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Abstract

PRESSURE CURVES FOR COMPRESSIBLE FLOW WITH SLIP THROUGH CONSTRICTED

CYLINDERS

Master of Science 2014

Salahaldeen Rabba

Applied Mathematics

Ryerson University

The goal of this research is to determine more accurate pressure curves for compressible flow with slip

through cylinders that have a local constriction. Existing analyses for compressible flow with slip through

a local constriction linearize the pressure gradient equation, and higher-order derivatives are dropped as

well. The equation to be developed as part of this research retains quadratic pressure gradient terms. The

corresponding solution for the pressure gradient is found following existing analysis in the literature for

incompressible, no-slip flow, and subsequently the pressure is found using numerical integration. Results

are compared to those from the linearized pressure gradient equation to see the extent of the improvement.

Results are also assessed and compared to pressure and density curves available in the literature for some

specific constrictions. Improvements may be obtained when the second-order derivatives are kept as well in

the pressure gradient equations, which can be assessed and analyzed in the same context.

Pressure curves are assessed in different idealized flow geometries including the Gaussian model, a cosinu-

soidal model, and a smooth piece-wise polynomial model. In each case the pressure is found, and hence also

the density. A range of Reynolds numbers, degrees of constriction, length of the constriction, compressibility

and slip are considered.

Density curves are separately compared to existing particle-based results obtained from a stochastic

particle dynamics using multiparticle collision dynamics.
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Chapter 1

Introduction

When blood vessels are constricted then blood flow through those vessels becomes restricted. This means that

less blood flows through those vessels feeding organs. Constricted vessels indicate a higher blood pressure.

A mathematical model is developed analytically to study the flow characteristics of blood through an artery

in the presence of stenosis (constriction). An appropriate shape of stenoses of arterial narrowing caused

is constructed mathematically. The artery is simulated as a cylindrical tube having a narrowed portion

forming stenoses. The viscosity of blood is taken to be constant. The flow mechanism in the stenosed artery

is subjected to a pulse-pressure-gradient. Finally, the extensive quantitative analysis helps estimating the

significant effects of the severity of the stenoses, effecting blood pressure and density.

Investigation of the flow in a stenosed (constricted) geometry is of interest because of its significance in

biomechanics, especially in human vascular diseases [3]. When too much cholesterol or high levels of fatty

substances or both are present in the blood, these fatty substances can begin to build fatty streaks along

the inside lining of the artery wall and cause narrowing of the flow channel. This thickening of an artery

wall, and subsequent potential blockage or rupture of the artery due to higher than normal pressures, is

understood to be one of the leading causes of human death. Thus, the behaviour of the blood pressure in

arterial stenoses bears some important aspects both due to engineering interest as well as feasible medical

applications.

In order to understand the effect of stenosis on blood pressure through and beyond the constricted region

of the artery, idealized flow geometries in the form of cylinders are often employed. This has been the subject

of much research numerically, one such work being [15]. Numerical simulation of steady flow through axially

symmetric stenoses, have been reported by several investigators, among which are [8] and [6, 19, 20]. Li [9]

also had a similar study which was based on blood flow through arteries where Reynolds numbers varied from

50 to 750 for medium to large sized cylinders, Developing an overall understanding of the flow properties

through a local constriction can also be important for early diagnosis, prevention and treatment of vascular

disease [11, 10].

Although most analyses treat blood as an incompressible Newtonian fluid obeying the no-slip boundary

condition at the walls, some studies have considered slip [16, 2, 1, 17] and some have allowed compressibility

[4, 2]. With the recent rise in popularity for using particle-based methods for blood flow applications [22,

1



CHAPTER 1. INTRODUCTION

5, 2, 1], compressibility needs to be addressed as particle-based methods are compressible in nature. Beside

these, taking the non-Newtonian properties of the blood into consideration, there have been numerous studies

simulating the blood flow through stenoses by incorporating an incompressible non-Newtonian model. The

geometry corresponds to a cylindrical tube with a partial occlusion. Numerous studies have also investigated

the effect of pulsation and other properties of blood. Finally, various mathematical models have been

developed by a number of researchers [12, 13, 14, 16, 18].

Many researchers have studied flow through stenosis from an analytical perspective. One popular ap-

proach is to use a Karman-Pohlhausen method for incompressible Newtonian flow through a local constriciton

[8, 7]. Compressible flow with slip was later incorporated, as well as slip at the wall [1]. In Akhter and Rohlf

[1] the Karman-Pohlhausen method was used to develop the axial velocity distribution for steady, Newtonian

flow through a constricted cylinder, allowing for slip at the wall as well as compressibility. The analysis is

a natural extension of the original work in [8]. The flow geometry was a piecewise polynomial curve that

allowed for asymmetry about the location of maximum constriction. Effects of compressibility, slip and flow

geometry were assessed. Akhter and Rohlf [1] solved analytically the Navier-Stokes equations in a distribu-

tion for a flow through a channel with locally asymmetric constrictions and compared to simulation results

for a particle-based flow that has compressibility built in.

The goal of this research is to further study the pressure and density curves generated by Akhter and Rohlf

[1] and to determine more accurate pressure curves for compressible flow with slip though cylinders that have

a local constriction. Existing analysis for compressible flow with slip through a local constriction leads to the

pressure gradient equation, and higher-order derivatives and nonlinear pressure gradient terms are generally

dropped. The equation that is developed in this Thesis retains quadratic pressure gradient terms. The

corresponding solution for the pressure gradient is found which is solved for the pressure through numerical

integration. Results are compared to existing pressure gradient and pressure curves in the incompressible,

no-slip case, in particular flow geometries used in the original works, to see the extent of the improvement.

Results are also assessed separately for distinctive features and compared to pressure curves available in

the literature when possible. Improvements obtained when second-order derivatives are kept as well in

the pressure gradient equations will be a future extended-study, where the second-order derivatives can be

assessed and analyzed in the same context. We provide the equations with the second derivative terms, but

drop them as a first approximation. We consider three flow geometries: the Gaussian (or bell-shaped) model,

a piecewise cosinusoidal geometry, and a piecewise polynomial form. The dimensionless diameter constriction

was allowed to vary from 0.1 to 0.4 for the bell-shaped constriction and the dimensionless stenotic degree was

varied from 0.1 to 0.4. Pressure gradient and pressure curves are presented in the different flow geometries

for various Reynolds numbers, various severities of the constriction, various values for slip, and various

compressibility.

This Thesis is organized as follows: In Chapter 2 we provide the Fluid Dynamics background that is

required for our analytical results as well as the mathematical forms for the various flow geometries considered

in our later assessment of the pressure curves. Chapter 3 provides a derivation/calculation approach of the

pressure gradient equation. Chapter 4 contains a discussion and analysis of our results. Finally, chapter 5

provides important conclusions and future work.

2



Chapter 2

Background

Fluid dynamics deals with fluid flow, the natural science of fluids (liquids and gases) in motion. Fluid

dynamics has a wide range of applications, including calculating forces and momentum, and determining the

mass flow rate of liquids through cylinders. Fluid dynamics offers a systematic structure, which underlies

the laws derived from flow measurement, and is used to solve practical problems. The solution to a fluid

dynamics problem typically involves calculating various properties of the fluid, such as velocity, pressure,

density, and temperature, as functions of space. These will play a key role in our approach in deriving the

pressure gradient equation and analysing the pressure and density curves. The concept of pressure is central

to the study of this research. A pressure can be identified for every point in a body of the cylinder before,

within and after the constriction.

The foundational laws of fluid dynamics are conservation laws, specifically, conservation of mass, con-

servation of linear momentum (also known as Newton’s Second Law of Motion), and conservation of energy

(also known as the First Law of Thermodynamics). In addition to the these, fluids are assumed to obey

the continuum assumption. Fluids are composed of molecules that collide with one another. However, the

continuum assumption does not consider fluids at this level, but rather at a scale in which the collective

effects of many molecules contained in a ‘fluid element’ is described in a continuous manner. Consequently,

in our research properties such as density, pressure, and velocity are assumed to be continuous.

The conservation equations for Newtonian fluids are called the NavierStokes equations of motion, which

are a non-linear system of differential equations. The Navier-Stokes equations describe the motion of fluid

substances, that is substances which can flow. These equations arise from applying Newton’s second law to

fluid motion, together with the assumption that the fluid stress is proportional to the gradient of velocity.

For compressible flow, there is an additional equation of state that provides a relationship between pressure

and density. All fluids are compressible to some extent, that is, changes in pressure will result in changes in

density.

In this chapter, the governing compressible Navier-Stokes equations of motion are provided in general

vector form, as well as in cylindrical coordinates under the steady, axisymmetric flow assumption. Addi-

tionally, the equation of state is chosen to be that for an ideal gas. These equations will be used in the

3



CHAPTER 2. BACKGROUND 2.1. GOVERNING EQUATIONS

Figure 2.1: Flow Geometry for Gaussian Model

next chapter to derive the pressure gradient equation. Additionally, the various flow geometries that will be

considered in this Thesis are presented in the last section of this chapter.

Flow Geometry

The geometry configuration of the cylinder tube with a constriction and its coordinate system is shown in

Figure 2.1. The coordinate variables (r, z) are defined in the cylinder coordinate system; Ro is the radius of

the cylinder having a constant cross section and δ determines the degree of the constriction. The study of

flow geometry of the constriction can be described by the bell-shaped Gaussian distribution profile.

