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Abstract

The currently dominant spectrum allocation policy is reported to be inefficient. Cognitive

radio, therefore, has been proposed in the literature to improve the spectrum usage

efficiency. This dissertation proposes the optimization of spectrum sensing schemes in

cognitive sensor networks. The modeling of the spectrum occupancy is a prerequisite

for cognitive radio analysis. We describe the radio spectrum occupancy as a continuous-

time Markov chain, and mathematically define the model by deriving the transition rate

matrix and the probability state vector.

The dissertation addresses an important aspect of spectrum sensing that has been

often overlooked in the literature. While the cognitive radio is supposed to be aware

of its surroundings, existing work does not consider the characteristics of unlicensed

users for finding the optimum sensing period. In this work, we propose an application-

specific method that finds the optimal sensing period according to the characteristics of

both secondary and primary networks. According to the unlicensed user’s state in the

Markov chain, two optimization problems are formulated to derive the optimum sensing
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periods. The secondary network’s throughput and power consumption are also studied

and the corresponding parameters are derived. By numerical and simulation analyses, it

is elaborated that the proposed method increases the secondary network’s throughput by

up to 11% and significantly decreases the power consumption of the secondary network

by as low as 33% of the non-hybrid approach.

In addition, we study cooperative spectrum sensing in cognitive sensor networks and

address two important issues. First, an optimization problem is solved to obtain the

minimum required number of cognitive users. Second, we define a metric for sensing ac-

curacy and propose a novel energy-aware secondary user selection method that identifies

the most eligible cognitive users through a probability-based approach. The network’s

lifetime is compared at several sensing accuracy thresholds and the trade-off between

sensing accuracy and network lifetime is studied. Finally, the effects of several fusion

rules on the proposed method are studied through simulation and numerical analyses. It

is discussed that the Majority rule has the best performance among the examined rules.
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Chapter 1

Introduction

Currently, the radio spectrum is mainly used based on a fixed assignment policy, where

either the spectrum is allocated to licensed service providers, such as TV bands, or it is

open to the public for use with an agreed-upon etiquette, such as the ISM band. While

the fixed allocation policy dominates the current wireless systems, it is inefficient [3]. For

instance, a spectrum usage measurement by the US Federal Communications Commission

(FCC) indicates that a large portion of the assigned radio spectrum is severely under-

utilized, while the demand for the radio spectrum is rapidly increasing [4].

The usable portion of the radio spectrum is limited; therefore, dynamic spectrum

access (DSA) has gained momentum in both academia and industry to overcome the

issue of spectrum scarcity. In particular, cognitive radio (CR), an increasingly developing

technology, has been viewed as a promising approach to tackle this concern [5].
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A CR is an intelligent wireless communication system that is aware of its surround-

ings, and adapts its internal parameters to achieve a reliable communication and efficient

utilization of the spectrum [6, 7]. Through CR technology, the vacant portions of the

radio spectrum that is originally assigned to licensed/primary users (PUs) can be op-

portunistically utilized by unlicensed/secondary users (SUs). A band of frequencies that

is originally assigned to PUs but is temporarily vacant and thus can be used by SUs, is

called a spectrum hole or a white space.

1.1 CR Research Challenges

Through CR technology, the radio spectrum can be utilized by both licensed and un-

licensed users. Developing analytical models that consider the occupancy of the radio

spectrum by the two types of users, therefore, is listed as one of the major research

challenges in CR. It is important to understand the theory behind CR algorithms and to

evaluate the performance of different algorithms.

As a CR network should be aware of its surroundings, spectrum sensing has been

considered as an important necessity for the realization of cognitive technology. Through

spectrum sensing, SUs monitor the primary network’s activity to opportunistically use

the spectrum and to vacate the spectrum in cases where a PU appears. Several challenges

are associated with the task of spectrum sensing. In a group of sensing methods, non-
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cooperative spectrum sensing, the sensing task is performed by each SU individually. In

other words, there is no collaboration between different SUs. In such approaches, it is

important to obtain the optimal sensing frequency in order to achieve a predetermined

objective, such as maximization of the secondary network’s throughput.

