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Abstract 

An Airborne laser scanning (ALS) system with LiDAR (Light Detection And Ranging) technology is a highly 

precise and accurate 3D point data acquisition technique. LiDAR technology has been extensively used in 

digital surface/terrain modelling (DSM/DTM), and related applications such as 3D city modelling and 

building extraction. The capability of LiDAR systems to record the intensity of the return laser pulse 

backscattered energy in addition to the range data has motivated researchers to investigate the use of 

LiDAR intensity data for extracting land cover information. 

The main goal of this research is to maximize the benefits of the use of LiDAR data independently of any 

external source of data for automatically extracting accurate land cover information. Several new 

approaches are introduced in this research: a) classifying and filling the LiDAR intensity point cloud to 

produce a land cover image, b) combining multiple classified data of multiple LiDAR data-strips, c) 

statistical analysis segmentation technique that uses the concept of the kurtosis change curve algorithm 

for automatic classification of LiDAR data, and d) accelerating the classification process of large datasets 

by partitioning the large datasets into small, manageable datasets. Applying the traditional image 

classification techniques on LiDAR elevation and intensity data exclusively is included. Pixel-based, 

object-based, and point-based classification logics are conducted, and their results are compared to 

reference data.  

The results indicated that LiDAR data (range and intensity) can independently be used in land cover 

classification. By applying traditional pixel-based, supervised image classification techniques, the 

classification results show that auxiliary layers, which are extracted from range and intensity data, can 

be used for land cover classification. However, applying the supervised classification techniques on the 

LiDAR point cloud data without converting the data into images (Point-based logic) produced more 

accurate land cover classification results. The experiments on the proposed classification approach using 

the statistical analysis segmentation technique (based on the concept of the kurtosis change curve 

algorithm) show that it can be used to classify LiDAR data for land cover mapping. 
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1. Introduction 

1.1 Overview 

The concepts of data collection and information extraction have changed since the 1970s. Releasing 

remote sensing data for civilian applications has challenged researchers to develop new techniques for 

image interpretation and information extraction. One of the techniques that have been used for 

information extraction is classification. Various approaches and algorithms have been developed for 

classification depending on data characteristics. Whenever a new technology for data acquisition 

becomes available, researchers investigate the suitability of using existing classification techniques with 

this data type, and/or develop new classification techniques that are more appropriate for the new data 

type. Several supervised and unsupervised classification algorithms have been developed to classify 

image data, especially for images captured by optical satellite sensors. 

In the 1980s, NASA developed a laser scanning system that was able to measure distances precisely. The 

system emits laser signals and receives the reflected energy from targets. By measuring the time 

difference between sending and receiving the laser signals, ranges between the scanner and targets are 

determined. This technology is called LiDAR, which stands for light detection and ranging. In the 1990s, 

the Global Positioning System (GPS) provided a solution for positioning problems, which enabled 

airborne laser scanners to acquire highly accurate 3D point data. These data were used, for all intents 

and purposes, for generating digital terrain/surface models (DTM/DSM). A few years later, airborne 

laser scanning systems were successfully established, and rapidly used in various practical applications 

(Ackermann, 1996; Baltsavias, 1999).  

The acquired data by LiDAR systems have been used intensively in 3D city modelling, and building 

extraction and recognition (Haala & Brenner, 1999; Song et al., 2002; Yan et al., 2015). LiDAR systems 

are capable of recording the intensity of backscattered energy from the illuminated targets in addition 

to the range data. Most of the commercial LiDAR sensors utilize laser signals that operate at 1.064 m 

wavelength, which is in the near infrared (NIR) spectrum. At this region of the electromagnetic 

spectrum, high separability of spectral reflectance of various land cover materials can be observed. As a 

result, distinguishing different ground materials based on the intensity values of LiDAR data can be 

achieved (Yan et al., 2012). Consequently, a new area for research was opened to investigate the 

applicability of including intensity in addition to range values in land cover classification of LiDAR data. 
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1.2 Research Motivation 

LiDAR range data have been used to generate highly precise and accurate 3D point data in x, y, and z 

coordinates (Brennan & Webster, 2006). The highly precise and accurate 3D point data are used for 

generating digital elevation and/or surface models (DTM/DSM). Separating terrain from non-terrain 

points was the conventional meaning of LiDAR data classification (Antonarakis et al., 2008). By 

combining laser range data with other external auxiliary data, such as multispectral aerial photos, and 

satellite images, accurate information about the ground surface could be extracted (Haala & Brenner, 

1999). The capability of LiDAR systems to record intensity data changed the definition of LiDAR data 

classification, where intensity data were included in the classification process. Nonetheless, extracting 

land cover information from LiDAR data independent of any other sources of data requires more 

attention.  

Researchers typically use LiDAR intensity data, which were acquired from the backscatter energy of the 

LiDAR signals, as monochrome images. However, these images are not similar to the commonly used 

optical images. That is because when a laser signal hits more than one object (e.g., tree leaves, tree 

branches, and the ground beneath), a portion of the signal reaches each object; thus, multiple returns of 

the same laser signal are produced with lower returned energy. As a result, a reduction of the 

backscattered energy of each illuminated object occurs, which affects the intensity values recorded and 

is displayed as an image (e.g., trees appear darker than expected) (Jensen, 2007).  Therefore, the special 

characteristics of LiDAR intensity data have to be treated with more attention compared to the optical 

aerial and satellite images.  

To solve the problem of the reduced backscattered energy of the multiple returns of LiDAR intensity 

data, the exact, received energy data are required. Unfortunately, these data are not available. 

However, radiometric correction of LiDAR intensity data was suggested in recent literature to overcome 

the problem of energy attenuation, caused by several factors including atmospheric conditions, and 

targets geometry (Coren & Sterzia, 2006; Höfle & Pfeifer, 2007; Yan et al., 2012). The previously 

introduced radiometric correction methods rely on the use of the laser range equation to convert 

intensity data (recorded from the backscattered energy) into spectral reflectance of the illuminated 

targets. The radiometric correction takes into consideration the scanning geometry, the atmospheric 

attenuation, and the background backscattering effects. After applying the radiometric correction, the 
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intensity values of each target become more homogeneous. Thus, the performance of feature extraction 

and surface classification can be enhanced (Shaker et al., 2011).  

LiDAR systems are integrated multi-sensor systems that contain a laser scanner, GPS receivers, and 

inertial measurement unit (IMU). In addition, LiDAR systems are usually supported by cameras for 

capturing aerial images at the same time as LiDAR data acquisition. These aerial images have roles in 

LiDAR data application, particularly the land cover information extraction. Relying on LiDAR instruments 

without being accompanied by aerial cameras will reduce the cost and size required for the payload, and 

consequently, will be more economic and efficient. This could be one further step toward the use of 

economic LiDAR systems in the increasingly popular UAVs and drones. For that reason, using LiDAR data 

separately (independently of any external data) in land cover information extraction needs to be 

investigated. 

With the ability of LiDAR signals to penetrate tree canopies, using LiDAR data in classification of forest 

areas has increased over the optical sensors, which capture images for the canopy surfaces. However, 

multispectral images provide more information than the information extracted from the LiDAR signals 

with a single wavelength. Therefore, there is a need for a combination of the following two advantages, 

penetrating the canopies for the vertical structure of the trees and multi-spectral data for physiological 

measurements of the trees (Woodhouse et al., 2011; Wallace et al., 2012). Recently, researchers have 

been investigating the production of multi-spectral LiDAR systems with multi-wavelength laser signals 

that are operating at various wavelengths. Consequently, multi-spectral LiDAR data can be obtained, 

and can be used in land cover classification of LiDAR data (Woodhouse et al., 2011). This new technology 

will enrich the classification results of LiDAR intensity data, and will make it possible to eliminate the use 

of external optical sensor data in land cover mapping. 

1.3 Research Objectives 

The main goal of this research is to maximize the benefit of using LiDAR data independently of any other 

source of data for accurate land cover information extraction. This research proposes an innovative 

approach to automatically extract land cover classes from LiDAR data (i.e., elevation and intensity 

attribute values), exclusively. This goal can be achieved by integrating the range and intensity data 

measurements of LiDAR systems. The detailed objectives of this research are as follows: 
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 To study the potential use of LiDAR data for land cover information extraction through 

evaluating the pixel-based image classification of LiDAR elevation and intensity attribute values 

individually. Extracting auxiliary layers from LiDAR elevation and intensity data and include them 

in the classification process will be studied as a step towards classification improvement. 

 To develop a new approach to classify LiDAR point cloud data without losing the details of the 

3D points, and to fill the gaps of the LiDAR footprints. Evaluating the developed approach by 

comparing its results to the results of the image classification techniques (classified data after 

interpolating the raw LiDAR data and converting the point data into images). 

 To develop a new approach for land cover classification that can be used for overlapped data-

strips. A Combined Multiple Classified Datasets (CMCD) approach is proposed, which is a 

modification of the Combined Multiple Classifiers (CMC) approach introduced in the pattern 

recognition field. 

 To develop a new approach for land cover classification of LiDAR point cloud data based on 

statistical analysis of the elevation and intensity values. The new approach is based on the 

concept of the kurtosis change curve algorithm that has been used previously to separate 

ground from non-ground returns collected by LiDAR systems. 

1.4 Dissertation Structure 

This dissertation consists of six chapters; the first chapter is a general introduction that includes the 

motivations, objectives, and the structure of the dissertation. Chapter 2 presents a literature review on 

airborne LiDAR systems and various classification techniques. It describes the concept behind the LiDAR 

system as a highly accurate and precise technique for 3D data acquisition. It includes a description of 

LiDAR systems, explains how these systems collect and generate data, and describes the characteristics 

of LiDAR systems. Moreover, the literature review includes the information extraction approaches, 

classification logics, and techniques, with some examples of the existing classifiers. At the end of the 

second chapter, a brief overview is provided of how researchers have used the classification techniques 

for land cover classification of LiDAR data. The third chapter discusses the methodology used for this 

research. The methodology first addresses the classification of the LiDAR data using one of the existing 

pixel-based classifiers and a developed decision tree for object-based classification. The second part of 

the methodology includes classification of single and multiple data-strips using point-based classification 

logic with the supervised classification techniques. The third part of the methodology is a description of 
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a proposed innovative classification approach based on a statistical analysis segmentation technique 

that uses the intensity and elevation attribute values of the LiDAR data. Chapters 4 and 5 describe study 

areas and the employed datasets. These two chapters include experimental works that have been 

completed to test the described methodology; in Chapter 4 a single wavelength LiDAR dataset has been 

investigated, while a multi-wavelength LiDAR dataset has been investigated in Chapter 5. Chapters 4 and 

5 also include evaluation of the classification results, and discuss the work’s achievements. The 

dissertation ends with a summary of the work, conclusions, and remarks for future work. 
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2. Literature Review 

2.1 Airborne Laser Scanning System 

2.1.1 Overview of Airborne Laser Scanning System 

An airborne laser scanning (ALS) system is an active remote sensing system that transmits laser signals 

and records the reflected energy, and measures distances using the light detection and ranging (LiDAR) 

technology. The distance between the sensor and the illuminated spot on the ground (range) can be 

calculated based on the measurements of the travelling time of the laser signal (time difference 

between sending and receiving the laser signal) (Jensen, 2007). ALS includes devices to identify 

positioning and orientation of the laser sensor at the moment of illuminating and receiving the laser 

energy. With the aid of data that are collected by positioning and orientation systems, Global 

Positioning System (GPS) and Inertial Measurement Unit (IMU), 3D coordinates of the laser footprints 

can be determined. Figure 2-1 illustrates an airborne laser scanning system. 

 

Figure 2-1: Airborne Laser Scanning System 

2.1.1.1 System Components 

Airborne laser scanning systems are integrated multi-sensor systems. ALS consists of several 

components, some of them are on-board and others are land-based (Ackermann, 1996). Figure 2-2 
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illustrates the on-board ALS system components as described in Wehr and Lohr (1999). The typical on-

board components of any laser scanning system are (Baltsavias, 1999): 

 Laser range unit including laser transmitter and receiver, signal detector, amplifier, time 

counter, and the necessary electronic components. 

 Scanner. 

 Global Positioning System (GPS) receivers with their antennas that form with ground reference 

station(s), a differential GPS system. 

 Inertial Measurement Unit (IMU). 

 Registration units (usually two units, one for laser data and one for GPS/IMU data).  

 Some systems complement the laser system with digital or video cameras for documentation. 

 

Figure 2-2: Typical Laser Scanning System Components 
(adapted from Wehr & Lohr, 1999) 

The typical on-ground components of laser scanning systems are (Baltsavias, 1999): 

 Mission planning software and post processing software (could be one software package for 

both planning and post-processing). 
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 GPS reference station(s); the GPS reference station and the GPS device on board establish a 

differential GPS (DGPS). 

 Radio link (for real time navigation). 

2.1.1.2 System Data Collection 

The laser instrument mounted in an aircraft transmits laser signals toward the ground while the aircraft 

moves along the line-of-flight. These signals are directed across track using a scanning mirror. Some of 

the transmitted energy is reflected to the aircraft; this backscattered energy is recorded by the receiver 

electronics. The travelling time between sending the signal and receiving the backscattered energy 

(reflected by the objects on ground) is measured very accurately in terms of 10-10 sec, by which the 

distance between the aircraft and the surface can be measured based on the speed of the laser signals 

(speed of light is 3 × 108 m/sec) (Ackermann, 1999). The reflecting surface characteristics (such as 

surface materials and inclination angles) influence the return signals. The ratio between the reflected 

power and the irradiating power gives the surface reflectance (Hug & Wehr, 1997). 

The on-board GPS system is used for measuring the position of the laser scanner altimeter. There is 

usually another GPS receiver on a reference station on ground, together with the receiver on-board, a 

DGPS system is constituted and used for achieving accurate positions of the aircraft. The IMU system 

measures pitch, roll, and yaw rotation angles of the laser system onboard the aircraft, which define the 

laser sensor attitude. The combination of these three systems—GPS, IMU, and laser scanner—makes it 

possible to know the accurate positions of the laser sensor, the direction of the laser beam, and the 

distance between the laser sensor and the ground surface at the moment of sending and receiving each 

laser signal. Thus, using this information, the coordinates of each point on the ground that are hit by the 

laser beam can be calculated (Ackermann, 1999). Figure 2-1 illustrates the operational idea of a laser 

scanning system with its main components. 

There are two main operational concepts for the LiDAR systems: discrete returns and continuous wave 

(full waveform). The discrete returns LiDAR system is designed to send laser pulses and receive the 

returned signals, where a filter is applied to detect peaks in the reflected signals and then record the 

timing of those peaks as discrete returns. Based on the capabilities of the system and the number of 

peaks, the number of returns is delineated. Recently, there have been LiDAR systems capable of 

recording up to five returns of emitted laser signals (Morgan, 2012). A few years ago, the LiDAR systems 
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were designed to be capable of recording the complete waveform of the returned laser signals, which 

provide additional information that can be used for better interpretation of the data (Mallet & Bretar, 

2009). Figure 2-3 illustrates the differences between the two LiDAR operation concepts as described in 

Weng (2011). 

 

Figure 2-3: Conceptual Differences between Discrete-Returns and Full Waveform LiDAR Systems 
(Weng, 2011) 

Two major principles are used for measuring range data with LiDAR systems: a pulsed ranging principle, 

and a phase difference determining principle (Wehr & Lohr, 1999; Baltsavias, 1999a). Both principles 

measure the travel time of the laser signal precisely, and then calculate the range data (𝑅) using the 

formula in Equation (2-1), and using the travelling time of laser signals from the laser transmitter to the 

object and back from the object to the laser receiver (𝑡), and the speed of the light (𝑐). 

𝑅 = 𝑐 
𝑡

2
 (2-1) 
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The discrete return pulses (multi-return) concept uses the pulsed ranging method, where the time 

difference between sending and receiving discrete pulses is measured. The continuous wave (full 

waveform) concept uses the phase difference principle, where the phase difference between 

transmitted and received signals backscattered from the object surface is measured (Hug & Wehr, 

1997). In this research we will focus on the pulse ranging principle because the available data are 

discrete pulse returns. 

2.1.1.3 System Characteristics 

Currently, there are many laser scanners that are produced and commercially available. The 

characteristics of these systems vary from one to the other. Scan angle, pulse rate, scan rate, beam 

divergence, number of recording returned echoes per pulse, scanning pattern, and IMU frequency are 

important characteristics that differentiate the LiDAR systems (Baltsavias, 1999). There are some other 

parameters which may vary, such as point spacing (across and along track), swath width, point density 

and covered area—the latter parameters depend mainly on the flying heights and system frequency. 

The selection of the appropriate system is based on the application for which data are requested. 

However, the selection of these parameters is not totally free, as there are operational restrictions, like 

laser power and storage capacity (Baltsavias, 1999). 

The airborne laser scanning systems have evolved rapidly. In the mid-1990s, the first commercial 

airborne laser scanning systems appeared on the market. These systems were operated with pulse rates 

that ranged between 5000 and 15000 pulse/sec, but recently the pulse rate of the airborne laser 

scanners have reached 500,000 pulse/sec. The current scanners have the capability of recording full 

waveform of the backscattered signals, in addition to multiple-return laser pulses. Previously, the laser 

wavelength has ranged between 1040 and 1060 nm (and 532 nm for bathymetric laser scanners), while 

a few systems have utilized a wavelength of 1550 nm, and the ScaLARS system has used 810 nm 

wavelength (Baltsavias, 1999a). Recently with the multi-spectral LiDAR, other wavelengths are in 

operation—531, 550, 660, and 780 nm. 

2.1.2 Data Correction 

Measurements of LiDAR point data require accurate observations of the position, and the attitude of the 

laser scanner, besides accurate and precise ranging measurements. The accuracy of the laser scanning 

system can be divided into positioning accuracy and ranging measurements accuracy. The positioning 
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accuracy is influenced by the quality of the GPS/IMU system measurements, while the ranging 

measurements accuracy is affected greatly by the atmosphere. The travelling laser signals through the 

atmosphere are subjected to diffraction, absorption, scattering, and propagation delays. The flying 

height has a great effect on the accuracy of the ranging measurements, as the propagation delays 

increase tremendously with increasing the flying height (Bottu, 1998). The scattering and absorption of 

the laser signals are affected by the existence of moisture and dust in the atmosphere. All these factors, 

beside the accuracy of the GPS/IMU system, scan angle, terrain topography, and land cover types affect 

the accuracy of the laser system measurements (Bottu, 1998). Furthermore, inaccurate transformation 

parameters from WGS84, which GPS measurements are based on, to the local coordinate system may 

produce inaccurate point coordinates (Wehr & Lohr, 1999). In addition, using the system without 

calibration may reduce the accuracy of the point coordinates. Huising and Pereira (1998) summarized 

the sources of the systematic errors in the laser systems, and the approximate magnitude of each one. 

Thus, it is important to correct the acquired data geometrically. 

Laser intensity indicates the amount of recorded energy by the sensors that is backscattered and 

reflected by the illuminated targets. However, the laser signals are attenuated during travel through the 

atmosphere. Additionally, the magnitude of the laser intensity is affected by several factors. The three 

main factors that affect the laser intensity are the geometry of targets represented by incidence angles, 

atmospheric attenuation, and distance between the laser sensor on-board and objects on-ground (Yan 

et al., 2012). Therefore, the intensity values that are recorded by the laser sensors do not represent the 

actual surface reflectance of the targets. Removing the effects of these factors is required for extracting 

more reliable information. Thus, it is important to radiometrically correct the laser signals. The following 

subsections provide brief information about the geometric and radiometric correction of LiDAR data. 

2.1.2.1 Geometric Correction of LiDAR Data 

Laser scanner systems measure ranges of a vector between the on-board laser scanner and each 

illuminated point on the Earth’s surface. To determine the 3D coordinates of the measured points, the 

position and orientation of the laser scanner, with respect to a certain coordinate system, must be 

accurately known at the moment of sending and receiving each laser signal. The position and orientation 

of the laser scanner are provided by a position and orientation supporting system (i.e., integrated GPS 

and IMU unit on-board system). To ensure obtaining accurate positioning and orientation of the laser 

scanner, it has to be exactly synchronised with the positioning and orientation system. Hence, other 
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relative parameters have to be considered. These parameters are: 1) the three mounting angles of the 

laser scanner frame (roll, pitch, and yaw) with respect to the platform-fixed coordinate system, 2) the 

position of the laser scanner with respect to the IMU coordinate system, and 3) the position of the IMU 

with respect to the GPS coordinate system. These mounting parameters can be derived by calibrating 

the laser scanning system. Consequently, the 3D positions of the LiDAR footprints can be computed with 

the aid of the calibration parameters besides the range measurements with their respective scanning 

angles, and aircraft positioning and orientation data (Wehr & Lohr, 1999). The biases in the mounting 

parameters that relate to the system components, and biases in the measured ranges and mirror angles 

cause systematic errors in the determined 3D positions of the LiDAR footprints (i.e., coordinates of point 

cloud data). 

The geometric correction of LiDAR data is the process of estimating and removing systematic errors 

from the 3D point coordinates leaving only random errors (Habib et al., 2011). These random errors are 

randomly distributed in elevations and planimetric positions of LiDAR point cloud (Wehr & Lohr, 1999). 

To determine the 3D coordinates of the LiDAR point cloud, the position of the points with respect to the 

origin of a certain coordinate system has to be determined (Figure 2-4). The vector  XG
⃗⃗ ⃗⃗   , representing 

the position of an object point (t) can be derived using the formula in Equation (2-2) as described in 

Habib et al. (2010). 

 𝑋𝐺
⃗⃗ ⃗⃗  =  𝑋𝑜

⃗⃗ ⃗⃗ +  𝑅𝑦𝑎𝑤,𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙  𝑃𝐺
⃗⃗⃗⃗ + 𝑅𝑦𝑎𝑤,𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙  𝑅∆𝜔,∆𝜙,Δ𝜅 𝑅𝛼,𝛽  [

0
0

− 𝜌
] (2-2) 

Where, 

𝑅𝑦𝑎𝑤,𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙 rotation matrix relating the ground coordinate system and the IMU coordinate system 

with the three mounting angles—roll, pitch, and yaw angles—which are derived through 

the GPS/IMU integration process (determined through the calibration procedure). 

𝑅∆𝜔 ,∆𝜙 ,∆𝜅 rotation matrix relating the IMU coordinate system and the laser unit coordinate 

system. 

𝑅𝛼,𝛽  rotation matrix relating the laser unit and laser beam coordinate systems with 𝛼 and 𝛽 

being the mirror scan angles. 

 𝑋𝑜
⃗⃗⃗⃗   vector from the origin of the ground system to the origin of the IMU coordinate system, 

which is derived through the GPS/IMU integration process with consideration of the 
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offset vector between the IMU body frame and the phase centre of the GPS antenna 

(determined through the calibration procedure). 

𝑃𝐺
⃗⃗⃗⃗   vector from the origin of the IMU coordinate system and the origin of the laser unit 

coordinate system. The magnitude of the vector 𝑃𝐺
⃗⃗⃗⃗  equals to the offset between the 

laser unit and the IMU coordinate systems (measured during the acquisition process). 

𝜌   laser range vector. The magnitude of 𝜌  is equivalent to the distance between the laser 

firing point in the laser unit and its footprint on the ground (measured during the 

acquisition process) (Habib et al., 2010; Habib et al., 2011). 

 

 

Figure 2-4: Coordinate System and Involved Quantities in the LiDAR Equation 
(Habib et al., 2010) 
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2.1.2.2 Radiometric Correction of LiDAR Data 

Backscattered energy that is reflected by an object on the ground is recorded as an intensity value. 

There are several factors that reduce the backscattered energy of the laser signals, such as atmospheric 

attenuation and characteristics of the illuminated targets. To overcome the problem of the recorded 

LiDAR intensity data, the exact surface reflectance of the illuminated targets, which are not available, 

are required. Ideally, without any other effects such as atmospheric attenuation, the surface reflectance 

is defined as the ratio between reflected and irradiated powers, which can be calculated using the 

following equation (Hug & Wehr, 1997): 

𝜌𝑠 = 
𝑃𝑟𝑒𝑓𝑙

𝑃𝑖𝑟𝑟
 (2-3) 

Where,  

𝜌𝑠    target spectral reflectance; 

Prefl   reflected power; 

Pirr   irradiating power. 

Recent research introduced radiometric correction methods for LiDAR intensity data (Coren & Sterzia, 

2006; Höfle & Pfeifer, 2007; Yan et al., 2012). The same as with any active remote sensing sensors, 

radiometric correction of LiDAR intensity data should be able to remove the attenuation in the data 

values due to the system settings, topographic variation, and atmospheric condition (Yan et al., 2012). 

Since laser scanning systems operate in the same physical principles as the microwave radar but at 

shorter wavelengths (Jelalian, 1992), the radar range equation can be used for the radiometric 

correction of LiDAR intensity data. The radar range equation, introduced in Jelalian (1992), assumes that 

the intensity values represent the peak values of the received power (Habib et al., 2011). The radar 

range equation includes sensor efficiency, target characteristics, and atmospheric parameters, which are 

the three main factors attenuating the transmitted power (Höfle & Pfeifer, 2007). It also considers the 

scanning geometry, the atmospheric influences, and the background backscattering (Höfle & Pfeifer, 

2007; Yan et al., 2012). The radiometric correction of LiDAR intensity data converts the received 

intensity data into the spectral reflectance. The radar range equation is described as (Jelalian, 1992): 

𝑃𝑟 = 
𝑃𝑡 𝐷𝑟

2

4 𝜋 𝑅4𝛽𝑡
2  𝜂𝑠𝑦𝑠 𝜂𝑎𝑡𝑚 𝜎  (2-4) 
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Where; 

𝑃𝑟  power of received signal;  

𝑃𝑡 power of transmitted signal;  

𝐷𝑟 receiver aperture diameter; 

𝑅 range from the sensor to the target; 

𝛽𝑡 laser beam width; 

𝜂𝑠𝑦𝑠 system-specific factor; 

𝜂𝑎𝑡𝑚 atmospheric transmission factor; 

𝜎 target (backscattering) cross-section. 

 

The target cross section 𝜎 implies all target characteristics: spectral reflectance 𝜌𝑠, projected footprint 

area 𝐴𝑠, and the scattering solid angle Ω. The following formula can be used to calculate the target 

cross section (Shaker et al., 2011) 

𝜎 =  
4 𝜋

Ω
𝜌𝑠𝐴𝑠  (2-5) 

The scattering solid angle Ω is derived as the cosine of the angle between the surface normal and the 

direction of the laser pulse (𝛼) with the assumptions that the entire footprint is reflected on one 

surface, the target area 𝐴𝑠 is circular, and the surface has Lambertian scattering characteristics. Then 

the following formulas can be used for calculating the target footprint area and the target cross section 

(Höfle & Pfeifer, 2007; Jutzi & Stilla, 2006; Rees, 2001).  

𝐴𝑠 = 
𝜋 𝑅2𝛽𝑡

2

4
 (2-6) 

𝜎 = 𝜋 𝜌𝑠 𝑅
2𝛽𝑡

2 cos 𝛼 (2-7) 

By substituting the target cross section into the radar range equation (Equation (2-4)) leads to an inverse 

range square dependency of the received signal power (Equation (2-8)), independent of the laser beam 

width (Höfle & Pfeifer, 2007). 

𝑃𝑟 = 
𝑃𝑡 𝐷𝑟

2 𝜌𝑠

4  𝑅2  𝜂𝑠𝑦𝑠 𝜂𝑎𝑡𝑚 cos 𝛼  (2-8) 
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After removing the effects of the atmosphere and the surfaces geometry, the surface reflectance can be 

calculated. Normally, the calculated surface reflectance is scaled to appropriate digital numbers (e.g., 8-

bit) for displaying purposes. 

𝜌𝑠 =
4 𝑅2 𝑃𝑟

𝑃𝑡 𝐷𝑟
2𝜂𝑠𝑦𝑠 𝜂𝑎𝑡𝑚 cos𝛼

 (2-9) 

2.2 Information Extraction and Image Classification 

2.2.1 Overview 

Remote sensing systems acquire data of the Earth’s surface and objects above it. Spectral reflectance of 

objects on the Earth’s surface is one of the essential data that remote sensing systems acquire. 

Nevertheless, the acquired data must be analysed with a certain processing scheme in order to extract 

useful information. Generally, there are two ways to extract information from data collected by remote 

sensing sensors. First, methods depend on visual interpretation and manual digitization. They are simple 

methods to manipulate remote sensing data; however, they are labour intensive and time consuming. 

Secondly, there are automatically or semi-automatically computer based data processing methods. 

Examples of information extracted by computer based methods are not limited to surface modelling, 

feature extraction, and information extracted from image classification. In this study, we focus on the 

use of computerized classification techniques to derive different types of land cover information from 

airborne LiDAR data. 

2.2.2 Classification Logics 

Classification is the process of grouping data to a finite number of individual information classes, which 

are categories of interest to the data users. Classification processes differ based on the nature and 

structure of the data. In the following subsections, brief descriptions of the different classification logics 

based on the structure and nature of the data are provided.  

2.2.2.1 Pixel-Based, Object-Based, and Point-Based Classification Logics 

Based on the structure of the spatial data, the classification logic is selected. For raster data, classifiers 

categorize the raster data elements (pixels) based on their brightness values to satisfy certain criteria 

(Jensen, 2005). Pixel-based classification logic is often used to assign the raster data to the distinguished 

classes. Pixel-based classification examines the brightness value of each pixel individually and assigns it 
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to one of the predefined classes. On the other hand, object-based classification combines the pixels of 

the raster data into objects based on certain homogeneity criteria. Then it assigns these segmented 

objects to the predefined classes. The pixel-based classification logic is more common in coarse remote 

sensing images (e.g., ASTER, Landsat, SPOT, etc.), whereas the object-based classification is more 

suitable to the fine, high spatial resolution images (e.g., Ikonos, Quickbird, Worldview, etc.), due to the 

high variation of spectral values within each class (Jensen, 2005; Yan et al., 2006; Huang et al., 2004; 

Chen et al., 2009; Blaschke, 2010; El-Ashmawy et al., 2011; Chen & Gao, 2014). 

Some remotely sensed data are acquired as point data, such as LiDAR point cloud data. This type of data 

is usually classified after resampling the points into a predefined grid space (e.g., raster grid). The 

resampling is usually performed for easier processing and for presentation purposes. Nevertheless, the 

acquired 3D point data loses some details when resampled to a 2D grid (Yunfei et al., 2008; El-Ashmawy 

& Shaker, 2014). Thus, classifying the point data using point-based classification logic without 

conversion into a raster grid is expected to preserve these details. Point-based classifiers are similar to 

the pixel-based classifiers. They deal with each data element (in this case, the data elements are points) 

individually and examine the attribute values of each point and assign it to one of the distinguished 

classes. The point data that have more than one attribute value are comparable to the multi-spectral 

raster image. 

2.2.2.2 Metric and Nonmetric Classification Logics 

To classify any dataset, the nature of the data values must be determined at the beginning. There are 

mainly four different types of data values: nominal, ordinal, interval, and ratio data values. Nominal data 

values are the values that enable users to differentiate between the data by providing names, 

categories, or identifiers to the data (e.g., names of countries, soil types, etc.), but no computation 

processes can be applied to this type of data value. Ordinal data values are the data that can be sorted 

by natural sequence (e.g., small, medium, and large; low, average, and high, etc.), yet ordinal data 

values do not allow any type of computation. Interval data values, however, are numbers (e.g., 

temperature, pressure, etc.) and allow some types of computations, but these values have no arithmetic 

zero and no ratios can be obtained from this type of values. However, ratio data values have natural 

arithmetic zero and support the multiplication and division computations (e.g., elevation, height, 

distance, etc.). 
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The classifiers can be divided into metric and nonmetric classifiers based on the nature of the data 

values that these classifiers deal with. Metric classification algorithms, such as maximum likelihood and 

minimum distance to means classifiers, deal only with interval or ratio data values, and cannot be 

applied to nominal or ordinal data values. That is because the metric classification logic depends on 

computation processes to classify the data. On the other hand, classifiers based on nonmetric 

classification logic, such as rule based and decision tree classifiers, can be applied to all types of data 

values, as no computations are necessary. The metric logic can use either parametric or nonparametric 

algorithms. Parametric classification algorithms, such as the Maximum Likelihood classifier (Subsection 

2.2.3.1), assume that the form of the underlying class density function is known and that the data are 

normally distributedsubsection. Conversely, nonparametric classification algorithms do not depend on 

the distribution of data, hence they can deal with data that are not normally distributed. Minimum 

Distance to Means classifier (Subsection 2.2.3.1) is an example of the nonparametric classification 

algorithms (Jensen, 2005). 

