1, h1) and (g2, h2) if they are adjacent in one component and

equal in the other. Note that we write g ∼ h if the vertices g and h are

adjacent. More precisely, if g1 ∼ g2 and h1 = h2 or g1 = g2 and h1 ∼ h2.

Another common graph product is categorical product, denoted G×H.

Edges are adjacent in the categorical product if the components are

both adjacent in the original graphs, g1 ∼ g2 and h1 ∼ h2. The graph

product used by the algorithm to decide whether a graph has cop num-

ber k or less is the strong product, denoted G�H. This notation hints

at the relationship it shares with the Cartesian product and the cate-

gorical product. The edge set of the strong product can be thought of

39

as the union of the edge sets of the Cartesian and categorical product.

There is an edge between (g1, h1) and (g2, h2) if and only if: g1 ∼ g2

and h1 = h2; or g1 = g2 and h1 ∼ h2; or g1 ∼ g2 and h1 ∼ h2. Vertices

in the product are adjacent if they are adjacent or equal in each com-

ponent. Figure 3.4 below shows the strong product of two graphs in

terms of the Cartesian and categorical products.

P3

P4

P3 P4

Categorical Product

Cartesian Product

Figure 3.5. The graph G, a cop-win graph.

The product of graphs can be generalized to the notion of the expo-

nentiation of a graph. Like the exponentiation of numbers, exponenti-

ation of graphs is just repeated application of products. The kth strong

power of a graph is constructed in a similar manner to the product of

graphs. A vertex in the kth strong power of a graph G is a k-tuple

of vertices of G. A pair of k-tuples are adjacent if they are adjacent

or equal in each component. The algorithm to check whether a graph

is k-cop-win, for a fixed k uses the kth strong power, written �kG, to

40

simulate the movements of the cops. Each coordinate of the k-tuple

represents the position of the k cops in the original graph. Using this

approach the algorithm rules out possible positions for the robber in

the original graph. The following theorem is the basis of this algorithm.

Note that 2V (G) is the set of all subsets of V (G).

Theorem 9. [2] Suppose k ≥ 1 is an integer. Then c(G) > k if

and only if there is a mapping f : V (�kG)→ 2V (G) with the following

properties.

(1) For every u ∈ V (�kG),

∅ 6= f(u) ⊆ V (G)\NG[u].

(2) For every uv ∈ E(�kG),

f(u) ⊆ NG[f(v)].

We omit the proof, which can be found in [4].

The value of f(u) is the set of vertices in the graph G such that,

if the cops occupy the k vertices in G specified by the vertex u, then

the robber has a strategy to escape capture in the next round. If any

one of the maps f(u) is empty for some u in V (�kG), then the robber

can be captured by the cops from this position. That is, k or fewer

cops have a winning strategy on the graph G. Algorithm 2 gives the

statement of the algorithm in pseudocode.

The first phase of the algorithm is to initialize the sets f(u) to be

V (G)\NG[u], where NG[u] contains the k vertices of G that make up u,

as well as their neighbours in G. This step rules out the vertices that

41

Algorithm 2 CHECK K-COP-WIN

Require: G = (V,E), k ≥ 0
1: initialize f(u) to V (G) \NG[u], for all u ∈ V (�kG)
2: repeat
3: for all (u, v) ∈ E(�kG) do
4: f(u)← f(u) ∩NG[f(v)]
5: f(v)← f(v) ∩NG[f(u)]
6: end for
7: until the value of f is unchanged or f(u) = ∅ for some u ∈ V (�kG)
8: if there exists u ∈ V (�kG) such that f(u) = ∅ then
9: return c(G) ≤ k

10: else
11: return c(G) > k
12: end if

are dominated by the cops when they are in the position specified by u.

If after this initialization phase, we have that f(u) = ∅, then k or fewer

cops can form a dominating set in G. The main phase of the algorithm

uses the second rule to rule out possible escape routes for the robber.

The second rule of Theorem 9 guarantees that the robber will always

have a way to get from one safe set of vertices to another, from f(u) to

f(v) or from f(v) to f(u), along the edge uv. Also note that if any f(u)

is empty at any point in the algorithm, then by repeated application

of the second rule of Theorem 9, all maps will eventually be empty.

If f(u) is empty for any u in V (�kG), then there exists a position in

the graph from which the robber cannot escape and therefore there is

a strategy for k or fewer cops to win in G.

Note that Algorithm 2 has polynomial running time. The worst

case running time of this algorithm O(n3k+3) (see[4]). The main con-

tribution to the running time of the algorithm comes from lines 2–7.

42

Since the cardinality of f(u) is reduced by at least one in every itera-

tion of lines 2–7. This section is then executed at most O(nk+1) times.

In each of these iterations all edges of the product graph �kG are be-

ing processed in lines 3–6. Since there are at most n(n−1)
2

edges in the

original graph, there are at most (n(n−1)
2

)k edges in �kG. Thus, iterat-

ing through the edges of �kG has computational complexity O(n2k).

Finally, the operation of taking intersections and finding the neigh-

bourhoods of each vertex (lines 4–5) have complexity O(n) and O(n2),

respectively. The total running time is then the product of these com-

plexities as follows:

O(nk+1)O(n2k)(O(n) +O(n2)) = O(nk+1)O(n2k)O(n2)

= O(nk+1)O(n2k+2)

= O(n3k+3).

3.5. Lower bounds

Recall from the beginning of this chapter that fk(n) is the number of

non-isomorphic connected k-cop-win graphs of order n and that g(n) is

the number of non-isomorphic (possibly disconnected) graphs of order

n. As previously mentioned, we have a trivial upper bound on fk(n) in

terms of g(n): fk(n) ≤ g(n) for all k and n. In this section we give an

original lower bound on fk(n) in terms of g(n). We begin with a lemma

that shows that given a k-cop-win graph, we can construct another

k-cop-win graph of arbitrarily large order.

43

Theorem 10. Given graph G of order n and a k-cop-win graph H

of order mk, there exists a k-cop-win graph G′ constructed from G and

H with order n+mk + 1.

Proof. Construct G′ as follows. Attach a new vertex, say x, to

all vertices of G. The vertex x is universal in the new graph G ∪ {x}.

Attach x to a fixed vertex in H, say y, to form G′ from H and G∪{x}.

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

H

G

G'

x

y

Figure 3.6. The construction of G′.

If there are less than k cops, then the robber has a winning strategy.

The robber can remain in H since k cops are required to win in H.

Thus, c(G′) ≥ k.

Now to show c(G′) ≤ k we give a winning strategy for k cops in G′.

Place one cop on x and the remaining k−1 cops on some vertices of G.

44

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

H

G

xG

yG

H

J

xJ

yJ

G' J'

h

h

h

Figure 3.7. The isomorphism h : G′ → J ′.

The robber cannot start in G since the vertices of G are dominated by

x. The robber then begins in H. The cops can then all move to play

their winning strategy for k cops on H. If the robber leaves H, then

the cops play as if the robber is on y. Eventually either the robber is

caught in H or the robber has moved to G ∪ {x}. If the robber has

moved to V (G) ∪ {x}, then at least one cop occupies y. One of these

cops moves to x which dominates G and the robber is caught in the

next round. �

Theorem 11. Suppose that n > mk and let G and J be connected

graphs of order n and H be a minimum order connected k-cop-win

graph of order less than n. Let G′ and J ′ be the graphs constructed as

above. If G � J , then G′ � J ′.

45

Proof. Suppose for contradiction that G′ ∼= J ′, but G � J and

let h be an isomorphism from G′ to J ′. We claim that the vertex with

maximum degree in G′ is xG. The degree of xG is n + 1 since it is

connected to all vertices of G and one vertex of HG. It is the unique

vertex with maximum degree since no vertex in HG can have more

than n − 1 neighbours in HG and a vertex in G has at most n − 1

neighbours in G. A similar argument shows that the unique vertex

with maximum degree in J ′ is xJ . Since xG and xJ are the unique

vertices with maximum degree in G′ and J ′, respectively, h must map

xG to xJ . The vertex yG is the unique vertex of G′ that is adjacent to

xG and adjacent to vertices that are not adjacent to xG. Similarly, yJ

is the unique vertex in J ′ adjacent to xJ and no other neighbours of xJ .