Through another group of sensing methods, cooperative spectrum sensing, SUs do

collaborate to perform the sensing task. In Fig. 1.1, the non-cooperative (local) spectrum

sensing is compared with the cooperative sensing scheme. As shown, in the local sensing

scheme, each sensor must have the ability to sense the whole channel and determine

an optimal scheme to maximize its benefits, such as its throughput. However, in the

cooperative sensing scheme, each SU senses the spectrum, and reports its local sensing

result to a single entity called a fusion centre (FC). The FC gathers all local sensing

results, and makes a final decision on the presence or absence of the PU. The final

decision is then forwarded to all SUs.

In cooperative spectrum sensing, design challenges include but are not limited to find-

ing the minimum number of required cooperative users, and choosing the most qualified

SUs in terms of energy level and sensing accuracy.

3



(b) Cooperative spectrum sensing

(a) Local spectrum sensing

Fusion Centre

Primary TX

SU1
SU2

SU3

SUN

Primary TX

SU1

SU2

SU3

SUN

Sensing Channel

Reporting Channel

Sensing Channel

Figure 1.1: Local spectrum sensing vs. cooperative spectrum sensing.

1.2 Major Contributions of the Dissertation

In this dissertation, we use a continuous-time Markov chain (CTMC) to describe the

spectrum occupancy by both primary and secondary networks. By analytical work,

we obtain the transition rate matrix for the proposed model. In addition, we perform

steady-state analysis to analytically derive the probability state vector. The CTMC is

then employed to serve as a base model for further analysis and proposals in the rest of

this work.

In addition, we address the problem of local spectrum sensing optimization in CR

from a novel perspective. In contrast with a majority of existing work, where the sensing

4



optimization is performed according to the properties of the primary network only, we

propose an application-specific1 sensing method that finds the SUs’ sensing period accord-

ing to the properties of both primary and secondary networks. Moreover, the interference

and the undetected opportunity ratios are derived, and two optimization problems are

formulated to find the optimum sensing period, based on the CTMC model presented

in this work. In addition, the non-interfered system throughput and the total power

consumption of the secondary network are derived. We also derive the corresponding

parameters in a non-application-specific2 method for comparison purposes.

Furthermore, we apply cooperative sensing in CR to further enhance the performance

of spectrum sensing. First, we analytically obtain the minimum number of cooperative

users needed to perform the sensing task, while meeting the sensing requirements. Sec-

ond, the most eligible SUs are identified based on a probability-based approach that

utilizes a sensing accuracy metric and a weighting function. Figure 1.2 shows the inter-

relationship between different chapters of this dissertation.

1.3 Organization of the Dissertation

The dissertation is established in six chapters, as follows:

1The terms “application-specific” and “hybrid” will be used interchangeably in this dissertation.
2The terms “non-application-specific” and “non-hybrid” will be used interchangeably in this disser-

tation.
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Cognitive Radio Basics (Ch. 2)

CTMC Model (Ch. 3)

Local Spectrum Sensing (Ch. 4)

During the 

Transmission 

State (TT
*)

During the 

Idle State 

(TI
*)

Application-Specific 

Spectrum Sensing (Ch. 4)

Cooperative Spectrum Sensing (Ch. 5)

Most 

Eligible 

Cooperative 

Users

Min. No. of 

Required 

Cooperative 

Users

Energy-Aware Secondary User 

Selection (Ch. 5)

Figure 1.2: Inter-relationship diagram between the dissertation chapters.

Chapter 1: Introduction

In this chapter, a brief introduction to the dissertation is presented. Major research

challenges are discussed along with our major contributions to overcome the challenges.

Chapter 2: Cognitive Radio Technology

A short background of CR technology is presented in this chapter. We address spectrum

sensing as an important necessity in the realization of cognitive systems and study recent

advancements in the field.

Chapter 3: Spectrum Occupancy Model

This chapter studies a CTMC system to accurately model the spectrum occupancy by

6



the primary and secondary networks in CR. The system will serve as a base model for

our proposals through the dissertation.

Chapter 4: Application-Specific Spectrum Sensing

An application-specific sensing method is proposed in this chapter to provide a cus-

tomized solution for various secondary applications. The proposed method is a hybrid

approach that considers the properties of both primary and secondary networks to obtain

optimal sensing period.

Chapter 5: Energy-Aware Secondary User Selection in Cooperative Spectrum

Sensing

In this chapter, we apply cooperative spectrum sensing to further improve the sensing per-

formance. An energy-aware secondary user selection method is proposed that accurately

obtains the minimum number of required secondary users to minimize the secondary net-

work’s energy consumption. In addition, the proposed method sets a merit for sensing

accuracy based on recent sensing results, and selects the most eligible users through a

probability-based approach. The selected secondary users then sense the licensed channel

and report their sensing results to a fusion centre.