2.2.3 Supervised and Unsupervised Classification Techniques  

Classification can be categorized into supervised and unsupervised classification techniques. The 

supervised classification technique requires prior knowledge about the area to be classified, where the 

analyst defines the spectral characteristics of the information classes by identifying sample (training) 

data for each information class. The analyst then applies the selected classifier, based on the nature of 

the input data and the desired output, on the entire dataset to assign each element to one of the 

possible defined information classes (Bakker et al., 2001; Jensen, 2005).  

Conversely, the unsupervised classification technique does not require any knowledge about the area to 

be classified, where clustering algorithms can be applied to the data to partition the feature space into a 

number of clusters. The clustering algorithms produce spectral groupings based on numerical operations 

to satisfy certain similarities (i.e., natural grouping of the spectral properties). After partitioning the data 

into clusters, the clusters smaller than a threshold size are eliminated, and analysis of the clusters will 

take place by measuring the inter-cluster distances or divergence. Based on defined threshold values 

such as a minimum distance between the centres of clusters, a radius of the clusters, or a minimum 

number of elements in each cluster, certain clusters will be merged. The user, then, can assign each 

cluster to information classes of interest (Bakker et al., 2001; Jensen, 2005). 
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2.2.3.1 Supervised Classification Algorithms 

There are a number of classification algorithms that can be used for image classification. Among the 

classifiers that are intensively used in remote sensing applications are Parallelepiped, Minimum Distance 

to Means, and Maximum Likelihood classifiers. The following subsections give a brief description of 

these three classifiers. 

(1) Parallelepiped Classifier 

The Parallelepiped classifier is one of the simplest decision rules where the classifier depends on simple 

Boolean logic. Although this classifier is a simple and non-parametric algorithm (i.e., not restricted to a 

normal distribution of data values of each class), there are limitations of using this classifier. The main 

limitation of this classifier is that some elements may fall outside the parallelepiped of all classes, and 

others may fall on an overlapped area between more than one parallelepiped (Jensen, 2005).  

(2) Maximum Likelihood Classifier 

The Maximum Likelihood classifier is based on the probability of an element belonging to each of the 

predefined information classes, and then it is assigned to the class for which the probability is the 

highest. The probability density function is calculated based on the spectral values of the sample 

(training) data selected for each defined information class. The Maximum Likelihood classifier is a 

parametric classifier that assumes a normal distribution of data values for each class in each band. The 

Maximum Likelihood classifier is one of the supervised classification techniques that intensively uses in 

the multi-spectral remote sensing data. This classifier overcomes the drawback of overlapped classes in 

the Parallelepiped classifier. However, the conditions of the normal distribution of the spectral data 

create some limitations on its use. 

(3) Minimum Distance to Means Classifier 

The Minimum Distance to Means decision rule is a simple algorithm as is the Parallelepiped classifier. 

Yet it overcomes the problem of the overlapped classes as it depends on the shortest spectral Euclidean 

distance between the element and the spectral mean of each class (Jensen, 2005). The minimum 

distance to means classifier is nonparametric; therefore, it does not require normal distribution of the 

data of each class. 
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2.2.3.2 Unsupervised Classification Algorithms  

The Unsupervised classification technique requires minimal interference from the user/analyst, and no 

knowledge about the area to be classified is necessary. Clusters for different classes are formed by 

performing numerical operations on data values that seek natural groupings of the spectral properties 

of the data elements (i.e., pixels or points based on the data structure). There are two approaches for 

clustering or segmenting the data elements, dependent on or independent of their spatial location. The 

following subsections illustrate these two approaches with some examples.  

i. Segmentation Independent of Data Location 

The idea of segmentation, independent of data location, is based on gathering data elements, pixels or 

points that have the similar spectral characteristics, into segments regardless of their positions. Some of 

the unsupervised segmentation techniques are multidimensional that examine several 

attribute/spectral values of the data elements at the same time and define the clusters, such as the 

Chain Method and the iterative self-organizing data analysis technique (ISODATA). Conversely, other 

techniques are one-dimensional that examine one attribute/spectral values at a time (such as the 

histogram-based segmentation and skewness balancing segmentation). 

The histogram based segmentation is one of the simple statistical analysis segmentation algorithms, 

which operates on each data element independently of its spatial location. This segmentation algorithm 

slices the histogram of a certain attribute/spectral value, e.g., the brightness values of a panchromatic 

image, based on the number of modes contained in the histogram. The normal distribution is uniquely 

described by its mean and variance (first two moments); however, the higher order moments (skewness 

and kurtosis) can be used to characterize the data distribution that is not normal (Stricker & Orengo, 

1995; Liu et al., 2009). The skewness (𝑠𝑘) value, the third order moment about the mean, represents the 

degree of distribution asymmetry around the mean, where zero value indicates a symmetric 

distribution. Negative skewness value means skewing of the data to the left and longer tail to the right, 

and conversely, positive skewness value indicates skewing of the data to the right with long tail to the 

left. The kurtosis (𝑘𝑢) value, the fourth order moment about the mean, measures the relative flatness 

or peakness of the distribution about its mean; it describes how tall and sharp the central peak is. The 

normal distribution has a kurtosis value equal to 3. Values smaller than 3 indicate a flat and broader top 

than the normal distribution, and a value greater than 3 indicates a peak sharper than the normal. The 

skewness and kurtosis can be computed using the following formulas: 
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𝑠𝑘 = ( 
1

𝑁× 𝜎3 × ∑ ((𝑥𝑖 − 𝜇)3𝑁
𝑖=1 )

1
3⁄

 (2-10) 

𝑘𝑢 = ( 
1

𝑁× 𝜎4 × ∑ ((𝑥𝑖 − 𝜇)4𝑁
𝑖=1 )

1
4⁄
 (2-11) 

Where, 

𝑥𝑖 value into consideration; 

𝑁  number of points; 

𝜇  mean of the data; and 

𝜎  standard deviation of the data values. 

Where the mean 𝜇 and the standard deviation 𝜎 can be calculated using the following formulas: 

𝜇 =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  (2-12) 

𝜎 =  √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1  (2-13) 

The distribution of data values do not always follow a normal distribution. As explained before, 

skewness and kurtosis can describe the characteristics of the data distribution. Therefore, some 

statistical analysis segmentation algorithms were introduced recently that are based on the higher order 

moments (skewness and kurtosis) (Bartels & Wei, 2006; Bartels et al., 2006; Bao et al., 2007; Yunfei et 

al., 2008; Liu et al., 2009; Costantino & Angelini, 2011; Crosilla et al., 2011; and Crosilla et al., 2013). 

Bartels and Wei (2006) proposed the “Skewness Balancing” segmentation algorithm as an unsupervised 

segmentation technique for filtering LiDAR point cloud data, to separate object points from terrain 

points. The proposed approach was based on the assumption of Duda et al. (2001), indicating that the 

naturally measured samples will lead to a normal distribution based on the Central Limit theorem, and 

hence, the elevation values of terrain points will follow a normal distribution (Bartels & Wei, 2006). The 

authors assumed that elevation values of object points may disturb the normal distribution of terrain 

points, and by removing object points, terrain points will have a normal distribution. Consequently, the 

skewness value will be equal to (or very near to) zero if object points are filtered out. The algorithm of 

the skewness balancing approach works on the values of either gridded or random (irregular) points. 

The procedure of the algorithm, as shown in Figure 2-5, can be described as follows: first, skewness 

value of the entire point cloud data is calculated. If this value is positive, the point with larger elevation 
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value will be classified as object and removed from the dataset. Then, the same step will be repeated on 

the unclassified points in an iterative approach. The process will be terminated when the skewness 

value that is obtained becomes equal to or very near zero. The remaining points, then, will be classified 

as terrain (Bartels & Wei, 2006). An application of this approach will be described later. 

 

Figure 2-5: Procedure of Skewness Balancing Algorithm 
(Bartels & Wei, 2006) 

Yunfei et al. (2008) introduced another statistical analysis approach for segmentation of the elevation 

attribute values of LiDAR point cloud data. This approach depended on skewness and kurtosis change 

algorithms, where the skewness and kurtosis values of the points’ elevation values were used in the 

segmentation. The skewness/kurtosis change curve is a plot of skewness/kurtosis values versus cycle 

numbers. Where at the first cycle the skewness/kurtosis value is calculated based on the entire point 

data, for each following cycle the point with the highest value is removed and the skewness/kurtosis 

value is recalculated until the data are exhausted. By plotting the value of skewness/kurtosis versus the 

cycle number, change curves can be drafted. An underlying assumption that the change curve of terrain-

only points of a flat area will change smoothly, and an inflexion point will appear in the curve if the point 

data contain object points as well. Based on that assumption, Bao et al. (2007) considered the last 
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inflexion point of the change curve representing the dividing line between objects and terrain (Bao et 

al., 2007; Yunfei et al., 2008).  

Crosilla et al. (2011) introduced another approach that applies the change curve algorithm on LiDAR 

elevation and intensity data iteratively to separate points of a single segment (Crosilla et al., 2011; 

Crosilla et al., 2013). To apply this approach, the distribution of elevation and intensity values were 

analysed for each small area to decide which attribute value will start the process. The attribute value 

with distinguishable modes histogram, at least bi-modal, was considered first to separate certain 

segments. Then based on the histogram of the other attribute value of the remaining points, another 

iteration is conducted. These data analyses and separating iterations continue until all distinguished 

features are segmented. For example, Crosilla et al. (2011; 2013) segmented a selected area that 

contained an asphalt road in a flat, bare ground area into two classes (i.e., road and ground) based on 

the intensity attribute values. Nevertheless, when the area contained several features (e.g., ground, 

vegetation, road, and a roof top), the decision taken to start with the elevation values to separate the 

building, then the intensity values of the remaining points were considered to separate the road points. 

The elevation values of the remaining ground points were considered again to separate the terrain and 

vegetation areas (Crosilla et al., 2011; Crosilla et al., 2013). The results of this approach are described in 

Section 2.3.2.3. 

ii. Segmentation Dependent on Data Location 

Segments are individual regions with shape and spectral homogeneity that can provide meaningful 

features to be classified. Not all available segmentation algorithms can consider both the spectral and 

spatial information (as described in the previous subsection). Nevertheless, to form an object, its 

elements (points or pixels) have to be spatially connected, thus, dividing data into objects based on the 

spatial characteristics as well as the spectral characteristics is preferred (Jensen, 2005).  

One of the few algorithms that consider both spatial and spectral information was developed by Baatz 

and Schäpe (2000) (Jensen, 2005; Im et al., 2008; Blaschke, 2010; Chen & Gao, 2014). This algorithm 

compares each data element (pixel or point) to its neighbours and computes spatial and spectral criteria 

of homogeneity/heterogeneity. This algorithm is a region merging technique, which starts by 

considering each data element as a region/object, and then it merges each adjacent pair of 

regions/objects into one larger region/object based on local homogeneity criteria (spatial and spectral 

criteria, as described below). The newly merged objects are compared and any adjacent pair of objects 
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that satisfy the homogeneity criteria are merged into a larger region/object. The process continues until 

all homogeneous regions/objects are merged (Baatz & Schäpe, 2000). 

2.2.4 Decision Tree Classifier 

The decision tree classifier, also called a hierarchical decision tree classifier, is a nonmetric and 

nonparametric classification technique that predicts class membership by recursively partitioning a data 

set into more homogeneous subsets. This procedure is followed until every data element is 

discriminated from the elements of other classes, with all pure terminal nodes or until pre-set 

conditions are met for terminating the tree’s growth. This can be applied through identifying certain 

hypotheses, and the nodes evaluate the rules and conditions to test these hypotheses. The decision tree 

takes objects or situations, described by a set of attributes, as input and returns a decision (Hansen et. 

al, 2000; Jensen, 2005). 

2.2.5 Multiple Classifier System 

A multiple classifier system combines different classifiers to improve the achieved results. The main idea 

of the combined classifier is to rely on several classifiers (decision making scheme), and to improve the 

confidence of the decision made. This can be done by weighing various opinions (classifiers) and 

combining them through some thought process to reach a final decision. There are several forms of the 

multiple classifier system, such as ensemble based systems, hybrid classifiers, and decision 

combinations. The main two groups of combination rules are combining class labels, and combining 

continuous outputs (Polikar, 2006).  

If only the classification results (class names or values) are available, then the combining class labels rule 

can be used. As explained in Polikar (2006), for a number of classifiers 𝑇, the classification decision of 

the tth classifier is 𝑑𝑡,𝑗 ∈  {0, 1}, where 𝑡 =  1 . . . , 𝑇 𝑎𝑛𝑑 𝑗 =  1, . . . 𝐶 (where 𝑇 is the number of 

classifiers, and 𝐶 is the number of classes), i.e., if tth classifier chooses class 𝑤𝑗, then 𝑑𝑡,𝑗  =  1, and 0, 

otherwise. The commonly used combination rules are the majority voting and the weighted majority 

voting (Polikar, 2006). 

Majority Voting Rule ∑ 𝑑𝑡,𝑗
𝑇
𝑡=1 = max𝑗=1∶ 𝑐 ∑ 𝑑𝑡,𝑗

𝑇
𝑡=1   (2-14) 

Weighted Majority Voting Rule ∑ 𝑤𝑡 . 𝑑𝑡,𝑗
𝑇
𝑡=1 = max𝑗=1∶ 𝑐 ∑ 𝑤𝑡  . 𝑑𝑡,𝑗

𝑇
𝑡=1    (2-15) 
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Where,  

𝑇 number of classifiers; 

𝑑𝑡,𝑗  classification decision of the tth classifier; 

𝑤𝑡 weighting  factor of the tth classifier. 

 

If the continuous-valued outputs of individual classifiers are available, then combining continuous 

outputs rule can be used. These continuous values provided by the classifiers for a given class often 

represent the degrees of support the classifiers give to that class. The continuous-valued outputs of a 

class can be considered as a posteriori probability for that class if they are appropriately normalized to 

add up to 1 for all classes, and if the classifiers are trained with sufficiently dense data (Polikar, 2006).  

The confusion matrix method can be used to determine the accuracy of a certain classifier based on a 

number of reference points. The values of the confusion matrix for a certain classifier represent the 

degree of support given to each class by this classifier (Xu et al., 1992). The degree of support given to 

the classes is similar to the continuous-valued outputs of the classifier. If these values are normalized to 

add up to 1 for all classes, they can be considered as a posteriori probabilities of these classes. The 

general formula of the confusion matrix (𝐶𝑀𝑡) for a 𝑡 classifier that is classified into 𝑀 classes is given 

by Equation (2-16): 

𝐶𝑀𝑡 =

(

 

𝑛11
(𝑡)

⋯ 𝑛1𝑀
(𝑡)

⋮ 𝑛𝑖𝑗
(𝑡)

 ⋮

𝑛𝑀1
(𝑡)

⋯ 𝑛𝑀𝑀
(𝑡)

)

  (2-16) 

Where each column 𝑗 corresponds to the class 𝑣𝑗 , 𝑗 =  {1, 2, … ,𝑀} and each row 𝑖 corresponds to the 

event of assigned class 𝑣𝑖 to the point into consideration, 𝑖 = {1, 2, … ,𝑀}. The 𝑛𝑖𝑗
(𝑡)

 is the number of 

sample (reference) points that are originally in class 𝑣𝑗, but incorrectly assigned to class 𝑣𝑖. For  𝑖 =  𝑗, 

𝑛𝑖𝑗
(𝑡)

 is the number of points that are correctly assigned to class 𝑣𝑖 (Xu et al., 1992). These values are 

accepted as an estimate of the a posteriori probability for that class after scaling them to the [0, 1] 

interval (Kuncheva et al., 2001; Poliker, 2006), where the elements of each row/column had to add up to 

1. The process of scaling the elements of the 𝐶𝑀 to the [0,1] interval is called a normalization of the 

confusion matrix.  
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With the knowledge of the normalized confusion matrix 𝑁𝐶𝑀𝑡  for a classifier 𝑡, the uncertainty in the 

class 𝑣𝑖  assigned to the point 𝑝 into consideration can be described by the conditional probabilities that 

𝑝 ∈ 𝑣𝑖 , 𝑖 = 1, 2, … ,𝑀 are true under the occurrence of the assigning event 𝑙𝑘(𝑝) =  𝑣𝑗 (Xu et al., 1992).  

𝑃(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝) = 𝑣𝑗) =   
𝑛𝑖𝑗

(𝑡)

∑ 𝑛𝑖𝑗
(𝑡)𝑀

𝑖=1

 , 𝑖 = 1,… ,𝑀& 𝑗 = 1,… ,𝑀 (2-17) 

Where 𝑣𝑖𝑗
(𝑡)

 is the number of reference points of class 𝑗 that are assigned to class 𝑖 with the classifier 𝑡, 

and ∑ 𝑛𝑖𝑗
(𝑡)𝑀

𝑖=1 is the total number of reference points of class 𝑗 (summation of each column of the 𝐶𝑀). 

The confusion matrix can be considered as prior knowledge of an expert. This expert has a belief value 

with uncertainty that the point 𝑝, in consideration, belongs to the class 𝑣𝑖 (for all classes), which can be 

expressed in the form of the conditional probability as (Xu et al., 1992): 

𝑏𝑒𝑙(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝), 𝐸𝑁) =  𝑃(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝) =  𝑣𝑗𝑘), 𝑖 = 1,… ,𝑀 (2-18) 

Where, 𝐸𝑁 is the environment of the common classification environments that consist of independent 

events. Based on the Bayesian formula, when the classifiers are independent of each other, then the 

events 𝑙1(𝑝) =  𝑣𝑗1 , … 𝑙𝑘(𝑝) =  𝑣𝑗𝑘  will be independent of each other under either the condition of 

𝑝 ∈ 𝑣𝑖or the environment 𝐸𝑁, which leads to (as described in Xu et al., 1992): 

𝑏𝑒𝑙(𝑣𝑖) =  𝜂 ∏ (𝑝 ∈ 𝑣𝑖  |𝑙𝑘(𝑝) =  𝑣𝑗𝑘
𝐾
𝑘=1  ) (2-19) 

Where 𝜂 is a constant that ensures that ∑ 𝑏𝑒𝑙 (𝑣𝑖) = 1𝑀
𝑖=1  

There are other rules that can be used for combining multiple classifiers of the continuous-valued 

outputs (Polikar, 2006). Among the rules to be used are the algebraic combiners: mean rule, weighted 

average, minimum/maximum/median rule, and product rule (Polikar, 2006). The following formulas 

summarize these algebraic combiners. 

Mean Rule 𝜇𝑗(𝑥) =  
1

𝑇
 ∑ 𝑑𝑡,𝑗(𝑥)𝑇

𝑡=1    (2-20) 

Weighted Average 𝜇𝑗(𝑥) =  ∑ 𝑤𝑡,𝑗 . 𝑑𝑡,𝑗(𝑥)𝑇
𝑡=1   (2-21) 
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Maximum/Minimum/Median Rule 𝜇𝑗(𝑥) = max𝑡=1…𝑇{𝑑𝑡,𝑗 (𝑥)}  (2-22) 

𝜇𝑗(𝑥) = min𝑡=1…𝑇{𝑑𝑡,𝑗 (𝑥)}  (2-23) 

𝜇𝑗(𝑥) = median𝑡=1…𝑇{𝑑𝑡,𝑗 (𝑥)}  (2-24) 

Product Rule 𝜇𝑗(𝑥) =  
1

𝑇
∏ 𝑑𝑡,𝑗(𝑥)𝑇

𝑡=1   (2-25) 

Where,  

𝑇 number of classifiers; 

𝑑𝑡,𝑗  classification decision of the tth classifier; 

𝑤𝑡 weighting factor of the tth classifier; 

𝜇𝑗  total support received by class j. 

 

2.3 Classification of LiDAR Data 

Classification of LiDAR data, traditionally, has implied the separation of terrain point from other objects 

(non-terrain point) based on the elevation values of the LiDAR point cloud (Antonarakis et al., 2008; El-

Ashmawy et al., 2011). With the capability of LiDAR sensors to record the backscattered energy as 

intensity data, the traditional definition of LiDAR data classification has changed. The following sections 

contain some examples of using different classification techniques for land cover classification of LiDAR 

data. 

2.3.1 Classification of LiDAR Range Data 

Kraus and Pfeifer (1998) used LiDAR data to generate DTM in wooded areas by separating terrain from 

vegetation (non-terrain) points. The accuracy of the generated DTM was 25 cm in flat areas, and 

improved to 10 cm accuracy by removing the systematic errors in the elevation data. A filter, which is 

based on an iterative linear prediction algorithm, was used to filter out the vegetation points.  This 

algorithm worked well even in areas with low penetration rates (penetration rate for the laser signals 

within the study area was around 25%), and the number of iterations was between three and four. It 

was concluded that an automatic classification of the laser points into terrain and vegetation points was 

possible using special filtering. Moreover, the generated DTM from laser scanner data in wooded areas 

had an accuracy equivalent to DTM in open areas derived from 1:7000 scale aerial images. However, 
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both techniques (photogrammetry and laser scanner) were not able to detect break lines automatically 

(Kraus & Pfifer, 1998). 

Haala and Brenner (1999) combined LiDAR elevation data with a 1:5000 multi-spectral aerial image, with 

green, red and NIR bands, for building extraction. A mathematical morphological model using the 

approach described in Weidner and Förstner (1995) (as cited in Haala & Brenner, 1999), was followed to 

generate an approximate DTM.  A normalized DSM, which represented the object heights, was extracted 

by subtracting the derived DTM from the DSM that was generated from the LiDAR elevation data. The 

NDSM was used as an additional source of information to improve the classification results. A pixel 

based unsupervised classification technique, ISODATA, was used for classification. Five classes were 

obtained: shadow, building, tree, grass-cover-area, and street. It was found that combining LiDAR 

elevation data with coloured-infrared aerial image improved the classification results. For 3D building 

extraction, the DSM (produced out of LiDAR data) was combined with existing ground plans of the 

buildings. It was assumed that the plans were correct and defined the borders of the roofs exactly. 

Although no quantitative assessment of the results was done, it was concluded that detailed 

reconstructions of buildings can be automatically obtained using the DSM generated from the laser 

data. It was also concluded that using laser data in automatic generation of urban databases was 

strongly recommended (Haala & Brenner, 1999). 

 Ma (2005) extracted and regularized buildings from LiDAR data using the regression planner surface 

segmentation method. This method was used to separate the homogeneous planes that were 

representing ground, roads, and roofs within the study area. The planner surface fitting algorithm was 

implemented after converting the data into a raster grid with 1 m pixel size. An underlying assumption 

of the work was that in urban areas, the ground is flat, so it can be treated as a planar surface. A 30 cm 

elevation difference was selected as a threshold (double the vertical accuracy of the used LiDAR data) 

between any pixel and its eight neighbouring pixels (in window 3x3 pixels) to detect the planar surfaces. 

To separate the ground surfaces from the roofs of buildings, another assumption was made that the 

ground surfaces are connected and have areas greater than the largest size of buildings. Hence, the 

surfaces with area greater than the maximum building area (defined based on prior knowledge of the 

study area), were considered as ground. A DEM, then, was generated from the ground pixels, and 

refined by comparing the elevation of the DEM and the objects’ height. The object pixels that had a 

height difference less than a threshold of 30 cm were considered as ground points. On the other hand, 

ground pixels that had elevation values greater than the DEM elevation by more than 30 cm were 
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considered object pixels. This refinement process was repeated several times until no significant number 

of ground pixels was added to the DEM. After producing the DEM, a normalized DSM was generated and 

used to detect the high objects like trees and buildings. The low objects (3 m was selected to 

differentiate the high and low objects) such as cars and shrubs were detected as well. Based on the 

assumption that buildings have planar roofs, while trees do not, the generated planar surfaces were 

used to separate buildings and trees. The last step was building boundary regularization, where the 

boundaries of the buildings were regularized. For evaluating the classification results, and because of 

the lack of ground truth, the classified data were compared visually to the interpretation of the DSM 

that was generated from LiDAR data. Buildings that were intersected with trees or covered by trees 

were excluded from the evaluation step. The accuracies of the detected buildings were 80–93% for two 

study areas (Ma, 2005). 

Bartels and Wei (2006) proposed a “Skewness Balancing” statistical analysis technique to filter LiDAR 

point data to separate object and ground points based on elevation values (see Section 2.2.3.2 for a 

detailed description of the proposed technique). The proposed technique was applied to simulated data 

and verified on real data. The real data were two different urban areas with mixed detached objects 

(buildings and vegetation of different heights) and various attached objects (bridges, and motorways 

junctions). The detached objects were detected, yet not all the attached objects were. The results were 

displayed clearly; however, for the accuracy assessment a small area of 0.019 km2 was selected. An 

overall accuracy of about 96% was achieved (Bartels et al., 2006). The achieved accuracy is pretty high, 

which is due to the small size of the area that was used for assessment. Furthermore, no details are 

included about how the accuracy was assessed.  

In Bartels et al. (2010), the skewness balancing algorithm was extended to include terrain separation for 

hilly areas. This method works iteratively on the non-terrain points to re-separate the point data into 

terrain and non-terrain points. The step was repeated until the number of points reached a minimum 

number of points defined based on the characteristics of the data and an accepted error margin. Before 

starting the separation process, the area had to be classified as hilly or moderate terrain area using a 

linear regression analysis. A training set of 44 known LiDAR tiles collected from all over the world was 

used to derive the regression coefficients. The regression model was assessed using the cross-validation 

method, and 91% accuracy was achieved in classifying areas into hilly or moderate terrain areas (Bartels 

& Wei, 2010).  
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Bao et al. (2007) introduced another algorithm based on the statistical analysis segmentation technique 

for separating terrain points of LiDAR point cloud data. This algorithm was contingent on the changes in 

skewness and kurtosis values, where change curves of the skewness and kurtosis of LiDAR elevation 

values were plotted and used in the segmentation (Subection 2.2.3.2). Bao et al. (2007) considered the 

last inflexion point of the change curve as the separation between objects and terrain points. The 

authors applied this approach to three different areas: 1) a city area with densely packed buildings with 

vegetation areas, 2) a city area with railway station and buildings, and 3) a forest area with steep sloped 

terrain and vegetation on riverbanks. It was shown that on the flat areas with objects of various 

elevations, the inflexion of the kurtosis change curve was clear and used to separate the objects. When 

there were objects with different elevations, as in the second area, more than one inflexion point 

appeared in the kurtosis change curve. In the case of sloped terrain as in the third area, it was not easy 

to determine the inflexion of the curves. The authors concluded that the kurtosis change curve was 

better than the skewness change curve for object/terrain separation, and that this approach was not fit 

with sloped areas. All the results, in this research, were evaluated visually and no quantitative 

assessment was obtained. 

2.3.2 Classification of LiDAR Range and Intensity Data 

With the capability to record the intensity of the reflected energy, intensity data were included in the 

classification process of LiDAR data. Using various classification techniques, intensity data were 

investigated to be used to distinguish different target materials as the laser signals that are utilized in 

LiDAR systems are in the NIR wavelength. Some examples of including LiDAR intensity values in the 

classification process of LiDAR point cloud data are depicted below. 

2.3.2.1 Pixel-Based Classifiers 

Hui et al. (2008) used LiDAR intensity and elevation data for land cover classification. First, terrain points 

were separated from non-terrain points using a filter algorithm on the elevation data, and no 

information about the filter was provided. Secondly, the separated points were classified using a 

supervised classification technique that was applied to the intensity data to differentiate four classes of 

the separated points: tree, building, bare earth, and low vegetation. It was concluded that combining 

the intensity data with the height data was an effective method for LiDAR data classification. However, 

the classification algorithm was not explained, and no quantitative accuracy assessment was included in 

that research. 
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Other research combined LiDAR data with other auxiliary data such as multispectral aerial photos or 

satellite images, USGS DEM, texture data, and multiple-returns data. Charaniya et al. (2004) used 

elevation data, intensity data, height variation data, and multiple-return data of LiDAR, luminance data 

of a panchromatic aerial imagery, and USGS DEM (to extract normalized height data) for land cover 

classification. USGS DEM was subtracted from the DSM to generate normalized height data. The height 

variation data were determined by calculating the difference between the minimum and maximum 

height values within a window of 3x3 pixels. It was expected that there would be significant height 

variation in the high vegetation areas. The difference between the first and last returns of elevation data 

was included. A supervised parametric classification algorithm, Expectation Maximization, was used to 

distinguish four classes: trees, grass, roads, and roofs. Different band combinations were investigated, 

and the overall accuracy ranged between 66 and 84% depending on the band combination that was 

used in the classification. It was concluded that height variation improved the classification results of the 

high vegetation areas; luminance and intensity data were useful for distinguishing roads from low 

vegetation areas; and the multiple-return differences slightly improved the classification of roads and 

buildings but reduced the accuracy of the other classes. 

A rule-based approach for LiDAR data was presented by Bartels et al. (2006) to improve the accuracy of 

the classification obtained by using supervised Maximum Likelihood classification. First and last echo 

DSM, and intensity data were fused with other co-registered bands—aerial image (RGB) and near 

infrared image (NIR). Some rules were added based on pre-known characteristics of the features in the 

study area (area of buildings, cars, size of the smallest object, etc.). Four classes were identified: 

buildings and sheds, vegetation (including trees and low vegetation), cars (as can be spotted in the high 

resolution dataset of 0.5 m pixel size), and ground (top layer soil, thin man-made layering). The accuracy 

that was obtained varied based on the bands used in the classification. The overall accuracy of using the 

Maximum Likelihood classifier with intensity and height data were 36 and 51%, respectively. Combining 

the two data sets improved the overall accuracy to 62%. The accuracy that was obtained reached 71% 

when the first and last echo data were used. Using the co-registered data improve the accuracy by 13–

33%, it was concluded that the LiDAR data (intensity, first and last echo bands) improved the detection 

of low vegetation and grass. By applying the rule-based approach, where some criteria were set based 

on the characteristics of the study area, the classification accuracy was improved. The classification 

accuracy of the buildings, vegetation and ground ranged between 81.91 and 89.88%, and the user’s and 

producer’s accuracies of the cars class improved by 5 and 32%, respectively (Bartels et al., 2006). It is 
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observed from the quantitative assessment that the used number of pixels in the confusion matrix is 

more than 75000 points, over an area of 0.019 km2, which are most likely the entire dataset. The area of 

0.019 km2 is too small to consider the obtained accuracy as a generic assessment of the used 

classification technique. 

2.3.2.2 Object-Based Classifiers 

The previous section depicts some examples of the studies that investigated the classification of LiDAR 

data using supervised and unsupervised pixel-based classifiers for distinguishing land covers. 

Nevertheless, these pixel-based classifiers might not be efficient with high resolution images, according 

to Blaschke (2010). Object-based classification using image segmentation was proposed for land cover 

classification of the high spatial resolution imageries. LiDAR intensity images can be considered as high 

spatial resolution images, especially for the dense data that are more than one point per square metre. 

The object-based approach for LiDAR intensity data classification has been investigated in several 

studies. Brennan and Webster (2006) used a rule-based, object-based classification approach for 

distinguishing ten classes of land covers in an urban coastal area. This coastal area included saturated 

and non-saturated intertidal sediments of the wetland, saturated or stressed and lush ground cover 

vegetation, low and tall deciduous and coniferous trees, roads and bare soil, bright-roofed structures, 

dark-roofed structures, and water. The classification approach was applied to five different layers 

generated from LiDAR data. DSM, DTM, normalised height, intensity, and multiple return data were 

used in the study. A data supplier provided the ground and non-ground data as well, and an ortho-

photography was used for collecting the ground truth. The overall accuracy of the ten classes was 94% 

and increased to 98% when the classes aggregated to seven classes. The authors used eCognition 

software for objects recognition. That software uses an Object-Oriented rule-based approach based on 

the algorithms developed by Baatz and others for objects separation (Brennan & Webster, 2006). It can 

be observed that the rule-based classification approach used in this study is very sophisticated and 

adopted for this particular area. 

Antonarakis et al. (2008) followed a different object-based approach for land cover classification in 

natural and planted forests. That approach used point distribution frequency criteria; skewness and 

kurtosis, as additional information layers to differentiate land cover classes; water, short vegetation, 

bare earth, gravel bars, and trees with different ages in floodplain areas. There were six information 

layers that were used in this study: 1) vegetation height model (VHM), which was the difference 
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between minimum and maximum elevation values within each 5m cell. 2) Percentage canopy hits 

model, (PCM) within 10 m cell size. 3) Intensity model (IM), average intensity within 5m cell size. 4) 

Intensity difference model (IDM), the difference between the first pulse minima and the last pulse 

maxima within each cell. 5) Skewness model (SkM), the skewness of the elevation values of each 5 m 

cell size; and 6) Kurtosis model (KrM), the kurtosis of the elevation values of each 5 m cell size. A 

decision tree was used to differentiate between the eight classes. This study verified that a combination 

of intensity and elevation LiDAR data can be used for multiple land cover classification in a forest area. 

