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Abstract

Data Denoising in Analog and Digital Domains

c© SayedMasoud Hashemi Amroabadi, 2010

Masters of Applied Science (MASc)

Signal Processing and Communications

Ryerson University

In this thesis, we develop various methods for the purpose of data denoising. We propose a
method for Mean Square Error (MSE) estimation in Soft Thresholding. The MSE estimator
is based on Minimum Noiseless Data Length (MNDL). Our simulation results show that
this MSE estimate is a valuable comparison measure for different soft thresholding methods.
Two denoising methods are proposed for analog domain: Mean Square Error EstiMation
(MSEEM) which minimizes the worst case MSE estimate, and Noise Invalidation Denois-
ing (NIDe) method which is based on the newly proposed idea of noise signature. While
MSEEM shown to be the optimum denoising method for non-sparse signals, NIDe approach
outperforms the other well known denoising methods in presence of colored noise. In digital
domain we address two interesting problems: 1) simultaneous denoising and quantization
method, 2) denoising a digital signal in digital domain. For problem one, we propose a new
method that generalizes the idea of dead zone estimation to a multi-level noise removal. An
example of this method is shown for hyperspectral image denoising and compression. A
digital domain denoising approach pioneers in answering the second problem with only one
prior knowledge on the desired signal, that it is digital. The method provides the optimum
reconstruction levels in the MSE sense.
One of the critical steps of denoising process is the noise variance estimation. As a part
of this thesis, we propose a novel noise variance estimation method for BayesShrink that
outperforms conventional MAD-based noise variance estimation. Although BayesShrink is
one of the most efficient denoising methods, no analytical analysis is available for it. Here,
we study Bayes estimators for General Gaussian Distributed (GGD) data and provide the
theoretical justification for BayesShrink. This study enables us to generalize the BayesShrink
threshold to Generalized BayesShrink which outperforms the BayesShrink itself.
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while σȳ and σw are constant. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Effect of increasing β on Bayesian curve. β increases in direction of arrow. . 100
7.7 Test images, Top from left to right: CameraMan, Lena and Mandrill. Bottom

from left to right: Peppers, Einstein and Coco. . . . . . . . . . . . . . . . . . 102
7.8 Comparison of Lena image denoised with BayesShrink and the proposed method.

Top left: noiseless image, Top right: noisy image with SNR=10, Bottom Left:
denoised with BayesShrink, and Bottom right: denoised with the proposed
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.9 Comparison of Coco image denoised with BayesShrink and the proposed
method. Top left: noiseless image, Top right: noisy image with SNR=10,
Bottom Left: denoised with BayesShrink, and Bottom right: denoised with
the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.10 Comparison of Mandrill image denoised with BayesShrink and the proposed
method. Top left: noiseless image, Top right: noisy image with SNR=10,
Bottom Left: denoised with BayesShrink, and Bottom right: denoised with
the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.11 miniMIAS mammography images used in our test, Right: mdb001, Middle:
mdb100, Left: mdb200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.12 CT scan test images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xi



List of Tables

1.1 Contribution of each chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Comparison of the real MSE of VisuShrink and the MSE estimated by the
proposed method. Top: Real MSE of VisuShrink, Bottom: Estimated MSE. 34

3.2 Comparison of the real MSE of SureShrink with the MSE that is estimated
with the proposed method. Top: Real MSE of SureShrink, Bottom: Esti-
mated MSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Comparison of the mimum of the upperbound of the proposed method, MSE of
method proposed in [42], and the possible minimum MSE using soft threshold.
Top: MSE of denoised signal with MSEEM, MSE of the proposed method in
[42], and Bottom: Minimum possible MSE. . . . . . . . . . . . . . . . . . . . 35

3.4 Mean and variance of the estimated m which is the position of the minimim
of the upper bound and optimum m which makees the real MSE minimum.
Top: mean of estimated m, Middle: variance of estimated m, and Buttom:
real optimum m value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Comparison of MSE in MSEEM, NIST, and BayesShrink. Top: MSEEM,
Middle: NIDe, and Bottom: BayesShrink. . . . . . . . . . . . . . . . . . . . 36

4.1 Normalized Reconstruction MSE for the Thresholding Methods. For the white
additive noise. Averaged over 100 runs . . . . . . . . . . . . . . . . . . . . . 55

4.2 Normalized Reconstruction MSE for the Thresholding Methods with the col-
ored additive noise with autocorrelation in Figure 4.11. Averaged over 100
runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 PSNR of applying multistage MNDL denoising on the test images shown in
figure 5.2 and comparing it with one levels MNDL. . . . . . . . . . . . . . . 65

5.2 PSNR of compressed images with different methods and for different Input SNR

(ISNR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 NMSE of dequantizing the signal with 9 levels shown in figure 5.8 with four

different method: (1) Using the original levels (2) Using the proposed method
(3) Denoising with VisuShrink and then dequantizing with the original levels
(4) Denoising with MNDL and then using the original levels to dequantize the
signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xii



5.4 NMSE of dequantizing the signal with 3 levels shown in figure 5.8 with four
different method: (1) Using the original levels (2) Using the proposed method
(3) Denoising with VisuShrink and then dequantizing with the original levels
(4) Denoising with MNDL and then using the original levels to dequantize the
signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Median of the detail coefficients of the test images shown in figure 5.2. . . . 82
6.2 Comparison of the estimated noise variances of the test images calculated by

MAD and proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Comparison of the MSE values of MAD and the optimized BayesShrink using

the proposed method for Variance estimation. . . . . . . . . . . . . . . . . . 91

7.1 PSNR of denoised data with BayesShrink and the proposed threshold applied
on analytical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 PSNR of denoised images with BayesShrink and the proposed threshold. . . 102
7.3 PSNR of denoised mammogram with BayesShrink and the proposed threshold

applied on medical test images shown in Figure 7.11. . . . . . . . . . . . . . 107
7.4 PSNR of denoised CT images with BayesShrink and the proposed threshold

applied on medical test images shown in Figure 7.12. . . . . . . . . . . . . . 108

xiii



Notations

• ȳ(i) : Noiseless data

• y(i) : Noisy data

• w(i) : i.i.d Gaussian Noise

• θ̄(i) : Noiseless wavelet coefficients

• θ(i) : Noisy wavelet coefficients

• v(i) : Gaussian Noise wavelet coefficients

• θ̂(i) : Estimated wavelet coefficient

• ŷ : Estimated noiseless data from noisy data

• σȳ : Standard deviation of noiseless data

• σw : Noise standard deviation

• σy : Noisy data standard deviation

• T : Threshold value

• m : Number of coefficients larger than threshold value T which are kept in thresholding

• ψT (θ) : Hard Thresholding function with T as its threshold value

• ηT (θ) : Soft Thresholding function with T as its threshold value

• θ̄T : Wavelet coefficients corresponding to the kept part of the noisy wavelet coefficients
in thresholding methods

• ∆T : Wavelet coefficients corresponding to the removed part of the noisy wavelet
coefficients in thresholding methods

• AT : Wavelet basis part corresponding to the kept part of the coefficients in thresh-
olding methods

• BT : Wavelet basis part corresponding to the removed part of the coefficients in thresh-
olding methods

• A′ : Transposed version of matrix A

• ||.||22 : Second norm of the matrix
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• zT,H : Reconstruction error in Hard Threshold, zT,H = 1
N
||ȳ − ŷ||22

• zT,S : Reconstruction error in Soft Threshold, zT,S = 1
N
||ȳ − ŷ||22

• xT,H : Data error caused by Hard thresholding, xT,H = 1
N
||y − ŷ||22

• φ(x) : CDF of Gaussian distribution

• DL(θ|θ̄) : description length of noiseless data

• Qi : Quantization level in ith level

• yQ : Noisy quantized data

• R.. : Autocorrelation

• .N : the superscript N represent the length of a vector, i.e., yN = [y(1), · · · , y(N)]′

• < a, b > : Inner product of real vectors a and b which can be calculated by < a, b >=
a′b.

• MSE : Mean Square Error (2.6)

• NMSE : Normalized MSE (2.7)

• MAD : Median Absolute Deviation, noise variance estimation method

• MNDL : Minimum Noiseless Description Length, is a MSE estimation method

• SPIHT : Set Partitioning in Hierarchical Trees, is a bit alignment and compression
methods

• PSNR : Peak SNR, here is used for SNR of the outputs of the algorithms when we
input is image (2.8)

• ISNR : Input SNR, SNR of input data
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Chapter 1

Introduction

A fundamental problem in statistical signal processing is estimating signal from its noisy

version. In this thesis we focus on this problem and propose denoising algorithms for both

analog and digital domains. In classical signal processing, it is typical to assume the signal

is low-pass and the noise is not. Thus, the noise can be reduced with a low-pass linear filter.

Since linear time invariant (LTI) filtering is equivalent to multiplication in Frequency domain

(Fourier Transform), all LTI techniques can be called “Fourier-Based” denoising. Low-pass

filtering is extensively studied in many classical signal processing textbook, [1, 2, 3]. How-

ever, many signals have useful high-pass features like edges in the images which are removed

or blurred by using low-pass filters.

Wiener filtering is another classical method used for denoising the signal corrupted by noise.

Wiener filtering is based on the knowledge of the spectral properties of the original signal and

the noise, to design an LTI filter that its output is close to the original signal in MSE sense

[4, 5]. However, the spectral properties of the signal and/or noise are not always available.

Wavelet-based techniques offer an alternative to noise removal methods. Wavelet denoising

can provide low-pass filtering to reduce noise, while the useful high-pass features of the signal

can be preserved. Wavelet denoising is performed by taking the wavelet transform of the

noisy signal and mapping the details with coefficients below a certain threshold to zero. An

inverse wavelet transform is applied to the threshold signal to achieve the denoised signal.

In wavelet transform, the edges and the useful high-pass features have significant coefficients

1
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and will not be removed in the thresholding process.

The pioneer research on wavelet shrinkage is done by Donoho and Johnstone [6, 7, 8] in which

they introduced VisuShrink and SureShrink. VisuShrink uses Soft thresholding and univer-

sal threshold. Universal threshold is only a function of data length and noise variance. In

most cases the noise variance is not known. In these situations, the noise variance is usually

estimated by Median Abolute absolute Deviation (MAD) method in which median value of

the high frequency subbands are used to estimate the noise variance. The other method pro-

posed by Donoho and Johnstone, SureShrink, minimizes Steien’s unbiased Risk Estimator

(SURE). These two methods are working well for sparse signals such as the signals which are

piecewise polynomial. One of the well-known works in wavelet thresholding is done by Chang

et al. [9, 10] in which BayesShrink method is proposed. BayesShrink is originally proposed

for natural images in which the subband wavelet coefficients can be modeled with General

Gaussian Distribution (GGD) and tries to minimize the Bayes Risk. GGD is accepted as

a standard distribution for subband wavelet coefficients of natural images [11, 12, 13, 14].

Although BayesShrink has many advantages, it does not have an analytical proof.

Another important problem in statistical signal processing is Mean Square Error (MSE)

estimation. In wavelet denoising and shrinkage, MSE estimation is only addressed by Be-

heshti and Dahlhe in Minimum Noiseless Data Length (MNDL) [15]. MNDL is a best bases

selection which provides upper and lower bounds for Noiseless Data Length (NDL) in Hard

thresholding methods. For a given noise variance, minimizing NDL is equivalent to minimiz-

ing MSE. Thus, the upper bound, provided by MNDL, can be used to minimize the worst

case MSE. Therefore, MNDL can also be used as a wavelet shrinkage method.

This thesis is organized as follows:

Chapter 2 contains problem formulation and background information including a brief re-

view on wavelet transform and existing wavelet shrinkage methods. In Chapter 3, we extend

the MSE estimation method proposed in MNDL [15] for soft threshold denoising. Using the

provided upper bound and minimizing the worst case MSE, we propose a Soft Threshold

wavelet denoising method called MSE EstiMation (MSEEM).
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Noise Invalidation Denoising (NIDe) is introduced in Chapter 4. NIDe uses a noise signature

to validate the signal and removes the coefficients which have the noisy behavior. Noise

signature was proposed by Nikvand and Beheshti in [16]. In [16] Noise Invalidation in Soft

Thresholding (NIST) is proposed that uses the absolute sorted value of noise wavelet coef-

ficients as the noise signature. NIDe has two major differences with NIST: 1) an analytical

signature with limited mean and variance is proposed, and 2) masking process is used instead

of thresholding. Masking process removes all the coefficients with noise behavior which can

be in different positions. While thresholding process removes the coefficients lower than a

certain threshold value.

In Chapter 5, we propose two denoising methods that deal with digital data. One of the

proposed methods accepts the noisy signals as its input and simultaneously denoises and

quantizes it. This method takes care of the noisy input signal in two stages. In the first

stage, it uses a multistage denoising method based on MNDL to detect the noise dominant

part of the signal and at the same time it denoises and quantizes this part. Therefore,

the remaining part of the input is noiseless dominant and one of the existing quantization

methods can be used to quantize this part. The important advantage of this method is to

prevent the resources to process the input noise which wastes the time and resources. Using

this denoising/quantization algorithm, a compression method is proposed for Hyperspectral

images and it is shown that the proposed method outperforms separate denoising and quan-

tization approach. The other proposed method in Chapter 5 denoises the noisy quantized

data. This method finds the reconstruction levels of the noisy quantized data. This method

uses only the noisy data and does not need any side information, such as the number of levels

or the value of quantization levels, to reconstruct the signal. When the input SNR is high,

the reconstruction levels found by the proposed method are the same as the quantization

levels. As a result, in low SNR cases, the reconstruction levels can be different in numbers

and values from the quantization levels of the original data.

In Chapter 6 we address the noise variance estimation in BayesShrink. In this chapter we

show that MAD-based noise variance estimation over estimates the noise variance in the
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Table 1.1: Contribution of each chapter.

Chapter 3 A novle method is proposed in this chapter to estimate the MSE
in soft thresholding methods.

The proposed method only uses the noisy signal to estimate MSE.

Chapter 4 A universal denoising method is proposed which uses a noise signature to denoise
the signal and provides a mathematical proof for

limited mean and small variance of noise signature.

Chapter 5 In this chapter TSQ and MSDQ methods are proposed.
TSQ generalizes the dead zone area concept in uniform quantizers and

simultaneously denoises and quantizes the noisy signals.
MSDQ pioneers the quantized/digital data denoising methods.

Chapter 6 A noise variance estimation is proposed for BayesShrink denoising method which
outperfomrs MAD noise variance estimation in BayesShrink

and improves the performance of BayesShrink.

Chapter 7 A novle denoising method is proposed based on Bayesian estimation
of noisy GGD signals.

In addition a mathematical justification is provided for BayesShrink.

cases with large wavelet coefficients in high frequency subbands. Then we use the statistical

properties of noise, like Gaussian Noise autocorrelation, in combination with BayesShrink to

estimate the noise variance. In Chapter 7, we study BayesShrink approach from a new an-

gle. By drawing the Bayesian estimation of the noiseless wavelet coefficients form the noisy

coefficients corrupted with Gaussian noise, we show that BayesShrink is a linear estimation

of this Bayesian estimation function. This study provides tha theory behind the Bayesian

approaches for Generalized Gaussian Distributed (GGD) signals and provides the role of

BayesShrink in the Bayesian estimataion approaches. We propose a Bayesian estimate in

form of a threshold that can improve the BayesShrink performance.

Figure 1.1 depicts the relationship among the chapters and the contribution in each chapetr

is mentioned in Table 1.1.
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Figure 1.1: The relationship among the chapters of the thesis.



Chapter 2

Problem Formulation and Background

2.1 Problem Formulation

A large portion of digital signal processing is devoted to signal denoising. The basic idea

behind this thesis is the estimation of noiseless signal from a noisy signal.

Suppose that for a noiseless signal, ȳ, we observe y, which is samples of the signal that have

been contaminated with noise. Assuming an additive noise model, the noisy signal is the

noiseless signal plus noise:

y(i) = ȳ(i) + w(i) i = 1, ..., N (2.1)

where yN = {y(i), i = 1, ..., N} is the observed data vector, ȳN = {ȳ(i), i = 1, ..., N} is

the noiseless data and the noise, wN = {w(i), i = 1, ..., N}, is independent and identically

distributed (i.i.d) from a Gaussian distribution with zero mean and unknown standard de-

viation σw. In the notations the superscript N represents the length of the vector.

Our goal is to find an estimation of ȳ which is shown by ŷ. The first step in denoising is

to use a transform which represents the signal in a better form. Any orthogonal transform

like Fourier transform, Short Term Fourier Transform (STFT) [17] and Wavelet Transform

(WT) [18, 19, 20] can be used.

If θ̄(i) denotes the noiseless transform coefficients, θ(i) denotes the noisy coefficients, and

v(i) denotes the noise coefficients. These coefficients can be expressed in terms of a desired

orthonormal basis such that:

6
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θ(i) =< si, y
N >, θ̄(i) =< si, ȳ

N >, v(i) =< si, w
N > (2.2)

where si is an element of orthonormal basis S = [s1, ..., sN ]. Therefore the following equations

hold.

ȳN =
N∑
i=1

θ̄(i)si, yN =
N∑
i=1

θ(i)si (2.3)

and the following equation describes the relationship between them.

θ̄(i) = θ(i) + v(i) (2.4)

Orthonormal transforms do not change the variances.

σw = σv, σȳ = σθ̄, σy = σθ (2.5)

Because of the lack of statistical information about the noiseless signal (ȳ) the estimated

parameters (ŷ) are chosen to optimize a criterion based on the observed signal (y). A

common measure of the quality of an estimator is Mean-Square Error (MSE). MSE shows

the Euclidean distance between the estimation and the noiseless signal in average. For

example if we apply a threshold value, T , on a signal and map the N −m smallest samples,

which are smaller than T , to zero and keep the m larger ones, MSE is defined as mean of

zT . Where zT = ||ȳ − ŷ||2 is the reconstruction error.

MSE = E(zT ) = E(||ȳ − ŷ||22) (2.6)

Beside MSE, we use Normalized MSE (NMSE) and PSNR to evaluate the results. NMSE is

defined as follows:

NMSE =

∑
i(θ̄i − θ̂i)

2∑
j θ̄

2
j

(2.7)

which normalizes MSE with the signal power. PSNR for an image with B bits per pixel

resolution in dB can be calculated using,

PSNR = 10 log10
(2B − 1)2

MSE
(2.8)
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A popular technique for denoising is wavelet shrinkage or thresholding. A wavelet shrink-

age method is achieved by taking the wavelet transform of the observed data vector and

applying a function that shrinks the wavelet coefficients toward zero. Thresholding methods

set a fraction of coefficients exactly to zero. The denoised signal is recovered by inverting

the processed coefficients. Wavelet shrinkage and thresholding methods are effective because

wavelet bases give a sparse representation for most signals, meaning that only a small fraction

of large wavelet coefficients are needed to adequately represent the signal while the reminder

can be set to zero with minimal effect. When noise is added to a signal, the small wavelet

coefficients are buried in the noise. Applying a threshold maps a fraction of the coefficients

to zero, ideally isolating these small coefficients. Hence the wavelet representation of some

signals is more sparse than other ones, the fraction of the small non-essential coefficients

varies in different signals. Therefore, the ideal fraction of removed coefficients differs from

signal to signal, even if the level of noise in the signals is the same.