Chapter 6: Conclusions and Future Work

This chapter presents the concluding remarks of this work, and some suggestions for

future research are made.

7



Chapter 2

Cognitive Radio Technology

2.1 Basic Concepts

Cognitive radio is recognized by two main characteristics: cognitive capability and recon-

figurability. A CR system can identify and exploit the unused portions of the spectrum

without interference with the licensed users, through real-time interaction with the radio

environment (cognitive capability). In addition, a cognitive system can be programmed

to transmit and receive on a variety of frequencies and use different access technologies

that are supported by its hardware design (reconfigurability) [8].

In order to provide cognitive capabilities, cognitive systems require novel radio fre-

quency (RF) transceiver architectures. The CR functionality mainly relies on the RF

hardware technologies, such as wideband antenna, power amplifier, and adaptive filter.

8



Therefore, the RF hardware should be capable of being tuned to any part of a large range

of spectrum. In addition, a CR transceiver should be able to receive signals from various

transmitters operating at different power levels, bandwidths, and locations [3].

The dynamic spectrum access (DSA) concept is not a novel idea, and it might be

as old as radio communication itself. For instance, maritime communication systems

were using shared radio resources in 1910s. The use of shared channels in land mobile

communication were allowed by the FCC around 1960. In the 1970s, the Aloha protocol

enabled sharing of radio channels without using a centralized entity. The integrated

communications navigation and identification architecture (ICNIA) by Air Force Rome

Labs was the first project to realize DSA in 1987. The ultra wideband communication

was issued by the FCC 98-153 docket in 2002. Finally, CR has been employed to develop

an air interface to opportunistically access the TV bands in regional area networks in

2011 [9]. Table 2.1 depicts a brief history for the CR-like systems mentioned above.

Table 2.1: A brief history of CR-like communication systems.

Date Project Communication Scheme

1910 Maritime Communication Hardware Radio

1960 Shared Channel in Land Mobile Communications Hardware Radio

1970 ALOHA Hardware Radio

1987 ICNIA Software Defined Radio

2002 Ultra Wideband Communication DSA

2011 IEEE 802.22 Cognitive Radio

9



2.2 Cognitive Sensor Networks

Rapid advances in processing capability, memory capacity, and radio technology have

enabled the development of distributed networks with small and inexpensive communi-

cation nodes. These nodes are capable of sensing and communicating and can be deployed

at a cost much lower than those of traditional wired sensor systems. Such systems are

called wireless sensor networks (WSNs) [10, 11]. The limited communication bandwidth

assigned to WSNs is one of the main challenges of these networks.

To overcome the limited communication bandwidth assigned to WSNs, a new concept

of cognitive sensor networks (CSNs) has been recently introduced in the literature [11–15].

A CSN is defined as a wireless network of low-power radios which gain secondary spectrum

access following the CR paradigm [16]. Similar to the existing WSNs, a CSN consists of

many tiny and inexpensive sensor nodes that operate on limited battery energy. Hence,

sensor nodes are supposed to be energy efficient. In a WSN, each node either sends

data, receives data, or it is in the idle state. However, in a CSN, there exists another

state called spectrum sensing, where sensor nodes sense the spectrum to detect spectrum

opportunities. Figure 2.1 depicts different states for these networks.

Adding cognition to WSNs provides several advantages. A CSN could provide access

not only to new spectrum (rather than the worldwide available 2.4 GHz band), but

also to the spectrum with possibly better propagation characteristics [13]. For instance,
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Figure 2.1: Different states in a WSN vs. a CSN.

the transmission range can be increased by using lower frequencies since the path loss

decreases as the operating frequency decreases [17]. The higher communication range

provides CSNs with a smaller number of hops per route. Thus, the average end-to-end

delays would also be smaller.

Due to the fact that sensor nodes are equipped with limited energy sources, researchers

have been working on innovative methods to improve the network’s energy consumption

in CSNs. The sensing task is a repetitive process and it consumes extra energy from

battery powered sensors. Therefore, it is important to employ energy-aware methods in

these networks.

2.3 Spectrum Sensing

A CR network is designed to be aware of the changes in its surroundings. Spectrum

sensing, therefore, is an important requirement for the realization of cognitive technology.