The commission and omission errors were considered for assessing the classification results. It showed 

that high accuracy of 95% can be achieved for forest areas (Antonarakis et al., 2008).  However, good 

analysis of the data for each class had to be done first to set the suitable criteria for separation. 

Moreover, a well-detailed decision tree is required for each area. 

Hu et al. (2004) have integrated LiDAR data and aerial photography to automatically extract roads in 

dense urban area. They used a segmentation technique to distinguish roads in both datasets (LiDAR data 

and the aerial photography). The height (elevation) data was used to separate low areas (roads, parking 

lots, and grass) from elevated objects (trees, buildings, and bridges). The iterative Hough transform was 

used to determine the road strips, and a grid was formed by removing the incorrect segments. Vehicle 

detection was used to separate parking areas from grassy areas; and the shape of large areas was used 

to exclude parking areas from the roads network. The work described in this paper indicated that 

involving multiple source of information improved the extraction results in complicated scenes. 

However, no quantitative evaluation of the classification results was included in this study. 

2.3.2.3 Statistical Analysis Classifiers 

Yunfei et al. (2008) introduced the skewness change curve algorithm to separate terrain from non-

terrain points of LiDAR point cloud data. For flat areas, the skewness algorithm was applied to the 

elevation values to separate objects and terrain points. For mountainous areas, they improved the 

skewness algorithm to separate terrain and vegetation points by applying the skewness algorithm on 

the intensity values of the LiDAR data. Using visual assessment, the classification results were evaluated. 

To assess the terrain separation results, a cross section was sketched from the point cloud data before 

and after applying the algorithm. That cross section went through flat and mountainous areas with high 

and low vegetation. The cross section of the data after separation show the flat area with no vegetation 

points, but in the hilly area the points were of terrain, low vegetation, and few points of high vegetation. 
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Crosilla et al. (2011) introduced a new sequential procedure based on skewness and kurtosis change 

curve algorithms to classify LiDAR point cloud data. This procedure studied the skewness and kurtosis 

values of elevation and intensity values of LiDAR point cloud data, iteratively. They made an assumption 

that the values of a homogenous class in a LiDAR dataset is expected to follow a normal distribution. 

Therefore, the density function of both attribute values (intensity and elevation) had to be analysed at 

the beginning to decide the attribute value that would be considered first, which usually is the attribute 

value with bi or multi-mode distribution. The points with higher attribute value than the maximum 

kurtosis point, where the local maximum in kurtosis change curve was, were separated in a cluster. 

Successive clusters were identified by applying same iterative procedure on the unclassified points. That 

procedure was applied to LiDAR data of two small areas, with point density of 12 pts/m2. The first 

selected area contained small part of an asphalt road in a flat bare ground area. Therefore, the first 

experiment was for road extraction where the kurtosis change curve algorithm was applied to the 

intensity values to extract road points out of other ground points. Then the algorithm was applied to the 

elevation values of the extracted road points to refine the results. Refining the results was applied 

because there were some points with higher elevation, and similar intensity was classified incorrectly as 

roads. The second area was also a small flat area, but it contained several features—ground, vegetation, 

road, and part of a roof. In this experiment based on the observation of the elevation and intensity 

histograms, a decision was made to begin with the elevation values for separating object points. Based 

on the kurtosis change curve approach, the points of the building were separated from the ground 

points. Then the classified points as ground were classified again using the kurtosis change curve based 

on the intensity values to extract the roads. After that the elevation values of the remaining ground 

points were analysed again to be clustered into vegetation and ground points. The two described 

experiments showed that this procedure works well with small areas. For quantitative evaluation, the 

classified data were compared to a manual classification of same areas. The total error, which is the 

percentage of the misclassified points to all points, was considered. The total errors in the first and 

second experiment were 5.6% and 1.2%, respectively (Crosilla et al., 2011). It was noticed from these 

experiments that the algorithm was applied to very small areas with few features. 

Crosilla et al. (2011) introduced a method for partitioning large areas into regular subsets to enable and 

simplify the classification process toward improving the kurtosis change curve procedure to make it 

applicable for large and/or complex areas. The proposed partitioning method was applied to two 

complex large areas. The first area consisted of two flat areas at different elevations that were 
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connected by a sloped terrain covered by vegetation. The second area was a large area (around 10 ha) 

that contained a sloped terrain covered by buildings and vegetation, and flat area covered by buildings, 

roads, and complex vegetation. Therefore, based on the distribution of the intensity and elevation 

values of the points, the area was partitioned into four sub-areas. Whenever there was a multi-mode 

distribution of the data values, the sub-area was partitioned into four sub-areas. Then the kurtosis 

change curve approach was applied to the final partitions. To evaluate the classification results, the 

results were compared to manual classification of the same area. The total errors in the classification 

were 8.9% for the first complex area and 1.4% for the second complex area (Crosilla et al., 2011; Corsilla 

et al., 2013). 

By studying the classification techniques used for LiDAR data, it can be noticed that the pixel-based 

classification logic is still under investigation. Adding auxiliary layers improves the classification accuracy 

of LiDAR. It was observed that the point-based classification was used only with the statistical analysis 

classification approaches. Nevertheless, the statistical analysis classification was used to separate the 

terrain from the non-terrain or for separating certain classes. No automatic classification approach 

based on the point data was previously used. Therefore, the methodology introduced for this research 

focused on investigating the pixel-based classification with adding more layers extracted from LiDAR 

original data to improve the classification results of LiDAR data only. The methodology included two 

proposed point-based classification approaches for the 3D point data without converting them into 2D 

grid. 
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3. Methodology 

3.1 Overview 

This chapter describes the methodology that was used to achieve the research goal of developing an 

approach for land cover classification using LiDAR elevation and intensity data. The methodology 

consists of three parts as represented by dashed rectangles in Figure 3-1. It is noteworthy that the 

methodology described through this chapter is a generic methodology. Terms and parameters required 

for applying the methodology will be specified during the explanation of the experimental work.  

Part-1 investigated the image classification techniques where LiDAR point cloud data were converted 

into raster images, and then image classification techniques were applied. Pixel-based and object-based 

classification logics were investigated. For the pixel-based logic, one of the image classifiers was used. 

While for the object-based logic, a decision tree was developed to convert the image data into surfaces 

and classify these surfaces. The developed decision tree was designed to apply specific rules on both 

elevation and intensity LiDAR data to separate the data into distinguished land cover classes. The criteria 

used for classification were expressed out of the characteristics of each class as distinguished in the 

study area. Moreover, several layers were derived from the intensity and elevation images and included 

in the classification to improve the classification results. 

Point-based classification logic was followed in Part-2 and Part-3. Two different approaches were 

developed to classify LiDAR point cloud data without converting the data into raster images. In Part-2, 

the developed approach classified the point data using a supervised classification technique based on 

the elevation and intensity attribute values of the LiDAR point cloud data. Based on data acquisition 

mission planning methods, large areas are scanned from several flight lines with side lapping around 20–

30%. That leads to having several data-strips with different acquisition characteristics for the same area. 

All acquired data had to be considered in land cover classification processes. Therefore, the point-based 

classification was conducted on both single and multiple data-strip(s). Various data combination 

approaches were introduced for combining the multiple data-strips in the overlapped areas. A new 

technique, Combined Multiple Classified Datasets (CMCD), for combining the classified data is 

introduced.  

In Part-3, the point data were classified using a new approach that depended on kurtosis change curve 

segmentation algorithm based on the attribute values of LiDAR point cloud data. The new classification 
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approach consisted of two parts; first, the point cloud data were segmented using the new 

segmentation technique. This segmentation technique was applied to the attribute values in 

consideration one-by-one. Then, second, the produced segments were classified using a supervised 

classification technique, where each segment was treated as a single object to be assigned to one of the 

predefined distinguished classes. 

 

Figure 3-1: Methodology Flow Chart 

Using point data in Part-2 and Part-3, LiDAR footprints have irregular spatial distribution because of the 

physical and geometrical characteristics of the ground targets as well as sensor and acquisition 

characteristics. Therefore, gaps appear between LiDAR footprints and, consequently, classified point 

data were expected to have irregular spatial distribution and gaps would appear within the classified 

points. For obtaining classified data for the whole area without any gaps, and for a reliable comparison 
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between the classification results of the three reported methods, a rectangular grid space was defined. 

The extent of the grid space in 𝑋 𝑎𝑛𝑑 𝑌 directions represented the boundaries of the study area. A 

distance ℎ, which denoted the pixel size of the raster grid and the spacing between grid points in point 

grid spaces, was selected based on the point density and the footprint of the original LiDAR point cloud 

data in the way that the grid point density will be equal to the average original point density, and the 

spacing between the grid points will be equivalent to the size of the footprint. All attribute values were 

converted into images with pixel size ℎ for the raster grid. However, for the point data format, the 

defined grid points, with spacing ℎ in both directions, were used to fully populate the study area 

regularly, and to fill the gaps between the LiDAR footprints. Consequently, the different classification 

cases would be spatially coincided and their results could be compared. 

It is worth mentioning that this research was conducted on point cloud LiDAR data that were 

geometrically calibrated and radiometrically corrected (provided in 𝑥, 𝑦, and 𝑧 coordinates, and 

intensity1, (𝐼) values, in ASCII format file). Each of the three parts is described in more detail in the 

following subsections. 

3.2 Raster Image Classification (Part-1) 

Part-1 is the classification of LiDAR data using one of the existing image classification techniques, where 

LiDAR point data, first, were converted to a predefined raster grid space. Then, the raster data were 

classified using either pixel-based or object-based classification logics, in Figure 3-1 (the blue dashed 

rectangle; Part-1). Usually, LiDAR data have two attribute values that can be considered in classification: 

elevation values (𝑧) and intensity values (𝐼). Raster grids (images) were produced based on each one of 

these attribute values. The Brightness Values (BVs) of the produced pixels were determined by 

resampling and interpolating the point data into the defined raster grid space.  

The Kriging interpolation technique was used to convert LiDAR elevation and intensity attribute values 

into raster grid images. The elevation values of LiDAR point clouds (𝑧 coordinates) were interpolated and 

a digital surface model (DSM) was produced. By interpolating the intensity values of the LiDAR point 

clouds (𝐼 values) an intensity image was produced. By converting both elevation and intensity point data 

                                                           

1 
In this research, the term “intensity” denotes the radiometric corrected intensity. 
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into raster grids, the gaps between LiDAR footprints were filled and the produced images, intensity, and 

DSM were fully populated. Two classification logics, pixel-based and object-based, were examined and 

applied to the raster images (intensity image and DSM).  

3.2.1 Pixel-Based Classification 

A supervised classification technique was conducted to investigate the possibility of producing land 

cover classes from LiDAR intensity and elevation data. From the literature, adding auxiliary data such as 

aerial photos or satellite images to LiDAR data improved the accuracy of the land cover classification 

results (Hala & Brenner, 1999; Charaniya et al., 2004; Bartels et al., 2006). However, the focus of this 

research is on using LiDAR data (elevation and intensity values) independently of any other sources of 

data. Other auxiliary layers that could be extracted from LiDAR data may be included in the classification 

process. The workflow of the pixel-based classification is divided into four steps: data preparation, layer 

combination, data classification, and results evaluation. Figure 3-2 illustrates the workflow of the pixel-

based classification process with its four steps. The details of the workflow steps are described in the 

following subsections. 

3.2.1.1 Data Preparation 

Point data in (𝑥, 𝑦, 𝑧, and 𝐼) values were used to form three different files representing intensity, 

elevation, and terrain points data. The intensity data file contained (𝑥, 𝑦, and 𝐼) values, the elevation 

points file contained (𝑥, 𝑦, and 𝑧) values for all points, and the terrain points file contained (𝑥, 𝑦, and 𝑧) 

values for the terrain points only. These three files were converted into raster format (images) and 

interpolated to produce intensity image, digital surface model (DSM), and digital terrain model (DTM). 

The DSM was generated by interpolating and resampling the elevation values of LiDAR point cloud data. 

In the case of single return data, the DSM could be produced from the elevation values (𝑧 coordinates) 

of the entire dataset. Yet in the multiple return data, only first return data should be used, whereas to 

generate the DTM, the elevation values (𝑧 coordinates) of the last return points could be resampled and 

interpolated. While in the case that the multiple return LiDAR data were not available, some LiDAR 

points on the ground (such as roads, bare soil areas, and grass areas) could be collected to represent the 

terrain surface. The collected points then would be resampled to the predefined grid space and 

interpolated to produce the Digital Terrain Model (DTM). 
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Figure 3-2: Workflow of Pixel-Based Classification of LiDAR Data 
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Adding other layers to the original LiDAR data layers was expected to improve the classification results. 

Yet, since the focus of this research was on the LiDAR data independently, the auxiliary layers that may 

be added were extracted from the LiDAR data itself. Three auxiliary layers were extracted within the 

data preparation stage: the texture of the intensity, the normalized digital surface model NDSM, and the 

slope of the elevation models. The height of objects above the terrain was expected to improve the 

classification results, which can be represented by the NDSM. The NDSM was generated by subtracting 

the DTM from the DSM. Another extracted layer from elevation data that was expected to enhance the 

accuracy of the classification results was the slope of the DSM or the NDSM. The slope of both the DSM 

and the NDSM were generated based on the differences between the elevation value of each pixel and 

its neighbours for both the DSM and the NDSM. The texture of the intensity data was also extracted as 

an auxiliary layer to represent the homogeneity of object materials on the ground. The texture of the 

intensity layer was generated based on the variation in the intensity values among each pixel and its 

neighbouring pixels in a 3x3 window. 

3.2.1.2 Layer Combination 

The second step was the layer combinations, where two or more layers were combined into one multi-

layer raster grid (image). The investigated multi-layer combination cases are as listed below. The ortho-

rectified aerial imagery was included as another case for comparison reason. 

1) Aerial Photo, 2) DSM, , 

3) Original Intensity, 4) Intensity  

5) Intensity and DSM, 6) Intensity and NDSM, 

7) Intensity, DSM and Texture, 8) Intensity, NDSM and Texture, 

9) Intensity, DSM, Texture and DSM Slope, 10) Intensity NDSM, Texture and NDSM Slope  

3.2.1.3 Image Classification 

In the third step, classification of the various layer combinations was executed. ERDAS Imagine software 

was used to apply one of the existing supervised image classification techniques. The classification 

process started with the selection of training sites for each of the distinguished classes. A training site 

was identified wherever there was a variation of the pixel brightness values within the class. Data 

distribution of the selected training sites was tested to ensure that it followed a normal distribution if a 
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parametric classification algorithm would be applied. Then one of the existing classification algorithms 

was applied to each pixel of the raster images and the appropriate class was assigned to the pixel into 

consideration.  

3.2.1.4 Results Evaluation 

The fourth and last step was the results evaluation, where the classifications results were assessed. A 

number of reference points that were randomly selected and well-distributed over the study area were 

used to evaluate the classification results using the confusion matrix approach. Finally, the accuracies 

that were achieved from the classification results of the different layer combinations were compared to 

each other to conclude the best combination of layers, and to determine which layer would affect the 

classification results. 

3.2.2 Object-Based Classification 

The main idea of object-based classification logic is to divide the data into objects and then classify them 

into distinguished classes based on certain criteria for each class. To apply the object-based classification 

logic, a decision tree was developed to divide LiDAR data into the distinguished classes. For each study 

area, the characteristics of each class should be studied to set the criteria for separating each class. For 

urban areas, examples of the expected classes might have the following characteristics: 

Class 1 (Houses): homogenous intensity surfaces, and are elevated above the terrain. 

Class 2 (Trees): heterogeneous intensity surfaces, and are elevated above the terrain. 

Class 3 (Roads): homogenous intensity surfaces, and are attached to the terrain. 

Class 4 (Grass and bare soil): heterogeneous intensity surfaces, and are attached to the terrain. 

 

A decision tree was developed in this research to separate the distinguished classes. The developed 

decision tree followed three steps. a) It started with data preparation, b) followed by classification Level-

1, and finally, c) classification Level-2, as shown in Figure 3-3. In the data preparation step, the intensity 

and elevation data were interpolated and resampled to the pre-defined raster grid space (i.e., image). 

The intensity image was then segmented into homogenous regions, and a NDSM was generated from 

the DTM and DSM. The raster segmented intensity image data were divided into homogenous and 

heterogeneous surfaces, and the NDSM were divided into terrain and non-terrain surfaces producing 

four Level-1 clusters. Then, the Level-1 clusters intersected to produce Level-2 classes based on the 

mentioned criteria.  
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Figure 3-3: Developed Decision Tree for Object-Based Classification of LiDAR Data 
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heterogeneous non-terrain, homogeneous terrain, and heterogeneous terrain. These objects, then, can 

be assigned to Level-2 classes based on the described class characteristics.  

3.3 Point Data (Point-Based Logic) Using Existing Classification Algorithm (Part-2) 

LiDAR data are irregularly distributed, and more than one point may have almost the same planimetric 

position (𝑥, 𝑦 coordinartes) with different attribute values (elevation, 𝑧 and intensity, 𝐼). When these 

points are resampled to a regular grid to produce an image, several points may be located on the same 

grid position, and only one attribute value has to be associated with this grid position. Consequently, the 

value of the resampled point will be either one of the original values, or the average of all point values 

within the area that is represented by this grid point. That will cause information losses for the rest of 

the points. Therefore, the classification results of LiDAR point data, which depend on the original 

attribute values of these points (𝑧  and 𝐼), are expected to be more accurate than the classification 

results of raster image data converted from the same points. Afterwards, to produce a land cover map, 

the classified point data can be converted into raster maps.  

The second part of the methodology, which is defined by the green dashed rectangle of Part-2 in Figure 

3-1, investigated the point-based classification logic for land cover classification of LiDAR point cloud 

data. MATLAB code was developed to perform a supervised classification of LiDAR point cloud data 

based on the intensity and elevation attribute values using one of the existing classification algorithms. 

After that, to produce a full, populated land cover image of the study area, the classified points were 

resampled to the pre-defined grid space, and the grid points that were covering the gaps between the 

resampled points were assigned to the appropriate land cover classes. Two new approaches for filling 

these gaps and assigning grid points to the appropriate classes were introduced in this part (Subsection 

3.3.2.1). 

As mentioned in the introduction of this chapter, airborne LiDAR data are usually acquired from 

different flight trajectories in a number of strips. Combining the data of different data-strips is required 

to get the benefit of these dense data. Data collected in overlapped areas between different strips has 

discrepancies in their intensity values due to changes in flying altitude, attitude, and sensor scanning 

angle. These discrepancies in intensity values will affect the classification accuracy of the data. 

Radiometric correction of the intensity data may help to homogenize the intensity recorded in different 

strips. However, some discrepancies might still affect the classification process.  
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Figure 3-4 illustrates an example of a small part of a real dataset in an overlapped area. Different 

methods were introduced in this section to include data of multiple data-strips in the classification 

process. Multiple data-strips can be combined before or after the classification. When data were 

combined before classification, the classification process was performed on only one group of point data 

acting as a single data-strip in the classification process. A new combination approach was introduced in 

this research to combine the classification results of multiple data-strips when each data-strip was 

classified separately. This new approach is called the “combined multiple classified dataset” (CMCD). 

The CMCD approach was developed based on the concept of the Combined Multiple Classifier (CMC) 

technique. The CMC was introduced in different pattern recognition research fields, where particular 

data were classified using different classification algorithms and the results of the classification were 

combined based on the accuracy of each classifier (Xu et al., 1992; Polikar, 2006; Yan & Shaker, 2011). 

The CMCD combined the classification results of different data-strips based on the a posteriori 

probability of each class of the classified data and an inverse weighted distance factor (that was 

determined based on the distances between each grid point to be classified and the original LiDAR 

points of each data-strip).  

  
a LiDAR Point Data of First Strip b 

LiDAR Point Data of Second Strip 

 
c 

LiDAR Point Data of the Two Strips 

Figure 3-4: Sample of Point Clouds Data of an Overlapped Area  

The general workflow for single and/or multiple data-strips consisted of three stages as shown in Figure 

3-5, first a data preparation stage, then a classification stage, and finally an evaluation stage. The data 
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preparation stage included distinguishing land cover classes of the study area and defining the class 

values, selecting the training sites to be used in the supervised classification, generating grid points 

covering the study area, and generating reference points and collecting their ground validation. 

The second stage was the classification stage, which consisted of two parts—Stages 2A and 2B (Figure 3-

5). Stage 2A was applicable for all point data-strips (either single or multiple data-strips), where original 

points of each data-strip were classified and resampled to the grid space, and the generated grid points 

were assigned to the appropriate classes. Stage 2B, which represented the CMCD, was applicable to the 

multiple data-strips only, where it was applied to the classification results of each data-strip. Stage 2B, 

included calculating the a posteriori probabilities of each class for each data-strip, determining inverse 

distance weighting factors, and combining the classification results. The third stage was the evaluation 

of the final classification results where the ground validation points were used to assess the final 

classification results. 
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Figure 3-5: Workflow of Point Data Classification 

3.3.1 Data Preparation Stage 

The data preparation stage consisted of four steps: 

Defining Classes: According to land cover types of the study area, 𝑀 distinguished classes were defined 

as {𝑣1, 𝑣2, … , 𝑣𝑀}.  

Selecting Training Sites: Based on the location of the distinguished land cover types (classes) within the 

study area, several sites for each land cover type were selected to be used as training information for 

the supervised classification processes.  

Defining Grid Points: Because of the irregularity of the spatial distribution of LiDAR points, and the gaps 

between LiDAR footprints, a rectangular grid space 𝑆 was defined and grid points were generated. 𝑠𝑖 

represented the 𝑖𝑡ℎ point on the rectangular grid space 𝑆, where 𝑖 =  1, 2, … ,𝑁  and 𝑁 is the total 

number of points in the rectangular grid space 𝑆. 

Collecting Ground Validation Data: Two sets of reference points were randomly selected, one from the 

irregular original points and another one from the regular grid points. These reference points should be 

well distributed over the study area.  

The outputs of this stage were ASCII files; a file for each data-strip, contained the data of the original 

LiDAR points, (point 𝐼𝐷, 𝑥, 𝑦, 𝑧, 𝐼, and the classes of the reference points 𝑣𝑟, where  𝑟 =  1, 2, … ,𝑀). 

Another file contained the data of the grid points (point 𝐼𝐷, 𝑥, 𝑦, and 𝑣𝑟the classes of the reference 

points, where 𝑟 =  1, 2,… ,𝑀). 

3.3.2 Classification Stage 

The classification stage was divided into two parts; Stage 2A and Stage 2B. In Stage 2A original point 

cloud data of each data-strip were classified into the distinguished classes using one of the existing 

classification algorithms. The generated grid points were then assigned to the appropriate classes based 

on the classification of the original points. Each grid point might be assigned to several classes, one from 

each data-strip. Yet, that the classification results of any grid points from different strips may not 

necessarily be similar. 

Stage 2B describes the proposed CMCD approach, where the classification results of all data-strips were 

combined based on specified weighting factors. Then, the final classification results of the grid points 

were decided based on these weighting factors. The first two steps of Stage 2B were for determining the 
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weighting factors. The first factor was the a posteriori probability of each class based on the 

classification results of each data-strip. The second factor was the inverse distance between the grid 

point into consideration and the nearest original LiDAR point in each data-strip. The last step of the 

CMCD was the combination of the classification results based on the calculated weights. The following 

sections describe the process of the point classification using the newly developed CMCD. 

3.3.2.1 Stage 2A: Classification of a Single Data-strip 

i. Classification of Original Point Cloud Data  

MATLAB code was developed to apply the selected supervised classification algorithm on LiDAR point 

clouds data, based on the considered attribute values. The input of this code was an ASCII file that 

contained the LiDAR point cloud attribute values (𝐼𝐷, 𝑥, 𝑦, 𝑧, 𝐼, 𝑣𝑟). The classification algorithm was 

applied to the point data of each data-strip 𝐷𝑑, the output was an ASCII file, for each data-strip, 

contained the values of the input point data in addition to a new field that contained the assigned class 

for each point (𝐼𝐷, 𝑥, 𝑦, 𝑧, 𝐼, 𝑣𝑟 , 𝐶𝑙𝑠).  

ii. Assigning Classes to Grid Points 

In this step, depending on the classification results of the original LiDAR point cloud data, the grid points 

were assigned to one of the predefined land cover classes. First, the original classified point data were 

resampled to the generated grid space. The most frequent class of the classified point data within a 

square area of ℎ × ℎ, where ℎ is the spacing distance between grid points, was assigned to the 

resampled point that represented this ℎ × ℎ area. Then, the grid points that coincide with the 

resampled LiDAR points were assigned to the same classes as the resampled points. The rest of the grid 

points remained unclassified. Figure 3-6 illustrates the steps of assigning classes to the grid points that 

coincide with the resampled points. 

Two methods were followed to assign the grid points to the appropriate classes, or to fill the gaps 

between LiDAR footprints. The first method was a nearest neighbour approach, where each unclassified 

grid point was assigned to the class of the nearest original point. The other method was an Iterative 

majority moving window approach, where at each iteration, the unclassified grid point that was 

adjacent to classified ones was assigned to the most frequent class of the eight neighbouring points (3x3 

pixels window with the centre that coincides with the grid point to be classified). The iterative process 

continued until all grid points were assigned to one of the predefined classes. Figure 3-7 illustrates an 
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example of assigning a grid point to a different classes based on the followed filling gap method, in the 

first case the Nearest Neighbour approach. The nearest original point to the grid point is classified as 

Class 3; therefore, the grid point was classified as Class 3. In the second method, iterative majority 

moving window, the surrounding eight neighbour pixels were six of Class 5, one of Class 3, and one 

unclassified. Therefore, the grid point was assigned to Class 5. 
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Figure 3-6: Steps of Resampling the Classified Points to the Grid Points, 
a) Original points after classification, b) the Defined Grid Space with Grid Spacing 𝒉, c) the Original Points on the Defined Grid 

Space, d) Resampled Classified Points Based on the Most Frequent Class of the Original Points within the 𝒉 × 𝒉 area  

Since the Nearest Neighbour approach is not an iterative process, it is a fast process, but if the 

unclassified grid point is far from the nearest classified point, it will most likely be incorrectly classified. 

On the other hand, the iterative approach is time consuming, but the results of each one of the 

iterations affect the proceeding one. This is expected to lead to more accurate results of the final 

classification of the grid points. 
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The output of this step was added fields to the grid points ASCII file representing the assigned class for 

the grid points for each strip 𝑑, 𝑑 = 1, 2, . . 𝐷  𝑙𝑑(𝑠𝑖), 𝑖 ∈ {1,… ,𝑁} where D is the number of data-strips, 

and N is the number of grid points.  
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a) Nearest Neighbour Method 
b) Iterative Majority Moving 

Window Method 

Figure 3-7: Example of Assigning Classes to the Unclassified Grid Points (Filling the Gaps) Using Different 
Methods 

a) Nearest Neighbour Method, and b) Iterative Majority Moving Window Method 

3.3.2.2 Stage 2B: Classification of Multiple Data-strips Using CMCD Approach 

i. Determining the "a posteriori” Probabilities 

After assigning the appropriate classes to all grid points, the accuracy of the classified points was 

assessed using the confusion matrix method. The predefined reference points (defined in the 

preparation stage) were used to form the confusion matrix. There was a confusion matrix corresponding 

to each data-strip.  

From the literature, the values of the confusion matrix represent the degree of support given to each 

class by the classifier after scaling its values to [0,1] interval (Xu et al., 1992; Poliker, 2006). Therefore, 

the values of the confusion matrices can be used as a posteriori probability of each class after 
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normalization, as described in Subsection 2.2.5. An iterative process was developed using MATLAB to 

normalize the confusion matrices to ensure that their elements were within the [0, 1] interval, and that 

each column and row added up to 1. Hence, a normalized confusion matrix (NCM) was determined for 

each data-strip, and the a posteriori probabilities for each class of the data-strips were calculated.  

ii. Determination of Inverse Distance Weightings 

Distances between the grid point in consideration and the nearest original LiDAR points of each data-

strip were included as another weighting factor in the proposed approach. This factor is inversely 

proportional to the distances between the original point and the grid point in consideration. Therefore, 

the distance between each of the grid points and the nearest original LiDAR points of each strip were 

measured. Then the Inverse Distance Weighting (IDW) method was used to calculate the weight factors 

of each data-strip at each grid point. These weights were used as another factor affecting the combining 

multiple classified datasets (CMCD). The formula for calculating the IDW for two strips is: 

𝑤1 = 
𝑑𝑖𝑠2

𝑑𝑖𝑠1+𝑑𝑖𝑠2
  &  𝑤2 = 

𝑑𝑖𝑠1

𝑑𝑖𝑠1+𝑑𝑖𝑠2
 (3-1) 

Where 𝑤1𝑎𝑛𝑑 𝑤2are the weighting factors for the first and second data-strips, respectively, and 

𝑑𝑖𝑠1 𝑎𝑛𝑑 𝑑𝑖𝑠2 are the distances between the grid point and the nearest point of the first and second 

data-strips, respectively. 

iii. Combining the Classification Results 

In this section, several equations were used to combine the classification results of multiple data-strips; 

therefore, introducing the notations that were used at the beginning will be helpful. 

𝐷𝑑   : 𝑑𝑡ℎ Data-strip, where d = 1, 2, …, Number of data-strips.  In the case of single 

strip, 𝑑 = 1. For data of an overlapped area between two adjacent strips, 

there will be two data-strips, 𝐷1 and 𝐷2 . 

𝑝𝑖   : point number 𝑖 of the original LiDAR point clouds (irregularly distributed 

points). 

𝑆 : rectangular grid space of the study area with 𝑋 × 𝑌 dimensions, as defined in 

Section (3.1).  

ℎ : distance between the grid points in both X and Y directions. 
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𝑠𝑖  : point number 𝑖 of the grid points (regular points that fully populated the 

space 𝑆). 

𝑁 : total number of grid points.  

{𝑣1, 𝑣2, … , 𝑣𝑀} : classes within the study area, and 𝑀 is the number of distinguished classes. 

𝑙𝑑 : event of assigning class to the data of the 𝑑𝑡ℎ strip. 

𝑙𝑑(𝑝𝑖) : event of assigning class to the original point 𝑝𝑖  of 𝑑𝑡ℎstrip. 

𝑙𝑑(𝑠𝑖) : event of assigning class to the grid point 𝑠𝑖 of the 𝑑𝑡ℎstrip. 

𝐶𝑀𝑑 : confusion matrix of the 𝑑𝑡ℎstrip. 

𝑏𝑒𝑙𝑝𝑝(𝑣𝑗) : belief value in assigning the class 𝑣𝑗 based on the a posteriori probabilities.  

 

With the data of two overlapped strips, each grid point 𝑠𝑖 was assigned to two classes with assigning 

class events𝑙𝑑(𝑠𝑖), where 𝑙1(𝑠𝑖) = 𝑣𝑘1
𝑎𝑛𝑑 𝑙2(𝑠𝑖) = 𝑣𝑘2

. To decide which class would be finally assigned 

to the grid point after combining the classification results, the belief of each class has to be calculated. 

The grid point, then, will be assigned to the class with maximum belief. The belief of each class can be 

calculated using the formula in (2-18). This belief is based on the a posteriori probability of each class.  

𝑏𝑒𝑙(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝), 𝐸𝑁) =  𝑃(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝) =  𝑣𝑗𝑘), 𝑖 = 1,… ,𝑀 (2-18) 

Here, the belief was calculated based on the two mentioned factors; the a posteriori probability of the 

classification results in each strip, and the IDW. Based on the a posteriori probabilities of any class 𝑣𝑗, 

the belief in that class can be defined by the conditional joint probability that a point 𝑠𝑖 belongs to that 

class and is true under the occurrence of the two assigning class events, 𝑙1 and 𝑙2 in the environment 

𝐸𝑁. This relation can be described by the Equation (3-2) (Xu et al., 1992): 

𝑏𝑒𝑙 𝑝𝑝(𝑠𝑖 ∈ 𝑣𝑗|𝑙1(𝑠𝑖), 𝑙2(𝑠𝑖), 𝐸𝑁) =  𝑃(𝑠𝑖 ∈ 𝑣𝑗|𝑙1(𝑠𝑖) = 𝑣𝑘1
, 𝑙2(𝑠𝑖) = 𝑣𝑘2

) , 𝑗 = 1,… ,𝑀 (3-2a) 

Where, 

𝑏𝑒𝑙 𝑝𝑝  (𝑠𝑖 ∈ 𝑣𝑗|𝑙1(𝑠𝑖), 𝑙2(𝑠𝑖)) is the belief, based on the a posteriori probability, in class 𝑣𝑗 assigned to 

point 𝑠𝑖 is true with the occurrence of , 𝑙1 𝑎𝑛𝑑 𝑙2. 