Here we focus on thresholding methods which keep m coefficients and map N −m reminders

to zero which can be the N −m smallest ones or any other coefficients with noise like be-

havior.

Since in this thesis Orthogonal Wavelet Transform and specifically Discrete Wavelet Trans-

form (DWT) is used to represent the signal, Wavelet Transform is briefly introduced in next

section.

2.2 Brief Overview on Wavelet Transform

Although our proposed methods in the thesis can use any orthogonal transform, we use

Discrete Wavelet Transform (DWT) because of its high performance and advantages shown

by Donoho and Johnstone [6, 8]. In this section, wavelet transform is beefily reviewed.
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2.2.1 The Continuous Wavelet Transform

Continuous Wavelet Transform (CWT) can be computed using the following equation,

γ(s, τ) =

∫
f(t)ψ∗

s,τ (t)dt (2.9)

where ∗ denotes complex conjugation, s is scale factor and τ is translation factor. This

equation shows how a function f(t) is decomposed into a set of basis functions ψ∗
s,τ (t) called

the wavelets. The wavelets are generated from a single basic wavelet ψ(t), called mother

wavelet, by scaling and translation:

ψs,τ (t) =
1√
s
ψ(
t− τ

s
) (2.10)

The inverse wavelet transform is given by:

f(t) =

∫ ∫
γ(s, τ)ψs,τ (t)dτds (2.11)

It is important to note that in (2.9), (2.10) and (2.11) the wavelet basis functions are not

specified. This is a difference between the wavelet transform and the Fourier transform, or

other transforms. The theory of wavelet transforms deals with the general properties of the

wavelets and wavelet transforms only. The most important properties of wavelets are the

admissibility and the regularity conditions and these are the properties which gave wavelets

their name. It can be shown that square integrable functions ψ(t) satisfying the admissibility

condition, ∫
|Ψ(ω)|2

|ω|
dω < +∞ (2.12)

in which Ψ(ω) stands for the Fourier transform of ψ(t). The admissibility condition implies

that the Fourier transform of ψ(t) vanishes at the zero frequency, |Ψ(ω)|2|ω=0 = 0. This

means that wavelets must have a band-pass like spectrum.

A zero at the zero frequency also means that the average value of the wavelet in the time

domain must be zero,

∫
ψ(t)dt = 0 (2.13)

Therefore, it must be oscillatory. In other words, ψ(t) must be a wave.
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2.2.2 The Discrete Wavelet Transform

The wavelet transform as described so far has the following properties that make it difficult

to use directly in the form of (2.9). The first is the redundancy of the CWT. In (2.9) the

wavelet transform is calculated by continuously shifting a continuously scalable function

over a signal and calculating the correlation between the two. These scaled functions are

not orthogonal basis and the obtained wavelet coefficients are highly redundant.

Even without the redundancy of the CWT we still have an infinite number of wavelets in the

wavelet transform and it is better to reduce it to a manageable number. This is the second

problem we have. The third problem is that for most functions the wavelet transforms

have no analytical solutions and they can be calculated only numerically. Discrete Wavelet

Transform solves these problems.

Wavelet can be seen as a band-pass filter, then a series of dilated wavelets can be seen as a

band-pass filter bank like Figure 2.1. If we look at the ratio between the center frequency

of a wavelet spectrum and the width of this spectrum we will see that it is the same for all

wavelets.

Figure 2.1: Wavelet spectra resulting from scaling of the mother wavelet in the time domain.

Discrete Wavelet Coefficients can be obtained through a filter bank, like the filter bank

shown in Figure 2.2. In this filter bank, one of the filters is low pass filter corresponds

to scaling function, h[n], and has smoothing effect and the other one is high pass filter

corresponds to the wavelet function, g[n], and enhances the details [21]. The filter bank makes

a tree structure in the coefficients. Each node of the tree represents a wavelet coefficient and

each level of the tree represents a scale of detail of the wavelet coefficient while the root is the
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coarsest scale. A property of the wavelet coefficients is correlation in within and across scale

[22]. This means that large coefficients are more likely to be adjacent to large coefficient

both at the same level as in the details.

Figure 2.2: A three level wavelet filterbank.

2.2.3 Orthogonality of Wavelet transform

Orthogonal transforms are an important class of linear transforms. In general, a linear trans-

form is orthogonal if it has a matrix representation W with W−1 = W ′, where W ′ denotes

the transpose of T.

Two properties of orthogonal transforms are used repeatedly in this work:

a) Orthogonal transform are Euclidean-distance preserving. If T is orthogonal, ||W (x−y)|| =

||x − y|| for any two vectors x and y. This property is useful for denoising, since it means

that the distance between two vectors is the same in transform domain as the original space.

Consequently, a quantity such as an error between a true signal and an estimate can be

evaluated in both of the domains.

b) Orthogonal transformations of a white noise are white. A zero-mean random vector η ∈ RN

is a white noise if its autocorrelation matrix E[ηη′] = σ2
ηIN where ση is the variance of the

noise. If W is orthogonal, ν = Wη is also a white noise because E[νν ′] = E[Wηη′W ′] =

WE[ηη′]W ′ = σ2
ηIN .

This property is important for removing additive white noise because it allows us to consider

the noise in the transform domain with the same statistics and properties.
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A discrete wavelet transform can be made orthogonal by imposing certain restrictions on the

filters. Specifically, it can be shown that a wavelet transform is orthogonal if and only if the

filter transfer functions satisfy

H0(z)H0(z
−1) +H0(−z)H0(−z−1) = 1

and

H1(z) = −z2k+1H0(−z−1)

for some integer k. In the remainder of this work, we will restrict our attention to orthogonal

wavelet transforms.

2.2.4 Denoising Signals with Wavelet Thresholding

When the signal ,ȳ(i), is corrupted with an additive gaussian noise, w(i), we would like to

minimize the effect of noise in the noisy observed signal, y(i).

The basic steps to denoise a signal with a Wavelet-based method are as follows:

1. Take samples (y(1), y(2), ..., y(N)) from the observed signal.

2. Compute the discrete wavelet transform of the observed noisy samples, θ(i) = θ̄(i) +

v(i).

3. Apply a threshold or shrinkage procedure on the wavelet coefficients to find the best

estimation of noiseless wavelet coefficients, θ̂(i). In this thesis we focus on hard and

soft threshold methods.

4. Take the inverse wavelet transform of the processed coefficients to get the denoised

signal.
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2.3 Hard Thresholding

Hard thresholding with threshold T is defined as follows.

ψT (θ) = x.1{|θ| > T} (2.14)

which can be written as follows for each coefficient.

θ̂T (i) =

{
0 if θ(i) < T,

θ(i) if otherwise.
(2.15)

Hard thresholding is a “keep or kill” procedure which keepsm and kills N−m coefficients,

where N is the number of wavelet coefficients. The transfer function of the Hard thresholding

is shown in Figure 2.3.

Figure 2.3: Hard Thresholding transfer function.

The only thresholding method which uses hard thresholding is Universal thresholding

method [23]. Although Minimum Noiseless Description Length (MNDL) denoising [15] also

uses hard thresholding, we introduce it in MSE estimation section, since it is basically an

MSE estimation algorithm.

2.3.1 Universal Threshold

Donoho and Johnstone in [6] proposed a “Universal threshold”. This threshold value is

applicable for sparse signals (Besov space) and in particular for the piecewise polynomial
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signals in which most of the energy of signal is concentrated in a few number of large wavelet

coefficients.

Universal threshold is based on the theorem proved in [23]. This theorem says that if z be

a sample from distribution N(0, In), then

πn ≡ Prob{||z||l∞n ≤
√
2 logN} → 1 as n→ ∞ (2.16)

where N is the number of the wavelet coefficients of the samples. This theorem implies that

for the i.i.d Gaussian white noise, in the limit the noise is almost surely bounded by the

threshold λ = σω
√
2 log n. An advantage of this threshold is that it is easy to compute.

The only parameter in this threshold is the noise variance. In [6] median estimator in high

frequency subband is proposed by Donoho and Johnstone to estimate the noise variance.

σ̂MAD =
Median(|θ|)

0.6745
, θ ∈ subband HH1 (2.17)

this method is called Median Absolute Deviation (MAD) estimate and has become the

standard for noise variance estimation [18]. In [24] some examples, especially with large

data sets, are given in which σω is over estimated and the Universal threshold makes the

signal over-smooth by removing too many coefficients. In the given examples there are

significant high frequency coefficients in the signal. Thus, the estimated noise variance using

MAD is very large.

2.4 Soft Thresholding

Although hard threshold removes the noise effectively, it makes artifacts as a result of the

Gibbs oscillation near discontinuities. An improvement over the the wavelet hard threshold-

ing is the wavelet soft thresholding scheme.

Soft thresholding with threshold T is defined as follows.

ηT (θ) = θ̂T = sign(θ)max(0, |θ| − T ) (2.18)
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Soft thresholding, shrinks coefficients above the threshold value. While, hard thresholding

may seem to be natural but the continuity of soft thresholding has some advantages. For

example, some of the visual affects made by hard thresholding are decreased by using soft

thresholding. Soft thresholding transfer function is shown in Figure 2.4. The most important

Figure 2.4: Soft Thresholding transfer function.

wavelet thresholding method using soft threshold are, VisuShrink [6], SureShrink [8], and

BayesShrink [10]. In addition here we introduce Noise Invalidation in Soft Thresholding

(NIST) as well [16, 25].

2.4.1 VisuShrink

VisuShrink [6] uses Universal threshold in soft thresholding to remove the noise. For signals

with large number of elements such as images, VisuShrink yields an oversmoothed estimate

of the noiseless signal, an example can be seen in figure 2.5. It is because the Universal

Threshold (UT) is derived in the constraint that with high probability the estimate should be

at least as smooth as the signal. Thus, the UT tends to be high for signals with high number

of elements. Therefore, this method is not working well for the signals with discontinuity.
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Figure 2.5: (A) Wavelet coefficients of the noiseless signal, (B) Wavelet transform of the noisy
signal with SNR of 10 and length of 2048, (C) Thresholded coefficients by VisuShrink.

2.4.2 SureShrink

In [8] the idea behind the universal threshold and VisuShrink is extended to a level-dependent

thresholding method called SureShrink. Let ȳ = {ȳi, i = 1, ..., d)} be a vector of length of

d, and y = {yi, i = 1, ..., d} be the observations with distribution of N(ȳ, σω). SureShrink

minimizes the Steien’s unbiased Risk Estimator (SURE) which is a method for estimating

the error ||ŷ−y||22 in an unbiased way, ŷ is the estimation of ȳ using soft thresholding. SURE

for a threshold t and observed coefficients y is defined as follows

SURE(t; y) = d− 2×#{i : |yi| < t}+
d∑

i=1

min(|yi|, t)2 (2.19)

To find the threshold t the SURE will be minimized.

t∗ = argmin
t
SURE(t; y) (2.20)

SureShrink has a good performance in extreme sparse cases. To make it more useful in the

other cases as well, a hybrid method is proposed [8]. The idea behind the Hybrid method

is that in each subband SURE is applied unless it is determined that the coefficients at the

subband are negligible, in which case a Universal threshold is applied. Let η be the soft
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thresholding operator, tUT be the Universal threshold and tSURE be the SURE threshold

value, then the Hybrid method can be formulated as follows,

θ̂hybrid(i) =

{
η(tUT ; θ(i)) if s2d ≤ γd,

η(tSURE; θ(i)) if otherwise.
(2.21)

where

s2d =

∑
i(x

2
i − 1)

d
γd =

log
3
2
2 (d)√
d

(2.22)

and d is number of coefficients in the subband.

2.4.3 BayesShrink

Chang et al. in [10] proposed a method to minimize the Bayes Risk (expected value of the

mean squared error), which is given by

τ(T ) = E(ŷ − ȳ)2 = EȳEy|ȳ(ŷ − ȳ)2 (2.23)

in which ŷ = ηT (y), y|ȳ ∼ N(ȳ, σω) and ȳ follows the General Gaussian Distribution (GGD),

Ȳ ∼ GGσȳ ,β. GGD can be shown as

GGσȳ ,β = C(σȳ, β) exp−[α(σȳ, β)|y|]β, (2.24)

α(σȳ, β) = σ−1
ȳ [

Γ( 3
β
)

Γ( 1
β
)
]
1
2

and

C(σȳ, β) =
β.α(σȲ , β)

2Γ( 1
β
)

in which Γ(x) is the Gamma function and is defined as Γ(x) =
∫∞
0
e−uut−1du. Thus, to find

the optimal threshold T ∗ the Bayesian Risk should be minimized. The threshold found in

[10] is a function of σȳ and σw.

T ∗(σȳ, σw) = argmin
T
τ(T ) → TBS(σȳ) =

σ2
ω

σȳ
(2.25)

where σ2
ω is the noise variance and is estimated using MAD given in (2.17). σ2

ȳ is the variance

of the noiseless signal which can be estimated from σ2
y = σ2

ȳ + σ̂2
ω.
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In BayesShrink, TB

σω
, the normalized threshold value, is inversely proportional to σȳ and

proportional to σω. When σω

σȳ
� 1, the signal is much stronger than the noise, TB

σω
is chosen

to be small to keep most of the coefficients; when σω

σȳ
� 1, the noise is dominant so the

normalized threshold is chosen to be large to remove most of the coefficients.

2.4.4 Noise Invalidation in Soft Thresholding (NIST)

In most of the proposed denoising methods, a prior distribution is assumed for noiseless

signal and based on it a shrinkage or thresholding algorithm is designed to estimate the

noiseless signal. Nikvand and Beheshti in [16] proposed a denoising method based on soft

thresholding which has a different point of view to the denoising problem. In this method

instead of modeling the noiseless signal which is not available, a signature is provided for

the noise and that signature is used to validate if the behavior of the coefficients is similar

to noise or not.

The signature proposed in [16] is sorted absolute value of the Gaussian noise coefficients,

Γm. If γm be a sample of Γm, it can be shown by:

γm = |θsort[m]| (2.26)

where θsort is the set of ascending sorted version of coefficients. Using this notation, in the

denoising process NIST tries to minimize α[m] which is:

α[m] =
γm − E(Γm)

λ
√
var(Γm)

(2.27)

Consequently, the number of kept coefficients is m∗ and N −m∗ is the number of coefficients

following the noise behavior, where N is the number of all coefficients. The number of kept

coefficients can be found by:

m∗ = N − argmin
m

(α[m] ≥ 1) (2.28)

removed coefficients are the smallest N −m∗ coefficients.
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2.5 Bayesian Shrinkage Methods

There are other wavelet shrinkage methods which are using shrinkage functions to decrease

the effect of noise in the coefficients. Most of these algorithms are based on Bayesian esti-

mators. Since this group are not using any thresholding method, they are out of our focus in

the thesis. To become familiar with them, we just briefly introduce some of these methods.

In Bayesian wavelet shrinkage methods, a prior probability distribution is assumed for all

the wavelet coefficients. The difference between the proposed methods is specially in this

prior distribution. In [26], the assumed prior is a mixture of two Gaussian distributions,

dj,k|πj,k ∼ (1− πj,k)N(0, c2jτ
2
j ) + πj,kN(0, τ 2j ) (2.29)

where j = 0, ..., J − 1, k = 0, ..., 2j − 1 and J is the level of decomposition in wavelet

transform. In [27], the following prior is used,

dj,k ∼ (1− πj,k)N(0, τ 2j ) + πj,kδ(0) (2.30)

in which πj,k is the probability that the coefficient is zero which has a Bernoulli distribution,

P (πj,k = 0) = 1 − P (πj,k = 1) = pj. In [27], the shrinkage function is calculated by finding

the posterior median of the coefficients while in [26] the posterior mean is used. There are

two main difficulties in these Bayesian methods: 1) difficulty in estimating the parameters

and 2) inaccuracy caused by modelling each coefficient individually which fails to model the

correlation between the wavelet coefficients.

In [28, 29], the first difficulty is approached by using simpler models for wavelet coefficients.

To handle the second difficulty, Gaussian and non-Gaussian mixture densities are used in

combination of Hidden Markov Models (HMM) and Hidden Markov Trees (HMT) to model

the dependencies of the coefficients [22, 30, 31].

2.6 MSE Estimation in Hard Thresholding

MSE is one of the tools that can be used to evaluate the performance of the denoising

methods. In almost all the parameter estimation problems we try to minimize the MSE.
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However, as it is shown in (2.6), to calculate MSE, noiseless data must be available. Since

we do not have access to the noiseless data, to minimize the MSE an MSE estimation and

Minimization algorithm should be used.

In theory it is not difficult to minimize the MSE. For example it is well known that the

posterior mean, E(y|ȳ), is an MSE minimizing method. However, in practical problems the

complexity of the posterior mean is very high. Thus, different methods are proposed to find

the minimum MSE (MMSE) with a computationally efficient algorithm such as Maximum a

Posterior (MAP). Using the suboptimal solutions, we need to have a criterion to be able to

compare the MSE of the method used in practice with the MMSE. Unfortunately, it is very

hard to compute the the MMSE in many cases. To overcome this problem some methods

are proposed to find bounds for MMSE in different estimation problems to be used behalf

of the actual MMSE.

In [32] a lower bound is provided for error estimation of diffusion filters which is based on

covariance inequality and the bound proposed in [33, 34] and Cramer-Rao bound [35, 36].

Other types of bounds are proposed in [37, 38, 39] which are based on the bounds proposed in

[40] to estimate an unknown parameter α form the observed signal, r(t) = s(t, α)n(t) where

s(t) is a known signal used for communication, (i.e. pulse-frequency modulation (PFM)).

However, all of the available methods are working in particular conditions and applications.

MSE estimation in wavelet denoising methods is addressed only in Minimum Noiseless

Data Length (MNDL) [15]. MNDL is a best basis selection algorithm which provides upper

and lower bounds for MSE in general. However, MNDL can be considered as an MSE

estimator in especial case when noise variance, σ2
w, is known and a kill and keep denoising

process like hard threshold is used.

In MSE estimation of denoising methods, unknown parameter is the noiseless data, ȳ, which

is corrupted by an additive white Gaussian noise w and the unknown parameter must be

estimated with the known noisy data, y. The relationship between the known and unknown

parameters are given in (2.1). The observed noisy data is projected to orthogonal Wavelet

bases. The relationship between the associated coefficients is given in (2.4).
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As it can be seen in figure 2.3, hard threshold method keeps the m largest coefficients

and kills the remaining N −m wavelet coefficients less than the threshold value. Thus, we

can divide the wavelet coefficients into two parts: 1) coefficients killed in hard thresholding,

and 2) kept coefficients [15]. These two groups have different effects on error (MSE).

