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Chapter 1

Introduction

Autonomous formation flying is currently one of the most important areas of research

in satellite dynamics and control. Use of a cluster of smaller, closely flying satellites

can distribute the functionality of a single, complex satellite. Space agencies, in particular

NASA, ESA and U.S. Air Force have taken a keen interest in developing and deploy-

ing reliable autonomous multiple satellite systems. This approach has several advantages

including the ability to enhance and/or enable missions through increased resolution of sci-

entific observations, improved flexibility and redundancy. Moreover capability for real-time

reconfiguration, adaptable to highly dynamic demands, and lower life cycle cost also drive

this methodology. Key challenges involved in these missions include autonomous control of

the satellites which are influenced by the different disturbing forces, and to achieve it with

minimum fuel consumption. These forces include environmental forces caused by gravity

gradient, solar radiation pressure, magnetic, aerodynamic drag, and Earth’s oblateness ef-

fect [Larson 1999, Kumar 2006], as well as third body perturbations. It is the Attitude

and Orbit Control System (AOCS), that orients and stabilizes the satellite to the desired

position in the presence of these external forces. AOCS consists of sensors to measure

states of the satellites, actuators to apply the torques needed to re-orient the satellite to

the desired position, and also control laws, i.e., a set of computations that determine how

the actuators should operate, based on the sensor measurements. However, some of these

disturbing forces, if properly utilized may be used to stabilize the satellite orientation and

maintain the formation. Several methods of satellite attitude and orbit control have been

developed over the last four decades. These methods may be broadly classified as active

and passive/semi-passive methods. Active stabilization methods require expenditure of

propellant or energy, leading to an increase in weight and space requirements in the satel-

lite, whereas passive/semi-passive methods depend on natural/environmental forces and
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they make use of spin stabilization, dual spin, gravity gradient, solar radiation pressure

(SRP), aerodynamic drag, and Earth’s magnetic field to achieve the desired performance.

These methods are thus less costly and their advancement may provide a viable solution

to the development of low cost AOCS for satellites. However, their development poses

several challenges including lack of methodologies to utilize these forces effectively, lower

achievable accuracies compared to a conventional system, and unavailability of these forces

throughout the mission. This thesis investigates the efficacy of "propellant-less" method

based on aerodynamic drag or solar radiation pressure for multiple satellite formation flying

or attitude control, and develops innovative control algorithms with the goal of achieving

a low cost AOCS which is able to exhibit superior performance.

1.1 Research Motivation

A large quantity of fuel is typically required onboard any conventional satellite to per-

form its attitude and orbital control. Satellite formation flying has a much higher fuel

requirement in order to maintain the tight formation (∼10m). As on-board fuel is a scarce

commodity, it is important to have satellite control techniques which would require little

or no fuel. Hence it would be important to propose a novel method for replacement of

on-board fuel. The proposed method must be efficient and guarantee robust system per-

formance. It is here that the method based on environmental forces such as solar radiation

pressure or aerodynamic drag find potential usage. Here we propose a technique to harness

solar radiation pressure or aerodynamic drag for satellite control. The proposed technique

has the potential to have significant cost savings as it pertains to almost negligible fuel

requirement in comparison to formation control using thrusters. In other words, this tech-

nology will increase the life span of a satellite, and also decrease the overall mass of the

satellite thus resulting in significant cost savings for space missions and also enable forma-

tion architectures and orbits previously thought to be too fuel-demanding. Furthermore,

this approach avoids the problem of thruster plume impingement when satellites are very

close in the formation.

Another aspect is the control algorithm involved in the satellite AOCS. The development
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of practically viable autonomous satellite control algorithms has not kept pace with new

capabilities enabled by novel hardware designs and increased computational power and

typically tends to employ linear control algorithms for its attitude and orbital control.

Here a more robust control algorithm based on nonlinear Sliding Mode Control (SMC) is

proposed.

1.1.1 Rationale Behind the Use of Aerodynamic Drag

ζ
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Drag Plate

p

Figure 1.1: Aerodynamic drag on flat plate (drag plate).

Aerodynamic drag has a substantial influence on the motion of near-Earth satellites.

Even though the atmosphere in the low Earth orbits (LEO) is extremely thin, it can have

a considerable impact on a satellite’s orbit by retarding its orbital motion and leading

to eventual decay. The atmosphere at LEO consists of diffuse molecules that have very

little, if any, interaction with one another. This region, known as the free molecular flow

regime, consists of molecules that no longer behave like a fluid, rather they behave as

individual particles [Regan 1984]. At orbital speeds, the individual molecular impacts on

the satellite can greatly affect the motion of the satellite especially over an extended period

of time. When the molecules impact and bounce off the satellite surface, linear momentum
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is transferred through the inelastic collisions. This is proportional to the velocity difference

between the molecules and the satellite [Wiesel 2003]. Since force is the rate of change of

linear momentum, these individual impacts impart an acceleration to the satellite in the

direction opposite to its motion. The drag experienced by the satellite is proportional to

its drag coefficient, the exposed frontal area, the square of the satellite relative velocity and

the density of the local atmosphere. Fig. 1.1 shows a simplified representation of the force

due to aerodynamic drag experienced by a flat plate surface of the satellite as it moves

in the direction of Vr. ζ is the angle between the relative velocity,~VR, and the outward

unit normal vector ~n of the flat plate. Existing literature on the favorable applications of

aerodynamic drag for AOCS is rather small. This may be due to the complex nature of

the free molecular forces, rotation of the atmosphere, and strong dependence of density

on height, season, sun-position, and local atmospheric variations. The lack of a complete

understanding of the atmospheric model also adds to the limited effort in their utilization.

1.1.2 Rationale Behind the Use of Solar Radiation Pressure

n
F

SRP
F

Sun line

Reflected radiation

s

u

incident radiation

φ
θ

α

α =  angle between incident 

radiation and solar flap normal

 angle between          and 

its normal component

 angle between          and 

the Sun line

S o l a r � a p

SRP
F

SRP
F

φ =

θ =

Figure 1.2: Force on a non-perfectly reflecting solar flap.

When a flat plate is illuminated by sunlight, it experiences solar radiation pressure
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(SRP). Using quantum mechanics, this pressure can be envisaged as being due to momen-

tum transported by photons, the quantum packets of energy of which light is composed

[McInnes 1999]. Fig. 1.2 shows the underlying principle of force due to SRP (FSRP ), act-

ing on a flat surface. Here Fn and Ft represent the normal and transverse components

of the force respectively. The pressure exerted by an individual photon is very small, of

the order of about 1 × 10−6N/m2 at Earth radii, but when a large surface is used to in-

tercept the sunlight, significant pressure can be achieved. This can then be harnessed to

provide a new form of propulsion for space missions - SRP. SRP is the dominant envi-

ronmental force in the higher Earth orbits, and hence SRP would be ideal for satellites in

geostationary/geosynchronous orbits. The potential SRP applications include orbit raising,

de-orbiting, and attitude control. Although the physics of solar radiation pressure is well

developed, only recent advancement in technology has made it possible to develop and test

extremely light but strong materials necessary for improving the performance of such SRP

based systems. The solar flap/sail designs range in size from a few meters to hundreds of

meters depending on the mission. In 2005, two industry teams comprised of ATK Space

Systems and L’Garde both successfully deployed 20m x 20m solar sails in a high vacuum

chamber with appropriate thermal environment. Launch vibration and ascent vent tests

were also performed on these systems [Johnson et al. 2007]. In 2008, NASA reported the re-

sults of a study on the application of solar sail for small satellite propulsion, and NanoSail-D,

a cubesat class satellite was built to demonstrate solar sail propulsion. Unfortunately, the

satellite was lost in a launch failure aboard Falcon 1 rocket [Johnson et al. 2010]. Japan

Aerospace Exploration Agency (JAXA) recently launched the IKAROS (Interplanetary

Kite-craft Accelerated by Radiation Of the Sun) [Yamaguchi et al. 2010] satellite which

successfully deployed a square sail of 20 m. The sail membrane is made of 7.5 µm thick

sheet of polyamide resin deposited with a thin-film of aluminium. Liquid crystal devices

which are thin-film instrument that can change the surface reflection characteristics by

turning on and off the power of the device are embedded in the sail for attitude control.

This is the first instance of a successful mission utilizing solar photons for propulsion. From

these recent advancements, we can infer that SRP propulsion is an advancing technology

that has the potential to provide cost effective, "propellantless" propulsion that enables
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longer mission lifetimes, and critical mass saving.

However, use of aerodynamic drag or solar radiation pressure for autonomous control

of a satellite under a wide variety of operating conditions is a challenging task. But with

the combination of improved manufacturing techniques and design of a robust control

algorithm, use of aerodynamic drag and solar radiation pressure for satellite formation

flying or attitude control is highly promising.

1.1.3 Non-Affine Control Inputs

Further development of aerodynamic drag and SRP technology will require a robust control

system that is able to properly direct the resultant thrust vectors. The control inputs due

to SRP or aerodynamic drag are typically the orientation angles. The relationship between

these angles and the resultant force is nonlinear. Review of the existing literature on the

use of aerodynamic drag or SRP as a means of propulsion shows that majority of the

control strategies used to date have been based on linear techniques. This is due to the

manner in which the control formulation for aerodynamic drag or SRP enters the system

dynamics. Consider the following system that is nonlinear in the state vector x and linear

in the control input u

ẋ = f(x, t) + B(x, t)u(x, t) (1.1)

where x ∈ Rn is the state vector, f(x, t) ∈ Rn represents the nonlinearity of the system,

B(x, t) ∈ Rn×m is the input matrix, and u ∈ Rm is the control vector. This dynamic system

is classified as affine with respect to the control input u, since u appears linearly in the

system. A satellite controlled by a conventional propulsion system falls under this category.

Now, consider the following system that is nonlinear in the state vector x and nonlinear

in the control input u

ẋ = f(x, t) + B(x, t)g[u(x, t)] (1.2)

where x ∈ Rn is the state vector, f(x, t) ∈ Rn represents the nonlinearity of the system,

B(x, t) ∈ Rn×m is the input matrix, and u ∈ Rm is the control vector, and g[u(x, t)] is the

nonlinear control input function. Such systems are classified as nonaffine with respect to

the control input u, since the resultant input to the system is a nonlinear function of u.
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Another classification of the dynamical systems given by Eqs. (1.1) and (1.2) is based

on the actuator configuration. If the number of control inputs, m, regulating the system in

Eqs. (1.1) and (1.2) is equal to the number of degrees of freedom to be controlled (p), i.e.,

m = p, then the system is said to be fully actuated. But if m < p, then for the system in

Eqs. (1.1) and (1.2) there are p−m degrees of freedom that are unactuated. These system

are said to be in an underactuated configuration.

The proposed method of using SRP and aerodynamic drag for satellite attitude and

orbit control falls into the category of nonaffine, underactuated system. To address these

type of systems, nonlinear control techniques are considered in this thesis.

1.1.4 Nonlinear Control

The design of AOCS for a satellite is a complex task because most satellites exhibit in-

herently coupled nonlinear dynamics. For a nonlinear system undergoing large dynamic

changes, a linear controller is likely to have poor performance, when compensating for

nonlinearities in the system. Therefore, nonlinear control techniques based on global repre-

sentation of satellite dynamics are needed to ensure that the control objectives are met over

a large range of operating conditions. Satellites commonly operate in the presence of vari-

ous disturbances (inherent nonlinearities), including environmental and non-environmental

torques. The problem of disturbance rejection is important for satellites because their dy-

namics is substantially affected by most of these preceding nonlinear disturbances. There-

fore, nonlinear control techniques must be developed to improve the performance of space

systems in the presence of inherent nonlinearities. High-performance tracking is another

motivation to justify the use of nonlinear control methods. Simple linear control cannot

handle the dynamic demands of efficiently desired trajectories. Specifically, achieving global

stabilization using nonlinear control techniques [Slotine & Li 1991] indicates that it is pos-

sible to ensure that the satellite tends to a desired equilibrium or trajectory irrespective

of the initial conditions. Assuming that the parameters of the satellite are reasonably well

known, linear control techniques only provide local stability because many control problems

involve uncertainties in the satellite parameters, which may be constant with respect to

time, or may slowly vary with respect to the changing environment in which the satellite
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is operating. A linear controller based on imprecise values of satellite parameters may

degrade the performance of the system significantly by causing the satellite dynamics to

deviate largely from its nominal regime. In general, it is very important to systematically

explore the use of nonlinear control methods for high precision requirements. A robust

adaptive control algorithm should be designed, that is rather independent of system pa-

rameters or unknown disturbances , where the uncertainties on constant or slowly-varying

parameters are reduced by parameter adaptation and other sources of uncertainties and

disturbances are handled by inherent robustness of the controller.

1.1.5 Application to Satellite Formation Flying or Attitude Con-

trol

Satellite formation flying (SFF) has been identified as an enabling technology for many

future space missions [Neeck et al. 2005]. Satellite formation flying is the concept that

multiple satellites can work together in a group to accomplish the objective of one larger

satellite, and is expected to have several advantages over single satellite like simpler design

of small satellite, faster build times, cheaper replacement creating higher redundancy and

the ability to enhance and/or enable missions through increased resolution of scientific

observations, and the ability to view research targets from multiple angles or at multiple

times [Bauer et al. 2001]. Coordinated autonomous control of satellite formations imposes

several stringent requirements on the design of AOCS subsystem because the formation

objectives can be achieved efficiently only when all individual satellites are tightly controlled

to respond rapidly and accurately to formation coordination commands. The development

of a robust controller for SFF poses the following challenges, namely:

a. Acquisition of a satellite formation: For large formations, typically all satellites

are integrated as one single unit during launch and transfer to orbit. When the carrier

spacecraft has reached the target location in orbit, the individual satellites sequentially

leave the carrier to reach the specified formation pattern. Therefore, to produce a cohesive

formation, the control system must ensure proper relative motion of multiple satellites to

maintain the desired formation geometry.

b. Reconfiguration of the formation geometry : The ability of a formation to reconfigure
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its relative geometry is of primary importance for many missions in order to meet changes

in operational needs, or allow for multi-mission capability.

c. Formation keeping of the satellite: This is one of the most important control require-

ments as each satellite in the formation is required to precisely track desired formation

trajectories where the external disturbances cause a drift of both the relative positions of

the satellite and the formation center.

Traditional feedback controllers consider the aerodynamic drag or SRP as perturba-

tions. Utilizing these environmental forces for control of satellites is a challenging problem

as these environmental forces are unpredictable due to several factors. These factors in-

clude variations in the solar irradiance, inaccurate coefficients of the optical properties of

the satellite surface materials, and variations in aerodynamic coefficients, atmospheric con-

ditions, and satellite mass. This research focuses on the application of aerodynamic drag or

SRP for satellite formation control. A system comprising of satellites attached with flaps

to utilize these environmental forces is investigated and a robust control technique is devel-

oped for suitably rotating these control flaps to achieve the desired satellite performance

(position or pointing) in the presence of various external disturbances and uncertainties in

the system parameters.

1.2 Literature Review

Satellite attitude and orbit control systems can be classified as active control systems

and passive or semi-passive control systems. Fig. 1.3 shows the taxonomy of the AOCS

classification. The use of SRP or aerodynamic drag as control variable falls under the

passive control scheme. When they are used in conjugation with maneuverable plates/flaps,

it can be classified under active control. In this section a detailed review of the various

missions or feasibility studies carried out with solar radiation pressure and/or aerodynamic

drag as the means of orbit control, attitude control or formation flying is presented.
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Satellite Attitude and Orbit Control Systems

Active Control Passive Control

Chemical, Electric thrusters, 

CMG, Reaction wheels

Solar Radiation Pressure, 

Aerodynamic Drag, Gravity 

Gradient, Magnetic dipole

Figure 1.3: Taxonomy of AOCS schemes.

1.2.1 Aerodynamic Drag

We start by reviewing the existing literature on the use of aerodynamic drag for satellite

attitude and orbit control. First, application of aerodynamic drag for satellite formation

flying is reviewed. Existing literature on satellite attitude control using aerodynamic drag

is reviewed next followed by the list of missions that employed or proposed to employ

aerodynamic drag for satellite control.

1.2.1.1 Formation Flying using Aerodynamic Drag

Formation keeping using aerodynamic forces has been studied by different re-

searchers. Leonard et al. [Leonard et al. 2004] considered differential aerodynamic

drag while Matthews and Leszkiewicz [Matthews & Leszkiewicz 1988], and Steffy et al.

[Steffy et al. 1988] varied ballistic coefficients of the satellite for maintaining the formation.

Leonard et al. proposed the use of differential drag for orbital control, by simplifying the for-

mation keeping problem to the simultaneous solution of a double integrator and a harmonic

oscillator without accounting for J2 effect. Aorpimai et al. [Aorpimai et al. 1999] assumed

satellite equipped with aerodynamic wings and varied the angle of attack to establish the

formation. The New Millennium Program Earth Observation-1 (NMP EO-1) is an example

of successful application of aerodynamic forces for formation flying [Folta & Hawkins 1996].

Another research carried out by Utah State University studied the use of differential aero-



1.2. Literature Review 11

dynamic drag as means of orbital control for formation flying in the Ionospheric Obser-

vation Nanosatellite Formation (ION-F) experiment [Swenson et al. 2002]. Here the bal-

listic coefficient was altered for orbital control and controlled permanent magnet torquing

method was used for attitude control with GPS information to keep the formation. In

[Carter & Humi 2002] a modified Clohessy-Wiltshire equation [Clohessy & Wiltshire 1960]

which includes quadratic drag is studied. This modified Clohessy-Wiltshire equation can

find application in station keeping and formation flying. In [Kumar et al. 2007b] use of

differential drag as a means for nanosatellite formation control is studied and a simple PI

control law is derived to adjust the cross sectional area of the satellites to maintain an along

track formation. Orbital maneuvering using aerodynamic forces was first proposed by Lon-

don [London 1962] in 1962. Since then, many researchers have worked on this subject; an

excellent survey of the past work was presented by Miele [Miele 1996]. Rao [Rao et al. 2002]

considered optimal aero-assisted orbit transfers from low Earth orbit to geostationary or-

bit with a large plane change. Lohar et al. [Lohar et al. 1998] examined orbit transfer

between coplanar elliptical orbits using aero-cruise. The use of aerodynamic force for or-

bit control of a single satellite has been studied by Palmerini [Palmerini et al. 2005] and

Humi [Humi & Carter 2002]. Formation keeping and rendezvous of multiple satellites have

also been investigated [Carter & Humi 2002, Humi & Carter 2001]. In more recent stud-

ies, Bevilacqua et al. [Bevilacqua & Romano 2008, Bevilacqua et al. 2009] examine multi-

ple satellite rendezvous using differential aerodynamic drag by considering the linearized

differential equations by Schweighart and Sedwick [Schweighart & Sedwick 2002].

1.2.1.2 Attitude Control using Aerodynamic Drag

Aerodynamic drag have been considered for attitude control of satellites over the past three

decades. Modi and Shrivastava [Modi & Shrivastava 1973] assumed a system of flaps, and

flap rotation to damp the attitude motion of a satellite and it was regulated based on lin-

ear feedback control with saturation constraints as well as bang-bang control with linear

switching criteria. Using similar flaps, Ravindran and Hughes [Ravindran & Hughes 1972]

considered performance optimization of an aerodynamic controller by minimizing a perfor-

mance index weighted equally with respect to the attitude errors and control surface move-
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ments. Successful application of aerodynamic forces for pitch control of COSMOS-149 was

reported by Sarychev [Sarychev 1968]. An optimal aerodynamic stabilization of near-Earth

satellites was investigated by Pande and Venkatachalam [Pande & Venkatachalam 1979].

Recently Chen Y. H et al. [Chen et al. 2000] has proposed the combined use of aero-

dynamic and gravity gradient torque for three axis stabilization of a microsatellite using

gravity gradient boom and vertical tail stabilizer. Propellant-less methods have their own

limitations and to overcome these limitations, methods using combinations of various en-

vironmental forces have been envisaged, such as aerodynamic and gravity (aero-gravity

assist), aerodynamic and magnetic forces. Kumar et al. [Kumar et al. 1995] examined pas-

sive aerodynamic stabilization and passive magnetic hysteresis damping of attitude rates

while Chen et al. [Chen et al. 2000] considered aerodynamic torque for yaw stabilization

and the gravity gradient torque to stabilize pitch and roll attitudes. Magnetic torquers

with a gravity-gradient boom have been applied by Wisniewski [Wisniewski 1997]. Psiaki

[Psiaki 2004] considered passive aerodynamic drag torques for stabilization of pitch and

yaw motions, and roll motion was controlled by active magnetic torquing of a shuttle-cock

type satellite.

1.2.1.3 Missions using Aerodynamic Drag

COSMOS-149 [NSSDC 1967], COSMOS-320 [NSSDC 1970], JC2Sat [Kumar et al. 2007a,

Mierlo 2009] and New Millennium Program Earth Observation-1 (NMP EO-1)

[Folta et al. 2002], are some of the examples where control based on aerodynamic drag

has been applied for satellite attitude control and/or formation flying. In the JC2Sat mis-

sion, along track formation control is proposed and the relative states will be controlled by

varying the pitch attitude of the satellites in the formation. Details of some of the missions

that make use of aerodynamic drag as a means of passive/semi-passive control is provided

in Table 1.1.

1.2.2 Solar Radiation Pressure

In this section, we review at the existing literature on the use of solar radiation pressure

for satellite formation flying, attitude control and also list some of the missions that used
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Table 1.1: List of missions making use of aerodynamic darg

Satellite COSMOS-149
[NSSDC 1967]

COSMOS-320
[NSSDC 1970]

JC2Sat
[Mierlo 2009]

Mass 375 kg 300 kg 18 kg
Shape Domed cylinder Domed cylinder Cuboid
Dimension L = 6.5m; Dia = 1.2m L = 6.5m; Dia = 1.2m 35cm x 35cm x 15cm
Orbit Inclina-
tion

48.4 deg 48.4 deg Sun-synchronous polar
orbit, i = 97.44 deg

Apogee 285.0 km 342.0 km 700 km
Perigee 243.0 km 240.0 km 700 km
Eccentricity 0.003159 0.007642 0
Use of aero-
dynamic
drag/plate

Pitch control Pitch control Autonomous for-
mation flight using
differential drag.

Duration 17 days in orbit 25 days in orbit 1 year

or proposed to use solar radiation pressure for satellite control.

1.2.2.1 Formation Flying using Solar Radiation Pressure

Application of SRP for formation maintenance has been investigated by several researchers.

Wang [Wang 2001] and Williams and Wang [Williams & Wang 2002] considered a satellite

with a solar wing and it was shown that a solar wing of the correct area can prevent the

secular out-of-plane growth in a low-Earth orbit formation that is caused by differential

nodal drift. Kumar et al. [Kumar et al. 2004a] and Fourcade [Fourcade 2005] found that

SRP is successful in maintaining the desired formation. However, these studies assumed a

simple SRP model and the satellite attitude motion was not considered. Another recent

research studied SRP based tetrahedron satellite formation. This research studied the use

of SRP to deploy and stabilize a three-dimensional satellite formation for a Heliocentric

as well as High Earth Orbit [Smirnov et al. 2007], with the diameter of the formation and

the stabilization time dependent on the properties of the solar sail. Application of SRP for

station-keeping of a geostationary satellite was studied by Black et al. [Black et al. 1968]

and Circi [Circi 2005]. Black et al. [Black et al. 1968] considered east-west station-keeping

problem where the use of a very small solar sail and a simple thrust strategy were pro-
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posed, while Circi [Circi 2005] examined both east-west and north-south station-keeping

problems. The study concluded that use of solar sail was more beneficial when the total

satellite mass was reduced, and it was found that for a 300 kg satellite, the required side

for a square solar sail is 44 m. Several kinds of missions with solar sail as a propulsion sys-

tem for orbit transfer have also been proposed: Salvail and Stuiver [Salvail & Stuiver 1995]

investigated the problem of transfer to the moon from a geosynchronous orbit, Leipold et

al. [Leipold et al. 1996] studied the mission for a Mercury polar orbiter, and McInnes et al.

[McInnes et al. 2003] have presented an investigation of the use of solar sail propulsion for

both Mercury orbiter and Mercury sample return missions. Jayaraman [Jayaraman 1980]

and Otten and McInnes [Otten & McInnes 2001] present optimum trajectories for Mars

missions. Powers and Coverstone [Powers & Coverstone 2001] analyzed spacecraft transfer

to Earth and Mars synchronous orbits; McInnes [McInnes 1993] studied the spacecraft tran-

fer to the lunar L2 Lagrange point and to "levitation" orbits, where the solar radiation pres-

sure acceleration balances solar gravity, while rendezvous missions with asteroids is studied

by Morrow et al. Solar sail formation flying for deep-space remote sensing is investigated

in [Biggs & McInnes 2009]. Kumar et al. [Kumar et al. 2004b] carried out the preliminary

study wherein the satellite equipped with two sets of wings - aerodynamic and SRP wings -

were successfully able to control in-plane relative position errors using aerodynamic wings

while the out-of-plane relative position errors were controlled by SRP wings. Solar Blade

Heliogyro Nanosatellite [Blomquist 1999], ODISSEE [Leipold et al. 1999], MARINER 2,

GOES 10, INSAT are some of the examples where solar sails/wings have either been de-

ployed or use of the same have been studied.

1.2.2.2 Solar Radiation Pressure for Attitude Control

Several authors have examined the feasibility of SRP for attitude control of satellites. Var-

ious configurations such as trailing cone system, weathervane type tail surfaces, reflector-

collector system, corner mirror arrays, solar paddles, grated solar sails, and mirror-like

surfaces have been suggested for properly utilizing SRP torques [Modi 1995] . The attitude

control of the satellite has been accomplished by translatory motions of single or several con-

trol surfaces relative to the satellite body [Kumar 1988] or by rotating the control surfaces
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about satellite body-fixed axes [Kumar et al. 2006]. Some missions have also been flown to

verify these concepts. The Mariner IV mission employed solar vanes for achieving passive

sun pointing attitude [Scull 1969]. The European Space Agency conducted experiments in

which the attitude of the geostationary communication satellite OTS-2 was controlled by

rotating solar panels [Renner 1979]. The SRP control torque thus can be utilized to stabilize

librational dynamics of a satellite with a desired degree of accuracy. Circi [Circi 2007] re-

cently proposed a satellite attitude controller that combines passive gravity-gradient torque

with solar pressure torque for three-axis stabilization of a micro-satellite. A dumbbell satel-

lite configuration was chosen to increase the gravity-gradient torque and three-axis stabi-

lization was performed with the help of small solar sails. Another recent publication was on

the use of SRP for satellite pitch attitude control based on a non-linear sliding mode control

[Patel et al. 2008, Patel et al. 2009]. Lievre in [Lievre 1986] proposed an attitude control

system for geostationary satellites making use of solar sails and demonstrated its advantage

as compared to a thruster based or magnetic torquer based control. In [Sidi 1997], Sidi

makes reference to Roll-Yaw attitude control with solar torques. The geometry consists of

solar flaps attached to the sides of the solar panels in order to achieve a solar torque about

a line in the orbit plane and perpendicular to the sun direction. A control mechanism for

satellite attitude control is also derived. A comparative study of two solar sail attitude

control implementations is carried out in [Bladt & Lawrence 2005]. One implementation

employs four articulated reflective vanes located at the periphery of the sail assembly to

generate control torque about all three axes. The second attitude control configuration uses

mass on a gimballed boom to alter the center of mass location relative to the center of pres-

sure producing roll and pitch torque. It also uses a pair of articulated control vanes for yaw

control. The combination of SRP and aerodynamic forces was mainly focused on attitude

control problem [Modi & Pande 1974b, Modi & Pande 1974a, Kumar et al. 2004b]. Modi

and Pande [Modi & Pande 1974a] have stated an altitude of 800 km as the switch-over

point from control based on aerodynamic forces to control using SRP.
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1.2.2.3 Missions using Solar Radiation Pressure

Solar Blade Heliogyro Nanosatellite, ODISSEE, MARINER-2, GOES-10, NanoSail-D,

IKAROS, INSAT are examples of space missions using SRP. Table 1.2 provides details

of some of these missions.