𝑙1(𝑠𝑖), 𝑙2(𝑠𝑖)  are the assigning class events, for data-strip 1 and 2. 
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For simplicity the 𝑏𝑒𝑙𝑝𝑝 (𝑠𝑖 ∈  𝑣𝑗|𝑙1(𝑠𝑖), 𝑙2(𝑠𝑖)) will be denoted as 𝑏𝑒𝑙𝑝𝑝 (𝑣𝑗|𝑙1, 𝑙2), and 

𝑃(𝑠𝑖 ∈ 𝑣𝑗|𝑙1(𝑠𝑖) =  𝑣𝑘1
, 𝑙2(𝑠𝑖) =  𝑣𝑘2

) as 𝑃(𝑣𝑗|𝑙1, 𝑙2). Therefore, Equation (3-2)a can be expressed as: 

𝑏𝑒𝑙𝑝𝑝 (𝑣𝑗|𝑙1, 𝑙2, 𝐸𝑁) =  𝑃(𝑣𝑗|𝑙1, 𝑙2) (3-2b) 

Based on the Bayesian formula, the right hand side term of Equation (3-2)b can be described as follows 

(Xu et al., 1992): 

𝑃(𝑣𝑗|𝑙1, 𝑙2) =  
𝑃(𝑙1,𝑙2| 𝑣𝑗) 𝑃(𝑣𝑗)

𝑃(𝑙1,𝑙2)
, 𝑗 = 1,… ,𝑀 (3-3) 

Where, 

𝑃(𝑣𝑗)  is the a priori probability of the classifier for each data-strip, however, 

the a priori probabilities are considered constant for all classes. 

𝑃(𝑙1, 𝑙2)  is the unconditional joint probability density. 

 

Since the classifier is trained by independent training sets for each data-strip, the two classified data-

strips are considered independent; thus, the product rule can be applied for the joint probability case.  

𝑃(𝑙1, 𝑙2|𝑣𝑗) =  𝑃(𝑙1|𝑣𝑗) . 𝑃(𝑙2|𝑣𝑗) (3-4) 

𝑃(𝑙1, 𝑙2|𝑣𝑗) =  𝑃(𝑙1|𝑣𝑗) . 𝑃(𝑙2|𝑣𝑗) =  ∏ 𝑃(𝑙𝑑|𝑣𝑗)
𝐷
𝑑=1  (3-5) 

Where 𝑃(𝑙1| 𝑣𝑗) and 𝑃(𝑙2|𝑣𝑗) are the conditional probabilities of class 𝑣𝑗for the two data-strips, which 

can be estimated by the a posteriori probability by evaluating the classification result of the base 

classifier using the confusion matrix (Yan & Shaker, 2011). 

The unconditional probability can be expressed in terms of the conditional probability as (Kittler et al., 

1998): 

𝑃(𝑙1, 𝑙2) =  ∑ 𝑃(𝑙1, 𝑙2| 𝑣𝑚) 𝑀
𝑚=1  𝑃(𝑣𝑚) (3-6) 

From Equations 3-2, 3-3, 3-4, 3-5,  and 3-6, the belief of class 𝑣𝑗 based on the a posteriori probabilities of 

the classification results of the two data-strips can be expressed as: 

𝑏𝑒𝑙 𝑝𝑝 (𝑣𝑗) =  𝑃(𝑣𝑗|𝑙1, 𝑙2) =  𝑃(𝑣𝑗)
 (𝑃(𝑙1|𝑣𝑗) .𝑃(𝑙2|𝑣𝑗))

∑  𝑀
𝑚=1  𝑃(𝑣𝑚).𝑃(𝑙1|𝑣𝑚).𝑃(𝑙2| 𝑣𝑚)

 (3-7) 
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𝑏𝑒𝑙 𝑝𝑝(𝑣𝑗) =  𝑃(𝑣𝑗)
 ∏ 𝑃(𝑙𝑑|𝑣𝑗)

𝐷
𝑑=1

∑  𝑀
𝑚=1  𝑃(𝑣𝑚).∏ 𝑃(𝑙𝑑|𝑣𝑚)𝐷

𝑑=1
 (3-8) 

To include the effect of the distance on the final classification decision, the weighting factors 𝑤1 and 𝑤2 

can be multiplied by the a posteriori probabilities of the classification results in the calculation of the 

belief of each class.  

𝑏𝑒𝑙 (𝑣𝑗) =  𝑃(𝑣𝑗)
 𝑤1𝑃(𝑙1|𝑣𝑗) .𝑤2𝑃(𝑙2|𝑣𝑗)

∑  𝑀
𝑚=1  𝑃(𝑣𝑚).(𝑃(𝑙1|𝑣𝑚).𝑃(𝑙2| 𝑣𝑚))

 (3-9) 

Then, for each point of the grid points, the belief of the available classes are compared to the point of 

interest, and the class with the maximum belief is assigned to that point. Since the a priori probabilities 

are considered constant for all classes, comparing the belief for each class is not affected by the a priori 

probabilities. Hence, the a priori probabilities can be omitted from Equation (3-9). Furthermore, the 

denominator in this formula is constant for all classes; so it will not affect the final combining decision. 

Therefore, only the numerator can be considered in the belief comparison. 

𝑎𝑠𝑠𝑖𝑔𝑛 𝑠𝑖  →  𝑣𝑗      𝑖𝑓 

𝑤1𝑃(𝑙1|𝑣𝑗) . 𝑤2𝑃(𝑙2|𝑣𝑗) =  max𝑀
𝑚=1 𝑤1𝑃(𝑙1|𝑣𝑚) . 𝑤2𝑃(𝑙2|𝑣𝑚) (3-10) 

The outputs of this step were, for each grid point, belief value of each class based on the a posteriori 

probability of that class. There was a different value for each strip based on the classification results and 

the accuracy assessment of that strip. 

3.3.3 Evaluation Stage 

The last stage of the point classification workflow was the evaluation of the final product. The combined 

classification results were assessed using the confusion matrix method based on the collected reference 

points for the grid points. The overall accuracy was calculated using the formula: 

𝐴𝑐𝑐 =  
∑ 𝑛𝑖𝑖

𝑀
𝑖=1

∑ ∑ 𝑛𝑖𝑗
𝑀
𝑖=1

𝑀
𝑗=1

 × 100  (3-11) 

Where, 

𝑛𝑖𝑗  number of reference points of class 𝑗 that were assigned incorrectly to class 𝑖; 

𝑛𝑖𝑖  number of reference points of class 𝑖 that were assigned correctly to class 𝑖. 
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3.4 Part-3: Classification of LiDAR Point Data Using Statistical Analysis Technique 

The third part of the methodology, which is defined by the red dashed rectangle in Figure 3-1, is the 

classification of point data using a new approach built on the statistical analysis segmentation technique 

for land cover classification of elevation and intensity LiDAR point cloud data.  

Statistical analysis segmentation techniques were applied to LiDAR data to separate terrain and non-

terrain points (Bartels & Wei, 2006; Bartels et al., 2006), and to detect certain features, such as roads, 

roofs, and vegetation (Bao et al., 2007; Yunefi et al., 2008, Crosilla et al., 2011; Crosilla et al., 2013). 

These previously introduced statistical analysis segmentation techniques were adequate for separating 

terrain points, and for detecting one type of feature at a time. Consequently, data have to be examined 

each time to determine the characteristics of each feature type (class) that is required to be separated. 

An innovative approach was developed in this research to classify LiDAR point cloud data to the 

distinguished land cover classes. This proposed approach involves a point-based logic classifier, which 

classifies the 3D point data, without resampling the points into a 2D grid, to distinguish all land cover 

classes together not one-by-one, nor limited to separate terrain and non-terrain data. The classified 

points then can be resampled to a predefined grid space and the full area will be assigned to the 

appropriate land cover classes. The proposed approach depends on the underlying assumptions that the 

kurtosis change curve changes smoothly between the cycles if the point data belong to a homogeneous 

class. 

The statistical analysis segmentation technique used in this classification approach is based on the 

change curve segmentation algorithm introduced by Crosilla et al. (2011). Nevertheless, the concept of 

that algorithm was modified to execute the idea of classifying LiDAR data into several classes at once. 

The proposed approach is built on a statistical analysis segmentation algorithm, and a supervised 

classification algorithm to assign the segments to the appropriate land cover classes. The work 

procedure of this classification approach consists of two stages. First, the point clouds data were 

segmented using a new separation method that depended on the changes in kurtosis values of each 

attribute values of the LiDAR point cloud data, one-by-one. Second, the produced segments were 

classified using any of the existing supervised classification techniques, e.g., Maximum Likelihood or 

minimum distance to means classifiers, with the aid of training data that were collected from the same 

or similar areas. Figure 3-8 shows the procedure of the introduced approach for land cover classification 

of LiDAR data based on two attribute values. MATLAB code was developed to apply this new approach 
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to LiDAR data for land cover classification. The details of the work procedure are described in the 

following subsections.  

 
Figure 3-8: Procedure of the Introduced Classification Approach 

3.4.1 Unsupervised Segmentation Stage 

A segmentation algorithm based on the concept of the kurtosis change curve algorithm was developed 

and applied to each of the data attribute values. This means that when the elevation and intensity 

attribute values are considered, the kurtosis change curve algorithm will be applied to the data twice; 

first based on one of the attribute values, e.g., elevation, to produce a number of segments. Then, 

second, the same algorithm will be applied to the produced segments based on the complementary 

attribute values, e.g., intensity, to produce a number of sub-segments. If there are more than these two 

attribute values, the segmentation process will be conducted a number of times based on each of the 

considered attribute values. Figure 3-9 depicts an example of the kurtosis change curve, where the x-

axis in the graph represents the cycle number and the y-axis represents the kurtosis value. 

The kurtosis values were calculated for each cycle and plotted versus the cycle number. Where at the 

first cycle the kurtosis value was calculated for all of the points, then for each subsequent cycle, the 

point with the highest value was removed and the kurtosis values were recalculated for the rest of the 

1) Segmentation based on First Attribute Value 
(Elevation Values) 

•Divide the point data into segments based on 
an attribute data using a modified kurtosis 
change curve algorithm. 

2) Sub-Segmentation based on Complementry 
Attribute  Values (Intensity Values) 

•Divide each segment into sub-segments based on 
the complimentry attribute data using the 
modified kurtosis change curve algorithm. 

3) Classification of sub-segments into the 
distinguished land-cover classes. 

•Determine the center of each sub-segment 

•Applying one of the existing supervised 
classification algorithms on the produced sub-
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points. The process of removing the points and recalculating the kurtosis values continued until the last 

point (Bao et al., 2007). The last point for the kurtosis change curve algorithm was reached when the 

number of points became the minimum number of points (𝑁𝑚𝑖𝑛) introduced by Bartels and Wei (2010). 

Bartels and Wei (2010) mentioned that in order to achieve a meaningful interpretable result, the 

minimum number of points (𝑁𝑚𝑖𝑛) should be similar to the minimum sample size introduced in Kotrlik 

et al. (2001). Equation 3-12 can be used to calculate the 𝑁𝑚𝑖𝑛  (Bartels & Wei, 2010).  

𝑁𝑚𝑖𝑛 =  ( 
𝑍𝛼

2⁄
× 𝜎0

𝐸
)
2

 (3-12) 

Where, 

𝑍𝛼
2⁄

 value of the confidence level (which is 1.96 for 95% confidence), 

σ0 standard deviation of the attribute values of the points, 

𝐸  acceptable margin of error.  

 

Figure 3-9: Example of Kurtosis Change Curve 

The segmentation process was built on an underlying assumption that the kurtosis change curve 

changes smoothly between the cycles if the point data belong to a homogeneous class. As a result, the 

prominent changes in the kurtosis change curves (peaks and pits) were considered as critical points, and 

used as separators between the different segments. To determine the peaks and pits of the curve, the 

kurtosis change curve was plotted and the local minima and maxima were detected. The attribute 

values corresponding to the cycles at the critical points were considered as a separator to cluster the 

Cycle Number 

𝑘𝑢 
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points with lower values into a unique segment. After separating this segment, the same steps were 

repeated iteratively on the remaining points to cluster all points into segments. We call this process an 

“iterative single-segment separation” process; that is because in each iteration only one segment is 

separated. In this method the last critical point was used to separate the points with lower attribute 

values in a unique segment, and then this process works iteratively on the remaining points to separate 

another segment. The process was repeated until all points were clustered. Figure 3-10 demonstrates an 

example using the iterative single-segment separation process for segmentation. In this example, five 

different iteration results are illustrated, where the last critical point (peak or pit) was used to separate a 

segment. It can be noticed that the number of cycles (x-axis) decreases after each segment separation. 

a) Segment 1 

 

b) Segment 2 

 

c) Segment 3 

 

d) Segment 4 

 

e) Segment 5 

 

 

 

Figure 3-10: Example of Segmentation Using Kurtosis Change Curve with Iterative Single-Segment Separation 
Process 

The process of the unsupervised segmentation algorithm is illustrated in Figure 3-11. The procedure can 

be summarized as follows: 

 Point data was sorted in a descending manner based on the considered attribute value 

(elevation or intensity), regardless of their spatial positions. 
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 The minimum number of points was calculated using the Equation 3-12. 

 For determining the kurtosis change curve, the kurtosis value was calculated in iterative cycles, 

as described earlier. 

 The values of the kurtosis in each cycle were plotted against the cycle’s number; this graph was 

called the kurtosis change curve. The curve in Figure 3-9 illustrate an example of the kurtosis 

change curve. 

 The local maxima and minima values in the kurtosis change curve (peaks and pits) were located 

and considered as critical points for segment separation.  

 To avoid the tiny local peaks or pits, the kurtosis change curve was smoothed before the 

determination of the critical points2. 

 The cycles at the critical points were figured out, and the attribute value (elevation or intensity) 

corresponding to these cycles were determined. 

 The iterative single-segment separation process followed. An iterative process was conducted, 

where the points that had attribute values less than the value of the last critical point were 

separated in a segment (Figure 3-10a). Then the kurtosis change curve was redeveloped based 

on the remaining points, and another segment was excluded (Figure 3-10b). This iterative 

process continued until no peaks or pits existed3, as shown in Figures 3-10c, d, e.  

 The output of the previous steps was point clouds ASCII file contained (𝑥, 𝑦, 𝑧, 𝐼, 𝑆𝑒𝑔_𝑁𝑜) for 

each point, where the 𝑆𝑒𝑔_𝑁𝑜 is the segment numbers that each point belongs to. 

  Based on the complementary attribute value, each segment was treated as a separate point 

cloud file and was sub-segmented following the previous steps. Another field, then, was added 

to the point clouds data, containing the sub-segment number corresponding to each point. 

3.4.2 Supervised Classification Stage 

The second stage of the proposed classification approach was the supervised classification stage, where 

classes would be assigned to the produced sub-segments using one of the existing supervised 

                                                           

2
The find maxima and find minima functions, used to extract the local minima and maxima, work by comparing 

each point by its surrounding points, any tiny changes can be considered as local minimum or maximum. 

3
 The find maxima and find minima functions in the MATLAB code consider the first and last points of the curve as 

inflexion points; therefore, if the number of critical points is 2, it means that no more peaks or pits are found. 
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classification algorithms. In this stage each sub-segment produced in the first stage would be treated as 

a single pixel or a single object that had to be assigned to one of the distinguished land cover classes. 

Figure 3-12 illustrates the general steps of the supervised classification stage. The detailed steps are 

described below.  

 

Figure 3-11: Workflow of Unsupervised Segmentation of the Point Cloud LiDAR Data 
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Figure 3-12: Steps of Supervised Classification Process for the Produced Sub-Segments 

1) The classification process started by distinguishing the classes of the study area and selecting 

the training sites; the training sites can be selected from the same study area or a similar one. 

The selection of the training sites depended on the distinguished classes and the variation of the 

values in each class.  

2) Based on the selected training sites data, the required parameters were calculated. For example 

for the Maximum Likelihood classification algorithm, mean and covariance of each training site 

based on the considered attribute values were calculated using the formulas in Equations (3-13) 

and (3-14): 

3) 𝜇 =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  (3-13) 

4) 𝜎𝑧𝐼 = 
1

𝑁
∑ (𝑥𝑖𝑧 − 𝜇𝑧) (𝑥𝑖𝐼 − 𝜇𝐼)

𝑁
𝑖=1  (3-14) 

Depending on the number of attribute values considered in the classification, the dimensions of the 

mean vector and covariance matrix would be defined. When there were only two attribute values 

(elevation and intensity), the mean would be a vector with two elements, [
𝜇𝑧

𝜇𝐼
], and the covariance 

matrix would be a matrix with dimension 2x2, [
𝜎𝑧

2 𝜎𝑧𝐼

𝜎𝑧𝐼 𝜎𝐼
2 ]. Where, 

𝜇𝑧 mean of the elevation values; 

𝜇𝐼 mean of the intensity values; 

𝜎𝑧
2 variance in elevation values; 

𝜎𝐼
2 variance in intensity values; 

𝜎𝑧𝐼 covariance of elevation and intensity values. 
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5) The mean value of each sub-segment was calculated based on the formula (3-13). The vector 

with the mean values of each sub-segment was considered as the (spectral) center of the sub-

segment, [
𝐶𝑧

𝐶𝐼
]. 

6) Using the classification algorithm, each sub-segment would be assigned to the appropriate land 

cover class. 

7) The last step was the evaluation of the classification results, where the well-distributed 

predefined reference points were used with the confusion matrix approach to calculate the 

overall accuracy of the classification results. 

3.4.3 Proposed Classification Approach for Large Areas 

The proposed classification approach may take a long processing time because the segmentation 

approach depended on an iterative algorithm. Consequently, large areas will be time consuming. To 

accelerate the processing time for large datasets, two alternatives were proposed: either eliminating the 

iterative process, or reducing the size of the data. For eliminating the iterative process a Multiple-

Segments Separation method was proposed for the unsupervised segmentation stage. This method 

relied on the kurtosis change curve to cluster the data as the iterative single-segment separation 

method did. Yet, instead of selecting the last critical point as a separator, all critical points (peaks and 

pits) of the kurtosis change curve were considered for separating various segments at the same time. 

Figure 3-13 depicts an example of using the multiple-segments separation method in segmenting LiDAR 

point cloud data, where each segment had attribute values that were ranged between the 

corresponding values of each two sequential critical points. 

 

The other way to reduce the processing time for large datasets was to reduce the size of the data by 

partitioning large areas into small sub-areas, in such a way that each sub-area would have a manageable 

(workable) number of points to be handled quickly. This way reduced the time, even if the iterative 

single-segment separation method was used. That is because iterations, then, would have a much less 

number of points, which required less number of cycles to determine the kurtosis change curves. For 

partitioning the large areas, the number of points that was workable based on the specifications of the 

computer in use had to be defined at the beginning. Having the coordinates and the number of LiDAR 

point data, the extent of the area in consideration can be detected, and the point density can be 

calculated. Based on the point density and the selected number of points for each sub-area, a 
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preliminary dimension of each sub-area can be estimated. Knowing the extent of the area and the 

dimensions of each sub-area, the number of rows and columns containing the sub-areas can be 

determined. Subsequently, the final coordinates of the sub-areas can be determined. By partitioning any 

large area into smaller sub-areas, the segmentation process will be applied to each of the sub-areas, and 

the final classification results will be collected at the end. 

 

Figure 3-13: Example of Segmentation Using the Multiple-Segments Separation Method  

For evaluating the different classification resulted by applying the methodology, several comparisons 

were performed as follows: 

1. Comparing results of different layer combinations for the pixel-based classification logic to 

classification results from aerial imagery, and verifying the findings in all study areas. 

2. Comparing results of pixel-based and object-based classification logics for all study areas. 

3. For point-based classification, results accuracy of the gap-filling methods were compared 

(Nearest Neighbour and Iterative Majority Moving Window). 

4. Point-based classification results were compared to the equivalent cases of the multi-layer 

classified images (pixel-based classification). 

5. Comparing results of the different combining methods of the overlapping areas. 

6. Comparing the kurtosis change curve approach to the pixel-based classification results. 

7. Comparing the accelerated process results to the normal approach in the proposed statistical 

analysis classification approach. 

Segment 1 

Segment 2 

Segment 3 

Segment 4 

Segment 5 

Segment 6 
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4. Results and Analysis: Single Wavelength LiDAR Data 

4.1 Overview 

This chapter describes the study areas, the dataset, the experimental work, and the results and analysis. 

The experimental work was divided into three sections as described in Chapter 3. In the first section, 

LiDAR point data were converted into raster image data, and then classified using pixel-based and 

object-based classification logics. The supervised image classification technique, the Maximum 

Likelihood algorithm, was used to represent the pixel-based classification logic. LiDAR intensity and 

elevation data were used in the classification process. Then, the Normalized DSM (NDSM), the slope of 

the elevation layers, and the texture of the intensity were used as auxiliary layers that were derived 

from the LiDAR elevation and intensity data. An ortho-rectified aerial image that was acquired during 

the LiDAR data acquisition mission was included in the classification process for results verification and 

evaluation. The object-based classification logic was applied to the raster image data using the 

developed decision tree with certain criteria that were set, based on the characteristics of the study 

area, as described in Section 3.2.2. 

In the second part of the experimental work, LiDAR point cloud data were used directly in the 

classification process instead of converting the point cloud into raster images. The Maximum Likelihood 

classifier was applied to the LiDAR point cloud data. Then, two approaches were followed to fill the gaps 

between the LiDAR footprints and generate classified image data—nearest neighbour and majority 

moving window approaches. Details of these approaches are described below. The Combined Multiple 

Classified Datasets (CMCD) approach was developed and used to combine the classification results of 

the multiple data-strips and to decide upon the final classification of the study area (Section 3.3.2). The 

CMCD approach depended on the a posteriori probabilities of each class of the classification results of 

two different data-strips. The distance between grid points and the original LiDAR points of each strip 

was used as another weighting factor in the CMCD. A combination of data of the two data-strips and 

classification of all the data were included also in Part-2, Section 3.3. 

The point-based classification logic was used again to classify the LiDAR point cloud data based on the 

statistical analysis segmentation technique. The new approach used the concept of the kurtosis change 

curve algorithm to unsupervised segmenting of the data into segments based on several attribute values 

(intensity and elevation in this case). Then the produced segments were classified into the distinguished 

classes using the Maximum Likelihood classifier.  
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4.2 Study Area and Dataset 

4.2.1 Location of the Study Area 

The study area is located in Burnaby, British Columbia, Canada. It covers the area surrounding the British 

Columbia Institute of Technology (BCIT). The coordinates of the scanned area are as shown in Figure 4-1. 

This area contains a variety of land cover types including buildings, parking areas, trees, roads, and open 

spaces with and without grassy coverage.  

 

Figure 4-1: Study Area (Clipped from Google Map and Google Earth) 

4.2.2 Dataset 

A Leica ALS50 sensor, operating in 1.064 μm wavelength, 0.33 mrad beam divergence and 83 kHz pulse 

repetition frequency, was used to acquire the LiDAR data. The acquisition mission was conducted on July 

17, 2009 at local time 14:55. The area covered by LiDAR data is 1 x 2 km. The LiDAR data were captured 

from six different flight lines forming six different data-strips as shown in Figure 4-2. Two long distance 

data-strips, Strip1 and Strip2, were in the north-south/south-north directions, captured from a flying 
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height of about 1150 m. The other four data-strips, Strips 3-6, were short distance strips in the east-

west/west-east directions, captured from a flying altitude of about 540 m (Habib et al., 2011). 

 

Figure 4-2: Flight Directions and Data-Strips of the LiDAR Acquisition Mission 
Modified from Habib et al. (2011) 

The dataset was acquired as part of the GEOIDE collaborative research project4. The data consisted of 

3D point cloud data in ASCII format together with the GPS trajectory data. The data file stored the x, y, 

and z coordinates, the linearized intensity value in 8 bit5, and the time tag of each pulse of the point 

cloud. The trajectory data stored the time and the x, y, and z coordinates of the LiDAR sensor at the 
                                                           

4
 The GEOIDE collaborative research project was cooperation between University of Calgary and Ryerson University. The project 

was led by Drs. Ayman Habib, Derek Litchi, the University of Calgary (U of C), and Ahmed Shaker, Ryerson University. 
5
 Notated in this research as original intensity data 
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moments of LiDAR data collected. The point density of the data was 4-5 points/m2. Aerial images were 

captured during the same flight mission of the LiDAR data acquisition. The aerial images were 

geometrically corrected and ortho-rectified. The provided ortho-rectified aerial imagery had a 0.5 m 

spatial resolution and consisted of three bands (blue, green and red). 

4.2.3 Study Areas 

Three different study areas were clipped out of the acquired area to conduct the land cover 

classification and to verify the outcomes. The selected areas were located in different strips—Strip3, 

Strip4 and Strip6. The locations of the selected study areas relative to the strips are shown in Figure 4-3 

(b). An area of around 500 m x 400 m was clipped out of Strip4 and defined as Area1 (which contained 

around 650,000 points), as shown in Figure 4-3 (c-1). This area was selected because it contained a 

variety of land cover features including buildings, parking areas, trees, open spaces covered by bare soil, 

and grassy areas. The west side of Area1 was a forest area. For outcome verification, Area2 was clipped 

out of Strip3, where the same land cover types as Area1 were contained. Area2 was around 600 m x 350 

m and contained around 940,000 points (See Figure 4-3 (c-2)). This area is an urban area with a forest at 

the southwest corner. Another smaller area around 360 m x 85 m contained around 150,000 points, 

Area3, was clipped out of Strip4 but located in the overlapped area with Strip6 (the same area contained 

around 120,000 points in Strip6, Figure 4-3 (c-3)), to verify the results and apply the Combined Multiple 

Classified Datasets (CMCD) approach. Area3 had complex land cover types relative to its size, where 

different types of roof surfaces and different ground elevations were found within a small area. 

Although there were no forest areas within Area3, the study area contained a number of scattered 

trees. 
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4.3 Data Preparation 

  

 

  

Figure 4-3: Study Areas 
(a) The location of the study areas within the whole captured area, (b) The location of the study areas relative to the Strips, 

(c-1, 2, and 3) the details of the study areas Area1, 2, and 3 respectively 

4.3.1 Geometric Calibration 

The LiDAR point cloud data were geometrically calibrated using 37 ground points collected by GPS as 

described in Habib et al. (2011). The accuracy of the geometric calibration is summarized in Table 4-1. 

Based on the checkpoints, the Root Mean Square Errors (RMSE) in 𝑋, 𝑌 and 𝑍 directions were 6, 7, and 

17 cm, respectively. The total RMSE was equal to 19 cm.  

Area1 

Area2 

Area3 

(b) 

(a) 

(c-1) 

(c-3) 

(c-2) 
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Table 4-1: RMSE analysis  

(Habib et al., 2011) 

 Before Calibration After Calibration 

Mean ΔX (m) −0.03 −0.01 

Mean ΔY (m) −0.18 −0.01 

Mean ΔZ (m) 0.15 0.02 

𝜎𝑋 (m) 0.11 0.06 

𝜎𝑌 (m) 0.15 0.07 

𝜎𝑍 (m) 0.17 0.17 

𝑅𝑀𝑆𝐸𝑋 (m) 0.11 0.06 

𝑅𝑀𝑆𝐸𝑌  (m) 0.23 0.07 

𝑅𝑀𝑆𝐸𝑍  (m) 0.23 0.17 

𝑅𝑀𝑆𝐸𝑇𝑂𝑇𝐴𝐿  (m) 0.34 0.19 

4.3.2 Radiometric Correction 

The intensity data were radiometrically corrected to determine the spectral reflectance of the 

illuminated objects on the ground by eliminating the effects of the systems characteristics, the object 

geometry, and the atmospheric attenuation. The radar range equation was used to correct the intensity 

values of the intensity data, where LiDAR intensity values, range values, atmospheric attenuations, and 

incidence angles of the laser pulses were used as described in Shaker et al. (2011). As a step for 

improving the homogeneity of the intensity data, a histogram matching approach was applied to the 

overlapped area between Strip4 and Strip6 (Area3). The geometrically calibrated and radiometrically 

corrected data were used in the classification process to achieve the objectives of this research. LiDAR 

point cloud data covering the three areas were represented in Figures 4-4 and 4-5, for the intensity and 

elevation values, respectively. It can be noted, by observing these figures, that the study areas have gaps 

between the LiDAR footprints in some parts of the roads and some buildings. In Area3, where 

overlapped data are available, it can be seen that data of Strip6 have larger gaps between LiDAR 

footprints than the Strip4 data. By investigating the DSM of the three study areas, a hilly trend in the 

terrain can be noticed, where the south-western corners have higher elevation values than the north-

eastern corners.  
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Area1 

 

Area2 

 

Area3 

(Strip4) 

 

(Strip6) 

 

Figure 4-4: Point Cloud Data (Intensity Values) of the Three Study Areas for the Single Wavelength LiDAR 
Data 

174

22

17

11

6

0



72 

  Area1 
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Area3  

(Strip4) 

 

(Strip6) 

 

Figure 4-5: Point Cloud Data (Elevation Values) of the Three Study Areas for the Single Wavelength 
LiDAR Data 

 

85

75

65

60

55

50

45

40

38

33

30

28

25

23

20

0



73 

4.4 Experimental Work and Results 

4.4.1 Part-1: Classification of LiDAR Data Converted into Raster Image Format  

The image classification processes were performed on LiDAR point data that were converted into a 

raster (image) by interpolating the intensity and elevation attribute values. Then two classification logics 

were conducted—pixel-based and object-based classification logics. The results of the two classification 

logics were compared to each other at the end of the first part. In this part, the classification approaches 

were applied to the study area Area1, and then to verify the findings, the same approaches were applied 

to the other two study areas, Area2 and Area3. 

4.4.1.1 Pixel-Based Classification 

The pixel-based classification workflow started by data preparation step, as illustrated in Figure 3-3 in 

the previous chapter. The LAS file was converted into ASCII file using the LASTools software. Then three 

ASCII files were extracted representing: a) intensity data (𝑥, 𝑦, 𝐼), b) elevation points for the entire study 

area (𝑥, 𝑦, 𝑧) and c) elevation points for the terrain areas (𝑥, 𝑦, 𝑧). The terrain points were collected 

manually out of the roads, grass and soil areas. The three files (intensity and two elevation data files) 

were resampled into three different images using the Kriging interpolation technique to convert the 

point data files into raster grid (image) and to fill the gaps between the LiDAR footprints. Intensity and 

Digital Surface Model (DSM) images were produced out of the intensity and elevation attribute values of 

all points. The points collected out of the terrain areas were interpolated, and a third image containing 

the Digital Terrain Model (DTM) was generated. Based on the average density of the LiDAR point cloud 

data, a pixel size of 0.2 m was selected for the production of the three images. The intensity image, the 

DSM, and the DTM of Area1 are illustrated in Figure 4-6 a, b, and c, respectively.  
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(a) 

 

Intensity 

 

(b) 

 

DSM 

 

(c) 

 

DTM 

 

Figure 4-6: Interpolated Data of “Area1” 

a) Intensity image, b) the DSM, and c) the DTM 
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Other layers were extracted from the elevation and intensity data such as Normalized DSM (NDSM), 

texture of the intensity, and slopes of the elevation surfaces (DSM and NDSM). The ERDAS Imagine 

software package was used to produce the texture of intensity and the slopes of the elevation models. 

Figure 4-7 illustrates the additional extracted layers for Area1. By observing the extracted layers it can 

be noticed that: 

a. NDSM   

 

b. Texture of Intensity 

 
c. Slope of DSM 

 

d. Slope of NDSM 

 

Figure 4-7: Extracted Layers for “Area1” 

a) Normalized DSM, b) Texture of the Intensity, c) Slope of DSM, and D) Slope of NDSM 

1- The NDSM is similar to the DSM; however, the terrain (roads) in the south-western corner has 

the same gray level as other terrain areas. 

2- The texture of intensity is bright at the trees areas and the grassy areas. 

3- The slope of the DSM and the NDSM are almost the same. Both of them have very bright values 

at the trees areas, and at the borders of the buildings. 
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Most of the buildings at the study area have flat roofs; therefore, the slope within the buildings is a dark 

value. The inclined roofs buildings have a dark gray value (brighter than the flat-roof buildings). 

The second step of the workflow was combining layers. Several combinations of layers were executed, 

where two or more layers were combined into one multi-layer image. The cases of single or of multi-

layers that were investigated are: 

1) Aerial Imagery (For comparison) 

2) DSM 

3) Original Intensity 

4) Radiometric corrected intensity 

5) Intensity and DSM 

6) Intensity and NDSM 

7) Intensity, DSM, and Texture 

8) Intensity, NDSM, and Texture 

9) Intensity, DSM, Texture, and DSM Slope 

10) Intensity, NDSM, Texture, and NDSM Slop 

The Maximum Likelihood supervised image classification technique was used as a pixel-based classifier 

to investigate the possibility of producing land cover classes from LiDAR intensity and elevation data 

independently of any other external data sources. Five different classes were identified: buildings, trees, 

roads, bare soil, and grass. The classification results of Area1 to the five distinguished classes for the 

mentioned cases are illustrated in Figure 4-8. 