Thus, yG must be mapped to yJ by f . This implies that h maps HG

to HJ and that the restriction of h to G is an isomorphism mapping G

to J . This contradicts our assumption that G is not isomorphic to J .

Therefore, G′ is not isomorphic to J ′. �

The following theorem gives us the central result of this section.

The theorem gives a lower bound for the number of k-cop-win graphs

of a given order in terms of the function g(n).

Theorem 12. (1) For all n > 1,

g(n− 1) ≤ f1(n).

(2) For k > 1 and all n > 2mk,

g(n−mk − 1) ≤ fk(n).

46

Proof. For item (1), fix a graph G of order n − 1. Form G′ by

adding a universal vertex to G. The graph G′ is cop-win since placing

a single cop on the universal vertex is a winning strategy for a cop. If

G � H, then we show that G′ � H ′. Suppose for contradiction that

there exists an isomorphism h : G′ → H ′. Let GU and HU be the sets of

universal vertices in G′ and H ′, respectively. The isomorphism h must

map GU to HU . Fix some vertex in GU , call it x. If h is restricted to

the vertices of G excluding x, then we have that

h � G′ − x : G′ − x→ H ′ − h(x)

is an isomorphism. This is a contradiction since G′ − x ∼= G and

H ′− h(x) ∼= H, and thus, G ∼= H. Since for every isomorphism type of

order n− 1 we can construct a cop-win graph of order n it follows that

for all n > 1, g(n− 1) ≤ f1(n).

For (2) note that there are g(n − mk − 1)-many non-isomorphic

graphs of order n − mk − 1. By Theorem 10 for each of these g(n −

mk−1)-many graphs, a k-cop-win graph of order n can be constructed.

By Theorem 11 each of these k-cop-win graphs are non-isomorphic so

long as

n−mk + 1 ≥ mk.

But the latter inequality is equivalent to n > 2mk, which is our hy-

pothesis. Therefore, there are at least g(n−mk−1) distinct k-cop-win

graphs of order n. �

47

CHAPTER 4

The Game of Cops and Robbers on Hypergraphs

4.1. Introduction

While the game Cops and Robbers is usually played on a graph, the

game can be played on many other mathematical structures. One such

structure is a hypergraph. A hypergraph is set of vertices and subsets of

vertices, called hyperedges. Hypergraphs are a generalization of graphs,

where hyperedges have cardinality 2. Instead of connecting two vertices

like edges, hyperedges can connect some number of vertices. In this

chapter we give some definitions and notation to describe hypergraphs

and discuss the game of Cops and Robbers played on hypergraph. We

conclude the chapter with a discussion of some open problems.

Figure 4.1. A hypergraph with hyperedges of cardinal-
ity 3 and 5.

49

4.2. Definitions and Notation

If a vertex is contained in just one hyperedge, then we call this

vertex internal. We call a vertex that is contained in two or more

hyperedges external.

a b

Figure 4.2. The vertex a is internal, the vertex b is external.

In contrast to the notion of regularity in graphs, in hypergraphs,

regularity describes the number of vertices in each edge rather than

the number of edges incident with a vertex. A hypergraph is k-regular

if every hyperedge contains exactly k vertices. or the remainder of the

chapter, all the hypergraphs we consider will be k-regular for some

k > 1. We say that a hypergraph is t-joined if each intersection of

hyperedges contains exactly t vertices.

Figure 4.3. A 5-regular 2-joined hypergraph.

Similar to the incidence graphs of designs, we can define an inci-

dence graph of a hypergraph. The graph of a hypergraph H, writ-

ten G(H), is a graph with the vertices of H and an edge between

these vertices if they are connected by a hyperedge in H. That is,

V (G(H)) = V (H) and (u, v) ∈ E(G(H)) if and only if {u, v} ⊆ e

for some e ∈ E(H). Note that a 1-joined, 2-regular hypergraph H is

isomorphic to its own underlying graph.

50

Figure 4.4. The graph G(H) for H, the hypergraph in
Figure 4.1.

In the subject of graph theory there are many types of special

graphs. Paths and cycles are among the most common of these. We

define a hypergraph analogue of paths and cycles. A hyperpath is a

sequence of hyperedges E1, E2, . . . , Ek, such that Ei and Ei+1 are t-

joined, for some t > 0, and for i = 1, 2, . . . , k− 1 and Ei∩Ej = ∅ when

j 6= i+ 1 mod k.

Figure 4.5. A hyperpath.

For k > 2 an integer, a k-hypercycle is a collection of k hyperedges,

Ei, with two hyperedges Ei and Ej incident if i = j + 1 (mod k). For

more information about hypergraphs we direct the reader to the books

by Berge [3] and Voloshin [23].

51

Figure 4.6. A hypercycle.

4.3. Cops and Robbers on hypergraphs

The game of Cops and Robbers played on a hypergraph is analogous

to the game played on graphs. Some set of cops choose vertices to

occupy, and then the robber choose a vertex. The players can move

to vertices by moving from their present vertex u to any vertex v such

that u and v are in hyperedge. The remaining rules of the game, along

with the definition of the cop number of hypergraphs is analogous to

the case for graphs.

As before, a hypergraph where one cop has a winning strategy is

called cop-win. Corners are defined analogously as in graphs. Hyper-

paths are cop-win. To see that a hyperpath is cop-win we will consider

a strategy for a cop that relies upon the following lemmas.

Lemma 13. A cop playing on a connected hypergraph with at least

two hyperedges can always move from an external vertex to another

distinct external vertex.

Proof. As the cops can move from any vertex of a hyperedge to

any vertex of an incident hyperedge, the lemma follows. �

52

Lemma 14. The cop can play a winning strategy by remaining on

external vertices until, perhaps, the final move of the game.

Proof. By Lemma 13, the cop can always travel from external

vertex to external vertex. To capture a robber on an internal vertex,

the cop needs only to occupy the same hyperedge as the robber. If the

robber is on an external vertex, then the cop can follow the robber to

the next edge by traveling along external vertices. �

Theorem 15. If Hp is a hyperpath, then c(Hp) = 1.

Proof. The cop begins on an external vertex of the edge E1 at

one end of the path. By Lemma 14 the cop may move from external

vertex to external vertex though the path. The cop moves via external

vertices from one end to the other. If the cop encounters the robber

on an internal vertex, then the cop can capture the robber on the next

move. �

Theorem 16. If Hc is a hypercycle, then c(Hc) = 2.

Proof. If the game is played on hypergraph with a single cop,

then the robber can always evade the cop. The robber evades capture

by moving on external vertices around the cycle. Thus, hypercycles are

not cop-win.

However, if the game is played with two cops, the following strategy

for the cops is sufficient to win the game. Place the first cop C1 on

an external vertex of edge E1, place the second cop C2 on the edge

Ek. Since there are no edges in between the edges E1 and Ek, the

53

robber cannot choose to begin between the cops. The cops can then

each move away from each other on each successive round, with C1,

moving to edges with higher index, and C2 moving to edges with lower

index. Eventually, the cops will occupy the same edge and the robber

will be caught on the next round. �

Consider a Steiner 2-design, or a 2-(v,k,1) design. Recall from

Chapter 2 that 2-(v,k,1) designs are a set of v points, and a set of

blocks of size k, such that any two points determine a unique block.

We assume always that v > k. Steiner 2-designs, and indeed any other

design, can be thought of as a hypergraph with the vertices being

points and hyperedges defined by the blocks. In the following theorem

we show that Steiner 2-designs are in fact cop-win.

Theorem 17. 2-(v, k, 1) designs are cop-win.