1.3 Problem Statement

The previous section listed the existing research scenario on the application of SRP and

aerodynamic drag for satellite formation flying and attitude control. It is clearly evident

that research has largely been confined to the use of either SRP or aerodynamic drag for

satellite attitude control or formation flying with simpler linear control schemes. Also the

problem of multiple satellite formation flying using either SRP or aerodynamic drag is yet

to be studied. Hence this thesis focuses on the development of a robust nonlinear control

technique of application of SRP or aerodynamic drag for satellite formation and attitude

control. Utilizing these environmental forces for desired control of satellites is a challenging

problem as these disturbing forces are unpredictable in nature. Hence the control scheme

to be used should be robust and also adaptive in nature. The problems to be addressed

can be classified as:

[PROB1] Nonlinear System Equations : The inherent nonlinearity in the dynamics of

satellite systems is one of the challenges to be overcome for successfully developing

a robust system. It is not always the case that a linear model can be built up that

sufficiently and accurately describes the dynamic behavior of the system for a wide

range of operating conditions.

[PROB2] Non-Affine Control Input : An additional complexity involved in the nonlinear

equation of motion used to describe these systems is the means by which the control

input enters the equation of motion. A system where the control inputs do not

appear linearly in the plant falls in the category of non-affine control. For SRP and

aerodynamic drag based propulsion, the control inputs are the angles that define the

orientation of the wings/flaps of the satellite. The control input enters the equations
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Table 1.2: List of missions making use of solar radiation pressure

Property IKAROS ODISSEE Mercury Orbiter

Mass 310 kg 100 kg 235 kg
Shape Cylindrical satellite

with square solar sail
Cuboid satellite; sail
module connected us-
ing a 10m collapsible
mast and a 2DOF ac-
tuator gimbal.

Cuboid satellite; sail
module connected us-
ing a 10m collapsible
mast and a 2DOF ac-
tuator gimbal.

Dimension 1.6 m x 0.8 m 60 cm x 60 cm x 80 cm 60 cm x 60 cm x 80 cm
Orbit Low-thrust Venus fly-

by
Geostationary transfer
orbit

Sun-synchronous polar
orbit

Apogee NA 35883 km (at time of re-
lease after launch)

8790 km

Perigee NA 620 km (at time of re-
lease after launch)

2640 km

Use of Solar
blade/sail

Venus fly-by, followed
by journey to the far
side of Sun using SRP.

Perform attitude con-
trol by gimbaling the
central mast to offset
the CM to CP and gen-
erating external torque
due to SRP

Low-thrust spiral
transfer to Mercury

Dimension
of solar
blades/sail
(L x W x H)

14 m x 14 m x 7.5 µm 40 m x 40 m x 7.5 µm
m

125 m x 125 m

Solar
blade/sail
material

Sail membrane is made
of 7.5 µm thick sheet
of polyamide resin de-
posited with a thin-film
of aluminium.

Carbon fibre reinforced
plastic (CFRP) booms
and sails made of 7.5
µ thick Kapton film,
coated with 0.1 µ alu-
minium reflector on one
side and 0.015 µ thick
chrome emitter on the
other.

CFRP booms and sails
made of Kapton

Mission du-
ration

6 months to reach
Venus, and 3 years to
reach the far side of
the Sun

550 days Lunar polar
flyby

1.8 years to reach Mer-
cury
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of motion as trigonometric functions of the orientation angles. Specifying the control

input angles in closed-loop form presents a challenge.

[PROB3] Model uncertainties and external disturbances : In space applications, con-

trollers designed based on nonlinear spacecraft models can also be imprecise due to

unknown values of some physical parameters, disturbance models, etc. The resulting

mismatch between the model and the real system is referred to as model uncertainty.

The problem of disturbance rejection is particularly pronounced for spacecraft that

operate in the altitude ranges where their dynamics is affected by various environ-

mental and non-environmental disturbances.

[PROB4] Orbit selection and formation design. It is well known that SRP is the dominant

environmental force in the high Earth orbits where as atmospheric drag is dominant

in the low earth orbits. Hence orbit selection and formation trajectory generation

becomes critical so that both the environmental forces can be utilized to its fullest

possible manner.

1.4 Research Objectives

To address the problems presented, this dissertation concentrates on the development of

nonlinear adaptive control laws for multiple satellite formation flying and attitude control.

From practical viewpoint, the main objective is to design control algorithms that are glob-

ally stable and are able to achieve high precision pointing, fast slewing, and large maneuvers

in the presence of external disturbances, and model uncertainties. The main objectives are

identified as:

[OBJ1] Control System Design: In the proposed system, precise system modeling

is not always possible due to the lack of exact knowledge of all the parameters

associated with solar radiation pressure and aerodynamic drag. Hence a robust

closed loop feedback control strategy based on adaptive control theory is developed

(Fig.1.4). The adaptive control law reconfigures the control algorithm using the

adaptive estimates of the unknown parameters. The objective of this control
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methodology is to provide a reliable, and cost-effective control algorithm that

simultaneously accounts for modeling uncertainties and external disturbances as well

as provides the desired system performance.

 

Figure 1.4: Block diagram representation of an Adaptive Control System

[OBJ2] Validation: Dynamic system analysis should be conducted to determine the

effect of parameter uncertainties and external disturbances on the performance and

flight-worthiness of the control system. Validation of the proposed control algorithms

is conducted by means of conventional theoretical analysis, numerical simulation

study, and real-time experimental testing. Principles of nonlinear control theory are

used to demonstrate the AOCS performance and stability. Numerical simulation is

performed to demonstrate the system performance, compliance with design require-

ments, and validate established theoretical framework. An important step involved

in this stage of validation is the selection of feasible orbits and also finalizing the de-

sign parameters for the control flaps (aerodynamic drag plates as well as solar flaps).

Final validation of the proposed control methodology is conducted by hardware-in-

loop (HIL) simulations. Here, since we propose control of the satellite formation and

attitude using maneuverable drag plates/solar flaps, we verify the proposed rotation
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scheme by utilizing a satellite prototype with flat plates attached to its surface. This

satellite prototype is connected in an hardware-in-loop (HIL) arrangement to verify

the satellite formation control system.

1.5 Research Contributions

Acknowledging the advantages of using a passive AOCS, the core of this dissertation con-

centrates on the application of aerodynamic drag or SRP for satellite formation and attitude

control. Nonlinear control laws that are able to incorporate the nonaffine, underactuated

nature of the aerodynamic drag model or SRP model in its formulation are developed. And

finally these robust control algorithms are shown to accomplish different formation config-

urations, perform attitude stabilization as well as maneuvering. The major contributions

of this thesis are as follows:

1. Satellite formation control using aerodynamic drag (Chapter 3)

This dissertation begins by presenting a control methodology for satellite formation

control using aerodynamic drag. Here control authority, achieved by the rotation of

the drag plates, is available only in the along track direction. We make use of the

coupling between the radial and along track direction to develop a nonlinear adaptive

control algorithm that can control the satellite formation. Existing control formu-

lation methods for such underactuated, nonaffine systems are based on linearized

relative motion dynamics and hence work only for a sufficiently small neighborhood

of the origin. A novel control algorithm for multiple satellite formation control using

aerodynamic drag is also developed. This is significant because multiple satellite for-

mation maneuvering for this SFF system is more challenging as the achievable levels

of aerodynamic drag between each follower and the leader are mutually constrained.

Numerical simulations accounting for different formation scenarios under realistic en-

vironmental conditions are carried out. To fully confirm the validity of the proposed

methodology, the drag plate rotation scheme is validated in an HIL arrangement as

well.

2. Satellite formation control using solar radiation pressure (Chapter 4)
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The feasibility of using SRP for formation control in a geocentric orbit is investigated

in this section. Here a nonlinear adaptive control algorithm based on higher order

sliding mode control technique is developed. The system is essentially underactuated,

hence an area control input is introduced. This additional input transforms the

system to a fully actuated system. The performance of the proposed system in the

presence of external disturbance, and parameter uncertainties is examined. Feasibility

of multiple satellite formation flying using solar radiation pressure is also validated

using numerical simulation.

3. Satellite attitude control using aerodynamic drag (Chapter 5))

Satellite attitude stabilization in the local vertical local horizontal (LVLH) frame

using aerodynamic drag is examined in this chapter. Existing literature proposes

only pitch and yaw control using aerodynamic drag. Roll stabilization is usually

achieved by a separate actuator. By developing the control algorithm based on non-

linear theory, here we are able to achieve complete three axis attitude stabilization

using aerodynamic drag. The proposed attitude control system demonstrated robust

performance in the presence of uncertainties and disturbances.

4. Satellite attitude control using solar radiation pressure (Chapter 6)

Satellite attitude stabilization using solar radiation pressure is examined. An adaptive

control algorithm is developed that is able to achieve complete three axis attitude

stabilization. To date, variety of control methods using SRP has been proposed for

attitude control, but it has been confined to the the control of satellite pitch motion.

Here the efficacy of using SRP for three axis attitude control in the presence of

uncertainties and perturbations is verified.

5. Fault Tolerant Satellite Attitude Control Using Solar Radiation Pressure

/ Aerodynamic Drag (Chapter 7)

The performance of the proposed satellite attitude control strategies in the presence

of faults or failures of the drag plates or solar flaps is examined. First, the pitch

attitude performance of the satellite in the presence of faults or failures in the solar

flaps is evaluated. The fault scenarios considered include sudden failure of one of
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the solar flaps, occurrence of an abrupt blockage or loss in effectiveness of one of the

rotating solar flaps, and occurrence of a periodic actuator fault. This is followed by

the evaluation of the performance of the system during three axis attitude control in

the presence of similar failures.

1.6 Thesis Outline

This section outlines the structure of this dissertation. Chapter 2 outlines the dynamics

of satellite formation flying system under the influence of solar radiation pressure, aerody-

namic drag and other external perturbations. The formation flying equations are presented

along with the desired reference trajectories for the leader satellite. A brief outline of slid-

ing mode control technique is provided. An adaptive nonlinear control methodology for

satellite formation flying using aerodynamic drag is presented in Chapter 3. Satellite for-

mation flying using solar radiation pressure, based on control law developed using higher

order sliding mode technique is presented in Chapter 4. Chapter 5 details the results of

satellite attitude control using aerodynamic drag. This is followed by the results of satellite

attitude control using solar radiation pressure in Chapter 6. Chapter 7 examines the satel-

lite attitude system performance in the presence of faults/failures of drag plates or solar

flaps. Chapter 8 concludes this thesis along with suggestions for future work.
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Satellite Formation Dynamics and

Control Methodology

Satellite formation flying (SFF) is defined as two or more satellites flying in a co-

operative manner in prescribed reference orbits at fixed separation distance for a given

period of time. Centralized formation is one of the classifications based on the control

architecture, wherein there is a leader satellite and all other satellites follow the leader

satellite. This configuration is also known as Leader-Follower formation. The SFF system

considered in this thesis is the Leader-Follower configuration. Depending on the purpose of

the formation, different reference trajectories are designed to produce different formation

geometries. In this chapter we derive the mathematical formulation of the SFF system,

including the relations for the different reference trajectories, mathematical formulation

of the perturbations affecting the SFF system and examine the effect of these perturbing

forces on the SFF system.

The chapter is organized as follows: Section 2.1 introduces the equations of motion of

the satellite formation flying system, including the linearized Hill’s or Clohesy-Wiltshire

equations. The mathematical relations of the different reference trajectories are derived

in Section 2.2. Section 2.3 discusses and formulates the different external perturbations

affecting the SFF system. Finally, the underlying concept of sliding mode control, the

control strategy employed throughout this thesis is provided in Section 2.4.

2.1 SFF System Model

We start the mathematical formulation of the SFF system by assuming that the leader and

follower satellites are point masses under the Earth’s central gravitational force of attraction
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(Fig. 2.1). The leader satellite is in an elliptical planar trajectory with the Earth’s center

at one of its foci and a follower satellite is moving in a desired relative trajectory about

the leader satellite. The motion of the follower satellite is described relative to the leader

satellite using a relative local vertical local horizontal (LVLH) frame S − xyz fixed at the

center of the leader satellite with the x-axis pointing along the local vertical, the z-axis

taken along normal to the orbital plane, and the y-axis representing the third axis of the

right-handed S − xyz frame. ~ρ ∈ R3, ~ρ
∆
= [ x y z ]T , defines the relative position vector

of the follower spacecraft from the origin of the leader spacecraft coordinate frame. Both,

~rl and ~rf are expressed in the LVLH frame. In this thesis, the motion along x, y, and z are

referred as radial, along-track, and cross-track motion, respectively.
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Figure 2.1: Geometry of orbit motion of leader and follower satellite. [Kumar 2006]

2.1.1 Equations of Motion

The position vector of the leader satellite in the S − xyz is given as

~rl = rlî (2.1)

and the position vector of the follower satellite in S − xyz frame is given as

~rf = ~rl + ~ρ (2.2)
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Now let us define ~ρ = (xî+yĵ + zk̂) and ~rf = (rl +x)̂i+yĵ + zk̂. The velocity of the leader

satellite is given as

~̇rl = ṙlî + ~ω ×
(
rlî

)
= ṙlî + rlθ̇ĵ (2.3)

The velocity of the follower satellite is given as

~̇rf =~̇rl +~̇ρ = ṙlî + rlθ̇ĵ +
(
ẋî + ẏĵ + żk̂

)
+ θ̇k̂ ×

(
xî + yĵ + zk̂

)
(2.4)

or

~̇rf =
(
ṙl + ẋ− θ̇y

)
î +

(
rlθ̇ + ẏ + θ̇x

)
ĵ + żk̂ (2.5)

Now we use the Lagrange method of deriving the equations of motions, The kinetic energy

of the leader satellite is given as,

T =
1

2
ml̇~rl

2
=

1

2
ml

(
ṙ2
l + θ̇2r2

l

)
(2.6)

and the potential energy is given as

U =
−µml

‖rl‖ =
−µml

rl

(2.7)

Now calculating L = T − U , we get

L = T − U =
1

2
mlṙl

2 +
1

2
mlθ̇

2r2
l +

µml

rl

(2.8)

Now taking the partial derivatives of L, as follows, ( d
dt

(
∂L
∂ṙl

)
− ∂L

∂rl
) and ( d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
), we

get

r̈l = θ̇2rl − µ

rl
2

(2.9)

rlθ̈ = −2θ̇ṙl (2.10)

These form the equations of motion of the leader satellite. Next we derive the relative

equations of motion of the follower satellite in similar manner. First the kinetic energy is
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calculated and is given as

T =
1

2
mf~̇r

2
f (2.11)

and the potential energy is given as

U =
−µmf

‖rf‖ (2.12)

Now taking the partial derivatives of L with respect to x, y, z, ẋ, ẏ, and ż, and performing

some manipulations we get the relative equations of the follower satellite. The complete

nonlinear relative equations of motion of the leader and follower satellites can now be

written along with the force and disturbance terms as follows,

r̈l − rlθ̇
2 +

µe

r2
l

= 0 (2.13)

rlθ̈ + 2θ̇ṙl = 0 (2.14)

mf ẍ− 2mf θ̇ẏ −mf

(
θ̇2x + θ̈y

)
+ mfµe

(
rl + x

r3
f

− 1

r2
l

)
= fx + fdtx (2.15)

mf ÿ + 2mf θ̇ẋ + mf

(
θ̈x− θ̇2y

)
+ mf

µe

r3
f

y = fy + fdty (2.16)

mf z̈ + mf
µe

r3
f

z = fz + fdtz (2.17)

where rf = [(rl + x)2 + y2 + z2]1/2 is the position of the follower satellite, fdtj is the net

relative perturbations acting on the SFF system, and fj are the components of the control

input vector, for j = x, y, z. This mathematical model for SFF is also referred to as the

“true model” [Vaddi 2003].

2.1.2 Hill-Clohessy-Wiltshire Equations

Satellite formation flying is principally concerned with the relative motion of the follower

satellite with respect to the leader, most commonly expressed in the rotating Hill reference

frame. Although the actual relative dynamics of the follower satellite are nonlinear as well

as nonperiodic, a set of linearized ordinary differential equations which approximate the

full dynamics and have periodic solutions can be derived. These are commonly referred
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to as the Hill-Clohessy-Wiltshire (HCW) equations. The homogeneous form of the HCW

equations is given as [Hill 1878, Clohessy & Wiltshire 1960]:

ẍ− 2θ̇ẏ − 3θ̇2x = 0

ÿ + 2θ̇ẋ = 0

z̈ + θ̇2z = 0

(2.18)

The simplifying assumptions made during the derivation affects the accuracy of the HCW

equations. The assumptions include no external perturbations, the leader is assumed to be

in a circular orbit around the Earth, and also require that the relative distance between

the leader and the follower is much smaller than that of the orbital radius of the leader.

However, the HCW equations are useful in control algorithm design and their periodic

solutions help in deriving basic reference trajectories for the controller to track during near

circular formation flying.

2.2 Desired Formation Geometry

Formation flying guidance is defined as the generation of any reference trajectories used

as a input for a formation member’s relative state tracking control law [Scharf et al. 2004].

We consider three different formation flying designs. They are the along track formation,

circular formation and the projected circular formations. In along track formation the

follower satellite shares the same ground track as the leader satellite. The follower has to

keep a constant desired along track separation with respect to the leader,. Mathematically

it is represented as yd = rd, where rd is the desired separation between the leader and

follower satellites in the along track direction. Fig. 2.2 shows a pictorial representation of

along track satellite formation.

The desired states, (xd, ẋd, yd, ẏd, zd, żd), of circular formation and projected circular

formation are derived from Hill’s equations analytically or geometrically [Sabol et al. 2001].

The mathematical formulation of the these two desired trajectories are as follows:

1. Circular Formation: In this formation, the leader and the follower satellite maintain

a constant separation from each other in three-dimensional space and the formation is
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Figure 2.2: Along track formation (Courtesy of NASA)

mathematically defined as x2 +y2 + z2 = r2
d. The relative motion in the radial/along-

track (x/y) plane is fixed in eccentricity [Sabol et al. 2001]. The equations of desired

circular trajectory are given as follows,





xd

yd

zd





=
rd

2




sin
(
θ̇t + φ

)

2 cos
(
θ̇t + φ

)
√

3 sin
(
θ̇t + φ

)


 (2.19)

where rd is the formation size for circular and projected circular formations, φ is

the in-plane phase angle between the leader and the follower satellites, and θ̇ is the

mean angular velocity and equals to
√

µe/a3
c (µe is the gravitational parameter of the

Earth; ac is the semi-major axis of the leader satellite) [Yan et al. 2009].

2. Projected Circular Formation: In this formation, the leader and the follower satellite

maintains a fixed relative distance when the formation is projected onto the along-

track/cross-track (y − z) plane. This configuration finds applications for ground

observing Synthetic Aperture Radar (SAR) missions. Since most SAR applications

target objects on the surface of the Earth,it is desirable to achieve a formation plane
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perpendicular to the radial vector in order to have a field of view that has its target

on the Earth. Fig. 2.3 represents the projected circular formation scheme. Mathe-

matically it is defined as y2 + z2 = r2
d.





xd

yd

zd





=
rd

2


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sin
(
θ̇t + φ

)

2 cos
(
θ̇t + φ

)

2 sin
(
θ̇t + φ

)


 (2.20)

Figure 2.3: Projected circular formation.
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2.3 External Perturbations

The disturbances terms in Eqs. (2.15)-(3.5),fdtj for j = x, y, z constitute time-varying

quantities attributed to gravitational field, solar radiation pressure, aerodynamic drag and

third body perturbations. For a satellite in low Earth orbit, the second zonal harmonic (J2)

of the oblate Earth’s potential distribution is by far the most dominant perturbation force

followed by aerodynamic drag and solar radiation pressure. The disturbance accelerations

due to J2 are at least an order of magnitude larger than the other perturbations such

as third-body gravitational effects, drag due to residual atmosphere, and solar radiation

pressure [Sabol et al. 2001]. The effects of the Earth’s oblateness on the formation geometry

are: 1) precession of the orbital plane leading to differential changes in the right ascension of

the ascending node, and 2) secular changes in the argument of perigee and mean anomaly

due to rotation of the line of apsides in the orbital plane. Next, we derive the relative

acceleration components due to J2 in the LVLH frame. The leader satellite (~rl) and follower

satellite (~rf ) positions in the LVLH frame are given by

~rl =
[

rl 0 0
]T

and ~rf =
[

rl + x y z
]T

(2.21)

and the transformation matrix, TIB required to convert these positions from the relative

frame to the Earth-centered inertial frame of reference is obtained by using the following

rotation sequence

TIB = T3(Ωl)× T1(il)× T3(ωl + θ) (2.22)

Using the transformation matrix, TIB, along with Eq. (2.21),

~Rl = TIB ~rl and ~Rf = TIB ~rf (2.23)

we obtain the positions of the leader satellite (~Rl = [Xl, Yl, Zl]
T ) and the follower satellite

(~Rf = [Xf , Yf , Zf ]
T ) in the ECI frame. The perturbations due to J2 in the ECI frame for
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the leader and follower satellites are given by [Schaub & Junkins 2003]

~J
2l

= −3µeJ2R
2
e

2
∥∥∥~Rl

∥∥∥
5



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(2.24)

where µe is the Earth’s gravitational parameter, Re is the radius of the Earth, and J2 is

second zonal gravitational coefficient, J2 = 1.08263×10−3. The full effects of differential J2

can be added to the nonlinear relative mathematical model by transforming the disturbance

forces from the Earth-centered inertial frame to the relative reference frame. Therefore,

the external disturbance forces in Eqs. (2.15)-(3.5) is given by

~Fd = T−1
IB [ ~J2f − ~J2l] (2.25)

Figure 2.4 shows the force profile of differential J2 acceleration acting on the follower

satellite in a projected circular formation of size (rd = 0.5 km) around a leader satellite in

a circular orbit at an altitude of 500 km with an orbital inclination, il of 45◦. Figure 2.5

illustrates the growth in relative error (the difference between follower satellite’s relative

state and the desired state) due to the J2 perturbation acting on an uncontrolled 500 m

projected circular formation. It can be observed from Figure 2.5 (a) that the secular drift

occurs in all coordinates directions and Figure 2.5 (b) indicates the slow phase shift in the

relative orbit.

2.3.1 Aerodynamic Drag Model

Next we study the aerodynamic drag models. Aerodynamic drag has substantial influence

on the motion of the near-Earth satellites. There are two extremes when discussing how
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Figure 2.5: Relative error due to J2 disturbance.
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particles impact a flat surface and how momentum is transferred from the collision of

these particles. These are specular and diffuse. Under the specular reflection concept,

each molecule bounces off the surface with no change in energy. The angle of reflection

equals the angle of incidence. Momentum transfer therefore takes place normal to the

surface. In practical situation very few molecules experience specular reflection, Most of

the molecules becomes at least partially accommodated to the surface. Diffuse reflection

suggests that all the incoming molecules are completely accommodated to the surface.

Reality falls somewhere in between specular and diffuse reflection. Two of the commonly

used aerodynamic models are the free-molecular aerodynamic force model and a more

simplified aerodynamic force model

2.3.1.1 Simplified Aerodynamic Force Model

First we consider the simplified aerodynamic force model. It is expressed in terms of the

drag, i.e. the force parallel to the satellite velocity direction. The vector equation for

computing the drag force is given as [Kumar 2006],

~FD = −1

2
ρCDAV 2

rel V̂rel (2.26)

where CD is the drag coefficient, ρ is the atmospheric density, and A is the projected area

of the satellite normal to ~Vrel. ~Vrel is the relative velocity of the satellite with respect to

the atmosphere. The relative velocity can be represented by

~Vrel = [1− (ωER/V ) cos i] ~V (2.27)

where ωE is the Earth’s rotation rate, V̂rel =
~Vrel

Vrel

is the velocity vector of the surface

element with respect to the atmosphere, and i is the orbit inclination. The drag force,
~FD, thus acts in the direction opposite to the relative velocity, ~Vrel. The coefficient CD is

dependent on the geometry of the satellite and varies with altitude, and the satellite angle

of attack. At orbital altitudes the large mean free path makes turbulent mixing of the
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atmosphere ineffective, so the density distribution is governed by the relation:

ρ = ρ0 exp

(
−y − y0

H

)
(2.28)

where y is an altitude above a reference surface (Earth), y0 is the altitude at geocentric

distance r0 which has density ρ0, and H is the scale height given by

1

H
=

1

h
− 2

r0

, h =
R0T

Mg
(2.29)

where T is the local atmospheric temperature, M is the molecular mass, and R0 is the uni-

versal gas constant. The density model given by Eq. (2.28) is also known as the exponential

density model. The density scale height H governs the rate of decrease of density and has

a firm temperature dependence. Most uncertain parameter in the aerodynamic force equa-

tion is the atmospheric density. Various density models are currently available, but the two

of the most widely used density models are the exponential density model (Eq. 2.28) and

the NRLMSISE-00(United States Naval Research Laboratory Mass Spectrometer and Inco-

herent Scatter Radar Exosphere) model [Picone et al. 2000]. NRLMSISE-00 model is one

of the widely used empirically derived aerodynamic drag force models and considered to be

more accurate especially at higher altitudes. The model utilizes atmospheric composition

data from instrumented satellites and temperatures from ground-based radars as well as

extensive set of parametric equations, of which the parameters have been determined using

large historical data sets and also depend on latitude, local time, day of the year, solar ac-

tivity index (F10.7) and geomagnetic activity index (Ap) [Picone et al. 2000]. Figure (2.6)

shows the variations in the density profiles of the exponential and NRLMSISE-00 model.

2.3.1.2 Free Molecular Aerodynamic Force Model

The second aerodynamic model is the free molecular aerodynamic force model. Based on

the free-molecular force model, the force on a flat surface of area A is given by the vector

equation [Kumar 2006],

~F = A
[
−n̂p +

(
n̂ sin α− V̂rel

) ( τ

cos α

)]
(2.30)
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Figure 2.6: Variation of density with altitude.

where p is the total pressure, τ is the shearing stress, V̂rel =
~Vrel

Vrel

is the velocity vector

of the surface element with respect to the atmosphere and n̂ is the outward pointing unit

normal vector. The total pressure p and the shearing stress τ are given by [Gombosi 1994]

p

q∞
=

{[
2− σn√

π

]
sin ζ +

σn

2s

√
Ts

Ta

} {
1

s
e−s2sin2ζ +

√
π [1 + erf (s sin ζ)] sin ζ

}

+

[
2− σn

2s2

]
[1 + erf(s sin ζ)]

τ

q∞
= σt

{
1

s
√

π
e−s2sin2ζ + [1 + erf (s sin ζ)] sin ζ

}
(2.31)

where σn and σt are the normal and tangential accommodation coefficients, Ts is the

absolute temperature of the satellite surface, Ta is the atmospheric temperature, q∞ is

the dynamic pressure given by q∞ = 1
2
ρV 2

rel, and erf(x) is the error function defined by

erf(x) = 2√
π

∫ x

0
e−y2

dy and s is the air speed nondimensionalized by the mean molecular

speed of the atmosphere.

As mentioned earlier, the satellite orbit contracts under the influence of aerodynamic
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drag. The effect on the satellite altitude is less in the higher orbits, but the orbit is

appreciably affected by drag at lower orbits. Figure (2.7) illustrates the orbital decay of a

10 kg satellite at an initial orbit of 500 km and with an exposed surface are of 1 m2. The

Solar Radio Flux (F10.7) index is set to 120 and the Geomagnetic Index (Ap) has a value

of 3. It can be observed that initially there is a linear decay rate, but at lower orbits the

decay rate demonstrates exponential increase. Figure (2.8) shows the decay rate over the

satellite life time.
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Figure 2.7: Orbit decay under the influence of aerodynamic drag.