 
Study Area1 

 

 

Buildings   

Grass  

Roads   
Soil   

Trees  

Aerial Imagery 

 

DSM 

 

Figure 4-8 a: Pixel-Based Classification Results for “Area1” 
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Original Intensity 

 

Intensity 

 
Intensity and DSM 

 

Intensity and NDSM 

 
Intensity, DSM, and Texture 

 

Intensity, NDSM and Texture 

 

Figure 4-8 b: Pixel-Based Classification Results for “Area1” 
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Intensity, DSM, Texture and DSM Slope 

 

Intensity, NDSM, Texture and NDSM Slope 

 
Figure 4-8 c 

Figure 4-8: Pixel-Based Classification Results for “Area1” 

The classification results for these cases were assessed using the confusion matrix approach based on 

978 reference points, which were well-distributed over the study area, as shown in Figure 4-9. The 

reference points were randomly selected out of the original point cloud data to avoid the effect of the 

interpolation on the accuracy of the ground validation. The ground validation information was collected 

from the ortho-rectified aerial imagery that was captured at the same LiDAR mission. Table 4-2 shows 

the number of reference points in each class. 

 

Figure 4-9: The Distribution of the Reference/Check Points in “Area1” 
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Table 4-2: The Number of Reference Points in each Land Cover Class in “Area1” 

Class Number of 
Reference Points 

Buildings  213 

Grass 79 

Roads  250 

Soil 143 

Trees 293 

The accuracies achieved from the classification results of the different layer combinations were 

compared to each other to conclude the best combination of layers, or to determine which layer had a 

significant influence on the classification results. Table 4-3 illustrates the accuracy assessment of the 

classification results for Area1 with the 10 mentioned cases. In this study area, the characteristics of the 

bare soil areas and other areas that were covered by grass were close to each other, and it was difficult 

to differentiate between them. Therefore, distinguishing four classes only—buildings, grass and soil, 

roads, and trees—were investigated and assessed using the same 1000 reference points. Table 4-3 

includes the accuracy assessment of the classification results for Area1 for the distinguished five and 

four classes. The confusion matrices for the mentioned cases and the Kappa statistics calculations for 

each class are illustrated in Appendix A. 

Table 4-3: Accuracy Assessment of Classification Results for “Area1” 

Case No. Bands Combination 
Overall Accuracy 

4 Classes 5 Classes 

1 Aerial Imagery 62% 58% 
2 DSM  43% 41% 

3 Original Intensity 39% 32% 

4 Intensity6  44% 36% 
5 Intensity, DSM  55% 53% 
6 Intensity, NDSM 72% 66% 

7 Intensity, DSM, Texture  58% 56% 
8 Intensity, NDSM, Texture  77% 71% 
9 Intensity, DSM, Texture, Slope  60% 58% 

10 Intensity NDSM, Texture, Slope 73% 71% 

                                                           

6
 Intensity term denotes the radiometric corrected intensity values 
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By analyzing the results, it can be observed that: 

 The radiometric corrected intensity values produced more accurate classification results than 

the original intensity values (around 4% increase in the overall accuracy). That is because the 

radiometric corrected intensity values considered the variation of the scanned angles that lead 

to produce more homogeneous values within each class, which represents the object 

reflectance more accurately. In Figure 4-8 it can be noticed that the trees class is classified 

correctly when the radiometric corrected intensity was used. That is can be proofed by 

comparing the Kappa statistics value of the Trees class in both cases (original intensity: 0.22 and 

radiometric corrected intensity: 0.76) 

 Using the Normalized DSM instead of the DSM greatly improved the classification results (13-

17% improvement). By observing the elevation values of the study area it was found that it is a 

hilly area; and some roads in the hilly area (at the southwest corner) have high elevation values 

that are similar to the elevation of the buildings in the lower elevated areas (at the middle). 

Therefore, the absolute heights of the objects (NDSM) differentiated the raised buildings from 

the roads. 

 Adding the texture of the intensity data to the intensity and the elevation layers improved the 

classification results. Due to the homogeneity of the classes after applying the radiometric 

correction, the texture of the intensity, which represents the variation within the class, did not 

add more information to the classification process, and hence no major improvements were 

found. However, some areas that were classified incorrectly as buildings were classified 

correctly as trees when the texture of intensity was included.  

 Including the slope of the elevation layers had no effect on the classification results. Most of the 

buildings have flat roofs and no difference between roofs and roads could be detected, which is 

opposite of the sloped roof buildings, where the slope will add value. However, the slope image 

can be used for detecting the object boundaries that can be used for further improvement of 

the classification results. 

 The results of the combined LiDAR layers (intensity and DSM) were less accurate than the 

classification results of the aerial imagery (by around 5%). However, using the NDSM and 

intensity layers produced more accurate classification results than the aerial imagery (by around 

8%). There was greater improvement when the texture of intensity was added to the intensity 

and the NDSM (around 5%). 
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To verify the previous observations, land cover classification of LiDAR data for another study area 

“Area2” was investigated following the same classification procedure of Area1. The raster grids, the 

intensity image, the DSM, and the DTM of Area2 are illustrated in Figure 4-10 a, b, and c, 

respectively. The extracted layers out of the LiDAR elevation and intensity data are illustrated in 

Figure 4-11. 

(a) 

 

Intensity 

 

(b) 

 

DSM 

 

(c) 

 

DTM 

 

Figure 4-10: Interpolated Data of “Area2” 

a) Intensity image, b) DSM, and c) DTM 
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a. NDSM 

 

b. Texture of Intensity 

 

c. Slope of DSM 

 

d. Slope of NDSM 

 

Figure 4-11: Extracted Layers for “Area2” 

a) Normalized DSM, b) Texture of the Intensity, c) Slope of DSM, and D) Slope of NDSM 

The Maximum Likelihood classification technique was conducted on the different combined layers 

considering the same five distinguished land cover classes as in Area1. The classification results of Area2 

for the mentioned cases are illustrated in Figure 4-12. 

For evaluating the classification results of Area2, 854 reference points were randomly collected. The 

ground validation of the reference points was collected from the ortho-rectified aerial imagery. Figure 4-

13 illustrates the distribution of the reference/check points of the study area, and Table 4-4 shows the 

number of reference points in each of the five land cover classes. The reference points were used to 

create the confusion matrix for accuracy assessment of the classification results. Table 4-5 shows the 

overall accuracy of the classification results of Area2. The confusion matrices for the mentioned cases 

and the Kappa statistics calculations for each class are illustrated in Appendix A. 
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Figure 4-12a: Pixel-Based Classification Results for “Area2” 
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Intensity, DSM, Texture and DSM Slope

 

Intensity, NDSM, Texture and NDSM Slope

 

Figure 4-12b 

Figure 4-12: Pixel-Based Classification Results for “Area2” 

 

Figure 4-13: The Distribution of the Reference Points in "Area2" 

Table 4-4: The Number of Reference Points in each Land Cover Class in “Area2” 

Class Number of 
Reference Points 

Buildings  237 

Grass 49 

Roads  394 

Soil 74 

Trees 100 
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Table 4-5: Accuracy Assessment of Classification Results for “Area2” 

Case Band Combination    (4 Classes) (5 Classes) 

1 Aerial Imagery 52% 49% 

2 DSM  45% 45% 

3 Original Intensity 53% 50% 

4 Intensity  49% 45% 

5 Intensity, DSM  55% 54% 

6 Intensity, NDSM 79% 77% 

7 Intensity, DSM, Texture  55% 54% 

8 Intensity, NDSM, Texture  77% 75% 

9 Intensity, DSM, Texture, Slope  56% 55% 

10 Intensity NDSM, Texture, Slope 77% 74% 

By analyzing the results, it can be observed that similar to the first area “Area1”: 

 Using the Normalized DSM instead of the DSM greatly improved the classification results, and in 

this area the improvement was 23%. Similar to Area1; the NDSM represented the absolute 

height of objects which facilitate distinguishing roads from buildings. 

 The radiometric corrected intensity values produced less accurate classification results than the 

original intensity values (around 5% decrease in the overall accuracy), however, by visually 

inspecting the results, the radiometric corrected intensity correctly classified the trees in the 

southwest corner (Kappa statistics for the Tree class is 0.22 for the classification of the original 

intensity, and 0.76 for the classification results of the radiometric corrected intensity). The 

reduction of the classification results was because of the misclassification of the roads as 

buildings, where both roads and buildings have same reflectance values and both have smooth 

surfaces. 

 The results of the combined LiDAR layers (intensity and DSM) were more accurate than the 

classification results of the aerial imagery (by around 6%). That is because the roads and 

buildings in the aerial imagery have the same reflectance, which led to misclassification of roads 

as buildings. 

 Adding the texture of the intensity data to the intensity and the elevation layers did not improve 

the classification results. 

 Including the slope of the elevation layers had almost no effect on the classification results. 
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From the previous observations, it can be concluded that: 

 Both the radiometrically corrected intensity and elevation data had main roles in the 

classification, 

 Using the normalized elevation data instead of the elevation data improved the classification 

results. 

Therefore, for the classification of the third study area, Area3, the cases that did not improve the 

classification results were excluded. Figure 4-14 represents the interpolated data, intensity image, DSM, 

and DTM, of the study area “Area3.” Following same procedure of the pixel-based classification 

workflow (Figure 3-3), the study area, Area3, was investigated. Figure 4-15 shows the Normalized DSM 

and the texture of intensity layers that were extracted from LiDAR elevation and intensity data and used 

as auxiliary layers in the classification process.  

 

a ) Intensity 

 

 
b) DSM 

 
c) DTM 

 

Figure 4-14: Interpolated Data of “Area3” 
a) Intensity image, b) the DSM, and c) the DTM 
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a) NDSM 

  
 

b) Texture 

of 

Intensity 

  

Figure 4-15: Extracted Layers for “Area3” 

a) Normalized DSM, b) Texture of the Intensity 

The classification results of the five distinguished land cover classes are illustrated in Figure 4-16. For the 

evaluation of the classification results, 500 reference points were randomly well-distributed over the 

area and the ground validation was collected from the ortho-rectified aerial imagery; the distribution of 

the reference points is illustrated in Figure 4-17, and the number of points in each class is listed in Table 

4-6. The confusion matrix approach was used for assessing the classification results, and the accuracy of 

each case is summarized in Table 4-7. The confusion matrices for the mentioned cases and the Kappa 

statistics calculations for each class are illustrated in Appendix A. 
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Figure 4-16: Pixel-Based Classification Results for “Area3” 
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Figure 4-17: The Distribution of the Reference Points on, "Area3" 

Table 4-6: The Number of Reference Points in each Land Cover Class in “Area3” 

Class Number of Reference Points 

Buildings 77 

Grass 50 

Roads 191 

Soil 80 

Trees 102 

 

Table 4-7: Accuracy Assessment of Pixel-Based Classification Results for “Area3”  

Case Band Combination 4 Classes 5 Classes 

1 Aerial Imagery 60% 59% 

2 DSM  36% 30% 

3 Original Intensity 50% 49% 

4 Intensity  51% 49% 

5 Intensity, DSM  46% 44% 

6 Intensity, NDSM 58% 58% 

7 Intensity, DSM, Texture  51% 49% 

8 Intensity, NDSM, Texture  61% 61% 

By studying the classification results for the third study area, it can be noticed that the results are similar 

to the results of Area1:  

 Using the Normalized DSM instead of the DSM improved the classification results (12%–14% 

improvement). 

 The radiometric correction of the intensity had no effect on the classification results. However, 

the produced classes from the radiometric corrected intensity were more homogeneous than 

the classes produced from the original intensity. 

 Adding the texture of intensity data to the intensity and the elevation layers did slightly improve 

the classification results (3-5% improvement). 
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From the previous observations, it can be verified that the conclusions derived from the previous study 

areas were verified in the third one, which had more complex land cover features: 

 Producing a land cover image out of the LiDAR data independent of external auxiliary data is 

comparable to the produced land cover image out of the aerial imagery.  

 Both the radiometric corrected intensity and elevation data had main roles in the land cover 

classification of LiDAR data. 

 Using the normalized elevation data instead of the elevation data improved the classification 

results. 

 The texture of the intensity layer had a slight improvement on the quantitative classification 

accuracy (overall accuracy). 

4.4.1.2 Object-Based Classification 

As illustrated in Figure 4-18, the data preparation step started by extracting intensity and elevation point 

data, interpolating and converting the point data into raster images. The point data were already 

interpolated and converted into raster grids in the pixel-based classification (Section 4.4.1.1). Therefore, 

there was no need to repeat this step of data preparation. Figures 4-6, 4-10, and 4-14 represent the 

resampling and interpolation results of the LiDAR data resulting in the intensity images, the DSMs and 

the DTMs of the three study areas. The normalized Digital Surface Models (NDSMs) that were generated 

in the pixel-based classification step by subtracting the DTM from the DSM were also used in the object-

based classification decision tree (Figures 4-7 a, 4-11 a, and 4-15a for the three study areas). 
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Figure 4-18: Workflow of the Object-Base Classification (Developed Desicion Tree) 

Additionally, the intensity images were segmented into homogenous regions where the neighbouring 

pixels that fulfill the specified homogeneity criterion were gathered to form a segment. The 

homogeneity criterion was specified based on the variation of the intensity values within the 

neighbouring pixels. Several variation quantities were tried, and visually assessed based on the 

knowledge that the variance in the intensity values within the vegetation areas (grass or trees) is large 

enough to produce small segments, and that the variation in the intensity values within the manmade 

areas (roads and buildings) is small and will lead to large patches.  Therefore, the intensity values were 

observed, resulting in a variation of 3 in the intensity values that may be found in the manmade areas, 

and more than that within the natural areas (trees and grassy areas). Thus, the homogeneity criterion 

within the segments was set to a variation of 3 in the intensity values of the neighbouring pixels. Figure 

4-19 illustrates the segmentations of the three study areas based on the variation of the intensity 

values.  
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Study Area1 

 
Study Area2 

 
Study Area3 

 

Figure 4-19: Segmentation Results of the Intensity Layer 

The minimum area of the homogenous surfaces (minA) was defined as any region with an area greater 

than 100 square meters, and it was considered as a homogenous surface. This criterion was established 

based on the common minimum size of buildings in the urban areas in Canada (El-Ashmawy et al., 

2011). The second criterion in level 1 was the minimum object heights (MinHob) to separate the terrain 

from the non-terrain surfaces.  Zero value was chosen to separate the terrain as the DTM was generated 
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out of the points on the roads, grass, and soil areas, which leads to NDSM values equal to zero at these 

regions.  

In the Level-2 Classification step, the four Level-1 clusters were intersected to form the four Level-2 

classes. Based on the characteristics of the four classes, the distinguished classes of the study areas 

were assigned to the four Level-2 classes as follows: 

Class 1: The homogenous intensity surfaces that are elevated above the terrain: buildings. 

Class 2: The heterogeneous intensity surfaces that are elevated above the terrain: trees. 

Class 3: The homogenous intensity surfaces that are attached to the terrain: roads. 

Class 4: The heterogeneous intensity surfaces that are attached to the terrain: grass/soil. 

By following the procedure of the object based classification, the land cover classification of the three 

study areas was conducted and the classification results are shown in Figure 4-20. The distinguished five 

land cover classes were reduced to four classes, where the grass and bare soil classes were combined 

into one class. That is because of the difficulty in differentiating the open spaces that were bare soil or 

covered by grass, and no certain criterion could be defined to differentiate between them.  

Same reference points that were used in the pixel-based classification logic were used to assess the 

accuracy of the classification results. Figures 4-10, 4-15, and 4-19 show the distribution of the reference 

points over the three study areas. Tables 4-2, 4-4, and 4-6 list the number of reference points on each 

class in the three study areas. Table 4-8 summarizes the overall accuracy of the object-based 

classification results for the three areas. The confusion matrices for the three study areas and the Kappa 

statistics calculations for each class are illustrated in Appendix A. 
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Study Area1 

 

Study Area2 

 

Study Area3 

 

Figure 4-20: Object-Based Classification Results for the three Study Areas 

Table 4-8: Accuracy Assessment of Object-Based Classification Results for the Three Study Areas  

Area Overall Accuracy 

Area1 68% 

Area2 60% 

Area3 61% 

Buildings   

Grass  

Roads   

Trees  
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To compare the results of the pixel-based and the object classification, the object-based classification 

results were compared to Case 5 of the multiple-layer combinations with pixel-based classification. That 

is because Case 5 had the same input data as the decision tree, intensity and DSM. From the results, it 

can be noticed that the object-based classification produced more accurate results by 13%, 5%, and 16% 

for the three study areas.  

However, in the decision tree the intensity image was segmented into homogeneous regions, which 

represented the texture of the intensity, and the terrain was separated into terrain and objects, which 

represented the NDSM. These layers were used as auxiliary layers in the pixel-based classification Case 8 

(intensity, NDSM, and texture of intensity) and can be considered the comparable case to the object-

based classification. The classification results of Case 8 were more accurate than the object-based 

classification results by 9%, and 17% in the first two study areas and no difference in accuracies in the 

third area. These reductions in accuracies were a consequence of the misclassification of some grassy 

areas, which were classified as roads in the object-based classification. To overcome this reduction, the 

decision tree needs to be modified to include the intensity values as another input, which may improve 

the classification results. Table 4-9 illustrates the comparison between accuracies of the pixel-based and 

the object-based classification results. Figures 4-21, 4-22, and 4-23 illustrate the comparison between 

pixel-based and object-based classification results for Area1, Area2, and Area3 respectively. 

Table 4-9: Comparison Between Pixel-based and Object-Based Classification Results (4 classes) 

Case 
Pixel-Based 

Object-Based Case 5 
(Intensity, DSM) 

Case 8 
(Intensity, NDSM, texture) 

Area1 55% 77% 68% 

Area2 55% 77% 60% 

Area3 46% 61% 61% 

 



96 

a 

 

55% 

 

Buildings   

Grass  

Roads   

Trees  

b 

 

77% 

c 

 

68% 

Figure 4-21: Comparing Pixel-based and Object-based Classification Results for “Area1” 
a) Pixel-based (Intensity and DSM), b) Pixel-based (Intensity, NDSM, and Texture), and c) Object-based 
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Figure 4-22: Comparing Pixel-based and Object-based Classification Results for “Area2” 
a) Pixel-based (Intensity and DSM), b) Pixel-based (Intensity, NDSM, and Texture), and c) Object-based 
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61% 

Figure 4-23: Comparing Pixel-based and Object-based Classification Results for “Area3” 
a) Pixel-based (Intensity and DSM), b) Pixel-based (Intensity, NDSM, and Texture), and c) Object-based 

4.4.2 Part-2: Point-Based Classification of LiDAR Data Using (Maximum Likelihood Classifier) 

This section of the research introduces a classification approach that relies on the point-based 

classification logic using a supervised classifier. In this part, the classification was conducted on the 

original LiDAR points without resampling the points into a grid space (image), in order to avoid any loss 

of details associated with resampling points into 2D grids, as described in Section 3.3. After classifying 

the LiDAR point data, to produce a full populated land cover area, the results were resampled into a 

predefined grid space, and gaps between LiDAR footprints were filled using two different proposed 

approaches (described in Subsection 3.3.2.2). By studying the outcomes of the first part, it can be noted 

that the classification results of each LiDAR attribute values (elevation and intensity) separately produce 

lower accuracy than the classification results when both attribute values were included. Thus, there was 

no need to conduct the classification separately on any of the two attribute values. Hence, the 

introduced classification approach was conducted on both attribute values together (𝑧 𝑎𝑛𝑑 𝐼) of the 

LiDAR point cloud data. 

Furthermore, to get the benefit of all acquired data, all data of any area that was acquired several times 

with different acquisition characteristics (acquired from different flight lines) have to be included in the 

classification process. Thus, the classification of LiDAR point cloud data in this part included classification 

of single data-strip and multiple data-strips. The multiple data-strips were the data of an overlapped 

area of adjacent strips, which were collected from different flight trajectories. To conduct the point 

classification of LiDAR data for single and multiple data-strips, MATLAB code was developed. The 
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developed code implemented one of the existing classification algorithms (Maximum Likelihood 

classifier was selected for this work), to be applied to both attribute values of the LiDAR point data. The 

study area “Area3” was selected to conduct this work as it is located in the overlapped area of Strip4 

and Strip6. Moreover, it is a small area with a variety of land cover types and with different elevations. 

The workflow of the point data classification approach was described in Section 3.3. As shown in Figure 

3-5, this approach is applicable for both single and multiple data-strips. The introduced point 

classification approach consists of three stages: data preparation, classification, and evaluation. The first 

and last stages are the same for single and multiple data-strips. In the classification stage, there were 

two sub-stages: Stage 2A, which is applicable to single and multiple data-strips, and Stage 2B, which is 

applicable to multiple data-strips only.  

In the data preparation stage, the same training sites that used in the first part were used here. A grid 

space was created to represent the whole area; this grid was similar to the one created in the first part. 

Nevertheless, the elements of the new created grid were points instead of pixels of the previous raster 

grid. The distance between the grid points was 0.2 m, which was equivalent to the pixel size of the raster 

grid (Part-1). The last step in the data preparation stage was the collection of ground validation of the 

reference points. The same reference points that were used to evaluate the classification results of the 

Pixel and object-based classification were used here. Yet another set of reference points were randomly 

distributed over the whole grid space, and their ground validation was collected from the ortho-rectified 

aerial imagery to assess the final land cover classification image. The details of the classification 

procedure for both single and multiple data-strips of this area are as follows: 

4.4.2.1 Classification of Single Data-Strip  

The classification of a single data-strip contained the classification of the original point data and 

assigning the appropriate land cover classes to the grid points. The developed MATLAB code was applied 

to the point data based on the attribute values in consideration to classify the points to the class with 

maximum probability (Maximum Likelihood classifier). The classified points, then, were resampled to 

the grid points, and additional MATLAB code was developed to assign the grid points to the appropriate 

land cover classes. The results of the classification of the original points of each of the data-strips (Strip4 

and Strip6) separately based on elevation and intensity attribute values are illustrated in Figure 4-24.  
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Figure 4-24: Classification Results of the Original Points using the Point-Based Classification Logic with ML 
Classifier 

For the evaluation of the point data classification, the defined 500 reference points were used with the 

confusion matrix approach. The overall accuracies of the classification results of Strip4 and Strip6 are 

56% and 51%, respectively. By analyzing the classification results, it can be noticed that there is 

dissimilarity in the classification results of the different data-strips covering the same area. Finding a 

difference is expected, because each strip was acquired from a different flight trajectory with various 

acquisition characteristics and different spatial distributions. 

The procedure of assigning classes to the grid points was described in Subsection 3.3.2.2. Figure 3-6 

demonstrates the process of assigning classes to the resampled points. The difference between the 

Nearest Neighbour and the Iterative Majority Moving Window methods is illustrated in Figure 3-7. The 

results of the classified grid points are illustrated in Figures 4-25 and 4-26 for data of Strip4 and Strip6, 

respectively. For evaluating the final classified grid space, the defined set of reference points on the grid 

space was used. Table 4-11 represents the accuracy assessment of the classified grid points for both 

data-strips. It can be noticed that the accuracies of the classification results obtained by either methods 

are the same. The confusion matrices with the Kappa statistics values for each class are illustrated in 

Appendix B. 
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Figure 4-25: Classification Results of Grid Points For Strip4 
a) Nearest Neighbour, and b) Iterative Majority Moving Window Method 
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Figure 4-26: Classification Results of Grid Points for Strip6 
a) Nearest Neighbour, and b) Iterative Majority Moving Window Method 

Table 4-10: Accuracy Assessment of the Classified Grid Space for Both Data-Strips with NN and IM Filling Gaps 
Approaches. 

Case Strip4 Strip6 

Nearest Neighbour 58% 52% 

Iterative Majority Moving Window  58% 52% 

4.4.2.2 Classification of Multiple Data-Strip 

For land cover classification, to take advantage of acquiring an area from different flight lines, the 

multiple data-strips of this area should be considered in the classification. Each data-strip most likely 

covers the acquired area with different footprints; therefore, when data of all data-strips are used, 

smaller gaps appear, and more information can be obtained. The simplest way to use both data-strips is 
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merging the data-strips and classifying the entire data of the two data-strips together. Thus, the data of 

the two strips, Strip4 and Strip6, were merged into one file and the developed MATLAB code for point 

classification using the Maximum Likelihood algorithm was applied to the entire data (around 270,000 

points). The classification results of the point data and of the points of the grid spaces are illustrated in 

Figure 4-27. Around 1000 reference points were used to assess the classification results of the merged 

data-strips. The confusion matrices with the Kappa statistics values for each class are illustrated in 

Appendix B. 
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Figure 4-27: Classification Results of the Merged Data of the two data-strips 

Opposite of what was expected, the classification results of the combined data are less accurate than 

each of the separate data-strips. However, by visual inspection, some parts of the study area were 

improved after combining the data. Figure 4-28 shows two examples of the improvements, where the 

buildings had more regular shapes. To improve the classification accuracy, other methods for combining 

the data were investigated.  

As mentioned in the radiometric correction Subsection (4.3.2), a histogram matching approach was 

applied to the data of the overlapped areas to further improve the surface reflectance. The resulted 

data of the histogram matching were a combination of the two data-strips after adjusting the intensity 
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values. This correction is called an intensity normalization process. These radiometric corrected data 

were classified to check the effect of the normalized intensity on the classification results. The 

classification results of the combined data after intensity normalization are illustrated in Figure 4-29. 

The grid data were assigned the appropriate classes, as described earlier. The same reference points 

were used to assess the classification results of the combined normalized data. By observing the results, 

a slight improvement can be seen of the classification results after applying the intensity normalization; 

higher overall accuracy and more homogeneous classes were obtained. 
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Figure 4-28: Examples of the Classification Improvement after Merging the Data-Strips 

Another method to get the benefit of the multiple data-strips is merging the classification results of the 

data-strips. After that, resampling the points into the grid space and assigning grid points to the 

appropriate classes were completed. Assigning classes to the grid points was done following only the 

Iterative Majority Moving Window method (IM), as described earlier with the single data-strip, since 

there was no difference between the two filling gaps methods. The classification results of the two 

combined classified data-strips before and after filling the gaps are shown in Figure 4-30. From the 

classification results, it can be seen that combining the classification results improved the obtained 
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accuracy of the classified points; however, the classification of the entire area is almost the same. The 

confusion matrices with the Kappa statistics values for each class are illustrated in Appendix B. 

 

 
Classification Results of Normalized Intensity Original Point Data 
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Classified Grid Points: Filling Gaps using the Nearest Neighbour Method 
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Classified Grid Points: Filling Gaps using the Iterative Majority Moving Window 

Method 

51%  

Figure 4-29: Classification Results of the Normalized Intensity Combined Data 

 

 
Combination of the Classification Results of Both Data-Strips 
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 Classified Grid Points: Filling Gaps using the Iterative Majority Moving Window 
Method 
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Figure 4-30: Classification Results of the Merged Classified Data 
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Therefore, the Combined Multiple Classified Datasets (CMCD) technique was introduced in Subsection 

3.3.2.5, (Stage 2A in Figure 3-5). As mentioned earlier, the decision of the final classification results was 

built on the classification results of both data-strips. The a posteriori probability of each class in each 

data-strip was calculated based on the values of its normalized confusion matrix. Hence, the confusion 

matrices were normalized. The confusion matrices and the normalized confusion matrices of the two 

data-strips are as shown in Figure 4-31. 

 Confusion Matrix Normalized Confusion Matrix 

Strip4 

 
Build Grass Road Soil Tree 

Build 42 2 11 2 19 

Grass 2 36 8 10 6 

Road 22 4 124 20 24 

Soil 2 2 9 34 9 

Tree 9 6 39 14 44 
 

 
Build Grass Road Soil Tree 

Build 0.6341 0.0429 0.0838 0.0229 0.2164 

Grass 0.0289 0.7382 0.0583 0.1093 0.0653 

Road 0.1782 0.0460 0.5066 0.1226 0.1466 

Soil 0.0477 0.0678 0.1083 0.6142 0.1619 

Tree 0.1111 0.1052 0.2430 0.1309 0.4098 
 

Strip6 

 
Build Grass Road Soil Tree 

Build 45 1 42 6 18 

Grass 0 35 29 17 9 

Road 26 5 86 19 17 

Soil 1 2 7 39 10 

Tree 6 5 21 4 50 
 

 
Build Grass Road Soil Tree 

Build 0.5761 0.0200 0.2228 0.0473 0.1337 

Grass 0.0000 0.6641 0.1457 0.1269 0.0633 

Road 0.2856 0.0860 0.3915 0.1285 0.1083 

Soil 0.0271 0.0850 0.0787 0.6517 0.1575 

Tree 0.1111 0.1449 0.1612 0.0456 0.5372 
 

Figure 4-31: Confusion Matrices and Normalized Confusion Matrices of both Data-Strips 

The other factor that affected the decision of the final classification was the Inverse Distance Weighting 

factor (IDW). To calculate the IDW, the distances between each of the grid points and the nearest 

original points of the two data-strips, were determined. The proximity function (near) in ArcGIS was 

used. The IDW for each point was calculated using the formula in Equation (3-1).  

Based on the calculated factors, a posteriori probability and the IDW, the belief of each grid point 

belonging to each class was calculated using Equation (3-9). After that, each grid point was assigned to 

the class that has maximum belief. MATLAB code was developed to perform the CMCD technique. The 

classification results of the CMCD technique are shown in Figure 4-32. Using the same reference points 

with the confusion matrix approach, the classification results were assessed. The obtained overall 

accuracy of the classification results of the CMCD technique was 56%. 
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Figure 4-32: Classification Results of the Two Data-Strips Using CMCD Technique 

By observing the classification results of the overlapped areas, as listed in Table 4-11, it can be noticed 

that: 

Table 4-11: Accuracy Assessment of the Combined Data-Strips by Various Approaches 

Case Overall Accuracy 

Merged Points of Two Data-Strips 50% 

Merged Points of Two Data-Strips with Normalized Intensity 51% 

Merged Classified Points of Two Data-Strips 50% 

Combined Classified Data using CMCD 56% 

 Classifying the LiDAR data after normalizing the intensity values (applying histogram matching) 

slightly improved the classification results of the overlapped areas. That is because the 

histogram matching further improved the surface reflectance and the intensity values. By 

improving the intensity values, more accurate classification results can be obtained. 

 Combining the classified data by following the CMCD approach improves the classification 

results of the overlapped area by 6%. The CMCD approach considers the a posteriori 

probabilities of each class and the distance between the original point cloud data and the grid 

points. 

By comparing the results of the point-based classification logic and the pixel-based classification logic, it 

can be seen that the point-based classification logic is more accurate than the pixel-based logic by 

around 12%. That is because when the point data are classified without resampling into a 2D grid, no 

losses occur in the original attribute values. Figure 4-33 illustrates the difference in the classification 

results between the point-based and the pixel-based logics. 
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Pixel-based Classification results of intensity and DSM 
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 Point-based Classification results of intensity and DSM 

56% 

Figure 4-33: Comparison between Pixel-based and Point-based Classification  

4.4.3 Part-3: Classification of LiDAR Data in Point Format Using Kurtosis Change Curve  

The third part of the experimental work proposed a new approach for land cover classification of LiDAR 

point cloud data. This approach uses the point-based classification logic as well, but is built on the 

statistical analysis segmentation technique. The proposed classification approach depends on the 

kurtosis values of the elevation and intensity attribute values of LiDAR point data. To investigate the 

new classification approach the study area, Area3 was selected. This area was the smallest of the three 

study areas; however, it was complex enough to drive conclusions about the new approach. The study 

area, “Area3”, contains a variety of land cover types with various elevations. The workflow of this 

approach, as illustrated in Figure 3-8, consists of two stages: an unsupervised segmentation stage based 

on statistical analysis of the attribute data of LiDAR point cloud data, and a supervised classification 

stage using an existing classifier. MATLAB code was developed and applied to the selected study area. 

The details of this experimental work are described below.  

The modified kurtosis change curve segmentation algorithm was applied to the LiDAR point cloud data, 

first based on the elevation values of the entire dataset. Afterwards, it was re-applied to the produced 

segments to cluster each segment into sub-segments based on their intensity values. To segment the 

data based on the elevation values, the point cloud data were sorted and the kurtosis values for the 

elevation attribute values were calculated. By removing the point with the highest elevation, the first 

cycle was completed. The kurtosis value of the remaining points was calculated, and then the highest 

point was removed (cycle 2). This process continued until the number of points reached the minimum 

number of points. To calculate the minimum number of points, the formula in Equation (3-12) was used, 
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with marginal error of 5% for both elevation and intensity values. These values were selected after 

observing the characteristics of the study area. 