Proof. The cop begins on some vertex, and the robber then chooses

some vertex. Since any two points uniquely determine a line the po-

sitions of the cop and robber uniquely determine a hyperedge. Thus,

the cop can capture the robber in the round after the robber chooses

a vertex. �

In fact, any position that the cop occupies in a Steiner 2-design

dominates the entire graph. That is, the cop is adjacent to every vertex

in the hypergraph, a universal vertex in the hypergraph. We define a

corner in a hypergraph to be a vertex x such that x and all vertices

connected to x by a hyperedge are also adjacent via hyperedges to some

other vertex, just as in the case of graphs. This leads us to think we

54

might be able to characterize cop-win hypergraphs in the same way we

characterize cop-win graphs. The following theorem shows that this

is not the case. The proof of this theorem shows that the result of

deleting a corner in a cop-win hypergraph is not necessarily cop-win.

Formally, H − x is the result of removing the vertex x and all edges

incident with x from the hypergraph H.

Theorem 18. There exist cop-win hypergraphs H, such that for all

vertices x, the hypergraph H − x is not cop-win.

Proof. We choose H to be the hypergraph defined from a fixed

Steiner 2-design. Since all vertices can be dominated by any vertex in

the hypergraph, all vertices in H are corners. Delete one of them, say

x.

Suppose the cop begins at vertex C1 of H − x. In order to avoid

the cop in the first round the robber selects a vertex that is on the

hyperedge that has been deleted that contained both x and C1. This

hyperedge must exist and is unique since any two points determine a

unique line. Call this point occupied by the robber R1.

Now, in order to capture the robber, the cop moves to some point

C2 which is not on the line determined by x and C1. To evade the

cop the robber must move to some vertex on the deleted hyperedge

determined by x and C2. If the parameter k ≥ 3, then such a vertex

must exist.

If there exists a vertex R2 that is not equal to x or C2, on the

line determined by x and C2, then there is a hyperedge connecting

R1 and R2. This hyperedge could not have been deleted since it is not

55

x

R1 C1

R2

C2

Figure 4.7. The deleted hyperedges give the robber an
escape route.

incident with the deleted vertex x. The robber now simply moves to R2

to evade capture. This escape strategy for the robber can be repeated

indefinitely. Since the robber can escape the cop indefinitely, H − x is

not cop-win. �

The preceding theorem gives the following corollary.

Corollary 19. Cop-win hypergraphs cannot be characterized by

successive deletion of corners.

Many questions about the game of Cops and Robbers on hyper-

graphs remain open. The principal open problem in this area finding a

characterization of cop-win hypergraphs. Many other problems about

generalizing the results on graphs to hypergraphs remain open. In this

chapter we give examples of 2-cop-win hypergraphs that are analogues

of 2-cop-win graphs. Are there other classes of 2-cop-win hypergraphs

that are not analogues of 2-cop-win graphs? Another area of interest

is the asymptotic behaviour of cop-number in hypergraphs. Is there an

analogue of Meyniel’s conjecture for hypergraphs?

56

CHAPTER 5

Conclusions and Future Work

5.1. Summary

In Chapter 2 we gave some background on Meyniel’s Conjecture,

and discussed some results related to the conjecture. We introduced

so-called Meyniel extremal graphs which realize the upper bound in the

conjecture. Using the incidence graphs of projective and partial affine

planes we gave new examples of such infinite families satisfying certain

regularity conditions.

In Chapter 3 we considered the minimum orders of a k-cop-win

graph and their relation to Meyniel’s Conjecture. We characterized

the cop number of all connected graphs of order 10 or less. We also

discussed the theoretical underpinnings of the algorithm used to obtain

the computational results. We defined two new parameters mk and Mk

that describe the minimum orders of k-cop-win graphs and related the

asymptotic behaviour of these parameters to Meyniel’s Conjecture. In

the course of characterizing the cop number of connected graphs of

order 10 or less we determined the previously unknown values of M3

and m3. We also defined a new function fk(n) to describe the number

of k-cop-win graphs of order n. We concluded Chapter 3 with a lower

bound for the function fk(n).

57

In Chapter 4 we examined the game of Cops and Robbers played

on hypergraphs. We discussed some terminology to describe hyper-

graphs and gave examples of hypergraphs and their cop number. The

central result of this chapter was that the characterization of cop-win

graphs by successive deletion of corners does not characterize cop-win

hypergraphs.

5.2. Open Problems

Meyniel’s Conjecture on the asymptotic upper bound of the cop

number of a connected graph is perhaps the deepest open problem in

Cops and Robbers research. The conjecture is that for a connected

graph G of order n,

c(G) = O(
√
n).

The conjecture is far from being proven for general connected graphs.

In fact, even the so-called soft Meyniel’s conjecture is open, which

states that for a fixed constant c > 0 and a connected graph G of order

n,

c(G) = O(n1−c).

Some work has been done towards proving the conjecture for some

special classes of graphs such as random graphs [17]. However, there

are many classes of graphs for which there is no proof of the conjecture.

Another interesting problem is looking at the lower bounds for the cop

number. Recently Pra lat [16] showed that

c(G) ≥
√
n

2
− n0.2625.

58

It remains to be shown whether this is the best possible lower bound.

Recall from Chapter 3 that in general mk may not be equal to Mk.

It may be the case that there exists a (k+ 1)-cop-win graph of order n

but there do not exist any k-cop-win graphs of order less than or equal

to n, thus mk ≤ Mk. Although mk is monotonically increasing, it is

unknown whether Mk is monotonically increasing. The first few values

of mk and Mk suggests that these parameters are equal, for all k ≥ 1,

but there is no proof of this intuition.

In Chapter 3 we determined that the Petersen graph is the unique

minimum order 3-cop-win graph. While an exhaustive computer search

is sufficient to show this fact, a direct proof of this fact would be prefer-

able. The minimum order of a 4-cop-win graph remains unknown. Per-

haps identifying the minimum order of a 4-cop-win graph would give

insight into the structure of small graphs with large cop number. The

minimum order 2-cop-win and 3-cop-win graphs suggest that minimum

order k-cop-win graphs are k-regular and have relatively large girth.

The study of Cops and Robbers on hypergraphs and other inci-

dence structures is in its infancy. As such very little is known about

the game on hypergraphs. The first step towards understanding the

game on these structures is developing a characterization of cop-win

hypergraphs. In this document all examples of 2-cop-win hypergraphs

are analogues of 2-cop-win graphs. It would be interesting to see ex-

amples of 2-cop-win hypergraphs that are not analogues of 2-cop-win

59

graphs. Another area of interest is the asymptotic behaviour of cop-

number in hypergraphs and the problem of developing an analogue of

Meyniel’s Conjecture for hypergraphs.

60

APPENDIX A

Source Code

This appendix gives implementations of three algorithms from Chap-

ter 3. All programs given here are implemented in the C programming

language and were compiled using the Gnu Compiler Collection (gcc).

These programs have been successfully compiled and run on Windows

XP, Windows Vista and Windows 7 using MinGW and on Ubuntu. All

graph data used by these program is specified by adjacency matrices in

text files, delimited by the number of vertices in the graphs. The data

on connected graphs used came from Brendan McKay’s Homepage in

the graph6 (.g6) format and was converted to adjacency matrix format

using the program ‘showg’ from the nauty graph package. Instructions

on using nauty and showg are available on Brendan McKay’s Home-

page. In order to convert a list of graph in the .g6 format to the

adjacency matrix format used here, run ‘showg’ from the command

line as follows:

showg -aq input.g6 output.txt

The file “input.g6” specifies the graph6 file containing the graphs

to be converted to adjacency format. The arguments “output.txt”

is optional and allows the user to specify the output filename. The

output file from the program ‘showg’ can be used as the data for any

of the programs presented here. For example, the following text file is

61

a representation of the Petersen graph that is suitable for use by these

programs:

Listing A.1. Input format for the Petersen graph.

1 10

2 0100110000

3 1010001000

4 0101000100

5 0010100010

6 1001000001

7 1000000110

8 0100000011

9 0010010001

10 0001011000

11 0000101100

12 10

The first program is the cop-win checker based on the algorithm

given by Nowakowski and Winkler in [15] to check whether a given

graph is cop-win or not. The second program is a modification of the

first program that computes a cop-win ordering of a graph and then

simulates the game allowing the user to play the game against a cop

controlled by the program. The third program is an implementation of

the algorithm to check whether a graph has c(G) ≤ 2. This implemen-

tation is similar in conception to the algorithm given by Bonato and

Chiniforooshan in [4].