2.1 Governing Equations

The governing equations of motion for a compressible, isothermal, viscous flow of an ideal gas are given by

∂ρ

∂t
+∇ · (ρu) = 0 (conservation of mass) (2.1)

ρ
Du

Dt
= −∇P + ρf + µ∇2u + λ∇(∇ · u) (conservation of momentum) (2.2)

P =
kBT

m
ρ, (equation of state) (2.3)

4



CHAPTER 2. BACKGROUND 2.2. AXISYMMETRIC FLOW GEOMETRIES

where ρ is the density, t is time, D
Dt = ∂

∂t + u · ∇ is the material derivative, ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ) is the gradient

operator with spatial coordinates (x, y, z), u is the velocity vector, P is the pressure, f corresponds to an

external force, µ is the viscosity, m is the mass of a fluid particle, kB is the Boltzmann constant, and T is

the constant fluid temperature.

Assuming steady-state and axisymmetry, the velocity vector in cylindrical coordinates is assumed to have

the form

u = (ur, uθ, uz) = (u(r, z), 0, w(r, z)), (2.4)

together with ρ = ρ(r, z). The governing equations, with an external force in the form f = (fr, fθ, fz) =

(0, 0, ρg) then become
∂

∂r
(ρu) +

∂

∂z
(ρw) +

ρu

r
= 0 (mass) (2.5)

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂P

∂r
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
− u

r2

)
+
µ

3

∂

∂r
(∇ · u), (r-momentum) (2.6)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= ρg − ∂P

∂z
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
+
µ

3

∂

∂z
(∇ · u), (z-momentum) (2.7)

P (r, z) =
kBT

m
ρ(r, z), (equation of state), (2.8)

where

∇ · u =
u

r
+
∂u

∂r
+
∂w

∂z
(2.9)

and the θ-momentum equation is identically satisfied.

2.2 Axisymmetric flow geometries

The flow characteristics in a constriction are studied for physiologically meaningful flow geometries for blood.

Several key flow geometries are considered in the literature for such applications, and are assessed in this

Thesis.

One popular flow geometry is the Gaussian geometry, Figure 2.1, where the radius is defined as a function

of the longitudinal coordinate z as follows:

R(z) = R0(1− δe−bz
2

) (Gaussian geometry) (2.10)

In this description, R0 represents the constricted radius far upstream and downstream of the constriction, δ

determines the degree of the constriction, and b controls the length.

Another popular model is one using a piece-wise defined function where the constriction is modelled with

a cosinusoidal function. This geometry is defined as

R(z) =

{
R0, for z ≤ −z0 and z ≥ z0
R0

[
1− δ

2

(
1 + cos πzz0

)]
for −z0 ≤ z ≤ z0.

(2.11)

5



CHAPTER 2. BACKGROUND 2.2. AXISYMMETRIC FLOW GEOMETRIES

Again, R0 is the upstream radius, δ controls the severity of the constriction, and z0 is the half-length of the

constriction.

Finally, a piece-wise cubic polynomial geometry is considered, and it is defined by

R(z) =


R0 z ≤ z1
az3 + bz2 + cz + d z1 ≤ z ≤ z2
ez3 + fz2 + gz + h z2 ≤ z ≤ z3
R0 z ≥ z3

(2.12)

where the parameters are defined as follows:

δ is the height of constriction

R0 is the radius before and after the constriction

z1 is start of the constriction

z2 is the location of maximum constriction

z3 is the end of the constriction

l1 is the distance between z1 and z2

l1 + l2 is the length of the constriction

The values of a − h are determined by imposing continuity and differentiability at z = z1, z2 and z3, and

imposing a local minimum at z = z2 with height R0 − δ. They are:

a =
2δ

l1
2

b = −3δ(2y1 + l1)

l1
3

c =
6δy1(y1 + l1)

l1
3

d = −2δy1
3 + 3δy1

2l1 −Rol13

l1
3

e = − 2δ

l2
3

f =
3(2y1 + 2l1 + l2)δ

l2
3

g = −6δ(y1
2 + 2y1l1 + l1

2 + y1l2 + l1L2)

l2
3

h =
3δl1

2l2 + 3δy1
2l2 + 6δy1l1l2 + 2δl1

3 + 2δy1
3 + 6δy1

2l1 +Rol2
3 − δl23

l2
3

This particular flow geometry is shown in Figure 2.2. Unlike the Gaussian and cosinusoidal model, this

flow geometry can be made asymmetric in the axial direction by choosing values for l1 and l2 such that they

are not equal.
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CHAPTER 2. BACKGROUND 2.2. AXISYMMETRIC FLOW GEOMETRIES

Figure 2.2: Flow Geometry for piece-wise polynomial model. This flow geometry can be made asymmetric
in the axial direction by choosing values for l1 and l2 such that they are not equal.
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Chapter 3

Pressure Gradient

3.1 Governing equations for Pressure Gradient

As per Forrester and Young [9], for a mild constriction geometry the r-momentum equation (2.6) can be

approximated as ∂P
∂r = 0, in which case (2.8) implies ρ = ρ(z) which can be used in (2.5) to give

u

r
+
∂u

∂r
= −1

ρ

∂

∂z
(ρw). (3.1)

Using this in the last term of (2.7), together with the assumption that u∂w∂r � w ∂w
∂z allows us to write the

system for determining w(r, z) and P (z) as

ρw
∂w

∂z
= ρg − dP

dz
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+

4

3

∂2w

∂z2

)
− µ

3

∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
(3.2)

P (z) =
kBT

m
ρ(z),

dP

dz
=
kBT

m

dρ

dz
. (3.3)

Note: We have neglected the u∂w∂r term as flow in the radial direction (u) is assumed to be negligible

compared to the flow in the z direction (w), and changes of flow in the z direction depends on changes in z

more than changes in r. Therefore, we can use the assumption that u∂w∂r � w ∂w
∂z , and thus we neglect u∂w∂r [9].

3.2 Axial velocity in terms of dP/dz

Following [9] and [1], we now assume that the radial dependence of the axial velocity w is a fourth-order

polynomial in the form

w(r, z)

W
= Aη +Bη2 + Cη3 +Dη4 + E, (3.4)

8



CHAPTER 3. PRESSURE GRADIENT 3.2. AXIAL VELOCITY IN TERMS OF DP/DZ

where η = R−r
R , and W = W (z) is the as yet unknown centerline velocity.

Constants A to E are determined by imposing:

(i) w = ws√
1+R′2 at r = R (slip boundary condition)

(ii) ∂w
∂r = 0 at r = 0 (axisymmetric flow),

(iii) w = W at r = 0 (by definition of centerline velocity W ),

(iv) ∂2w
∂r2 = − 2(W−ws)

R2 at r = 0 (nearly parabolic flow with slip),

(v) dP
dz ≈ ρg + µ(∂

2w
∂r2 + 1

r
∂w
∂r ) at r = R ( using (3.2))

The boundary conditions for slip at the wall is imposed by (i), and axisymmetric flow by (ii).

Condition (i) follows from solving u · n = 0 (vanishing normal component of velocity) and u · t = ws

(tangential component of velocity has magnitude ws) for w, while (iv) comes from the velocity profile for

parabolic flow with slip at the wall.

Imposing (i)-(v) and solving for the unknown constants gives

A =
1

7
(−λ+ 10− 12E + T + 2

ws
W

) (3.5)

B =
1

7
(3λ+ 5− 6E − 3T +

ws
W

) (3.6)

C =
1

7
(−3λ− 12 + 20E + 3T − 8

ws
W

) (3.7)

D =
1

7
(λ+ 4− 9E − T + 5

ws
W

) (3.8)

E =
ws

W
√

1 +R′2
(3.9)

where

λ =
R2

µW

dP

dz
(3.10)

and

T =
ρgR2

µW
(3.11)

Note that, since P and W are functions of z, so are A-E in the axial velocity expression.

Some important results follow from this velocity distribution, that will be needed in the derivation of the

pressure gradient equation in the next section. These are outlined in Appendix A and B.
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CHAPTER 3. PRESSURE GRADIENT 3.3. PRESSURE GRADIENT EQUATION

3.3 Pressure Gradient Equation

Starting from equation (3.2), namely,

ρw
∂w

∂z
= ρg − dP

dz
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+

4

3

∂2w

∂z2

)
− µ

3

∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
, (3.12)

our goal is to construct an equation for dP
dz . This can be achieved as follows.

First, we multiply the equation by r
ρ and then integrate across the cylinder over r = 0 . . . R. This leads

to∫ R

0

rw
∂w

∂z
dr =

∫ R

0

rgdr −
∫ R

0

r

ρ

dP

dz
dr +

∫ R

0

µ

ρ
r

[
∂2w

∂r2
+

1

r

∂w

∂r
+

4

3

∂2w

∂z2

]
dr −

∫ R

0

µ

3ρ
r
∂

∂z

[
1

ρ

∂

∂z
(ρw)

]
dr.

(3.13)

Recall that ρ and P are functions of z only so that, for example,
∫ R
0
r 1
ρ
dP
dz dr = 1

ρ
dP
dz

∫ R
0
rdr = 1

ρ
dP
dz

R2

2 . Thus

we have∫ R

0

rw
∂w

∂z
dr =

gR2

2
− 1

ρ

dP

dz

R2

2
+

∫ R

0

[
µ

ρ

(
4

3
r
∂2w

∂z2
+ r

∂2w

∂r2
+
∂w

∂r
− 1

3
r
∂

∂z

(
1

ρ

∂

∂z
(ρw)

)]
dr . (3.14)

It follows that

1

2

∫ R

0

r
∂

∂z
w2dr =

gR2

2
− 1

ρ

dP

dz

R2

2
+
µR

ρ

(
∂w

∂r

)∣∣∣∣
r=R

+

∫ R

0

[
µ

ρ

(
4

3
r
∂2w

∂z2
− 1

3
r
∂

∂z

(
1

ρ

∂

∂z
(ρw)

)]
dr , (3.15)

since r ∂
2w
∂r2 + ∂w

∂r = ∂
∂r

(
r ∂w∂r

)
.