In this dissertation, we propose the use of differential force to maintain the SFF system.

In the case of aerodynamic drag, this differential force is created by maneuvering the drag

plates attached to the leader and follower satellites in the formation. The differential force

is given as (~FDf − ~FDl), where ~FDf and ~FDl represents the force due to aerodynamic drag

on the follower and leader satellites respectively. Figure (2.9) shows the error in the relative

position of the follower satellite under the influence of the differential aerodynamic drag in

a projected circular formation of size 0.5 km.
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Figure 2.8: Orbit decay rate under the influence of aerodynamic drag.

In addition to the aerodynamic drag, which acts in a direction opposite to the satellite’s

motion,there is also an aerodynamic lift force acting in a direction perpendicular to the

satellite’s motion. The value of the lift force depends on the orientation of the satellite,

geometry and angle of attack. According to Karr [Karr & Cleland 1975], for an energy

accommodation factor of 0.9, the value of the lift to drag ratio for a flat plate is less than

0.1 and hence the effects of lift is neglected.

2.3.2 Solar Radiation Pressure Model

The solar radiation pressure force is the largest perturbation acting on high Earth orbit

satellites next to the gravitational perturbations from the Earth, Sun, and Moon, and

it is the cause of largest error in the modeling of satellite orbital dynamics. The more

traditionally developed optical force model assumes that the solar flaps are flat and includes

the optical and thermal properties of the surface of the flaps. Here the force exerted on

a non-perfect solar flap is obtained by considering reflection, absorption and re-radiation

by the flap and is also parameterized by a number of coefficients representing the optical
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Figure 2.9: Relative positions of a follower satellite under the influence of differential aero-
dynamic drag with formation size rd = 0.5 km

properties of the flap. Considering the reflectance, absorption, and emissivity of the flap,

the total force exerted due to SRP can be written as

f = fr + fa + fe (2.32)

where fr is the force due to reflection, fa is the force due to absorption, and fe is the force

due to emission due to re-radiation. From Fig. (2.10) it can be observed that, the SRP

force acting on a flat surface in terms of normal and transverse components is given by

~F = Fnî + Ftĵ (2.33)

Fn

pA
= (1 + ρrρs) cos2α + Bfρr (1− ρs) cos α +

efBf − ebBb

ef + eb

(1− ρr) cos α (2.34)
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Figure 2.10: Force on a non-perfectly reflecting solar flap.

Ft

pA
= (1− ρrρs) cos α sin α (2.35)

Here Bf and Bb are non-Lambertian coefficients for front and back surfaces, ef and eb are

front and back surface emission coefficients, ρr is the reflectivity of the front surface, ρs is

the specular reflection coefficient, and α is the pitch angle of the solar flap relative to the

Sun-line. Due to optical absorption, the realistic solar flap has a center-line angle, which

is the angle between the force vector and the flap normal and is given by

tan ϕ =
Ft

Fn

(2.36)

Two material property parameters which totally account for the effects of absorption, spec-

ular and diffuse reflection and thermal emission on thrust and moments are, γ = ρrρs, the

fraction of the incident flux that is specular reflected and β given by

β = Bfρr (1− ρs) +
efBf − ebBb

ef + eb

(1− ρr) (2.37)
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which is the fraction of the incident flux that contributes to thrust from diffuse reflection

and thermal re-emission. Based on JPL calculations for comet Halley rendezvous study

[Wright 1992], the optical parameters for an ideal and non-ideal solar flap are shown in

Table 2.1. Assuming that the surface is ideal, the force due to SRP acting on an ideal

Table 2.1: Optical Coefficients.

ρr ρs ef eb Bf Bb

Ideal 1 1 0 0 2/3 2/3
Non-Ideal 0.88 0.94 0.05 0.55 0.79 0.55

reflecting surface simplifies to a force acting normal to the flap given as,

F = Fn = 2pAcos2α (2.38)

Fig. (2.11) shows the error in the relative position of the follower satellite under the

influence of the differential SRP in a projected circular formation of size 10 km.

2.4 Control Methodology

It is evident from Figs. (2.9) and (2.11), that the formation system is adversely affected

by differential aerodynamic drag and SRP. Hence, a suitable control technique is required

to make use of these differential forces to control the relative states of the formation. In

this thesis, we consider sliding mode control (SMC) technique. SMC is a subset of the

variable structure control (VSC) technique. Here a control algorithm is derived such that

it is deliberately altered during the control process based on predefined rules which depend

on the state of the system. For the purpose of illustration consider the following linear

time-invariant system in state-space form ([Edwards & Spurgeon 1998b]):


 Ẋ1

Ẋ2


 =


 0 1

0 0





 X1

X2


 +


 0

1


 U (2.39)
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Figure 2.11: Relative positions of a follower satellite under the influence of J2 and differ-
ential SRP with formation size rd = 10 km.

where X ∈ R2 = [X1, X2]
T is the state vector, and U is a scalar control input. Next, define

a linear sliding surface given by

S = X2 + pX1 (2.40)

where p is a positive design scalar. Consider the VSC control law given by

U = −η sgn(S) =




−η if S > 0

η if S < 0
(2.41)

where η is a positive design scalar that has a direct effect on the rate at which the sliding

surface can be reached. The expression given by Eq. (2.41) is used to control the double

integrator given by Eq. (2.39). The phase portrait of the closed-loop system obtained

from using the control law given by Eq. (2.41) with p = 1 and η = 2 and different initial

conditions is shown in Fig. (2.12). The inclined line (S = X2+pX1) in Fig. 2.12 represents

the set of points for which S = 0; in this case a straight line through the origin of gradient
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Figure 2.12: Phase portrait of the double integrator under VSC.

−p. This line divides the phase plane into four regions given by

I : X1 > 0, S > 0 and II : X1 > 0, S < 0

III : X1 < 0, S < 0 and IV : X1 < 0, S > 0
(2.42)

For a given initial state, the control input U drives the system trajectory towards the line

S = 0. For values of X2 satisfying the inequality p |X2| < η,

S Ṡ = S[pX2 − η sgn(S)] < |S|(p|X2| − η) < 0

Therefore,

lim
S→0+

Ṡ < 0 and lim
S→0−

Ṡ > 0 (2.43)

Consequently, when p |X2| < η the system trajectories on either side of the line S = 0

point towards the line. This is demonstrated in Fig. 2.12 which shows the phase portraits

intercepting the line S = 0 from different initial conditions. The condition given by S Ṡ < 0

is referred to as the reachability condition. The trajectory of the system confined to the

sliding surface, S = 0, satisfies the differential equation obtained from rearranging the
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terms in Eq. (2.40) for S = 0.

Ẋ1 = −pX1 (2.44)

This represents a first-order decay and the trajectories of the system will ‘slide’ along the

line S = 0 to the origin. Such dynamical behavior is described as an ideal sliding mode and

the line S = X2 + pX1 is termed the sliding surface. During sliding motion, lower-order

dynamics dominate the behavior of the system independent of the control. Therefore, the

control action only ensures that the sliding surface is reached and the conditions given by

Eq. (2.43) are satisfied. The dynamic performance of the system is governed by the choice

of the parameter p in the sliding surface. The finite-time (tr) convergence of the system

trajectories to the sliding surface (reaching time) can be shown by recalling that

S Ṡ ≤ −η|S| (2.45)

Dividing by |S| and integrating both sides of Eq. (2.45) between 0 and tr gives

tr∫

0

S

|S| Ṡ dτ ≤ −
tr∫

0

η dτ

|S(tr)| − |S(0)| ≤ −η tr (2.46)

Since |S(tr)| = 0, the reaching time is given by

tr ≤ |S(0)|
η

(2.47)





Chapter 3

Satellite Formation Control Using

Aerodynamic Drag

FEASIBILITY of achieving robust satellite formation control using aerodynamic drag

is explored in this chapter. The recently launched TanDEM-X with TerraSAR-X

[Krieger & Zink 2007], Tango and Mango of the PRISMA mission [SSC 2010] and Earth

Observing Satellite-1 with Landsat-7 [Folta & Hawkins 1996], constitute the only three oc-

casions when satellite formation flying was performed. On both occasions, along track

formation was carried out. The main challenge in such SFF mission involves controlling

the relative positions of the satellites in the presence of external disturbances i.e., gravita-

tional perturbation (including the Earth’s oblateness (J2-effect)), aerodynamic drag, solar

radiation pressure, and third body perturbations. The effect of these external disturbances

were analyzed in Chapter 2. In this chapter, a methodology to achieve coordinated multiple

satellite formation flying using differential aerodynamic drag is proposed. The satellite’s

relative orbit is controlled by rotating the drag plates attached to the satellites and thereby

varying the aerodynamic drag experienced by each satellite. This in turn generates relative

differential accelerations among the satellites in the formation. A control algorithm based

on sliding mode control (SMC) technique is used to develop the steering law for the drag

plates. The proposed method can only be used in low Earth orbit (LEO) missions.

The chapter is organized as follows: Section 3.1 introduces the nonlinear mathematical

model of the SFF system. Control laws along with the observer design are described in

Section 3.2. For a detailed assessment of the system performance under the proposed control

strategies, the results of numerical simulations incorporating different formation scenarios

are presented in Section 3.3. The conclusions of the present study are summarized in

Section 3.4.
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3.1 SFF Model and Systems Equations of Motion

The investigation is initiated by formulating the nonlinear equations of motion of the SFF

system.

3.1.1 Coordinate Frames and Equations of Motion

The SFF system comprises a leader satellite and a follower satellite as shown in Fig.2.1.

To initiate the study, we recall the assumptions from Chapter 2, i.e., the leader satellite is

in a reference orbit that is assumed to be planer and defined by a radial distance from the

center of the Earth and a true anomaly, and the follower satellite is moving in a relative

trajectory about the leader satellite. The orientation of the relative frame that is fixed

at the leader satellite is such that the x -axis points along the local vertical, the z -axis is

taken along normal to the orbital plane, and the y-axis represents the third axis of this

right-handed frame. The equations of motion of the follower satellite reproduced here. The

orbital equations of motion for the leader satellite is given by Eqs.(3.1) and (3.2), and the

relative equations of motion in the radial, along track and cross track directions are given

by Eqs.(3.3) and (3.5):

r̈l − rlθ̇
2 +

µe

r2
l

= 0 (3.1)

rlθ̈ + 2θ̇ṙl = 0 (3.2)

mf ẍ− 2mf θ̇ẏ −mf

(
θ̇2x + θ̈y

)
+ mfµe

(
rl + x

r3
f

− 1

r2
l

)
= fx + fdtx (3.3)

mf ÿ + 2mf θ̇ẋ + mf

(
θ̈x− θ̇2y

)
+ mf

µe

r3
f

y = fy + fdty (3.4)

mf z̈ + mf
µe

r3
f

z = fz + fdtz (3.5)

where rl is the radial distance from the center of the Earth, and r =
[
(rl + x)2 + y2 + z2

] 1
2 .

fj and fdtj denote the control and disturbance forces along the j -axis, j= x,y,z, respec-

tively. However, in this study, control force is available only in the y-axis. This force, fy, is

created by the drag plates on the satellites while the disturbance force, fdtj, is attributed
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to gravitational perturbation, solar radiation pressure, aerodynamic drag, third body per-

turbations and the Earth’s oblateness effect. Since aerodynamic drag is considered as the

control input, only disturbing effect from that will be the variation in atmospheric density.

3.1.2 Aerodynamic Drag Model

Follower Satellite

Leader Satelite

x

z

y

Drag Plate

α

Figure 3.1: Pictorial representation of the formation system.

The aerodynamic drag has a substantial influence on the motion of the near-Earth

satellites. The aerodynamic force in continuum flow can be expressed in terms of the

drag, i.e. the force parallel to the atmospheric velocity direction. The vector equation for

computing the drag force is
~FD = −1

2
ρCDA| ~Vrel|2 V̂rel (3.6)

where CD, is the drag coefficient, ρ, is the atmospheric density, and A is the projected area

of the satellite normal to ~Vrel. ~Vrel, is the relative velocity of the satellite with respect to

the atmosphere and V̂rel is a unit vector in the direction of the satellite’s velocity. The drag

force, ~FD, thus acts in the direction opposite to the relative velocity, ~Vrel. The coefficient

CD is dependent on the geometry of the satellite and varies with altitude, and the angle

of attack. The differential drag created by the drag plates attached to the satellites in the

formation can be formulated using Eq. (3.6), and the force (fy) in Eq.(3.4) acting on the

follower satellite is given by

fy = FDf
− FDl
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fy = −1

2
ρfCdV

2
frelAf sin αf −

(
−1

2
ρlCdV

2
lrelAl sin αl

)
(3.7)

where ρj, Vjrel, Aj, αj, for j = f, l correspond to the local atmospheric density, the rela-

tive velocity of the satellite with the local atmosphere, the area of the drag plate for the

follower and leader satellites, respectively. The drag plates are assumed to be of negligible

thickness. A pictorial representation of the system is shown in Fig.3.1. Similar satel-

lite formation control with only along- track force has been considered in previous works

([Kumar et al. 2007c],[Starin et al. 2001]).

3.2 Design of Control Law

The control objective here is to determine the orientation of the drag plates (αf ,αl) which

will drive the follower satellite to the desired formation trajectory with respect to the leader

satellite in the presence of external disturbances and initial deployment errors. We develop

a control law based on SMC technique. Considering the mathematical formulation of the

leader follower SFF model and aerodynamic drag model presented in the previous section,

we define the relative state vector and the desired relative trajectory as, X (t), Xd (t) ∈ R4

respectively. The performance measure is defined as the tracking error, e (t) ∈ R4,

e (t) , X (t)−Xd (t) (3.8)

The objective is to develop a control algorithm for Eqs.(3.3) and (3.4) in the SFF system

such that the control force fy drives the relative states of the system to the desired relative

trajectories as t →∞, and thereby the tracking errors, Eq.(3.8), converges to zero.

In order to simplify the control law design, we consider αf = α0 + δα/2 and αl =

α0 − δα/2, where α0 is the initial orientation of the drag plates. Assuming the first order

approximation for the differential drag plate’s orientation δα, and considering the param-

eters ρj, Vjrel, Aj, for j = f, l are same for both the leader and follower satellites (ρj = ρ,

Vrj = Vr, Aj = A, for j = f, l) into Eq.(3.7), we have

fy = − 1

2
ρCdV

2
relA cos α0δα (3.9)
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Please note that these assumptions on the aerodynamic drag system parameters are

applied only during the control law formulation but not considered during the numerical

simulations.

Next we present the design procedure to implement SMC for changing δα to achieve

satellite formation control. The overall design can be divided into two main steps. (i) A

stable sliding surface/manifold is designed such that this surface will ensure that the follower

satellite dynamics precisely tracks the desired trajectory once the system is restricted to that

manifold. (ii) A feedback control algorithm that can drive the relative states to the sliding

manifold in finite time and maintain it on the manifold is derived. The sliding manifold

should be designed such that not only the closed loop system stability is guaranteed in the

presence of unmatched perturbations, but also the desired dynamic behaviour should be

exhibited when the dynamics of the system is on the sliding manifold.

3.2.1 Design of Sliding Manifold

The sliding manifold is designed using the linear representation of the nonlinear system

equations of motion Eqs.(3.3) and (3.4),(i.e., Hill’s Equations [Hill 1878] or the Clohessy-

Wiltshire equations (HCW) [Clohessy & Wiltshire 1960]), that can be represented in terms

of new coordinates p1 ∈ R3×1 and p2 ∈ R as follows:


 ṗ1

ṗ2


 =


 A11 A12

A21 A22





 p1

p2


 +


 0

B


 U (3.10)

where p1 = [x, y, ẋ], is the state vector associated with the states that are not under explicit

control authority called the unactuated states, p2 = ẏ, is the system state under explicit

control authority called the actuated state, U = δα, and

A11 =




0 0 1

0 0 0

3θ̇2 0 0


 ; A12 =




0

1

2θ̇


 ; A21 =

[
0 0 − 2θ̇

]

A22 =
[

0
]
; B =

[
−ρ

2
CdV

2
relA cos α0

]
(3.11)



50 Chapter 3. Satellite Formation Control Using Aerodynamic Drag

Note θ̇ is a constant given by
√

µ/a3
c . Carrying out a similar transformation on the

desired trajectory relations, Eqs.(2.19) and (2.20), we have Xd =
[
pd

1, p
d
2

]T . Thus, the

desired trajectory after the transformation can be obtained as,


 ṗd

1

ṗd
2


 =


 Ad

11 Ad
12

Ad
21 Ad

22





 pd

1

pd
2


 (3.12)

Based on Eqs.(3.11) and (3.12), the following error dynamics can be formulated:

ė1 = A11e1 + A12e2 + Ā11p
d
1 + Ā12p

d
2

ė2 = A21e1 + A22e2 + BU + Ā21p
d
1 + Ā22p

d
2

(3.13)

where Āi j = Ai j −Ad
i j or i, j=1,2 and ei = pi − pd

i . By utilizing the coupling between the

actuated and the unactuated states, the sliding surface, S can be defined as a function of

the tracking errors and the desired states as follows:

S =
{
e1 ∈ R3×1, e2 ∈ R : e2 + Ke1 = 0

}
(3.14)

where K ∈ R1×3 is a weighting matrix. The sliding motion starts as soon as the system

reaches the sliding surface, S = 0∀t > tr, where tr is the reaching time and the system

dynamics is governed by the following relation

e2 = −Ke1 (3.15)

From Eq.(3.15) it can be observed that the error state e2 manifests as a control signal to

stabilize e1 during ideal sliding mode behaviour, i.e., S = 0. Furthermore, Eq.(3.15) holds

only on the sliding surface and substituting this relation to the reduced order system in

Eq.(3.13) yields

ė1 = (A11 − A12K) e1 + Ā11p
d
1 + Ā12p

d
2 (3.16)

As per the preceding Eq.(3.16), the choice of sliding surface is governed by the suitable

selection of weighting matrix K which affects the dynamics of the reduced order system.

The weighting matrix K can be determined by any classical control methods such that
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Eq.(3.16) is Hurwitz. Here the weighting matrix K is designed using the linear quadratic

regulator method.

3.2.2 Control Formulation

Here an adaptive control algorithm that will manoeuvre the system trajectories to the

sliding manifold is designed. In the SFF system controlled by aerodynamic drag, param-

eter uncertainties such as aerodynamic density, relative velocity and drag coefficient can

adversely affect the performance of the system if not appropriately addressed. In the adap-

tive control methodology the unknown or slowly time-varying parameters are estimated

online and these estimated quantities are used in place of the uncertain parameters in the

feedback control law. In order to design control algorithm, the equations of motion that

are of interest in this study Eqs.(3.3) and (3.4) are rewritten in the form:

Ẋ = AX + E (X) + CU + DFdt (3.17)

where

X =




x

y

ẋ

ẏ




; A =




0 0 1 0

0 0 0 1

3θ̇2 0 0 2θ̇

0 0 − 2θ̇ 0




; E(X) =




0

0

µ
(

1
r2
c
− (rc+x)

r3

)
− 2θ̇2x

θ̇2y − µy
r3




C =




0

0

0

B




; D =




0 0

0 0

1 0

0 1




Here the nonlinear terms in the equations of motion have been lumped into E (X), A

represents the linear part of the system, C is the control matrix, where B is as shown in

Eq.(3.11), U is the control input, and Fdt the differential perturbation forces. The control

law is derived such that, the system response during the transient phase is improved and

the closed loop system is maintained on the sliding surface at all time. Next we make use



52 Chapter 3. Satellite Formation Control Using Aerodynamic Drag

of the estimates on the upper-bound of the uncertainties and perturbation on the system

to design the control algorithm. It is assumed that the nonlinear component, E (X), in the

equations of motion are bounded and the choice of the desired reference trajectories, Xd,

impose the following constraint given by,

‖E (X)‖ ≤ d2 ‖X‖ and ‖Xd‖ ≤ d1 (3.18)

where d1 > 0 and d2 is the Lipschitz constant of the nonlinear vector field associated

with E (X). This information is found by varying the formation disc size from 1 km to

150 km and choosing the maximum value, i.e., max (‖E (X)‖ / ‖X‖) [Vaddi 2003]. All the

external perturbations such as J2, solar perturbations, and magnetic forces, are assumed

to be bounded as well and included in the following chosen uncertainty bound (with scalar

constants d3, d4 >0).

‖Fdt‖ 6 d3 ‖X‖+ d4 (3.19)

Next the adaptive control algorithm is derived. Here the parameter B given in Eq.(3.11),

is assumed as an unknown quantity and is hence estimated online and then used in the

control algorithm. The sliding manifold derived in Eq.(3.14) is rewritten as

S =
{
e ∈ R4×1 : Λe = 0

}
(3.20)

where Λ = [K 1] = [K1 K2 K3 1] and ei = pi − pd
i for j = 1,2. Its derivative is obtained

as

Ṡ = Λė (3.21)

Now consider the Lyapunov candidate function defined as follows,

V =
1

2
ST S +

1

2γ
B̃T B̃ (3.22)

where V > 0 and γ is a positive constant. Taking the derivative of V along its trajectories

yields,

V̇ = ST Ṡ +
B̃

˙̂
B

γ
(3.23)
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Substituting Eq.(3.21), in Eq.(3.23) and expanding we get,

V̇ = ST Λė +
B̃

˙̂
B

γ
(3.24)

or

V̇ = ST
[
ΛAX + BU + Λ (E (X) + DFdt)− ΛẊd

]
+

B̃
˙̂

B

γ
(3.25)

Taking the parameter estimation error as B̃ = B̂−B (estimate - true value), and expanding

Eq.(3.25), we have

V̇ = ST
[
ΛAX +

(
B̂ − B̃

)
U + Λ (E (X) + DFdt)− ΛẊd

]
+

B̃
˙̂

B

γ
(3.26)

Rearranging the preceding Eq.(3.26) yields,

V̇ = ST
[
ΛAX + B̂U + Λ (E (X) + DFdt)− ΛẊd

]
− ST B̃U +

B̃
˙̂

B

γ
(3.27)

Now the bounds on the uncertainties and nonlinear components, given by Eqs.(3.18) and

(3.19), can be combined together and written as

‖L‖ ≤ (d3 + d2) ‖X‖+ (d4 + d1) ≤ d (1 + ‖X‖) (3.28)

where

L = Λ (E (X) + DFdt)− ΛẊd

Therefore Eq.(3.27) can be written as

V̇ = ST
[
ΛAX + B̂U + ‖L‖

]
− ST B̃U +

B̃
˙̂

B

γ
(3.29)

Now in order to make V̇ negative, choose the adaptive law as

˙̂
B = γST U (3.30)
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Also let

ΛAX + B̂U = −ηsgn (S) (3.31)

where η is a positive constant and η » sup ‖L‖. Substituting Eqs.(3.31) and (3.30) into

Eq.(3.29) we have,

V̇ = ST [−ηsgn (S) + ‖L‖] (3.32)

Thus, V̇ is negative and hence the reaching condition is satisfied. Using Theorem-3 of

LaSalle’s principle [LaSalle 1960] it is proved that the system is completely stable and

hence the system states converge onto the sliding surface which is the invariant set here.

Next, Eq.(3.31) is rearranged to derive the control law as,

U = − 1

B̂
[ηsgn (S) + ΛAX] (3.33)

It is to be mentioned that the system states are driven to the sliding surface by the discon-

tinuous part in the control law (i.e.,ηsgn (S)). The orientation of the drag plates (αf ,αl)

can now be determined and used in computing the differential drag, Eq.(3.7).This is then

used in the numerical simulations, Eq.(3.4). Though sliding mode control is a robust con-

trol technique, chattering is a major drawback because of the discontinuous control nature.

This problem, however, can be solved by replacing the nonlinear signum function with a

suitable boundary layer of nonlinear saturation function. Using this approach, the phase

trajectory oscillates within the sliding surface without switching controller action. Hence,

the control law, Eq.(3.33) can be rewritten incorporating the boundary layer function as

U = − 1

B̂

[
η

(
S

|S|+ τ

)
+ ΛAX

]
(3.34)

where τ , the width of the boundary layer is a positive constant.

3.2.3 Dynamic System Stability Analysis

Next we examine the robustness of the system during the sliding regime. It is well known

that the system states are insensitive to matched disturbances, i.e., once on the sliding

surface, the uncertainties and perturbations do not affect the explicitly actuated states. But
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the unmatched disturbances do affect the closed loop system performance. To evaluate this

we apply Shyu’s stability criterion [Shyu et al. 1998] together with the procedure detailed

in Spurgeon et.al.[Spurgeon & Davies 1993],[Edwards & Spurgeon 1998a] for the reduced

order systems with unmatched disturbances. Consider the error dynamics of the SFF

system on the sliding surface referring to Eq.(3.13) in conjunction with uncertainties or

disturbances,

ė1 = A11e1 + A12e2 + A11p
d
1 + A12p

d
2 + fum (X)

ė2 = A21e1 + A22e2 + B2U + A21p
d
1 + A22p

d
2 + fma (X)

(3.35)

where fum (X) ∈ R3 and fma (X) ∈ R are the bounded terms representing unmatched

and matched uncertainties or disturbances in the system, respectively. The unmatched un-

certainties are assumed to be bounded ‖fum (X)‖ ≤ 1+d5 ‖X‖. The equation representing

the error dynamics on the sliding surface, obtained by substituting S = 0 in Eq.(3.35), is

given as

ė1 = (A11 − A12K) e1 + fum (X) (3.36)

To verify the stability of the system in the presence of unmatched uncertainties we propose

the following theorem.

Theorem 3.1: For a reduced order system with uncertainty, described by

ẋ1 = (A11 − A12K) x1 + f̄ (x1) (3.37)

where f̄ (x1) is the unmatched uncertainty and which satisfies the uniform Lipschitz con-

dition ‖fum (x1
1)− fum (x2

1)‖ ≤ k ‖x1
1 − x2

1‖, the uncertain system on the sliding surface S

= 0 is asymptotically stable. Here range of k is given by 0 < k < 0.5λmin

(
Q

)
/
∥∥P

∥∥ with

P and Q ∈ R(n−m)×(n×m).P and Q are symmetric, positive-definite matrices satisfying the

Lyapunov equation (A11)
T P + P (A11) = −Q.

Proof : Consider a candidate Lyapunov function

V̇ = ėT
1 P̄ e1 + eT

1 P̄ ė1 (3.38)
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Substituting Eq.(3.37) into Eq.(3.38) yields,

V̇ = e1 [(A11 − A12K) + (A11 − A12K)] P̄ eT
1 + 2P̄ eT

1 fum (X)

≤ −eT
1 Q̄e1 + 2P̄ eT

1 fum (X) (3.39)

Now by using Eq.(3.39) in conjugation with the Rayleigh principle, we have

eT
1 Q̄e1 ≥ λminQ̄‖e1‖2and

∥∥P̄ fum (X)
∥∥ ≤ k

∥∥P̄
∥∥ ‖e1‖ (3.40)

Therefore, this yields

V̇ ≤ −λminQ̄‖e1‖2 + 2k
∥∥P̄

∥∥ ‖e1‖2 (3.41)

Hence V̇ is negative. This shows that the system is insensitive to the unmatched distur-

bances and all the states reach the sliding surface and remain bounded. ¤

3.2.4 Observer Design

From previous sections on control algorithm design, it is clear that state variables are

required in the feedback control formulation. These can be measured or estimated for the

tracking control. A Carrier-phase Differential GPS (CD Global Positioning System) receiver

could be used to obtain the relative positions of the satellites. Here it is considered that only

the relative position vector is readily available. We either use numerical differentiation to

obtain the velocities or use an observer to estimate the states. Here an observer is designed

for estimating the velocities to be used in the feedback control law. The observer is based

on the modified second order sliding mode super twisting algorithm [Davila et al. 2005],

[M’Sirdi et al. 2008]. This particular sliding mode observer formulation is used due to its

finite time convergence to the true value of the observed states, robustness with respect

to uncertainties and also requires smaller gain values and is more accurate in terms of

estimation [Davila et al. 2005]. Considering the state variables x1 = x, x2 = ẋ, y1 = y,

y2 = ẏ and z1 = z, the nonlinear equations of motion of the system given by Eq.(3.17) can
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be rewritten without considering any external disturbance terms as follows.