62

A.1. Cop-win Checker

1 /*

2 Cop-win Checker

3 Liam Baird

4 liam.baird@gmail.com

5 Input: a list of graphs in adjacency matrix format delimited

by the number of nodes in each graph.

6 Output: a list of statements that state whether each graph in

the list is cop-win or not.

7 */

8 #include<stdlib.h>

9 #include <time.h>

10 #include<stdio.h>

11 #define MAXNOV 10

12 #define TRUE 1

13 #define FALSE 0

14

15 int nov=0;

16

17 struct node {

18 int val;

19 struct node * next;

20 };

21 typedef struct node node;

22

23 void initialize(node *graph[]){

24 int k;

25 for(k=0;k<MAXNOV;k++){

26 graph[k] = NULL;

27 }

28 }

29

30 void printgraph(node *graph[],int graph_no){

31 int q;

32 node *curr=NULL;

33

34 if(graph_no==0){

35 printf("GRAPH:\n");

36 }else{

37 printf("GRAPH #%d:\n",graph_no);

63

38 }

39

40 for(q=0;q<MAXNOV;q++){

41 curr=graph[q];

42 while(curr!=NULL) {

43 if(curr->val!=q){

44 printf("(%d,%d)\n",q,curr->val);

45 }

46 curr = curr->next ;

47 }

48 }

49 }

50

51 void deletegraph(node *graph[]){

52 int q=0;

53 node *curr=NULL;

54 node *prev=NULL;

55

56 for(q=0;q<MAXNOV;q++){

57 curr=graph[q];

58 prev=graph[q];

59

60 while(curr!=NULL) {

61 curr = curr->next;

62 free(prev);

63 prev=curr;

64 }

65 graph[q] = NULL;

66 }

67 }

68

69 void deletenode(int i,node *graph[]){

70 int q=0;

71 node *curr=NULL;

72 node *prev=NULL;

73

74 curr=graph[i];

75 prev=graph[i];

76

77 while(curr!=NULL) {

78 curr = curr->next;

79 free(prev);

64

80 prev=curr;

81 }

82

83 graph[i] = NULL;

84

85 for(q=0;q<MAXNOV;q++){

86 curr=graph[q];

87 prev=graph[q];

88 if(curr!=NULL){

89 if(curr->val==i){

90 graph[q]=curr->next;

91 free(curr);

92 curr=graph[q];

93 prev=graph[q];

94 curr=curr->next;

95 }else{

96 curr=curr->next;

97 }

98 }

99

100 while(curr!=NULL) {

101 if(curr->val==i){

102 prev->next=curr->next;

103 free(curr);

104 curr=prev->next;

105 }else{

106 prev=prev->next;

107 curr=curr->next;

108 }

109 }

110 }

111 }

112

113 int checkcorner(int i,int j,node *graph[]){

114 //compares two adjacency lists.

115 node *a=graph[i];

116 node *b=graph[j];

117

118 if ((a==NULL)||(b==NULL)){

119 return(FALSE);

120 }

121

65

122 while (TRUE){

123 if ((a == NULL && b == NULL)||(a==NULL)){

124 return(TRUE);

125 }else if ((b == NULL)||(a->val < b->val)){

126 return(FALSE);

127 }else if (b->val < a->val){

128 if (b->next!=NULL){

129 b=b->next;

130 }else{

131 return(FALSE);

132 }

133 }else{

134 a = a->next;

135 b = b->next;

136 }

137 }

138 }

139

140 int hascorner(node *graph[]){

141 int i,j;

142 for(i=0;i<nov;i++){

143 for(j=0;j<nov;j++){

144 if(checkcorner(i,j,graph)){

145 if(i!=j){

146 return(i);

147 }

148 }

149 }

150 }

151 return(-1);

152 }

153

154 int getsize(node *graph[]){

155 int q=0,size=0;

156 node *curr=NULL;

157

158 for(q=0;q<MAXNOV;q++){

159 curr=graph[q];

160 while(curr!=NULL) {

161 size++;

162 curr = curr->next ;

163 }

66

164 }

165 return(size);

166 }

167

168 int main(void) {

169 node *curr=NULL,*tail=NULL;

170 node *graph[MAXNOV];

171 char ch;

172 char str[5];

173 char filenamein[20];

174 char filenameout[20];

175 int i=0,j=0,k,c=0,q,graph_no=0,copwin_count=0;

176

177 //initialize vertices

178 initialize(graph);

179

180 //prompt for filename

181 printf("please enter graph filename\n");

182 scanf("%19s",filenamein);

183 strcpy(filenameout,filenamein);

184

185 //open file

186 FILE *input=fopen(strcat(filenamein,".txt"),"r");

187 FILE *output=fopen(strcat(filenameout,"r.txt"),"w");

188 fgets(str,5,input);

189 nov=atoi(str);

190 printf("nov = %d\n",nov);

191 graph_no++;

192

193 //get input

194 for(ch=getc(input);ch!=EOF;ch=getc(input)){

195 if(i==nov){

196 c=hascorner(graph);

197 while(c>=0){

198 deletenode(c,graph);

199 c=hascorner(graph);

200 }

201

202 if(getsize(graph)==1){

203 fprintf(output,"Graph #%d is COPWIN\n",graph_no);

204 copwin_count++;

205 }else{

67

206 fprintf(output,"Graph #%d is not COPWIN\n",graph_no);

207 }

208

209 deletegraph(graph);

210 i=0;

211 j=0;

212

213 //increment graph # counter

214 graph_no++;

215

216 //grab next line

217 fgets(str,5,input);

218 }

219 else if (ch==’\n’){ //new row

220 i++; //one more row

221 j=0; //start from zeroth column

222 }

223 else if ((ch==’1’)||(i==j)){

224 //add edge i,j

225 curr = (node *)malloc(sizeof(node)); //allocate memory

226 curr->val = j; //set value

227 curr->next=NULL; //set next

228

229 //if this is the first edge for this node

230 if (graph[i]==NULL){

231 graph[i]=curr;

232 }

233 else{

234 tail->next=curr;

235 }

236 tail=curr;

237 //increment j

238 j++;

239 }//end add edge i,j

240 else if (ch==’0’){

241 //printf("L: ch=0\n");

242 //add no vertex

243 //increment j

244 j++;

245 }

246 }

247

68

248 printf("%d of %d graphs of order %d are copwin\n",

copwin_count,graph_no-1,nov);

249 fprintf(output,"%d of %d graphs of order %d are copwin\n",

copwin_count,graph_no-1,nov);

250

251 return(0);

252 }

69

A.2. Cops and Robbers Game Simulator

1 /*

2 Cops and Robber Simulator

3 Liam Baird

4 liam.baird@gmail.com

5 Input: a list of graphs in adjacency matrix format delimited

by the number of nodes in each graph.

6 Output: a list of statements that specify whether each graph

in the list is cop-win or not. Also

7 determines a cop-win ordering. If the graph is cop-win, then

the program simulates a game of Cops

8 and Robbers. The program allows the user to specify the

movements of the robber with the program

9 determing the movements of the cop using the cop-win ordering.