Now the integral on the LHS can be rewritten using (B.3), from which we get

1

2

∫ R

0

r
∂

∂z
w2dr =

1

2

d

dz

∫ R

0

rw2dr − 1

2

RR′w2
s

(1 +R′2)
(3.16)

The third term on the RHS of (3.15) can be simplified using the velocity distribution from the previous

section. From (3.4)

dw

dr

∣∣∣∣
r=R

=
d

dr

[
W (Aη +Bη2 + Cη3 +Dη4 + E)

]∣∣∣∣
r=R

= W

[
A
d

dr
(1− r

R
) +B

d

dr
(1− r

R
)2 + C

d

dr
(1− r

R
)3 +D

d

dr
(1− r

R
)4 + E

d

dr
(1)

]∣∣∣∣
r=R

= W

[
A(− 1

R
) +B(2(1− r

R
)(− 1

R
)) + C(3(1− r

R
)2(− 1

R
)) +D(4(1− r

R
)3(− 1

R
)) + 0

]∣∣∣∣
r=R

= −WA

R
. (3.17)

Substituting equations (3.16) and (3.17) in equation (3.15) and also rewriting the integral on the RHS,
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CHAPTER 3. PRESSURE GRADIENT 3.3. PRESSURE GRADIENT EQUATION

gives

−1

2

RR′w2
s

1 +R′2
+

1

2

d

dz

∫ R

0

rw2dr = −1

ρ

dP

dz

R2

2
+
gR2

2
+νR

(
−AW

R

)
+

4

3
ν

∫ R

0

r
d2w

dz2
dr− ν

3

∫ R

0

r
d

dz

[
1

ρ

d

dz
(ρw)

]
dr.

(3.18)

Note that we have also used

ν =
µ

ρ
. (3.19)

Solving (B.8) for
∫ R
0
r d

2w
dz2 dr, substituting on the RHS of (3.18), and using the product rule in the integrand

in the last integral on the RHS gives

1

2

d

dz

∫ R

0

rw2dr = −1

2

RR′w2
s

1 +R′2
− 1

ρ

dP

dz

R2

2
+
gR2

2
+ ν(−AW ) +

4

3
ν
d2

dz2

∫ R

0

rwdr − 4

3
ν
RwsR

′′
√

1 +R′2
− 4

3
ν

wsR
′2

√
1 +R′2

+
8

3
ν
RR′2R′′ws

(1 +R′2)3/2
− ν

3

1

ρ

∫ R

0

r
d2

dz2
(ρw)dr +

ν

3

1

ρ2
dρ

dz

∫ R

0

r
d

dz
(ρw)dr. (3.20)

Using (B.8) and (B.2), the last two integrals on the RHS can be written in terms of d2

dz2

∫ R
0
rρwdr and

d
dz

∫ R
0
rρwdr giving

1

2

d

dz

∫ R

0

rw2dr = −1

2

RR′w2
s

1 +R′2
− 1

ρ

dP

dz

R2

2
+
gR2

2
+ ν(−AW ) +

4

3
ν
d2

dz2

∫ R

0

rwdr − 4

3
ν
RwsR

′′
√

1 +R′2
− 4

3
ν

wsR
′2

√
1 +R′2

+
8

3
ν
RR′2R′′ws

(1 +R′2)3/2
− ν

3

1

ρ

[
d2

dz2

∫ R

0

rρwdr − ρ(RR′′ +R′2)√
1 +R′2

ws −
2RwsR

′
√

1 +R′2
dρ

dz

+
2RρwsR

′2R′′

(1 +R′2)3/2

]
+

ν

3ρ2
dρ

dz

[
d

dz

∫ R

0

rρwdr − RρwsR
′

√
1 +R′2

]
. (3.21)

For the next step it is helpful to note that, since Q =
∫ R
0
rρwdr and since dQ

dz = 0 (see Appendix A),

dn

dzn

∫ R

0

rρwdr = 0, for n ≥ 1. (3.22)

Thus, we have

1

2

d

dz

∫ R

0

rw2dr = −1

2

RR′w2
s

1 +R′2
− 1

ρ

dP

dz

R2

2
+
gR2

2
+ ν(−AW ) +

4

3
ν
d2

dz2

∫ R

0

rwdr − 4

3
ν
RwsR

′′
√

1 +R′2
− 4

3
ν

wsR
′2

√
1 +R′2

+
8

3
ν
RR′2R′′ws

(1 +R′2)3/2
− ν

3

1

ρ

[
−ρ(RR′′ +R′2)√

1 +R′2
ws −

2RwsR
′

√
1 +R′2

dρ

dz
+

2RρwsR
′2R′′

(1 +R′2)3/2

]
+

ν

3ρ2
dρ

dz

[
− RρwsR

′
√

1 +R′2

]
. (3.23)

At this point the equations become sufficiently messy that we leave out some of the specific equations

and outline the method instead.
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Step 1: For the next step, obtain an expression for d2

dz2

∫ R
0
rwdr as follows:

Using
∫ R
0
rwdr = Q

2πρ , with dQ
dz = 0 to get an expression for d2

dz2

∫ R
0
rwdr, we have

d

dz

∫ R

0

rwdr =
d

dz

(
Q

2πρ

)
=

1

2π

[
1

ρ

dQ

dz
− Q

ρ2
dρ

dz

]
= − Q

2πρ2
dρ

dz
(3.24)

⇒ d2

dz2

∫ R

0

rwdr =
d

dz

[
− Q

2πρ2
dρ

dz

]
= −ρ2 dρ

dz

dQ

dz
+ 2Q

1

ρ3

(
dρ

dz

)2

− Q

ρ2
d2ρ

dz2
. (3.25)

Thus
d2

dz2

∫ R

0

rwdr =
Q

πρ3

(
dρ

dz

)2

− Q

2πρ2
d2ρ

dz2
(3.26)

Now write Q in terms of W (see Appendix A equation (A.1)) and use the equation of state P = kBT
m ρ to

write ρ and any of its derivatives in terms of P . This gives

4

3
ν
d2

dz2

∫ R

0

rwdr =
4

3
ν
Q

πρ3

(
dρ

dz

)2

− 4

3
ν

Q

2πρ2
d2ρ2

dz2
=

4

3

µR2W

ρ3
m2

k2BT
2

(
dP

dz

)2

− 2

3

µR2W
2

ρ2
m

kBT

d2P

dz2
(3.27)

Step 2: Next, use the expression for the axial velocity of the previous section to obtain an expression

for ν(−AW ):

The ν(−AW ) term is rewritten using A from (3.5) and W from (A.2). This leads to

−ν(AR) =
R2

7ρ

dP

dz
− 2100

(7)97
νW − 20

(7)(97)

R2

ρ

dP

dz
+

20

(7)(97)
R2g +

110

(7)(97)
νws

+
1020

(7)(97)
ν

ws√
1 +R′2

+
12

7
ν

ws√
1 +R′2

− 1

7
R2g − 2

7
νws (3.28)

Step 3: Using equation (3.4) for w we evaluate
∫ R
0
rw2dr using Maple and collect coefficients with respect

to d2P
dz2 , (

dP
dz )2, dPdz and dP

dz

0
which we then differentiate to get d

dz

∫ R
0
rw2dr. The result is (see Appendix C):

d

dz

∫ R

0

rw2dr =
61

263452

R5
(
dP
dz

)2
R′

µ2
+

61

790356

R6 dP
dz (d2P

dz2 )

µ2
− 190

197589

R′wsR
3 dP
dz

µ

− 95

395178

wsR
4 d2P
dz2

µ
− 3596

197589

wsR
3 dP
dz R

′

µ
√

1 + R′2
− 899

197589

wsR
4 d2P
dz2

µ
√

1 + R′2
+

899

197589

wsR
4 dP
dz R′R′′

µ
(
1 + R′2

)3/2
+

631

65863

RQdP
dz R

′

µρπ
+

631

131726

R2Qd2P
dz2

µρπ
− 631

131726

R2QdP
dz

dρ
dz

µρ2π
− 61

131726

R5ρg dP
dz R

′

µ2

− 61

790356

R6
(
dρ
dz

)
g dP

dz

µ2
− 61

790356

R6ρg d2P
dz2

µ2
+

154937

395178

wsQR′R′′(
1 + R′2

)3/2
ρπ

+
154937

395178

wsQ
dρ
dz√

1 + R′2ρ2π

12
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+
376318

987945

ws
2RR′

1 + R′2
− 376318

987945

ws
2R2R′R′′(

1 + R′2
)2 +

899

197589

ws
dρ
dzR

4g

µ
√

1 + R′2
+

3596

197589

wsρR
3gR′

µ
√

1 + R′2

− 899

197589

wsρR
4gR′R′′

µ
(
1 + R′2

)3/2 +
5125

395178

wsQρ
′

ρ2π

61

263452

R5ρ2g2R′

µ2
+

61

790356

R6ρg2 dρdz
µ2

+
298

329315

ws
2RR′3

1 +R′2
+

298

329315

ws
2R2R′R′′

(1 +R′2)
− 298

329315

ws
2R2R′

3
R′′(

1 + R′2
)2

+
95

395178

ws
dρ
dzR

4g

µ
+

190

197589

wsρR
3gR′

µ
+

23837

987945

ws
2RR′√

1 + R′2
− 23837

1975890

ws
2R2R′R′′(

1 + R′2
)3/2

− 631

65863

RQgR′

µπ
− 13220

9409

Q2R′

R3ρ2π2
− 13220

9409

Q2 dρ
dz

R2ρ3π2
(3.29)