ẋ1 = x2

ẏ1 = y2

ẋ2 = f1 (x1, y2) + ξ1 (x1, y1, z1)

ẏ2 = f2 (x2, fy) + ξ2 (x1, y1, z1, fy)

(3.42)

where f1 (x1, y2) and f2 (x2, fy) represent the known nominal functions, while ξ1 (x1, y1, z1)

and ξ2 (x1, y1, z1, fy) represent the terms involving uncertainties. Consider the observer as

˙̂x1 = x̂2 + δ1|x1 − x̂1|
1
2 sgn (x1 − x̂1)

˙̂y1 = ŷ2 + δ2|y1 − ŷ1|
1
2 sgn (y1 − ŷ1)

˙̂x2 = f1 (x1, ŷ2) + β1 sgn (x1 − x̂1)

˙̂y2 = f2 (x̂2, fy) + β2 sgn (y1 − ŷ1)

(3.43)

where x̂1, x̂2,ŷ1 and ŷ2 are the state estimates, δj and βj, j = 1,2 are design constants and

δ1|x1 − x̂1|
1
2 sgn (x1 − x̂1), δ2|y1 − ŷ1|

1
2 sgn (y1 − ŷ1), β1 sgn (x1 − x̂1) and β2 sgn (y1 − ŷ1)

are the output injections. In order to ensure the convergence of the observer, initial values

of the estimates are taken x̂1 = x1, ŷ1 = y1, x̂2 = 0 and ŷ2 = 0. Denoting the state

estimation errors as x̃1 = x1 − x̂1, x̃2 = x2 − x̂2, ỹ1 = y1 − ŷ1 and ỹ2 = y2 − ŷ2, the state

estimation error equations are obtained from Eqs.(3.42) and (3.43) as follows.

˙̃x1 = x̃2 − δ1|x̃1|
1
2 sgn (x̃1)

˙̃y1 = ỹ2 − δ2|ỹ1|
1
2 sgn (ỹ1)

˙̃x2 = F (x1, y1, z1, y2, ŷ2)− β1 sgn (x̃1)

˙̃y2 = F (x1, y1, z1, x2, x̂2)− β2 sgn (ỹ1)

(3.44)

where F (x1, y1, z1, y2, ŷ2) = f1 (x1, y2)−f1 (x1, ŷ2)+ξ1 (x1, y1, z1) and F (x1, y1, z1, x2, x̂2)

= f2 (x2, fy)−f2 (x̂2, fy)+ξ2 (x1, y1, z1, fy). Assuming that the system states and the control

input, fy, are bounded then the existence of constants f+
1 and f+

2 are ensured such that
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|F (x1, y1, z1, y2, ŷ2)| < f+
1 and |F (x1, y1, z1, x2, x̂2)| < f+

2 (3.45)

Let, β1 > f+
1 and β2 > f+

2

β1 >

√
2

α1 − f+
1

(
α1 + f+

1

)
(1 + p)

(1− p)
andβ2 >

√
2

α2 − f+
2

(
α2 + f+

2

)
(1 + p)

(1− p)
(3.46)

where p is a constant in the range 0 < p < 1. It has been proved in Davila

[Davila et al. 2005] that if the observer parameters βj and δj, j = 1,2 are chosen in ac-

cordance with Eq.(3.46) and if the condition in Eqs.(3.45) holds for the set of the system

equations of motion, then the variables of the observer will converge in finite time to the

actual system states, i.e.,(x̂1, x̂2, ŷ1, ŷ2) → (x1, x2, y1, y2). The separation principle is also

satisfied, thereby allowing the design of the observer and the control law separately.

3.3 Performance Evaluation

In order to examine the effectiveness and performance of the proposed formation control

strategy, the detailed response is numerically simulated using the set of governing equations

of motion Eqs.(3.1) - (3.4) along with Eq.(3.7) in conjunction with the proposed control law

given by Eq.(3.34), and the adaptation law, Eq.(3.30). The velocity of the follower satellite

is derived using the SMC observer given in Eq.(3.43). The integration is carried out in

Matlab using the fourth order Runge-Kutta solver with a fixed step size of 0.1 sec. The

desired states of the system are given by the types of formation, as per Eqs.(2.19) - (2.20).

The SFF systems parameters and the orbital parameters used in the numerical simulation

are listed in Table 3.1. The controller and observer design parameters are presented in

Table 3.2. It should be noted here that in the development of the control law it is assumed

that the leader is in an unperturbed reference orbit. However, numerical simulation is

conducted on the system model that considers the leader satellite under J2-effect, variation

in atmospheric density with position, and variation in orientation of the drag plates. The

atmospheric density and the relative velocity in Eq.(3.7) are updated depending on the
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Table 3.1: Orbital and system parameters

Parameters Value

mf (kg) 10
µ(km3s−2) 398600

rp(km) 6878
e 0.001

Ω, ω(deg) 0
i (AF)(deg) 97.44
i(PCF)(deg) 45

Cd 2.0
F10.7 150
Ap 3

A (m2) 1.0
φ (deg) 0

satellite position during the simulation. The Matlab function ATMOSNRLMSISE00 is

used in the calculation of the atmospheric density based on NRLMSISE-00 scheme.

Table 3.2: Controller and observer parameters

Parameters Value(s)

η 0.00001
τ 0.002

[ K1, K2, K3 ] [0.0434 19.4337 -0.0200]
Initial estimate of density, ρ̂0 (kg/m3) 1.454 ×10−13

Initial estimate of drag coefficient, Ĉd 1.8
Initial estimate of Area, Â (m2) 0.5

Initial Mass, m̂f (kg) 2.5
Initial angle estimate, α̂0 (deg) 0

γ 10−4

δ1, δ2 1 , 1
β1, β2 2 , 2

The control law development refers to the exponential atmospheric density model given

by ρ (h) = ρ0e
(−(h−h0

H )). Here h is the actual altitude above the Earth’s surface, ρ0 is

the reference density, h0 is the reference altitude and H is the scale height. Table 8-4 in

[Vallado 2004] is used to obtain the density values. The adaptive control algorithm makes
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use only of an initial estimate of the atmospheric density. Here the initial value of ρ0 is

taken as 1.454 ×10-13kg/m3, which corresponds to the density for an altitude between 600-

700 km. The SFF system is in an orbit of 350 km altitude. This bias in the initial estimate

is used to examine the efficacy of the control algorithm in a more realistic environment.

With regard to the observer data, it is assumed that errors in the available position

measurements are of the order of 5 cm. This is simulated by adding white noise to the

position vector such that the variance for the relative position is
(
5/3

)2

. This will generate

biased position vectors with maximum error of 5 cm [Bevilacqua et al. 2009].

3.3.1 Projected circular formation and Circular formation

First we examine the performance of the proposed SFF system in maintaining a projected

circular formation. The phase angle (φ) between the leader and the follower satellites is

assumed to be zero degree with a desired formation radius,rd = 0.5 km with the leader

satellite in an orbit of inclination, i = 450. In PCF, the leader and the follower satellite

maintain a fixed relative distance on the y-z plane. But due to the lack of control on the

z-axis, the PCF will deteriorate over time due to the influence of the J2 perturbation.

Hence we make use of the iterative scheme given in [Damaren 2007] to derive the initial

conditions to reduce the effect of J2 on z -axis. These initial conditions are derived based

on the nonlinear equations of motion rather than the HCW equations and yield relative

orbits that are nearly periodic in the presence of J2 perturbation, and hence ascertain

the validity of performing projected circular formation with differential aerodynamic drag.

Such special initial conditions are also derived in [Sabatini et al. 2008]. Fig. (3.2), shows

the relative error plots for the follower in the proposed SFF system for one day in orbit

using the following initial state vector given by,

X = [0 0.5 0 0.00286 − 0.00319 0.00055]T (3.47)

The relative position errors remain bounded to less than −2 m in the radial direction

and to within −5 m in the along track direction. Relative error in the cross track direction

remains bounded between ±20 m.
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Figure 3.2: Relative position errors in project circular formation for one day (rd = 0.5 km).

Next we examine the performance of the proposed SFF system in the presence of an

additional disturbance in the form of an initial offset error of 50 m in the radial and along

track direction. It can be observed from Fig. 3.3, that these relative states converge to the

desired states in one orbit with the relative position errors remain bounded to less than

−1 m and −2 m in the radial and along track directions, respectively. The corresponding

maximum drag plate orientation, (αF ) is 28.5 deg during the transient state while in the

steady state, it oscillates within ±0.4 deg, which is required to cancel the J2 disturbance

and nonlinearities. It can be observed that the orientation of the drag plate changes in a

smooth and continuous manner. The value of τ , the boundary layer constant in Eq.(3.34),

decides this delay in change in orientation of the drag plates.

The adaptive parameter converges to −5.72× 10−8. Fig. 3.4 shows the convergence of

the observed states ( ˙̂x, ˙̂y) to its true values (ẋ, ẏ). The convergence is rapid and takes

place within 0.1 orbit.
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Figure 3.3: Relative position errors control input and adaptive parameter for projected
circular formation (rd = 0.5 km, initial offset errors of 50 m).

Formation reconfiguration is another important requirement of the SFF missions, and is

studied next. The projected circular formation of size 0.5 km is reconfigured into a circular

formation of 1 km. From Fig. 3.5 it can be observed that reconfiguration is possible with

the proposed control methodology, and the steady state errors remain bounded within and

in the radial and along track directions, respectively. The estimated parameter B̂, after

reconfiguration, converges to - 3.86 × 10-9. During the reconfiguration phase the control

input oscillates between ±29.1 deg, and during the steady state the orientation oscillates

within ±1.0 deg. The increase in the steady state errors and the corresponding control

input can be attributed to the increase in the formation size. Thus, the proposed adaptive

controller can successfully handle the parameter uncertainties and maintain the desired

formation as well as perform formation reconfiguration by the continuous rotation of the

drag plates. The y-z view of the formation reconfiguration scenario is shown in Fig. 3.6.
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Figure 3.4: Observed states for projected circular formation (rd = 0.5 km, initial offset
errors of 50 m).
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Figure 3.5: Relative position errors, control input and adaptive parameter for formation
reconfiguration from PCF (rd = 0.5 km) to CF (rd = 1.0 km).
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Figure 3.6: Formation reconfiguration from projected circular formation (rd = 0.5 km) to
circular formation (rd = 1.0 km).

3.3.2 Along-track formation

The desired relative motion in this type of formation flying is to maintain a constant sepa-

ration between the leader and follower in the along track direction. Examples of such for-

mation includes the TanDEM-X [Krieger & Zink 2007] and JC2Sat [Mierlo 2009] missions.

The desired separation distance is taken as 0.5 km and the leader satellite is considered to

be in a Sun synchronous orbit with inclination of i = 97.44 deg. Fig. 3.7 shows the response

of relative position errors in the radial and along track directions, along with the drag plate

orientation (αF ) when the SFF system is subjected to J2 disturbance and has an initial

offset error of 50 m. It is observed that the relative states converge to the desired states

in less than an orbit with the relative position errors being bounded within ±0.3 m and

±0.8 m in the radial and along track directions, respectively. The corresponding maximum
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drag plate orientation is ±29.1 deg during the transient state while in the steady state, it

oscillates within ±0.4 deg.
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Figure 3.7: Relative position errors control angle and adaptive parameter for along track
formation (rd = 0.5 km, initial offset errors of 50 m).

Reconfiguration in the case of along track formation is also studied. Reconfiguration

from the initial formation size of rd = 0.5 km to the final formation of rd = 5 km (Fig.

3.8) is performed from the first orbit. It can be observed that the formation is successfully

reconfigured in 3 orbits using the proposed control strategy and the steady state errors

remain bounded within ±15 m and ±25 m in the radial and along track directions, respec-

tively. The estimated parameter, B̂, after reconfiguration, converges to −3.55 × 10−9.

During the reconfiguration phase the drag plate orientation oscillates between ±29.1 deg,

and during the steady state the control wing orientation oscillates within ±3.8 deg. The

increase in the steady state errors and the corresponding control input can be attributed
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to a large increase in the formation size (i.e., by 10 folds compared to the case of Fig. 3.7).
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Figure 3.8: Relative position errors control angle and adaptive parameter for along track
reconfiguration from rd = 0.5 km to rd = 5.0 km.

These results demonstrate the efficacy of the control algorithm for formation mainte-

nance and formation reconfiguration in the presence of initial errors and external pertur-

bations.

3.3.3 Multiple Satellite Formation

Feasibility of multiple satellite formation flying and reconfiguration is investigated in this

section. The projected circular formation is examined in the multiple reconfiguration prob-

lem. The problem of multiple satellite formation maneuvering for the proposed SFF system

is more challenging as the achievable levels of differential drag between each follower and

the leader are mutually constrained. A heuristic algorithm is developed to analyze this sce-
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nario and is tested in a configuration of four followers with the phase angles of the followers

at 0 deg, 90 deg, 180 deg and 270 deg, respectively. The algorithm is stated as follows:
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Figure 3.9: Relative position errors during multiple satellite formation flying in projected
circular formation (rd = 0.5 km)

During each orbit the drag plate orientation required for each individual leader-follower

satellite configuration for maintaining the projected circular formation of size, rd = 0.5

km, is calculated based on the proposed control methodology. The followers align their

corresponding drag plates with this calculated orientation. In the first orbit, the drag plates

on the leader satellite are oriented with the calculated value with respect to the follower

with phase angle 0 deg. This yields the required differential drag for the follower (Satellite

1 with phase = 0 deg). In the next orbit the same procedure of calculation of the required

wing orientation is performed, but the drag plates on the leader is oriented according to

the follower satellite with phase 90 deg (Satellite 2). This method is continued for the
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successive orbits with the orientation of the drag plates on the leader satellite switching

between the four follower satellites. The differential drag achieved by the other three

follower satellites in each orbit may not be the same as required by each individual follower

satellite in relation to the leader satellite. But it is found during simulation that with the

proposed algorithm the projected circular formation is maintained with reasonable relative

errors (Fig. 3.9).The control input response is shown in Fig. 3.10. The switching after

each successive orbit can be seen in Fig. 3.10 as well.
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Figure 3.10: Aerodynamic drag plate orientation during multiple satellite formation flying.

Another important feature to be checked is the performance of the proposed algorithm

in the case where the mass and surface areas of the four followers are different. The mass

and area are selected as in Table 3.3. The mass and surface area of the leader satellite

is not changed. Fig. 3.11 shows the relative position errors in the radial and along track

directions over a day for the four follower satellites in a projected circular formation. As
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expected the relative errors decreases with increase in the resultant acceleration due to

aerodynamic drag.

Table 3.3: Additional parameters for multiple satellite formation flying

Parameters Value(s)

Area, (A1 − A4) (m2) 0.4, 0.45, 0.5, 0.55
Mass, (mf1 −mf4) (kg) 5, 10, 12, 15
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Figure 3.11: Relative position errors during multiple satellite formation flying in projected
circular formation for one day.

Next we consider the case of multiple satellite reconfiguration using the proposed heuris-

tic algorithm. This could be for a variety of reasons; especially in a multiple formation flying
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system where in a new follower satellite may need to be inserted into the cluster or a faulty

follower may need to be replaced with a new satellite. Here two satellites in a projected

circular formation of initial formation size, rd = 0.25 km and rd = 0.5 km with the phase

angle of each equal to 0 deg, are reconfigured to final formation sizes of rd = 0.5 km and

rd = 0.75 km, respectively (Fig. 3.12). A smooth reconfiguration is achieved with the

application of the heuristic algorithm.
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Figure 3.12: System response during multiple satellite reconfiguration in PCF (Sat-1: rd

= 0.25 km to rd = 0.5 km; Sat-2: rd = 0.5 km to rd = 0.75 km).
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Finally to analyze the robustness of the proposed heuristic algorithm, Monte Carlo

simulation is carried out. The effect of different initial conditions on the proposed method-

ology is evaluated by 1000 simulation runs. Four follower satellites in a projected circular

formation are considered. Different initial conditions are generated by varying the desired

formation size, rd, from 0.5 km to 5 km. Each simulation is run for 5 orbits and the mean

value of relative error in the x -axis and y-axis is calculated and plotted against the corre-

sponding value of rd (Fig. 3.13). Here ’+’ indicates the mean value of ex and ’.’ indicates

that of ey.It can be observed that the relative errors in both the axes remain bounded

within -8m.
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Figure 3.13: Variation of mean relative error in x and y- axis for the four follower satellites
over a 1000 numerical simulation runs.

Next, the performance of the proposed SFF system in the case of the leader in a low

eccentric orbit is evaluated. Fig. 3.14 and Fig. 3.15 shows the relative errors in the case of



72 Chapter 3. Satellite Formation Control Using Aerodynamic Drag

the leader in a low eccentric orbits of e = 0.001 and e = 0.01 respectively. The relative errors

are larger that the circular case, but remain bounded. the orbital elements corresponding
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Figure 3.14: Relative position errors along track formation with e = 0.001.
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Figure 3.15: Relative position errors along track formation with e = 0.01.

to the leader satellite is examined.
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To understand the effect of aerodynamic drag and external disturbances on the leader

satellite and its subsequent effect on the formation system, the proposed system is evaluated

on a high fidelity model. The equations of motion describing the leader satellite is given

by

ẌL = − µ

r3
XL − 3µJ2R

2
e

2r5

[
1− 5Z2

r2

]
XL + Ftx (3.48)

ŸL = − µ

r3
YL − 3µJ2R

2
e

2r5

[
1− 5Z2

r2

]
YL + Fty (3.49)

Z̈L = − µ

r3
ZL − 3µJ2R

2
e

2r5

[
3− 5Z2

r2

]
ZL + Ftz (3.50)

where r =
√

X2
L + Y 2

L + Z2
L and Ftj for j = x, y, z represent the aerodynamic drag and

external disturbances affecting the system. The relative equations can be written as

~̈Qr =~̈rF −~̈rL = f (Xj, Yj, Zj) + U, j = F, L (3.51)

where F and L represent the leader and follower satellite respectively and U is the control

input required to maintain the desired formation. A projected circular formation scenario

is examined with i = 45◦ and e = 0.001. Fig. 3.16 shows the orbital elements (a, e, i

and θ̇) of the leader satellite over a period of one day. As expected the semimajor axis of

the leader satellite is affected by the aerodynamic drag and it decreases over the course

of each orbit. Fig. 3.17 shows the 3 − D plot of the leader satellite under the influence

of aerodynamic drag. The corresponding performance of the follower satellite, Fig. 3.18,

shows a bounded system response.

3.3.4 Qualitative Analysis

Next a quantitative analysis in terms of the differential aerodynamic drag generated with

respect to drag plate area and altitude of the satellite is carried out. This analysis will

provide required surface area of the drag plate for achieving desired satellite formation.

Here, the projected circular formation examined earlier is considered for different altitudes

ranging from 350 km to 650 km from the Earth’s surface. The maximum drag plate area

is assumed to be 2m2 as a realistic assumption. As expected, it can be observed from Fig.
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Figure 3.18: Relative position errors in projected circular formation with i = 45 ◦, e =
0.001.

(3.19) that the drag force increases with increase in projected area as well as decrease in

altitude. Formation reconfiguration at lower altitude is achieved with a smaller projected

area compared to the required projected area at higher altitudes. It is observed that to

maintain a projected circular at an altitude of 650 km, a projected area of 1.78m2 is

required. All the cases examined above suggest that use of differential aerodynamic drag

is a viable alternative for multiple satellite formation.

3.3.5 Hardware-In-Loop (HIL) testing

The validity of the control scheme is evaluated through Hardware-In-Loop (HIL) simula-

tion using a prototype model. The HIL arrangement is shown in Fig. (3.20). The satellite

prototype is attached with plates as shown in Fig. (3.20). These plates with servo mo-

tors are attached to the satellite body. The computer running Matlab/Simulink simulates

the leader follower satellite formation flying system. The control algorithm calculates the
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Figure 3.20: Block diagram of HIL testing.

required orientation of the wings to maintain the formation in different scenarios. The

desired orientation is transmitted from the computer to the servos motor attached on the

prototype. The orientation achieved by the servo is then fed back to the computer and

this information is used in propagating the equations of motion in Simulink. By this ex-

periment the real world scenario with respect to panel rotation is created. Comparison of

the HIL test results with the numerical simulation results showed similar system response

with respect to the relative error convergence. Fig. (3.21) shows the system response in
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the HIL test for performing formation reconfiguration in the along track direction. The

relative errors in the x and y axes and the commanded angle to the servo motor are shown

in the Fig. (3.21). Next projected circular formation maintenance and reconfiguration
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Figure 3.21: Relative position errors and commanded angle during along track formation
flying.

is examined. Projected circular formation of size 0.5 km with initial offset error of 50 m

(Fig. 3.22) as well as formation reconfiguration (Fig. 3.23) is tested. In both the cases the

formation is successfully maintained with relative errors converging rapidly. The results

show the feasibility of using the proposed control methodology of varying the orientation

of the wings mounted on the satellite for formation maintenance.

3.4 Summary

In this chapter we examined the use of differential aerodynamic drag for multiple satellite

formation flying. Differential aerodynamic drag is created by the desired rotation of drag

plates attached to the leader and follower satellites. The orientation of the drag plates are

governed by the control law developed based on adaptive sliding mode which accounts for



78 Chapter 3. Satellite Formation Control Using Aerodynamic Drag

0 0.5 1 1.5 2 2.5 3
−150

−100

−50

0

50

100

er
ro

rs
 [m

]

 

 
ex
ey

0 0.5 1 1.5 2 2.5 3
−20

0

20

40

C
om

m
an

de
d 

an
gl

e 
[d

eg
]

Orbits

Figure 3.22: Relative position errors and commanded angle during projected circular for-
mation flying.
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Figure 3.23: Relative position errors and commanded angle during projected circular for-
mation reconfiguration.
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the various uncertainties associated with aerodynamic drag. Numerical simulation results

confirm the viability of performing different formation scenarios in the presence of differen-

tial J2 effect, navigation errors and initial offset errors using the proposed technique. The

relative errors in the along track and radial direction converged within half an orbit and

remained bounded to within a maximum of ±5 m. These relative errors are reasonable

for certain applications like monitoring of cloud formation, terrestrial imaging. In the case

of formation reconfiguration, smooth reconfiguration is achieved within an orbit. For a

multiple satellite formation such as a four follower satellite formation with different mass

and projected area, the simulation results show that the desired formation is maintained

with the relative errors bounded to within a maximum of ±8 m. The robustness of the

control methodology for the multiple satellite formation system is validated by performing

Monte Carlo analysis. Compared to existing literature on this topic, major contributions

include a) nonlinear control algorithm development based on adaptive sliding mode control.

b) development of an heuristic control methodology for multiple satellite formation flying

using aerodynamic drag. c) validation of the proposed system in the presence of parameter

uncertainties like variation in the density and altitude and navigation and initial offset

errors. Overall, the theoretical and numerical results suggest that the use of differential

aerodynamic drag is a viable alternative for multiple satellite formation.





Chapter 4

Satellite Formation Control Using Solar

Radiation Pressure

Satellite formation flying (SFF) in low Earth orbit (LEO) using differential aero-

dynamic drag was studied in the previous chapter. Application of LEO formation

flying mainly addresses Earth observation missions. Here we examine the feasibility of

using solar radiation pressure (SRP) for maintaining and maneuvering satellite formation

system in geostationary orbits. Such a formation system has the advantage of continuous

regional navigation and also act as a positioning system [Hui et al. 2006]. Here we proposes

a method based on differential solar radiation pressure to achieve coordinated control of

multiple satellites flying in formation. The relative orbit is controlled by varying the level

of solar radiation pressure experienced by the solar flaps mounted on each satellite and

thereby generating relative differential accelerations among the satellites in the formation.

Solar radiation pressure provides control authority in both in-plane as well as out-of-plane

direction thereby allowing for complete control of the formation system as compared to

control using aerodynamic drag. Sliding mode control (SMC) theory is used to develop

an adaptive control algorithm for maneuvering the solar flaps to maintain the satellite

formation.

This chapter is organized as follows: Section 4.1 revisits the nonlinear mathematical

model of the SFF system. Development of the adaptive control algorithm is described

in Section 4.2. For a detailed assessment of the system performance under the proposed

control strategies, the results of numerical simulations incorporating different formation

scenarios are presented in Section 4.3. The conclusions of the study are summarized in

Section 4.4.
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4.1 SFF System Model and Equations of Motion

The leader follower system shown in Fig.2.1 is used to describe the SFF system. The

assumptions stated in Chapter 3, Section 3.1.1 holds here as well and is not repeated

for brevity. The mathematical model of the SFF presented in Chapter 2: Section 2.1 is

reproduced here. Eqs.(4.1) and (4.2) describe the orbital equations of motion for the leader

satellite while Eqs.(4.3) through (4.5) are the relative equations of motion of the follower

satellite:

r̈l − rlθ̇
2 +

µe

r2
l

= 0 (4.1)

rlθ̈ + 2θ̇ṙl = 0 (4.2)

mf ẍ− 2mf θ̇ẏ −mf

(
θ̇2x + θ̈y

)
+ mfµe

(
rl + x

r3
f

− 1

r2
l

)
= fx + fdtx (4.3)

mf ÿ + 2mf θ̇ẋ + mf

(
θ̈x− θ̇2y

)
+ mf

µe

r3
f

y = fy + fdty (4.4)

mf z̈ + mf
µe

r3
f

z = fz + fdtz (4.5)

where rf = [(rl + x)2 + y2 + z2]1/2 is the position of the follower spacecraft, fdtj is the net

relative perturbations acting on the SFF system, and fj are the components of the control

input vector, for j = x, y, z. Here the control forces, fj for j = x, y, z, is created by the

rotation of the solar flaps on the satellites.