If we denote the noiseless coefficient corresponded to removed coefficients by

∆T =

 θ̄(m+ 1)
...

θ̄(N)

 (2.31)

with length of N −m and coefficients corresponding to the kept ones by

θ̄T =

 θ̄(1)
...

θ̄(m)

 (2.32)

with length of m. The noiseless coefficients can be shown by:

θ̄ =

 θ̄T

∆T

 (2.33)

Let us denote W as the wavelet transform matrix, using this notation we have θ̄ = Wȳ.

Thus, yN = W−1θ̄ + wN and since we are using orthonormal wavelet transform W−1 = W ′

where W ′ is transposed of W . Similarly, W ′ can be divided into two parts:

W ′ =
[
AT BT

]
(2.34)

In which AT is the part of the matrix which associates the kept coefficients and BT is

corresponding to the removed coefficients. Using these notations we have:

yN =
[
AT BT

]  θ̄T

∆T

+ wN (2.35)

in which w is white Gaussian noise. Consequently, the estimated coefficients vector in hard

thresholding is as follows.

θ̂T,H =

 A′
Ty

N

0(N−m×1)

 =

 θ̄T + A′
Tw

N

0(N−m×1)

 (2.36)
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Using this equation, the reconstruction error would be:

zT,H =
1

N
||θ̄ − θ̂T,H ||22 =

1

N
||A′

Tw
N ||22 +

1

N
||∆T ||22 (2.37)

Note that A′
Tw represents the first m elements of the projected noise, v = W × w. As a

result, we have the following equation for the first term in (2.37),

1

N
||A′

Tw
N ||22 =

1

N

m∑
i=1

v2(i) (2.38)

and since v has a Gaussian distribution, this is a sample of an mth order Chi-square distri-

bution. Therefore, the reconstruction error in hard thresholding is a sample of a chi-square

random variable with the following mean and variance:

MSEH = E(ZT,H) =
m

N
σ2
w +

1

N
||∆T ||22 (2.39)

var(ZT,H) =
2m

N2
(σ2

w)
2. (2.40)

In the next step a lower and an upper probabilistic bound for ||∆T ||22 are provided [15]. To

find these bounds data error, xT,H , is used:

xT,H =
1

N
||yN − ŷT ||22 =

1

N
||θ − θ̂T ||22 (2.41)

Similar to ZT,H , it is shown in [15] that xT,H follows Chi-Square distribution with the fol-

lowing mean and variance:

E(XT,H) = (1− m

N
)σ2

w +
1

N
||∆T ||22 (2.42)

var(XT,H) =
2

N
(1− m

N
)(σ2

w)
2 +

4σ2
w

N2
||∆T ||22 (2.43)

To find the bounds, the sorted absolute value of the noisy wavelet coefficients are used as

threshold values, T . For each T , m represents the number of the kept nonzero coefficients.

Thus, for each threshold value xT,H can be calculated and using the value of xT,H , ∆T is

estimated.

Finally, ZT,H is bounded to the following upper and lower bounds:
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ZT,H(φ(β), y, φ(α)) =
m

N
σ2
w + UT,H(y, α) + β

√
2m

N
σ2
w (2.44)

ZT,H(φ(β), y, φ(α)) =
m

N
σ2
w + LT,H(y, α)− β

√
2m

N
σ2
w (2.45)

where

UT,H(y, φ(α)) = xT,H −mw +
2α2σ2

w

N
+KT (α) (2.46)

LT,H(y, φ(α)) = xT,H −mw +
2α2σ2

w

N
−KT (α)

and KT is,

KT (α) = 2α
σw√
N

√
α2σ2

W

N
+ xT,H − 1

2
mw (2.47)

mw = (1− m

N
)σ2

W (2.48)

in these equations φ(α) =
∫ α

−α
1√
2π
e−x2/2dx and φ(β) =

∫ β

−β
1√
2π
e−x2/2dx provide confidence

interval for xT and zT around their mean value using Central Limit Theorem (CLT).

Pr{|ZT,H − E(ZT,H)| ≤ β
√
varZT,H} = φ(β) (2.49)

Pr{|XT,H − E(XT,H)| ≤ α
√
varXT,H} = φ(α) (2.50)

It is shown in [15] that the position of minimum in the Bounds is very close to the minimum

of ZT,H . Thus, absolute value of the coefficient at that position can be chosen as the threshold

value in hard threshold to find the best estimation of noiseless data with minimum MSE.

2.7 Concluding Remarks

In this chapter we provided an overview of wavelet transform and one of the most current ar-

eas in statistical signal processing called Wavelet Shrinkage. Some pioneer wavelet denoising

and shrinking methods were introduced. The common fact about the introduced methods is

that, all of them are using the sparsity property of the wavelet transform which is applicable

for signals in Besov space such as piecewise polynomial functions. Some of the introduced

algorithms use extra assumptions, like BayesShrink, which assumes a heavy tailed GGD
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distribution for wavelet coefficients. Some of them are proposed for more general cases such

as MNDL based and NIST denoising which are not using any special assumption about the

signal.

The methods were presented in three groups: 1) Hard Thresholding, 2) Soft Thresholding,

and 3) MSE estimation methods. Universal Threshold was the only methods in hard thresh-

olding category. Soft Thresholding methods introduced here were: VisuShrink, SureShrink,

BayesShrink and NIST. The third category, MSE estimation methods, only contained a

special case of Minimum Noiseless Data Length (MNDL) method. MNDL can be used to

estimate the MSE of denoising methods which are using hard threshold.

Additional denoising methods were introduced in section 2.5, which are using nonlinear

shrinkage functions to estimate the denoise signal without providing any threshold value.

Since in this thesis we focus on the methods that kill some coefficients and keep the re-

maining part, including masking and thresholding, these additional methods are out of our

focus.



Chapter 3

MSE Estimation in Soft Thresholding
and MSE EstiMation (MSEEM)
Denoising

A criterion is needed to compare the results of a parameter estimator, for example denoising

defined in (2.1) and (2.4). One of the best know criteria is MSE. The MSE (2.6) is dependent

on the unknown parameters. In Section 2.6, we reviewed an MSE estimation algorithm that

is useful in hard threshold denoising applications. The introduced method is a special case

of MNDL in which noise variance is known and fixed. Here we extend the use of this MSE

estimate method to be used in soft threshold denoising methods.

3.1 Reconstruction Error and Data Error in Soft Thresh-

olding

MSE (2.6) is mean value of the reconstruction error. To estimate MSE in soft thresholding

methods, we must be able to estimate zT . Here, we introduce a method to estimate zT in soft

thresholding methods. Similar to the hard thresholding we divide the noiseless coefficients

(θ̄) and wavelet matrix (W ) into two parts which are shown in (2.33) and (2.34). Using these

notations, the noisy data can be calculated from (2.35).

In Soft Threshold, given in (2.18), the coefficients smaller than the threshold value, T , are

mapped to zero and the larger coefficients are shrinked by T . Consequently, the noiseless

25



26
estimated coefficients are as follows.

θ̂T,S =

 A′
Ty

N − T sgn(A′
Ty

N)

0(N−m×1)

 (3.1)

=

 θ̄T + A′
Tw

N − T sgn(A′
Ty

N)

0(N−m×1)

 (3.2)

In which the ∆T part, which contains the coefficients smaller than T , are removed. The re-

maining part is θ̄T corrupted with additive Gaussian noise coefficients, A′
Tw

N , and decreased

by the threshold value, T . Thus, the reconstruction error in this case is:

zT,S =
1

N
||θ̄ − θ̂T,S||22 =

1

N
||A′

Tw
N − T sgn(A′

Ty
N)||22 +

1

N
||∆T ||22 (3.3)

Since A′
Tw

N contains the first m 1 elements of the projected noise, the reconstruction

error in (3.3) is:

zT,S =
1

N

m∑
i=1

(v(i) + e(i))2 +
1

N
||∆T ||22 (3.4)

in which v(i)s are noise wavelet coefficients and for e(i) we have:

m∑
i=1

e2(i) = ||T sgn(A′
Ty

N)||22 = m× T 2 (3.5)

A sum of form
∑m

i=1(v(i) + e(i))2 is a noncentral chi-square of order m with mean and

variance

E(
m∑
i=1

(v(i) + e(i))2) = mσ2
w +

m∑
i=1

e2(i) = mσ2
w +mT 2 (3.6)

var(
m∑
i=1

(v(i) + e(i))2) = 2m(σ2
w)

2 + 4σ2
wmT

2 (3.7)

Using (3.5) and (3.6) the mean and variance of zT,S are as follows:

1number of kept coefficients in soft thresholding
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MSES = E(ZT,S) =
m

N
(σ2

w +mT 2) +
1

N
||∆T ||22 (3.8)

var(ZT,S) =
2m

N2
(σ2

w)
2 +

4m

N2
(σ2

wT
2). (3.9)

As it can be seen in (3.8) and (3.9), the mean and variance of zT,S are only functions

of the data length, the threshold value, the additive noise variance, and 1
N
||∆T ||22. The

threshold value and data length are available. The noise variance is needed in majority of

the existing denoising approaches and methods such as median absolute deviation (MAD)

are used for estimating this value. The main challenge here is to estimate 1
N
||∆T ||22 by only

using the observed noisy data. To provide an estimate we use the method which is proposed

in [15]. The procedure is as follows: The absolute value of the noisy wavelet coefficients are

used as the threshold values. At each iteration one of the threshold values is used in Soft

thresholding method to estimate the noiseless wavelet coefficients. Then, using the same

threshold value to find its data error, given in (2.41), we are able to find the bounds.

xT,H is the distance between the coefficients of the observed noisy data and coefficients of a

hard thresholded version of the same data. Using (2.36), this error can be written as follows,

xT,H =
1

N
||
[

0(m×1)

∆T +B′
Tw

N

]
||22, (3.10)

Since B′
Tw

N contains the smallest N−m 2 elements of the projected noise, the data error

in (3.10) is:

xT,H =
1

N

N∑
i=m+1

(v(i))2 +
1

N
||∆T ||22 (3.11)

A sum of form
∑N

i=m+1(v(i))
2 is a chi-square of order N −m with mean and variance

E(
N∑

i=m+1

(v(i))2) = (N −m)σ2
w (3.12)

var(
N∑

i=m+1

(v(i))2) = 2(N −m)(σ2
w)

2 (3.13)

2number of removed coefficients in soft thresholding
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Using (3.11) and (3.12) the mean and variance of xT,H are as follows:

E(XT,H) = (1− m

N
)σ2

w +
1

N
||∆T ||22 (3.14)

var(XT,H) =
2

N
(1− m

N
)(σ2

w)
2 +

4σ2
w

N2
||∆T ||22. (3.15)

Consequently, from (3.14) we can estimate 1
N
||∆T ||22 by:

1

N
||∆T ||22 ≈ xT,H − (1− m

N
σ2
w) (3.16)

or more accurately, we can find probabilistic bounds for 1
N
||∆T ||22 using Central Limit The-

orem (CLT) applied on XT,H . From CLT and using (3.14) and (3.15) we have the following

equations,

Pr{|XT,H − E(XT,H)| ≤ α
√
var(XT,H)} = φ(α) (3.17)

where φ(α) is the Cumulative Density Function (CDF) of Gaussian distribution. Before

starting, let us denote mw as (1 − m
N
), x̄T,H as xT,H − mwσ

2
w, mδ as 1

N
||∆T ||22, and vw as

2
N
(1− m

N
)σ4

w.

Using these notations and (3.17):

mδ − α

√
4σ2

w

N
mδ + vw ≤ x̄T,H ≤ mδ + α

√
4σ2

w

N
mδ + vw (3.18)

From this equation we can find the lower and the upper bound of mδ = 1
N
||∆T ||22. To find

the lower bound, x̄T,H − mδ ≤ α
√

4σ2
w

N
mδ + vw and to find the upper bound mδ − x̄T,H ≥

α
√

4σ2
w

N
mδ + vw should be solved. Thus, we can find the bounds by solving:

(x̄T,H −mδ)
2 = α2(

4σ2
w

N
mδ + vw) (3.19)

which gives the following upper, UT,S, and lower, LT,S, bounds:

UT,S(φ(α)) = xT,H −mw +
2α2σ2

w

N
+KT (α) (3.20)

LT,S(φ(α)) = min{0, xT,H −mw +
2α2σ2

w

N
−KT (α)} (3.21)
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and KT is given in equation (2.47). The important thing here is how to select α. Selected α

should satisfy the following condition:

α ≥ N√
2(N −m)

(
1− m

N
− xT,H

σ2
w

)
(3.22)

to be able to solve the equation in (3.19).

3.2 Probabilistic Bounds for MSE in Soft Thresholding

The final step is to find the bounds of MSE which is the mean of ZT . Using (3.8) and the

bounds provided for ||∆T ||22 in (3.20) and (3.21) we have the following bounds for MSE in

soft thresholding, MSES.

m

N
(σ2

w +mT 2) + LT,S(φ(α)) ≤MSES ≤ m

N
(σ2

w +mT 2) + UT,S(φ(α)) (3.23)

3.3 MSE EstiMation (MSEEM) Thresholding

The proposed method can be used as a denoising method as well. It provides an upper

bound for MSE which can be considered as the worst case error. The threshold value that

makes the upper bound minimum, can be used as an estimation for the best threshold value

that minimizes the worst case MSE.

TMSEEM = argT min{m
N
(σ2

w +mT 2) + UT,S(φ(α))} (3.24)

Since we compare the noisy coefficients with the threshold value to keep or remove them,

the threshold values can be selected from the noisy wavelet coefficients. Thus, we use the

absolute value of the wavelet coefficients in soft threshold and find the estimated MSE for

each threshold. The threshold value that minimizes the MSE will be chosen as the best

threshold value.
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3.4 Simulation Results

In this section we provide examples of MSE estimation for soft thresholding methods. In all

these experiments we set the confidence probability of our estimations to be p = 0.9. The

estimates are the probabilistic worse case estimates, that is the provided upper bound in

(3.23). The test signals are Blocks, Bumps, QuadChirp and Mishmash introduced in [8] that

cover a range of sparse and non-space signals. Length of the tested signals is 211 = 2048 and

the test is done for 100 runs. In addition a swallow-like signal which is sum of sin and cosine

waves passed through a Gaussian filter, introduced in [41] , is used to evaluate the results in

a real application. Figures 3.1 and 3.2 show the test signals.
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Figure 3.1: Signals used to test the proposed algorithm: (a) Blocks, (b) Bumps, (c) QuadChirp
and (d) MishMash.

In figure 3.3 the bounds provided by MNDL for the test signals with SNR of 5 is shown.

In this figure, φ(α) and φ(β) are 0.9. Decreasing these values will give tighter bounds which

are shown in figure 3.4 in which φ(α) and φ(β) are 0.5.

In figure 3.5 the bounds provided for Swallow-like signal is shown when SNR is 5 and
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Figure 3.2: Swallow signal used to test the proposed algorithm.

Figure 3.3: zT,S and its upper and lower bounds provided by MNDL when Soft threshold is
applied with different threshold values which are absolute value of the wavelet coefficients. The
algorithm is applied on the test signals with SNR=5 and φ(α) = φ(β) = 0.9. (a) Blocks, (b)
Bumps, (c) QuadChirp, and (d) MishMash.
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Figure 3.4: zT,S and its upper and lower bounds provided by MNDL when Soft threshold is
applied with different threshold values which are absolute value of the wavelet coefficients. The
algorithm is applied on the test signals with SNR=5 and φ(α) = φ(β) = 0.5. (a) Blocks, (b)
Bumps, (c) QuadChirp, and (d) MishMash.
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φ(α) and φ(β) are 0.9.
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Figure 3.5: zT,S bounds for Swallow-like signal when SNR is 5.

To test the performance of the algorithm to estimate the MSE in different denoising

methods which are using Soft threshold, tables 3.1 and 3.2 are given. In table 3.1, VisuShrink

is applied on the test signals and MSE of VisuShrink in 100 runs is calculated. This value

is compared with the MSE that is estimated with the proposed algorithm. The values in

the table are from the upper bound found by proposed algorithm to have the worst case

estimation. In table 3.2, SureShrink is used and its MSE is compared with the estimated

MSE in that threshold value.

As it can be seen in Tables 3.1 and 3.2, the estimated value and the real MSE are very

close which shows the strength of the proposed method in estimating MSE.

Table 3.3, compares the minimum of the upper bound found by the proposed method with

the real minimum MSE which can be reached using Soft Threshold and the MSE estimated

by the proposed method in [42]. In [42] a data-driven thresholding method based on MNDL

is proposed. Similar to MNDL, MSE estimation is used in this method to find the threshold

value that makes the MSE minimum. As it can be seen in Table 3.3 the estimated Minimum

MSE is very close to the minimum possible MSE in soft threshold. Thus, MSEEM is very

close to optimal denoising method. To test the robustness of the proposed method, Table

3.4 is given. In this table the mean and variance of the m values found by the proposed
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Table 3.1: Comparison of the real MSE of VisuShrink and the MSE estimated by the proposed
method. Top: Real MSE of VisuShrink, Bottom: Estimated MSE.

Signal SNR

0 5 10

Blocks 1.7425 1.1198 0.7334
1.8282 1.2595 0.7602

Bumps 0.7828 0.5517 0.3955
0.9676 0.6638 0.4425

QuadChirp 0.4680 0.4695 0.4704
0.5471 0.5222 0.4886

MishMash 1.4196 1.4226 1.4253
1.5475 1.5131 1.4393

swallow-like 0.0731 0.0581 0.0426
0.0755 0.0592 0.0434

Table 3.2: Comparison of the real MSE of SureShrink with the MSE that is estimated with the
proposed method. Top: Real MSE of SureShrink, Bottom: Estimated MSE.

Signal SNR

0 5 10

Blocks 7.5544 1.5737 0.1116
7.6274 1.5964 0.2117

Bumps 2.0306 0.1250 0.0732
2.0584 0.1903 0.0987

QuadChirp 0.3714 0.3654 0.3550
0.4253 0.3584 0.3562

MishMash 0.8806 0.6637 0.8848
0.8594 0.6958 0.9384

swallow-like 0.0138 0.0123 0.0105
0.0233 0.0131 0.0116
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Table 3.3: Comparison of the mimum of the upperbound of the proposed method, MSE of method
proposed in [42], and the possible minimum MSE using soft threshold. Top: MSE of denoised signal
with MSEEM, MSE of the proposed method in [42], and Bottom: Minimum possible MSE.