Step 4: At this point everything from Steps 1-3, namely (3.27), (3.28) and (3.29), are substituted into

the pressure gradient equation (3.23). Additionally, the resulting equation is divided by νW so as to write

all terms in the equation in dimensionless form. Dimensionless Mach and Reynolds numbers become factors

in the equation, being defined as follows:

Ma =
W√
kBT
m

(Mach number) (3.30)

Re =
ρWR

µ
=
WR

ν
(Reynolds number) (3.31)

13
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Collecting terms and coefficients with respect to d2P
dz2 ,

(
dP
dz

)2
,
(
dP
dz

)
and

(
dP
dz

)0
gives:

Coefficient of d2P
dz2[

2

3

Ma2

Re
+

61

1580712

R2Re

ρ

dP

dz
− 95

790356

ws (Re)

W
− 899

395178

ws (Re)√
1 +R′2W

+
631

263452
Re

− 61

1580712

R3g

ν2

](
R3

µW

d2P

dz2

)
(3.32)

Coefficient of dP
dz[

− 75

194
+

1

3

νR′wsMa2

RW
2 − 95

197589

wsR
′Re

W
− 1798

197589

wsR
′Re

W
√

1 +R′2
+

154937

79036

νwsMa2Re

RW
4

(1 +R′2)

+
899

395178

wsRR
′R′′Re

W (1 +R′2)
3/2

+
631

131726
R′Re− 61

263452

R2R′gRe

νW
+

899

395178

wsRgMa2Re

W
3√

1 +R′2
(3.33)

+
5125

790356

νwsMa2Re

RW
2 +

61

1580712

νR3g2Ma2Re

W
3 +

95

790356

wsRgMa2Re

W
3 − 13220

9409
Ma2

](
R2

µW

dP

dz

)

Coefficient of
(
dP
dz

)2
[

4

3

Ma4

Re2
+

61

526904
R′Re− 631

263452
Ma2 − 61

1580712
Rg

Ma2

W
2 Re

](
R2

µW

dP

dz

)2

(3.34)

Coefficient of
(
dP
dz

)0
 75

194

gRRe

W
2 −

R′′Rws√
1 +R′2W

− R′2ws√
1 + (R′)

2
W

+
2R′′ (R′)

2
wsR

(1 +R′2)
3/2

W
− 300

97
− 12

97

ws

W

312

97

ws√
1 +R′2W

+
154937

790356

(R′) (R′′) wsR (Re)

(1 +R′2)
3/2

W
+

26867

141135

(R′) ws
2 (Re)(

1 + (R)
2
)

W
2

− 26867

141135

R′R′′w2
sRRe(

1 + (R′)
2
)2
W

2

3596

197589

R3R′gws

ν2
√

1 +R′2W
− 899

395178

R4R′R′′gws

ν2(1 +R′)3/2W

+
61

526904

(R)
5

(R′) g2

W ν3
+

298

658630

RR′R′′w2
sRe

(1 +R′2)W
2 (3.35)

− 149

329315

(R′)
3
R′′w2

sRRe(
1 + (R′)

2
)2
W

2
+

95

197589

R3R′gws

ν2W
+

23837

1975890

R′w2
sRe√

1 + (R′)
2
W

2

− 23837

3951780

(R′) (R′′) ws
2R (Re)(

1 + (R′)
2
)3/2

W
2
− 631

131726

R3R′g

ν2
− 13220

(2)(9409)

RR′

ν


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3.4 Pressure gradient and Pressure solution

The pressure gradient equation derived in the previous section is an ODE for P and is in the form

D

(
R3

µW

d2P

dz2

)
+D1

(
R2

µW

dP

dz

)2

+D2

(
R2

µW

dP

dz

)
+D3

(
R2

µW

dP

dz

)0

= 0

The term D
(
R3

µW

d2P
dz2

)
will be dropped for simplicity, hence, the equation is reduced to a quadratic equation

D1λ
2

+D2λ+D3 = 0, (3.36)

where D1, D2 and D3 are stated below and λ = R2

µW

dP
dz has been introduced for simplicity.

Thus

λ =
R2

µW

dP

dz
= − [D2 +

√
4]

2D1
, (3.37)

where 4 = D2
2−4D1D3. After looking at the numerical solution, the positive root of the quadratic equation

(3.36) does not lead to physically feasible solutions because the pressure was not continuous in the resulting

discontinuous pressure curves, therefore, it is not physically possible to maintain. The pressure gradient and

pressure can be directly obtained from integrating (3.36). Note that the DE needs to be solved first, as D1,

D2 and D3 depend on ρ through the Reynolds number Re, and ρ depends on P through the equation of

state. Thus, the DE is solved first, and then used in dP
dz for plots of the pressure gradient.

Now we state the coefficients for the pressure gradient equation:

D1 = −4

3

Ma4

Re2
+

61

526904
R′Re− 631

263452
Ma2 − 61

1580712

gRMa2Re

W
2

D2 =
75

194
− 1

3

R′ws

W
√

1 +R′2
Ma2

Re
− 190

395178

wsR
′Re

W
− 3596

395178

wsR
′Re

W
√

1 +R′2

+
899

395178

wsRR
′R′′Re

W (1 +R′2)3/2
+

631

131726
R′Re− 61

263452

RgR′

W
2 Re2

+
154937

790356

wsMa2

W
√

1 +R′2
+

899

395178

wsRgMa2Re

W
3√

1 +R′2
+

5125

790356

wsMa2

W

+
61

1580712

R2g2Ma2

W
4 Re2 +

95

790356

wsRgMa2Re

W
3 − 13220

18818
Ma2

D3 = − 75

194

gRRe

W
2 +

RR′′ws

W
√

1 +R′2
+

R′2ws

W
√

1 +R′2
− 2RR′

2
R′′ws

W (1 +R′)3/2
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+
300

97
+

12

97

ws

W
− 312

97

ws

W
√

1 +R′2
+

154937

790356

RR′R′′wsRe

W (1 +R′2)3/2

+
376318

1975890

R′w2
sRe

W
2
(1 +R′2)

− 376318

1975890

RR′R′′Rew2
s

W
2
(1 +R′2)2

+
3596

395178

RR′gws

W
3√

1 +R′2
Re2 − 899

395178

R2R′R′′gws

W
3
(1 +R′2)3/2

Re2

+
61

526904

R2R′g2

W
4 Re3 +

298

658630

R′3w2
sRe

W
2
(1 +R′2)

+
298

658630

RR′R′′ws
2Re

W
2
(1 +R′2)

− 298

658630

RR′3R′′w2
sRe

W
2
(1 +R′2)2

+
190

395178

RR′gws

W
3 Re2 +

23837

1975890

R′w2
sRe

W
2√

1 +R′2

− 23837

3951780

RR′R′′w2
sRe

W
2
(1 +R′2)3/2

− 631

131726

RR′g

W
2 Re2 − 13220

18818
R′Re

Note that the coefficient of the second derivative of P was dropped, namely

D =
2

3

Ma2

Re
+

61

1580712

R2

ρ
Re

dP

dz
− 95

790356

wsRe

W
− 899

395178

wsRe

W
√

1 +R′2
(3.38)

+
631

263452
Re− 61

1580712

gR

W
2Re

is set to zero.

In the next chapter, we use Maple to find the numerical solution of (3.36) for analysis in various flow

geometries. Note that we used the classical fourth-order Runge-Kutta method (RK4) to find the numerical

solution.
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Chapter 4

Analysis and discussion

In this Chapter we plot the solution curves derived in the previous chapter in the various axisymmetric flow

geometries provided in Section 2.2. For the Gaussian geometry in the first section, we compare the pressure

gradient and pressure curves in the no-slip, incompressible limit, and compare with results in the literature.

We then discuss how compressibility and slip changes these curves, as well as the flow geometry. Next

we assess the pressure gradient, and pressure curves, in the piece-wise cosinusoidal geometry. Finally, in

Section 4.3, we assess our pressure gradient and pressure curves in the piece-wise polynomial geometry, and

show how they compare with existing pressure curves in the flow geometry and with existing particle-based

simulation results.

Note: Re = Re0
R0

R and Ma = Ma0ρ0R0
2

ρR2 are used here.

4.1 Gaussian Geometry

4.1.1 Incompressible, no-slip limit

In Figures 4.1 and Figure 4.2 we plot pressure gradient and pressure curves as a function of the axial

coordinate z, for zero slip velocity, and Ma0 = 0.0000001 at various Reynolds numbers. We pick δ = 0.1

and b = 0.25.

When comparing to the pressure gradient and pressure curves presented in Yao [21], it can be seen that

there is good qualitative agreement between our results and theirs in this incompressible, no-slip limit of

our solution. Note that the Reynolds numbers in Yao [21] are not the same definition as ours, and relate to

our Reynolds number as follows: ReY ao0 = 2Re0. In the pressure gradient curves, like Yao [21], we observe

an increase in the maxima and a decrease in the minima as the Reynolds number increases. Compared to

Yao, the peaks of our pressure gradients are larger than those from Yao, and this difference decreases for the

larger Reynolds numbers. For example the peak of the Re0 = 200 curve in our Figure 4.1 is at approximately

200, while the peak of Yao’s ReY ao0 = 400 curve is at approximately 110, but the peaks of the Re0 = 300

curves compare as 300 here, and 250 in Yao [21]

In the pressure curves, like Yao [21], we observe the trend that, as Reynolds number increases, the peaks
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CHAPTER 4. ANALYSIS AND DISCUSSION 4.1. GAUSSIAN GEOMETRY

Figure 4.1: Pressure gradient curves in Gaussian geometry with δ = 0.1, b = 0.25, ws = 0, and Ma0 =
0.00000001 for different Reynolds numbers.