10 */

11

12 #include<stdlib.h>

13 #include <time.h>

14 #include<stdio.h>

15 #define MAXNOV 20

16 #define TRUE 1

17 #define FALSE 0

18

19 int nov=0;

20

21 struct node {

22 int val;

23 struct node * next;

24 };

25 typedef struct node node;

26

27 void initialize(node *graph[]){

28 int k;

29 for(k=0;k<MAXNOV;k++){

30 graph[k] = NULL;

31 }

32 }

33

34 void printgraph(node *graph[],int graph_no){

35 int q;

70

36 node *curr=NULL;

37

38 if(graph_no==0){

39 printf("GRAPH:\n");

40 }

41 else

42 {

43 printf("GRAPH #%d:\n",graph_no);

44 }

45

46 for(q=0;q<nov;q++){

47 curr=graph[q];

48 while(curr!=NULL) {

49 if(curr->val!=q){

50 printf(" (%d,%d) ",q,curr->val);

51 }

52 curr = curr->next ;

53 }

54 printf("\n");

55 }

56 }

57

58 void deletegraph(node *graph[]){

59 int q=0;

60 node *curr=NULL;

61 node *prev=NULL;

62

63 for(q=0;q<MAXNOV;q++){

64 curr=graph[q];

65 prev=graph[q];

66

67 while(curr!=NULL) {

68 curr = curr->next;

69 free(prev);

70 prev=curr;

71 }

72 graph[q] = NULL;

73 }

74 }

75

76 void deletenode(int i,node *graph[]){

77 int q=0;

71

78 node *curr=NULL;

79 node *prev=NULL;

80

81 //delete node with index i

82 curr=graph[i];

83 prev=graph[i];

84

85 while(curr!=NULL) {

86 curr = curr->next;

87 free(prev);

88 prev=curr;

89 }

90

91 graph[i] = NULL;

92

93 for(q=0;q<MAXNOV;q++){

94 curr=graph[q];

95 prev=graph[q];

96

97 if(curr!=NULL){

98 if(curr->val==i){

99 graph[q]=curr->next;

100 free(curr);

101 curr=graph[q];

102 prev=graph[q];

103 curr=curr->next;

104 }else{

105 curr=curr->next;

106 }

107 }

108

109 while(curr!=NULL) {

110 if(curr->val==i){

111 prev->next=curr->next;

112 free(curr);

113 curr=prev->next;

114 }

115 else{

116 prev=prev->next;

117 curr=curr->next;

118 }

119 }

72

120 }

121 }

122

123 void copygraph(node *graph[],node *copygraph[]){

124 int q;

125 node *curr=NULL;

126 node *copy=NULL;

127 node *tail=NULL;

128

129 for(q=0;q<MAXNOV;q++){

130 curr=graph[q];

131 while(curr!=NULL) {

132 //add edge i,j

133 copy = (node *)malloc(sizeof(node)); //allocate memory

134 copy->val = curr->val; //set value

135 copy->next=NULL; //set next

136

137 //if this is the first edge for this node

138 if (copygraph[q]==NULL){

139 copygraph[q]=copy;

140 }else{

141 tail->next=copy;

142 }

143

144 tail=copy;

145 curr=curr->next;

146 }

147 }

148 }

149

150 int checkcorner(int i,int j,node *graph[]){

151 node *a=graph[i];

152 node *b=graph[j];

153

154 if ((a==NULL)||(b==NULL)){

155 return(FALSE);

156 }

157

158 while (TRUE){

159 if ((a == NULL && b == NULL)||(a==NULL)){

160 //equal or a smaller => corner

161 return(TRUE);

73

162 }else if ((b == NULL)||(a->val < b->val)){

163 //b smaller than a => not corner

164 return(FALSE);

165 }else if (b->val < a->val){

166 //b larger than a => increment b

167 if (b->next!=NULL){

168 b=b->next;

169 }else{

170 return(FALSE);}

171 }else{

172 a = a->next;

173 b = b->next;

174 }

175 }

176 }

177

178 int hascorner(node *graph[],int *c,int *ci){

179 int i,j;

180

181 for(i=0;i<nov;i++){

182 for(j=0;j<nov;j++){

183 if(checkcorner(i,j,graph)){

184 if(i!=j){

185 *c=i;

186 *ci=j;

187 return(1);

188 }

189 }

190 }

191 }

192

193 *c=-1;

194 *ci=-1;

195 return(-1);

196 }

197

198 int getsize(node *graph[]){

199 int q=0,size=0;

200 node *curr=NULL;

201

202 for(q=0;q<MAXNOV;q++){

203 curr=graph[q];

74

204 while(curr!=NULL) {

205 size++;

206 curr = curr->next ;

207 }

208 }

209 return(size);

210 }

211

212 void relabel(node *graph[],int labeling[]){

213 int i;

214 node *temp[MAXNOV];

215 node *curr,*prev;

216

217 copygraph(graph,temp);

218

219 //remove reflexive edges

220 for(i=0;i<nov;i++){

221

222 curr=graph[i];

223

224 if(curr!=NULL){

225 if(curr->val==i){

226 graph[i]=curr->next;

227 free(curr);

228 curr=graph[i];

229 prev=graph[i];

230 curr=curr->next;

231 }else{

232 curr=curr->next;

233 }

234 }

235

236 while(curr!=NULL){

237 if(curr->val==i){

238 prev->next=curr->next;

239 free(curr);

240 curr=prev->next;

241 }else{

242 prev=prev->next;

243 curr=curr->next;

244 }

245 }

75

246 }

247

248 //delete node from the graph and relabel

249 for(i=0;i<nov;i++){

250 curr=graph[i];

251 prev=graph[i];

252

253 while(curr!=NULL) {

254 curr = curr->next;

255 free(prev);

256 prev=curr;

257 }

258

259 graph[i]=temp[labeling[i]];

260 curr=graph[i];

261

262 //switch labels

263 while(curr!=NULL){

264 curr->val=labeling[curr->val];

265 curr=curr->next;

266 }

267 }

268

269 //add reflexive edges

270 for(i=0;i<nov;i++){

271 curr=graph[i];

272

273 while(curr->next!=NULL) {

274 curr=curr->next;

275 }

276

277 curr = (node *)malloc(sizeof(node)); //allocate memory

278 curr->val = i; //set value

279 curr->next=NULL;

280 }

281 }

282

283 int main(void) {

284 node *curr=NULL,*tail=NULL;

285 node *graph[MAXNOV];

286 node *pgraph[MAXNOV];

287 node *temp[MAXNOV];

76

288 char ch;

289 char str[5];

290 char filenamein[20];

291 char filenameout[20];

292 int cw_ord[20];

293 int cw_inv[20];

294 node *cmovelist;

295 node *rmovelist;

296 int i=0,j=0,k=0;

297 int c=0,ci=0;

298 int t=0,q=0,graph_no=0,copwin_count=0;

299 int cmovecount=0;

300 int r_move=-1,c_move=-1;

301 int r_move_valid;

302 int F[MAXNOV][MAXNOV];

303 int f[MAXNOV];

304 int temp_f[MAXNOV];

305

306 //initialize F and f

307 for(c=0;c<MAXNOV;c++){

308 f[c]=-1;

309 for(t=0;t<MAXNOV;t++){

310 F[c][t]=-1;

311 }

312 }

313 c=0;

314 t=0;

315

316 //initialize vertices

317 initialize(graph);

318 initialize(pgraph);

319 initialize(temp);

320

321 //prompt for filename

322 printf("please enter the name of a file containing the graph

you want to play on\n");

323 scanf("%19s",filenamein);

324

325 //open file

326 FILE *input=fopen(strcat(filenamein,".txt"),"r");

327

328 //read first line

77

329 fgets(str,5,input);

330 nov=atoi(str);

331 printf("The number of vertices is %d\n",nov);

332 graph_no++;

333

334 //processing input

335 for(ch=getc(input);ch!=EOF;ch=getc(input)){

336 if(i==nov){ //end processing for this graph

337 copygraph(graph,pgraph);

338 printf("the graph is: ");

339 hascorner(graph,&c,&ci);

340

341 //check graph for corner

342 while(c>=0){

343 f[c]=ci;

344 cw_ord[t]=c;

345 t++;

346 deletenode(c,graph);

347 hascorner(graph,&c,&ci);

348 }

349

350 //get last remaining element of graph

351 for(q=0;q<MAXNOV;q++){

352 curr=graph[q];

353 if(curr!=NULL){

354 cw_ord[t]=q;

355 }

356 }

357

358 if(getsize(graph)==1){

359 printf("COPWIN\n");

360 copwin_count++;

361 }else{

362 printf("NOTCOPWIN\n");