Signal SNR

0 5 10

Blocks 1.3641 0.6812 0.1807
1.587 0.7821 0.2289
1.3383 0.6717 0.1806

Bumps 0.5706 0.2397 0.0895
0.5829 0.2399 0.0893
0.5509 0.2335 0.0892

QuadChirp 0.2551 0.1035 0.0412
0.2612 0.1116 0.0893
0.2553 0.1021 0.0411

MishMash 0.8177 0.3730 0.1474
0.8490 0.4325 0.1828
0.8128 0.3720 0.1473

swallow-like 0.0160 0.0065 0.0027
0.0187 0.0077 0.0031
0.0159 0.0065 0.0027

method are shown in different cases. m is the position at which the minimum of the upper

bound happens. In addition to show the strength of the proposed method, the mean value

of m is compared with the optimum number of coefficients that must be kept to make the

MSE minimum. This number can be found by plotting real MSE for all the coefficients and

choose the coefficient that makes the MSE minimum.

In Table 3.5 we compare the MSE resulted from MSEEM, BayesShrink and NIST [16, 25].

NIST keeps the low frequency wavelet coefficients unchanged and applies the soft threshold

on other coefficients. To make MSEEM comparable with NIST, MSEEM is changed to work

the same. Therefore, for table 3.5 we keep the low frequency coefficients and apply MSEEM

on the remaining part. BayesShrink is completely subband dependent and finds a specific

threshold for each subband.

As it can be seen in Table 3.5, MSEEM outperforms NIST in most cases. The only

case in which NIST is working better than MSEEM is low SNR Blocks. However, since
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Table 3.4: Mean and variance of the estimated m which is the position of the minimim of the
upper bound and optimum m which makees the real MSE minimum. Top: mean of estimated m,
Middle: variance of estimated m, and Buttom: real optimum m value.

Signal SNR

0 5 10

Blocks 183.6 213.5 258.8
23.2 36.9 39.4
150 192 265

Bumps 168.9 245.6 304.1
21.1 33.5 41.3
147 201 299

QuadChirp 488.3 737.5 859.6
65.1 45.1 26.4
442 721 845

MishMash 523.8 830.0 963.6
28.8 42.9 13.6
508 831 947

Table 3.5: Comparison of MSE in MSEEM, NIST, and BayesShrink. Top: MSEEM, Middle:
NIDe, and Bottom: BayesShrink.

Signal SNR

0 5 10

Blocks 0.9295 0.3191 0.1421
5.352 0.3529 0.1397
0.596 0.2689 0.1394

Bumps 0.3582 0.1677 0.0716
0.4280 0.2015 0.0784
0.2641 0.1187 0.0526

QuadChirp 0.2661 0.1147 0.0420
0.3933 0.1436 0.0486
0.2542 0.1091 0.0410

MishMash 0.8346 0.3751 0.1271
1.2174 0.4353 0.1391
0.8300 0.3771 0.1337

swallow-like 0.0134 0.0071 0.0025
0.0196 0.0150 0.0074
0.0132 0.0035 0.0016
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BayesShrink is subband dependent, it is working better than MSEEM in almost all the cases

except MishMash.

Since MSEEM does not work very well when the number of coefficients is low, it is not

very good in subband dependent form. BayesShrink is tuned for the signals with general

Gaussian distribution. MishMash is not following GGD, so MSE of BayesShrink is higher

than MSEEM in this case.

3.5 Concluding Remarks

In this chapter we proposed an MSE estimation based on MNDL for Soft Threshold denoising

methods. An upper and a lower bound were proposed for MSE in soft thresholding denoising

cases. The estimation was compared with the actual MSE of different methods and the

simulations showed that the MSE estimates are close to the true values. Using the MSE

bound and finding the minimum of the bound which was very close to the real minimum

MSE, an MSE EstiMation (MSEEM) soft threshold denoising algorithm was proposed. MSE

of MSEEM was compared with the minimum possible MSE that can be reached by soft

threshold and it was shown that these MSEs are very close.



Chapter 4

Noise Invalidation Denoising (NIDe)

Most of the wavelet shrinkage methods are based on rejecting those wavelet coefficients that

are smaller than a certain value and keeping the remaining coefficients. Thus, the problem of

removing noise from a set of observed data is transformed into finding a proper threshold for

the data coefficients. The pioneer shrinkage methods, such as VisuShrink and SureShrink,

propose thresholds that are functions of the noise variance and the data length [6, 8]. Over

the past fifteen years, several thresholding approaches such as [8, 10, 43] have been devel-

oped. These methods provide optimum thresholds by focusing on certain properties of the

noise-free signal, and they are proposed for particular applications, mostly for the purpose

of image denoising. Unlike these approaches, the method presented in this chapter focuses

only on the properties of the additive noise. By relying on the noise statistics, the method

defines a probabilistic region of confidence for the noise coefficients. Consequently, to find

the best estimation of noiseless signal, θ̂, it validates the observed coefficients, given in (2.4),

that are out of the noise confidence region and contain noiseless dominant parts.

A similar method is provided in [16]. In this paper, Noise Invalidation in Soft Thresholding

(NIST) is proposed which uses a noise signature. The noise signature is the mean value of

the sorted absolute value of N Gaussian zero mean noise samples. Here we introduce Noise

Invalidation Denoising (NIDe) which uses an Empirical estimation of CDF of the sorted ab-

solute value of the noise samples to define the signature [25]. We show that this signature has

a finite small variance and mean which makes it an ideal signature to be used in invalidation

38
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process. NIDe is generalized version of NIST and provides the theory behind the signatures.

In addition, our presented approach is a general-purpose method that does not need to ex-

ploit any particular property of the noise-free data itself.

For a general-purpose threshold, instead of concentrating on the properties of the remaining

coefficients after denoising, it is logical to focus on the dismissed coefficients. These coeffi-

cients are discarded because they are attributed to the noise or very noisy coefficients. It is

rational to equivalently state that these coefficients are discarded since they behave similarly

to a set of coefficients that can be generated by an associated Gaussian distribution of the

additive noise. In the following section we present one of the signatures of a set that is

generated by this Gaussian distribution.

The provided denoising method has two major differences from the existing methods: 1) it

focuses on the removed coefficients instead of the noiseless coefficients; and 2) it uses masking

instead of hard or soft thresholding.

The Noise Invalidation Denoising method (NIDe) does not use thresholding methods. NIDe

considers a probabilistic bound around the noise signature to validate the coefficients and

removes the coefficients in the bound and keeps the coefficients out of the bound. Therefore,

it is not using any threshold value but provides a mask to keep the coefficients out of the

bound.

Wavelet denoising methods, rely heavily on the value of the additive noise variance. Our

proposed method also requires the estimate of noise variance, and we use the MAD method

for this estimation [6].

4.1 Additive Noise Signature

A general noise signature is defined as follows. Consider the additive noise random variable

V = [v1, v2, ..., vN ]
′ with zero mean and finite variance. Define the signature function for any
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value z as g(z, V ) such that the mean and variance of this function over V are finite values:

E(g(z, V )) = GE(z) (4.1)

var(g(z, V )) = Gvar(z) (4.2)

The signature for samples of a random process of length N , V N = [V1, ..., VN ]
′ , with iid

members that have the same distribution of V is defined as:

g(z, vN) =
1

N

N∑
i=1

g(z, vi) (4.3)

It follows that the expected value and variance of the signature are:

E(g(z, vN)) =
1

N

N∑
i=1

E(g(z, vi)) = GE(z) (4.4)

var(g(z, vN)) =
1

N2

N∑
i=1

var(g(z, vi)) =
1

N
Gvar(z) (4.5)

For a large data length, while the mean is a finite fixed value, the variance becomes smaller.

The use of such signatures in invalidation of the additive noise is explored with an example

in the following section.

4.1.1 Signature Example: Absolute Noise Sorting (ANS)

Consider a noise signature of following form

g(z, vi) =

{
1 if |vi| ≤ z,

0 if |vi| > z.
(4.6)

In this case, for the signature of the iid random process V N in (4.3) we have

E(g(z, Vi)) = 1× Pr(|Vi| ≤ z) + 0× Pr(|Vi| > z) = Pr(|Vi| ≤ z) = F (z) (4.7)

where F (.) is the cdf of absolute value of the additive noise. For variance we have
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E(g2(z, Vi)) = 1× Pr(|Vi| ≤ z) + 0× Pr(|Vi| > z) = F (z), (4.8)

var(g(z, Vi)) = E(g2(z, Vi))− E2(g(z, Vi)) = F (z)− F 2(z) = F (z)(1− F (z)) (4.9)

If we show the CDF of standard Gaussian distribution by φ(.),

F (z) = 2φ(
z

σ
)− 1 (4.10)

For each z, the value of g(z, vN) = m/N where m is the number of samples of vN with

absolute values smaller than z. Equivalently, when sorting vN , the mth value is the largest

vi that is smaller than z. Therefore, when sorting the vis, the index is Ng(z, vN) = m.

Figure 4.1 illustrates the effect of sorting and the role of the small variance in providing a

noise signature. The figure shows the behavior of 100 samples of Gaussian noise with unit

variance and length 2048. As the top figure shows, with a very high probability, the values

of this data are bounded between ±3σ.
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Figure 4.1: Top figure: 100 runs of a zero mean Gaussian distribution with unit variance and
length 2048. Middle: The same 100 runs of the above figure sorted based on their absolute values.
Bottom: This is the middle figure with its vertical and horizontal axes swapped (m = Ng(z, vN )).



42
However, if we sort the same data based on its absolute value in the middle figure, the

values collapse in a much denser area. Such behavior can be explained by the ANS signature

as follows. The bottom figure shows the result of swapping the horizontal and vertical axes

of the middle figure. Here the horizontal axis is z and the vertical shows 100 samples of

Ng(z, vN) where N = 2048. As it is expected, these values are around mean NF (z) with

variance F (z)(1− F (z)). This will allow us to define proper confidence regions, with a high

probability p, around the noise signature. Due to the structure of these distributions, these

regions are considerably smaller than the corresponding confidence regions of the Gaussian

distribution of the additive noise itself.
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Figure 4.2: Solid line: Mean of the noise g(z, V N ). Dashed lines are upper and lower bounds with
confidence probability 0.999997.

Therefore, for each z and for a high confidence probability p, we can find LN(z) and

UN(z) around the mean value of F (z) such that

Pr{LN(z) ≤ g(z, vN) ≤ UN(z)} = p (4.11)

For example, Figure 4.2 shows the bounds on g(z, V N) for confidence probability p =

0.999997 and with σ = 2.5.
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4.1.2 Confidence Region and Gaussian Estimate

While it is straightforward to make a table of values of the boundaries shown in Figure 4.2,

it is possible to use Gaussian estimates for the distributions of g(z, vN) for large enough

values of N as g(z, vN) in (4.3) is average of N independent variables. Using the Central

Limit Theorem for this distribution, we have

Pr{ |g(z, vN)− F (z)|

λ
√

1
N
F (z)(1− F (z))

≤ 1} ≈ erf(
λ√
2
) (4.12)

where erf(x) = 1
π

∫∞
0
e−t2dt. This estimates the boundaries in (4.11) to be

LN(z) = F (z)− λ

√
1

N
F (z)(1− F (z)) (4.13)

UN(z) = F (z) + λ

√
1

N
F (z)(1− F (z)) (4.14)

The choice of λ should be such that the probability is close to one and at the same

time the boundary is not very loose. In statistics the three-sigma rule, or empirical rule,

states that for a normal distribution, almost all values lie within three standard deviations

of the mean. For a better quality measure, the six sigma approach increases the standard

deviation to 4.5 (equivalently p = 0.999997). Consequently, we suggest choosing λ such that

3 ≤ λ ≤ 5. Interestingly, our experimental observation shows that the threshold associated

with λ = 4.5 provides the optimum threshold with respect to MSE in 90% of cases.

4.2 Noise Invalidation with Absolute Coefficient Sort-

ing (ACS)

The coefficients of our observed data is in form of θi = vi + θ̄i (2.4) which has the same

structure as the noise except its mean which is the noiseless coefficient θ̄i. If H(z, θ̄i) be

defined as

H(z, θ̄i) = φ(
z − θ̄i
σw

) + φ(
z + θ̄i
σw

)− 1 (4.15)
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From (4.7) and (4.9), mean and variance of θi will be:

E(g(z, θi)) = Pr(|vi + θ̄i| ≤ z) = Pr(−z − θ̄i ≤ vi ≤ z − θ̄i) = H(z, θ̄i) (4.16)

var(g(z, θi)) = H(z, θ̄i)(1−H(z, θ̄i)) (4.17)

Figures 4.3 and 4.4 show typical behaviors of H(z, θ̄i) for various θ̄is and change of noise

variance. Note that g(z, θi) when the mean θ̄i is zero is the same as g(z, vi). Sorting the

coefficients in this case is analogous to calculation of

g(z, θN) =
1

N

N∑
i=1

g(z, θi) (4.18)

which has the following mean and variance.

E(g(z, θN)) =
1

N

N∑
i=1

H(z, θ̄i) (4.19)

var(g(z, θN)) =
1

N2

N∑
i=1

H(z, θ̄i)(1−H(z, θ̄i)) (4.20)

Since the value of H(z, θ̄i) in (4.15) is bounded between zero and one, the variance of

this value is much less than its mean for large values of N . Therefore, a dense area will

cover the sorted data with a high probability. This area becomes distinguished from the

area covered from the sorted noise only signal as the value of z grows and as the nonzero

coefficients become effective. This performance is illustrated in Figure 4.5 which shows the

area covered by the sorted noisy data for Blocks signal when SNR is 5. The figure also shows

the behavior of the sorted noise only data. As it can be seen with probability 0.99997 there

is no overlap between the sorted noise and sorted noisy data after a certain value of z.

4.2.1 Noise Invalidation in Application

Using the noise sorting signature, it is possible to invalidate the noisy coefficients with a high

confidence. Figure 4.6 shows the application of the method. The confidence region for noise
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Figure 4.3: Expected value of g(z, θ) for various values of θ̄ when the additive noise variance is σ
= 4.
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Figure 4.4: Expected value of g(z, θ) when θ̄=15 and the noise standard deviations σ = 1, 2, 4
and 6.
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Figure 4.5: The area between the solid lines is the confidence region of sorted absolute values of
the noisy data coefficients of Blocks signal (SNR=5) with probability 0.999997. The area between
the dashed lines is the noise confidence region with probability 0.999997.

only data is available upon knowing or estimating the noise variance. As the sorted absolute

noisy data leaves the noise confidence region, it assures that the coefficients are becoming

more effective than the noisy part of the data. The best estimation of the noiseless part will

be the coefficients out of the confidency bound.

θ̂ = {θ : ∀z ∈ θ, LN(z) � g(z, θ) � UN(z)} (4.21)

which means to keep the coefficients fallen out of the bound and remove the coefficients

inside the confidence bound.

4.2.2 Colored Noise in Absolute Coefficient Sorting (ACS)

The signature of the colored noise can be defined the same as the iid case. If we denote the

autocorrelation between the zero mean Gaussian vis by Rvv(m),

g(z, vN)) =
1

N

N∑
i=1

g(z, vi) = [
1

N

1

N
· · · 1

N
]


g(z, v1)
g(z, v2)

...
g(z, vN)

 (4.22)
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Figure 4.6: Solid line is the sorted absolute values of the observed data coefficients crossing
upper bound of the noise confidence region at z = 2.6 when the observed data is noisy Blocks
signal (SNR=5). The area between the dashed lines is the noise confidence region with probability
0.999997.

For the expected value of this function we have

E(g(z, V N))) =
1

N

N∑
i=1

E(g(z, Vi)) = F (z) (4.23)

which is similar to that of the iid additive noise. However, for the variance, since the following

holds

var(g(z, V N)) = var(
1

N

N∑
i=1

g(z, Vi)) =

[
1

N

1

N
· · · 1

N
]


var(g(z, V1)) cov(g(z, V1)g(z, V2) · · · cov(g(z, V1)g(z, VN))

cov(g(z, V1)g(z, V2)) var(g(z, V2)) · · · ...
...

...
. . .

...
cov(g(z, V1)g(z, VN)) · · · · · · var(g(z, VN)))




1
N
1
N
...
1
N


we have

var(g(z, V N))) =
1

N
F (z)(1− F (z)) +

1

N2

N∑
i=1,j=1,i 6=j

cov(g(z, Vi)g(z, Vj)) (4.24)
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where elements of the second term are

cov(g(z, Vi)g(z, Vj)) =

E(g(z, Vi)(g(z, Vj))− E(g(z, Vi))E(g(z, Vj)) (4.25)

in which the second term is simply F 2(z) and the first term is Pr(|Vi| ≤ z & |Vj| ≤ z). For

the first term, the joint distribution of Vi and Vj is a Gaussian distribution with zero mean

and variance

E(

[
Vi
Vj

]
) =

[
0
0

]
, var(

[
Vi
Vj

]
) = σ2

[
1 ρij
ρij 1

]
(4.26)

where

ρij =
Rvv(i− j)

Rvv(0)
(4.27)

with Rvv(0) = σ2. The decomposition of the covariance matrix is as follows[
1 ρij
ρij 1

]
=

1

2

[
1 1
1 −1

] [
1 + ρij 0

0 1− ρij

] [
1 1
1 −1

]
(4.28)

Therefore, by the following transformation[
xi
xj

]
=

1√
2

[
1 1
1 −1

] [
vi
vj

]
(4.29)

the two xi and xj random variables are independent and with variances σ2(1 + ρij) and

σ2(1− ρij). As a result, for the first term of the covariance

E(g(z, Vi)(g(z, Vj)) = Pr(|Vi| ≤ z & |Vj| ≤ z) (4.30)

≤ Pr(|Xi| ≤
√
2z & |Xj| ≤

√
2z) (4.31)

= F (

√
2z√

1 + ρij
)F (

√
2z√

1− ρij
) (4.32)

Figure 4.7 show the area considered for the calculation of this probability.

With similar analogy, for the signal in presence of the noisy data, we have

E(g(z,ΘN))) =
1

N

N∑
i=1

H(z, θ̄i) (4.33)
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Figure 4.7: The desired area for calculation of the probabilities in (4.30) and (4.32).

where H(z, θ̄i) was defined in (4.15). For the variance of the sorted absolute value of the

noisy data, similarly (4.9) holds. Therefore, structure of the variance is similar to (4.24):

var(g(z,ΘN))) =
1

N2

N∑
i=1

(H(z, θ̄i)−H2(z, θ̄i)) +

1

N2

N∑
i=1,j=1,i6=j

cov(g(z, θi)g(z, θj)) (4.34)

For the covariance in the second term

cov(g(z,Θi)g(z,Θj)) =

E(g(z,Θi)(g(z,Θj))− E(g(z,Θi))E(g(z,Θj)) (4.35)

we use (4.33) to calculate E(g(z,Θi))E((g(z,Θj)) and have

E(g(z,Θi)(g(z,Θj)) = Pr(|Vi + θ̄i| ≤ z & |Vj + θ̄j| ≤ z)

≤ Pr(
√
2(−z − θ̄i + θ̄j

2
) ≤ Xi ≤

√
2(z − θ̄i + θ̄j

2
) (4.36)

&
√
2(−z − θ̄i − θ̄j

2
) ≤ Xj ≤

√
2(z − θ̄i − θ̄j

2
)) (4.37)

= H(

√
2z√

1 + ρij
,

θ̄i + θ̄j√
2(1 + ρij)

)H(

√
2z√

1− ρij
,

θ̄i − θ̄j√
2(1− ρij)

) (4.38)
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Thus, if the additive noise is colored, the expected value of g(z, V N) and g(z,ΘN) will remain

the same as these expected values for the white noise in (4.10) and (4.20). For the variance

of the sorted noise we have

var(g(z, V N))) =
1

N
F (z)(1− F (z)) +

1

N2

N∑
i=1,j=1,i 6=j

cov(g(z, Vi)g(z, Vj)) (4.39)

≤ 1

N
F (z)(1− F (z)) +

1

N2

N∑
i=1,j=1,i6=j

[F (
z√

1 + ρij
)F (

z√
1− ρij

)− F 2(z)] (4.40)

As the variance indicates, the wider is the autocorrelation of the noise process with itself,

the wider is the signature region of the noise and noisy data and therefore, as it is expected,

it may become more difficult to distinguish the data from the noise.