4.1.1 Solar Radiation Pressure Model

In geostationary orbits, SRP is the most dominant external force acting on a satellite. The

Earth’s oblateness effect has a very reduced effect at these orbits. The mathematical model

of SRP is given as
~FSRP = Csrp (~s · ~n) {b1~s + [b2 (~s · ~n) + b3]~n} (4.6)
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where ~s represents the Sun vector, ~n, is the solar flap normal vector, ζs, is the specular

reflection factor, and other coefficients are given by,

b1 =
1

2
(1− ζsρs) (4.7)

b2 =ζsρs (4.8)

b3 =
1

2

[
Bf (1− ζs)ρS + (1− ρs)

efBf − ebBb

ef + eb

]
(4.9)

Csrp is the solar flap characteristic acceleration and is given by

Csrp =
2p0A0

m
(4.10)

where the nominal SRP force is p0 = 1.04×1017 N/m2, A0 is the sail reference area and m is

the satellite mass. Referring to Fig.4.1, the flap normal ~n, specified by the two orientation

n
v

s
φ

s
α

x̂

ŷ

ẑ

Figure 4.1: Orientation of the solar flap

angles φs and αs ais defined as,

n̂ =




cos αs cos φs

cos αs sin φs

sin αs


 (4.11)
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4.2 Design of Control Law

The control objective is to determine the orientation of the solar flaps (αsj,φsj), for j =

F, L where F stands for the follower satellite and L stands for the leader satellite. A

control algorithm based on SMC technique is developed to drive the follower satellite to the

desired formation trajectory with respect to the leader satellite in the presence of external

disturbances and initial deployment errors. Considering the mathematical formulation of

the leader follower SFF model and SRP model presented in the previous section, the relative

state vector and the desired relative trajectory can be defined as, X (t), and Xd (t) ∈ R6

respectively. The performance measure is defined as the tracking error, e (t) ∈ R6,

e (t) , X (t)−Xd (t) (4.12)

The resultant control forces fj for j = x, y, z in Eqs. (4.3) - (4.5) will drive the relative

states of the SFF system to the desired trajectories as t → ∞ and thereby the tracking

errors, Eq. (4.12), converge to zero. Control algorithm development is simplified by the

following assumptions on the SRP model. The solar flap is assumed to be an ideal highly

reflective surface with only specular reflection and no absorption, and the Sun vector is

defined as ~s = [1, 0, 0]T . This yields the SRP force relation to be written as,

F = Csrp(~s · ~n)2~n (4.13)

The transformation of this force equation to the orbital frame from the Sun centered inertial

frame is given as Fs = CB/I · CI/S · F . Here, CB/I represents the transformation matrix

from the geocentric inertial to the orbital frame given by,




c (ot) c (Ω)− s (ot) s (Ω) c (i− ε) − s (ot) c (Ω)− c (ot) s (Ω) cos (i− ε) s (Ω) s (i− ε)

c (ot) s (Ω) + s (ot) c (Ω) c (i− ε) − s (ot) s (Ω) + c (ot) c (Ω) cos (i− ε) − c (Ω) s (i− ε)

s (ot) s (i− ε) c (ot) s (i− ε) c (i− ε)




where ot represents (ω + θ), ε is the angle between the ecliptic and equatorial plane, c ()

and s () represents cos () and sin () respectively. CI/S represents the transformation from
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the Sun centered inertial to the geocentric inertial frame as follows,




cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1




where ψ is the solar aspect angle. Following these modifications, the differential SRP force

can be expressed as,

fj = FsjF − FsjL forj = x, y, z (4.14)

With respect to the solar flaps on the leader and follower satellites in Eq.(4.14), we assume

that the leader and follower spacecraft are both equipped with solar sails having the same

area to mass ratio, also we assume ζs = 1 and εfBf = εbBb. With these simplifications,

the equations used for control law design are written in the following form,

Ẋ = AX + E (X) + g(U) + Fdt (4.15)

where

X =




x

y

z

ẋ

ẏ

ż




; A =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3θ̇2 0 0 0 2θ̇ 0

0 0 0 −2θ̇ 0 0

0 0 −θ̇2 0 0 0




; E(X) =




0

0

0

µ( 1
r2
l
− (rl+x)

r3
f

)− 2θ̇2x

θ̇2y − µy
r3
f

θ̇2z − µz
r3
f




g (U) =




fx

fy

fz


 ; Fdt =




fdtx

fdty

fdtz




The nonlinear terms in the equations of motion have been lumped into E (X), A represents

the linear part of the SFF system, g(U) is the control matrix, and Fdt the differential
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perturbation forces. The control forces fj for j = x, y, z is given by

fx = (CSRP + δa) (cos αsF cos φsF )2 (cos (θ − ψ) cos αsF cos φsF + sin (θ − ψ) sin αsF cos φsF )

− (CSRP ) (cos αsL cos φsL)2 (cos (θ − ψ) cos αsL cos φsL + sin (θ − ψ) sin αsL cos φsL )

fy = (CSRP + δa) (cos αsF cos φsF )2 (− sin (θ − ψ) cos αsF cos φsF + cos (θ − ψ) sin αsF cos φsF )

−CSRP (cos αsL cos φsL)2 (− sin (θ − ψ) cos αsL cos φsL + cos (θ − ψ) sin αsL cos φsL)

fz = (CSRP + δa) (cos αsF cos φsF )2 sin φsF − CSRP (cos αsL cos φsL)2 sin φsL

The control angles αs and φs are augmented by an additional control input δa, this new

variable represents the change in the characteristic acceleration of the solar flap brought

about by the change in the solar flap area. By the addition of this extra control input, the

system becomes fully actuated with control authority equalling the number of degrees of

freedom. It can be observed that, the orientation of the solar flaps, (αs and φs) appears

in non-affine nature in the system formulation. Hence a nonlinear control algorithm based

on higher order sliding mode is developed. Increasing the order of the system helps in

extracting the angular rates of the solar flaps (α̇s and φ̇s) and δ̇a from 4.15. The corre-

sponding angular orientation of the solar flaps is obtained by integration of these angular

rates. This information is then used in the system dynamics to calculate the force due to

solar radiation pressure.

4.2.1 Adaptive Control Formulation and Stability Analysis

First we define the higher order sliding manifold given by

σ = Ṡ + ξS (4.16)

where ξ is a positive constant. The lower order sliding plane, S is given by

S = Λe (4.17)
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where Λ =




k1 0 0 k2 0 0

0 k3 0 0 k4 0

0 0 k5 0 0 k6


 and e = X −Xd

In the adaptive control law, Csrp is taken as the unknown quantity due to the presence

of uncertainity in the its associated parameters. Consider the candidate Lyapunov function

defined as

V =
1

2
σT σ +

1

2ζ
C̃T

srpC̃srp (4.18)

where V > 0 and ζ is a positive constant. Taking the derivative along the trajectory gives,

V̇ = σT σ̇ +
C̃srp

˙̂
Csrp

ζ
(4.19)

where C̃srp = Ĉsrp−Csrp (estimate - true value) and σ̇ = S̈+ξṠ. S̈ represents the derivative

of the equations of motion given by Eq. (4.15). Substituting for σ̇ in Eq. (4.19),and

expanding we get

V̇ = σT (S̈ + ξṠ) +
C̃srp

˙̂
Csrp

ζ
(4.20)

Before we proceed with the control algorithm design, we make use of the estimates on

the upper bound of the uncertainties and perturbation on the system. The upper bounds

introduced in Chapter 3: Section 3.2.2 are applicable here as well and the overall bound

on the external disturbances is given as

L = Λ (E (X) + DFdt)− ΛẊd (4.21)

Now Eq. (4.20) can be rewritten as

V̇ = σT

[
ΛAẊ + Csrp

∂g (U)

∂U
U̇ + ξṠ

]
+

C̃srp
˙̂
Csrp

ζ
(4.22)

Taking the parameter estimation error as C̃srp = Ĉsrp −Csrp, and expanding Eq.(4.22), we

have

V̇ = σT

[
ΛAẊ +

(
Ĉsrp − C̃srp

) ∂g (U)

∂U
U̇ + ξṠ

]
+

C̃srp
˙̂
Csrp

ζ
(4.23)



88 Chapter 4. Satellite Formation Control Using Solar Radiation Pressure

Rearranging the preceding Eq.(4.23) yields,

V̇ = σT

[
ΛAẊ + Ĉsrp

∂g (U)

∂U
U̇

]
− σT C̃srp

∂g (U)

∂U
U̇ +

C̃srp
˙̂
Csrp

ζ
(4.24)

Now in order to make V̇ negative, choose the adaptive law as

˙̂
Csrp = ζσT ∂g (U)

∂U
U̇ (4.25)

Also let

ΛAẊ + Ĉsrp
∂g (U)

∂U
U̇ = −η sgn (σ) (4.26)

where η is a positive constant. Substituting Eqs.(4.26) and (4.25) into Eq.(4.24) we have,

V̇ = σT [−η sgn(σ)] = −η |σ| (4.27)

Thus, V̇ is negative and hence the reaching condition is satisfied. Using Theorem-3 of

LaSalle’s principle [LaSalle 1960] it is proved that the system is completely stable and

hence the system states converge onto the sliding surface. Next, Eq.(4.26) is rearranged to

derive the control law that is capable of formation maneuvering and maintenance is given

as,

U̇ = − 1

Ĉsrp
∂g(U)

∂U

[
η sgn (σ) + ΛAẊ

]
(4.28)

where U̇ =
[
δȧ α̇s φ̇s

]T

and U =
∫

U̇dt. The discontinuous sgn(σ) operator in Eq.

(4.28), is replaced by a boundary layer to remove instantaneous switching and it is given

by,

U̇ = − 1

Ĉsrp
∂g(U)

∂U

[
η

(
σ

|σ|+ δ

)
+ ΛAẊ

]
(4.29)

4.3 Performance Evaluation

In order to examine the effectiveness of the proposed formation control strategy, the detailed

system response is numerically simulated using the set of governing equations of motion



4.3. Performance Evaluation 89

Eqs. (4.1) - (4.5) along with Eq. (4.6) in conjunction with the proposed control algorithm

given by Eq. (4.29), and the adaptation law, given by Eq. (4.25). The integration is carried

out in Matlab using the fourth order Runge-Kutta solver with a fixed step size of 0.1 sec.

The desired states of the system are given by the types of formation, as per Eqs.(2.19)

and (2.20). The SFF systems parameters and the orbital parameters used in the numerical

simulation are listed in Table 4.1. The controller and parameters are presented in Table 4.2.

It should be noted here that in the development of the control law it is assumed that the

leader is in an unperturbed reference orbit. However, numerical simulation is conducted

on the system model that considers the leader satellite under J2-effect, and variation in

orientation of the solar flaps. A satellite in the geostationary orbitis considered here and

hence the Earth shadow effect is assumed to be negligible as its effect is experienced for

only about 5% of the orbital period [Kumar 2006].

Table 4.1: Orbital and system parameters

Parameters Value

mf (kg) 10
µ(km3s−2) 398600

rp(km) 42378
Ω, ω(deg) 0
i(deg) 45

e 0
φ (deg) 0
A (m2) 2.0
ψ(deg) 45

p (N/m2) 4.563× 10−6

[ρ, s, εf , εb, Bf , Bb] [0.88, 0.94, 0.05, 0.55, 0.79, 0.55]

4.3.1 Projected circular formation and Circular formation

First we examine the performance of the proposed SFF system in maintaining a projected

circular formation. The phase angle φ between the leader and the follower satellites is

assumed to be zero degree with a desired formation radius,rd = 10km with the leader

satellite in an orbit of inclination, i=45. The relative position errors remain bounded to
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Table 4.2: Controller parameters

Parameters Value(s)

η 0.00001
τ 0.002

[K1, K2 K3, K4 K5, K6] [1.0 2.5 2.5 4 2.5 4]
Initial estimate of Area, Â (m2) 0.5
Initial estimate of p, p̂ (N/m2) 4.563× 10−6

Initial Mass, m̂f (kg) 2.5
ζ 10−2

less than 1 m in the radial direction and to within 5 m in the along track and cross track

direction (Fig. 4.2). The in-plane (φ) and out-of plane (α) orientations of the solar flaps

have a maximum deflection of 7 ◦(Fig. 4.3) and the maxmium area change is less than 1

m2. Next we examine the performance of the proposed SFF system in the presence of an
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Figure 4.2: Relative position errors of the follower satellite in projected circular formation
(rd = 10km).
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Figure 4.3: Area change and control angle orientation of the solar flaps on the follower
satellite in a projected circular formation (rd = 10km).
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Figure 4.4: Relative position errors of the follower satellite in projected circular formation
(rd = 10km) with initial offset error of 100 m.
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additional disturbance in the form of an initial offset error of 100 m in the along track and

cross track direction. It can be observed from Fig. (4.4), that the relative states converge

to the desired states in less than one orbit with the relative position errors being bounded

to less than 10m in all three directions. The corresponding maximum solar flap orientation

(Fig. 4.5), in the in-plane direction (φ) is −12.5◦ and −17.5◦ in the out-of plane direction

during the transient state while in the steady state, it oscillates within ±5◦. Formation
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Figure 4.5: Area change and control angle orientation of the solar flaps on follower satellite
in projected circular formation (rd = 10km) with initial offset error of 100 m.

reconfiguration is another important requirement of the SFF missions, and is studied next.

The projected circular formation of size 10 km is reconfigured into a circular formation of

15 km after 1 orbit. From Fig. (4.6) it can be observed that reconfiguration is possible with

the proposed control methodology, and the steady state errors remain bounded. A smooth

reconfiguration is established with the solar flaps deflecting to a maximum orientation of

24◦ in the in-plane and 10◦ in the out-of-plane directions during the reconfiguration phase

(Fig. 4.7).
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Figure 4.6: Reconfiguration of follower satellites from a projected circular formation (PCF)
of rd = 5 km to a circular formation (CF) of rd = 10 km.
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Figure 4.7: Area change and control angle orientation of the solar flaps on the follower
satellite during formation reconfiguration.
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4.3.2 Along-track Formation

Next, along-track formation using solar radiation pressure is evaluated. The constant

separation is desired to be 10 km. Fig. 4.8 shows the relative errors in the radial and along

track direction during along-track formation flying with an initial offset error of 100 m.
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Figure 4.8: Relative position errors of the follower satellite in the radial and along-track
direction during along track formation flying with rd = 10 km.

4.3.3 Multiple Satellite Formation

Feasibility of multiple satellite formation flying and reconfiguration using SRP is investi-

gated in this section. The projected circular formation is examined in the multiple recon-

figuration problem. Similar to the multiple satellite formation flying using aerodynamic

drag, the constraint on the level of differential SRP achievable between each follower and

the leader makes this problem equally challenging. The heuristic algorithm proposed in

the previous chapter is rewritten here for clarity, and is tested in a configuration of two

followers with the phase angles of the followers at 0◦, and 180◦, respectively. The algorithm

is given as: During each orbit the solar flap orientation required for each individual leader-
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follower satellite configuration for maintaining the projected circular formation of size, rd

= 5 km, is calculated based on the proposed control methodology. The followers align their

corresponding solar flaps with this calculated orientation. In the first orbit, the solar flap

on the leader satellite is oriented with the calculated value with respect to the follower with

phase angle 0◦. This yields the required differential solar radiation pressure for the follower

(Satellite 1 with phase φ = 0◦). In the next orbit the same procedure of calculation of the

required solar flap orientation is performed, but the flap on the leader is oriented according

to the follower satellite with phase 180◦ (Satellite 2). This method is continued for the

successive orbits with the orientation of the solar flaps on the leader satellite switching

between the two follower satellites. Eventhough, the differential force achieved by the fol-

lower satellites in each orbit may not be the same as required by each individual follower

satellite in relation to the leader satellite, it is found during simulation that with the pro-

posed algorithm, the projected circular formation is maintained with reasonable relative

errors (Fig. 4.9). Next we consider the case of multiple satellite reconfigurations using the
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Figure 4.9: Relative position errors of the follower satellite during multiple satellite forma-
tion flying in PCF of size, rd = 10 km.
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proposed heuristic algorithm. Here two satellites in a projected circular formation of initial

formation size, rd = 5 km and phase angles of 0◦ and 180◦ respectively, are reconfigured

to a final formation size of rd = 20 km (Fig. 4.10). A smooth reconfiguration is achieved

with the application of the proposed heuristic algorithm.
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Figure 4.10: Multiple satellite formation reconfiguration.
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4.4 Summary

This chapter examines the feasibility of using differential solar radiation pressure for multi-

ple satellite formation flying. Differential solar radiation pressure is created by the desired

rotation of solar flaps attached to the satellites and this rotation is governed by the control

law developed based on the application of adaptive sliding mode control technique. The

performance of the proposed satellite formation flying system in maintaining and reconfig-

uring various formations is evaluated including the performance of the formation system

in the presence of initial offset errors. The relative errors in the satellite formation system

remained bounded within ±5 m in all the three axes for all test scenarios considered. The

maximum deflection of the solar flaps is observed during the transient state, with the max-

imum flap orientation limited to witin ±8◦ in the steady state. The viability of multiple

satellite formation is also confirmed in the study. Multiple satellite formation reconfigura-

tion is also examined with excellent results. The theoretical and numerical results suggest

that the use of differential SRP is a suitable alternative to multiple satellite formation even

in the presence of external disturbances.





Chapter 5

Satellite Attitude Control Using

Aerodynamic Drag

In Chapter 3 and Chapter 4, the feasibility of performing satellite formation flying using

either aerodynamic drag or solar radiation pressure was studied and evaluated. The

satellite attitude dynamics was not considered and attitude was assumed stabilized. The

attitude control system provides the satellite with the maneuvering, tracking and pointing

capability. For many Earth orbiting satellite three axis attitude stabilization is essential

to meet the nadir pointing requirement of the mission. This chapter looks to expand

upon the previous efforts on the use of aerodynamic drag for passive satellite attitude con-

trol. Existing literature proposes the combined use of aerodynamic and magnetic torquing

[Psiaki 2004], control of the two of principal axes using torque due to aerodynamic drag

[Pande & Venkatachalam 1979], [Modi & Shrivastava 1973], or using an additional yaw sta-

bilizer along with the drag plates [Chen et al. 2000] for achieving three axis satellite attitude

control. The proposed system comprises of a satellite with two pairs of oppositely placed

drag plates, and the satellite attitude is controlled by the suitable rotation of these drag

plates. This arrangement of the drag plates results is an inherently underactuated system

with the number of available control inputs less than the degree of freedom to be controlled.

To compensate for unknown disturbances and parameter uncertainties, an adaptive nonlin-

ear control design based on the theory of sliding mode is proposed as the control technique

for satellite attitude control.

The chapter is organized as follows: Section 5.1 introduces the nonlinear equations of

motion of an Earth orbiting satellite. The adaptive control algorithm based on sliding

mode technique is formulated with the corresponding stability conditions for robustness

against uncertainties and disturbances in Section 5.2. The detailed numerical simulation of



100 Chapter 5. Satellite Attitude Control Using Aerodynamic Drag

the governing system equations of motion under the proposed control strategy, including

the effects of various system parameters on the controller performance is given in Section

5.3. Conclusions are stated in Section 5.4.

5.1 Proposed System Model

We start the study by formulating the nonlinear equations of motion of the rigid body

satellite. The proposed system consists of a rigid body satellite in an elliptical planar

trajectory with the Earth’s center at one of its foci.
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Figure 5.1: Geometry of orbit motion of rigid satellite.
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5.1.1 Coordinate Frames

Fig.5.1 shows the Earth centered inertial (ECI) frame, denoted by E − XI YI ZI , with its

origin located at the center of the Earth. The axes are defined such that the ZI-axis is

passing through the celestial North pole, the XI-axis is directed towards the vernal equinox,

and the YI-axis completes the right-handed triad. The local vertical local horizontal (LVLH)

orbital reference frame, L−x0 y0 z0, has its origin fixed at the center of mass of the satellite.

The x0-axis points along the local vertical, z0-axis is normal to the orbital plane, and the

y0-axis points along the orbit direction. The corresponding principal body-fixed coordinate

axes of the satellite are denoted by B − x y z as shown in the figure. The nodal line

represents the reference line in orbit for the measurement of the true anomaly (eccentric

orbit) or angle θ (circular orbit).

Satellite attitude is represented using the Euler angles, (α, φ, γ). The Euler angles

describe the attitude orientation of the body-fixed reference frame, B − x y z, relative to

the LVLH reference frame, L−x0 y0 z0, by a set of three successive rotations. The rotations

can occur about any of the three orthogonal axes, provided two successive rotations about

the same axis are not performed. This results in 12 sets of possible Euler angles for such

successive rotations about the body-fixed axis. The most commonly used rotation sequence

is the (3− 2− 1) set of Euler angles, with α (pitch) about the z-axis (3), φ (roll) about the

new y-axis (2), and finally γ (yaw) about the resulting x-axis (1).

However, Euler angles exhibit singularities whenever the roll angle (φ) has a value of

±π
2
. But singularity does not reflect any physical limitations of the rigid satellite rather

it is an inherent property of the Euler angle representation. The orientation of the body-

fixed reference frame, B − x y z, with respect to the LVLH reference frame, L − x0 y0 z0

using the (3− 2− 1) rotation sequence is described by the direction cosine matrix CB/L =

R1(γ)R2(φ)R3(α) = Rx(γ)Ry(φ)Rz(α).

CB/L =




cφ cα cφ sα −sφ

sγ sφ cα− cγ sα sγ sφ sα + cγ cα sγ cφ

cγ sφ cα + sγ sα cγ sφ sα− sγ cα cγ cφ


 (5.1)

where cφ = cos φ and sφ = sin φ, Rx(γ) denotes the rotation matrix for γ rotation about
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the x-axis, Ry(φ) denotes the rotation matrix for φ rotation about the y-axis, and Rz(α)

denotes the rotation matrix for α rotation about the z-axis.

Here βp for p = 1, 2 represents the orientation of the drag plates with its normal initially

aligned with the y-axis rotated about the z-axis and βp for p = 3, 4 represents the orientation

of the pair of drag plates with its normal initially aligned with the y-axis, and then rotated

about the x-axis.

5.1.2 Satellite Angular Velocity

Let the unit vectors associated with the reference frames B − x y z and L − x0 y0 z0, be

represented as {̂i, ĵ, k̂} and {̂i0, ĵ0, k̂0} respectively. Using the (3−2−1) rotation sequence,

the transformation from the L− x0 y0 z0 orbital frame to the body-fixed frame B− x y z is

given by,




î

ĵ

k̂


 =




cφ cα cφ sα −sφ

sγ sφ cα− cγ sα sγ sφ sα + cγ cα sγ cφ

cγ sφ cα + sγ sα cγ sφ sα− sγ cα cγ cφ







î0

ĵ0

k̂0


 (5.2)

For a rigid satellite in a circular orbit around the Earth, the angular velocity of the body-

fixed frame B relative to the ECI frame E is given by

~ωB/I = ~ωB/L + ~ωL/I (5.3)

where ~ωB/L is the angular velocity of B relative to the orbital frame L, and ~ωL/I is the

angular velocity of the orbital frame with respect to the ECI frame. From Fig. (5.1), the

angular velocity of L relative to E is

~ωL/I = θ̇ k̂0 (5.4)

where θ̇ is the orbital rate of the satellite. Here, θ̇ =

√
µp

R2
, where µ represents the grav-

itational parameter of the Earth, p is the semi-latus rectum, and R is the distance of the
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satellite from the center of the Earth. From Eq. (5.2) we have




î0

ĵ0

k̂0


 =




cφ cα sγ sφ cα− cγ sα cγ sφ cα + sγ sα

cφ sα sγ sφ sα + cγ cα cγ sφ sα− sγ cα

−sφ sγ cφ cγ cφ







î

ĵ

k̂


 (5.5)

Substituting for k̂0 from Eq. (5.5) into Eq. (5.4) yields,

~ωL/I = θ̇




− sin φ

sin γ cos φ

cos γ cos φ


 (5.6)

The angular velocity of the satellite with respect to the orbital frame L is given by

~ωB/L = ωx
BL î + ωy

BL ĵ + ωz
BL k̂

= α̇k̂0 + φ̇ĵ1 + γ̇î (5.7)

where α̇ is about the k0 axis in the frame L − x0 y0 z0, followed by φ̇ about the j1 axis in

the intermediate frame S − x1 y1 z1, and finally γ̇ about the i axis in the frame B− x y z.

This can also be written as

~ωB/O =
[
î ĵ k̂

]



γ̇

0

0


 +

[
î1 ĵ1 k̂1

]



0

φ̇

0


 +

[
î0 ĵ0 k̂0

]



0

0

α̇


 (5.8)

The unit vectors are related to each other based on rotation matrices as follows

[
î1 ĵ1 k̂1

]T

= [Rx(γ)Ry(φ)]−1
[

î ĵ k̂
]T

[
î0 ĵ0 k̂0

]T

= [Rx(γ)Ry(φ)Rz(α)]−1
[

î ĵ k̂
]T

(5.9)
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Using Eqs. (5.7)-(5.9), the angular velocity of the satellite with respect to the orbital

reference frame can now be expressed as




ωx
BL

ωy
BL

ωz
BL


 =




γ̇

0

0


 + Rx(γ)Ry(φ)




0

φ̇

0


 + Rx(γ)Ry(φ)Rz(α)




0

0

α̇




=




1 0 − sin φ

0 cos γ sin γ cos φ

0 − sin γ cos γ cos φ







γ̇

φ̇

α̇


 (5.10)

Finally, using Eqs. (5.6) and (5.10) in Eq. (5.3), the angular velocity of the satellite relative

to the ECI frame E expressed in the body frame B is




ωx

ωy

ωz


 =




1 0 − sin φ

0 cos γ sin γ cos φ

0 − sin γ cos γ cos φ







γ̇

φ̇

α̇


 + θ̇




− sin φ

sin γ cos φ

cos γ cos φ


 (5.11)

5.1.3 Free Molecular Aerodynamic Drag Model

The free-molecular aerodynamic drag model introduced in Chapter 2 is reproduced here

~F = A

[
−n̂p +

(
n̂ sin ζ − V̂rel

) (
τ

cos ζ

)]
(5.12)

where p is the total pressure and τ is the shearing stress, V̂rel =
~Vrel

‖Vrel‖ is the velocity unit

vector of the surface element with respect to the atmosphere and n̂ is the outward-pointing

unit normal vector The total pressure p and shearing stress τ are given by [Gombosi 1994]

p

q∞
=

{[
2− σn√

π

]
sin ζ +

σn

2s

√
Ts

Ta

} {
1

s
e−s2sin2ζ +

√
π [1 + erf (s sin ζ)] sin ζ

}

+

[
2− σn

2s2

]
[1 + erf (s sin ζ)]

τ

q∞
= σt

{
1

s
√

π
e−s2sin2ζ + [1 + erf (s sin ζ)] sin ζ

}
(5.13)
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Here σn and σt are the normal and tangential accommodation coefficients, Ts is the absolute

temperature of the surface, Ta is the atmospheric temperature, q∞ is the dynamic pressure

given by

q∞ =
1

2
ρV 2

rel (5.14)

erf (x) =
2

√
π

x∫
0

e−y2dy

(5.15)

and s is the air speed, nondimensionalized by the mean molecular speed of the atmosphere

and given by

s =

√
MaV 2

rel

2R∗T a

(5.16)

where Ma is the mean molar mass of the atmosphere and R∗ is the universal gas constant.

Ma and Ta vary with altitude and can be obtained from the 1976 U.S. Standard Atmospheric

model. The accommodation coefficients σn and σt, represent the fact that some impinging

air molecules come to thermal equilibrium with the surface and then get re-emitted ther-

mally while others reflect specularly. Specular reflection means that the angle of incidence

equals the angle of reflection and that the relative speed remains unchanged. The values

σn = σt = 0 implies specular reflection of all the impinging air molecules, while σn = σt =

1 implies full thermal accommodation of all the impinging air molecules. Eventhough there

are no reliable data for these coefficients, typical values of σn and σt lie between 0.85 and

1, which means that most of the air molecules get re-emitted thermally. It is to be noted

that sin ζ = n̂T V̂rel.

The outward-pointing unit normal vectors are given as

np =
[
− sin βp î + cos βp ĵ

]
p = 1, 2 (5.17)

np =
[
cos βp ĵ + sin βp k̂

]
p = 3, 4 (5.18)

Another aspect to be considered is the effect of shading, which refers to the situation where

one aerodynamic surface lies directly upstream of another aerodynamic surface causing re-

incidence of emitted air molecules. This can perturb the incident velocity distributions that
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have been used to derive Eqs. (5.13). However, as can be observed from Fig. (5.1) we can

neglect this phenomenon because the drag plates do not cause shading in this arrangement.

The resultant torque on the surface can be calculated using the equations for pressure and

shearing stress Eqs. (5.13) in conjunction with the unit vectors n̂ and V̂rel. The net torque

can then be computed by summing the moments over all the four surfaces, given by

~Ta =
4∑

i=1

~ri × ~Fai
(5.19)

where ~rj is the position vector of the geometric center of the individual drag plates measured

from the satellite center of mass. For the proposed system configuration, it can be inferred

that ~Ta will have components only along the x and z direction, i.e., Taα and Taγ respectively.