After calculating the kurtosis values for all cycles, the kurtosis change curve was plotted and the peaks 

and pits of the curve were determined. The last peak/pit was selected as a separation point. The cycle 

number corresponding to this point was identified. The elevation value at this cycle number was used as 

a separator. The points with an elevation value less than the separator were clustered in a unique 

segment, segment1. After separating this segment, the same steps were repeated iteratively on the 

remaining points to cluster all points into segments. The output of this process was an additional field in 

the data file containing the segment number. When this process was applied to the elevation values of 

the entire data, 34 segments were produced. Figure 4-34a illustrates the segmented point data based on 

the elevation values. 

a)  

b)  

Figure 4-34: Iterative Single-Segment Separation Method 

Thereafter, the point data were sorted based on the segments numbers, and the Iterative Single-

Segment Separation process was applied to the intensity values of each produced segment. That was to 

cluster the produced segments into sub-segments based on the intensity values. A new field then was 

added to the data file containing the intensity segments numbers. Another field containing the sub-

segments numbers, which were the combination of the elevation and intensity segments, was added. 

When this process was performed on the 34 produced elevation segments, a total of 100 sub-segments 

were formed (Figure 4-34 b). 
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The second stage, as illustrated in Figure 3-12, was a supervised classification stage, where the 

appropriate land cover classes were assigned to the produced sub-segments using one of the existing 

supervised classification techniques. In this research, the Maximum Likelihood supervised classification 

technique was conducted to assign the produced sub-segments into the appropriate classes of the five 

distinguished land cover types. Since the Maximum Likelihood Classifier is parametric, the training sites 

had to be tested to ensure that they are normally distributed. However, the selected training sites were 

the same as those used in the previous parts; therefore, no additional tests had to be done. The sub-

segments, produced in the first stage, were treated as single pixels or single objects that had to be 

assigned to one of the distinguished classes. Using the “spectral” center vector of the considered sub-

segment, which was the vector of means of the elevation and intensity values, the probabilities of the 

center belonging to the five distinguished classes were calculated. The entire points of this sub-segment 

were, then, assigned to the class with the maximum probability. Figure 4-35 illustrates the classification 

results of the study area using the proposed approach.  

a)  
 

b)  

Figure 4-35: Classification Results Using the Proposed Classification Approach Based on Statistical Analysis 
Technique 

a) Original Points, b) Grid Points 

For assessing the classification results, same 500 reference points that were used in the previous 

research (Part-1, and Part-2) were used here. A confusion matrix was formed, and the overall accuracy 

was calculated. The overall accuracy of the classification results using the proposed classification 

approach was 53%. The confusion matrices with the Kappa statistics values for each class are illustrated 

in Appendix C. 
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By comparing the classification results of the pixel-based classification logic and the point-based 

proposed classification approach, it can be noted that the proposed approach (after filling the gaps 

using the IM moving window method) is more accurate than the pixel-based logic by around 9%. That is 

because the proposed approach dealt with the attribute values of the individual original points without 

resampling into 2D grid. However, by comparing the classification results of the point-based logic (Part-

2) and the proposed approach (Part-3), the proposed approach is less accurate than the point-based 

classification by around 4%. Therefore, further investigation is required to improve the proposed 

classification technique to include the spatial location of the data in the segmentation process. Figure 4-

36 illustrates the difference in the classification results between the three implemented classification 

approaches (three parts of the methodology). 

 
Pixel-based Classification results of intensity and DSM 

44% 
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Point-based Classification results of intensity and DSM 

58% 

 
Results of the Proposed Classification Approach Based on the Statistical Analysis  

54% 

Figure 4-36: Comparison between the Three Implemented Classification Approaches 

4.4.3.1 The Proposed Classification Approach for Large Areas 

By following the proposed ways to accelerate the processing time of the statistical analysis proposed 

approach, the Multiple-Segments Separation methods were applied to the data based on the elevation 

values at the beginning, and then based on the intensity values. Eight segments were produced when 

the algorithm was applied to the data based on the elevation values, (Figure 4-37a), and total of 111 

sub-segments were produced when the algorithm was re-applied based on the intensity values, (Figure 
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4-37b). After applying the Maximum Likelihood supervised classification algorithm on the 111 segments, 

the classification results were presented, as illustrated in Figure 4-38. The processed time reduced to 

one sixth of the process time when the Iterative Single-Segment separation process was used. 

a)  

b)  

Figure 4-37: Segments of the Multiple-Segments Separation Method 
a) Segments of the elevation data, b) sub-segments of intensity data 

a)  
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b)  

Figure 4-38: Classification Results of the Proposed Statistical Analysis Approach Using the Multiple-Segments 
Separation Process  

a) Original Points, b) Grid Points 

For assessing the classification results, the same 500 reference points were used to form the confusion 

matrix. The overall accuracy of the classification results was 36%. That means that the Multiple-

Segments Separation process did not lead to acceptable results because of the very low achieved 

classification results. 

The other introduced method for accelerating the results was reducing the size of the data. Therefore, 

MATLAB code was developed to divide the entire data into a number of partitions based on a selected 
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number of points within each partition. Selected sizes of 20,000 and 10,000 points per sub-area were 

checked using the Iterative Single-Segment Separation and the Multiple-Segment Separation methods. 

The results of the classification for the 20,000 points size are illustrated in Figures 4-39 and 4-40, and the 

10,000 points are illustrated in Figures 4-41, and 4-42. The accuracies of the classification results are 

listed in Table 4-12.  

a)  
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b)  

Figure 4-39: Classification Results of the Proposed Classification Approach for the Partitioned Areas (20,000 
points) Using Iterative Single-Segment Separation Process 

a) Original Points, b) Grid Points 

a)  

 

Buildings   

Grass  
Roads   

Soil   
Trees  

 

b)  

Figure 4-40: Classification Results Using the Proposed Classification Approach for the Partitioned Areas (20,000 
points) Using Multi-Segment Separation Process 

a) Original Points, b) Grid Points 
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a)  
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b)  

Figure 4-41: Classification Results Using the Proposed Classification Approach for the Partitioned Areas (10,000 
points) Using Iterative Single-Segment Separation Process 

a) Original Points, b) Grid Points 

a)  
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b)  

Figure 4-42: Classification Results Using the Proposed Classification Approach for the Partitioned Areas (10,000 
points) Using Multi-Segment Separation Process 

a) Original Points, b) Grid Points 

 

Table 4-12: Accuracy Assessment of the Partetioned Classified Data 

Size of Area 

Overall Accuracy 

Iterative Single-Segment Separation 

Process 

Multi-Segment Separation 

Process 

Entire Area 53% 36% 

20,000 points 56% 49% 

10,000 points 56% 56% 
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From the results it can be seen that the classification using the Multi-Segments Separation process is 

less accurate than the Iterative Single-Segment Separation process. The difference between the two 

methods is reduced by reducing the size of the partitioned areas. By observing the figures it can be seen 

that the results of the Multi-Segments Separation process is more homogeneous than the Iterative 

Single-Segment Separation process. 
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5. Results and Analysis: Multi-Wavelength (Multi-Spectral) LiDAR Data 

5.1 Overview 

Optech, one of the superior LiDAR sensor developers, has constructed the first multi-spectral airborne 

LiDAR sensor. The new LiDAR sensor, called “Optech Titan”, includes three active laser beams operating 

at wavelengths of 0.532 μm, 1.064 μm, and 1.550 μm. By combining the multi-spectral LiDAR data 

collected by the three wavelengths, more reliable and accurate information can be extracted, compared 

to the single wavelength LiDAR sensors. This chapter describes the use of multi-spectral LiDAR data for 

land cover classification using methodologies described in Chapter 3. The investigated dataset in this 

chapter is a multi-spectral LiDAR data acquired by Optech Inc. The following sections describe the 

dataset, the study area, and the experimental work. The chapter also includes an in-depth discussion of 

the results and the use of multi-spectral LiDAR data in land cover classification. 

5.2 The Dataset and Study Area 

The Titan sensor has a 300 kHz effective sampling rate for each channel and a combined ground 

sampling rate approaching 1 MHz. The Titan system operates in 0.35 mrad beam divergence for 

Channels 1 and 2, and approximately 0.7 mrad for Channel 3. LiDAR data was acquired from flying height 

of around 1000 m that creates a strip swath width of about 800 m. The data were collected in a strip 

length of 4 km by 800 m (Figure 5-1 b). The scanned area, during the data collection mission, is a flat 

urban area south of Oshawa Municipal Airport of the city of Oshawa, Ontario, Canada. Figure 5-1a 

illustrates the captured area as it appears in a Google map. This area contains a variety of land cover 

types including: buildings with different roof materials, roads and drive ways, scattered trees and areas 

covered by dense trees, and open spaces with and without grassy coverage. 

The provided data were delivered in LAS format files for the three channels (separate file for each 

channel). The data include the GPS trajectory data with x, y, and z coordinates, the linearized intensity 

values in 8 bit, the time tag of each signal, the number of returns associated with each signal (up to four 

returns), and the return number for each point. The provided data had point density of about 3.5 

points/m2.  
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Figure 5-1: Location of the Captured Data and the Study Area 

A small area of around 120 x 120 m (Figure 5-1 c) was clipped out of the LiDAR data strip to conduct the 

experimental work. The clipped area contained around 50,000 points in each channel and was used to 

apply the developed classification approaches that were investigated with the single wavelength LiDAR 

data.  The selected area is an urban flat area that contained various land cover types, as explained 

(a) 

(b) 

(c) 
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before. No aerial images were provided with the data, therefore, high resolution ortho-images were 

downloaded from USGS site to be used as a reference.  

Channel 1 

(1.550 μm) 

 

 

Channel 2 

(1.064 μm) 

 
Channel 3 

(0.532 μm) 

 

Figure 5-2: Point Cloud Data (Intensity Values) of the Three Channels for the Multi-Spectral LiDAR Data 

5.3 Data Preparation 

The provided data were geometrically corrected; therefore, no geometric correction was required. To 

make the dataset available for conducting the land cover information extraction, the LiDAR point cloud 
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data were first corrected from the radiometric errors following the same procedure that was applied to 

the previous single wavelength LiDAR dataset. The radar range equation was used, where the LiDAR 

intensity values, the range values, the atmospheric attenuation, and the incidence angle of the laser 

pulses were used as described in Shaker et al. (2011). The intensity and elevation values of the point 

cloud data for the three channels are illustrated in Figures 5-2 and 5-3, respectively. 

Channel 1 

 

 

Channel 2 

 
Channel 3 

 

Figure 5-3: Point Cloud Data (Elevation Values) of the Three Channels for the Multi-Spectral LiDAR Data 
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5.4 Classification Results and Analysis 

5.4.1 Part-1: Classification of LiDAR Data in Raster Format 

In Part-1 of the methodology, the LiDAR data were converted into images and either a pixel-based 

supervised classifier was used, or the pixels were converted into objects and classified using a developed 

decision tree classifier. The Kriginig interpolation technique was used to resample and interpolate the 

LiDAR data for each channel into two images—the intensity image based on the intensity values 𝐼, and 

DSM based on the elevation values 𝑍 of the first return points. 

5.4.1.1 Pixel-Based Classification 

The pixel-based classification workflow started with a data preparation step, where the point cloud data 

were converted into raster format for each of the considered attribute values. The three LAS files were 

separated into ground and non-ground points using the LASTools software, and converted into ASCII 

files. The provided data had smaller gaps between LiDAR footprints than the single-wavelength LiDAR 

dataset. When the Kriging interpolation technique was used, the small gaps were filled with data. For 

each channel, intensity image, DSM of the first returns, and DTM of the ground points were generated. 

Figure 5-4 illustrates the three images (intensity, DSM, and DTM) for each channel.  

For layer combination, several combinations of layers were conducted where two or more layers were 

combined into one multi-layer raster image. The investigated images with single or multi-layer 

combinations were: 

1. Intensity images (for each channel separately). 

2. DSM (for each channel separately). 

3. Intensity and DSM (for each channel separately). 

4. Intensity and NDSM (for each channel separately). 

5. Intensity of the three channels in three-layer image. 

6. Intensity and DSM of the three channels in six-layer image. 

7. Intensity of the three channels and DSM of one channel in four-layer image. 

Based on the findings of the classification results of the single-wavelength LiDAR dataset (described in 

Chapter 4) it was noticed that including the Normalized DSM (NDSM) instead of the DSM in the 

classification improved the classification results, while including the texture of the intensity did not. 
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Therefore, the Normalized DSM (NDSM) layers of the three channels were extracted out of the elevation 

data by subtracting the DTM from the DSM. Figure 5-5 illustrates the extracted NDSM for each channel. 

 Intensity DSM DTM 

C1 

   

C2 

   

C3 

   

Figure 5-4: Intensity images, DSM, and DTM of the Three Channels 
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Channel1 

 

Channel2 

 

Channel3 

 

Figure 5-5: Extracted Normalized DSM layers of the Three Channels  

The Minimum Distance to Means image classification algorithm was applied to the different 

layer combinations. That is because the selected training areas for supervised classification did 

not follow normal distribution; hence the Maximum Likelihood classifier would not be 

applicable. The classification results of the study area based on the mentioned cases are 

illustrated below. There were four distinguished classes in the study area: buildings, trees, 

roads, open spaces covered or not by grass. Figure 5-6 presents the classification results of the 

intensity images and the DSM of each channel. Figure 5-7 demonstrates the classification 

results of the multi-layer images intensity and DSM, and the intensity and NDSM images of each 

channel. Figure 5-8 shows the classification results for the multi-Layer images as mentioned in 

Cases 5, 6 and 7. 
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Figure 5-6: Pixel-Based Classification Results for Intensity images and DSM Separately  
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Figure 5-7: Pixel-Based Classification Results for Intensity and DSM images, and Intensity and NDSM images 
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Figure 5-8: Pixel-Based Classification Results for the Multi-Layer images 
a) three-layer image (3 intensity layers), six-layer image (3 intensity and 3 DSM layers), and four-layer image (3 intensity and 

1 DSM layers) 

The classification results for all cases were assessed using the confusion matrix approach. Well-

distributed reference areas were selected out of the study area, and these areas are represented by 

around 57,000 grid points. These points were used to evaluate the classification results. The ground 

validation information was collected from the downloaded aerial images. Figure 5-9 shows the 

distribution of the reference areas/points over the study area. Table 5-1 shows the number of reference 

points in each class. Appendix D illustrates the confusion matrices and the Kappa statistics for all cases. 

The accuracy assessment of the mentioned classification cases is illustrated in Table 5-2.  
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Figure 5-9: The Distribution of the Reference Points within the Study Area 

Table 5-1: The Number of Reference Points in each Distinguished Class within the Study Area for Multi-Spectral 
LiDAR data 

Class Number of Areas Number of Reference Points 

Buildings  8 10382 

Grass/Soil 5 18233 

Roads  3 23014 

Trees 3 5298 

Total 19 56927 

By observing the classification accuracies, it can be noted that: 

1. Using the intensity images only or DSM in land cover classification produced low accurate results 

(overall accuracy less than 50%). However, combining the intensity values and the DSM 

improves the classification results by around 11–30%, 20–49%, and 17–32% for the three 

channels. 

2. Using the normalized DSM instead of the DSM in the classification did not improve the 

classification accuracy. That is probably because the study area is a flat area, so no advanced 

information is added by using the NDSM. 

3. Combining the intensity images of the three channels produces more accurate results than each 

channel separately (around 18–30% improvement). By combining the three channels, more 

information was included in the classification, which enriched the classification results. 
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Table 5-2: Classification Accuracy for the Pixel-Based Classification Logic for the Multi-Spectral LiDAR data 

Case Overall Accuracy % 

Intensity images of Channel 1 64 

Intensity images of Channel 2 73 

Intensity images of Channel 3 61 

DSM of Channel 1 45 

DSM of Channel 2 44 

DSM of Channel 3 46 

Intensity and DSM of Channel 1 75 

Intensity and DSM of Channel 2 93 

Intensity and DSM of Channel 3 78 

Intensity and NDSM of Channel 1 76 

Intensity and NDSM of Channel 2 93 

Intensity and NDSM of Channel 3 81 

Intensity of the three channels in one three-layer image 91 

Intensity and DSM of the three channels in one six-layer image 94 

Intensity of three channels and DSM of one channel in one four-layer image 93 

4. Adding the DSM layer to the intensity of the three channels slightly improved the classification 

results (2–3% improvement). This means that the intensity of the three channels had a more 

important role than the DSM. 

5. The classification results of Channel 2 (either intensity, or intensity and elevation) are more 

accurate than any of the other channels. That is probably because Channel 2 is operated with 

1.064 m wavelength, which has large separability between the land cover classes of urban 

areas. 

6. Adding three layers of the DSM (layer from each channel) did not improve the results greatly 

(1% improvement). Therefore, adding any of the DSM layers would lead to similar results. 

5.4.1.2 Object-Based Classification 

The object-based classification workflow started with the data preparation step. The point cloud data 

were separated into intensity and elevation files, and then interpolated and converted into raster 

format. The intensity data file (𝑥, 𝑦, 𝐼), the elevation data file (𝑥, 𝑦, 𝑧) for the first return, and the 

elevation data file for the ground points (𝑥, 𝑦, 𝑧) were separated.  The terrain points were determined 
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by using the ground module in the LASTools software. To convert the point data into raster format and 

to fill the gaps between the LiDAR footprints, Kriging interpolation technique was used (Figure 5-4).  

The procedure of the object based classification, illustrated in Figure 3-4, was followed in order to 

classify the LiDAR data into the distinguished four land cover classes: buildings, grass/soil, roads and 

trees. During the data preparation step, the intensity data were segmented into homogenous regions 

and the elevation data were used to determine the object heights. For intensity segmentation, the 

neighbouring pixels that fulfill a specified homogeneity criterion were gathered to form a segment. 

Based on the variation of the intensity values within each of the manmade classes, homogeneity criteria 

were specified. The specified criterion for homogeneity was that the Euclidean spectral distances 

between the neighbouring pixels had to be less than 3.5. Figure 5-10 illustrates the segmentation results 

of the intensity image (of the three channels together) based on the specified criterion. To determine 

the heights of objects, the normalized Digital Surface Model (NDSM) was generated by subtracting the 

DTM from the DSM, shown in Figure 5-5.  

 

Figure 5-10: Segmentation Results of the Intensity Layer 

By following the decision tree that is illustrated in Figure 3-4, with selecting the MinA equal to 50 m2, the 

MinA was used to separate the homogeneous and heterogeneous areas. This value was specified by 

observing the sizes of buildings within the study area. The ground was separated out of the whole area 

using the ground module of LASTools Software. The four Level-1 clusters were then intersected to 

separate the four distinguished land cover classes. The classification results are represented in Figure 5-

11. 



128 

 

 

Buildings   
Grass /Soil  
Roads   
Trees  

Figure 5-11: Classification Results Using Object-Based Classifier 

To assess the accuracy of the classification results, the same reference areas, which were used in the 

pixel-based classification logic, were used for more reliability in comparing the classification results of 

the two logics. The accuracy of the object-based classification results was 62%. This classification result 

is comparable to the classification result of Case 6 in the pixel-based classification (classification of the 

intensity and DSM of the three channels in one six-layer image), where the pixel-based classification 

accuracy was 94%. 

5.4.2 Part-2: Point-Based Classification of LiDAR Data Using Existing Classification Algorithm 

The second part is a classification of LiDAR point cloud data using point-based classification logic with 

one of the existing classifiers. In this part, the classification was conducted on the original LiDAR points 

without resampling the points to a grid space. Afterwards, to produce a land cover image, the classified 

data were resampled into a predefined grid space and gaps between LiDAR footprints in the entire area 

were filled using the proposed approach. The developed MATLAB code based on the Minimum Distance 

to Means algorithm was used to apply the point-based classification logic to the study area. 

The workflow of the point data classification approach, as described in Section 3.3, was followed. The 

introduced point classification approach consists of three stages: data preparation, classification, and 

evaluation. In the data preparation stage, the distinguished land cover classes within the study area 

were defined. For a more reliable comparison between the pixel-based and point-based classification 

logics, the Minimum Distance to Means classifier was applied to the point data. The same training sites 

that were used in the first part were used here to train the classifier. Consequently, a grid space was 

created to represent the whole area. The space between the grid points was 0.2 m, which was 
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equivalent to the pixel size of the raster grid (in Part-1). The last step in the data preparation stage was 

the collection of ground validation of the reference points. The same reference areas that were used to 

evaluate the classification results of the Pixel and object-based classification were used here.  

The proposed approach for point data classification that is described in Section 3.3 was applied. The 

developed MATLAB code was applied to the point data based on the attribute values in consideration to 

classify the points to the most appropriate class.  The classification procedure was conducted for each 

channel based on the attribute values (intensity and elevation) separately and together.  After that, the 

classification results of each channel were combined by gathering the classified points into one file and 

resampling them to the grid points and filling the gaps. The proposed combination method, CMCD, was 

followed as well to produce the final classified grid points based on the classification of each channel 

and the a posteriori probabilities of the classification results. The classified points, then, were resampled 

to the grid points, and additional MATLAB code was developed to assign the grid points to the 

appropriate land cover classes using the CMCD technique. The results of the classification are illustrated 

in Figures 5-12 to 5-14. These figures illustrate the classification results of the original points (first 

column) and the full grid points (second column) of each channel separately based on intensity values 

(Figure 5-12), elevation values (Figure 5-13), elevation, and intensity values (Figure 5-14). 

Since the point cloud data of the three channels do not coincide, as shown in Figure 5-15, combining the 

data of the three channels to act as three different groups of attribute values (intensity and elevation) is 

not possible. Therefore, combining the classification results is required to get benefit of the advantage 

of the multi-spectral LiDAR data. To combine the classification results, the two approaches that were 

followed for the multiple data-strips in the previous chapter were applied to these data channels. 
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Figure 5-12: Point-Based Classification Results for the Three Channels Based on Intensity Data  
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Figure 5-13: Point-Based Classification Results for the Three Channels Based on Elevation Data  
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Figure 5-14: Point-Based Classification Results for the Three Channels Based on Intensity and Elevation Data  
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Figure 5-16: Point-Based Classification Results for the Combined Points of the Classified Channels Based on 
Intensity and Elevation Data  
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The first approach that was followed is to merge the classified points, resample the points into 

the predefined grid space, and fill the gaps.  The second approach is to resample the classified 

points into the grid space, fill the gaps, and then combine the classified grid points using the 

CMCD technique. The results of the first approach are illustrated in Figure 5-16, where the 

results of the three channels were merged and the results of merging the two NIR channels 

(Channel 1 and Channel 2). Figure 5-17 illustrates the results of the CMCD for the intensity 

values and for the intensity and elevation values together. 
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Figure 5-17: Point-Based Classification Results for the Combined Points of the Classified Channels Using CMCD 
Combination Approach  

To evaluate the classification results, the reference areas/points that were used to evaluate the 

pixel-based and object-based classification results were used with the confusion matrix 

approach. The accuracy of the classification results is listed in Table 5-3. 
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Table 5-3: Classification Accuracy for the Point-Based Classification Logic for the Multi-Spectral LiDAR data 

Case Overall Accuracy %  

Original 
Points 

Grid 
Points 

Intensity attribute values of Channel 1 55 57 

Intensity attribute values of Channel 2 65 70 

Intensity attribute values of Channel 3 47 48 

Elevation attribute values of Channel 1 36 42 

Elevation attribute values of Channel 2 37 43 

Elevation attribute values of Channel 3 38 45 

Intensity and Elevation attribute values of Channel 1 68 72 

Intensity and Elevation attribute values of Channel 2 81 86 

Intensity and Elevation attribute values of Channel 3 59 65 

Intensity and Elevation attribute values of the three channels (Merged 
Classified Points) 

72 79 

Intensity and Elevation attribute values of the two NIR channels (Merged 
Classified Points) 

75 80 

Intensity attribute values of the Three Channels combined by CMCD  73 

Intensity and Elevation attribute values of the Three Channels combined 
by CMCD 
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By observing the accuracy of the classification results, it can be seen that: 

1. The classification accuracy of all the DSM of each of the three channels is lower than 50%, and 

the accuracy of the intensity is higher than 50%. However, both attribute values, intensity and 

DSM, have a central role in the classification. Therefore, when the intensity and DSM were 

considered in the classification, the overall accuracy improved by 13–32%, 16–44%, and 12–21% 

for the three channels. 

2. The CMCD combination approach produced more accurate results than merging the classified 

points of the two NIR channels or the three channels by 8 and 9%, respectively. That is because 

the CMCD includes the a posteriori probabilities of the classified data as well. 

3. Combining the classification results of the elevation and intensity values of the three channels 

produced more accurate results than combining the classification results of the intensity values 

only (12% improvement). 
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By comparing the classification results of the pixel-based and point-based classification logics, it can be 

noticed that: 

1. The classification accuracies of the pixel-based logic are more accurate than the point-based 

logic for the separate and combined attribute values for each channel (1–13% improvement). 

That is because in the pixel-based logic, the terrain was separated before applying the 

classification algorithm, which might lead to accurate results in the classification. 

2. The classification accuracy of the combined intensity of the three channels using the pixel-based 

classification is more accurate than the CMCD of the classified points of the three channels by 

18%. By combining the raster images into one multiple layer image, each pixel gets an attribute 

value from each layer. On the other hand, the point data could not be combined because the 

points of the different channels did not coincide. 

5.4.3 Part-3: Classification of LiDAR Point Data Format with Kurtosis Change Curve Classifier 

The third part of the work is applying the new proposed approach based on a statistical analysis 

segmentation technique on the multi-spectral LiDAR point cloud data. The proposed classification 

approach depended on the kurtosis values of the elevation and intensity attribute values of LiDAR point 

data independently of the spatial locations of the points. The work procedure, as illustrated in Figure 

3.8, consisted of two stages: unsupervised segmentation stage based on statistical analysis 

segmentation technique, and supervised classification stage by applying one of the existing supervised 

classification algorithms on the produced segments. The following subsections describe the details of 

the experimental work. 

5.4.3.1 Unsupervised Segmentation Stage 

To divide the LiDAR data into segments, the Iterative Single-Segment Separation process described in 

Subsection 3.4.1, was used. The last inflexion point of the kurtosis change curve of the selected attribute 

value was considered as separator to segment the points with attribute values less than the value 

corresponding to the inflexion point into a unique segment. This process continued in an iterative 

process until all points were segmented. The segmentation results of the Iterative Single-Segment 

Separation process based on elevation values then intensity values are illustrated in Figure 5-18. 

 



137 

Iterative Single-Segment Separation process  

 Segmentation Based on Elevation Values Segmentation Based on Elevation Then 

Intensity Values 

C1 

  

C2 

  

C3 

  

Figure 5-18: Segmentation Results of the Three Channels Using Iterative Single-Segment Separation Process 
Based on Elevation then Intensity Values 
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5.4.3.2 Supervised Classification Stage 

The second stage is assigning class values to the sub-segments using one of the existing supervised 

classification algorithms. In this stage each sub-segment produced in the first stage was treated as a 

pixel or a single object that had to be assigned to one of the distinguished classes, as illustrated in Figure 

3-12. The Minimum Distance to Means classification algorithm was used to classify the segments. The 

classification results of each channel, for original points and grid points, are illustrated in Figure 5-19. 
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Figure 5-19a: Classification Results of the Produced Segments by Iterative Single-Segment Separation Process 
Using the Minimum Distance to Means Classifier 
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Figure 5-19b  

Figure 5-19: Classification Results of the Produced Segments by Iterative Single-Segment Separation Process 
Using the Minimum Distance to Means Classifier 

To evaluate the classification results, the reference areas/points that were used to evaluate the pixel-

based and object-based classification results were used with the confusion matrix approach. The 

accuracy of the classification results is listed in Table 5-4. 
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Table 5-4: Accuracy of Classification Results for the LiDAR Point Cloud Using the Iterative Single-Segment 
Separation process and the Minimum Distance to Means Classification Algorithm 

Case Overall Accuracy % 

Original 
Points 

Grid 
Points 

Intensity and Elevation attribute values of Channel 1 70 72 

Intensity and Elevation attribute values of Channel 2 72 76 

Intensity and Elevation attribute values of Channel 3 62 63 

Intensity and Elevation attribute values of the three channels (Merged 

Classified Points) 

68 76 

Intensity and Elevation attribute values of the two NIR channels (Merged 

Classified Points) 

71 76 

Intensity and Elevation attribute values of the Three Channels combined 

by CMCD  

 87 

The same observations of the point-based classification logic can be noted with the results of the 

proposed approach. The CMCD approach produced more accurate results than each channel separately, 

and more than by merging the classified points. It can be also noted that the classification accuracy is 

comparable to the point-based classification. 

To accelerate the classification process, the Multiple-Segment Separation process, described in 

Subsection 3.4.3, was followed. Instead of using the last inflexion point of the kurtosis change curve in 

the segmentation stage, all inflexion points were used to divide the LiDAR point data into segments. As a 

result, the segmentation of the point data based on the elevation and the intensity for the three 

channels are illustrated in Figure 5-20. 

The second stage is assigning class values to the sub-segments using the Minimum Distance to Means 

classification algorithm. The classification results of each channel, for original points and grid points, are 

illustrated in Figure 5-21. The classification results of the combined data and the combined classified 

data are illustrated in Figure 5-21 as well. 
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Figure 5-20: Segmentation Results of the Three Channels Using Multiple-Segments Separation Process Based on 
Elevation then Intensity Values 
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Figure 5-21a: Classification Results of the Produced Segments by Multiple-Segments Separation Process Using 
the Minimum Distance to Means Classifier 
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Figure 5-21b 

Figure 5-21: Classification Results of the Produced Segments by Multiple-Segments Separation Process Using the 
Minimum Distance to Means Classifier 

Table 5-5 summarizes the accuracy of the classification results; the confusion matrix approach was 

formed based on the same reference areas that were used before. It can be noticed that the 

accelerating method not only produced the classification results more quickly, but it also produced 

results with the same accuracy as the Iterative Single-Segment separation process.  
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Table 5-5: Accuracy of Classification Results for the LiDAR Point Cloud Using the Multiple-Segments Separation 
process and the Minimum Distance to Means Classification Algorithm 

Case Overall Accuracy % 

Original 
Points 

Grid 
Points 

Intensity and Elevation attribute values of Channel 1 62 64 

Intensity and Elevation attribute values of Channel 2 77 83 

Intensity and Elevation attribute values of Channel 3 57 58 

Intensity and Elevation attribute values of the three channels (Combined 

Classified Points) 

66 72 

Intensity and Elevation attribute values of the two NIR channels 

(Combined Classified Points) 

70 74 

Intensity and Elevation attribute values of the Three Channels combined 

by CMCD 

 89 

5.4.4 Classification of LiDAR Point Data Using Rule-Based Method with a Developed Decision Tree 

By observing the data, some criteria can be specified to separate the point data into the distinguished 

classes. Not only can the elevation and intensity values be used, but other rules can also be set based on 

other attribute values such as number of returns, point density, difference in elevation and intensity 

within certain small area, and standard deviation of the elevation and intensity values. Therefore, the 

required attributes to be extracted were determined within an area of 1 m2 and assigned to each point 

of the original point cloud data. The extracted attribute values were: 1) point density, 2) maximum 

number of returns, 3) difference in elevation between maximum and minimum values, 4) difference in 

intensity between maximum and minimum values, 5) standard deviation of the elevation values, 6) 

standard deviation of the intensity values, and 7) ground point detected by LASTools. The developed 

decision tree is illustrated in Figure 5-22. 
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Figure 5-22: Rule-Based Classifier 

By following the developed decision tree, four distinguished land cover classes could be separated for 

each channel. The classification results of the three channels are illustrated in Figure 5-23. 
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Figure 5-23a: Classification Results Using the Rule-Based Classification 
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Figure 5-23: Classification Results Using the Rule-Based Classification 

Table 5-6 summarizes the accuracy of the classification results of the Rule-Based classifier. The 

confusion matrix approach was formed based on the reference areas. 
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Table 5-6: Accuracy of Classification Results for the LiDAR Point Cloud Using the Rule-Based Classifier 

Case Overall Accuracy for 
Classification of  

Original Points Grid Points 

Intensity and Elevation attribute values of Channel 1 Rule-Based 79 80 

Intensity and Elevation attribute values of Channel 2 Rule-Based 89 90 

Intensity and Elevation attribute values of Channel 3 Rule-Based 56 55 

Intensity and Elevation attribute values of the three classified 

channels With Rule-Based (Combined Classified Points)  

75 78 

Intensity and Elevation attribute values of the two NIR classified 

channels With Rule-Based (Combined Classified Points)  

84 86 

Intensity and Elevation attribute values of the Three Channels 

combined by CMCD  

 91 

By observing the results of the different classification approaches, it can be noted that: 

1. Considering the elevation values in addition to the intensity values in the classification improved 

the classification results. 