4.3 Simulation Results

We perform our denoising methods on white and colored noisy versions of six standard

signals, Blocks, Mishmash, Bumps, and QuadChirp which are the test signals introduced in

[6]. Five level decomposition with Haar wavelet is chosen for this experiment. The confidence

probability of the methods for noise invalidation region is 0.999997 and test is done for 100

runs. Figure 4.8 shows the six signals and their coefficients. As this figure confirms the

test signals represent a wide range of possible coefficient structures. For example Figure 4.9

shows the coefficient distribution of some of these signals. while signals such as Blocks have

very few nonzero coefficients and many coefficients close to zero, signals such as MishMash

have more uniformly distributed coefficients. Blocks and MishMash signals represent two

extreme structures, while QuadChirp have a combined structure of both of these signals. We

compare the proposed method with VisuShrink, SureShrink, and MSEEM which are more

general-purpose thresholding approaches. On the other hand, Sure-LET and BayesShrink

are image denoising methods that are performing well with the one dimensional signals. We
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also consider these method comparison. We compare the performance of the methods based

on their normalized mean square error (NMSE) given in (2.7).
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Figure 4.8: From top to bottom: Blocks, Bumps, HeavySin, Doppler, QuadChirp, and MishMash.
Left figures are the signals and right figures are their corresponding wavelet coefficients.

Tables 4.1 and 4.2 provide the MSE of the compared methods. The methods are compared

for a range of SNRs both in presence of white and colored noise. It is important to note that

for this number of runs, the MSEs for all the methods have very small standard deviation

that are much smaller than the MSE itself.

As Table 4.1 shows, three methods NIDe, BayesShrink and Sure-Let are comparable in

presence of additive white noise, with NIDe outperforming the other two methods for the

more sparse signals 90% of times for even a wider range of SNR including SNRs between
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Figure 4.9: Coefficient distribution for Blocks, Doppler, Quadchirp and Mishmash.

1 and 14 that are shown in the table. For the non-sparse ones such as Quad-Chirp and

Mishmash, however, Sure-let performs slightly better than the other two methods.

Figures 4.10 show the denoised versions of Blocks with these methods. As the figures

show and Table 4.1 confirms, the denoised data with NIDe and BayesShrink in presence of

a white noise are comparable while the other methods have larger MSE. Table 4.2 compares

the performance of the methods when the signals are corrupted by a colored noise. Auto-

correlation of this colored noise is depicted in Figure 4.11. This table shows the strength of

NIDe in colore noise cases in comparison with the other mentioned methods.

In presence of colored noise, NIDe does not use any whitening filter to denoise the signal.

In colored case NIDe uses the same method as it uses in white noise case and provides a noise

signature for the colored noise and uses it to validate the signal. Design of the whitening

filter, using it to whiten the signal and noise, and use of its inverse to project the signal

to the original domain increases the error. Thus, beside the strength of NIDe in denoising,

using no whitening filter is another reason that NIDe has better performance in colored noise

case.
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Figure 4.10: Dashed Blue line is the noiseless Blocks. (a) Noisy Blocks with SNR=4, (b) denoised
by VisuShrink, (c) denoised by SureShrink, (d) denoised by BayesShrink, (e) denoised by Sure-Let,
(f) denoised by NIDe.
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Figure 4.11: Autocorrelation of the colored additive noise.
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4.4 Concluding Remarks

A denoising approach based on direct invalidation of the coefficients was proposed. The

invalidation process used a signature of the additive noise in the form of a probabilistic

confidence region. The signature was defined based on the statistical properties of the

additive noise and was such that its standard deviation was much smaller than its mean.

In this work we provided one example of such signature which illustrated itself in simply

sorting the coefficients. This signature was tested by both colored and white noises and its

strength in both the cases was shown. It was shown that NIDe has a robust performance in

all the cases including colored and white noise with different SNR. When the additive noise

was white, NIDe outperformed the other mentioned methods in sparse cases. However, when

the noise was colored, NIDe outperfomred all the other mentioned methods.
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Table 4.1: Normalized Reconstruction MSE for the Thresholding Methods. For the white additive
noise. Averaged over 100 runs

Visu SURE Bayes SURE MSEEM NIDe
Shrink -LET

Blocks

SNR=1 0.168 0.657 0.111 0.124 0.091 0.066
SNR=4 0.124 0.259 0.058 0.065 0.059 0.042
SNR=8 0.086 0.032 0.026 0.027 0.028 0.020
SNR=10 0.072 0.015 0.015 0.017 0.018 0.013
SNR=14 0.048 0.007 0.007 0.007 0.011 0.005

Bumps

SNR=1 0.155 0.427 0.098 0.122 0.132 0.091
SNR=4 0.127 0.065 0.073 0.063 0.084 0.070
SNR=8 0.096 0.026 0.023 0.027 0.044 0.025
SNR=10 0.083 0.023 0.019 0.018 0.030 0.017
SNR=14 0.062 0.017 0.012 0.009 0.014 0.009

HeavySin

SNR=1 0.137 0.670 0.029 0.115 0.047 0.028
SNR=4 0.096 0.268 0.017 0.057 0.030 0.017
SNR=8 0.063 0.032 0.010 0.023 0.018 0.009
SNR=10 0.050 0.007 0.016 0.015 0.014 0.007
SNR=14 0.035 0.004 0.003 0.006 0.005 0.003

Doppler

SNR=1 0.798 0.098 0.069 0.126 0.125 0.078
SNR=4 0.659 0.085 0.085 0.067 0.087 0.076
SNR=8 0.493 0.078 0.036 0.030 0.049 0.032
SNR=10 0.424 0.076 0.029 0.020 0.036 0.024
SNR=14 0.308 0.071 0.012 0.010 0.015 0.009

QuadChirp

SNR=1 0.931 0.782 0.466 0.447 0.467 0.637
SNR=4 0.903 0.771 0.284 0.276 0.278 0.357
SNR=8 0.864 0.757 0.129 0.131 0.129 0.151
SNR=10 0.841 0.753 0.086 0.086 0.085 0.096
SNR=14 0.780 0.750 0.038 0.037 0.036 0.035

MishMash

SNR=1 0.926 0.523 0.517 0.462 0.497 0.693
SNR=4 0.906 0.430 0.318 0.286 0.306 0.374
SNR=8 0.865 0.432 0.146 0.136 0.140 0.156
SNR=10 0.836 0.623 0.095 0.089 0.090 0.099
SNR=14 0.752 0.641 0.040 0.039 0.041 0.039
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Table 4.2: Normalized Reconstruction MSE for the Thresholding Methods with the colored addi-
tive noise with autocorrelation in Figure 4.11. Averaged over 100 runs

Visu SURE Bayes SURE MSEEM NIDe
Shrink -LET

Blocks

SNR=1 0.406 0.695 0.562 6.212 0.754 0.385
SNR=4 0.212 0.334 0.286 3.107 0.572 0.210
SNR=8 0.098 0.124 0.121 1.214 0.365 0.092
SNR=10 0.063 0.074 0.079 0.753 0.151 0.060
SNR=14 0.030 0.035 0.037 0.295 0.042 0.024

Bumps

SNR=1 0.455 0.648 0.559 6.443 0.827 0.427
SNR=4 0.279 0.305 0.293 3.220 0.620 0.245
SNR=8 0.105 0.115 0.125 1.273 0.298 0.098
SNR=10 0.072 0.075 0.081 0.773 0.131 0.072
SNR=14 0.035 0.038 0.035 0.299 0.052 0.030

HeavySin

SNR=1 0.402 0.712 0.531 6.527 0.711 0.334
SNR=4 0.209 0.328 0.270 3.256 0.423 0.173
SNR=8 0.085 0.117 0.105 1.280 0.184 0.071
SNR=10 0.057 0.069 0.068 0.803 0.096 0.047
SNR=14 0.027 0.023 0.028 0.317 0.054 0.020

Doppler

SNR=1 0.446 0.399 0.569 6.431 0.850 0.401
SNR=4 0.330 0.236 0.293 3.201 0.571 0.235
SNR=8 0.231 0.138 0.127 1.207 0.317 0.110
SNR=10 0.187 0.113 0.082 0.76 0.275 0.075
SNR=14 0.133 0.089 0.037 0.038 0.167 0.030

QuadChirp

SNR=1 0.964 1.183 1.139 1.298 1.102 0.594
SNR=4 0.978 0.965 0.489 0.536 0.962 0.326
SNR=8 0.986 0.833 0.164 0.186 0.471 0.137
SNR=10 0.990 0.801 0.100 0.117 0.235 0.088
SNR=14 0.980 0.771 0.039 0.051 0.082 0.037

MishMash

SNR=1 0.974 1.186 1.205 1.246 0.821 0.607
SNR=4 0.956 0.889 0.523 0.523 0.598 0.336
SNR=8 0.961 0.727 0.174 0.180 0.240 0.142
SNR=10 0.963 0.699 0.105 0.109 0.128 0.091
SNR=14 0.963 0.675 0.042 0.041 0.071 0.031



Chapter 5

Retrieving Signal from its Noisy
Version in Digital Domain

In this chapter we focus on denoising problem in digital domain. We study the denoising

problem in digital domain in two parts. In the first part, the input is noisy continues signal

and we want to simultaneously denoise and quantize the noisy input. It is known that

uniform quantization with a dead-zone is very close to the optimum quantization [44]. In

this part, we propose a new method that generalizes the idea of dead-zone estimation to a

multi-level noise removal. The second part deals with the noisy quantized/digital signal and

we aim to find the best reconstruction levels to make the output as close as possible to the

noiseless signal. This method pioneers in denoising a noisy quantized/digital data.

When the input of the quantization system is noisy, quantization of that noisy signal is

wasting the resources to quantize noise. In the first part of this chapter we study this

problem and propose a solution for it. To solve the noisy signal quantization problem, the

input signal is denoised and quantized at the same time by a Two Stage Denoising (TSD)

method. In the first stage, TSD detects the noise dominant part of the input signal and

uses a multistage denoising/quantizing method based on MNDL to simultaneously denoise

and quantize the noise dominant part. In the second stage the noiseless dominant part is

quantized using one of the existing quantization methods [45].

In the second part, the input is a quantized/digital signal. Here we propose a method to find

the best levels to reconstruct the noisy quantized signal. It is shown that in high SNR cases,

57
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the reconstruction levels are the same as quantization levels. However, when the input SNR

is low, since the statistical properties of the signal is changed, the algorithm finds the levels

in a way to minimize the reconstruction error. In this case, the reconstruction levels found

by the proposed method could be different from the original levels either in number of levels

or in amplitude.

Both of the proposed algorithms in this chapter are using MNDL as their core. Thus, in the

next section MNDL is briefly introduced.

5.1 Minimum Noiseless Description Length(MNDL)

We use the MNDL method for the purpose of denoising. MNDL method chooses the optimum

number of coefficients such that the noiseless code length is minimized [15, 46]. If use a

threshold value T to keep the first m largest absolute values of the coefficients and set the

rest to zero, we denote the result by θT . It is shown in [15] that the description length of

the noiseless (desired) data with this θT is

DL(θT , θ̄) =
− log(f(θi|θ̄i))

N
= log

√
2πσ2

w +
log e

2σ2
wN

zT (5.1)

where zT = ||θ−θT ||22 is the reconstruction error that is the error between the noiseless co-

efficients and θT . Since the additive noise is zero mean Gaussian, the conditional probability

density function of the ith elements of the noisy coefficient is,

f(θi|θ̄i) =
1√
2πσw

e
−(θi−θ̄i)

2

2σ2
w (5.2)

The MNDL approach provides a probabilistic worst-case estimate for this error as a

function of m, D̃L and chooses the m∗ for which the DL is minimized:

θm∗ = argθT min D̃L((θT , θ̄)) (5.3)

It can be seen in (5.1), when noise variance σ2
w is known and fixed, minimizing data

length is equivalent to minimize zT . Thus (5.3) can be written as:
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θm∗ = argθT min zT (θ̄, θT ) (5.4)

The result of this stage of denoising keepsm∗ first largest absolute values of the coefficients

and set the rest of the coefficients to zero.

5.2 Quantization of Noisy Signals

In real applications, the signals are usually corrupted with noise. Using a lossless compression

method for a noisy data is not efficient, as the method uses the resources for compression of

the noise along with the data. Therefore, when the input is a noisy signal, lossy compression

methods are used. One of the most important stages in lossy compressions is quantization.

Here we propose an effective quantization method for noisy signals.

In this problem the input signal is a noisy one shown in (2.1) and (2.4). The algorithm should

find a quantized signal which is close to the noiseless signal as much as possible. Thus in

this problem, the noiseless estimation (ŷ) is a quantized signal. To compress the wavelet

transform of the image, it may sound logical to first denoise the wavelet coefficients with the

available denoising techniques, and then compress the data with the available compression

methods. However, the wavelet thresholding methods (most suitable for denoising in this

scenario) can not denoise the image efficiently and a considerable amount of the additive

noise is still remained in the image after this type of thresholding. In our proposed method,

the denoising removes considerable amount of the noise effects through quantization. Using

MNDL approach [15], a multilevel denoising approach provides a quantization value at each

stage for the coefficients with noise dominant components. The first stage stops produc-

ing new quantization levels once it recognizes that the remaining coefficients are noiseless

dominant. This realization is though reconstruction error estimation at each level of the

denoising. In the second stage, we can use one of the existing compression approaches such

as the uniform one to quantize the remaining coefficients that have large absolute values and

are the noiseless dominant coefficients.

The main advantage of the proposed method is in simultaneous denoising and quanti-
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zation. Our simulation results show that this method is superior to the separate denoising

and compression not only by having a better output SNR but also by providing a much

more compressed version of the data (less number of quantization levels in low SNRs). To

show this property, a procedure is proposed to compress the hyperspectral image using the

proposed quantization method, 3D-Wavelet transform and Set Partitioning in Hierarchical

Trees (SPIHT).

5.2.1 Proposed Method: Two-Stage Quantizer (TSQ)

Figure 5.1 illustrates the performance of the two-stage quantizer. In this figure noisy and

noiseless coefficients are depicted. As it can be seen, the noisy coefficients can be divided

into two parts. The small coefficients which are highly affected by noise which are called

noise dominant and the second part which are the larger coefficients are not changed with

noise. The second part is noiseless dominant part.

At this stage, TSQ denoises the noise dominant coefficients. The denoising is accomplished

by a multi-stage quantization. The denoising will automatically halt once it recognizes that

the remaining coefficients are noiseless dominant. Next, the noiseless dominant coefficients

are quantized by one of the existing quantization approaches.

Quantization Stage 1: Denoising by Multiple Stage Quantization

Multi-stage Denoising: We expand the application of MNDL for further denoising as

follows. The MNDL step has kept m∗ largest absolute value coefficients. Lets denote Q1 as

the kept coefficient with smallest absolute. Therefore, all the coefficients smaller than Q1

are quantized to level zero. Using this notation, (5.4) can be used in the following form to

find the first quantization levels.

Q1 = argθT min zT (θ̄, θT ) (5.5)

After the first level, there are other small coefficients left which are affected by noise but if

we map them two zero it causes a big amount of error. Consequently, we should check if
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Figure 5.1: Noisy and noiseless coefficients zoomed in two distinct areas: (1) region of coefficients
with small absolute values (noise dominant) that are quantized in the first stage; (b) region of
coefficients with large absolute values (noiseless dominant) that are quantized in the second stage.

there are any coefficients larger than Q1 that contain considerable amount of noise and can

be quantized to the level of Q1. To answer this question we use MNDL for further denoising

as follows: For the second stage of the denoising, we search for value Q2 among the kept

coefficients, that is larger than Q1, such that mapping all the coefficients between Q1 and

Q2 to Q1 minimizes the DL or equivalently zT . Equation (5.4) can be used for this level as

follows:

Q2 = argθT,Q1
min zT (θ̄, θT,Q1) (5.6)

where θT,Q1 is defined as:

θT,Q1(i) =


0 if |θ(i)| < Q1,

sgn(θi)Q1 if Q1 < |θ(i)| < T,

θ(i) if otherwise.

(5.7)

This stage denoises the data further as it makes the DL and therefore the reconstruction

error smaller. Having smaller error means that the output of the second stage MNDL
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processing is closer to the noiseless version of the data and therefore the data has been further

denoised. Consequently, the second stage has further quantized the data by denoising. Using

this process the jth quantization level is calculated by:

Qj = argθT,Qj−1
min zT (θ̄, θT,Qj−1

) (5.8)

in which θ̄T,Qj−1
is defined as follows:

θT,Qj−1
(i) =


θT,Qj−2

(i) if |θ(i)| < Qj−1,

sgn(θi)Qj−1 if Qj−1 < |θ(i)| < T,

θ(i) if otherwise.

(5.9)

This process continues until the output of the MNDL denoising is the same as the input

and in order to minimize the MDNL, almost all the input coefficients are kept at levelM . On

the other word, once we get to the quantization level QM , the MNDL process stops providing

any further levels larger than QM by finding no minimum value in the bound which means

all the remaining coefficients are important.

This indicates that the reconstruction error can not any further be minimized by de-

noising. Thus, the remaining undenoised coefficients at this stage have noiseless dominant

components and no further denoising is needed.

This part can either be used as a denoised version of the input signal on itself or it can be

used as the input of the second stage for further quantization. In simulation part both of

the cases are tested.

Quantization Stage 2: Noiseless Dominant Coefficient Quantization

We have denoted the last quantization level found by the multi-stage MNDL denoising pro-

cess as QM . From the previous stage, it is known that the kept coefficients, that have larger

absolute value than QM , are noiseless dominant. Thus, for this stage of quantization we

can use one of the conventional methods of quantization such as high rate uniform scalar

quantizer, since it is near optimal [44].
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5.2.2 Experimental Results

In this part we plan to quantize a noisy signal to make it ready for efficient lossy compres-

sion. Hence the compression is more common in images, we test the proposed algorithm

with noisy images.