Figure 4.2: Pressure curves in Gaussian geometry with δ = 0.1, b = 0.25, ws = 0, and Ma0 = 0.00000001
for different Reynolds numbers.
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Figure 4.3: Pressure gradient in Gaussian geometry with δ = 0.1, b = 0.25, Ma0 = 0.00000001 and Re0 = 300
as a function of z for various slip values.

of the pressure curves decrease and reach a value after the constriction that is larger than the pressure before

the constriction, and decreases with increasing Reynolds number. Note however one key distinguishing

feature in our pressure curves, namely that the pressure after the constriction is always larger than before

the constriction, while in Yao’s results [21], the pressures after the constriction become negative for larger

Reynolds numbers.

4.1.2 Effect of slip

For the flow geometry picked in the previous subsection, we plot pressure gradient and pressure curves for

Re0 = 300 and consider different values for slip.

In the incompressible limit, we see from Figures 4.3 and 4.4 that the pressure gradient peaks increase with

increase in slip. Interestingly enough, the pressure curves reveal that for larger values of slip, the pressure

after the constriction becomes lower and eventually negative (not shown), a feature that was missing in

Figure 4.2 when compared to Yao’s results [21].

For weakly compressible flow (Ma0 = 0.1), glancing at Figures 4.5 and 4.6, these trends are maintained,

namely, increasing slip increases the peaks in both the pressure and pressure gradient curves, and lowers the

limiting value in the pressure curves after the constriction.
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Figure 4.4: Pressure curves in Gaussian geometry with δ = 0.1, b = 0.25, Ma0 = 0.00000001 and Re0 = 300
as a function of z for various slip values.

Figure 4.5: Pressure gradient in Gaussian geometry with δ = 0.1, b = 0.25, Ma0 = 0.1 and Re0 = 300 as a
function of z for various slip values.
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Figure 4.6: Pressure curves in Gaussian geometry with δ = 0.1, b = 0.25, Ma0 = 0.1 and Re0 = 300 as a
function of z for various slip values.

4.1.3 Effect of compressibility

In order to study the effect of varying Ma0 number, we pick various Ma0 numbers for same Reynolds number

and constriction ratio as considered in the previous subsection. We now plot pressure gradient and pressure

curves for different Ma0 numbers. In Figures 4.7 and 4.8, we consider the no-slip case ws = 0, and in

Figures 4.9 and 4.10, we consider a slip factor ws = 0.1. In this study, by comparing the pressure gradient

and pressure curves for Ma0 = (0.001, 0.05, 0.15, 0.2) , we can find that the flow patterns are very similar

in the case of no slip (ws = 0), in fact there is a noticeable overlap. However, when setting Ma0 = 0.5

we observe an obvious difference in the maxima and minima of the pressure and pressure gradient curves.

Furthermore, the higher the Ma0 number is the larger the pressure gradient and pressure curves, in addition,

we obtain larger positive pressure curves after the constriction, which is again a key feature. It is worth

noting here that in the case of slip (ws = 0.1), the pressure gradient curves increase as we increase Ma0

number. At the same time, the pressure curves increase as we increase Ma0 number. An important feature

occurs here when we increase Ma0 number, the pressure curve decreases and becomes negative after the

constriction.

Although the pressure gradient and pressure curves have the same pattern in the case of no slip (ws = 0)

and slip (ws = 0.1), we notice that there is less of an overlap when encountering the case of slip (ws = 0.1).

It can be concluded that Ma0 number has evident effects on the flow. The larger Ma0 number will make the

curves more complex and cause variables to vary in a greater range especially in the case of slip (ws = 0.1).
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Figure 4.7: Pressure gradient in Gaussian geometry with δ = 0.1, b = 0.25, ws = 0 and Re0 = 300 as a
function of z for various Ma0 numbers.

Figure 4.8: Pressure curves in Gaussian geometry with δ = 0.1, b = 0.25, ws = 0 and Re0 = 300 as a
function of z for various Ma0 numbers.
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CHAPTER 4. ANALYSIS AND DISCUSSION 4.1. GAUSSIAN GEOMETRY

Figure 4.9: Pressure gradient curves in Gaussian geometry with δ = 0.1, b = 0.25, ws = 0.1 and Re0 = 300
as a function of z for various Ma0 numbers.

Figure 4.10: Pressure curves in Gaussian geometry with δ = 0.1, b = 0.25, ws = 0.1 and Re0 = 300 as a
function of z for various Ma0 numbers.
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Figure 4.11: Pressure gradient curves in Gaussian geometry with b = 0.25, ws = 0 , Ma0 = 0.1 and
Re0 = 300 as a function of z for various δ values.

4.1.4 Effect of severity of constriction

It is understood that the constriction ratio, δ, has a great influence on the flow field through the constricted

cylinder for steady flow. In our study, we show how the characteristics of the flow vary with the variation of

constriction ratios. Constriction ratios δ = 0.1, δ = 0.2, δ = 0.3 and δ = 0.4 are considered here. Maintaining

the same structure and using the flow geometry picked in the previous subsection, we plot pressure gradient

and pressure curves for Re0 = 300 and consider different values for δ.

By studying the Figures 4.11 and 4.12, for no-slip (ws = 0) and weakly compressible flow (Ma0 = 0.1),

and for slip (ws = 0.1) and weakly compressible flow (Ma0 = 0.1), glancing at Figures 4.13 and 4.14, the

flow developments for the constriction ratio δ = 0.4 has a significant differences from that for δ = 0.1, 0.2, 0.3.

We notice an increase of the pressure gradient and pressure curves in the case of no-slip and slip. It can be

found that the pressure gradient and pressure curves have a very similar pattern, however with increasing

constriction ratio to δ = 0.4 the curves become larger.

According to the above analysis, the constriction ratio contributes to a distinct effect on the magnitude

of pressure gradient and pressure curves. In general, the severe constriction can lead the pressure to increase

dramatically.
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Figure 4.12: Pressure curves in Gaussian geometry with b = 0.25, ws = 0, Ma0 = 0.1 and Re0 = 300 as a
function of z for various δ values

Figure 4.13: Pressure gradient curves in Gaussian geometry with b = 0.25, ws = 0.1 , Ma0 = 0.1 and
Re0 = 300 as a function of z for various δ values.
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CHAPTER 4. ANALYSIS AND DISCUSSION 4.2. PIECE-WISE COSINUSOIDAL GEOMETRY

Figure 4.14: Pressure curves in Gaussian geometry with b = 0.25, ws = 0.1, Ma0 = 0.1 and Re0 = 300 as a
function of z for various δ values

4.1.5 Effect of length of constriction

Working with the same structure and using the flow geometry picked in the previous subsection, we plot

pressure gradient and pressure curves for Re0 = 300 and consider different values for b.

In the no-slip (ws = 0) and weakly compressible limit (Ma0 = 0.1) , we see from Figures 4.15 and 4.16 the

pressure gradient peaks increase with increase in b. However, the pressure curves decrease with an increase

in b.

For weakly compressible flow (Ma0 = 0.1) and slip (ws = 0.1) , glancing at Figures 4.17 and 4.18, these

trends are maintained, namely, increasing pressure gradient curves as b increases, and the pressure curves

decrease as b increases. One main difference here is that by comparing the pressure curves between the slip

and no-slip cases, we notice that the pressure after the constriction drops lower in the case of slip (ws = 0.1).

4.2 Piece-wise Cosinusoidal Geometry

4.2.1 No Slip

In this section, we implement the Cosinusoidal Geometry, and we plot pressure gradient and pressure curves

for various δ and consider different values for Re0 numbers.

In the no-slip (ws = 0), incompressible limit (Ma0 = 0.0000001) and for δ = 0.1 in Figures 4.19 and

4.20, for δ = 0.2 in Figures 4.21 and 4.22 and for δ = 0.3 in Figures 4.23 and 4.24, we see that the pressure
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Figure 4.15: Pressure gradient curves in Gaussian geometry with δ = 0.1, ws = 0 , Ma0 = 0.1 and Re0 = 300
as a function of z for various b values.

Figure 4.16: Pressure curves in Gaussian geometry with δ = 0.1, ws = 0, Ma0 = 0.1 and Re0 = 300 as a
function of z for various b values

27



CHAPTER 4. ANALYSIS AND DISCUSSION 4.2. PIECE-WISE COSINUSOIDAL GEOMETRY

Figure 4.17: Pressure gradient curves in Gaussian geometry with δ = 0.1, ws = 0.1 , Ma0 = 0.1 and
Re0 = 300 as a function of z for various b values.

Figure 4.18: Pressure curves in Gaussian geometry with δ = 0.1, ws = 0.1, Ma0 = 0.1 and Re0 = 300 as a
function of z for various b values
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Figure 4.19: Pressure gradient curves in Piece-wise Cosinusoidal Geometry with δ = 0.1, ws = 0 and
Ma0 = 0.0000001 as a function of z for various Reynolds numbers.

gradient peaks increase are Re0 increases, and we observe an increase in the maxima and a decrease in the

minima as the Reynolds number increases. Compared to the Gaussian geometry with δ = 0.1, the peaks of

the pressure gradients are less than those from Gaussian geometry. For example the peak of the Re0 = 700

curve in Figure 4.19 is at approximately 500, while the peak of Gaussian geomtetry is at Re0 = 700 curve

in Figure 4.1 is at approximately 550.