363 }

364

365 deletegraph(graph);

366 i=0;

367 j=0;

368 //increment graph # counter

369 graph_no++;

370 //grab next character which is a newline

78

371 fgets(str,5,input);

372 }else if (ch==’\n’){

373 i++;

374 j=0;

375 }else if ((ch==’1’)||(i==j)){

376 //add edge i,j

377 curr = (node *)malloc(sizeof(node));

378 curr->val = j;

379 curr->next=NULL;

380

381 //if this is the first edge for this node

382 if (graph[i]==NULL){

383 graph[i]=curr;

384 }else{

385 tail->next=curr;

386 }

387 tail=curr;

388

389 //increment j

390 j++;

391 }else if (ch==’0’){

392 j++;

393 }

394 }

395

396 //RESET variables

397 i=0;

398 j=0;

399 c=0;

400

401 //invert cw_ord

402 for(i=0;i<nov;i++){

403 cw_inv[cw_ord[i]]=i;

404 }

405

406 node *prev;

407 copygraph(pgraph,temp);

408

409 //print initial graph

410 printf("\nORIGINAL ");

411 printgraph(pgraph,0);

412 printf("\n");

79

413

414 //relabel graph with cw_ord

415 for(i=0;i<nov;i++){

416 //delete node from the pgraph

417 curr=pgraph[i];

418 prev=pgraph[i];

419

420 while(curr!=NULL) {

421 curr = curr->next;

422 free(prev);

423 prev=curr;

424 }

425

426 //assign new node lists

427 pgraph[i]=temp[cw_ord[i]];

428 curr=pgraph[i];

429

430 //change labels

431 while(curr!=NULL){

432 curr->val=cw_inv[curr->val];

433 curr=curr->next;

434 }

435 }

436

437

438 //make temporary f for computing f reordering

439 for(i=0;i<nov;i++){

440 temp_f[i]=f[i];

441 }

442

443 //print relabeled graph

444 printf("\nRELABELED ");

445 printgraph(pgraph,0);

446 printf("\n");

447

448 //FIND F and f

449 //reassign f[]

450 for(i=0;i<nov;i++){

451 f[cw_inv[i]]=cw_inv[temp_f[i]];

452 }

453

454 //assign F[0][]=F_1

80

455 for(i=0;i<nov;i++){

456 for(j=0;j<nov;j++){

457 F[i][j]=j;

458 }

459 }

460

461 //assigning F[1][] to F[nov][]

462 for(i=1;i<nov;i++){

463 for(j=i;j<nov;j++){

464 F[j][i-1]=f[i-1];

465 }

466 }

467

468 for(i=1;i<nov;i++){

469 for(j=0;j<nov;j++){

470 if (F[i][j]<i){

471 for(t=i;t<nov;t++){

472 F[t][j]=f[F[t][j]];

473 }

474 }

475 }

476 }

477

478

479 /* game simulation*/

480

481 //pick the start vertex

482 k=nov-1;

483 c_move=k;

484 k--;

485 printf("the cop is starting on vertex %d\nwhich vertex do

you want to start on?:\n",c_move);

486 scanf("%d",&r_move);

487

488 //get initial robber position

489 while((r_move<0)||(r_move>=nov)||r_move==c_move){

490 printf("That is not a valid move, please select another

vertex\n");

491 scanf("%d",&r_move);

492 }

493

494 printf("you are moving to vertex: %d\n",r_move);

81

495

496 while(TRUE){

497 //check possible cop moves

498 cmovelist=pgraph[c_move];

499 curr=cmovelist;

500 cmovecount=0;

501

502 printf("the vertices available to the cop are:\n");

503

504 while(curr!=NULL){

505 printf("%d\n",curr->val);

506 if(curr->val==r_move){

507 F[k][r_move]=r_move;

508 }

509 cmovecount++;

510 curr=curr->next;

511 }

512 scanf("");

513

514 //compute cop move

515 c_move=F[k][r_move];

516 k--;

517 printf("COP MOVES TO:%d\n",c_move);

518

519 //check win condition

520 if(c_move==r_move){

521 printf("the cop wins!\n");

522 break;

523 }

524

525 //check possible robber moves

526 rmovelist=pgraph[r_move];

527 curr=rmovelist;

528

529 printf("the vertices available to you the robber are:\n");

530

531 while(curr!=NULL){

532 printf("%d\n",curr->val);

533 curr=curr->next;

534 }

535 printf("where do you want to move?\n");

536 scanf("%d",&r_move);

82

537

538 curr=rmovelist;

539 r_move_valid=FALSE;

540

541 while(curr!=NULL){

542 if(curr->val==r_move){

543 r_move_valid=TRUE;

544 }

545 curr=curr->next;

546 }

547

548 while(!r_move_valid){

549 printf("That is not a valid move, please select another

vertex\n");

550 scanf("%d",&r_move);

551 curr=rmovelist;

552

553 //check that the robber move is in valid

554 while(curr!=NULL){

555 if(curr->val==r_move){

556 r_move_valid=TRUE;

557 }

558 curr=curr->next;

559 }

560 }

561 printf("you are moving to vertex: %d\n",r_move);

562 }

563

564 printf("press ctrl-c to quit\n");

565 while(TRUE){}

566 return(0);

567 }

83

A.3. 2-cop-win Checker

1 /*

2 2-cop-win Checker

3 Liam Baird

4 liam.baird@gmail.com

5 Input: a list of graphs in adjacency matrix format delimited

by the number of nodes in each graph.

6 Output: a list of statements that state whether each graph in

the list has c(G)<=2 or not.

7 */

8

9 #include <stdlib.h>

10 #include <time.h>

11 #include <stdio.h>

12 #include <string.h>

13 #define MAXNOV 10

14 #define TRUE 1

15 #define FALSE 0

16 int nov=0;

17

18 //defines a node

19 struct node {

20 int val1;

21 int val2;

22 struct node * next;

23 };

24 typedef struct node node;

25

26 void initialize(node *graph[]){

27 int k;

28 for(k=0;k<MAXNOV;k++){

29 graph[k] = NULL;

30 }

31 }

32

33 void initializep(node *pgraph[MAXNOV][MAXNOV]){

34 int j,k;

35 for(k=0;k<MAXNOV;k++){

36 for(j=0;j<MAXNOV;j++){

37 pgraph[k][j] = NULL;

84

38 }

39 }

40 }

41

42 void initializeeff(node *eff[MAXNOV][MAXNOV]){

43 int i,j;

44 for(i=0;i<MAXNOV;i++){

45 for(j=0;j<MAXNOV;j++){

46 eff[i][j] = NULL;

47 }

48 }

49 }

50

51 void printgraph(node *graph[],int graph_no){

52 int q;

53 node *curr=NULL;

54

55 if(graph_no==0){

56 printf("GRAPH:\n");

57 }else{

58 printf("GRAPH #%d:\n",graph_no);

59 }

60

61 for(q=0;q<MAXNOV;q++){

62 curr=graph[q];

63 while(curr!=NULL) {

64 if(curr->val1!=q){

65 printf("(%d,%d)\n",q,curr->val1);

66 }

67 curr = curr->next ;

68 }

69 }

70 }

71

72 void printpgraph(node *graph[MAXNOV][MAXNOV],int graph_no){

73 int i=0,j=0;

74 node *curr=NULL;

75 printf("P.GRAPH #%d:\n",graph_no);

76

77 for(i=0;i<MAXNOV;i++){

78 for(j=0;j<MAXNOV;j++){

79 curr=graph[i][j];

85

80 while(curr!=NULL) {

81 if((curr->val1!=i)||(curr->val2!=j)){

82 printf("(%d,%d),(%d,%d)\n",i,j,curr->val1,curr->

val2);

83 }

84 curr = curr->next ;

85 }

86 }

87 }

88 }

89

90 void printeff(node *eff[MAXNOV][MAXNOV],int nov){

91 int i=0,j=0;

92 node *curr=NULL;

93 printf("EFF:\n");

94 for(i=0;i<nov;i++){

95 for(j=0;j<nov;j++){

96 curr=eff[i][j];