2. Classification results of each channel were less accurate than the classification results of the 

entire dataset (three channels together). 

3. Combining the classification results using the CMCD technique was more accurate than 

combining the classified points of the different channels by merging the points into one grid 

space without considering the a posteriori probabilities of each channel. 

4. The classification results of the pixel-based classification logic were more accurate than the 

point-based logic. That is because when the data were converted into images with multiple-

layers of the different channels, each pixel got multiple attribute values regardless of whether 

the original points of the different channels coincided or not. 

5. The Decision Rules classification technique produced almost the same results as the point-based 

classification logic. Nevertheless, more attention is required in analysing the data for more 

specific criteria. 
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6. Summary, Conclusions and Future Work 

This chapter summarizes the entirety of the work carried throughout this research. It begins with a 

summary of the work, handling and analysis of the results, the derived conclusions, and closes with 

future work requiring further attention. 

6.1 Summary 

6.1.1 Research Purpose 

The main goal of this research was to maximize the benefit of the LiDAR data independently of any other 

sources of data for land cover information extraction. To achieve this goal, specific objectives were set. 

These objectives can be summarized as follows: 

•  Studying the potential use of LiDAR data for land cover information extraction, and studying the 

effect of including other auxiliary layers extracted from LiDAR data in the classification process. 

• Developing a new point-based classification approach to classify LiDAR point cloud data without 

losing details of the 3D points.  

• Developing a Combined Multiple Classified Datasets (CMCD) approach for land cover 

classification of overlapped data-strips. 

• Developing a new classification approach for land cover classification of LiDAR point cloud data 

based on Kurtosis Change Curve algorithm. 

6.1.2 Research Methodology and Experimental Work 

To fulfill the research objectives, a methodology consisting of three parts was followed and applied to 

LiDAR data of urban areas. The selected urban areas contained different land cover types with different 

elevations. The first part of the methodology investigated the image classification techniques. Hence, 

point cloud LiDAR data were converted into intensity and DSM images. Other auxiliary layers were 

extracted from the intensity and DSM images to be included in the classification process. Several multi-

layers images were produced by combining two or more layers together into one image. The selected 

supervised classification algorithm was applied to the various images that were produced. Additionally, 

the produced LiDAR images were clustered into objects and classified based on certain criteria. The 

criteria used for classification were specified based on the characteristics of the data in the study areas. 

Results of the pixel-based and object-based classification logics were evaluated using randomly 

distributed reference points as part of the confusion matrix approach. 
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The second part of the methodology introduced a method to extract land cover information from LiDAR 

data without converting the irregular LiDAR points into a 2D grid to avoid losing any important details. 

Afterwards, to obtain a classified area, the classified points were resampled into grid space and the grid 

points were assigned to the appropriate classes. Gaps between LiDAR footprints were filled using two 

different approaches: Nearest Neighbour and Iterative Majority Moving Window. Furthermore, to 

achieve maximal benefit of data that were collected more than once from different trajectories, 

combining data of overlapped areas were investigated. Data of two overlapping adjacent strips were 

examined, and combined using different techniques: pre- and post-classification. Points of the two data-

strips were combined pre-classification by merging the two data-strips into one file with and without 

normalizing the intensity. While post-classification, the classified points were either merged into one file 

or combined using the proposed Combined Multiple Classified Datasets (CMCD) technique. The CMCD 

technique utilized the concept of combining classifiers that was introduced in the pattern recognition 

field to benefit from multiple groups of data for an area (multiple data-strips). This was achieved by 

combining information obtained from each group of data based on the a posteriori probabilities of 

classified data. 

In the third part of the methodology, an innovative classification approach was suggested for LiDAR 

point data. The proposed approach classified the entire data into the distinguished classes altogether. It 

relied on the statistical analysis segmentation technique, where a proposed Iterative Single-Segment 

Separation method was introduced to cluster the data into segments regardless of the spatial location of 

the points. Afterwards, a supervised classification algorithm was applied to the produced segments to 

assign them into the appropriate classes. For the supervised classification, the sub-segments acted as 

separate objects or pixels, with the attribute values for this object represented by the attribute values of 

the spectral centre point7. However, these segments were not necessary attached spatially. The third 

part ended with introducing two different methods to accelerate the process; one eliminated the 

iterative process (Multi-Segments Separation process), and another reduced the size of the data by 

partitioning the study area into sub-areas, each containing a manageable number of points. The three 

parts of the methodology were applied to two different datasets. The first dataset was single-

wavelength LiDAR data covering three urban study areas in British Columbia, while the second dataset 

was multi-spectral LiDAR data covering an urban area in Oshawa, Ontario. 

                                                           

7
 The spectral centre point means the centre point of the segment on a scatter plot. 
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6.2 Results Discussion and Conclusions 

6.2.1 Results Discussion 

By converting the point cloud data of the single wavelength LiDAR dataset into raster images and 

applying the Maximum Likelihood algorithm, the following results were realized: 

 In most cases, the radiometric-corrected intensity values produce more accurate classification 

results compared to the original intensity values. This occurs due to the radiometric correction 

process correcting the surface reflectance from the geometric and atmospheric attenuations. 

 Both the radiometric-corrected intensity and elevation data had main roles in the land cover 

classification. By classifying any of them separately, the accuracy obtained was less than 50%. 

The overall accuracy reached 66% for the five distinguished classes when intensity and elevation 

values were included. 

 The classification results based on the LiDAR elevation and intensity attribute values are 

comparable to the classification results of the aerial imageries. The classification results of the 

aerial imagery were less than 60%. 

By observing LiDAR data, more information layers can be generated out of the intensity and elevation 

values, which can be used as auxiliary layers in the classification process. The normalized digital surface 

model (NDSM), the texture of the intensity, and the slope of the elevation surfaces are among the 

information layers that can be generated. By including these layers in the classification, and comparing 

the classification results, the following conclusions can be derived:  

 Using the normalized DSM (NDSM) instead of the DSM improved the accuracy of the 

classification results. This improvement ranged between 13-23%. 

 Including the texture of the intensity layer slightly improved the classification results. However, 

classification results of the trees were improved. 

 Although including slopes of the elevation layers did not improve the classification results, the 

slope of DSM images detect the borders of the buildings. 

By applying the object-based classification logic using the developed decision tree, which used 

homogeneous segments of the intensity and the NDSM as inputs, and comparing the results to the 

equivalent classified multi-layer image, the following conclusions can be derived: 
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 The developed decision tree did not include criteria for separating open spaces covered by grass 

from those covered by bare soil. 

 The produced classification results have a lower accuracy than those obtained by the pixel-

based classification logic for Intensity, NDSM, and texture of intensity multi-layer images. 

Nevertheless, by visual inspection of the results, the land cover classes obtained by the object-

based classification had smoother surfaces and produced more homogeneous areas. 

To preserve details of information associated with the 3D point data, converting the 3D point data into 

2D grid points should be avoided. Therefore, extracting land cover information from LiDAR data with 

point-based classification logic was introduced. Since the LiDAR footprints are neither regular nor cover 

the whole area (gaps appeared between the footprints) to produce full populated land cover 

information, a procedure for converting the point data into regular grid after extracting the required 

land cover information was proposed.  

Two approaches were followed to assign classes to the grid points; Nearest Neighbour approach, and 

Iterative Majority Moving Window approach. For both approaches, the original points were resampled 

to the grid space and the grid points were assigned to the most-frequent class of the resampled points it 

coincided with. The rest of the grid points that did not coincide with any resampled points remained 

unclassified. Following that, one of the two gaps-filling approaches can be followed: 

 In the Nearest Neighbour approach, the remaining grid points were assigned the class of the 

nearest classified point before resampling. 

 In the Iterative Majority Moving Window approach, a 3x3 moving window (kernel) passed 

through the unclassified grid points and assigned at the point at the centre of the window 

(kernel) to the majority class of the 8 neighbouring points. This process was repeated until all 

unclassified grid points were assigned to one of the distinguished land cover classes. 

By evaluating the final classification results and comparing the results to the pixel-based classification 

results, it can be concluded that: 

 The point-based classification logic produced more accurate results than the pixel-based logic 

(14% improvement for either Nearest Neighbour, or the Iterative Majority Moving Window 

approaches). 
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 Both gap-filling methods (Nearest Neighbour, and the Iterative Majority Moving Windows) 

produced similar classification results. These methods are applicable to fill the gaps, however, 

some areas with fewer resampled points require more attention for more accurate results. 

Acquiring data from different flight trajectories should be considered for land cover classification. To do 

so, data of different strips covering the same area were combined. There were two ways to combine the 

data and get benefit of each collected point. The first method is merging the data into one file before 

classifying the entire dataset. The second method is classifying each data-strip then combining the 

classified data through merging the classified points into one file, or combining the data using the 

proposed Combined Multiple Classified Datasets (CMCD) approach. Therefore, information of the two 

data-strips covering the same area was merged and classified using the Maximum Likelihood classifier. 

The merged data were radiometrically corrected with and without applying histogram matching. On the 

other hand, both data-strips were classified using the Maximum Likelihood classifier, then the classified 

data-strips were merged and evaluated, or combined using the CMCD approach. By applying these 

methods, the following was observed: 

 Merging several data-strips filled parts of the gaps between the LiDAR footprints. 

 Although applying the Maximum Likelihood classifier on the combined data-strips reduced the 

accuracy of the classification results, some gaps that were filled with points were classified in a 

more appropriate way than their classification results before merging the data. 

 Carrying out histogram-matching on the data of the two strips increased the homogeneity 

between LiDAR points, and slightly improved the classification results (1% improvement). 

 Merging the point data after classification improved the classification results by 4%. 

 Applying the CMCD approach achieved more improvement in the classification accuracy (3-4% 

improvement). 

From literature, it was found that the statistical analysis segmentation technique was introduced as a 

robust technique for separating terrain points of LiDAR data, as well as detecting features. Based on the 

previously introduced statistical analysis segmentation techniques such as Skewness Balancing and 

Change curve algorithms, an innovative classification approach was proposed and investigated. The 

proposed approach consists of two stages; a segmentation stage based on the statistical analysis 

technique, followed by labeling the segments to the appropriate land cover classes using a supervised 

classification technique. A statistical analysis segmentation algorithm was proposed. The algorithm relies 
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on the concept of the kurtosis change curve algorithm, yet a number of segments were produced 

altogether without prior knowledge of the data.  The proposed algorithm works successively on all 

attribute values considered for classification. By applying this classification approach, it was realized 

that: 

 The achieved accuracy of the proposed classification approach was 9% more accurate than the 

classification accuracy of the pixel-based classifier for the intensity and the DSM.  

When land cover classification is required for large area, it is expected that the statistical analysis 

classification technique will consume a longer time. To reduce the consumed time, accelerating the 

classification process is required. To achieve this, two different ways were investigated: eliminating the 

iterative process, or reducing the data size. 

  For eliminating the iterative process, a different segmentation algorithm was proposed. Though 

this algorithm was also based on the kurtosis change curve, it separates the entire data into a 

number of segments at once. This can be done through detecting the critical points of the 

kurtosis change curve and clustering the entire data at the attribute values corresponding to the 

detected critical points. Each cluster contained data with attribute values ranging between the 

values corresponding to each two consequent points. By doing so, it was noted that the 

consumed time was reduced to one sixth of the time consumed by the Iterative Single-Segment 

Separation process. However, a lower accuracy of the classification results was noted. 

For reducing data size, partitioning the area into smaller ones containing a manageable number of 

points was introduced. A user can specify the number of points that is manageable based on the 

computer specification. It was noted that partitioning the area reduced the processing time 

dramatically. The same level of accuracy was achieved when there were less than 20,000 points. 

When the described methodology was applied to Multi-Spectral LiDAR data, which consists of three 

channels, the following was observed: 

 Considering the elevation values in addition to the intensity values in the classification improved 

the classification results. 

 Classification results of each channel were less accurate than classification results of the entire 

dataset (three channels together). 
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 Combining classification results using the CMCD technique were more accurate than combining 

classified points of the different channels by merging the points into one grid space without 

considering the a posteriori probabilities of each channel. 

 Classification results of the pixel-based classification logic were more accurate than the point-

based logic. This occurred while data was being converted into images with multiple layers of 

the different channels, since each pixel got multiple attribute values irrespective of whether or 

not the original points of the different channels coincided. 

 The Decision rules classification technique produced similar results as the point-based 

classification logic. Nevertheless, more attention is required when analysing the data for more 

specific criteria. 

6.2.2 Conclusions: 

1. Producing land cover images out of the LiDAR data independent of external auxiliary data is 

comparable to the produced land cover images from the aerial imagery.  

2. Using normalized elevation data instead of elevation data improved the classification results. 

3. The texture of the intensity layer had a slight improvement on the quantitative classification 

accuracy (overall accuracy), and improved the classification of some classes. 

4. The developed decision tree requires more attention to include other criteria for more 

distinguished classes with more accurate results. 

5. Following the point-based classification logic and filling the gaps between the LiDAR footprints 

by any of the proposed approaches is more appropriate (accurate) for land cover classification 

of single wavelength LiDAR data in comparison to the pixel-based logic. 

6. Classifying LiDAR data after normalizing the intensity values (applying histogram-matching) 

slightly improved the classification results of the overlapped areas. This occurs as histogram-

matching further improved the surface reflectance and the intensity values. By improving the 

intensity values, more accurate classification results can be obtained. 

7. Combining the classified data by merging the two classified data-strips achieved more accurate 

results than merging the two data-strips before classifying the entire dataset. By classifying each 

data-strip separately, more homogeneous classes can be achieved than those of merged data.  

8. Combining classified data by following the CMCD approach improves the classification results of 

the overlapped area by 8%. The CMCD approach considers the a posteriori probabilities of each 

class and the distance between the original point cloud data and the grid points. 
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9. The proposed classification approach (Statistical analysis segmentation and supervised 

classification) can be used to produce land cover images as it produces more accurate results 

than the pixel-based classification. 

10. For the multi-spectral LiDAR data, classification results of the pixel-based classification logic 

were more accurate than the point-based logic. This occurred as the data was being converted 

into images with multiple-layers of the different channels, allowing each pixel to get multiple 

attribute values irrespective of whether or not the original points of the different channels 

coincided 

6.3 Future Work 

 Consider the spatial location in the segmentation process. 

 Apply different classification algorithms on the same data, and combine classification results. 

 Specify further criteria for the decision tree to achieve more classes with higher accuracy. 

 Include the slope of the DSM to detect borders of the buildings in the classification. 

 Study techniques for improving the homogeneity of the classification results (eliminating the 

small areas). 
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Appendices 

These appendices include all confusion matrices for all cases of the classifications results for the three 

study areas of the single wavelength LiDAR data (Appendices A, B, and C) and the study area of the 

multi-spectral LiDAR data (Appendix D). Each confusion matrix consists of either 5 rows by 5 columns for 

the cases of 5-classes classification, or 4 rows by 4 columns for the cases of 4-classes classification. 

Where, T = Trees Class, B = Building Class, G = Grass Class, R = Roads Class, S = Soil Class, and G/S = 

Grass/Soil Class. The numbers in the diagonal elements represent the number of reference points that 

were correctly classified. While the numbers off-diagonals are the number of points that were 

misclassified in other classes. In other words, for a column 𝑗 and row 𝑖, the element 𝑖𝑗 contains the 

number of reference points in class 𝑗 that were incorrectly assigned to the class 𝑖. Two accuracy 

assessment values were calculated for each confusion matrix; overall accuracy and overall Kappa 

statistics. The overall accuracy represents the percentage of points that were correctly classified, while 

the overall Kappa (𝐾) measures the agreement between model predictions and reality. The overall 

accuracy can be measured as: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑛𝑖𝑖

𝑀
𝑖=1

N
 × 100  (A-1) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐾𝑎𝑝𝑝𝑎 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1−chance agreement
 × 100 (A-2) 

𝐾 = 
(∑ 𝑛𝑖𝑖 /𝑁)−( ∑ (𝑛𝑖+∗ 𝑛+𝑖) /  𝑁

2𝑀
𝑖=1  )𝑀

𝑖=1

1−−( ∑ (𝑛𝑖+∗ 𝑛+𝑖) /  𝑁
2𝑀

𝑖=1  )
 × 100 (A-3) 

Where, 

𝑀 number of classes (number of rows in the confusion matrix) 

𝑛𝑖𝑖 number of reference points in row 𝑖 and column 𝑖 (diagonal elements). 

𝑛𝑖+ total number of reference points in row 𝑖. 

𝑛+𝑖 total number of reference points in column 𝑖. 

𝑁  total number of reference points; 
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Appendix A: Confusion Matrices for the Image Classification Results of the 

Single Wavelength LiDAR Data 

A.1 Confusion Matrices for Study area “Area1” 

A.1.1 Confusion Matrices of Pixel-based Classification Results 

Case 5 Classes 4 Classes 

1) Aerial 
Imagery 

  T B G R S Kappa 

T 151 4 36 7 4 0.66 

B 0 115 1 96 0 0.39 

G 20 0 10 0 6 0.21 

R 11 90 1 120 11 0.34 

S 36 4 30 9 111 0.51 

Overall Accuracy = 58% 

Overall Kappa  =  0.46 

  
 

  T B G/S R Kappa 

T 151 4 40 7 0.66 

B 0 115 1 96 0.39 

G/S 56 4 157 9 0.60 

R 11 90 12 120 0.34 

Overall Accuracy = 62% 

Overall Kappa  =  0.50 
 

2) DSM  

  T B G R S Kappa 

T 199 59 28 94 73 0.20 

B 78 106 7 19 17 0.32 

G 7 39 5 6 7 0.00 

R 8 9 30 74 25 0.34 

S 1 0 9 57 21 0.11 

Overall Accuracy = 41% 

Overall Kappa  =  0.22 

  
 

  T B G/S R Kappa 

T 199 59 101 94 0.20 

B 78 106 24 19 0.32 

G/S 8 39 42 63 0.06 

R 8 9 55 74 0.34 

Overall Accuracy = 43% 

Overall Kappa  =  0.23 
 

3) Original 
Intensity 

  T B G R S Kappa 

T 48 11 5 11 30 0.22 

B 144 146 14 177 25 0.09 

G 60 12 10 10 32 0.00 

R 4 31 12 49 0 0.34 

S 37 13 38 3 56 0.27 

Overall Accuracy = 32% 

Overall Kappa  =  0.14 

  
 

  T B G/S R Kappa 

T 48 11 35 11 0.22 

B 144 146 39 177 0.09 

G/S 97 25 136 13 0.36 

R 4 31 12 49 0.34 

Overall Accuracy = 39% 

Overall Kappa  =  0.20 
 

4) Intensity  

  T B G R S Kappa 

T 105 12 3 5 1 0.76 

B 56 127 12 172 18 0.14 

G 17 13 8 8 42 0.01 

R 72 54 22 58 29 -0.01 

S 43 7 34 7 53 0.26 

Overall Accuracy = 36% 

Overall Kappa  =  0.18 

  
 

  T B G/S R Kappa 

T 105 12 4 5 0.76 

B 56 127 30 172 0.14 

G/S 60 20 137 15 0.47 

R 72 54 51 58 -0.01 

Overall Accuracy = 44% 

Overall Kappa  =  0.26 
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Case 5 Classes 4 Classes 

5) Intensity, 
DSM  

  T B G R S Kappa 

T 229 132 20 33 38 0.30 

B 44 60 5 12 19 0.27 

G 0 0 5 1 7 0.33 

R 20 21 38 203 55 0.47 

S 0 0 11 1 24 0.61 

Overall Accuracy = 53% 

Overall Kappa  =  0.36 

  
 

  T B G/S R Kappa 

T 229 132 58 33 0.30 

B 44 60 24 12 0.27 

G/S 0 0 47 2 0.95 

R 20 21 93 203 0.47 

Overall Accuracy = 55% 

Overall Kappa  =  0.39 
 

6) Intensity, 
NDSM 

  T B G R S Kappa 

T 188 65 8 20 3 0.52 

B 67 137 2 7 3 0.53 

G 11 6 8 0 7 0.18 

R 11 3 7 202 20 0.77 

S 16 2 54 21 110 0.46 

Overall Accuracy = 66% 

Overall Kappa  =  0.56 

  
 

  T B G/S R Kappa 

T 188 65 11 20 0.52 

B 67 137 5 7 0.53 

G/S 27 8 179 21 0.69 

R 11 3 27 202 0.77 

Overall Accuracy = 72% 

Overall Kappa  =  0.63 
 

7) Intensity, 
DSM, 
Texture  

  T B G R S Kappa 

T 256 132 25 36 37 0.32 

B 17 60 0 9 20 0.45 

G 0 0 5 1 7 0.33 

R 20 21 36 204 58 0.47 

S 0 0 13 0 21 0.55 

Overall Accuracy = 56% 

Overall Kappa  =  0.40 

  
 

  T B G/S R Kappa 

T 256 132 62 36 0.32 

B 17 60 20 9 0.45 

G/S 0 0 46 1 0.97 

R 20 21 94 204 0.47 

Overall Accuracy = 58% 

Overall Kappa  =  0.42 
 

8) Intensity, 
NDSM, 
Texture  

  T B G R S Kappa 

T 249 79 15 23 7 0.53 

B 13 125 0 7 1 0.82 

G 4 5 5 0 7 0.17 

R 22 3 9 214 23 0.72 

S 5 1 50 6 105 0.57 

Overall Accuracy = 71% 

Overall Kappa  =  0.62 

  
 

  T B G/S R Kappa 

T 249 79 22 23 0.53 

B 13 125 1 7 0.82 

G/S 9 6 167 6 0.86 

R 22 3 32 214 0.72 

Overall Accuracy = 77% 

Overall Kappa  =  0.69 
 

9) Intensity, 
DSM, 
Texture, 
Slope  

  T B G R S Kappa 

T 278 134 20 35 36 0.36 

B 2 63 0 10 19 0.58 

G 0 0 5 0 7 0.37 

R 13 16 47 205 61 0.46 

S 0 0 7 0 20 0.70 

Overall Accuracy = 58% 

Overall Kappa  =  0.43 

  
 

  T B G/S R Kappa 

T 278 134 56 35 0.36 

B 2 63 19 10 0.58 

G/S 0 0 39 0 1.00 

R 13 16 108 205 0.46 

Overall Accuracy = 60% 

Overall Kappa  =  0.45 
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Case 5 Classes 4 Classes 

10) Intensity 
NDSM, 
Texture, 
Slope 

  T B G R S Kappa 

T 273 87 21 37 17 0.47 

B 2 122 0 7 12 0.81 

G 3 3 10 0 0 0.59 

R 12 1 24 201 27 0.68 

S 3 0 24 5 87 0.69 

Overall Accuracy = 71% 

Overall Kappa  =  0.61 

  
 

  T B G/S R Kappa 

T 273 87 38 37 0.47 

B 2 122 12 7 0.81 

G/S 6 3 121 5 0.87 

R 12 1 51 201 0.68 

Overall Accuracy = 73% 

Overall Kappa  =  0.64 
 

A.1.2 Confusion Matrices of Object-based Classification Results 

  T B G/S R Kappa 

T 256 44 22 7 0.68 

B 6 153 29 8 0.72 

G/S 29 9 93 78 0.28 

R 2 7 78 157 0.52 

Overall Accuracy = 67% 

Overall Kappa  =  0.56 

  

A.2 Confusion Matrices for Study area “Area2” 

A.2.1 Confusion Matrices of Pixel-based Classification Results 

Case 5 Classes 4 Classes 

1) Aerial 
Imagery 

  T B G R S Kappa 

T 82 4 21 4 12 0.66 

B 4 129 3 233 11 0.39 

G 0 0 8 1 5 0.21 

R 4 103 0 152 2 0.34 

S 3 1 17 2 44 0.51 

Overall Accuracy = 49% 

Overall Kappa  =  0.28 

  
 

  T B G/S R Kappa 

T 82 4 33 4 0.63 

B 4 129 14 233 0.08 

G/S 3 1 74 3 0.90 

R 4 103 2 152 0.22 

Overall Accuracy = 52% 

Overall Kappa  =  0.31 
 

2) DSM  

  T B G R S Kappa 

T 60 98 11 128 25 0.20 

B 21 119 4 16 9 0.32 

G 0 0 6 36 1 0.00 

R 5 1 22 169 13 0.34 

S 14 19 6 45 26 0.11 

Overall Accuracy = 44% 

Overall Kappa  =  0.28 

  
 

  T B G/S R Kappa 

T 60 98 36 128 0.08 

B 21 119 13 16 0.59 

G/S 14 19 39 81 0.13 

R 5 1 35 169 0.64 

Overall Accuracy = 45% 

Overall Kappa  =  0.28 
 



161 

Case 5 Classes 4 Classes 

3) Original 
Intensity 

  T B G R S Kappa 

T 1 6 2 3 0 0.22 

B 4 38 0 44 2 0.09 

G 27 20 24 25 9 0.00 

R 53 170 5 308 6 0.34 

S 15 3 18 14 57 0.27 

Overall Accuracy = 50% 

Overall Kappa  =  0.24 

  
 

  T B G/S R Kappa 

T 1 6 2 3 -0.04 

B 4 38 2 44 0.21 

G/S 42 23 108 39 0.43 

R 53 170 11 308 0.20 

Overall Accuracy = 53% 

Overall Kappa  =  0.27 
 

4) Intensity  

  T B G R S Kappa 

T 39 9 8 5 5 0.76 

B 1 79 1 144 2 0.14 

G 16 20 12 28 7 0.01 

R 23 125 1 201 3 -0.01 

S 21 4 27 16 57 0.26 

Overall Accuracy = 45% 

Overall Kappa  =  0.23 

  
 

  T B G/S R Kappa 

T 39 9 13 5 0.54 

B 1 79 3 144 0.10 

G/S 37 24 103 44 0.41 

R 23 125 4 201 0.20 

Overall Accuracy = 49% 

Overall Kappa  =  0.27 
 

5) Intensity, 
DSM  

  T B G R S Kappa 

T 65 81 14 23 30 0.30 

B 21 153 3 150 10 0.27 

G 0 0 9 7 6 0.33 

R 7 2 17 213 8 0.47 

S 7 1 6 1 20 0.61 

Overall Accuracy = 54% 

Overall Kappa  =  0.36 

  
 

  T B G/S R Kappa 

T 65 81 44 23 0.21 

B 21 153 13 150 0.24 

G/S 7 1 41 8 0.67 

R 7 2 25 213 0.74 

Overall Accuracy = 55% 

Overall Kappa  =  0.38 
 

6) Intensity, 
NDSM 

  T B G R S Kappa 

T 62 44 13 9 10 0.52 

B 31 190 5 10 1 0.53 

G 0 0 10 18 5 0.18 

R 3 2 2 339 5 0.77 

S 4 1 19 18 53 0.46 

Overall Accuracy = 77% 

Overall Kappa  =  0.67 

  
 

  T B G/S R Kappa 

T 62 44 23 9 0.38 

B 31 190 6 10 0.73 

G/S 4 1 87 36 0.63 

R 3 2 7 339 0.94 

Overall Accuracy = 79% 

Overall Kappa  =  0.70 
 

7) Intensity, 
DSM, 
Texture  

  T B G R S Kappa 

T 74 81 16 24 32 0.32 

B 17 154 1 151 10 0.45 

G 0 0 8 10 6 0.33 

R 6 1 19 207 8 0.47 

S 3 1 5 2 18 0.55 

Overall Accuracy = 54% 

Overall Kappa  =  0.37 

  
 

  T B G/S R Kappa 

T 74 81 48 24 0.24 

B 17 154 11 151 0.26 

G/S 3 1 37 12 0.65 

R 6 1 27 207 0.74 

Overall Accuracy = 55% 

Overall Kappa  =  0.38 
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Case 5 Classes 4 Classes 

8) Intensity, 
NDSM, 
Texture  

  T B G R S Kappa 

T 73 41 16 16 10 0.53 

B 23 194 2 10 2 0.82 

G 0 0 14 17 7 0.17 

R 1 2 2 308 5 0.72 

S 3 0 15 43 50 0.57 

Overall Accuracy = 75% 

Overall Kappa  =  0.65 

  
 

  T B G/S R Kappa 

T 73 41 26 16 0.40 

B 23 194 4 10 0.78 

G/S 3 0 86 60 0.51 

R 1 2 7 308 0.94 

Overall Accuracy = 77% 

Overall Kappa  =  0.68 
 

9) Intensity, 
DSM, 
Texture, 
Slope  

  T B G R S Kappa 

T 78 76 16 26 33 0.36 

B 16 159 3 153 9 0.58 

G 0 0 8 8 6 0.37 

R 3 1 17 206 8 0.46 

S 3 1 5 1 18 0.70 

Overall Accuracy = 55% 

Overall Kappa  =  0.38 

  
 

  T B G/S R Kappa 

T 78 76 49 26 0.25 

B 16 159 12 153 0.26 

G/S 3 1 37 9 0.70 

R 3 1 25 206 0.77 

Overall Accuracy = 56% 

Overall Kappa  =  0.39 
 

10) Intensity 
NDSM, 
Texture, 
Slope 

  T B G R S Kappa 

T 78 47 18 20 9 0.47 

B 17 189 1 14 1 0.81 

G 1 0 13 10 8 0.59 

R 1 0 3 305 5 0.68 

S 3 1 14 45 51 0.69 

Overall Accuracy = 74% 

Overall Kappa  =  0.65 

  
 

  T B G/S R Kappa 

T 78 47 27 20 0.38 

B 17 189 2 14 0.79 

G/S 4 1 86 55 0.52 

R 1 0 8 305 0.95 

Overall Accuracy = 77% 

Overall Kappa  =  0.68 
 

A.2.2 Confusion Matrices of Object-based Classification Results 

  T B G/S R Kappa 

T 71 20 9 6 0.63 

B 1 148 4 11 0.86 

G/S 22 15 46 85 0.15 

R 6 54 64 292 0.45 

Overall Accuracy = 65% 

Overall Kappa  =  0.49 
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A.3 Confusion Matrices for Study area “Area3” 

A.3.1 Confusion Matrices of Pixel-based Classification Results 

Case 5 Classes 4 Classes 

1) Aerial 
Imagery 

  B G R S T Kappa 

B 80 0 86 8 11 0.29 

G 0 13 4 4 18 0.30 

R 17 0 73 9 4 0.54 

S 1 0 6 57 2 0.83 

T 2 8 12 12 67 0.58 

Overall Accuracy = 59% 

Overall Kappa  =  0.47 

  
 

  B G/S R T Kappa 

B 80 0 97 8 0.29 

G/S 0 13 22 4 0.30 

R 19 8 156 21 0.45 

T 1 0 8 57 0.83 

Overall Accuracy = 62% 

Overall Kappa  =  0.42 
 

2) DSM  

  B G R S T Kappa 

B 22 8 48 13 5 0.09 

G 15 27 73 25 13 0.08 

R 9 4 30 19 15 0.00 

S 14 3 22 16 12 0.09 

T 17 8 18 7 57 0.41 

Overall Accuracy = 30% 

Overall Kappa  =  0.15 

  
 

  B G/S R T Kappa 

B 22 8 53 13 0.09 

G/S 15 27 86 25 0.08 

R 26 12 120 26 0.16 

T 14 3 34 16 0.09 

Overall Accuracy = 37% 

Overall Kappa  =  0.10 
 

3) Original 
Intensity 

  B G R S T Kappa 

B 36 2 67 1 14 0.17 

G 0 31 2 1 1 0.87 

R 29 8 72 7 22 0.22 

S 0 6 14 56 17 0.53 

T 12 3 36 15 48 0.27 

Overall Accuracy = 49% 

Overall Kappa  =  0.34 

  
 

  B G/S R T Kappa 

B 36 2 81 1 0.17 

G/S 0 31 3 1 0.87 

R 41 11 178 22 0.29 

T 0 6 31 56 0.53 

Overall Accuracy = 60% 

Overall Kappa  =  0.37 
 

4) Intensity  

  B G R S T Kappa 

B 42 2 81 2 32 0.13 

G 1 39 2 2 1 0.85 

R 19 0 52 1 2 0.52 

S 0 6 14 62 17 0.55 

T 15 3 42 13 49 0.25 

Overall Accuracy = 49% 

Overall Kappa  =  0.36 

  
 

  B G/S R T Kappa 

B 42 2 113 2 0.13 

G/S 1 39 3 2 0.85 

R 34 3 145 14 0.37 

T 0 6 31 62 0.55 

Overall Accuracy = 58% 

Overall Kappa  =  0.38 
 



164 

Case 5 Classes 4 Classes 

5) Intensity, 
DSM  

  B G R S T Kappa 

B 53 0 96 7 14 0.14 

G 0 17 6 10 1 0.48 

R 19 0 56 33 19 0.11 

S 0 0 1 28 7 0.73 

T 28 4 24 13 64 0.34 

Overall Accuracy = 44% 

Overall Kappa  =  0.26 

  
 