In the pressure curves we observe that, as Reynolds number increases, the peaks of the pressure curves

decrease and reach a value after the constriction that is larger than the pressure before the constriction, and

decreases with increasing Reynolds number. Note however one key distinguishing feature in the Cosinusoidal

geometry pressure curves, namely that the pressure after the constriction is always larger than before the

constriction. Compared to the Gaussian geometry with δ = 0.1, the peaks of the pressure curves are less

than those from Gaussian geometry. For example the peak of the Re0 = 700 curve in Figure 4.20 is slightly

higher than 1, while the peak of Gaussian geomtetry is at Re0 = 700 curve in Figure 4.2 is slightly less than

1.

4.2.2 Slip

Maintaining the same structure and using the flow geometry picked in the previous subsection, we plot

pressure gradient and pressure for δ = 0.3 and consider different values for Re0.

In the slip (ws = 0.1), incompressible limit (Ma0 = 0.0000001) and δ = 0.3, in Figures 4.25 and 4.26,
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Figure 4.20: Pressure curves in Piece-wise Cosinusoidal Geometry with δ = 0.1, ws = 0 and Ma0 = 0.0000001
as a function of z for various Reynolds numbers.

Figure 4.21: Pressure gradient curves in Piece-wise Cosinusoidal Geometry with δ = 0.2, ws = 0 and
Ma0 = 0.0000001 as a function of z for various Reynolds numbers.
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Figure 4.22: Pressure curves in Piece-wise Cosinusoidal Geometry with δ = 0.2, ws = 0 and Ma0 = 0.0000001
as a function of z for various Reynolds numbers.

Figure 4.23: Pressure gradient curves in Piece-wise Cosinusoidal Geometry with δ = 0.3, ws = 0 and
Ma0 = 0.0000001 as a function of z for various Reynolds numbers.
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Figure 4.24: Pressure curves in Piece-wise Cosinusoidal Geometry with δ = 0.3, ws = 0 and Ma0 = 0.0000001
as a function of z for various Reynolds numbers.

and we compare that to the case of no-slip (ws = 0) in Figures 4.23. We observe that the pressure gradient

curves have more of an overlap in the slip case comparing to no-slip. Furthermore, the pressure gradient

curves in the slip case have a higher magnitude. The same argument can be made where pressure curves are

much higher when encountering slip. An additional observation can be made, namely that with slip case,

the pressure curves are less in magnitude after the constriction in comparison to the case with no-slip.

For the slip (ws = 0.1), weakly compressible flow (Ma0 = 0.1) and δ = 0.3, glancing at Figures 4.27 and

4.28, and comparing it with the case of slip ws = 0.1 and weakly incompressible flow as in Figures 4.25 and

4.26. We notice that in Ma0 = 0.1 the pressure gradient curves overlap more and have a larger magnitude

than they in the case of Ma0 = 0.0000001. Moreover, the pressure curves in Ma0 = 0.1 have a higher

magnitude than in the case of Ma0 = 0.0000001.
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Figure 4.25: Pressure gradient curves in Piece-wise Cosinusoidal Geometry with δ = 0.3, ws = 0.1 and
Ma0 = 0.0000001 as a function of z for various Reynolds numbers.

Figure 4.26: Pressure curves in Piece-wise Cosinusoidal Geometry with δ = 0.3, ws = 0.1 and Ma0 =
0.0000001 as a function of z for various Reynolds numbers.
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Figure 4.27: Pressure gradient curves in Piece-wise Cosinusoidal Geometry with δ = 0.3, ws = 0.1 and
Ma0 = 0.1 as a function of z for various Reynolds numbers.

Figure 4.28: Pressure curves in Piece-wise Cosinusoidal Geometry with δ = 0.3, ws = 0.1 and Ma0 = 0.1 as
a function of z for various Reynolds numbers.
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4.3 Piece-wise Polynomial Geometry

4.3.1 Comparison with MPC results and existing theoretical curves

No-slip

In this section we compare the MPC and theoretical results from Akhter and Rohlf’s density curves [1] with

ours. The correlation between pressure and density is:

P (z) =
kBT

m
ρ(z) (4.1)

and we set kBT
m = 1 for agreement with the MPC results, therefore P (z) = ρ(z).

We implement the geometry from Akhter and Rohlf [1], namely, a Piece-wise Polynomial Geometry in our

analytical approach and we obtain the density curves by choosing δ = 0.5 and fixing g = 0.01, 0.02, 0.005.

In Figures 4.29, 4.30 and 4.31, with no-slip ws = 0, we notice that there is an overlap between our curves

and the theoretical curves from [1]. However, both curves have less dip and lower peak magnitude where

the MPC result has more dip and a larger peak magnitude. At g = 0.02, our density curve has a similar

maximum peak but much lower dip in comparison to the MPC and theoretical density curves from [1]. As g

decreases from 0.01 to 0.005 we observe more agreement between the MPC and theoretical results from [1]

and our density curve.

Slip

Maintaining the same structure and using the flow geometry picked in the previous subsection, varying the

slip to ws = 0.5, setting δ = 0.5 and fixing g = 0.01, 0.02, 0.005, we plot density curves and compare our

results to the MPC and theoretical density curves from [1]. It is worth noting here that Ma for MPC curves

is much larger than our Ma0 used in this research. Hence, MPC curves are not as smooth.

We see from Figures 4.29, 4.30 and 4.31 that for the case of g = 0.01, there is an overlap between

Akhter’s theorical density curve [1] and ours. However, both curves have a lower peak and less dip in

comparison to the MPC curve. Using g = 0.02, we observe that our density curve has the same peak value

comparing to Akhter’s theoretical density curve, but much more dip which results in a density value less

than 1. Furthermore, our density curve has a higher peak than the MPC density curve. At g = 0.005, our

density curve has much better agreement with Akhter’s MPC density curve but less in magnitude, and our

density curve overlaps with Akhter’s theoretical curve.
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Figure 4.29: My Pressure curves in Piece-wise Polynomial Geometry with δ = 0.5, l1 = 20, l2 = 10, ws = 0
and g = 0.01 as a function of z and Comparison with MPC results and theoretical curves (labeled Akhter)
from [1].
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Figure 4.30: My Pressure curves in Piece-wise Polynomial Geometry with δ = 0.5, l1 = 20, l2 = 10, ws = 0
and g = 0.02 as a function of z and Comparison with Akhter’s MPC results and her theoretical curves.

Figure 4.31: My Pressure curves in Piece-wise Polynomial Geometry with δ = 0.5, l1 = 20, l2 = 10, ws = 0
and g = 0.005 as a function of z and Comparison with Akhter’s MPC results and her theoretical curves.
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Figure 4.32: My Pressure curves in Piece-wise Polynomial Geometry with δ = 0.5, l1 = 20, l2 = 10, ws = 0.5
and g = 0.01 as a function of z and Comparison with Akhter’s MPC results and her theoretical curves

Figure 4.33: My Pressure curves in Piece-wise Polynomial Geometry with δ = 0.5, l1 = 20, l2 = 10, ws = 0.5
and g = 0.02 as a function of z and Comparison with Akhter’s MPC results and her theoretical curves
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Figure 4.34: My Pressure curves in Piece-wise Polynomial Geometry with δ = 0.5, l1 = 20, l2 = 10, ws = 0.5
and g = 0.005 as a function of z and Comparison with Akhter’s MPC results and her theoretical curves
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Chapter 5

Conclusions and Future work

Our analysis deals with an analytical investigation of blood flow pressure through a constriction in the

presence of velocity slip and compressibility factors. We observed how Reynolds number has a great influence

on the flow field in the constricted cylinder for a steady flow.

For the purpose of comparison, by disregarding the slip effects and by considering Ma0 to be very

small, we varied the degree and the length of the constriction, then we assessed the role of velocity slip and

compressibility in blood flow pressure and density curves. In addition, the analysis of broadening the axial

width in the same stenotic degree δ indicates that the pressure and pressure gradient are more influenced in

the constricted area.

We also implemented a Gaussian geometry and compared the results to existing results in the literature[9].

We extended the comparison against two other geometries, namely, piece-wise Cosinusoidal and polynomial

geometries.

This analysis sustains the potential to further explore the pressure gradient and pressure curves and

improvements may be obtained when the second-order derivatives are kept as well in the pressure gradient

equations, which can be assessed and analyzed in the same context.
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Appendix A

Appendix

In this Appendix, we develop some relationships resulting from the velocity distribution (3.4)-(3.11). In

the first section, we provide a relationship between centerline velocity W and average velocity W using the

definition of flow rate, and in the second section, we show that flow rate is constant.

A.1 W in terms of W

By definition, the flow rate is given by

Q = πρR2W =

∫ R

0

2πρwr dr, (A.1)

where W is the mean velocity at a given cross-section of the cylinder.

Substituting (3.4) for w, using (3.5)-(3.11), and solving for W in terms of W , gives the relationship

W =
2

97

R2 dP
dz

µ
+

210

97
W − 102

97

ws√
1 + R′2

− 2

97

ρ gR2

µ
− 11

97
ws . (A.2)

This is one result needed throughout Chapter 3.