97 printf("F([%d,%d]): ",i,j);

98 while(curr!=NULL){

99 printf("%d ",curr->val1);

100 curr = curr->next ;

101 }

102 printf("\n");

103 }

104 }

105 }

106

107 void printadj(node *adj[MAXNOV][MAXNOV],int nov){

108 int i=0,j=0;

109 node *curr=NULL;

110 printf("ADJ:\n");

111

112 for(i=0;i<nov;i++){

113 for(j=0;j<nov;j++){

114 curr=adj[i][j];

115 printf("F([%d,%d]): ",i,j);

116 while(curr!=NULL){

117 printf("%d ",curr->val1);

118 curr = curr->next ;

119 }

120 printf("\n");

86

121 }

122 }

123 printf("\n");

124 }

125

126 void deletegraph(node *graph[]){

127 int q=0;

128 node *curr=NULL;

129 node *prev=NULL;

130

131 for(q=0;q<MAXNOV;q++){

132 curr=graph[q];

133 prev=graph[q];

134

135 while(curr!=NULL) {

136 curr = curr->next;

137 free(prev);

138 prev=curr;

139 }

140 graph[q] = NULL;

141 }

142 }

143

144 void deletepgraph(node *graph[MAXNOV][MAXNOV]){

145 int i=0,j=0;

146 node *curr=NULL;

147 node *prev=NULL;

148

149 for(i=0;i<MAXNOV;i++){

150 for(j=0;j<MAXNOV;j++){

151 curr=graph[i][j];

152 prev=graph[i][j];

153

154 while(curr!=NULL){

155 curr = curr->next;

156 free(prev);

157 prev=curr;

158 }

159

160 graph[i][j] = NULL;

161 }

162 }

87

163 }

164

165 void deleteeff(node *graph[MAXNOV][MAXNOV]){

166 int i=0,j=0;

167 node *curr=NULL;

168 node *prev=NULL;

169

170 for(i=0;i<MAXNOV;i++){

171 for(j=0;j<MAXNOV;j++){

172 curr=graph[i][j];

173 prev=graph[i][j];

174

175 while(curr!=NULL){

176 curr = curr->next;

177 free(prev);

178 prev=curr;

179 }

180

181 graph[i][j] = NULL;

182

183 }

184 }

185 }

186

187 void deletenode(int i,node *graph[]){

188 int q=0;

189 node *curr=NULL;

190 node *prev=NULL;

191

192 curr=graph[i];

193 prev=graph[i];

194

195 while(curr!=NULL) {

196 curr = curr->next;

197 free(prev);

198 prev=curr;

199 }

200

201 graph[i] = NULL;

202

203 for(q=0;q<MAXNOV;q++){

204

88

205 curr=graph[q];

206 prev=graph[q];

207

208 if(curr!=NULL){

209 if(curr->val1==i){

210 graph[q]=curr->next;

211 free(curr);

212 curr=graph[q];

213 prev=graph[q];

214 curr=curr->next;

215 }

216 else{

217 curr=curr->next;

218 //prev=prev->next;

219 }

220 }

221

222 while(curr!=NULL) {

223 if(curr->val1==i){

224 prev->next=curr->next;

225 free(curr);

226 curr=prev->next;

227 }

228 else

229 {

230 prev=prev->next;

231 curr=curr->next;

232 }

233 }

234

235

236 }

237

238 }

239

240 int isadj(int i, int j,node *graph[]){

241 //determine whether or not i and j are adjacent in graph

242 node *curr=NULL;

243 curr=graph[i];

244

245 while(curr!=NULL) {

246 if (curr->val1==j){

89

247 return(TRUE);

248 }

249 curr=curr->next;

250 }

251

252 return(FALSE);

253 }

254

255 int iseq(int i, int j){

256 if (i==j){

257 return(TRUE);

258 }

259

260 return(FALSE);

261 }

262

263 void makeeff(node *eff[MAXNOV][MAXNOV],node *adj[MAXNOV][

MAXNOV],int nov){

264 int i=0,j=0,k=0,v=0;

265 node *curr=NULL;

266 node *prev=NULL;

267 node *list=NULL;

268

269 for(i=0;i<nov;i++){

270 for(j=0;j<nov;j++){

271 prev=eff[i][j];

272 list=adj[i][j];

273

274 for(k=0;k<nov;k++){

275 if(list!=NULL){

276 v=list->val1;

277 }else{

278 v=MAXNOV+10;

279 }

280

281 if(k!=v){

282 //add node with value k

283 curr=(node *)malloc(sizeof(node));

284 curr->val1=k;

285 curr->val2=-1;

286 curr->next=NULL;

287

90

288 if (eff[i][j]==NULL){

289 eff[i][j]=curr;

290 }else{

291 prev->next=curr;

292 }

293

294 prev=curr;

295 }else{

296 list=list->next;

297 }

298 }

299 }

300 }

301 }

302

303 void makeadjacency(node *adj[MAXNOV][MAXNOV],node *graph[

MAXNOV],int nov){

304 int i=0,j=0,va=0,vb=0;

305 node *curr=NULL;

306 node *prev=NULL;

307 node *list_a=NULL;

308 node *list_b=NULL;

309

310 for(i=0;i<nov;i++){

311 for(j=0;j<nov;j++){

312 prev=adj[i][j];

313 list_a=graph[i];

314 list_b=graph[j];

315

316 while((list_a!=NULL)||(list_b!=NULL)){

317

318 if(list_a!=NULL){

319 va=list_a->val1;

320 }else{

321 va=MAXNOV+10;

322 }

323

324 if(list_b!=NULL){

325 vb=list_b->val1;

326 }else{

327 vb=MAXNOV+10;

328 }

91

329

330 curr=(node *)malloc(sizeof(node));

331 curr->next=NULL;

332

333 if(va<vb){

334 curr->val1=va;

335 list_a=list_a->next;

336 } else if(vb<va){

337 curr->val1=vb;

338 list_b=list_b->next;

339 } else if(va==vb){

340 curr->val1=va;

341 list_a=list_a->next;

342 list_b=list_b->next;

343 }

344

345 if (adj[i][j]==NULL){

346 adj[i][j]=curr;

347 }else{

348 prev->next=curr;

349 }

350 prev=curr;

351 }

352 }

353 }

354 }

355

356 int intersect(node *adj[MAXNOV][MAXNOV],node *eff[MAXNOV][

MAXNOV],int i,int j, int k, int l){

357 node *curr_a=adj[i][j];

358 node *curr_f=eff[k][l];

359 node *prev_f=NULL;

360 node *curr=NULL;

361 node *prev=NULL;

362 int changed=FALSE;

363 int va=0,vf=0;

364

365 eff[k][l]=NULL;

366 prev_f=curr_f;

367

368 while(curr_f!=NULL){

369 if(curr_a!=NULL){

92

370 va=curr_a->val1;

371 }else{

372 changed=TRUE;

373 return(changed);

374 }

375

376 vf=curr_f->val1;

377 curr=(node *)malloc(sizeof(node));

378 curr->next=NULL;

379

380 if(va<vf){

381 curr_a=curr_a->next;

382 } else if(vf<va){

383 curr_f=curr_f->next;

384 free(prev_f);

385 prev_f=curr_f;

386 changed=TRUE;

387 } else if(va==vf){

388 curr->val1=va;

389 curr_a=curr_a->next;

390 curr_f=curr_f->next;

391

392 if (eff[k][l]==NULL){

393 eff[k][l]=curr;

394 }else{

395 prev->next=curr;

396 }

397 prev=curr;

398 }

399 }

400 return(changed);

401 }

402

403 int main(void) {

404 node *curr=NULL,*tail=NULL,*curr_a=NULL,*tail_a=NULL,*

tail_p=NULL;

405 node *graph[MAXNOV];

406 node *(eff[MAXNOV][MAXNOV]);

407 node *(adj[MAXNOV][MAXNOV]);

408 node *(pgraph[MAXNOV][MAXNOV]);

409 char ch;