We test the algorithm in two ways. First of all, we apply the algorithm to denoise the images

shown in Figure 5.2. The output SNR of the proposed denoising algorithm (first stage of the

algorithm introduce above) is compared with a simple MNDL, SureShrink and BayesShrink.

As it can be seen in table 5.1 the SNRs are improved.

Figure 5.2: The images which are used to test the algorithm, from top-right clockwise: Lena,
Barbara, Baboon and CameraMan.

In second test, we use the proposed algorithm to quantize noisy hyperspectral image.

Then these quantized hyperspectral images are compressed with Set Partitioning in Hier-

archical Trees (SPIHT) and the output SNR of the proposed method is compared with

uniform quantization of the noisy data and uniform quantization of the denoised data with
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VisuShrink. Thus, we have a lossy compression algorithm which contains 1) MNDL multi-

level denoising and quantization, 2) Uniform scalar quantization, and 3) SPIHT compression.

Note that since our input images are already noisy, we have two types of SNRs in our anal-

ysis; one for the input image, denoted by input SNR (ISNR), and one for the output image,

denoted by peak SNR (PSNR) defined in 2.8.

Multistage Denoising of the Test Images

At this part we use MNDL iteratively as it is described in section 5.2.1. We use the images

shown in figure 5.2 with SNRs of 5, 10, 20, and 30 while image size is 512× 512.

Figure 5.3 shows different stages of the proposed algorithm for Mandrill image when SNR

is 10. The first stage of the algorithm (Multi-Stage denoising) finds three levels for noise

dominant part and it halts after the three stages.

The available image thresholding methods are SureShrink [8] and BayesShrink [10]. To

test the proposed algorithm in Table 5.1 we compare the proposed method with MNDL,

SureShrink and BayesShrink. MSE values are calculated for 50 runs of the different denois-

ing methods. The results in this table show the strength of the multistage MNDL denoising

in comparison with the other denoising methods. The PSNR of the proposed method out-

performs the other methods except for Lena in which BayesShrink is working better than the

other methods. Although the multistage denoising has better performance in comparison

with normal MNDL, it is more complex and a time consuming procedure since it applies

MNDL iteratively.

Since the PSNR of the proposed multi-stage denoising algorithm is more than the PSNR

of the other methods, using any quantization method for the noiseless dominant part we get

a closer output from the proposed method in comparison with the other denoising methods.

Hyperspectral Image Compression

In this part, TSQ is used in combination with 3D wavelet transform and Set Partitioning

in Hierarchical Trees (SPIHT) to compress Hyperspectral Images. Since the Hyperspectral
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Table 5.1: PSNR of applying multistage MNDL denoising on the test images shown in figure 5.2
and comparing it with one levels MNDL.

Image CameraMan Lena

ISNR 5 10 20 30 5 10 20 30

Proposed 22.63 26.01 33.77 42.33 23.80 27.12 35.14 44.11
method

One Level 18.89 23.11 32.56 42.37 20.54 25.07 35.01 43.99
MSE

BayesShrink 22.04 25.44 32.34 42.38 23.69 27.20 35.79 44.67

SureShrink 17.57 22.31 25.73 26.01 19.65 24.67 27.91 28.19

Image Barbara Mandrill

ISNR 5 10 20 30 5 10 20 30

Proposed 25.43 28.84 37.55 50.43 23.26 26.54 35.05 46.5
Method

One Level 25.11 28.34 35.53 48.38 23.01 26.47 35.53 45.88
MSE

BayesShrink 25.25 29.07 37.54 50.43 22.25 26.81 36.54 46.43

SureShrink 23.65 28.15 31.32 40.8 21.43 25.46 26.67 26.8

Figure 5.3: Multistage denoising process for Mandrill (SNR=10). (a) noiseless wavelet coefficients
of Mandrill, (b) the first threshold value provided by MNDL, (c) second level in multistage denoising,
and (d) last stage after which the process is halted.
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image is a 3D data, as it can be seen in figure 5.4, to find its wavelet coefficients, 3D wavelet

transform is used. Before showing the results, 3D wavelet transform and SPIHT are briefly

introduced.

Figure 5.4: AVIRIS hyperspectral image, used in simulations.

3D wavelet transform: Hyperspectral image is a 3D combination of 2D images captured

in different spectral bands. Since all the images are captured from a single scene, the spectral

bands are highly correlated. To reduce the amount of the correlation between the bands it is

helpful to use 3D-wavelet transform. 3D wavelets can be constructed as separable products

of 1D wavelets by applying a 1D-wavelet transform in three directions (x,y,z).

if the data is of size N1 × N2 × N3, then after applying the 1D analysis filter bank to the

first dimension we have two subband data sets, each of size N1

2
× N2 × N3. After applying

the 1D analysis filter bank to the second dimension we have four subband data sets, each of

size N1

2
× N2

2
× N3. Applying the 1D analysis filter bank to the third dimension gives eight

subband data sets, each of size N1

2
× N2

2
× N3

2
.

Set Partitioning in Hierarchical Trees: For bit plane mapping and compression of

the quantized coefficients, we use SPIHT [47]. SPIHT is one of the most efficient image

compression algorithms. We selected SPIHT because SPIHT and its predecessor, the em-

bedded zero-tree wavelet coder, are of the most efficient image compression algorithms. In
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addition, they have better quality in comparison with vector quantization and JPEG. It

does not require training and producing an embedded bit stream. The effectiveness of the

SPIHT algorithm originates from the efficient subset partitioning and the compact form of

the significance information. The SPIHT algorithm defines spatial orientation trees, sets of

coordinates, and recursive set partitioning rules. The algorithm is composed of two passes: a

sorting pass and a refinement pass. It is implemented by alternately scanning three ordered

lists: list of insignificant sets (LIS), list of insignificant pixels (LIP), and list of significant

pixels (LSP). Which are defined as follows:

LIS, List of insignificant sets: contains sets of wavelet coefficients which are defined

by tree structures, and which had been found to have magnitude smaller than a threshold

(are insignificant). The sets exclude the coefficient corresponding to the tree or all sub-tree

roots, and have at least four elements.

LIP, List of insignificant pixels: contains individual coefficients that have magnitude

smaller than the threshold.

LSP, List of significant pixels: pixels found to have magnitude larger than the thresh-

old (are significant).

The algorithm codes the most important wavelet transform coefficients first, and trans-

mits the bits so that an increasingly refined copy of the original image can be obtained

progressively. The partial ordering of the transform coefficients is a result of comparisons of

coefficient magnitudes to a set of octavely decreasing thresholds, with the initial threshold

being the largest power of 2 which is smaller than the magnitude of the largest coefficient.

At any time, coefficients with magnitudes larger than the current threshold are considered

to be significant. During the sorting pass the significance of LIP and LIS are tested, followed

by removal (as appropriate) to LSP and set splitting operations to maintain the insignifi-
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Table 5.2: PSNR of compressed images with different methods and for different Input SNR
(ISNR).

Compression Noiseless Noisy Proposed Denoise &
Rate method Quantize

ISNR=20

16:1 30.82 28.76 30.23 28.91

8:1 35.93 31.22 34.6 33.15

4:1 42.72 35.16 40.7 38.98

ISNR=10

16:1 30.82 22.43 28.14 28.05

8:1 31.42 23.9 31.416 30.34

4:1 42.72 27.72 39.88 38.13

ISNR=5

16:1 30.4 18.04 26.83 27.13

8:1 35.93 19.7 30.2 29.91

4:1 42.72 24.06 37.08 36.18

cance property of the lists. In the refinement pass, the ith most significant bits in the LSP,

which contains the coordinates of the significant pixels, are scanned and output. The SPIHT

algorithm reduces the threshold and repeats the two passes until the bit budget is met.

The hyperspectral data collected by the AVIRIS satellite from the Indian Pines test site

in northwestern Indiana is considered [48]. The data set is composed of 185 spectral bands

and contains 145 × 145 pixels (21025 pixels). SPIHT is applied on four types of data: 1)

noiseless images, 2) noisy images, 3) images quantized with the proposed two stage method,

and 4) noisy image that is first denoised with BayesShrink and then quantized with the near

uniform quantizer [44]. In Table 5.2, PSNR of the output images are given. To decrease the

time of processing the images are resized to 50× 50.

As the table shows the PSNR of the outputs are improved by using the proposed method

compare to the results of the method that first denoises with BayesShrink and then quantizes

with a uniform quantizer [44]. In the proposed approach, for large ISNR, such as ISNR

> 100, almost all the coefficients are automatically quantized in the second stage, while for

ISNR≤ 20, more than %90 of the coefficients are quantized in the first stage. For example
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when ISNR is 20, about %93 of the coefficients are quantized in only four levels.

5.3 Retrieving Quantized Signal from Its Noisy Ver-

sion

In this part we propose an algorithm to retrieve a quantized data from its noisy version.

In conventional scalar quantization encoders, source signal is transformed using a transform

such as wavelet transform to reduce the spatial redundancies between the samples, and to im-

prove the performance of the quantization system. Accordingly, the transformed coefficients

are quantized. Thus, in a quantization/compresion system we are dealing with quantized

noisy wavelet coefficients. However, the proposed algorithm can also be used directly on the

noisy quantized signal (in spatial domain). To find the optimum quantization levels, a mul-

tistage process minimizes MSE at each level by using MNDL algorithm [15]. Consequently,

the procedure denoises and recovers the quantized data simultaneously.

Assume that the noiseless quantized coefficient vector

θ̄ = [θ̄(1), θ̄(2), ..., θ̄(N)]T (5.10)

of length N , is corrupted by an additive noise v (2.4). In this problem the input signal is

quantized so θ = [θ(1), θ(2), ..., θ(N)]T is the available noisy quantized coefficients. The noise

coefficient, v(i), is zero mean additive white Gaussian noise (AWGN) with variance of σ2
w.

If the noise variance is unknown, it is estimated by MAD method [6].

The main difference of this proposed algorithm with the other denoising algorithms is

the prior knowledge, that the desired signal is a quantized one. No other information, such

as the quantization levels or the number of the quantization levels, is available about the

data. The applications of the method is in widespread digital signal reconstruction from its

noisy version.

The main advantage of the proposed method is that not only it denoises the data, but also

using the extra prior assumption, the denoised data is itself a quantized data with optimum
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MSE. Independent from the quantization method (such as Lloyd-Max [49, 50], entropy-

constrained quantizer [51] or any other type of quantizer), we would like to denoise the data

with the only knowledge that the original data is a quantized one.

5.3.1 Proposed Method: Multiple Stage Denoiser and Quantizer
(MSDQ)

The goal in the quantization problem is to minimize the distortion for a given rate. In

quantizer side, the source signal is quantized using one of the known quantization methods

which satisfies the Rate-Distortion constraint. In the quantization decoder side, to find the

best estimate of the quantization levels we use MNDL basis selection algorithm [15]. As it

was said before, MNDL provides an upper and a lower bound for the MSE. Using these two

bounds, we can keep a number of basis to reach the minimum distortion [15].

In low noise conditions, the Tis shown in Figure 5.5 are clearly distinguished to be found

Figure 5.5: Distribution of the noisy quantized data, θi, around noiseless quantized data θ̄i in
which Q = [Q1, .., QM ] is the quantization levels of the noiseless coefficients and T = [T1, .., TM−1]
is the decision.

using MNDL. However, in noisy conditions as shown in Figure 5.6, the statistics features of

the quantized signal are completely changed and dequantization of such a signal with the

same levels used for quantization, increases the difference between the source signal and the

dequantized one. In this condition MNDL chooses the levels in a way to minimize the MSE,

which can be different from the levels used in quantizer.
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Figure 5.6: Noiseless and noisy coefficients sorted based on the quantization levels when there are
9 levels and SNR is 5.

First Quantization/Denoising Stage

In the proposed algorithm, MNDL is iteratively applied on noisy quantized coefficient. The

first step of the algorithm is different since in this step we should map the coefficients lower

than the first found threshold value to zero. This is exactly the same as MNDL thresholding.

However in the next steps, we find the quantization level and map the data between the two

adjacent threshold values to the corresponding quantization level. Thus, we should adapt

the MNDL with this change.

For the first step, consider the denoising via hard thresholding. In this case the data with

threshold T provides

θ̂
(1)
T (i) =

{
0 if θ(i) < T,

θ(i) if otherwise.
(5.11)

The superscript (1) indicates the output of the first step of the process.

The MNDL approach provides a probabilistic worse-case estimate of the description length,

D̃L defined in (5.1), and chooses the threshold that minimizes this criterion:

T1 = argT min D̃L((θ̂(T ), θ̄)) (5.12)
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This first step thresholding provides T1 which is the optimum quantization level boundary

around zero that minimizes the description length of the noiseless data.

Iterative Quantizarion/Denoising Process

In the presence of Gaussian noise the quantized noisy coefficients are distributed around

the noiseless coefficients as it is shown in Figure 5.5. The involved distribution of the noisy

coefficient is given in (5.2). In the current case, θ̄(i) is an element of the set of M level of

quantization Q = [Q1, ..., QM ]. In the first stage we used this property to estimate the set of

values that can best be mapped to level zero by denoising the data. To estimate the second

quantization level, we can use the thresholded data from the first level as follows. The input

of the second stage of the quantizer is

θ̂
(2)
[T1,T ](i) =


0 if |θ(i)| < T1∑

i∈{i:T1≤θ(i)<T} θi

#{i:T1≤θ(i)<T} if T1 ≤ |θ(i)| < T

θ(i) otherwise.

(5.13)

In the second stage we find the optimum T that minimizes the noiseless description length

of the data

T2 = argT min D̃L((θ̂
(2)
[T1,T ], θ̄)) (5.14)

This will provide the first quantizing level estimate which is

Q̂1 =

∑
i∈{i:T1≤θ(i)<T2} θi

#{i : T1 ≤ θ(i) < T2}
(5.15)

This quantization level is found based on the centroid of area under probability distribu-

tion function (pdf) [49, 50]. We shall continue this iterative process to estimate all the

quantization levels. For the jth step of the quantization we have

θ̂
(j)
[T1,··· ,Tj−1,T ](i) =


θ
(j−1)
[T1,··· ,Tj−1]

(i) if |θ(i)| < Tj−1∑
i∈{i:Tj−1≤|θ(i)|<T} θi

#{i:Tj−1≤|θ(i)|<T} if Tj−1 ≤ |θ(i)| < T

θ(i) otherwise.

(5.16)

The superscript shows the stage number and the subscript indicates the decision levels up

to that stage.
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Tj = argT min D̃L((θ̂
(j)
[T1,··· ,Tj−1,T ], θ̄)) (5.17)

That will provide the j − 1th quantizing level estimate

Q̂j−1 =

∑
i∈{i:Tj−1≤|θ(i)|<Tj} θi

#{i : Tj−1 ≤ |θ(i)| < Tj}
(5.18)

which is the mean value of the samples in each interval.

We can use our prior knowledge that the signal is already quantized, to optimize the

MNDL. In MNDL, the threshold values are the absolute value of the sorted wavelet coeffi-

cients. When the signal is quantized using a scalar quantizer, since the coefficients in each

bin have the same value, the threshold values for each bin have the same value. Thus, we

can use this property to find the threshold values more accurately. Figure 5.7 shows this

property for a signal with high and low SNRs. As it can be seen in this figure, we can use the

second derivative of the bound to find the best threshold values and reconstruction levels.

When the bounds are changed, a local maximum happens in the second derivative which

can be used as the threshold value in that stage. Thus, the last pick in the second derivative

is used to choose the coefficient which should be mapped at each stage.

5.3.2 Simulation Results

To test the algorithm, the analytical signals shown in Figure 5.8 are used with different

SNRs. Figures 5.9 and 5.10 show the distribution histogram of the noisy samples of the

first analytical test signal. Since the noise is Gaussian, the samples are normally distributed

around the quantization levels. In high SNRs as it can be seen in Figure 5.9, in which SNR

is 30, the levels are completely distinguishable. As it is shown in that figure, in these cases

the algorithm finds exactly the original quantization levels.

However, when the SNR is lower such as the case shown in Figure 5.10, where SNR is

15, the levels are mixed. It means the level of some of the noisy samples is changed and it
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Figure 5.7: Top left: Upper bound of ZT provided by MNDL and Bottom left: its second derivative
for a high SNR case, Top Right: Upper bound of ZT found by MNDL for a low SNR signal and
Bottom Right: its second derivative. Where the bins are changed, local maximums happens. We
use these maximums to find the thresholds in MNDL.

Figure 5.8: The test signals used to test the proposed algorithm.
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is not possible to find the original level which the sample belongs to. In the case shown in

figure 5.10, the levels change is started but they are still recognizable. In the low SNR cases

the algorithm finds some small threshold values which is around the local maximums in the

valleys between the two quantization levels. When the samples are not very low SNR, such

as this example in which SNR is 15, using a post processing these levels can be pruned. For

example here we simply remove the thresholds which are smaller than the 1
3
of the mean

of the all the found thresholds. Using this post processing, for this example the original

quantization levels are found.

When SNR is very low, like figure 5.11, it is almost impossible to retrieve the original

levels from the noisy samples. In these cases the proposed algorithm finds a set of levels

which causes a lower error than the original levels in some cases. In other word, if we

use the original levels to find the threshold values, for example using Lloyd-max criterion

Ti =
Qi+Qi+1

2
, and map the noisy samples on the original levels the MSE would be more than

when we use the proposed method to find the best levels.

This test is repeated with the 3-level quantized signal. The retrieved results are confirmed

for this signal also. In Figure 5.12, SNR is 30 and the levels are the same with the original

ones. However in Figure 5.13, SNR is 10 and the found levels are different from the original

ones, but using the original levels the Normalized MSE (NMSE) defined in (2.7) is 0.0727

which is larger than NMSE of using the levels found by proposed algorithm, which is 0.0650.

In tables 5.4 and 5.3, the NMSE of test signal dequantization using the original levels and

the levels found by the proposed algorithm are compared.

It may sound logical to use the existing denoising thresholding methods first to get rid of

small values of noise and then quantize the denoised data. Thus, these methods are compared

in the tables also. Since the only method which gives a universal threshold value is Universal

Threshold [6] we have used this method here.

As it can be seen in most cases the propose method has better results even in comparison

with the original levels. In three level signal, the levels are pretty distinguishable for SNRs
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Figure 5.9: The histogram of the noisy coefficients (SNR=30) and the threshold value (dashed
red line) at each level are shown in this figure. When SNR is high at each level we find one of the
quantization levels. All the quantization levels (solid green line) and the threshold values (dashed
red line) are shown in Bottom left figure. Bottom right, shows the denoised quantized signal.
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Figure 5.10: The histogram of the noisy coefficients (SNR=10) and the threshold value (dashed
red line) at each level are shown in this figure. When SNR is low we could have some extra levels. In
a post-processing step (using a pruning algorithm) some of them will be removed. The quantization
levels (solid green line) and the threshold values (dashed red line) are shown in the figure at Bottom
right.
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Figure 5.11: Dequantized signal with the proposed method when SNR is 5. The levels are different
from the original levels. However, the error (MSE) is lower. Left: Levels found by proposed
algorithm are shown by dark blue, red line shows the original levels, and the light blue shows the
noisy coefficients at each level. Left: Dark Blue shows the histogram of the noisy coefficients,
dashed Red lines are the threshold values and the solid green lines are the quantization levels.