Considering Eq. (5.19) it can be written as follows:

~Taα = ~Ta1 + ~Ta2 (5.20)

~Taγ = ~Ta3 + ~Ta4 (5.21)

5.1.4 Equations of Motion

The governing nonlinear coupled differential equations of motion of the system are obtained

as 


α̈

φ̈

γ̈


 =




N11 N12 N13

N21 N22 N23

N31 N32 N33











Fα

Fφ

Fγ


 +




Taα

Taφ

Taγ








(5.22)

where Fα, Fφ, and Fγ are the nonlinear terms given by

Fα = pα cos φ cos γ + pφ cos φ sin γ − pγ sin γ

Fφ = −pα sin γ + pφ cos γ (5.23)

Fγ = pγ
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The coefficients pα, pφ, and pγ in the preceding Eq. (5.23) are given by,

pα = [(1− kxz + kyz)(θ̇ + α̇)φ̇ sin φ cos γ]− (kxz − kyz)(θ̇ + α̇)2 sin φ

cos φ sin γ + (1 + kxz − kyz)[(θ̇ + α̇)γ̇ cos φ sin γ + φ̇γ̇ cos γ]

− 3(kxz − kyz)(cos α sin φ sin γ − sin α cos γ) cos α cos φ

pφ = [(1− kxz + kyz)(θ̇ + α̇)γ̇ sin φ sin γ]− (1− kxz)(θ̇ + α̇)2 sin φ

cos φ cos γ + (1− kxz − kyz)[(θ̇ + α̇)γ̇ cos φ cos γ − φ̇γ̇ sin γ]

+ 3(1− kxz)(cos α sin φ cos γ + sin α sin γ) cos α cos φ

pγ = [kxz − (1− kyz) cos 2γ](θ̇ + α̇)φ̇ cos φ− (1− kyz)[(θ̇ + α̇)2 cos2 φ

− φ̇2] sin γ cos γ + 3(1− kyz)(cos α sin φ cos γ + sin α sin γ)

(cos α sin φ sin γ − sin α cos γ)

The elements of the matrix N in Eq. (5.22) are given by

N11 =
sin2 γ + kyz cos2 γ

kyz cos2 φ
, N12 =

(1− kyz) sin γ cos γ

kyz cos φ

N13 = N11 sin φ, N21 = N12, N22 =
cos2 γ + kyz sin2 γ

kyz

N23 = N12 sin φ, N31 = N13, N32 = N23, N33 = N11 sin2 φ +
1

kxz

The dimensionless parameters representing the principal moment of inertia ratios of the

satellite are defined as

kxz =
Ix

Iz

=
1− k1

1− k1k2

and kyz =
Iy

Iz

=
1− k2

1− k1k2

(5.24)

k1 =
Iz − Ix

Iy

and k2 =
Iz − Iy

Ix

(5.25)



108 Chapter 5. Satellite Attitude Control Using Aerodynamic Drag

For a specific orbit, the orbital radius R is given by

R =
a(1− e2)

1 + e cos θ
=

µ1/3(1− e2)

Ω2/3(1 + e cos θ)
(5.26)

and the orbital rate, θ̇, is obtained by

θ̇ =

√
µa(1− e2)

R2
(5.27)

Since the true anomaly θ(t) is implicitly known from the Kepler’s equation, it is convenient

to replace t with θ as the independent variable. The corresponding derivatives with respect

to θ are represented as

q̇ = θ̇q′ =

√
µa(1− e2)

R2
q′ (5.28)

q̈ =
µ

R3
[(1 + e cos θ)q′′ − 2q′e sin θ] (5.29)

where q is given as q ∈ R3 = [α, φ, γ]T . After carrying out algebraic manipulation and

nondimensionalization, the governing nonlinear equations of motion of the system can be

written in the matrix notation as follows

q′′ = M(q, kxz, kyz)[F (q, q′, e, kxz, kyz) + T̂f ] (5.30)

where M(q, kxz, kyz) ∈ R3×3 and F (q, q′, e, kxz, kyz) ∈ R3×1 are matrices containing non-

linear functions, and T̂f ∈ R3 = [T̂aα, T̂aφ, T̂aγ]
T corresponds to the dimensionless control

torques. The nondimensionalized torque due to aerodynamic drag is given by,

T̂aq =
(1− e2)

3

(1 + e cos θ)3

(
Taq

IzΩ2

)
=

(1− e2)
3

(1 + e cos θ)3




T̂aα

T̂aφ

T̂aγ




In this proposed system configuration, the control torques T̂aα and T̂aγ are obtained using

aerodynamic drag as given by Eqs.(5.20) and (5.21), but the torque component T̂aφ is zero.
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5.2 Design of Control Law

In this section, a nonlinear control algorithm that makes use of torque due to aerodynamic

drag to stabilize the satellite is developed. Taking into account the parameter uncertainty

associated with aerodynamic drag, the control law is made to be adaptive in nature. As

stated in Section 5.1, the control inputs are the orientation of the two sets of drag plates

attached to the satellite. From Eqs. (5.12) - (5.19), it is evident that it is difficult to extract

the angular rotations of the drag plates from the highly nonlinear coupled equations of

motion. Hence we use a simpler representation of the aerodynamic drag model to design

the control algorithm. In this simplified aerodynamic drag model it is assumed that the

energy of the impinging molecules are totally absorbed on impact with the satellite surface.

The force due to aerodynamic drag in this case is represented as follows

Fa = −1

2
CDAρV 2

rel (n̂ · v̂b) v̂b (5.31)

where n̂ is the outward normal, and v̂b is the unit vector in the direction of the translational

velocity. The torque due to aerodynamic drag is obtained by computing the moments over

the drag plate surface, given by

Ta = B

4∑
i=1

~ri × (n̂i · v̂b) v̂b (5.32)

where B = −1
2
CDAρV 2

rel. Here again, the torques along the pitch and yaw axes are given

as

Taα = Ta1 + Ta2 (5.33)

Taγ = Ta3 + Ta4 (5.34)

To facilitate the control law design, the state space representation of the system can be

formulated as follows:

 x11

′

x2
′


 =


 Ā11 Ā12

Ā21 Ā22









 F1

F2


 +


 0

U


 +


 d1

d2






 (5.35)
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Here x′1 = φ′, x′2 = [α′, γ′], F1 = Fφ, F2 = [Fα, Fγ]
T , d1 and d2 represent the external

disturbances, and Ā matrix constitutes the nonlinear terms and is given by

Ā11 =
cos2 γ + kyz sin2 γ

kyz

and Ā21 =




(1− kyz) sin γ cos γ
kyz cos φ

(1− kyz) sin γ cos γ sin φ
kyz cos φ


 (5.36)

Ā12 =

[
(1− kyz) sin γ cos γ

kyz cos φ
(1− kyz) sin γ cos γ sin φ

kyz cos φ

]
(5.37)

Ā22 =




sin2 γ + kyz cos2 γ
kyz cos2 φ

sin φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

sin φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

sin2 φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

+ 1
kxz


 (5.38)

The control torques, U ∈ R2×1 =
[
T̂aα, T̂aγ

]T

is in dimensionless form and is given as

T̂aq =
(

Taq

IzΩ2

)
for q = α, γ. To simplify the control algorithm development, the following

assumptions are made with respect to the orientation of the drag plates. It is assumed that

β2 = −β1 and β4 = −β3. Eq. (5.35), is rewritten in the following form,

M(q) q′′ = F (q, q′) + Ua(β1, β3) (5.39)

where q ∈ R3 = [φ α γ]T , M(q) ∈ R3×3, F (q, q′), D ∈ R3, and Ua(β1, β3) = [0 T̂aα, T̂aγ]
T .

F (q, q′) represents the vector containing all the nonlinear terms including the Coriolis and

centrifugal contributions and is described in Eq. (5.22), and M is the mass matrix.

Next, we present the design procedure to implement an adaptive sliding mode control

for changing the orientation of the drag plates inorder to achieve satellite attitude control.

The design can be divided into two main steps. First, we design a stable sliding surface

and this is followed by the development of the feedback control algorithm that drives the

system dynamics to this sliding surface in finite time.

5.2.1 Design of Sliding Manifold

The control inputs i.e., the orientation of the drag plates, (βi, for i = 1 − 4), appears

in non-affine nature in the system formulation. A nonlinear control algorithm based on
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higher order sliding mode is developed to calculate the orientation of the drag plates. This

increase in the order of the system helps in deriving the control law that can extract the

angular rates of the drag plates (β′i, i = 1 − 4) from Eq. (5.39). The corresponding

angular orientation of the drag plates can then obtained by integration of these angular

rates. This information is then used in the system dynamics to calculate the torque due

to aerodynamic drag. First a sliding surface with order less than the system dynamics is

introduced; it is given as

S = KAMq̃′ + KB q̃ (5.40)

where q̃′ = q′− q′d, and q̃ = q− qd are the state error variables and KA and KB are positive

constants given by

KA =


 0 P2 0

P5 0 P6


 and KB =


 0 P1 0

P3 0 P4


 (5.41)

Now a higher order sliding manifold is defined combining S and its derivative, i.e, S ′, it is

given as

σ = S ′ + ξS (5.42)

where S ′ = KAMq̃′′ + (KAM ′ + KB) q̃′

5.2.2 Adaptive Control Formulation and Stability Analysis

The next stage is the adaptive control law formulation based on Lyapunov stability theorem.

The control law that drives the states to be along the sliding manifold, σ = 0 for all t > tr,

can be derived by choosing the Lyapunov candidate function defined as follows:

V =
1

2
σ2 +

1

2ς
B̃2 (5.43)

where V > 0 and ς is a positive constant. Taking the derivative along the trajectory gives

V ′ = σσ′ +
B̃B̂′

ζ
(5.44)
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where σ′ = S ′′ + ξS ′. The control algorithm design is simplified by expressing the system

nonlinearities and external disturbances present in system dynamics by using its worst case

upper-bound in the controller design. This assumption gives us the following relation:

L = KAF ′(q, q′) + [KAM ′ + KB]q′′ + KAM ′′q′ (5.45)

It is to be noted that L contains all the terms including the system nonlinearities, parameter

uncertainties and external disturbances, and the upper bound of this lumped disturbances

is given by

‖L‖ ≤ d1 + d2‖q‖+ d3‖q′‖ ≤ d (5.46)

Now, expanding σ′ in Eq. 5.44 yields

σ′ = KA[Mq′′′ + M ′q′′] + [KAM ′ + KB]q′′ + KAM ′′q′ (5.47)

Here, q′′′ represents the derivative of the equations of motion [Eq. 5.39] along its trajectories

given by

q′′′ = F ′ (q, q′) + BU ′
a


 β′1

β′3


 (5.48)

where U ′
a = [T ′

aα T ′
aγ]. Substituting for this in Eq. 5.47, we get,

σ′ = KABU ′
a + KAF ′(q, q′) + [KAM ′ + KB]q′′ + KAM ′′q′ (5.49)

Now substituting the preceding equation in Eq. (5.44), along with the consideration on the

bounds given in Eq. (5.46), we get

V ′ = σ (KABU ′
aβ

′ + ‖L‖) +
B̃B̂′

ζ
(5.50)

Now considering the parameter estimation error in B as

B̃ = B̂ −B (5.51)
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and expanding Eq. (5.50), we have

V ′ = σ

[
KA

(
_

B − B̃

)
U ′

aβ
′ + ‖L‖

]
+

B̃B̂′

ζ
(5.52)

Rearranging the preceding Eq. (5.52) yields

V ′ = σ

[
KA

_

BU ′
aβ

′ + ‖L‖
]
− σKAB̃U ′

aβ
′ +

B̃B̂′

ζ
(5.53)

Now in order to make V ′ negative, choose the adaptive law as

B̂′ = ζσKAU ′
aβ

′ (5.54)

where ζ is the adaptation gain. Also let

KAB̂U ′
aβ

′ = −ηsgn(σ) (5.55)

where η is a positive constant and η >> sup ‖L‖. Substituting Eq. (5.55) and Eq. (5.54)

into Eq. (5.53), we have

V ′ = σ [−η sgn (σ)] = −η |σ| (5.56)

Eq. (5.56) is semi-negative definite, but by using Theorem-3 of LaSalle’s principle

[LaSalle 1960] it is proved that the system is completely stable and hence the system states

converge onto the sliding surface which is the invariant set here. For a system satisfying Eq.

(5.56), it can be proved that the time taken (tr) by the state trajectory to move towards

and reach the sliding surface is governed by the relation |σ (t = 0)| /c, where c = (η−d) and

d is assumed to be a bounded value. From the fact that V is positive and V ′ is negative,

it can be stated that V is decreasing and lower bounded by zero, i.e., V ∈ L∞. Hence, it

can be inferred from Eq. (5.43) that σ, B̃ ∈ L∞. Let us define B̃U ′
aβ

′ = D. Since all the

states remain bounded we can conclude that ‖D‖ < d. Eq. (5.56) can now be rewritten as

V ′ = σ (σ′ + D) = −η |σ| (5.57)
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Two possible cases are to be considered here: σ(t = 0) < 0 and σ(t = 0) > 0. For the first

case of σ(t = 0) < 0, Eq. (5.57) reduces to

σ′ > c (5.58)

where c = η − d. The reaching time (tr) in this case is derived as

σ (t = tr)− σ (t = 0)

tr
6 c ⇒ tr 6 −σ (t = 0)

c
(5.59)

where σ(t = tr) = 0 as per the definition. For the second case of σ(t = 0) > 0, Eq. (5.57)

yields

σ′ 6 c (5.60)

Hence, the reaching time (tr) in this case is obtained as

σ (t = tr)− σ (t = 0)

tr
6 c ⇒ tr 6 σ (t = 0)

c
(5.61)

Combining both the cases and referring to Eqs. (5.59) and (5.61), the reaching time, (tr),

is given by

tr 6 |σ (t = 0)|
c

(5.62)

Next, Eq. (5.55) is rearranged to derive the control law as

β′ = − 1

KAB̂U ′
a

[η sgn (σ)] (5.63)

A boundary layer is introduced in the control input, Eq. (5.63), formulation to remove the

instantaneous discontinues switching and it is given by

β′ = − 1

KAB̂U ′
a

η

[
σ

|σ|+ δ

]
(5.64)

where δ is the width of the boundary layer.

Remark 5.1 : The Euler angles γ, φ, and α are limited to the ranges −π < γ < π,
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−π
2

< φ < π
2
, and −π < α < π. Therefore, the Lyapunov analysis guarantees stability for

any initial condition that avoids singularities due to φ = ±π
2
.

5.3 Performance Evaluation

To study the effectiveness and performance of the proposed adaptive controller, the detailed

system response is numerically simulated using the set of governing equations of motion,

given by Eq.(5.30) along with proposed adaptive control law given by Eq.(5.64). The

integration is carried out Matlab using the fourth order Runge-Kutta solver.The simulation

parameters used are shown in Table 5.1.

Based on the values of the satellite moment of inertias, the nondimensional parameters

k1 and k2 given in Eqs. (5.25) has values of 0.3 and 0.2 respectively. The control law

is developed based on these values. The effect of varying satellite moments of inertia are

examined by implementing the changes in the moments only in the satellite dynamic model.

5.3.1 Nominal Performance

The first case to be evaluated is the stabilization of the satellite in a circular orbit from the

large initial disturbances about its three axes given by

α0 = φ0 = γ0 = 60 deg

α′0 = φ′0 = γ′0 = 2.5 deg / sec
(5.65)

Fig. 5.2 illustrates the satellite attitude response subjected to large initial errors. It can

be observed that the adaptive controller performs very well with no overshoot. The Euler

angles asymptotically approach zero from the non-zero initial conditions, and the maximum

deflection of the drag plates of nearly 15◦ can be observed during the transient stage.

Fig. 5.3 shows the angular rates and the adaptive parameter B̂. The adaptive parameter

and the angular velocities, except for ωz, converge to zero as the satellite reaches steady

state. The angular velocity of the satellite about the z-axis converges to a value equal to

0.0011rad/sec, which is the orbital frequency of the satellite about the Earth.
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Table 5.1: System parameters.

Parameters Values

Moment of Inertia
[Ixx Iyy Izz] (kg m2) [15 17 20]

Orbital Parameters
R (km) 6878
µ (km3/s2) 3.986× 105

ρ (kg/m3) 6.967× 10−13

Free Molecular Aerodynamic
Model Parameters

s 5
σn 0.85
σt 0.9
Ta (K) 1000
Ts (K) 300
CD 2.0
A (m2) 1.0
r (m) 0.5

Control Parameters
[P1 P2 P3] [4.5 4.5 4.5]
[P4 P5 P6] [−2.1 1.5 − 2.5]

η 0.5
δ 0.01
ζ 200

Initial Estimates
ρ0 (kg/m3) 1.454× 10−13

CD0 1.8
A0 (m2) 0.5

5.3.2 Variations in Mass Moment of Inertia

In the nominal case the the values of both k1 and k2 were positive, signifying the stable

gravity gradient configuration. Now, the performance of the proposed adaptive control

algorithm in the presence of variations on the satellite moments of inertia is examined.

First, a satellite in an axially symmetric configuration is considered, then the performance

of the proposed system as affected by the product of inertia terms (Ixy, Ixz, Iyz) is evaluated,

and finally the efficacy of the adaptive control algorithm for a satellite in an unstable gravity

gradient configuration is examined. The inertia matrix for the first and second cases is as
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Figure 5.2: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, k1 = 0.3, k2 = 0.2.

Table 5.2: Variations in satellite moments of inertia

Axisymmetric Products of Inertia



17 0 0
0 17 0
0 0 20







15 0.5 0.9
0.5 17 2
0.9 2 20




shown in Table 5.2.

The system performance for an axis-symmetric satellite is shown in Fig. (5.4). The

attitude response converges asymptotically and remains identical to the previous case. Fig.

(5.5) shows the corresponding angular rates and the adaptive parameter B̂.

We next examine the performance of the proposed control technique on a satellite model

containing the product of inertia terms. The attitude of the satellite is stabilized (Fig. 5.6)

It can be observed that the product of inertia terms does have an adverse effect on the

satellite as the steady state satellite attitude is non zero.

The performance of the control method for a satellite in an unstable gravity gradient
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Figure 5.3: Response of angular velocity and estimated adaptive parameter, k1 = 0.3,
k2 = 0.2.

configuration is now evaluated. The values of the nondimensional parameters are taken as

k1 = 0.1 and k2 = −0.2 for an inertia matrix in this configuration given by

I =




15 0 0

0 20 0

0 0 17


 (5.66)

Figure (5.7) illustrates the effectiveness of the proposed control methodology in stabilizing

the attitude of a satellite in an unstable configuration. The attitude is stabilized without

any overshoot and the drag plates exhibits the maximum deflection of 10◦ during the

transient stage. It is to be noted that, these variations in the inertia of the satellite is

unknown to the the control law which is developed based on the nominal value.
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Figure 5.4: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, k1 = 0.177, k2 = 0.177.

5.3.3 Eccentricity and External Disturbances

First, the effectiveness of the control strategy for satellite in an elliptical orbit is studied.

The orbital eccentricity is increased from e = 0.01 (Fig. 5.8) to e = 0.1 (Fig. 5.9). The

state error in the pitch axis is bounded by |α|max = 0.51◦, roll axis by |φ|max = 0.15◦

and the roll axis by |γ|max = 0.065◦. The maximum deterioration is observed in the pitch

response as compared to the previous numerical results. This is expected as the orbital

eccentricity directly affects the pitch motion of the satellite. The drag plates in the pitch

axis continuously maneuvers to counter this disturbance due to eccentricity. The maximum

deflection of the drag plates is observed in the transient stage and the steady state deflection

is nearly 5◦. Overall the satellite attitude remains stabilized within reasonable limits even

in elliptic orbits using the proposed methodology.

Finally, the effect of external disturbance on the performance of the system is verified.

The system may experience external disturbance torques due to several factors including
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Figure 5.5: Response of angular velocity and estimated adaptive parameter, k1 = 0.177,
k2 = 0.177.
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Figure 5.6: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, k1 = 0.3, k2 = 0.2 with product of inertia terms.
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Figure 5.7: Response of angular velocity and estimated adaptive parameter, k1 = 0.1,
k2 = −0.2.

solar radiation pressure and other environmental forces. The disturbances due to solar

radiation pressure is more significant and can be expressed as (in Nm) [Kaplan 1976]




Tsα

Tsφ

Tsγ


 = Sf




(1× 10−4) cos(θ̇t)

(2× 10−5)[1− 2 sin(θ̇t)]

(5× 10−5) cos(θ̇t)


 (5.67)

Here Tsj
for j = α, φ, γ represents the disturbance torque due to solar radiation pressure.

It can be observed from Fig. (5.10) that the controller is able to regulate the satellite

attitude by the maneuvering of the drag plates, and hence establishes the robustness of

the proposed methodology to time varying disturbances external disturbance. The above

results bring out the powerful features of the proposed adaptive control algorithm. The

performance of the controller does not deteriorate even when the system parameters are

changing and yet provides excellent attitude response.
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Figure 5.8: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, e=0.01
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Figure 5.9: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, e=0.1
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Figure 5.10: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion in the presence of external disturbances

5.4 Summary

This chapter examines the feasibility of three axis satellite attitude control using aerody-

namic drag. The proposed system configuration consists of a satellite with two pairs of

oppositely placed drag plates. Attitude maneuvering and stabilization are accomplished

by suitable rotation of these drag plates. Such a configuration has not been proposed in

the existing literature. This system configuration provides explicit control authority only

along its two principal axes, i.e., the pitch and yaw axes. Complete three axis attitude

control using aerodynamic drag is achieved by the application of the control law developed

based on sliding mode theory. The controller enables the satellite to achieve any arbitrary

orientation. The performance of the control strategy in attitude stabilization is examined

in detail using high-fidelity nonlinear system model. Unlike earlier results on the use of

aerodynamic drag for satellite attitude control, numerical simulation results were obtained

under many scenarios including presence of external disturbances, high initial attitude rates
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and uncertainty in the mass moments of inertia and the the proposed control scheme il-

lustrated excellent performance in successfully regulating the satellite attitude motion in

each case. The satellite attitude was observed to be stabilized within 0.2◦ in all the cases

except for the elliptic orbit (e = 0.1) and stands as a good candidate for use in future space

missions.



Chapter 6

Satellite Attitude Control Using Solar

Radiation Pressure

In Chapter 5, the feasibility of performing satellite attitude control using aerodynamic

drag was studied and evaluated. In this chapter three axis satellite attitude control

using solar radiation pressure is analyzed. An adaptive nonlinear control design based on

the theory of sliding mode is proposed to control the attitude of a satellite using solar

radiation pressure. The system comprises of a satellite with two pairs of oppositely placed

solar flaps. The nonlinear analytical model describing the system is used to derive an

adaptive control law, based on Lyapunov stability theorem, in the presence of unknown,

slow-varying external disturbances. This control law suitably rotates the solar flaps to

achieve desired satellite attitude performance. The detailed numerical simulation of the

governing nonlinear system equations of motion including the effects of various system

parameters on the controller performance establishes the feasibility of the proposed control

strategy. The numerical results show the robustness of the proposed adaptive control

scheme in controlling the satellite attitude in the presence of uncertainties and external

disturbances.

The system model and its equations of motion are presented in Section 6.1. Section

6.2 presents the closed-loop nonlinear control law based on SMC along with the stability

analysis of the closed-loop system. In Section 6.3 numerical simulation is carried out for a

detailed assessment of the proposed attitude control strategy. The effects of various system

parameters on the performance of the controller are examined and the effectiveness of the

proposed controller in the presence of parameter uncertainties and external disturbances is

studied. Finally, the findings of the present study are summarized in Section 6.4.
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6.1 Proposed System Model and Equations of Motion

The nonlinear equations of motion of the rigid body satellite derived in Section 5.1 is

discussed here in brief for clarity. The system model comprises of a satellite with two pairs

of oppositely placed light-weight solar flaps along the y and z axes of the satellite as shown

in Fig. (6.1). The system center of mass lies on the center of mass of the satellite. The

LVLH orbital reference frame, L− x0 y0 z0, has its origin fixed at the center of mass of the

satellite. The x0-axis points along the local vertical, the z0-axis is normal to the orbital

plane, and the y0-axis points along the orbit direction. The corresponding principal body-

fixed coordinate frame of the satellite is denoted by O−x y z. The nodal line represents the

reference line in orbit for the measurement of the true anomaly (eccentric orbit) or angle θ

(circular orbit). For the solar flaps along the y-axis, its normal considered initially aligned

with the x-axis is rotated by an angle β about the z-axis (normal to the orbit plane); and

for the pair of solar flaps along the z-axis with its normal initially aligned with the x-axis

is rotated by an angle ς about the y-axis.

6.1.1 Solar Radiation Pressure Model

The force acting on the solar flap-j, j =1-4 due to SRP is given by

~FSRP = 2pAj |(~s · ~n) | {b1~s + [b2 (~s · ~n) + b3]~n} (6.1)

where ~s represents the Sun vector, ~n, is the solar flap normal vector, ζs, is the specular

reflection factor, and other coefficients are given by,

b1 =
1

2
(1− ζsρs) (6.2)

b2 =ζsρs (6.3)

b3 =
1

2

[
Bf (1− ζs)ρS + (1− ρs)

efBf − ebBb

ef + eb

]
(6.4)
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Figure 6.1: Configuration of the proposed solar controller.

Assuming that the Sun is fixed in the inertial space, the Sun vector, ~s, on the solar flaps,

is obtained in the satellite body fixed reference frame, S-XYZ, as

~s = sxî + sy ĵ + szk̂ (6.5)

From Fig. (6.2), the transformation to the body fixed frame from the Sun centered

inertial frame is obtained as [sx sy sz]
T = CB/L ·CB/I ·CI/S. Here, CB/L represents the

transformation matrix from the orbital frame to the body fixed frame and is given by Eq.

5.1, CB/I represents the transformation matrix from the geocentric inertial to the orbital

frame given by,




c (ot) c (Ω)− s (ot) s (Ω) c (i− εs) − s (ot) c (Ω)− c (ot) s (Ω) cos (i− εs) s (Ω) s (i− εs)

c (ot) s (Ω) + s (ot) c (Ω) c (i− εs) − s (ot) s (Ω) + c (ot) c (Ω) cos (i− εs) − c (Ω) s (i− εs)

s (ot) s (i− εs) c (ot) s (i− εs) c (i− εs)



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Figure 6.2: Geometry of orbit motion of rigid satellite.

where ot represents (ω + θ), c () and s () represents cos () and sin () respectively. CI/S

represents the transformation from the Sun centered inertial to the geocentric inertial frame

as follows, 


cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1




where ψ is the solar aspect angle. The vector normal to the solar flap-j, ~nj is given by

~nj = [cos βj] î + [sin βj] ĵ, j = 1, 2 (6.6)

~nj = [cos ςj] î + [sin ςj] k̂, j = 3, 4 (6.7)

Here β and ς represents the orientation of the solar flaps. Thus, the torque exerted by the

solar flap-j on the satellite is obtained as

~Tsj = ~rj × ~Fsj = rj ĵ × ~Fsj, j = 1, 2 (6.8)

~Tsj = ~rj × ~Fsj = rj k̂ × ~Fsj, j = 3, 4 (6.9)
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Considering the proposed system configuration along with the Eqs. (6.8) and (6.9), it can

be inferred that control torques available only about the pitch (Tsα) and roll (Tsφ) axes.

But we make use of the coupling between the roll and yaw axes to achieve complete three

axis satellite attitude control. Next we look at the formulation of the complete equations

of motion of the proposed system.