A.2 Constant flow rate

Another needed result throughout Chapter 3 is that flow rate is constant. To see this, differentiate Q with

respect to z using the integral definition in (A.1) to get

dQ

dz
= 2π

d

dz

∫ R

0

rρwdr = 2π

[
(rρw)|r=RR

′ +

∫ R

0

r
d

dz
(ρw)dr

]
. (A.3)
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Now from the continuity equation (3.1),

∂

∂z
(ρw) = −ρ

r

∂

∂r
(ru). (A.4)

Thus
dQ

dz
= 2π

[
(rρw)|r=RR

′ −
∫ R

0

ρ
d

dr
(ru)dr

]
. (A.5)

Since ρ = ρ(z), this can be integrated to get

dQ

dz
= 2π [ (rρw)|r=RR

′ − ρ [(ru)r=R − (ru)r=0]] = 2πρR (R′wr=R − u|r=R) . (A.6)

Now

u|r=R =
wsR

′
√

1 +R′2
and w|r=R =

ws√
1 +R′2

. (A.7)

Thus,
dQ

dz
= 2πρR

[
wsR

′
√

1 +R′2
− wsR

′
√

1 +R′2

]
= 0, (A.8)

implying flow rate is constant.

using Q = 2π
∫ R
0
rρwdr and dQ

dz = 0 together to get an expression for
∫ R
0
r dwdz dr in terms of ρ, dρdz and∫ R

0
rwdr we get

d

dz

∫ R

0

rwdr = (rw)|r=RR′ +
∫ R

0

r
dw

dz
⇒
∫ R

0

r
dw

dz
dr =

d

dz

∫ R

0

rwdr − rw|r=RR′ =
d

dz
[
Q

2πρ
]− Rws√

1 +R′2
R′

(A.9)

hence;
d

dz

∫ R

0

rwdr = − Q

2πρ2
dρ

dz
− Rws√

1 +R′2
R′ (A.10)
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Appendix

In this Appendix, we provide some relationships between derivatives of integrals and corresponding integrals

with derivatives of integrands. These results are needed in the derivation of the Pressure Gradient equation

in Chapter 3.

B.0.1 Derivatives of integrals involving w

Some derivatives of integrals involving w will be needed in the derivation of the pressure gradient equation

in Chapter 3. They are as follows.

d

dz

∫ R

0

rwdr = (rw)|r=RR′ +
∫ R

0

r
dw

dz
dr =

Rws√
1 +R′2

R′ +

∫ R

0

r
dw

dz
dr (B.1)

d

dz

∫ R

0

rρwdr = (rρw)|r=RR′ +
∫ R

0

r
d

dz
(ρw)dr =

Rρws√
1 +R′2

R′ +

∫ R

0

r
d

dz
(ρw)dr (B.2)

d

dz

∫ R

0

rw2dr =
RR′w2

s

(1 +R′2)
+

∫ R

0

r
d

dz
w2dr (B.3)

Differentiate (B.1) using dws

dz = 0 to get

d2

dz2

∫ R

0

rwdr =
d

dz

[
Rws√
1 +R′2

R′
]

+
d

dz

∫ R

0

r
dw

dz
dr (B.4)

=
Rws√
1 +R′2

d2R

dz2
+R′

[
R√

1 +R′2
dws
dz

+ ws.

√
1 +R′2 − 2RR′R” 1

2 (1 +R′2)−
1
2

(1 +R′2)

]
(B.5)

+R
dw

dz

∣∣∣∣
r=R

R′ +

∫ R

0

r
d2w

dz2
dr (B.6)

=
Rws√
1 +R′2

d2R

dz2
+

ws√
1 +R′2

R′ − Rws

(1 +R′2)
3
2

(R′)2
dR2

dz2
− Rws

(1 +R′2)
3
2

R′2
d2R

dz2
+

∫ R

0

r
d2w

dz2
dr(B.7)
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Thus
d2

dz2

∫ R

0

rwdr =

∫ R

0

r
d2w

dz2
dr +

Rws√
1 +R′2

d2R

dz2
+

R′ws√
1 +R′2

− 2RR′2ws

(1 +R′2)
3
2

d2R

dz2
. (B.8)

Differentiate (B.2) to get

d2

dz2

∫ R

0

(rρw)dr =

[
ρ[RR′′ +R′2]ws√

1 +R′2
+

RwsR
′

√
1 +R′2

dρ

dz
− RρwsR

′2R′′

(1 +R′2)
3/2

]
(B.9)

+

[
RwsR

′
√

1 +R′2
dρ

dz
− RρwsR

′2R′′

(1 +R′2)
3/2

+

∫ R

0

r
d2

dz2
(ρw)dr

]
(B.10)

Thus

d2

dz2

∫ R

0

(rρw)dr =
ρ[RR′′ +R′2]ws√

1 +R′2
+

2RwsR
′

√
1 +R′2

dρ

dz
− 2RρwsR

′2R′′

(1 +R′2)
3/2

+

∫ R

0

r
d2

dz2
(ρw)dr (B.11)
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In this Appendix we obtain an expression for d
dz

∫ R
0
rw2dr using the axial velocity expression derived in

Section 3.1 with the help of Maple.

∫ R

0

rw2dr = − 1

7903560

(
−305R8π2ρ2 − 305R8π2ρ2R′

2
)

R2
(
1 + R′2

)
µ2ρ2π2

(
dP

dz

)2

− 1

7903560

1

R2(1 +R′2)µ2ρ2π2

[
1900wsπ

2ρ2R6µ+
(

35960wsπ
2ρ2R6µ

√
1 +R′2

)
+610R8π2ρ3g + 610R8π2ρ3gR′2 + 1900wsπ

2ρ2R6R′2 − 37860R4πρQµ− 37860R4πρQµR′2
](dP

dz

)
− 1

7903560

1

R2(1 +R′2)µ2ρ2π2

[
3098740wsπρR

2µ2Q
√

1 +R′2 − 1505272w2
sπ

2ρ2R4µ2

− 35960wsπ
2ρ3R6µg

√
1 +R′2 + 102500wsπρR

2µ2Q+ 102500wsπρR
2µ2QR′2 − 305ρ4g2R8π2

− 3576w2
sπ

2ρ2R4µ2R′2 − 1900wsπ
2ρ3R6µgR′2 − 95348w2

sπ
2ρ2R4µ2

√
1 +R′2

−305ρ4g2R8π2R′2 + 37860Qµρ2gR4π + 37860Qµρ2R4R′2 − 5552400Q2µ2 − 5552400Q2µ2R′2
]

(C.1)

Note that (A.2) has been used to replace W in terms of W , and Q = 2πρW has been used to replace W

in terms of Q.

Simplifying the above equation, we get∫ R

0

rw2dr =
61

1580712

R6

µ2

(
dP

dz

)2

− 95

395178

wsR
4

µ

(
dP

dz

)
− 899

197589

wsR
4

µ
√

1 +R′2

(
dP

dz

)
+

631

131726

R2Q

µρπ

(
dP

dz

)
− 61

790356

R6ρg

µ2

(
dP

dz

)
− 154937

395178

wsQ

πρ
√

1 +R′2
+

188159

987945

ws
2R2

1 +R′2
+

899

197589

wsρR
4g

µ
√

1 +R′2
− 5125

395178

wsQ

ρπ

+
61

1580712

R6ρ2g2

µ2
+

149

329315

ws
2R2R′2

1 +R′2
+

95

395178

wsρR
4g

µ
+

23837

1975890

ws
2R2

√
1 +R′2

− 631

131726

QR2g

µπ

+
6610

9409

Q2

R2ρ2π2
(C.2)
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Now taking d
dz of this equation, using dQ

dz = 0 and dws

dz = 0 we get

d

dz

∫ R

0

rw2dr =
61

263452

R5
(
dP
dz

)2
R′

µ2
+

61

790356

(R)
6 dP

dz (d2P
dz2 )

µ2
− 190

197589

(R′ws) (R)
3 dP

dz

µ

− 95

395178

ws (R)
4 d2P

dz2

µ
− 3596

197589

ws (R)
3 dP

dz R
′

µ

√
1 + (R′)

2
− 899

197589

ws (R)
4 d2P

dz2

µ

√
1 + (R′)

2
+

899

197589

ws (R)
4 dP

dz R′R′′

µ
(

1 + (R′)
2
)3/2

+
631

65863

RQdP
dz R

′

µρπ
+

631

131726

(R)
2
Qd2P

dz2

µρπ
− 631

131726

(R)
2
QdP

dz
dρ
dz

µ (ρ)
2
π
− 61

131726

(R)
5
ρg dP

dz R
′

µ2

− 61

790356

(R)
6
(
dρ
dz

)
g dP

dz

µ2
− 61

790356

(R)
6
ρg d2P

dz2

µ2
+

154937

395178

wsQR′R′′(
1 + (R′)

2
)3/2

ρπ

+
154937

395178

wsQ
dρ
dz√

1 + (R′)
2

(ρ)
2
π

+
376318

987945

(ws)
2
RR′

1 + (R′)
2 −

376318

987945

(ws)
2

(R)
2

R′R′′(
1 + (R′)

2
)2 +

899

197589

ws (ρ′) (R)
4
g

µ

√
1 + (R′)

2
+

3596

197589

wsρ (R)
3
gR′

µ

√
1 + (R′)

2

− 899

197589

wsρ (R)
4
gR′R′′

µ
(

1 + (R′)
2
)3/2 +

5125

395178

wsQρ
′

(ρ)
2
π

61

263452

(R)
5

(ρ)
2
g2R′

µ2
+

61

790356

(R)
6
ρg2 d

dzρ

µ2

+
298

329315

ws
2RR′3

1 +R′2
+

298

329315

ws
2R2R′R′′

(1 +R′2)
− 298

329315

(ws)
2

(R)
2

(R′)
3

R′′(
1 + (R′)