Table 5.3: NMSE of dequantizing the signal with 9 levels shown in figure 5.8 with four different
method: (1) Using the original levels (2) Using the proposed method (3) Denoising with VisuShrink
and then dequantizing with the original levels (4) Denoising with MNDL and then using the original
levels to dequantize the signal.

5 10 15 20

Proposed Method 0.2869 0.0709 0.0261 0.0043

Using Original 0.2724 0.0999 0.0401 0.0078
levels

Denoised by 0.2885 0.1090 0.0386 0.0077
visu

Denoised by 0.4126 0.1024 0.0384 0.0074
MNDL

Table 5.4: NMSE of dequantizing the signal with 3 levels shown in figure 5.8 with four different
method: (1) Using the original levels (2) Using the proposed method (3) Denoising with VisuShrink
and then dequantizing with the original levels (4) Denoising with MNDL and then using the original
levels to dequantize the signal.

5 10 15 20

Proposed Method 0.3362 0.0668 0.00103 0

Using Original 0.3521 0.0705 0.0011 0
levels

Denoised by 0.3490 0.0705 0.0011 0
visu

Denoised by 0.3387 0.0701 0.0011 0
MNDL
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larger than 20 and the error is almost zero, either by using the proposed method or the

original levels.

Figure 5.12: Dequantized signal with the proposed method when SNR is 30. The levels are
different from the original levels but the error (MSE) is lower. Left: Levels found by proposed
algorithm are shown by dark blue, red line shows the original levels and the light light blue shows
the noisy coefficients at each level. Left: Dark Blue shows the histogram of the noisy coefficients,
dashed Red lines are the threshold values and the dotted green lines are the quantization levels.

5.4 Concluding Remarks

In this chapter we proposed two methods to retrieve signal from its noisy version in digital

domain. The difference between these two methods is the type of the input signal. In the

first part we proposed a two-stage quantization and compression method for noisy images.

In the second part we proposed a denoising algorithm for when our prior knowledge on the

desired data is that the signal is digital.

We used the “Two-stage quantization of noisy signals” to compress the hyperspectral image,

the 3D-wavelet transform was used. At the first stage of the proposed method, multistage

MNDL denoising was used to quantize the noisy coefficients. The algorithm halts once the

level of quantization is comparable with noiseless dominant coefficients. At the second stage,

the remaining noiseless coefficients were quantized by a uniform quantizer, which is a near

optimal quantizer. The results showed the strength of the proposed approach in providing
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Figure 5.13: Dequantized signal with the proposed method when SNR is 10. The levels are
different from the original levels but the error (MSE) is lower. Left: Levels found by proposed
algorithm are shown by dark blue, red line shows the original levels and the light light blue shows
the noisy coefficients at each level. Left: Dark Blue shows the histogram of the noisy coefficients,
dashed Red lines are the threshold values and the solid green lines are the quantization levels.

the minimum number of quantization levels with the best (maximum) value of quantization

PSNR.

In the second part we aimed to find the optimum digital estimate of the noiseless data using

the available noisy data. The existing denoising methods of a digital signal need additional

assumptions for example about the quantization levels of the data, the quantizer type, or

at least the number of levels. The proposed denoising algorithm pioneers in using only the

knowledge that the desired data is quantized with no additional assumption. The method

only denoised the data, but provided the optimum quantized estimate of the original signal

in the MSE sense. The well known denoising methods in this scenario were the thresholding

ones that only set small coefficients, attributed to the noise, to zero. None of the existing

denoising approaches were able to use the extra prior knowledge on the data that was its

quantized nature. In the proposed method, a multistage denoiser implemented the MNDL

algorithm at each stage to provide the optimum quantized levels of the data estimate.

Through the simulations we elaborated that the quantized estimate of the desired data in

high SNRs had the same number of quantization levels as the noiseless data. However, the

optimum number of levels of the signal estimate decreased as the SNR decreased. In very low
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SNRs the additive noise corrupted the data to the level that the algorithms output has very

few quantization level. This is an important advantage of the proposed multistage denoiser

that is robust to the noise and variations of the noise variance.

This method treated the additive noise at nonzero levels as the quantization noise rather

than the additive noise. In our approach, each stage optimally removed the additive noise

at the next quantization level. As a result, the estimate provided by the proposed method

had smaller MSE compare to the former approach. We illustrated this fact in our simulation

results.



Chapter 6

Noise Variance Estimation in
BayesShrink

Almost all denoising approaches rely heavily on the unknown value of the additive noise

variance. Consequently, the first step of denoising is dedicated to estimating the noise

variance using the same available data that needs to be denoised. The noise variance estimate

which is proposed in [6] by Donoho and Johnstone is currently used as an standard method

for noise variance estimation. As it was seen in section 2.3.1, in this method noise variance is

estimated through a method called Scaled Median absolute Deviation (MAD) computed from

the high-pass wavelet coefficients of the first level of the transform (the diagonal direction

of decomposition level one). As its name suggests the MAD is the median of the absolute

values of the coefficients. The MAD-based methods are useful especially for the sparse signal

which have a small amount of signal energy in the details subbands. Some signals such as

Baboon image, which can be seen in Figure 5.2, contains a lot of high frequency and detail

coefficients so MAD-based method is not useful for these cases. In table 6.1 you can see the

median of the detail coefficients of the images in Figure 5.2.

Table 6.1: Median of the detail coefficients of the test images shown in figure 5.2.

Images Baboon Barbara Lena CameraMan

Median 5.5 2 1.5 1.5

82
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As it can be seen this value is high in Baboon even when it is noiseless, which causes a

big error when MAD is used for noise variance estimation.

In [52] a noise variance estimation other than MAD is used based on the universal thresh-

old and VisuShrink, since the VisuShrink is optimal in a Min-Max sense. In this method

the Universal threshold is computed for the noisy coefficients using MAD for noise variance

estimation. Then, it keeps the coefficients which are smaller than the threshold value as

the noise coefficient. In an iterative algorithm, using MAD and Universal thresholding the

noises are pruned until the result converges. These remaining coefficients are considered as

noise and its variance is used as the estimation of the noise variance.

Some other methods are proposed for noise variance estimation but most of them are appli-

cable in special cases such as power systems, OFDM systems and etc. [53, 54, 55].

In [56, 46] a noise variance estimation method is proposed based on MNDL. This method

looks for the noise variance which makes the MSE, minimum. An interval, where typically

the noise variances happens in that interval, is considered and for each noise variance the

minimum MSE is estimated by MNDL. Comparing these MSE, the best noise variance is

the one which makes the MSE minimum.

In this chapter we propose a method called Residual Autocorrelation Power (RAP), which

is an adaptive method for noise variance estimation to improve the BayesShrink denoising

[10, 9]. RAP uses the differences between the autocorrelation of noisy image and the pure

noise to estimate the noise variance [57]. BayesShrink finds a threshold that minimizes the

Bayesian Risk based on the assumption that the images have properties of a Generalized

Gaussian signal. This method has been used in different applications to denoise the input

signals [58, 59, 60] and is one of the best available denoising methods.

Our propose method uses BayesShrink to denoise the signal with a set of considered noise

variances. If we are using the right noise variance value, the removed part should be noise.

To check which noise variance is the best estimation of the real noise variance, we use the

autocorrelation of the removed part (the coefficients bellow the threshold value.). Figure 6.1
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shows the coefficients used to computed the autocorrelation. The coefficients smaller than

T and larger than −T are kept.

Figure 6.1: Noisy wavelet coefficient of a sample signal and the corresponding threshold value
found by BayesShrink. In the proposed algorithm the coefficients in the 2T interval are kept as
noise coefficients.

Formally, the discrete autocorrelation R at lag j for signal xn is

R(j) =
∑
n

(xn −m)(xn−j −m) (6.1)

where m is the mean value of xn. For a two-Dimensional signal, xn,r, autocorrelation can be

computed by

R(j, i) =
∑
n,r

(xn,r −m)(xn−j,r−i −m) (6.2)

Informally, autocorrelation can be thought as the similarity between observations as a

function of the time separation between them.

6.1 Residual Autocorrelation Power (RAP)

In RAP we aim to find the noise variance using BayesShrink and Autocorrelation property

of Gaussian noise. We know Autocorrelation of Gaussian noise is an impulse function and
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power of this autocorrelation is smaller than other autocorrelations.

We expect that BayesShrink removes the noise and keeps the noiseless signal. In addition,

threshold value of BayesShrink is a function of noise variance and noiseless signal variance.

Thus, if we use a good estimation of noise variance in BayesShrink to denoise the noisy

signal, the difference between the input and output signal will be a good estimation of the

additive noise.

In our proposed method, we use different noise variances to calculate the BayesShrink’s

threshold and apply it to the noisy signal. In the next step we find the difference between

the noisy and denoised signal which is the removed noise by BayesShrink. If the noise

variance, used in BayesShrink, is close to the variance of the noise which has corrupted the

input signal, we expect to have a small power.

6.1.1 Gaussian Noise Autocorrelation

The Additive White Gaussian Noise (AWGN) has an important property which can be

utilized in the process of variance estimation. It is known that the autocorrelation of this

noise is of the following form:

Rww[i, j] = σ2δ[i, j] (6.3)

where δ is the dirac delta function that is one at i = 0, j = 0 and zero at all the other

locations i 6= 0, j 6= 0. This property of the additive noise can be used in evaluating the

denoising error.

While the autocorrelation of the noise is an impulse, the autocorrelation of the noise-free

image is different from an impulse. The autocorrelation of a 2D zero mean AWGN and that

of the Lena image (noiseless and noisy) are shown in Figures 6.2, 6.3 and 6.4.

In the following this property of the AWGN is employed in noise variance estimation.

As it was seen in section 2.4.3, BayesShrink [10, 9] aims to minimize a Bayesian Risk and

proposes a subband dependent threshold for image denoising which is a function of noise

variance σ2
w and noiseless standard deviation, given in (2.25).

Since the noise variance and the noiseless standard deviation are unavailable the threshold
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Figure 6.2: Autocorrelation of a 2D-zero mean AWGN with σ = 1.

Figure 6.3: Autocorrelation of noise-free Lena.
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Figure 6.4: Autocorrelation of noisy Lena with σ2 = 10.

is estimated as follows

T (σ̂w) =
σ̂2
w

σ̂ȳ
(6.4)

where σ̂w is the noise variance estimate using the MAD-based approach and the estimate

of the subband noiseless coefficient std is

σ̂ȳ =
√
max(σ2

y − σ̂2
w, 0) (6.5)

where θ is the available subband coefficients of the noisy observed signal.

6.1.2 Residual Autocorrelation Power (RAP) and Noise Variance
Estimation

Consider a range of candidates for noise variance Σ = [σ1, σ2, ..., σm, ..., σM ] (for example

from zero to 20 with steps of 0.1). For each noise variance σm, use the BayesShrink and

denoise the data with threshold

T (σm) =
σ2
m

σ̂θ̄m
(6.6)
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where σ̂ȳ is a subband stddev estimate using σm as the noise stddev.

σ̂θ̄m =
√

max(σ̂ȳ − σ2
m, 0) (6.7)

The error associated to this denoising is

ŵm = y − ŷm (6.8)

where ŷm is the denoised data. Therefore, the autocorrelation of the residuals is Rŵmŵm and

the l2 norm of this error is

Pm =
1

N

∑
i,j

(Rŵmŵm [i, j])
2 (6.9)

Now assuming ŵm as the noise we can find the area under the autocorrelation curve of

the noise using equation (6.2) for each σi. For the values higher than the real noise variance

the remaining part is a real noise, so we expect a constant area under autocorrelation curve

for the values higher than the real noise variance which can be used as a criteria to estimate

the noise variance.

In Figure 6.5 you can see the area under the autocorrelation curve, it can be seen after a

particular variance the area under the autocorrelation curve remains constant. The variance,

in which the area remains constant, is very close to the real variance of the noise. To find

this value we have used the difference between the two adjacent points, as it can be seen

in figure 6.6 it is zero from big variances until a variance which is very close to the real

noise variance. Thus, we can select this variance as an estimation for real noise variance.

Considering:

Dm = Pm(i+ 1)− Pm(i) (6.10)

We should find the first point after the maximum of DAm which is close to zero sufficiently.

mmax = argmmaxDm (6.11)

m∗ = min
m>mmax

{m : Dm < 10−2Dmmax} (6.12)
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Figure 6.5: Area under the curve of the autocorrelation of the estimated noises with different
variances (σi) when Real variance is 10.
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Figure 6.6: Difference between Area under curve for Adjacent points in Figure 6.5, as it can be
seen it is close to zero from 10 which is the value of the real noise variance.
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and the RAP stddev of the noise stddev is

σ̂(RAP ) = σ∗
m. (6.13)

This proposed algorithm is tested with other wavelet shrinkage methods such as SureShrink

and VisuShrink as the thresholding method used to find the best estimation of the real noise

variance, but they are not useful in this case.

6.2 Simulation Results

The optimized BayesShrink method using the proposed noise variance estimation method is

used to denoise the images which are shown in Figure 5.2. The estimated variances from

MAD and the proposed method and their corresponding MSE s are given in the tables 6.2

and 6.3. In figure (6.7) you can see a noisy image and its denoised image using BayesShrink

and the proposed method.

Figure 6.7: Noisy Lena image with σ2
w = 10 and denoised image with BayesShrink using proposed

method for Noise Variance estimation.

As it can be seen the results of the MAD method are very close to the estimations made

by the proposed method. So we can make a hybrid method which is very fast and accurate,

a first estimation is made by MAD then an interval from a little less and a little more than
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Table 6.2: Comparison of the estimated noise variances of the test images calculated by MAD
and proposed method

Baboon Barbara Lena Camera Man

True 5 10 15 5 10 15 5 10 15 5 10 15
Variance (σ)

RAP 5.1 9.9 14.9 4.8 10.3 15.2 5.1 10.4 14.7 4.6 9.8 14.9
(σ̂)

MAD 7.4 18.9 27 7.2 12.04 18 5.7 9.4 14.8 6.1 12.7 16.7
(σ̂)

Table 6.3: Comparison of the MSE values of MAD and the optimized BayesShrink using the
proposed method for Variance estimation.

Signal to Noise Ratio (SNR)

Estimator 10 1 0.5 0.1

Baboon

MAD 31.43 78.81 88.32 85.75

RAP 5.44 37.48 39.87 41.04

Barbara

MAD 5.75 32.27 37.14 40.46

RAP 5.2 29.75 33.27 35.64

Lena

MAD 5.03 28.1 32.9 33.6

RAP 5.03 26.8 29.7 31.57

Camera Man

MAD 4.47 25.44 25.84 26.9

RAP 3.97 23.2 25.39 27.4

this value is checked using the proposed method to find the best noise variance estimation.
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6.3 Concluding Remarks

In this chapter we proposed a new method for noise variance estimation to improve the

BayesShrink. The proposed method uses the difference between the autocorrelation of the

noisy image and the pure noise to estimate the noise variance. Since MAD is the standard

noise variance estimation method in denoising applications, to test the performance of the

proposed method, it was compared with MAD.

It was shown that RAP has closer estimations to the true noise variance and it has lower

MSEs.

Although RAP noise variance has more accurate estimations in comparison with MAD-based

methods, it is more complex and is not useful for for online processing. To reduce the amount

of complexity and calculation cost a hybrid method was proposed that uses the estimated

variance by MAD as a first estimation and an interval around this first estimation is used in

RAP.



Chapter 7

Bayesian Estimation of General
Gaussian Distributed (GGD) Signals
in Presence of Additive Noise

In this chapter we provide a soft thresholding method. The proposed threshold value and soft

thresholding method is a linear estimation of the Bayesian estimation of General Gaussian

Distributed (GGD) signals in presence of additive noise. GGD is used in different applications

to model the natural signals [11, 12, 13, 14]. We estimate the noiseless coefficients using the

Bayes estimator applied on observed noisy coefficients. A threshold value is found that

makes soft threshold function the best linear estimation of the Bayes estimator. In addition,

we study the Bayes estimators for GGD data to provide the theoretical justification for

BayesShrink.

7.1 Bayesian Estimate of GGD Signals

The mean of the posterior distribution provides an unbiased least-squares estimate of θ̄,

given measurement θ [61].

θ̂ =

∫
θ̄fθ̄|θ(θ̄|θ) dθ̄ (7.1)

=

∫
θ̄fθ|θ̄(θ|θ̄)fθ̄(θ̄) dθ̄∫
fθ|θ̄(θ|θ̄)fθ̄(θ̄) dθ̄
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Since noise is additive Gaussian noise, from (5.2) we have, fθ|θ̄(θ|θ̄) = fv(θ−θ̄) = 1√
2πσw

e
− (θ̄−θ)2

2σ2
w .

Thus (7.1) can be written as,

θ̂ =

∫
θ̄fv(θ − θ̄)fθ̄(θ̄) dθ̄∫
fv(θ − θ̄)fθ̄(θ̄) dθ̄

(7.2)

Equation (7.2) can not be solved analytically for all values of β. The only β values, that

we can find the close form solution for them are 1 and 2. When β is one, GGD is the same

as Laplacian distribution and when β is two, GGD describes the Gaussian distribution. For

other values of β, we should use numerical calculations to find the Bayes estimation.

When β is one or data distribution is Gaussian, the Bayes estimator is as follows.

θ̂ =
σ2
ȳ

σ2
ȳ + σ2

w

θ (7.3)

Details of calculations are shown in Appendix A.

When the signal follows Laplacian distribution, β is one, the denoised coefficients can be

calculated by:

θ̂ =
e

√
2θ

σȳ (2σ2
w +

√
2σȳθ)Q(

√
2σw

σȳ
+ θ

σw
)− e

−
√

2θ
σȳ (2σ2

w −
√
2σȳθ)Q(

√
2σw

σȳ
− θ

σw
)

√
2σȳ[e

√
2θ

σȳ Q(
√
2σw

σȳ
+ θ

σw
) + e

−
√

2θ
σȳ Q(

√
2σw

σȳ
− θ

σw
)]

(7.4)

In Figure 7.1, θ̂ is shown for different values of β while σȳ and σw are one.

As it can be seen it is very close to the form of soft thresholding. If we decrease the value

of β, for example to 0.1, the Bayesian estimator will be very close to hard thresholding. This

case is shown in Figure 7.2 when σȳ and σw are one.

To test the effect of variances on Bayesian estimation, σȳ is kept equal to one and σw is

changed to 3. Figure 7.3 shows the effect of noise variance changes. As it can be seen, when

σw is higher than σȳ, the estimator is more similar to hard threshold transfer function.