410 char str[5];

93

411 char filenamein[20];

412 char filenameout[20];

413 int i=0,j=0,k,c=0,q,graph_no=0,twocopwin_count=0;

414 int x=0,y=0,u=0,v=0,u1=0,u2=0,v1=0,v2=0;

415 int flag1=FALSE,flag2=FALSE,changed=TRUE,twocopwin=FALSE;

416

417 //initialize data structures;

418 initialize(graph);

419 initializep(pgraph);

420 initializeeff(eff);

421 initializeeff(adj);

422

423 //prompt for filename

424 printf("please enter graph filename\n");

425 scanf("%19s",filenamein);

426 strcpy(filenameout,filenamein);

427

428 //open file

429 FILE *input=fopen(strcat(filenamein,".txt"),"r");

430 FILE *output=fopen(strcat(filenameout,"r.txt"),"w");

431

432 //read first character, should be a # (need to fix, input

could be "10" ie not a single char

433 fgets(str,5,input);

434 nov=atoi(str);

435 graph_no++;

436

437 //loop through characters

438 for(ch=getc(input);ch!=EOF;ch=getc(input)){

439 if(i==nov){

440 //make product graph

441 for(x=0;x<nov;x++){

442 for(y=0;y<nov;y++){

443 for(u=0;u<nov;u++){

444 for(v=0;v<nov;v++){

445 if((iseq(x,u)&&iseq(y,v))||(isadj(x,u,graph)&&

iseq(y,v))||(iseq(x,u)&&isadj(y,v,graph))||(

isadj(x,u,graph)&&isadj(y,v,graph))){

446 curr = (node *)malloc(sizeof(node));

447 curr->val1 = u;

448 curr->val2 = v;

449 curr->next=NULL;

94

450

451 //add the node

452 if (pgraph[x][y]==NULL){

453 pgraph[x][y]=curr;

454 }else{

455 tail_p->next=curr;

456 }

457 tail_p=curr;

458 }

459 }

460 }

461 }

462 }

463

464 makeadjacency(adj,graph,nov);

465 makeeff(eff,adj,nov);

466 printadj(adj,nov);

467 printeff(eff,nov);

468 changed=TRUE;

469

470 while(changed==TRUE){

471 //LOOP THROUGH vertices u1 v1

472 for(u1=0;u1<nov;u1++){

473 for(u2=0;u2<nov;u2++){

474 curr=pgraph[u1][u2];

475 if(curr!=NULL){

476 //pick out the vertex this is connected to

477 v1=curr->val1;

478 v2=curr->val2;

479 //find intersection of eff[u1][u2] and adj[v1][v2]

480 flag1=intersect(adj,eff,u1,u2,v1,v2);

481 //find intersection of eff[v1][v2] and adj[u1][u2]

482 flag2=intersect(adj,eff,v1,v2,u1,u2);

483

484 //CHECK FOR EMPTY EFF

485 if((eff[u1][u2]==NULL)||(eff[u1][u2]==NULL)){

486 flag1=FALSE;

487 flag2=FALSE;

488 changed=FALSE;

489 }

490

491 //check for flags

95

492 if((flag1==TRUE)||(flag2==TRUE)){

493 changed=TRUE;

494 }

495 }

496 }

497 }

498 printeff(eff,nov);

499 }

500

501 twocopwin=FALSE;

502 for(x=0;x<nov;x++){

503 for(y=0;y<nov;y++){

504 if(eff[x][y]==NULL){

505 twocopwin=TRUE;

506 }

507 }

508 }

509

510 if(twocopwin==TRUE){

511 twocopwin_count++;

512 printf("GRAPH #%d is 2cw\n",graph_no);

513 }else{

514 printf("GRAPH #%d is NOT 2cw\n",graph_no);

515 }

516

517 deleteeff(eff);

518 deletegraph(graph);

519 deletepgraph(pgraph);

520 deleteeff(adj);

521 i=0;

522 j=0;

523 //increment graph # counter

524 graph_no++;

525 fgets(str,5,input);

526 }else if (ch==’\n’){

527 i++;

528 j=0;

529 }else if ((ch==’1’)||(i==j)){

530 //add edge i,j

531 curr = (node *)malloc(sizeof(node)); //allocate memory

532 curr->val1 = j; //set val1ue

533 curr->next=NULL; //set next

96

534

535 //if this is the first edge for this node

536 if (graph[i]==NULL){

537 graph[i]=curr;

538 }else{

539 tail->next=curr;

540 }

541 tail=curr;

542 j++;

543 }else if (ch==’0’){

544 j++;

545 }

546 }

547

548 printf("%d of %d graphs of order %d are <=2 copwin\n",

twocopwin_count,graph_no-1,nov);

549 fprintf(output,"%d of %d graphs of order %d are copwin\n",

twocopwin_count,graph_no-1,nov);

550 return(0);

551 }

97

Bibliography

[1] M. Aigner, M. Fromme, A game of cops and robbers, Discrete Applied Math-

ematics 8 (1984) 1–12.

[2] A. Berarducci, B. Intrigila, On the cop number of a graph, Advances in Ap-

plied Mathematics 14 (1993) 389–403.

[3] C Berge, Hypergraphs: Combinatorics of Finite Sets, North Holland, 1989.

[4] A. Bonato, E. Chiniforooshan, P. Pra lat, Cops and Robbers from a distance,

Theoretical Computer Science 411 (2010) 3834-3844.

[5] A. Bonato, R.J. Nowakowski, The Game of Cops and Robbers on Graphs,

American Mathematical Society, Providence, Rhode Island, 2011.

[6] P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge

University Press, Cambridge, 1995.

[7] P. Chebyshev, Mémoire sur les nombres premiers, Mém. Acad. Sci. St.

Pétersbourg 7 (1850) 17-33.

[8] E. Chiniforooshan, A better bound for the cop number of general graphs,

Journal of Graph Theory 58 (2008) 45–48.

[9] N.E. Clarke, R.J. Nowakowski, Cops, robber, and traps, Utilitas Mathemat-

ica 60 (2001) 91–98.

[10] P. Frankl, On a pursuit game on Cayley graphs, Combinatorica 7 (1987)

67–70.

[11] P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs,

Discrete Applied Mathematics 17 (1987) 301–305.

[12] A. Frieze, M. Krivelevich, P. Loh, Variations on Cops and Robbers, accepted

to Journal of Graph Theory.

[13] L. Lu, X. Peng, On Meyniel’s conjecture of the cop number, Preprint 2011.

99

[14] B.D. McKay, Combinatorial Data, Brendan McKay’s Home Page published

electronically at http://cs.anu.edu.au/∼bdm/data/, Accessed June 20, 2011.

[15] R.J. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete

Mathematics 43 (1983) 235–239.

[16] P. Pra lat, When does a random graph have constant cop number?, Aus-

tralasian Journal of Combinatorics 46 (2010), 285-296.

[17] P. Pra lat, N. Wormald, Meyniel’s conjecture holds in random graphs, Preprint

2011.

[18] A. Quilliot, Jeux et pointes fixes sur les graphes, Thèse de 3ème cycle, Uni-

versité de Paris VI, 1978, 131–145.

[19] A. Quilliot, Problèmes de jeux, de point Fixe, de connectivité et de

represésentation sur des graphes, des ensembles ordonnés et des hypergraphes,

Thèse d’Etat, Université de Paris VI, 1983, 131–145.

[20] A. Quilliot, A short note about pursuit games played on a graph with a given

genus, J. Combin. Theory (B) 38 (1985) 89–92.

[21] A. Scott, B. Sudakov, A new bound for the cops and robbers problem,

Preprint 2011.

[22] N.J.A. Sloane, Sequences A000088 and A001349, The On-Line Encyclopedia

of Integer Sequences published electronically at http://oeis.org, 2010.

[23] V.I. Voloshin, Introduction to Graph and Hypergraph Theory, Nova Science

Publishers, Inc., 2009.

[24] D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.

100

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Cops and robbers on graphs and hypergraphs
	William David Baird
	Recommended Citation