2
)2

+
95

395178

ws (ρ′) (R)
4
g

µ
+

190

197589

wsρ (R)
3
gR′

µ
+

23837

987945

(ws)
2
RR′√

1 + (R′)
2
− 23837

1975890

(ws)
2

(R)
2

R′R′′(
1 + (R′)

2
)3/2

− 631

65863

RQgR′

µπ
− 13220

9409

(Q)
2
R′

(R)
3

(ρ)
2
π2
− 13220

9409

(Q)
2
ρ′

(R)
2

(ρ)
3
π2

(C.3)
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In this Appendix we provide the Maple code used to generate the numerical pressure curves. RK4 method

was used to solve the Differential Equation.

restart;

Digits := 40;

with(DEtools);

with(plots);

equationfordimlessdpdz := (-(4/3)*Ma^4/Rey^2+(61/526904)*Rey*dRdz-(631/263452)*Ma^2

-(61/1580712)*Rey*dimlessg*Ma^2)*dimlessdPdz^2+((899/395178)*Rey*dimlessg*dimlessws*

Ma^2*oneoverroot+(154937/790356)*dimlessws*oneoverroot*Ma^2+(899/395178)*Rey*R*dimlessws

*dRdz*d2Rdz2*oneoverroot^3-(61/263452)*Rey^2*dimlessg*dRdz-(1/3)*Ma^2*dRdz*dimlessws

*oneoverroot/Rey-(95/197589)*Rey*dimlessws*dRdz+(95/790356)*Rey*dimlessg*dimlessws*Ma^2

+(61/1580712)*Rey*dimlessd2Pdz2+75/194-(6610/9409)*Ma^2+(5125/790356)*dimlessws*Ma^2

+(61/1580712)*Rey^2*dimlessg^2*Ma^2+(631/131726)*Rey*dRdz-(1798/197589)*Rey*dimlessws

*oneoverroot*dRdz)*dimlessdPdz+(95/197589)*Rey^2*dimlessg*dimlessws*dRdz+(1798/197589)

*Rey^2*dimlessg*dimlessws*dRdz*oneoverroot-(23837/3951780)*Rey*R*dimlessws^2*dRdz*

d2Rdz2*oneoverroot^3-(26816/141135)*Rey*R*dimlessws^2*oneoverroot^4*dRdz*d2Rdz2

-(6610/9409)*Rey*dRdz+R*dimlessws*oneoverroot*d2Rdz2-(312/97)*dimlessws*oneoverroot

-(75/194)*Rey*dimlessg+(12/97)*dimlessws+300/97-2*R*dRdz^2*dimlessws*d2Rdz2*oneoverroot^3

+(149/329315)*Rey*dimlessws^2*dRdz-(899/395178)*Rey^2*R*dimlessg*dimlessws*

dRdz*d2Rdz2*oneoverroot^3+(23837/1975890)*Rey*dimlessws^2*oneoverroot*dRdz

+(154937/790356)*Rey*R*dimlessws*dRdz*d2Rdz2*oneoverroot^3-(631/131726)*Rey^2

*dimlessg*dRdz-(87503/282270)*Rey*dimlessws^2*dRdz*oneoverroot^2+dimlessws*oneoverroot

*dRdz^2+(61/526904)*Rey^3*dimlessg^2*dRdz+((2/3)*Ma^2/Rey+(631/263452)*Rey

-(95/790356)*Rey*dimlessws-(899/395178)*Rey*dimlessws*oneoverroot

-(61/1580712)*Rey^2*dimlessg)*dimlessd2Pdz2;

#Set coefficient of second derivative of P to zero, and write all variables in terms of #upstream
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values

dimlessd2Pdz2 := 0; Wbar := Wbar0*rho0*R0^2/(rho*R^2);

Rey := Rey0*R0/R;

Ma := Ma0*rho0*R0^2/(rho*R^2);

oneoverroot := 1/sqrt(1+dRdz^2);

dimlessws := ws/Wbar;

dimlessg := g*R/Wbar^2;

equationfordimlessdpdz;

D1 := -(4/3)*Ma0^4*rho0^4*R0^6/(rho^4*R^6*Rey0^2)+(61/526904)*Rey0*R0*dRdz/R

-(631/263452)*Ma0^2*rho0^2*R0^4/(rho^2*R^4)-(61/1580712)*Rey0*R0*g*Ma0^2/Wbar0^2;

#Pick Reynolds numbers as per Yao and Li, and flow and geometry variables

ReyYao := 600;

Rey0 := (1/2)*ReyYao;

R0 := 0.1e-1;

ws := .1;

rho0 := 1.05*10^3;

mu := 0.35e-2;

Wbar0 := Rey0*mu/(rho0*R0);

g := 8*mu*Wbar0/(rho0*R0^2);

kBToverm := (1.3806503*10^(-23)*300)/(3*10^(-17));

Ma0 := .3;

#use equation of state to write pressure in terms of density

P0 := rho0*kBToverm;

dimlessP0 := P0*R0/(mu*Wbar0);

#find equilibrium solutions of DE for density

dimlessdpdzroots := solve(equationfordimlessdpdz = 0, dimlessdPdz);

rhoequilroot1 := solve(subs(d2Rdz2 = 0, subs(R = R0, subs(dRdz = 0, dimlessdpdzroots[1])))

= 0, rho);

rhoequilroot2 := solve(subs(d2Rdz2 = 0, subs(R = R0, subs(dRdz = 0, dimlessdpdzroots[2])))

= 0, rho);

#use physically feasible (eg. non-negative, real) equilibrium value, with corresponding DE

pequil := kBToverm*rhoequilroot2[5];

dimlesspequil := pequil*R0/(mu*Wbar0);

rhoequil := rhoequilroot2[5];

mydimlessdPdzsoln := subs(rho = rho(z), dimlessdpdzroots[2]*(R0/R)^4/(Rey0*rho));

#Define geometry constants, and geometry

delta1 := .1;

b := .25*10^4;
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R := R0*(1-delta1*exp(-b*z^2));

dRdz := diff(R, z);

d2Rdz2 := diff(dRdz, z);

drhodz := mydimlessdPdzsoln*mu*Wbar0/(R0^2*kBToverm);

evalf(exp(1));

#Check that solutions tend towards the equilibrium solution

evalf(subs(z = 20, subs(rho(z) = 9899.486034, drhodz)));

evalf(subs(z = 100, subs(rho(z) = 1000, drhodz)));

#Solve the DE using RK4

dz := 0.1e-2;

rhostart := rhoequil;

p1 := DEplot(diff(rho(z), z) = drhodz, rho(z), z = -.5 .. .5, [rho(-.5)

= rhostart], arrows = none, linecolor = black, maxfun = 0);

rho1soln := dsolve(diff(rho(z), z) = drhodz, rho(-.5) = rhostart, numeric, method

= classical[rk4], stepsize = dz, maxfun = 0);

op(2, op(2, rho1soln(-.5)));

rhoequil; rho1soln(-.5);

pp1 := odeplot(rho1soln, [z, -(rho(z)-rhoequil)/(rhoequil*Wbar0^2*R0)], z = -0.5e-1 .. 0.7e-1);

rho0;

rhoequil;

kBToverm;

rho0*Wbar0^2;

rho0*Wbar0*sqrt(kBToverm);

1/(rhoequil*Wbar0^2*R0);

sqrt(kBToverm)/(R0*rho0*Wbar0);

1/(rhoequil*Wbar0^2*R0);

plots[display](pp1);

evalf(subs(rho(.5) = op(2, op(2, rho1soln(.5))), subs(z = .5, drhodz)));

#Use the solution for the density to determine dPdz which is in terms of the solution

deltaz := 0.1e-2;

ii := 1;

z0 := -.5; z1 := .5;

for zz from z0 by deltaz to z1 do zposn[ii]:= z0+(ii-1)*deltaz; dPdzusingsoln[ii]

:= evalf(subs(rho(zz) = evalf(op(2, op(2, rho1soln(zz)))), subs(z = zz, -drhodz/R0)));

rhousingsoln[ii] := evalf(-(op(2, op(2, rho1soln(zz)))-rhoequil)/(rhoequil*Wbar0^2*R0));

D1usingsoln[ii] := evalf(subs(rho = evalf(op(2, op(2, rho1soln(zz)))), subs(z = zz, D1)));

ii := ii+1 end do;

imax := ii-1;
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kBToverm;

Wbar0^2;

Wbar0;

mu*Wbar0/R0^2;

#plot the results in Matlab to assess feasibility of solution curves

seq([zposn[ii], subs(z = zposn[ii], dPdzusingsoln[ii])], ii = 1 .. 2);

pointplot(seq([zposn[ii], -dPdzusingsoln[ii]], ii = 1 .. imax));

pointplot(seq([zposn[ii], D1usingsoln[ii]], ii = 1 .. imax));

D1usingsoln[10];

imax;

R0;

rho0*Wbar0^2;

mu*Wbar0/R0^2;

1/(rho0*Wbar0^2);

rhoequil;

plots[display](pp1);

plot(R, z = -.5 .. .5);

#output the solution for use for plots with Matlab

fd := fopen("maple_dpdz_yao_Rey300ws01Ma03delta101b025_salah.dat", WRITE);

for k to imax do fprintf(fd, "%f %f \n", zposn[k], dPdzusingsoln[k]) end do;

fclose(fd);

fd := fopen("maple_density_yao_Rey300ws01Ma03delta101b025_salah.dat", WRITE);

for k to imax do fprintf(fd, "%f %f \n", zposn[k], rhousingsoln[k]) end do;

fclose(fd);
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