Regarding to the shown result, for sharp distribution (when β is small) and when SNR

is small, hard thresholding is closer to the optimum estimator. On the other hand, for the

signal with large SNR and β between 0.5 and 1, which contains a wide class of natural images

[10], soft threshold is a better estimation than hard threshold.



95

Figure 7.1: Bayesian estimation curves with different βs when σw and σȳ are one.

Figure 7.2: Bayesian estimation curve when β is 0.1 and σw and σȳ is one.
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Figure 7.3: Bayesian estimation curve when β is 0.1 and σw = 3 and σȳ = 1. When noise variance
is higher than the signal’s variance, the Bayesian curve converges to hard threshold.

As it can be seen in Figure 7.1, for the large coefficients, slope of the curves is constant

and it is one. Using this property we can find the threshold value. Threshold value can

be thought as a point in which the curve slope suddenly changes. There is a maximum in

the derivative of the curve at this point. Figure 7.4 shows the Bayesian estimator transfer

functions with different βs and the derivative of the curves.

We use the maximum value of the derivative of the Bayes estimation as the threshold value.

To find the relationship between β, σȳ and σw with the threshold value, we have drawn three

curves by fixing two parameters and changing the third parameter and plotting the threshold

values in each case. Then we use least square curve fitting to find the relationship between

the parameters.

7.1.1 Least Square Curve Fitting for Bayesian Estimator

To find the relationship between the parameters, the threshold values are drawn and the

best-fit curve is found by least square method. The method of least squares assumes that

the best-fit curve of a given type is the curve that has the minimal sum of the deviations

squared (least square error) from a given set of data. In the other words, if {xi, i = 1, ..., n}

be the independent variable and {yi, i = 1, ..., n} be the dependent variable, Least Square
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Figure 7.4: Left: β = 0.1, Middle: β = 0.5 and Right β = 0.9. Top figure are the transfer
functions and the bottom figures are their derivative.
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tries to minimize Π which is defined as:

Π =
n∑

i=1

d2i =
n∑

i=1

[yi − f(xi)]
2 (7.5)

in which f(x) is the fitting curve.

Figure 7.5: Left: Threshold value vs. σw while β and σȳ are constant, Middle: Threshold value
vs. σȳ while β and σw are constant, and Right: Threshold value vs. β while σȳ and σw are constant.

Using figure 7.5, it can be seen that T ∝ 1

σβ
ȳ

, T ∝ σ2
w, and T ∝ β1.8 and finally the best

match is:

T =

√
2β1.8σ2

w

σβ
ȳ

(7.6)

When β is one, the distribution is Laplacian and the threshold value is T =
√
2σ2

w

σȳ
which is

different with BayesShrink in a
√
2. This method enables us to generalize the BayesShrink

denoising by making the threshold value related to β.

Since the provided threshold is a function of β, it must be estimated. In the next section

the used shape parameter estimation method is introduced.

7.1.2 GGD Parameter Estimation

There are three methods available for β estimation in Generalized Gaussian Distributed

signals: 1) Moment Matching Estimatiors (MME) which uses moments of GGD signals;



99
2) Entropy matching Estimator (EME) that relies on matching the entropy of the GGD

modeled distribution with that of a set of empirical data; and 3) Maximum Likelihood

Estimator (MLE) that finds the shape parameter which maximizes the likelihood [62].

MME is an accurate and a simple method that is usefull when β is between 0.18 and 2 [62].

This interval covers most of the natural signals. Thus, we use MME for GGD parameter

estimation.

To estimate β, we use the second and forth moments. Kurtosis of GGD has the following

form:

κy =
1

σ4
y

(6σ2
wσ

2
y − 3σ4

w + (σ2
y − σ2

w)
2
Γ( 1

β
)Γ( 5

β
)

Γ2( 3
β
)

) (7.7)

Using MAD estimation, (2.17), we can estimate the noise variance. On the other hand, σy

and κy can be estimated from the observed noisy data {yi, i = 1, ..., N}. Kurtosis is defined

as:

κy =

∑N
i=1(yi − Ȳ )4

(N − 1)σ4
y

(7.8)

Where Ȳ is mean value of yis. Using these equations β can be found.

7.2 BayesShrink and Generalized BayesShrink

BayesShrink is one of the well known methods in wavelet shrinkage and denoising methods.

It works based on the assumption that the wavelet coefficients of the image subbands follow

General Gaussian distribution in which the shape parameter, β, is often between 0.5 and 1.

This distribution is highly accepted in image processing communities for wavelet coefficients

of image subbands [11, 12, 13, 14].

BayesShrink has a very good performance for a wide class of images but it does not have

an analytical proof and the threshold value is numerically optimized for the GGD signals

corrupted with i.i.d Gaussian noise.

To check how BayesShrink works, we compare the BayesShrink transfer function with the

optimum transfer function found by Bayesian estimator. Figure 7.6 shows this difference.

In this figure variance of signal (σȳ) and noise variance (σw) are fixed and β is changed.
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As it can be seen, the estimation function is changed with changing the shape parameter.

However, the threshold value in BayesShrink, σ2
w

σȳ
, is independent from value of β.

BayesShrink is optimized to minimize the Bayesian Risk in average for different β values.

This independency decreases the complexity of method since there is no need to estimate β.

Figure 7.6: Effect of increasing β on Bayesian curve. β increases in direction of arrow.

Our proposed method is a generalized form of BayesShrink. Thus, we can name it

Generalized BayesShrink. In simulation results we show that Generalized BayesShrink has

better results in comparison with BayesShrink in sense of MSE. However, our proposed

method is related to shape parameter of GGD distribution, β. Consequently, we need to

estimate β first which increases the possibility of error and complexity.

7.3 Simulation Results

Since our proposed threshold value depends to shape parameter, β, it should be estimated

before denoising. Like other estimations β estimation has error on itself. To have better

comparison with other methods, we do two different tests to compare our proposed threshold

with BayesShrink. In the first one we test the threshold values with analytically made wavelet

coefficients following GGD with known shape parameter which does not need β estimation.

In the next test, we apply the soft threshold method with the proposed threshold value and

BayesShrink’s threshold on natural and medical images.
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Table 7.1: PSNR of denoised data with BayesShrink and the proposed threshold applied on
analytical data.

SNR 5 10 15 20 25 30

β = 0.1

BayesShrink 43.53 52.13 56.83 62.11 62.68 70.39

Proposed method 47.23 54.13 57.89 62.43 63.23 70.76

β = 0.3

BayesShrink 43.94 43.22 49.33 55.14 58.71 68.60

Proposed method 44.74 45.23 51.62 56.22 59.10 68.69

β = 0.5

BayesShrink 41.23 43.57 46.40 49.20 55.60 58.06

Proposed method 42.18 45.15 47.42 49.22 55.61 58.07

β = 0.8

BayesShrink 33.05 35.16 46.42 49.40 53.76 61.35

Proposed method 34.93 35.64 46.57 49.43 53.77 61.35

β = 1

BayesShrink 34.89 37.15 44.09 46.01 51.53 59.47

Proposed method 34.99 37.17 44.11 46.02 51.53 59.47

In the first test we use analytical data with β equal to 0.1, 0.3, 0.5, 0.8 and 1. The results are

shown in Table 7.1. In this table data length, which is used instead of wavelet coefficients,

is 1000 and the test is done with 100 runs. As it can be seen in Figure 7.6, when β is

small BayesShrink is vary different from the Bayes estimation. This difference can be seen

in Table 7.1 as well, since the improvement in our method is considerable when β is small.

The numbers in the table are PSNR of the denoised images which is defined in (2.8).

In the second test, we use the images shown in Figure 7.10. Using these images, we have

the results given in Table 7.2.

As it can be seen in Table 7.2 when input SNR is low BayesShrink is working better.

If we compare these results with results of Table 7.1 in which in all the cases our proposed

method works at least as well as BayesShrink, we can conclude that the larger error in low

SNRs is because of the errors in parameter estimation.

Performance of BayesShrink and the proposed method is compared in Figures ??,??, and

??. As it can be seen in these figures the proposed method preserved the edges better than

BayesShrink.
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Figure 7.7: Test images, Top from left to right: CameraMan, Lena and Mandrill. Bottom from
left to right: Peppers, Einstein and Coco.

Table 7.2: PSNR of denoised images with BayesShrink and the proposed threshold.

SNR 5 10 15 20 25 30

CameraMan

BayesShrink 23.00 24.20 24.97 25.37 25.54 25.606

Proposed method 22.63 24.42 25.10 25.42 25.56 25.607

Lena

BayesShrink 27.96 30.52 32.66 34.16 34.98 35.324

Proposed method 27.60 30.68 32.89 34.25 35.10 35.327

Mandrill

BayesShrink 23.28 24.77 25.54 25.854 25.980 26.017

Proposed method 22.89 24.69 25.54 25.854 25.980 26.017

Peppers

BayesShrink 24.45 27.20 29.18 30.56 31.12 31.322

Proposed method 24.40 27.52 29.36 30.61 31.13 31.323

Einstein

BayesShrink 30.25 33.12 35.18 36.69 37.452 37.77

Proposed method 30.24 33.23 35.26 36.71 37.456 37.78

Coco

BayesShrink 28.44 31.41 34.12 36.25 37.52 38.130

Proposed method 28.63 31.80 34.45 36.39 37.56 38.136
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Figure 7.8: Comparison of Lena image denoised with BayesShrink and the proposed method.
Top left: noiseless image, Top right: noisy image with SNR=10, Bottom Left: denoised with
BayesShrink, and Bottom right: denoised with the proposed method.
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Figure 7.9: Comparison of Coco image denoised with BayesShrink and the proposed method.
Top left: noiseless image, Top right: noisy image with SNR=10, Bottom Left: denoised with
BayesShrink, and Bottom right: denoised with the proposed method.
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Figure 7.10: Comparison of Mandrill image denoised with BayesShrink and the proposed method.
Top left: noiseless image, Top right: noisy image with SNR=10, Bottom Left: denoised with
BayesShrink, and Bottom right: denoised with the proposed method.
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7.3.1 Simulation Results for Medical Images

As the last test, we compare our proposed method with BayesShrink applied on Medical

Images. We use miniMIAS [63] Mammography images shown in Figure 7.11 and Head CT

scan images shown in Figure 7.12.

The images size is 512×512, the test is ran for 50 times and Daubechies wavelet with 4 taps

is used. The results of miniMIAS are shown in Table 7.3. It can be seen that our proposed

method is working better than BayesShrink.

Results of CT scan images are shown in Table 7.4. This table confirms the strength of

the proposed method in comparison with BayesShrink. The only cases that BayesShrink is

working better is low SNR cases where SNR is five.

Figure 7.11: miniMIAS mammography images used in our test, Right: mdb001, Middle: mdb100,
Left: mdb200.

7.4 Concluding Remarks

A new soft thresholding method, Generalized BayesShrink, was proposed based on Bayesian

estimation of General Gaussian Distributed signals. The proposed method generalized the

BayesShrink. It was shown that the proposed method outperforms BayesShrink in most

cases. However, it is dependent to the shape parameter of GGD, β. Because of this de-

pendency, it is more complex than BayesShrink. It was shown that when β is low or
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Table 7.3: PSNR of denoised mammogram with BayesShrink and the proposed threshold applied
on medical test images shown in Figure 7.11.

SNR 5 10 15 20 25 30

mdb001

BayesShrink 27.95 28.66 33.82 35.78 37.73 38.50

Proposed method 28.53 29.22 33.99 35.82 37.78 38.50

mdb100

BayesShrink 25.51 29.75 32.70 35.37 37.26 38.44

Proposed method 25.99 30.68 33.27 35.64 37.34 38.46

mdb200

BayesShrink 26.71 29.85 31.90 34.60 36.23 37.40

Proposed method 26.95 30.93 32.72 34.99 36.35 37.43

Figure 7.12: CT scan test images.
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Table 7.4: PSNR of denoised CT images with BayesShrink and the proposed threshold applied
on medical test images shown in Figure 7.12.

SNR 5 10 15 20 25 30

Head 1

BayesShrink 23.65 26.57 28.34 29.80 30.75 31.15

Proposed method 23.35 27.09 28.90 30.05 30.83 31.63

Head 2

BayesShrink 24.12 26.47 28.63 30.06 30.85 31.21

Proposed method 23.80 26.65 29.01 30.26 30.91 31.23

Head 3

BayesShrink 23.49 26.21 28.37 30.12 31.14 31.50

Proposed method 23.19 26.49 28.81 30.38 31.22 31.61

Head 4

BayesShrink 24.31 26.98 28.83 30.25 31.06 31.42

Proposed method 24.31 27.47 29.27 30.44 31.12 31.44

Head 5

BayesShrink 25.89 28.13 30.07 31.63 32.49 32.87

Proposed method 26.05 28.73 30.51 31.80 32.54 32.89

Head 6

BayesShrink 24.32 26.67 28.79 30.31 31.20 31.61

Proposed method 24.07 26.98 29.20 30.52 31.27 31.63

Head 7

BayesShrink 24.91 27.50 28.97 30.87 31.73 32.21

Proposed method 24.86 27.92 29.43 31.08 31.79 32.22

Head 8

BayesShrink 23.12 26.04 28.39 30.11 31.12 31.58

Proposed method 22.73 26.17 28.83 30.36 31.20 31.60
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noise variance is higher than signal variance, hard thresholding gives a better estimation

of Bayesian estimator. However, soft thresholding estimates the Bayesian estimator more

accurately when SNR is high and β is between 0.5 and 1 which contains a big class of natural

images. From the numerically calculated Bayes curves, it could be seen that BayesShrink

is not optimal in most cases but it is in average a very good estimation of the Bayesian

estimator.



Chapter 8

Conclusions

In this thesis we studied four problems in data denoising: 1) MSE estimation, 2)Analog data

denoising, 3) Digital Data denoising, and 4) noise variance estimation.

In Chapter 3 MSE estimation was studied in denoising methods which are using soft thresh-

old. The proposed method, estimated MSE based on the threshold value used in soft thresh-

old and did not need any information other than the noisy input data.

Three analog denoising methods were provided in the thesis. A denoising method was pro-

posed in Chapter 3 based on the MSE EstiMation (MSEEM). The MSE in MSEEM was

very close to the minimum possible MSE of soft thresholding. Another analog data denoising

method, NIDe, was proposed in Chapter 4. NIDe used a noise signature to validate if the

coefficients have noise like behavior or not and denoised the signal by removing the noise

like coefficients. This method used a masking denoising method which makes it different

from other existing thresholding and denoising methods. Generalized BayesShrink method

is proposed in Chapter 7.

Chapter 5 studied the denoising problem in digital domain. This chapter had two main

contributions. In the first part, Two Stage Quantization (TSQ) was proposed. TSQ, si-

multaneously denoised and quantized the noisy input data. This procedure was done in

two stages, in the first stage a multistage denoising method was proposed based on MNDL

which handled the noise dominant part of the signal. In the second stage, the remaining

part of the input signal which is noiseless dominant was handled in which one of the exist-

110
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ing quantization methods was used to quantize this remained part. This method is a new

method that generalized the idea of dead zone estimation to a multi-level noise removal. The

simulation results showed that this method outperfoms the separate denoising and quanti-

zation methods. An example of this method was shown for hyperspectral image denoising

and compression. In the second part, Multiple Stage Denoiser and Quantizer (MSDQ) was

proposed. The input signal of MSDQ was a noisy quantized/digital signal. MSDQ found

the best reconstruction levels to make the reconstructed signal as close as possible to the

noiseless signal. When the input SNR was high, the reconstruction levels were very close

to the original levels that were used to quantize the signal. On the other hand, when the

input SNR was low, the found levels could be different with the original levels in number

and value. It was shown by the simulations that, in MSE sense, the reconstructed signal by

MSDQ was closer to the noiseless signal in comparison with the reconstructed signal with

original levels.

One of the first steps in almost all the denoising methods is to estimate the noise variance.

In chapter 6 we studied the noise variance estimation problem. The standard method for

noise variance estimation is MAD-based method. In this chapter we showed that for high

frequency wavelet coefficients, this method is not efficient. A novel noise variance estima-

tion was proposed based on Residual Autocorrelation Power (RAP) for BayesShrink. The

strength of RAP method was shown in simulation results. RAP outperformed the MAD-

based noise variance estimation in most cases and improved BayesShrink approach.

In Chapter 7 we studied Bayes estimators for General Gaussian Distributed (GGD)

data and provided the theoretical justification for BayesShrink. This study enabled us to

generalize the BayesShrink threshold to Generalized BayesShrink which outperformed the

BayesShrink itself. Among the proposed methods for analog data denoising, NIDe had the

best perfomance in colored noise cases. Performance of NIDe and Generalized BayesShrink

were very close in white cases and both of them were better than MSEEM. MSE in NIDe
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was more than the MSE of Generalized BayesShrink in non-sparse cases while Generalized

BayesShrink had a consistent performance in both sparse and non-sparse cases.



Appendix A

Details of Bayesian Estimation when
Shape Parameter Is Two

The mean of the posterior distribution provides an unbiased least-squares estimate of θ̄ is

calculated from (7.1). Since:

fv(θ − θ̄)fθ̄(θ̄)

fθ(θ)
=

1√
2πσw

e
−(θ−θ̄)2

2σ2
w × 1√

2πσȳ
e

−(θ̄)2

2σ2
ȳ

1√
2πσy

e
−(θ)2

2σ2
y

(A.1)

where σ2
y = σ2

ȳ + σ2
w. Now, we simplify (A.1) to:

fv(θ − θ̄)fθ̄(θ̄)

fθ(θ)
=

1√
2π

σwσθ̄

σy

e

−σ2
ȳσ2

y(θ̄−θ)2−σ2
wσ2

yθ̄2+θ2σ2
ȳσ2

w

2σ2
wσ2

ȳσ2
y (A.2)

1√
2π

σwσθ̄

σy

e

θ2(σ2
ȳσ2

w−σ2
ȳσ2

y)−θ̄2(σ2
wσ2

y+σ2
ȳσ2

y)+2θθ̄σ2
ȳσ2

y

2σ2
wσ2

ȳσ2
y

On the other hand:

(σ2
ȳσ

2
w − σ2

ȳσ
2
y) = −σ4

ȳ (A.3)

and,

(σ2
wσ

2
y + σ2

ȳσ
2
y) = σ4

y (A.4)

By substituting (A.3) and (A.4) in (A.2) we have:

fv(θ − θ̄)fθ̄(θ̄)

fθ(θ)
=

1√
2π

σwσθ̄

σy

e

−(θσ2
ȳ− ¯thetaσ2

y)2

2σ2
wσ2

ȳσ2
y (A.5)
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=
1√

2π
σwσθ̄

σy

e

−(θ
σ2
ȳ

σ2
y
− ¯theta)2

2σ2
wσ2

ȳσ2
y

Thus,
fv(θ−θ̄)fθ̄(θ̄)

fθ(θ)
follows Gaussian Distribution and its mean is θ

σ2
ȳ

σ2
y
and as the result:

θ̂ = θ
σ2
ȳ

σ2
ȳ + σ2

w

(A.6)
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