  B G/S R T Kappa 

B 53 0 110 7 0.14 

G/S 0 17 7 10 0.48 

R 47 4 163 46 0.12 

T 0 0 8 28 0.73 

Overall Accuracy = 52% 

Overall Kappa  =  0.22 
 

6) Intensity, 
NDSM 

  B G R S T Kappa 

B 78 1 42 14 30 0.34 

G 0 11 6 0 3 0.53 

R 10 7 127 48 16 0.38 

S 1 0 1 26 7 0.68 

T 10 2 7 3 49 0.61 

Overall Accuracy = 58% 

Overall Kappa  =  0.43 

  
 

  B G/S R T Kappa 

B 78 1 72 14 0.34 

G/S 0 11 9 0 0.53 

R 20 9 199 51 0.32 

T 1 0 8 26 0.69 

Overall Accuracy = 63% 

Overall Kappa  =  0.38 
 

7) Intensity, 
DSM, 
Texture  

  B G R S T Kappa 

B 64 0 85 6 11 0.23 

G 0 17 4 10 3 0.48 

R 10 1 69 35 14 0.26 

S 0 0 0 27 7 0.75 

T 26 3 25 13 70 0.38 

Overall Accuracy = 49% 

Overall Kappa  =  0.34 

  
 

  B G/S R T Kappa 

B 64 0 96 6 0.23 

G/S 0 17 7 10 0.48 

R 36 4 178 48 0.22 

T 0 0 7 27 0.75 

Overall Accuracy = 57% 

Overall Kappa  =  0.30 
 

Case 5 Classes 4 Classes 

8) Intensity, 
NDSM, 
Texture  

  B G R S T Kappa 

B 77 1 45 11 22 0.37 

G 0 10 2 0 2 0.70 

R 7 8 127 43 16 0.42 

S 0 0 1 31 5 0.80 

T 15 2 8 6 60 0.57 

Overall Accuracy = 61% 

Overall Kappa  =  0.47 

  
 

  B G/S R T Kappa 

B 77 1 67 11 0.37 

G/S 0 10 4 0 0.70 

R 22 10 211 49 0.34 

T 0 0 6 31 0.80 

Overall Accuracy = 66% 

Overall Kappa  =  0.42 
 

A.3.2 Confusion Matrices of Object-based Classification Results 

  B G/S R T Kappa 

B 65 15 10 14 0.53 

G/S 2 31 26 12 0.27 

R 13 43 116 2 0.47 

T 11 11 13 55 0.52 

Overall Accuracy = 61% 

Overall Kappa  =  0.46 
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Appendix B: Confusion Matrices for the Point Classification Results of the 

Single Wavelength LiDAR Data 

B.1 Confusion Matrices of Classification Results of Single Data-Strip 

Strip Strip4 Strip6 

1) Original 
Points 

  B G R S T Kappa 

B 42 2 22 2 9 0.46 

G 2 36 4 2 6 0.68 

R 11 8 124 9 39 0.43 

S 2 10 20 34 14 0.35 

T 19 6 24 9 44 0.27 

Overall Accuracy = 56% 

Overall Kappa  =  0.42 

  
 

  B G R S T Kappa 

B 45 0 26 1 6 0.45 

G 1 35 5 2 5 0.67 

R 42 29 86 7 21 0.23 

S 6 17 19 39 4 0.39 

T 18 9 17 10 50 0.37 

Overall Accuracy = 51% 

Overall Kappa  =  0.37 

  
 

2) Grid 
Points 
(NN) 

  B G R S T Kappa 

B 52 2 11 3 21 0.51 

G 2 45 11 12 7 0.54 

R 27 3 144 21 30 0.43 

S 2 3 10 48 11 0.58 

T 12 6 45 16 57 0.27 

Overall Accuracy = 58% 

Overall Kappa  =  0.44 

  
 

  B G R S T Kappa 

B 46 1 42 6 19 0.29 

G 0 36 28 17 9 0.34 

R 24 4 88 20 17 0.32 

S 1 3 7 38 9 0.58 

T 6 4 20 4 50 0.49 

Overall Accuracy = 52% 

Overall Kappa  =  0.38 

  
 

3) Grid 
Points 
(IM) 

  B G R S T Kappa 

B 42 2 11 2 19 0.47 

G 1 38 9 8 6 0.57 

R 22 3 122 18 19 0.46 

S 3 2 7 40 9 0.59 

T 9 5 41 12 48 0.27 

Overall Accuracy = 58% 

Overall Kappa  =  0.45 

  
 

  B G R S T Kappa 

B 46 1 42 6 19 0.29 

G 0 36 27 17 9 0.34 

R 24 4 88 20 17 0.32 

S 1 3 8 38 9 0.57 

T 6 4 20 4 50 0.49 

Overall Accuracy = 52% 

Overall Kappa  =  0.38 

  
 

B.2 Confusion Matrices of Classification Results of Multiple Data-Strips 

B.2.1 Confusion Matrices of Classification Results for Merged Original Data-strips 

1) Original Points   B G R S T Kappa 

B 92 1 83 10 42 0.29 

G 3 73 51 27 20 0.36 

R 34 10 158 34 35 0.33 

S 9 6 25 74 20 0.46 

T 17 8 59 20 89 0.32 

Overall Accuracy = 49% 

Overall Kappa  =  0.34 
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2) Grid Points (NN) 

  B G R S T Kappa 

B 91 1 76 12 42 0.30 

G 3 76 47 29 20 0.37 

R 35 11 158 31 40 0.34 

S 10 6 21 80 22 0.49 

T 15 8 60 20 102 0.35 

Overall Accuracy = 50% 

Overall Kappa  =  0.36 

  
 

3) Grid Points (IM) 

  B G R S T Kappa 

B 91 1 76 12 42 0.30 

G 3 76 47 29 20 0.37 

R 35 11 158 31 40 0.34 

S 10 6 21 80 22 0.49 

T 15 8 60 20 102 0.35 

Overall Accuracy = 50% 

Overall Kappa  =  0.36 

  
 

B.2.2 Confusion Matrices of Classification Results for Merged Data-strips after Intensity 

Normalization 

1) Original Points   B G R S T Kappa 

B 91 1 83 10 41 0.29 

G 3 75 43 31 18 0.38 

R 42 10 171 32 38 0.33 

S 7 6 20 72 17 0.51 

T 12 6 59 20 92 0.35 

Overall Accuracy = 50% 

Overall Kappa  =  0.36 

  
 

2) Grid Points (NN) 

  B G R S T Kappa 

B 88 1 78 12 42 0.29 

G 5 78 37 30 20 0.40 

R 41 12 172 36 41 0.33 

S 7 7 19 77 21 0.50 

T 13 4 56 17 102 0.40 

Overall Accuracy = 51% 

Overall Kappa  =  0.37 

  
 

3) Grid Points (IM) 

  B G R S T Kappa 

B 88 1 80 11 40 0.29 

G 5 79 37 29 20 0.40 

R 42 12 171 36 41 0.33 

S 7 6 16 78 22 0.52 

T 12 4 57 18 102 0.39 

Overall Accuracy = 51% 

Overall Kappa  =  0.37 
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B.2.3 Confusion Matrices of Classification Results for Merged Classified Data-strips 

1) Original Points   B G R S T Kappa 

B 87 3 53 8 37 0.36 

G 2 71 37 27 15 0.41 

R 48 9 210 39 41 0.37 

S 3 4 16 73 19 0.56 

T 15 11 60 18 94 0.34 

Overall Accuracy = 54% 

Overall Kappa  =  0.39 

  
 

2) Grid Points (IM) 

  B G R S T Kappa 

B 50 0 16 1 9 0.62 

G 1 14 18 19 10 0.21 

R 32 1 108 28 26 0.46 

S 1 0 5 32 13 0.59 

T 16 6 36 11 47 0.34 

Overall Accuracy = 50% 

Overall Kappa  =  0.34 

  
 

B.2.4 Confusion Matrices of Classification Results for Combined Classified Data-strips using CMCD 

Grid Points   B G R S T Kappa 

B 43 2 15 2 24 0.46 

G 1 36 8 11 8 0.54 

R 22 3 122 18 16 0.60 

S 3 3 7 38 12 0.57 

T 8 6 39 11 42 0.33 

Overall Accuracy = 56% 

Overall Kappa  =  0.42 
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Appendix C: Confusion Matrices for the Point Classification Results of the 

Single Wavelength LiDAR Data Using Kurtosis Change Curve 

C.1 Confusion Matrices of Classification Results for Iterative Single Segment Separation Method 

1) Original Points   B G R S T Kappa 

B 38 1 9 2 16 0.54 

G 2 23 6 3 6 0.55 

R 20 3 114 20 15 0.58 

S 4 9 21 40 18 0.39 

T 13 13 41 15 47 0.29 

Overall Accuracy = 53% 

Overall Kappa  =  0.37 

  
 

2) Grid Points (IM) 

  B G R S T Kappa 

B 37 2 8 2 13 0.56 

G 1 21 5 2 4 0.62 

R 24 5 120 19 18 0.56 

S 2 8 16 41 18 0.44 

T 13 13 42 16 49 0.30 

Overall Accuracy = 54% 

Overall Kappa  =  0.38 

  
 

C.2 Confusion Matrices of Classification Results for Multiple Segments Separation Method 

1) Original Points   B G R S T Kappa 

B 13 0 31 3 19 0.13 

G 2 35 9 11 9 0.51 

R 12 2 51 25 14 0.37 

S 1 2 2 17 3 0.65 

T 49 10 98 24 57 0.15 

Overall Accuracy = 35% 

Overall Kappa  =  0.16 

  
 

2) Grid Points (IM) 

  B G R S T Kappa 

B 12 0 32 3 20 0.11 

G 1 37 10 13 8 0.51 

R 14 1 51 22 11 0.40 

S 1 2 2 19 2 0.71 

T 49 10 96 23 61 0.17 

Overall Accuracy = 36% 

Overall Kappa  =  0.18 
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Appendix D: Confusion Matrices for the Classification Results of the Multi-

Spectral LiDAR Data 

D.1 Confusion Matrices of Image Classification Results of Multi-Spectral LiDAR Data 

D.1.1. Confusion Matrices of Pixel-Based Classification Results 

(1) Intensity Data 

1) Channel 1   T B G/S R Kappa 

T 7702 147 0 1216 0.82 

B 0 12127 4007 295 0.61 

G/S 23 4977 13172 561 0.50 

R 2657 982 5835 3226 0.18 

Overall Accuracy = 64% 

Overall Kappa  =  0.50 

  
 

2) Channel 2   T B G/S R Kappa 

T 10017 16 455 573 0.88 

B 0 16031 0 211 0.98 

G/S 305 856 13713 2540 0.64 

R 60 1330 8846 1974 0.08 

Overall Accuracy = 73% 

Overall Kappa  =  0.63 

  
 

3) Channel 3   T B G/S R Kappa 

T 2996 3693 485 1498 0.20 

B 631 10765 4752 178 0.50 

G/S 0 2011 17658 39 0.83 

R 6755 1764 119 3583 0.22 

Overall Accuracy = 61% 

Overall Kappa  =  0.47 

  
 

4) Channel 1,2 &3   T B G/S R Kappa 

T 8185 0 0 93 0.99 

B 0 15729 0 281 0.97 

G/S 397 182 22776 81 0.95 

R 1800 2322 238 4843 0.48 

Overall Accuracy = 91% 

Overall Kappa  =  0.87 
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(2) DSM Data 

1) Channel 1   T B G/S R Kappa 

T 7362 572 15 1731 0.71 

B 2496 10648 18595 494 0.01 

G/S 1 6699 4404 116 -0.02 

R 523 314 0 2957 0.76 

Overall Accuracy = 45% 

Overall Kappa  =  0.21 

  
 

2) Channel 2   T B G/S R Kappa 

T 6613 565 6 1297 0.73 

B 2524 10435 18273 402 0.01 

G/S 1 6865 4735 99 0.00 

R 1244 368 0 3500 0.65 

Overall Accuracy = 44% 

Overall Kappa  =  0.21 

  
 

3) Channel 3   T B G/S R Kappa 

T 6882 221 9 1135 0.80 

B 2416 11020 18157 507 0.03 

G/S 0 6971 4848 177 0.00 

R 1084 21 0 3479 0.73 

Overall Accuracy = 46% 

Overall Kappa  =  0.23 

  
 

(3) Intensity and DSM Data 

1) Channel 1   T B G/S R Kappa 

T 8064 143 0 1005 0.85 

B 0 12372 4009 314 0.62 

G/S 51 4923 18818 355 0.63 

R 2267 795 187 3624 0.48 

Overall Accuracy = 75% 

Overall Kappa  =  0.64 

  
 

2) Channel 2   T B G/S R Kappa 

T 10046 26 16 759 0.91 

B 0 16240 0 172 0.98 

G/S 104 946 22991 601 0.89 

R 232 1021 7 3766 0.72 

Overall Accuracy = 93% 

Overall Kappa  =  0.90 

  
 



171 

3) Channel 3   T B G/S R Kappa 

T 9961 1240 73 1321 0.74 

B 1 15621 7529 438 0.50 

G/S 0 1348 15407 39 0.86 

R 420 24 5 3500 0.87 

Overall Accuracy = 78% 

Overall Kappa  =  0.69 

  
 

4) Channel 1,2 &3 
(Intensity of Channel 1, 2 & 3 

and DSM of Channel 1, 2 &3) 

  T B G/S R Kappa 

T 10131 48 2 472 0.94 

B 0 16138 0 165 0.99 

G/S 16 484 22960 381 0.94 

R 235 1563 52 4280 0.67 

Overall Accuracy = 94% 

Overall Kappa  =  0.91 

  
 

5) Channel 1,2 &3 
(Intensity of Channel 1, 2 & 3 
and DSM of Channel 2 ) 

  T B G/S R Kappa 

T 10106 29 137 660 0.91 

B 0 16003 0 172 0.98 

G/S 21 337 22806 336 0.95 

R 255 1864 71 4130 0.62 

Overall Accuracy = 93% 

Overall Kappa  =  0.90 

  
 

(4) Intensity and NDSM Data 

1) Channel 1   T B G/S R Kappa 

T 8939 187 63 1348 0.81 

B 0 12127 4007 295 0.61 

G/S 41 5287 18899 538 0.60 

R 1402 632 45 3117 0.56 

Overall Accuracy = 76% 

Overall Kappa  =  0.65 

  
 

2) Channel 2   T B G/S R Kappa 

T 10083 28 0 784 0.91 

B 0 16275 0 196 0.98 

G/S 93 1209 22989 853 0.86 

R 206 721 25 3465 0.76 

Overall Accuracy = 93% 

Overall Kappa  =  0.89 

  
 

3) Channel 3   T B G/S R Kappa 

T 10379 1069 68 1692 0.74 

B 3 15139 5288 553 0.59 

G/S 0 2011 17658 39 0.83 

R 0 14 0 3014 0.99 

Overall Accuracy = 81% 

Overall Kappa  =  0.73 
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D.1.2. Classification of Multi-Spectral LiDAR Data Using Object-Based Image Classification 

   T B G/S R Kappa 

T 10167 663 19 4176 0.60 

B 9 3502 2355 231 0.37 

G/S 71 13018 20599 88 0.35 

R 135 1050 41 803 0.33 

Overall Accuracy = 62% 

Overall Kappa  =  0.43 

  
 

D.2 Confusion Matrices of Point Classification Results of Multi-Spectral LiDAR Data 

D.2.1 Intensity Data 

1) Channel 1   T B G/S R Kappa 

T 761 85 18 312 0.64 

B 3 1384 353 71 0.75 

G/S 26 705 1581 156 0.62 

R 468 119 919 268 0.14 

Overall Accuracy = 55% 

Overall Kappa  =  0.39 

  
 

  T B G/S R Kappa 

T 6437 745 195 1894 0.63 

B 39 10999 2393 480 0.69 

G/S 190 5599 13416 1057 0.43 

R 3716 890 7010 1867 0.05 

Overall Accuracy = 57% 

Overall Kappa  =  0.41 

  
 

2) Channel 2   T B G/S R Kappa 

T 1032 94 569 322 0.50 

B 2 1780 107 75 0.90 

G/S 224 182 1897 384 0.69 

R 10 353 325 167 0.18 

Overall Accuracy = 65% 

Overall Kappa  =  0.51 

  
 

  T B G/S R Kappa 

T 8720 510 4299 1467 0.49 

B 9 14183 636 505 0.89 

G/S 1596 1129 16061 2365 0.60 

R 57 2411 2018 961 0.09 

Overall Accuracy = 70% 

Overall Kappa  =  0.58 

  
 

3) Channel 3   T B G/S R Kappa 

T 441 441 177 151 0.35 

B 130 1342 1514 49 0.42 

G/S 5 221 1003 9 0.80 

R 692 235 42 424 0.30 

Overall Accuracy = 47% 

Overall Kappa  =  0.27 

  
 

  T B G/S R Kappa 

T 3435 3277 1276 990 0.24 

B 964 10871 12126 327 0.19 

G/S 32 1611 9174 68 0.74 

R 5951 2474 438 3913 0.24 

Overall Accuracy = 48% 

Overall Kappa  =  0.30 

  
 

4) Channels 
1, 2 & 3 
(CMCD) 

   T B G/S R Kappa 

 9173 673 1727 1612 0.63 

 6 12814 1038 352 0.86 

 373 777 16929 502 0.85 

 830 3969 3320 2832 0.18 

Overall Accuracy = 73% 

Overall Kappa  =  0.63 
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D.2.2 Elevation Data 

1) Channel 1   T B G/S R Kappa 

T 761 45 3 18 0.92 

B 328 965 2319 316 0.22 

G/S 0 858 549 46 0.34 

R 169 15 0 30 0.13 

Overall Accuracy = 36% 

Overall Kappa  =  0.07 

  
 

  T B G/S R Kappa 

T 6368 532 31 1347 0.72 

B 2715 10121 18596 399 0.00 

G/S 2 7204 4387 530 -0.07 

R 1297 376 0 3022 0.61 

Overall Accuracy = 42% 

Overall Kappa  =  0.17 

  
 

2) Channel 2   T B G/S R Kappa 

T 830 54 6 35 0.89 

B 341 973 2295 328 0.22 

G/S 0 909 597 53 0.35 

R 97 20 0 37 0.23 

Overall Accuracy = 37% 

Overall Kappa  =  0.09 

  
 

  T B G/S R Kappa 

T 6937 484 42 1372 0.74 

B 2755 9981 18253 316 0.00 

G/S 0 7379 4719 570 -0.05 

R 690 389 0 3040 0.71 

Overall Accuracy = 43% 

Overall Kappa  =  0.19 

  
 

3) Channel 3   T B G/S R Kappa 

T 836 17 3 1 0.97 

B 331 955 2168 322 0.23 

G/S 1 890 565 37 0.35 

R 100 16 0 1 0.00 

Overall Accuracy = 38% 

Overall Kappa  =  0.09 

  
 

  T B G/S R Kappa 

T 6909 177 37 837 0.84 

B 2676 10466 18280 492 0.01 

G/S 17 7427 4697 518 -0.06 

R 780 163 0 3451 0.76 

Overall Accuracy = 45% 

Overall Kappa  =  0.21 
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D.2.3 Intensity and Elevation Data 

1) Channel 1   T B G/S R Kappa 

T 761 47 18 38 0.88 

B 3 1158 355 255 0.64 

G/S 14 621 2433 91 0.76 

R 480 57 65 26 0.03 

Overall Accuracy = 68% 

Overall Kappa  =  0.52 

  
 

  T B G/S R Kappa 

T 6426 739 193 1687 0.65 

B 39 11263 2153 479 0.72 

G/S 90 5595 20253 225 0.62 

R 3827 636 415 2907 0.31 

Overall Accuracy = 72% 

Overall Kappa  =  0.59 

  
 

2) Channel 2   T B G/S R Kappa 

T 1135 91 96 356 0.67 

B 2 1912 120 70 0.90 

G/S 54 193 2649 133 0.87 

R 77 213 33 389 0.54 

Overall Accuracy = 81% 

Overall Kappa  =  0.73 

  
 

  T B G/S R Kappa 

T 9520 497 610 1603 0.73 

B 9 15199 628 458 0.90 

G/S 325 1213 21604 656 0.85 

R 528 1324 172 2581 0.52 

Overall Accuracy = 86% 

Overall Kappa  =  0.80 

  
 

3) Channel 3   T B G/S R Kappa 

T 1111 112 12 28 0.88 

B 27 1585 1745 291 0.42 

G/S 0 143 971 35 0.84 

R 130 38 8 7 0.03 

Overall Accuracy = 59% 

Overall Kappa  =  0.41 

  
 

  T B G/S R Kappa 

T 9121 1459 104 771 0.75 

B 179 15049 13938 562 0.27 

G/S 0 1248 8851 65 0.78 

R 1082 477 121 3900 0.67 

Overall Accuracy = 65% 

Overall Kappa  =  0.51 

  
 

4) Channels 1, 
2 & 3 

(Merged Data) 

  T B G/S R Kappa 

T 3007 316 126 771 0.69 

B 32 5201 2220 226 0.63 

G/S 68 1083 6053 182 0.79 

R 687 341 106 1209 0.49 

Overall Accuracy = 72% 

Overall Kappa  =  0.60 

  
 

  T B G/S R Kappa 

 8766 777 191 1499 0.73 

 27 14270 3520 502 0.67 

 113 2325 19146 306 0.79 

 1476 861 157 2991 0.50 

Overall Accuracy = 79% 

Overall Kappa  =  0.70 

  
 

5) Channels 1 
& 2  

(Merged Data) 

  T B G/S R Kappa 

T 1896 176 114 647 0.65 

B 5 3325 475 145 0.83 

G/S 68 905 5082 173 0.80 

R 557 296 98 790 0.44 

Overall Accuracy = 75% 

Overall Kappa  =  0.65 

  
 

  T B G/S R Kappa 

 8083 626 222 1678 0.71 

 16 13534 1380 461 0.82 

 179 3160 21205 382 0.75 

 2104 913 207 2777 0.41 

Overall Accuracy = 80% 

Overall Kappa  =  0.71 

  
 

6) Channels 1, 
2 & 3 

(CMCD) 

   T B G/S R Kappa 

 9274 1071 128 970 0.77 

 10 15550 1208 501 0.85 

 33 1272 21657 188 0.89 

 1065 340 21 3639 0.69 

Overall Accuracy = 88% 

Overall Kappa  =  0.83 
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D.3 Confusion Matrices for Multi-Spectral LiDAR Data Using Kurtosis Change Curve  

D.3.1 Intensity and Elevation Data Using Iterative Single Segment Separation Method 

1) Channel 1   T B G/S R Kappa 

T 752 85 11 283 0.66 

B 6 1387 335 71 0.76 

G/S 20 759 2523 61 0.74 

R 480 62 2 392 0.41 

Overall Accuracy = 70% 

Overall Kappa  =  0.57 

  
 

  T B G/S R Kappa 

T 6342 702 111 1590 0.66 

B 66 10986 2005 462 0.72 

G/S 133 6035 20881 331 0.60 

R 3841 510 17 2915 0.34 

Overall Accuracy = 72% 

Overall Kappa  =  0.60 

  
 

2) Channel 2   T B G/S R Kappa 

T 1027 93 572 328 0.50 

B 0 1754 107 36 0.92 

G/S 194 225 2174 150 0.78 

R 47 337 45 434 0.49 

Overall Accuracy = 72% 

Overall Kappa  =  0.61 

  
 

  T B G/S R Kappa 

T 8474 556 4076 1547 0.48 

B 5 14020 600 219 0.92 

G/S 1554 1404 18079 779 0.71 

R 349 2253 259 2753 0.44 

Overall Accuracy = 76% 

Overall Kappa  =  0.66 

  
 

3) Channel 3   T B G/S R Kappa 

T 1073 173 19 134 0.76 

B 49 1961 1911 86 0.47 

G/S 1 85 803 4 0.89 

R 145 20 3 409 0.71 

Overall Accuracy = 62% 

Overall Kappa  =  0.46 

  
 

  T B G/S R Kappa 

T 8904 1850 206 908 0.69 

B 321 15568 15296 592 0.25 

G/S 3 589 7475 23 0.87 

R 1154 226 37 3775 0.70 

Overall Accuracy = 63% 

Overall Kappa  =  0.48 

  
 

4) Channels 1, 2 & 
3 
(Merged Data) 

  T B G/S R Kappa 

T 2852 351 602 745 0.60 

B 55 5102 2353 193 0.62 

G/S 215 1069 5500 215 0.75 

R 672 419 50 1235 0.50 

Overall Accuracy = 68% 

Overall Kappa  =  0.55 

  
 

  T B G/S R Kappa 

T 8095 884 1124 1476 0.63 

B 43 14012 3832 388 0.66 

G/S 626 2387 17986 427 0.73 

R 1618 950 72 3007 0.48 

Overall Accuracy = 76% 

Overall Kappa  =  0.65 

  
 

5) Channels 1 
& 2  

(Merged Data) 

  T B G/S R Kappa 

T 1779 178 583 611 0.54 

B 6 3141 442 107 0.84 

G/S 214 984 4697 211 0.74 

R 527 399 47 826 0.44 

Overall Accuracy = 71% 

Overall Kappa  =  0.59 

  
 

  T B G/S R Kappa 

T 7386 611 1390 1620 0.60 

B 26 12914 1307 292 0.84 

G/S 836 3572 20229 529 0.67 

R 2134 1136 88 2857 0.40 

Overall Accuracy = 76% 

Overall Kappa  =  0.66 

  
 

6) Channels 1, 
2 & 3 

(CMCD) 

   T B G/S R Kappa 

T 9639 971 72 1848 0.72 

B 152 15458 1218 518 0.84 

G/S 243 1234 21708 234 0.88 

R 348 570 16 2698 0.72 

Overall Accuracy = 87% 

Overall Kappa  =  0.81 
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D.3.2 Intensity and Elevation Data Using Multiple Segments Separation Method 

1) Channel 1   T B G/S R Kappa 

T 771 82 18 256 0.68 

B 4 728 225 56 0.71 

G/S 17 1397 2558 82 0.61 

R 466 86 70 413 0.39 

Overall Accuracy = 62% 

Overall Kappa  =  0.45 

  
 

  T B G/S R Kappa 

T 6530 643 183 1394 0.69 

B 31 5671 1286 370 0.66 

G/S 141 11229 21093 487 0.40 

R 3680 690 452 3047 0.32 

Overall Accuracy = 64% 

Overall Kappa  =  0.47 

  
 

 

2) Channel 2   T B G/S R Kappa 

T 1121 98 479 359 0.53 

B 0 1995 129 60 0.91 

G/S 65 191 2273 91 0.86 

R 82 125 17 438 0.66 

Overall Accuracy = 77% 

Overall Kappa  =  0.69 

  
 

  T B G/S R Kappa 

T 9436 516 3339 1560 0.55 

B 6 15760 712 381 0.90 

G/S 395 1181 18872 390 0.84 

R 545 776 91 2967 0.64 

Overall Accuracy = 83% 

Overall Kappa  =  0.75 

  
 

 

3) Channel 3   T B G/S R Kappa 

T 1095 154 12 135 0.78 

B 10 810 1120 23 0.39 

G/S 44 1229 1594 69 0.52 

R 119 46 10 406 0.70 

Overall Accuracy = 57% 

Overall Kappa  =  0.38 

  
 

  T B G/S R Kappa 

T 9067 1655 89 865 0.73 

B 65 6306 8963 107 0.13 

G/S 255 9806 13823 462 0.27 

R 995 466 139 3864 0.68 

Overall Accuracy = 58% 

Overall Kappa  =  0.40 

  
 

 

4) Channels 1, 2 & 
3 
(Merged Data) 

  T B G/S R Kappa 

T 2987 334 509 750 0.63 

B 14 3533 1474 139 0.64 

G/S 126 2817 6425 242 0.61 

R 667 257 97 1257 0.53 

Overall Accuracy = 66% 

Overall Kappa  =  0.51 

  
 

  T B G/S R Kappa 

 8725 809 800 1389 0.69 

 17 8886 2108 207 0.69 

 200 7855 19956 525 0.50 

 1440 683 150 3177 0.54 

Overall Accuracy = 72% 

Overall Kappa  =  0.59 

  
 

5) Channels 1 
& 2  

(Merged Data) 

  T B G/S R Kappa 

T 1892 180 497 615 0.58 

B 4 2723 354 116 0.84 

G/S 82 1588 4831 173 0.69 

R 548 211 87 851 0.49 

Overall Accuracy = 70% 

Overall Kappa  =  0.57 

  
 

  T B G/S R Kappa 

 8059 606 1146 1483 0.65 

 16 10027 970 306 0.83 

 223 6909 20705 438 0.55 

 2084 691 193 3071 0.46 

Overall Accuracy = 74% 

Overall Kappa  =  0.62 

  
 

6) Channels 1, 
2 & 3 

(CMCD) 

   T B G/S R Kappa 

 9118 939 186 774 0.79 

 26 15571 824 357 0.89 

 49 1239 21971 260 0.89 

 1189 484 33 3907 0.66 

Overall Accuracy = 89% 

Overall Kappa  =  0.84 
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D.4 Confusion Matrices of Classification Results of Multi-Spectral LiDAR Data Using Rule-Based 

Classification 

1) Channel 1   T B G/S R Kappa 

T 1121 0 0 137 0.89 

B 30 1611 468 184 0.69 

G/S 5 474 2379 13 0.82 

R 49 153 3 602 0.74 

Overall Accuracy = 79% 

Overall Kappa  =  0.70 

  
 

  T B G/S R Kappa 

T 9193 260 46 429 0.91 

B 3 13217 3604 883 0.63 

G/S 0 3388 19224 37 0.75 

R 1186 1368 140 3949 0.55 

Overall Accuracy = 80% 

Overall Kappa  =  0.71 

  
 

 

2) Channel 2   T B G/S R Kappa 

T 1150 4 0 17 0.98 

B 0 2104 262 138 0.83 

G/S 0 37 2630 5 0.98 

R 118 264 6 788 0.66 

Overall Accuracy = 89% 

Overall Kappa  =  0.84 

  
 

  T B G/S R Kappa 

T 9415 31 0 114 0.98 

B 2 16302 1742 707 0.81 

G/S 2 227 21230 38 0.98 

R 963 1673 42 4439 0.59 

Overall Accuracy = 90% 

Overall Kappa  =  0.86 

  
 

 

3) Channel 3   T B G/S R Kappa 

T 1163 2 0 103 0.92 

B 64 167 1942 66 0.06 

G/S 4 568 2159 5 0.77 

R 105 108 43 377 0.59 

Overall Accuracy = 56% 

Overall Kappa  =  0.35 

  
 

  T B G/S R Kappa 

T 9557 514 55 1440 0.79 

B 45 1143 5246 564 -0.23 

G/S 7 16125 17680 447 0.19 

R 773 451 33 2847 0.66 

Overall Accuracy = 55% 

Overall Kappa  =  0.33 

  
 

 

4) Channels 1, 2 & 
3 
(Merged Data) 

  T B G/S R Kappa 

T 3434 2 0 358 0.90 

B 98 3882 2447 514 0.51 

G/S 9 1304 7168 24 0.81 

R 171 399 51 1767 0.73 

Overall Accuracy = 75% 

Overall Kappa  =  0.64 

  
 

  T B G/S R Kappa 

T 9466 230 12 370 0.93 

B 13 11337 3254 692 0.62 

G/S 4 5275 19684 134 0.64 

R 899 1391 64 4102 0.60 

Overall Accuracy = 78% 

Overall Kappa  =  0.69 

  
 

5) Channels 1 
& 2  

(Merged Data) 

  T B G/S R Kappa 

T 2271 0 0 255 0.89 

B 34 3715 505 448 0.77 

G/S 5 736 5009 19 0.85 

R 66 291 8 1390 0.78 

Overall Accuracy = 84% 

Overall Kappa  =  0.77 

  
 

  T B G/S R Kappa 

T 9354 124 13 212 0.96 

B 2 14890 2747 729 0.72 

G/S 2 1694 20176 32 0.87 

R 1024 1525 78 4325 0.58 

Overall Accuracy = 86% 

Overall Kappa  =  0.79 

  
 

6) Channels 1, 
2 & 3 

(CMCD) 

   T B G/S R Kappa 

T 9415 39 0 107 0.98 

B 5 16948 1750 827 0.81 

G/S 2 227 21230 38 0.98 

R 960 1019 34 4326 0.65 

Overall Accuracy = 91% 

Overall Kappa  =  0.87 
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