6.1.2 Equations of Motion

The governing nonlinear coupled differential equations of motion of the system are obtained

as 


α̈

φ̈

γ̈


 =




N11 N12 N13

N21 N22 N23

N31 N32 N33











Fα

Fφ

Fγ


 +




Tsα

Tsφ

Tsγ








(6.10)

The nonlinear terms in the matrix N and Fq, for q = [α, φ, γ], were provided in the previous

chapter [Eq. (5.23)] and are not repeated here for brevity. Following a similar approach

of nondimensionalization as in the previous chapter, the governing nonlinear equations of

motion of the system can be written in the matrix notation as follows

q′′ = M(q, kxz, kyz)[F (q, q′, e, kxz, kyz) + T̂f ] (6.11)

where M(q, kxz, kyz) ∈ R3×3 and F (q, q′, e, kxz, kyz) ∈ R3×1 are matrices containing non-

linear functions, and T̂f ∈ R3 = [T̂sα, T̂sφ, T̂sγ]
T corresponds to the dimensionless control

torques. The nondimensionalized torque due to SRP is given by,

T̂sq =
(1− e2)

3

(1 + e cos θ)3

(
Tsq

IzΩ2

)
=

(1− e2)
3

(1 + e cos θ)3




T̂sα

T̂sφ

T̂sγ




In this proposed system configuration, the control torques T̂sα and T̂sφ are obtained using

SRP as given by Eqs.(6.8) and (6.9), but the torque component T̂sγ equals to zero.
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6.2 Design of Control Law

In this section, an adaptive control law based on sliding mode technique is designed. Param-

eter uncertainties are associated with the SRP stabilized system, and these uncertainties

can cause numerous problems in the control tasks and lead to inaccuracy and instability

of the control system. Hence an adaptive control methodology is required to achieve con-

sistent stable performance. The unknown parameters are estimated online and used in the

feedback control law. The control inputs are the orientation of the two sets of solar flaps

attached to the satellite. Considering Eqs. (6.1) through (6.9) and (6.10), it is evident that

it is difficult to extract the angular rotations of the solar flaps from the coupled equations

of motion. But if we choose the angular rates as the control inputs, the corresponding

angular orientation of the solar flaps can be obtained by integrating the angular rates.

Hence, to facilitate the control law design, the state space representation of the system can

be formulated as follows,


 x1

′

x2
′


 =


 Ā11 Ā12

Ā21 Ā22









 F1

F2


 +


 0

Ua


 +


 d1

d2






 (6.12)

Here x1 = γ′, x2 = [α′, φ′], Ua ∈ R2×1 = [T̂sα, T̂sφ]T , d1 and d2 represents the external

disturbances, F1 = Fγ and F2 = [Fα, Fφ]
T .

Ā11 =
sin2φ

(
sin2γ + kyzcos2γ

)

kyzcos2φ
+

1

kxz

and Ā12 =
[

sin φ(sin2γ+kyzcos2γ)
kyzcos2φ

(1−kyz) sin γ cos γ sin φ

kyz cos φ

]

Ā12 = ĀT
21 and Ā22 =




sin2γ+kyzcos2γ

kyzcos2φ

(1−kyz) sin γ cos γ

kyz cos φ

(1−kyz) sin γ cos γ

kyz cos φ

cos2γ+kyzsin2γ

kyz




To simplify the control algorithm development, the following assumptions are made

with respect to the orientation of the solar flaps. It is assumed that β2 = −β1 and ς2 =

−ς1, also we assume that the cross-sectional area of the solar flaps and the distance between

the system center of mass O and the center of pressure for both sets of solar flaps are the

same (i.e. Aj=A, rj=r for j = 1,2,3,4). Now assuming the solar flaps to be highly reflective

surface (i.e., ρd = 0; no absorption, specular reflection only, ρt = 0, no transitivity as well),
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the force on the flaps due to SRP can be written as

~Fs = 2ρspA |~s · ~n| (~s · ~n)~n (6.13)

The corresponding torque due to SRP can be expressed as

~Tsj = ~rj × ~Fsj = rj ĵ × 2ρspA (|~s · ~n| (~s · ~n)~n) , j = 1, 2 (6.14)

~Tsj = ~rj × ~Fsj = rj k̂ × 2ρspA (|~s · ~n| (~s · ~n)~n) , j = 3, 4 (6.15)

The torque equations are then converted into dimensionless form by making use of Csrp =

2ρspAr
IzΩ2 . Now, Eq. (6.12) is rewritten in the following form,

M(q) q′′ = F (q, q′) + Ua(β1, ς1) (6.16)

where q ∈ R3 = [γ α φ]T , M(q) ∈ R3×3, F (q, q′), D ∈ R3, and Ua(β1, ς1) = [0 T̂sα, T̂sφ]
T .

F (q, q′) represents the vector containing all the nonlinear terms including the Coriolis and

centrifugal contributions, and M is the mass matrix.The basic objectives for the design of

the control law are a) To drive the system errors to zero without oscillations or overshoots;

b) To compensate external disturbances from the beginning.

First we design the linear sliding manifold which guarantees the desired dynamic be-

havior for the nominal system in the presence of uncertainties and disturbances, and this

is followed by design of the sliding mode control law such that the system states are driven

to this sliding plane and the system remains stable.

6.2.1 Design of Sliding Manifold

For the proposed system given by Eq. (6.16), the orientation of the solar flaps, (βi and

ςi, for i = 1, 2), are the control inputs and appear in non-affine nature in the system

formulation. Hence a nonlinear control algorithm based on higher order sliding mode is

developed. Increasing the order of the system helps in extracting the angular rates of the

solar flaps (β′i, ς ′i, i = 1, 2) from Eq. 6.16. The corresponding angular orientation of the
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solar flaps is obtained by integration of these angular rates. These control inputs are then

used in the system dynamics to calculate the torque due to SRP. First a sliding surface

with order less than the system dynamics is introduced, it is given as

S = KAMq̃′ + KB q̃ (6.17)

where q̃′ = q′− q′d, and q̃ = q− qd are the state error variables and KA and KB are positive

constants given by

KA =


 0 P2 0

P5 0 P6


 and KB =


 0 P1 0

P3 0 P4


 (6.18)

Now a higher order sliding manifold is defined combining S and its derivative, i.e, S ′; it is

given as,

σ = S ′ + ξS (6.19)

where S ′ = KAMq̃′′ + (KAM ′ + KB) q̃′.

6.2.2 Adaptive Control Formulation and Stability Analysis

In this section the adaptive control algorithm is formulated and its stability is analyzed.

The time varying and uncertain parameter is the the solar parameter Csrp, hence it is

assumed to be unknown and is estimated online and then used in the control algorithm.

Using Lyapunov stability theorem, the control law that drives the system states to be along

the sliding manifold, σ = 0 for all t > tr, is derived. Consider the Lyapunov candidate

function defined as follows,

V =
1

2
σ2 +

1

2ζ
C̃2

srp (6.20)

where V > 0 and ζ is a positive constant. C̃srp = Ĉsrp − Csrp which is the true value -

estimate value. Taking the derivative along the trajectory gives,

V ′ = σσ′ +
C̃srpĈ

′
srp

ζ
(6.21)
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where σ′ = S ′′ + ξS ′. Next, the system nonlinearities and external disturbances present in

system dynamics are expressed using its worst case upper-bound in the controller design,

leading to the following relation,

‖L‖ ≤ d1 + d2‖q‖+ d3‖q′‖ ≤ d (6.22)

Now, expanding σ′ in Eq. (6.21) yields,

σ′ = KA[Mq′′′ + M ′q′′] + [KAM ′ + KB]q′′ + KAM ′′q′ (6.23)

where q′′′ represents the derivative of the equations of motion, Eq. (6.16) along its trajec-

tories given by

q′′′ = F ′ (q, q′) + CsrpU
′
a


 β′1

ς ′1


 (6.24)

where U ′
a =

[
T̂ ′

sα T̂ ′
sγ

]
. Substituting Eq. (6.24) in Eq. (6.23), we get,

σ′ = KACsrpU
′
a[β

′
1, ς ′1]

T + KAF ′(q, q′) + [KAM ′ + KB]q′′ + KAM ′′q′ (6.25)

Now, substituting σ′, from the from preceding equation in Eq. (6.21), along with the

consideration on the bounds given in Eq. (6.22) we get

V ′ = σ
(
KACsrpU

′
a[β

′
1, ς ′1]

T + ‖L‖) +
C̃srpĈsrp

ζ
(6.26)

Now considering the parameter estimation error in B as

C̃srp = Ĉsrp − Csrp (6.27)

and expanding Eq. (6.26), we have

V ′ = σ

[
KA

(
_

Csrp − C̃srp

)
U ′

a[β
′
1, ς ′1]

T + ‖L‖
]

+
C̃srpĈsrp

ζ
(6.28)
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Rearranging the preceding Eq. (6.28) yields

V ′ = σ
[
KAĈsrpU

′
a[β

′
1 ς ′1]

T
+ ‖L‖

]
− σKAC̃srpU

′
a[β

′
1 ς ′1]

T
+

C̃srpĈ
′
srp

ζ
(6.29)

Now in order to make V ′ negative, choose the adaptive law as

Ĉ ′
srp = ζσKAUa [β′1 ς ′1] (6.30)

where ζ is the adaptation gain. Also let

KAĈsrpU
′
a[β

′
1, ς ′1] = −ηsgn(σ) (6.31)

where η is a positive constant and η >> sup ‖L‖. Substituting Eq. (6.31) and Eq. (6.30)

into Eq. (6.29), we have

V ′ = σ [−η sgn (σ)] = −η |σ| (6.32)

Now, we can prove that the system is completely stable using theorem-3 of LaSalle’s prin-

ciple [LaSalle 1960], and hence the system states converge onto the sliding surface. The

reaching time, (tr), for adaptive sliding mode derived in Chapter 5 holds in this case as

well. It is given as |σ (t = 0)| /c, where c = (η−d) and d is assumed to be a bounded value.

Next, Eq. (6.31) is rearranged to derive the control law as

[β′1, ς ′1] = − 1

KAĈsrpU ′
a

[η sgn (σ)] (6.33)

And the control law with the introduction of the boundary layer in Eq. (6.33), is given by,

[β′1, ς ′1] = − 1

KAĈsrpU ′
a

η

[
σ

|σ|+ δ

]
(6.34)

where δ is the width of the boundary layer.

Remark 6.1 : The Euler angles γ, φ and α are limited to the ranges −π < γ < π,

−π
2

< φ < π
2
, and −π < α < π. Therefore, the Lyapunov analysis guarantees stability for
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any initial condition that avoids singularities due to φ = ±π
2
.

6.3 Performance Evaluation

To study the effectiveness and performance of the proposed adaptive controller, the detailed

system response is numerically simulated using the set of governing equations of motion

given by Eq. (6.10) along with proposed adaptive control law given by Eq. (6.34). The

integration is carried out Matlab using the fourth order Runge-Kutta solver.The simulation

parameters used are shown in Table 6.1.

Table 6.1: System parameters.

Parameters Values

Moment of Inertia
[Ixx Iyy Izz] (kg m2) [15 17 20]

System Parameters
R (km) 42378
µ (km3/s2) 3.986× 105

p (N/m2) 4.563× 10−6

ε (deg) 23.5
i (deg) 0
ψ (deg) 45
r (m) 0.5
A (m2) 1.0

Control Parameters
[P1 P2 P3] [4.5 4.5 4.5]
[P4 P5 P6] [−2.1 1.5 − 2.5]

η 0.5
δ 0.01
ζ 200

Initial Estimates
ρs0 0.7
p0 (N/m2) 4.563× 10−6

r0 (m) 0.25
A0 (m2) 0.25

Similar to Chapter 5, the nondimensional parameters k1 and k2 based on the values of

the satellite mass moment of inertia, have values of 0.3 and 0.2 respectively. The control
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law is developed based on these values. The effect of variations in satellite mass moment

of inertia is examined by implementing the changes in the mass moment of inertia only in

the satellite dynamic model.

6.3.1 Nominal Performance

First, we evaluate stabilization of the satellite in a circular orbit from the large initial

disturbances about its three axes given by

α0 = −60 deg; φ0 = 50 deg; γ0 = 60 deg

α′0 = φ′0 = γ′0 = 2.5 deg / sec
(6.35)

Fig. (6.3) illustrates the satellite attitude response subjected to the large initial errors.

It can be observed that the adaptive controller successfully stabilizes the satellite. The

Euler angles asymptotically approach zero and the maximum deflection of the solar flaps

|β|max(|ς|max) is 28◦ (9◦), observed during the transient state. Fig. (6.4) shows the angular

rates and the adaptive parameter Ĉsrp.

6.3.2 Variations in Mass Moment of Inertia

The performance of the proposed adaptive control algorithm in the presence of variations on

the satellite mass moment of inertia is examined next. A satellite in an axially symmetric

configuration is considered, then the performance of the proposed system as affected by the

product of inertia terms (Ixy, Ixz, Iyz) is evaluated, and finally the efficacy of the adaptive

control algorithm for a satellite in an unstable gravity gradient configuration is examined.

The inertia matrix for the first and second cases is chosen same as shown in Table 5.2

in Chapter 5. The system performance for an axisymmetric satellite is shown in Fig.

(6.5). The attitude response converges asymptotically. Fig. (6.6) shows the corresponding

angular rates and the adaptive parameter Ĉsrp. Next, the effect of incorporating product

of inertia terms in the satellite model is evaluated. The attitude of the satellite is stabilized

within ona and half orbits (Fig. 6.7). The steady state error is non-zero,as expected from

the addition of the product of inertia terms. The performance of the control method for
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Figure 6.3: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, k1 = 0.3, k2 = 0.2.
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k2 = 0.2.
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Figure 6.5: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, k1 = 0.177, k2 = 0.177.

a satellite in an unstable gravity gradient configuration is now evaluated. The values of

the nondimensional parameters are taken as k1 = −0.1 and k2 = 0.2 corresponding to the

unstable configuration of a satellite with no control in its yaw axis. Fig. 6.8 illustrates

the effectiveness of the proposed control methodology. The attitude is stabilized within

one and half orbit and the solar flaps exhibit the maximum deflection of 30◦ during the

transient state.

6.3.3 Effect of System Parameters

Fig. (6.8) shows the effect of the solar aspect angle ψ on the proposed controller. Satellite

attitude response remains virtually unaffected as the value of ψ is changed from 45◦ to 135◦.

However the solar flap deflection changes with changes in ψ. The maximum deflection in

the solar flap, |β|max(|ς|max) is 28◦ (9◦), during the transient state for ψ = 45◦. In the case

of ψ = 135◦, the maximum deflection in solar flaps are |β|max(|ς|max) is 28◦ (11◦).
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Figure 6.6: Response of angular velocity and estimated adaptive parameter, k1 = 0.177,
k2 = 0.177.
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Figure 6.7: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, k1 = 0.3, k2 = 0.2 with product of inertia terms.
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Figure 6.8: Response of angular velocity and estimated adaptive parameter, k1 = −0.1,
k2 = 0.2.

6.3.4 Eccentricity and External Disturbances

The effectiveness of the control methodology for a satellite in an elliptical orbit is examined

next. The performance of the system for an orbital eccentricity of e = 0.1 is shown in

Fig. (6.10). The state error in the pitch axis is bounded by |α|max = 0.1◦, roll axis by

|φ|max = 0.15◦ and the roll axis by |γ|max = 0.25◦. The solar flaps continuously maneuver

to counter this disturbance due to eccentricity, and the maximum deflection of the solar

flaps is observed in the transient state and the maximum deflection in the steady state

deflection is nearly 5◦. The satellite attitude remains stabilized within reasonable limits

even in an orbit with an eccentricity of 0.1 using the proposed methodology.

Finally, the effect of external disturbance on the performance of the system is verified.

The system may experience external disturbance torques due to several factors including

SRP modeling errors (i.e. ρd 6= 1), solar flap misalignment and other environmental forces.

The satellite model is subjected to disturbance of a periodic nature, and the performance

of the controller is evaluated. It can be observed from Fig. (6.11) that the controller
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Figure 6.9: Effect of solar aspect angle ψ on solar flap deflection and attitude tracking:
(a)ψ = 45◦, (b)ψ = 90◦, (c)ψ = 135◦.

maneuvers the solar flaps and is able to regulate the satellite attitude successfully. Thus,

this establishes the robustness of the proposed methodology to time varying external dis-
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Figure 6.10: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion, e=0.1

turbance. Furthermore, the above results bring out the powerful features of SRP based

three axis satellite attitude control using the proposed adaptive control methodology. The

performance of the controller does not deteriorate even when the system parameters are

changing and yet provides excellent attitude response.

6.4 Summary

This chapter examines the feasibility of three axis satellite attitude control using solar

radiation pressure. A satellite with two sets of oppositely placed light weight solar flaps is

proposed. This configuration provides explicit control only on two of the axes, the pitch and

roll axis. But, three axis attitude maneuvering and maintenance is accomplished by rotating

the solar flaps with accordance to the control law developed based on sliding mode theory.

The performance of the control strategy in attitude stabilization is examined in the detail

including its performance in the presence of external disturbances, variation in the solar
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Figure 6.11: Performance of the adaptive sliding mode controller during attitude stabiliza-
tion in the presence of external disturbances

aspect angle ψ, high initial attitude rates and uncertainty in the mass moment of inertias.

The satellite attitude was observed to be stabilized within 0.1◦ in all the cases. Thus, the

proposed nonlinear adaptive controller is feasible in achieving high attitude performance

as required by future satellite missions.





Chapter 7

Fault Tolerant Satellite Attitude

Control Using Solar Radiation Pressure

/ Aerodynamic Drag

In Chapters 5 and Chapter 6, the feasibility of achieving robust satellite attitude control

using maneuverable drag plates and solar flaps respectively were demonstrated. This

chapter evaluates the performance of this control strategy in the presence of faults or failures

of the drag plates or solar flaps. The adaptive nonlinear control design employed in the

previous chapters is extended to handle the presence of such faults or failures. First, the

pitch attitude performance of the satellite in the presence of faults or failures in the solar

flaps is evaluated. The fault scenarios considered include sudden failure of one of the solar

flaps, occurrence of an abrupt blockage or loss in effectiveness of one of the rotating solar

flaps, and occurrence of a periodic actuator fault. Next, performance of the system during

three axis attitude control scenario in the presence of similar failures is examined.

The system model and its equations of motion in the case of pitch attitude control using

solar radiation pressure is presented in Section 7.1. In section 7.2, the nonlinear adaptive

sliding mode control law is derived. In Section 7.4 numerical simulation is carried out for

a detailed assessment of the proposed attitude control strategy, and the effects of different

failure scenarios on the controller performance is examined. Next, in section 7.5, the

controller performance in the case of three axis attitude control using either aerodynamic

drag or solar radiation pressure is evaluated in the presence of faults and failures. Finally,

the findings of the present study are summarized in Section 7.6.
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7.1 Proposed System Model and Equations of Motion

for Pitch Attitude Control

The system model consists of a satellite with two-oppositely placed light-weight solar flaps

along the satellite Y-axis and its center of mass O moving in a circular orbit about the

Earth’s center E (Fig.7.1). The system center of mass O lies on the center of mass of the

satellite. The mass of the solar flaps and other accessories are assumed to be negligible. For

the system under consideration, an orbital reference frame O-XoYoZo is selected such that

the Yo-axis always points along the local vertical, the Xo-axis lies normal to the orbital

plane, and the Zo-axis represents the third axis of this right handed frame taken. The

body-fixed coordinate frame is represented by O −XY Z. For solar flap-j, we consider its

axis nj initially aligned with the Z-axis is rotated by an angle βj about the X-axis (normal

to the orbit plane Y -Z). The solar flaps are considered to be made of a highly reflective

surface (i.e., ρd = 0; no absorption, specular reflection only). The distances between the

system center of mass O and the center of pressure for both the solar flaps are assumed to

be the same and their cross-sectional areas facing the Sun are equal.

Figure 7.1: Configuration of the proposed solar controller.
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Using Euler’s method the governing equation of motion of the system is written as

Ix

(
θ̈ + α̈L

)
= τg + τs + τd (7.1)

where τd is the disturbance torque, τg is the gravity gradient torque given by

τg = − 3µ

2R3
(Iy − Iz) sin 2αL (7.2)

and τs denotes the torque due to solar radiation pressure and it is derived as follows:

Considering a highly reflective surface (i.e., ρd = 0; no absorption, specular reflection only,

ρt = 0, no transitivity as well), the force acting on the flap-j due to SRP is given by

~Fsj
= 2ρspAj |~sj · ~nj| (~sj · ~nj)~nj, j = 1, 2 (7.3)

Here ~sj is the unit vector of the incoming light from the Sun on the solar flap-j and is

expressed in the satellite body-fixed reference frame as

~sj = [sin ψ sin (i− εs)] î + [− cos ψ cos (θ + αL)− sin ψ cos (i− εs) sin (θ + αL)] ĵ

+ [cos ψ sin (θ + αL)− sin ψ cos (i− εs) cos (θ + αL)] k̂
(7.4)

The vector normal to the solar flap-j,~nj is given by

~nj = [− sin βj] ĵ + [cos βj] k̂, j = 1, 2 (7.5)

Thus, the torque exerted by the solar flap-j on the satellite is obtained as

~τsj
= ~rj × ~Fsj

= (−1)j+12ρspAjrj |~sj · ~nj| (~sj · ~nj) [cos βj] î, j = 1, 2 (7.6)

Assuming that the cross-sectional area of the flap and the distance between the system

center of mass S and the center of pressure for both the solar flaps are the same (i.e.

Aj = A, rj = r), the components of the total solar torque about the satellite body axes
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can be written as

τs = τs1 + τs2 = 2ρSpAr [|~s1 · ~n1| (~s1 · ~n1) cos β1 − |~s2 · ~n2| (~s2 · ~n2) cos β2] (7.7)

Let α be the orientation of the satellite with respect to the inertial axis Y1 (Fig.7.1). We

have the following relation

α = αL + θ (7.8)

where θ = Ωt is the orbital angle, and Ω = µ/R3 is the orbital rate. Substituting, αL =

α− θ, in τg and τs in Eq. (7.2) and Eq. (7.7) , respectively, and expressing the derivatives

with respect to θ and using following relations:

α̇ = Ωα′

α̈ = Ω2α′′
(7.9)

the resulting governing equation of motion of the system is obtained as follows:

α′′ = Tg + Ts (7.10)

where
Tg = −3

2
K sin 2 (α− θ)

Ts = C1σsin2 (α + γ + β1) ∆1 cos β1 − C2σsin2 (α + γ + β2) ∆2 cos β2

σ = 1− sin2ψsin2 (i− εs)

γ = −tan−1 (tan ψ cos (i− εs))

∆j = sgn (sin (α + γ + βj)) , j = 1, 2

K =
Iy − Iz

Ix

, C1 =
2ρspA1r1

IxΩ2
, C2 =

2ρspA2r2

IxΩ2
,

Here sgn (f) the denotes signum function. Also the solar aspect angle (ψ) is a function of

θ and varies from 0 to 2π radians in one year.
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7.2 Design of Control Law

In this section, an adaptive sliding mode control law is derived. Adaptive control method-

ology is employed to deal with the uncertainties due to unknown or slowly time-varying

parameters. Here the solar parameters C1 and , C2 and the satellite mass distribution

parameter K are assumed to be unknown and are estimated online and then used in the

control law.

7.3 Adaptive Control Law Design

The nonlinear and nonautonomous system equation of motion, Eq. (7.10), can be repre-

sented in state space form. The following state vector is defined

x =
[

α α′ β1 β2

]T

(7.11)

A state space representation of the system, with a selected controlled output variable y = α,

is given by
ẋ = f (x) + g u

y = α
(7.12)

where
f (x) =

[
α′ Tgs (α, α′, γ, βi, θ) 0 0

]T

u =
[

β′1 β′2

]T

g =
[

g1 g2

]

g1 =
[

0 0 1 0
]T

g2 =
[

0 0 0 1
]T

where Tgs = Tg + Ts

Next, the sliding plane is chosen as

S = α̃′′ + λ2α̃
′ + λ1α̃ (7.13)
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where α̃′′ = α′′ − α′′d, α̃′ = α′ − α′d, α̃ = α− αd are the state error variables, λ1 and λ2 are

positive constants. The basic idea is to alter the system dynamics along the sliding surface

such that the trajectory of the system is steered onto the sliding manifold described by S

= 0. Subsequently, control laws based on the Lyapunov stability theorem is derived. The

control law that forces the motion of the states to be along the sliding manifold S = 0 can

be derived by choosing the Lyapunov candidate function defined as follows.

V =
1

2
S2 +

1

2γ1

K̃2 +
1

2γ2

C̃2
1 +

1

2γ3

C̃2
2 (7.14)

where V > 0 and γ1, γ2 and γ3 are positive constants. Taking the derivative along the

trajectory gives,

V ′ = SS ′ +
K̃K̂ ′

γ1

+
C̃1Ĉ

′
1

γ2

+
C̃2Ĉ

′
2

γ3

(7.15)

where S ′ = α̃′′′ + (λ2α̃
′′ + λ1α̃

′). Here

α′′′ =
∂Tgs

∂α
α′ +

∂Tgs

∂θ
θ′ +

∂Ts

∂β1

u1 +
∂Ts

∂β2

u2 (7.16)

and
∂Tgs

∂α
= −3K cos [2 (α− θ)] +





C1σ sin 2 (α + γ + β1) ∆1 cos β1−
C2σ sin 2 (α + γ + β2) ∆2 cos β2



 (7.17)

∂Tgs

∂θ
= 3K cos 2(α−θ)+





C1σ sin 2 (α + γ + β1) ∆1 cos β1−
C2σ sin 2 (α + γ + β2) ∆2 cos β2





{
− cos (i− εs) sec2ψ

1 + tan2ψcos2 (i− εs)

}

+





C1σsin2 (α + γ + β1) ∆1 cos β1−
C2σsin2 (α + γ + β2) ∆2 cos β2





{− sin 2 (ψ) sin2 (i− εs)
}

(7.18)

∂Ts

∂β1

= C1σ∆1

[
sin 2 (α + γ + β1) cos β1 − sin2 (α + γ + β1) sin β1

]
(7.19)

∂Ts

∂β2

= C2σ∆2

[− sin 2 (α + γ + β2) cos β2 + sin2 (α + γ + β2) sin β2

]
(7.20)
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Rearranging Eq. (7.16), we have

α′′′ = Kf0 + C1f1 + C2f2 + C1g1u1 + C2g2u2 (7.21)

where

f0 = −3K cos [2 (α− θ)] α′ + 3K cos [2 (α− θ)] (7.22)

f1 = [σ sin 2 (α + γ + β1) ∆1 cos β1] α
′

+ [σ sin 2 (α + γ + β1) ∆1 cos β1]

[
− cos (i− εs) sec2ψ

1 + tan2ψcos2 (i− εs)

]

+
[
sin2 (α + γ + β1) ∆1 cos β1

] [− sin 2 (ψ) sin2 (i− εs)
]

(7.23)

f2 = [(−σ sin 2 (α + γ + β2) ∆2 cos β2) α′]

+ [−σ sin 2 (α + γ + β2) ∆2 cos β2]

[
− cos (i− εs) sec2ψ

1 + tan2ψcos2 (i− εs)

]
(7.24)

+
[−sin2 (α + γ + β2) ∆2 cos β2

] [− sin 2 (ψ) sin2 (i− εs)
]

(7.25)

g1 = σ∆1

[
sin 2 (α + γ + β1) cos β1 − sin2 (α + γ + β1) sin β1

]
(7.26)

g2 = σ∆2

[− sin 2 (α + γ + β2) cos β2 + sin2 (α + γ + β2) sin β2

]
(7.27)

Substituting α′′′ from into Eq. (7.15) yields

V ′ = S [Kf0 + C1f1 + C2f2 + C1g1β
′
1 + C2g2β

′
2 − α′′′d + (λ2α̃

′′ + λ1α̃
′)]

+
K̃K̂ ′

γ1

+
C̃1Ĉ

′
1

γ2

+
C̃2Ĉ

′
2

γ3

(7.28)

Taking the parameter estimation errors as

K̃ = K̂ −K C̃1 = Ĉ1 − C1 C̃2 = Ĉ2 − C2 (7.29)
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and expanding Eq. (7.28), we have

V ′ = S
[(

K̂ − K̃
)

f0 +
(
Ĉ1 − C̃1

)
f1 +

(
Ĉ2 − C̃2

)
f2 +

(
Ĉ1 − C̃1

)
g1β

′
1 +

(
Ĉ2 − C̃2

)
g2β

′
2

−α′′′d + (λ2α̃
′′ + λ1α̃

′)] +
K̃K̂ ′

γ1

+
C̃1Ĉ

′
1

γ2

+
C̃2Ĉ

′
2

γ3

(7.30)

Now in order to make V ′ negative choose the adaptive laws as

K̂ ′ = γ1Sf0 Ĉ ′
1 = γ2S (f1 + g1β

′
1) Ĉ ′

2 = γ3S (f2 + g2β
′
2) (7.31)

where γ1, γ2 and γ3 are the adaptation gains. Also let

K̂f0 + Ĉ1f1 + Ĉ2f2 + Ĉ1g1β
′
1 + Ĉ2g2β

′
2 − α′′′d + (λ2α̃

′′ + λ1α̃
′) = −η sgn(S) (7.32)

Substituting Eq. (7.31) and Eq. (7.32) into Eq. (7.30), we have

V ′ = S [−η sgn(S)] = −η |S| (7.33)

Next, Eq. (7.32) is rearranged to derive the control laws as,

u1 =
Ĉ1g1(

Ĉ1g1

)2

+
(
Ĉ2g2

)2

{
α′′d − K̂f0 − Ĉ1f1 − Ĉ2f2 − (λ2α̃

′′ + λ1α̃
′)− η sgn (S)

}

(7.34)

u2 =
Ĉ2g2(

Ĉ1g1

)2

+
(
Ĉ2g2

)2

{
α′′d − K̂f0 − Ĉ1f1 − Ĉ2f2 − (λ2α̃

′′ + λ1α̃
′)− η sgn (S)

}

(7.35)

Using a similar approach the control law based on sliding mode without adaptation can be

derived. Assuming a candidate Lyapunov function,V = 1
2
S2, the control laws for sliding

mode without adaptation was obtained as

u1 =
C1g1

(C1g1)
2 + (C2g2)

2 {α′′d −Kf0 − C1f1 − C2f2 − (λ2α̃
′′ + λ1α̃

′)− η sgn (S)} (7.36)
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u2 =
C2g2

(C1g1)
2 + (C2g2)

2 {α′′d −Kf0 − C1f1 − C2f2 − (λ2α̃
′′ + λ1α̃

′)− η sgn (S)} (7.37)

The adaptation laws, Eq. (7.31), provide the estimate of the unknown parameters K̂,

Ĉ1 and Ĉ2 which are used in the control laws, Eq. (7.34) and (7.35). For the existence of

the control laws,
(
Ĉ1g1

)2

+
(
Ĉ2g2

)2

must be non-zero in the region of interest. This region

Ωs (Ωs1 ∩ Ωs2) of singularity is given by

Ωs1 =
(
Ĉ1g1

)2

=
{

Ĉ1σ∆1

[
sin 2 (α + γ + β1) cos β1 − sin2 (α + γ + β1) sin β1

]}2

= 0

=
[
2 sin (α + γ + β1) cos (α + γ + β1) cos β1 − sin2 (α + γ + β1) sin β1

]2
= 0 (7.38)

= sin (α + γ + β1) cos (α + γ + β1) cos β1 [2− tan (α + γ + β1) tan β1] = 0 (7.39)

⇒ (α + γ + β1) = 2nπ, or [tan (α + γ + β1) tan β1] = 2 (7.40)

Similarly for Ωs2, we have

(α + γ + β2) = 2nπ, or [tan (α + γ + β2) tan β2] = 2 (7.41)

Note that the control law is well defined as long as the trajectory of the system does not

enter the region Ωs.

7.3.1 Pitch trajectory tracking

A specific trajectory is assumed for the purpose of attitude tracking. A simple polynomial

based trajectory to achieve final attitude orientation is considered.

7.3.1.1 Hurwitz filter trajectory

The following fourth order polynomial is adopted since the control law requires a third

order desired pitch response.

αd
′′′′ + 4µdαd

′′′ + 6µd
2αd

′′ + 4µd
3αd

′ + µd
4αd = µd

4α∗ (7.42)
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where µd is a positive real number and α∗ is the target pitch angle. The general closed

form solution of Eq. (7.42) can be obtained as,

αd (θ) = αf + k1e
−µdθ + θk2e

−µdθ + θ2k3e
−µdθ + θ3k4e

−µdθ (7.43)

where k1, k2, k3, and k4 can be obtained from initial conditions αd (0) , α
(i)
d (0) , i = 1, 2, 3.

Eq. (7.43) can be differentiated with respect to θ to obtain αd
′ (θ), αd

′′ (θ), and αd
′′′ (θ).

Since we require that the tracking error converge to zero without oscillations, the charac-

teristic polynomial given by the sliding plane (Eq. (7.13)) must be critically damped and

it should have two real roots. This would ensure that oscillations or overshoots do not

take place neither before nor after the sliding plane is reached. The condition for critically

damped second order system is given by

λ2 = 2
√

λ1 (7.44)

and the parameters λ1 and λ2 must be strictly positive constants to make the system stable

in the sliding manifold.

7.3.1.2 Closed-Loop Error Dynamics

The system given by Eq. (7.10) can be rewritten as

α′′ = Tgs + τd (7.45)

where τd represent a bounded external disturbance. By differentiating Eq. (7.45) and using

Eqs. (7.21), (7.34) and (7.35) yield

(α̃′′′ + λ2α̃
′′ + λ1α̃

′ + η sgn (S))

(
C1Ĉ1g

2
1 + C2Ĉ2g

2
2

)

(
Ĉ1g1

)2

+
(
Ĉ2g2

)2 + Ad = 0 (7.46)
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where Ad is the adaptive parameter estimation error given by

Ad = f0





K̂(
Ĉ1g1

)2

+
(
Ĉ2g2

)2

(
C1Ĉ1g

2
1 + C2Ĉ2g

2
2

)
−K





+
1(

Ĉ1g1

)2

+
(
Ĉ2g2

)2

(
Ĉ1f1 + Ĉ2f2

)(
C1Ĉ1g

2
1 + C2Ĉ2g

2
2

)
− (C1f1 + C2f2)

(7.47)

The estimation error Ad will converge to zero as the estimated parameters converge to their

original value. The preceding Eq. (7.46) is a third order linear differential equation of error

dynamics and it does not contain any external disturbance term. This error equation is

asymptotically stable as θ →∞, and the tracking error α̃(θ) → 0. Furthermore, the term

η sgn (S) forces the error dynamics to stay onto the sliding plane which makes the system

insensitive to system parameter uncertainty and disturbances.

7.4 Performance Evaluation-Pitch Attitude Control

To study the effectiveness and performance of the proposed adaptive controller, the detailed

system response is numerically simulated using the set of governing equations of motion,

Eq. (7.10) in conjugation with the proposed control laws given by Eq. (7.34) and (7.35).

The integration is carried out using International Mathematical and Statistical Library

(IMSL) routine DDASPG based on the Petzold-Gear BDF method. Here we studied the

attitude manoeuvre of the satellite starting from the initial attitude α0 = 1100 to the final

desired attitude αd = 00 with an initial tracking error of 100. The simulation parameters

used are shown in Table 7.1. A satellite in the geostationary orbit is considered here and

hence the Earth shadow effect is assumed to be negligible as its effect is experienced for

only about 5% of the orbital period [Kumar et al. 2006].

7.4.1 Nominal performance

Fig.7.2 presents the response of the system to pitch trajectory tracking. It is found that

the adaptive controller performs very well with no overshoot. The maximum solar flap
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Table 7.1: Simulation parameters

Parameters Values

Mass distribution, K 0.5
Solar parameter, (C1 C2) (15, 15)

Sliding mode gains, (λ1, λ2) (6, 9)
η, φ, µd (0.5, 0.5, 2.0)

Adaptive gains, (γ1, γ2, γ3) (30, 6, 6)
Initial estimate−Mass distribution, K̂0 0.05

Initial estimate− Solar parameter, (Ĉ10, Ĉ20 (3, 3)
(α0, α

′
0, β1, β2) (m2) (110◦, 0◦, 0◦, 0◦)

deflection angle is 10◦ in the transient period and 6◦ in the steady state period. The flap

deflection in the steady state is to counter the periodic gravity gradient torque Tg. Fig.7.2

also shows the estimates of the satellite mass distribution parameter and solar parameters

K̂, Ĉ1 and Ĉ2 respectively. The estimated parameters converge to K̂ = 0.08, Ĉ1 = 2.49 and

Ĉ2 = 2.52. The satellite pitch attitude tracking remains unaffected proving the robustness

of the adaptive control scheme. The maximum solar flaps deflection
(|βj|max

)
remains less

than 6◦.

7.4.2 Solar flap failure

Next the performance of the system when one of the solar flaps fails, say solar flap 2 (i.e.,

C2 = 0), is studied (Fig.7.3). Failure is simulated to occur at 0.3 orbit. But this failure

information is not passed onto the controller. The defective solar flap then fails to generate

any useful torque. Referring to Fig.7.3, the operational flap, flap 1, compensates this failure

by increasing the angle of rotation to achieve the desired trajectory and to maintain the

attitude of the satellite. The satellite pitch attitude tracking remains unaffected. Note in

this case the system using sliding mode control without adaptation fails to meet the desired

pitch attitude and the solar flap deflection deviates to unreasonable orientations (Fig.7.4).
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Figure 7.2: Performance of the adaptive sliding mode controller under attitude tracking.

7.4.3 Actuator stuck fault

Next, we consider a fault scenario in which the actuator gets stuck at a particular position,

i.e., the solar flap 2 stops abruptly at 0.3 orbit (Fig.7.5). It is found that β1 compensates

for the fault by overshooting to a maximum value of 40◦ as soon as β2 is jammed. But β1

eventually settles with a maximum deflection of 17◦after the satellite pitch attitude reaches

the desired angle. Thus, even when one of the actuators is stuck in position, the proposed

fault-tolerant controller demonstrated excellent performance in providing desired satellite

attitude control.

In the case of sliding mode without adaptation, the actuator stuck fault degrades the

system performance and is unable to provide the desired response (Fig.7.6). The advantage

of using an adaptive sliding mode control is very much evident in the presence of actuator

fault and failures.
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Figure 7.3: Performance of the adaptive sliding controller under solar flap failure at 0.3
orbit.

7.4.4 Actuator loss of effectiveness

In this fault scenario, the actuator has a loss of its control effectiveness (i.e., impaired control

surfaces). As a result of this fault, while executing manoeuvres, the torque produced by the

defective solar panel is considerably less than its nominal value. Here we have simulated an

actuator performance degradation of 90% in solar flap 1 (Fig.7.7). The operational solar

flap 2 compensates for this loss in effectiveness of solar flap 1 by increased deflection to

maintain the desired satellite attitude. The maximum deflection in solar flap 2, |β2|max, is

13.5◦. Furthermore the pitch tracking remains unaffected.
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Figure 7.4: Performance of the sliding controller under solar flap failure at 0.3 orbit.
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Figure 7.6: Performance of the sliding controller under actuator stuck fault from 0.3 orbit.

Figure 7.7: Performance of the adaptive sliding controller under actuator degradation
(90%)fault.

7.4.5 Time varying actuator fault

Next, we consider a fault scenario in which the actuator has a time varying periodic fault

associated with it. This fault condition differs from the actuator stuck fault in the sense

that here the actuator fault is periodic rather than a steady state. Hence the torque as-

sociated with this type of faulty flap will also be time varying. The fault is simulated by

a sinusoidal signal, 0.2 sin(10θ) is applied on flap 2 from 0.3 orbit onwards (Fig.7.8). The

operational flap compensates for this faulty condition without loss in control of satellite at-

titude tracking proving the robustness of the proposed controller. The maximum deflection
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in solar flap 1, |β1|max, is 46.5◦.
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Figure 7.8: Performance of the adaptive sliding controller under periodic actuator fault
from 0.3 orbits.

7.5 Three Axis Satellite Attitude Control

In this section, the efficacy of the adaptive control methodologies developed in Chapter

5 and 6 is examined in the presence of the faults and failures. The proposed three axis

satellite attitude control system is subjected to similar faults and failures as in Section 7.4,

and the system response is analyzed.

7.5.1 Satellite Attitude Control Using Solar Radiation Pressure

First, the performance of the proposed method of three axis satellite attitude control using

solar radiation pressure in evaluated in the presence of faults or failures. The system

equations of motion is modified by replacing the common term used to represent solar

parameter (Csrp) with individual solar parameter terms (Csrpj
) corresponding to the four

solar flaps (j = 1− 4) associated with the proposed system configuration (Fig. (6.1)). The

resulting control law is given as


 β′j

ς ′j


 = − 1

KAĈjSRP U ′
a

[
σ

|σ|+ δ

]
(7.48)
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7.5.1.1 Solar flap failure

First, the system performance in the presence of failure of solar flap is evaluated. Assuming

a failure of the solar flap 4 (i.e., Csrp4 = 0), after 0.3 orbit, the attitude stabilization

capability is verified. Referring to Fig.7.9, the operational flap, flap 3 (ς1), compensates

the failure by increasing the flap orientation, thereby achieving smooth satellite attitude

stabilization.
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Figure 7.9: Performance of the adaptive controller under solar flap failure at 0.3 orbit.

7.5.1.2 Actuator stuck fault

Next, the fault caused due to the actuator remaining stuck at a particular position is

considered. The solar flap 4 stops abruptly at 0.5 orbit (Fig.7.10). It can be observed that

the solar flap 3 (ς1) compensates for this fault as soon as ς2 is jammed. It can be observed

from Fig.7.10, that the orientation of ς1 increases from 0.5 orbit to a maximum value of

10.5◦. The controller demonstrates excellent performance in stabilizing the satellite even

with one of the actuators stuck in position in this underactuated system configuration.
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Figure 7.10: Performance of the adaptive controller under actuator stuck fault from 0.3
orbit.

7.5.1.3 Actuator loss of effectiveness

Systems performance under loss of control effectiveness in the actuator is examined next.

A 90% performance degradation in solar flap 4 (ς2) is simulated (Fig.7.11). The fully oper-

ational solar flap 3 compensates by increased deflection to achieve a smooth stabilization

of the satellite attitude. The maximum deflection |ς1|max is 22.5◦.

7.5.2 Satellite Attitude Control Using Aerodynamic Drag

The fault tolerant system performance of a satellite controlled using aerodynamic drag is

evaluated in this section. The control law is developed by modifying the term used to

represent uncertainties (B̃) with individual parameters for each of the four drag plates

associated with the proposed system configuration (Fig. (5.1). The resulting control law is

given as

β′j = − 1

KAB̂jU ′
a

[
σ

|σ|+ δ

]
(7.49)
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Figure 7.11: Performance of the adaptive controller under actuator degradation (90%)fault.

7.5.2.1 Drag plate failure

First, we evaluate the system performance in the case of failure of one of the drag plate.

Drag plate 4 (β4) is assumed to have failed after 0.3 orbit. Referring to Fig.7.12, it can be

observed that the operational flap in the corresponding axis, flap 3 (β3), compensates this

failure by increasing its orientation to achieve smooth satellite attitude stabilization.

7.5.2.2 Actuator stuck fault

Next, the fault caused due to the actuator remaining stuck at a particular position is con-

sidered. The drag plate 3 (β3) is assumed to have stopped abruptly at 0.5 orbit (Fig.7.13).

It can be observed that the oppositely places drag plate β4 compensates for this fault as

soon as β3 is jammed. The maximum value of the drag plate orientation is |β4|max is 20.5◦.
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Figure 7.12: Performance of the adaptive controller under failure at 0.3 orbit.

The controller demonstrates excellent performance in stabilizing the satellite even when

with one of the actuators stuck in position in this underactuated system configuration.

7.5.2.3 Actuator loss of effectiveness

Systems performance under loss of control effectiveness in the actuator is examined next. A

90% performance degradation in actuator 4 is simulated (Fig.7.14). The operational drag

plate 3 in the corresponding axis compensates by increased deflection to achieve a smooth

stabilization of the satellite attitude. The maximum deflection in solar flap 2, |β2|max, is

20.5◦.
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Figure 7.13: Performance of the adaptive controller under actuator stuck fault from 0.3
orbit.

7.6 Summary

Results from chapters 5 and 6 confirmed the robustness of the proposed attitude control

strategy in the presence of system disturbances and uncertainties. This chapter examines

system performance of the proposed attitude control systems in the presence of some pos-

sible failure or fault scenarios with respect to the solar flaps or drag plates respectively.

First, the pitch attitude control of a satellite controlled using solar radiation pressure in

the presence of different faults or failure is examined. A comparison to a similar control

technique without adaptive control is also carried out. Compared to sliding mode control

without adaptation, the proposed adaptive sliding mode control results in high attitude

performance especially in actuator fault and failure scenarios. The performance of the pro-

posed three axis satellite attitude control methodologies using aerodynamic drag or solar



7.6. Summary 167

0 1 2 3 4 5
−100

−50

0

50

100
A

ng
le

s 
[d

eg
]

 

 
α
φ
γ

0 1 2 3 4 5
−30

−20

−10

0

10

20

Orbits

P
la

te
 a

ng
le

s 
[d

eg
]

 

 
β

1

β
2

β
3

β
4

Figure 7.14: Performance of the adaptive controller under actuator degradation (90%)fault.

radiation pressure in the presence similar faults or failures is also evaluated. The controller

demonstrates robust performance in the presence of several failure scenarios such as failure

of one of the flaps or drag plates, one of the flaps/drag plates getting blocked or jammed

at a particular position. In all the cases smooth satellite attitude stabilization is achieved.





Chapter 8

Conclusions

Formation flying of multiple satellites is an enabling technology for many future space

missions including deep space as well as Earth observation. As mentioned in Chap-

ter 1, achieving the mission objectives with minimum fuel expenditure in the presence

of various external disturbances and uncertainties is one of the challenges in coordinated

satellite formation flying. In a typical satellite control system, the twin environmental

forces of aerodynamic drag and solar radiation pressure constitute two of these disturbance

forces. However, in this thesis we analyze the use of aerodynamic drag or SRP for satellite

formation and attitude control and use of these forces is examined in detail to achieve

multiple satellite formation flying as well as satellite attitude control. Satellite formation

and attitude control in low Earth orbit is achieved using aerodynamic drag, while solar

radiation pressure is used as the control input in the geostationary orbit. Nonlinear adap-

tive control strategies that are robust to parameter and system uncertainties and external

disturbances are developed to accomplish the proposed satellite control technique. This

chapter summaries the major results and contributions of this dissertation, and discusses

some recommended future research efforts to extend the current work.

8.1 Contributions Outline

Existing literature on the use of the twin environmental forces for satellite control focuses on

the development of linear control techniques and is evaluated for a limited operating range.

In this thesis, variable structure based nonlinear control algorithms that are capable of

accurate trajectory tracking, fast satellite maneuvering and reconfiguration are developed.

The proposed methodology is evaluated for a wide range of operating conditions in a

more realistic space environment. The problem of controlling single as well as multiple
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follower satellites using aerodynamic drag or solar radiation pressure in a leader-follower

configuration is evaluated. The following is a brief summary of the main contributions of

this thesis:

• Underactuated Satellite Control

Use of aerodynamic drag or SRP for satellite formation or attitude control repre-

sents an underactuated control problem, and the existing literature proposes hybrid

controllers or proposes control methodologies based on linear techniques resulting

in restricted range of operation. Here we approach this as an underactuated prob-

lem and develop control algorithms that properly address this scenario and provide

stability proofs for the resulting closed-loop system.

• Sliding Mode Control

To address the uncertainties associated with the twin environmental forces, a robust

control methodology is of paramount importance. Here we employ the sliding mode

control algorithm to address these issues. Higher order sliding mode control technique

is also implemented to counter the non-affine structure of the control inputs generated

by aerodynamic drag or SRP.

• Adaptive Control

Due to the lack of precise knowledge of all the parameters in the environmental models

and its time varying nature, adaptive control laws are developed. Here the unknown

parameters are estimated online and then used in the feedback control law.

A brief discussion of these contributions are provided in the following sections.

8.1.1 Satellite Formation Control using Aerodynamic Drag

The existing literature on the use of aerodynamic drag for satellite formation flying in

LEO is based on simplified system dynamics and environmental models. Also, these pro-

posed control algorithms are based on the linearized plant models, and are validated over a

limited range of operation. We start the investigation by considering a single follower satel-

lite in the leader-follower formation system. The satellites in the formation are assumed
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to be attached with maneuverable drag plates. A nonlinear adaptive control algorithm

based on sliding mode control methodology to maintain the satellite formation is devel-

oped. Different formation scenarios including different types of formations and formation

reconfiguration maneuvers are evaluated. The effect of navigation and initial offset errors

on the formation system are also examined. Finally, the concept of using aerodynamic drag

for satellite formation flying is extended to the case of multiple follower satellites. A heuris-

tic control technique is proposed to maintain the multiple satellite formation system. The

viability of this heuristic control methodology for different formation scenarios is evaluated

using numerical simulation including Monte Carlo simulation. All numerical simulations

are performed on a high fidelity satellite dynamics and environmental model. The effect

of variations in the system parameters such as variation in the density and altitude, on

the system performance is also evaluated. Overall, the theoretical and simulation results

establish the robustness of the proposed satellite formation control scheme and can be con-

sidered in future satellite formation systems including multiple satellite formation flying

systems.

8.1.2 Satellite Formation Control using Solar Radiation Pressure

Next, the application of solar radiation pressure for satellite formation control is exam-

ined. A formation flying system with the satellites attached with maneuverable solar flaps

is proposed. In the case of SRP, in-plane and out-of-plane control is achievable by the

appropriate orientation of the solar flaps. From a control perspective, the system with

two control angles represents an underactuated control problem. The proposed system is

modified into a fully actuated control problem by incorporating an additional input in the

form of change in area of the solar flaps. Nonlinear adaptive control algorithm based on

sliding mode is developed to accomplish satellite formation control. The system response to

different types of desired formation is examined. The performance of the proposed system

in the presence of uncertainties including solar aspect angle ψ, is also examined. Initial

offset and navigation errors are introduced and the performance of the formation system

in this scenario is evaluated. Finally, the concept of using SRP for satellite formation fly-

ing is extended to the multiple follower satellite system. A heuristic control methodology
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is proposed to maintain the multiple satellite formation system, and evaluated for all the

desired formations. The numerical simulations are performed on a high fidelity satellite dy-

namics and environmental model. Overall, the theoretical and simulation results establish

the robustness of the proposed control system. Combined with the recent developments in

solar sail technology this study will help in the advancement of the proposed methodology

of using SRP for satellite formation control.

8.1.3 Satellite Attitude Control using Aerodynamic Drag

Use of aerodynamic drag for satellite attitude control is examined. The proposed system

comprises of a satellite with two pairs of oppositely placed drag plates, and the satellite

attitude is controlled by the suitable rotation of these drag plates. One set of drag plates

is attached along the x-axis and another along the z-axis. Hence there is no explicit con-

trol available in the roll axis. This underactuated system configuration along with the

proposed nonlinear control algorithm based on the theory of sliding mode generates the re-

quired torque to achieve complete three axis attitude control of the satellite. The adaptive

nonlinear control algorithm achieves fast system stabilization and also provides robustness

to system uncertainties. A high-fidelity nonlinear model is used to carry out the numeri-

cal simulation and the system performance is analyzed for a variety of scenarios including

large initial conditions and unstable gravity gradient inertia configuration. Results of the

numerical simulation shows that the proposed attitude control strategy is robust against

disturbances and uncertainties. Thus, the proposed nonlinear adaptive controller can be

considered as an ideal candidate for satellite attitude control in future LEO space missions.

8.1.4 Satellite Attitude Control using Solar Radiation Pressure

Feasibility of achieving three axis satellite attitude control using solar radiation pressure

is investigated. The proposed system consists of two pairs of oppositely placed light-

weight solar flaps. The proposed system configuration provides explicit control authority

in the pitch and roll axis of the satellite. Using nonlinear control strategy, the complete

three axis attitude control is achieved. The synthesized closed-loop control law based on
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adaptive sliding mode control rotates the solar flaps suitably to obtain proper SRP torque

for desired attitude performance. The rotation angle of solar flaps is continuously adjusted

as per the control laws. The efficacy of the control methodology is tested on a nonlinear

system model considering various uncertainties in the system parameters including satellite

inertia matrix and solar flaps. Results of the numerical simulation shows that the proposed

attitude control strategy is robust against disturbances and uncertainties as well as very

effective with initial attitude tracking errors. Based on the numerical simulations, the

following main conclusions can be drawn: a) The controller exhibits excellent performance

in the presence of uncertainties in system parameters including solar aspect angle ψ, and

stabilizes the desired satellite attitude rapidly. b) The controller shows robust performance

in the presence of external disturbances. Thus, the proposed nonlinear adaptive controller

can be used for satellite attitude control in future geostationary space missions.

8.1.5 Fault Tolerant Satellite Attitude Control Using Solar Radi-

ation Pressure / Aerodynamic Drag

The performance of the proposed system in the presence of failure scenarios such as failure

of one of the drag plates/solar flaps, one of the drag plates/solar flaps getting blocked or

jammed at a particular position is also examined. First, an adaptive control algorithm for

pitch attitude control of an SRP based satellite is evaluated for the different fault/failure

scenarios. The pitch attitude tracking was not affected by these faults/failures and demon-

strated robust performance. Next, The efficacy of the three axis attitude control system

for both aerodynamic drag and SRP based satellite is evaluated. The fault/failures did

not cause any disturbance on the attitude of the satellite, and the different fault/failures

were compensated by the healthy drag plates/solar flaps on the satellite. A comparison

between the system controlled by an adaptive control algorithm and a non-adaptive con-

trol algorithm is performed to validate the robustness of the prosed control technique. The

control law without adaptation was not able to handle the fault/failure scenarios leading

to an unstable satellite attitude orientation.
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8.2 Limitations of the proposed technique

In this section it is also appropriate to mention some of the limitation/disadvantages in

using aerodynamic drag or solar radiation pressure for satellite control. With respect to

satellite formation flying, the achievable relative positions cannot be controlled to a very

high accuracy as compared to a SFF controlled using external thrusters. In the case of

aerodynamic drag for SFF, cross track drift is difficult to control due to lack of control

authority in that axis. Since aerodynamic drag is a retarding force, it will cause the

satellite to loose altitude during the satellite mission, making the need for orbit raising.

In the case of SRP, the solar flaps can undergo optical parameter degradation due to

continuous exposure to sunlight resulting in decreased efficiency in the performance of the

control system. During formation reconfiguration overshoot is observed in the relative

errors during the initial part of the formation stabilization. This is a result of the trade-off

between the maximum allowable orientation of the drag plates and the faster convergence

of relative errors. Similarly in the case of satellite attitude control highly precise pointing

accuracy in the range of less than 0.01◦in all axes is not achievable with the proposed

satellite attitude control system. The increased exposed surface due to the drag plates

and solar flaps can also result in micro-meteorite collisions, which in turn might affect the

control performance.

8.3 Future Work

This study proposes techniques to utilize the aerodynamic drag or solar radiation pressure

for satellite formation or attitude control. Theoretical results are examined through nu-

merical simulation. There remain several areas yet to be explored. Some of these area for

future work are outlined as follows:

Here we consider satellite formation control and attitude control as two individual prob-

lems. During satellite formation flying, it is assumed that the attitude of the satellite is

controlled, and during satellite attitude control, formation maintenance is not considered.

Hence simultaneous satellite formation as well its attitude control will be an interesting

topic for future research.
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We propose satellite control using aerodynamic drag in low Earth orbit and solar radi-

ation pressure in the geostationary orbits. The feasibility of using solar radiation pressure

in LEO can be examined in detail, and this is especially promising for out-of-plane con-

trol during satellite formation in LEO. This can help achieve complete "propellant-less"

formation control.

The drag plates and solar flaps considered here are assumed to be perfectly flat. The

effect of billowing on the system performance can also be examined in detail. In the case of

multiple satellite formation system, the control architecture needs to address the issue of

collision avoidance between satellites in the formation. This is very important for a close

formation flying scenario.
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