Through spectrum sensing, cognitive users reliably detect the spectrum holes and protect
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PUs from the adverse interference from SUs. For instance, in IEEE 802.22 standard,

spectrum sensing is included as a mandatory task, where SUs sense the spectrum for

three different PUs: analog television, digital television, and licensed low-power auxiliary

devices such as wireless microphones.

A variety of methods can be employed for this purpose. The existing sensing methods

are classified into two main categories, as shown in Figure 2.2. In the first group of

methods, the PU is in charge to provide SUs with the latest spectrum usage information.

There are three schemes in this category as follows [18]: In the database registry method,

the channel information is registered at a centralized database. In another method called

beacon signals, the channel information is broadcasted on a predefined channel. In a

third method, PUs periodically transmit a pilot signal on a subcarrier if that subcarrier

is occupied by licensed users. By detecting the presence of such a pilot signal, SUs

determine if that particular subcarrier is available or not. While leading to simplified

secondary transceivers, these methods require some modifications to the current PUs and

are incompatible with the existing primary network.

In the second group of methods, spectrum sensing solely relies on the secondary

system to periodically sense the channel and detect the spectrum holes. In addition, SUs

should monitor the activation of PUs to immediately vacate the occupied spectrum in

case a PU appears. Due to its relatively low infrastructure cost and compatibility with
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Figure 2.2: Classification of spectrum sensing methods.

the existing primary systems, the second group of methods has received more attention

than other candidates. For instance, it is included in the IEEE 802.22 standard [19].

As shown in Fig. 2.2, there exist two schemes when SUs are in control: in the

primary receiver detection method, secondary users detect spectrum holes by monitoring

the primary users that are receiving data within their communication range. In reality,

however, it is difficult for an SU to have a direct measurement of a channel between

a primary receiver and a transmitter [17]. Thus, the most recent work focuses on the

primary transmitter detection based on cognitive users’ observation. The transmitter
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detection approach is based on the detection of weak signals from the PU through local

observations of SUs. Three schemes are generally used for the transmitter detection

method as follows [17, 20].

When the information of the PU’s signal is known to the secondary network, the

optimal detector in additive white Gaussian noise (AWGN) is the matched filter detector

because it maximizes the received signal-to-noise ratio (SNR) [20]. However, a matched

filter detector requires a priori knowledge of the primary signal such as the modulation

type and the pulse shape. To this effect, if this information is not accurate, the method

performs poorly.

If the receiver cannot gather sufficient information about the primary signal, a sim-

pler alternative method called energy detection is helpful. An energy detector simply

measures the energy received on a primary band during an observation time and declares

a spectrum hole if the measured energy is less than a threshold. While compared to

matched filtering, energy detection requires a longer sensing time to achieve a desired

performance level, its low cost and implementation simplicity have made it a favorable

candidate for spectrum sensing in CR.

A basic hypothesis model for the energy detection method can be defined as fol-

lows [21]:
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ri(t) =



















ni(t) : H0

ki(t)s(t) + ni(t) : H1

where ri(t) is the received signal at the ith secondary user, s(t) is the transmitted signal

by the PU, ni(t) is the AWGN at the ith SU, and ki(t) is the channel gain of the sensing

channel between the PU and the ith SU. The H0 is a null hypothesis, which states that

there is no primary signal in a certain spectrum band. On the other hand, H1 is an

alternative hypothesis, which indicates that there exists a primary signal.

Modulated signals are in general coupled with sine wave carriers. This characteristic

has been used in the feature detection method, where the frequency characteristics are

detected by analyzing a spectral correlation function. The main advantage of the feature

detection method is that it can differentiate the noise energy from modulated signal

energy, which is a result of the fact that the noise is a wide-sense stationary signal

with no correlation to the primary signal. Therefore, a feature detector can perform

better than energy detector in discriminating against noise due to its robustness to the

uncertainty in noise power [22]. However, it is computationally complex and requires

significantly long observation time [3, 23].

There are a number of difficulties in the noted methods. First, an SU may interfere

15



with a PU in case the primary transmitter is not in the secondary user’s communication

range. As shown in Fig. 2.3 (a), the primary transmitter is not in the communication

range of SU1. Therefore, it starts to operate in the primary channel and interfere with

PU1. This is called the receiver uncertainty problem. Another difficulty arises in case

an SU cannot detect a primary transmitter because of shadowing, and starts to commu-

nicate with a busy primary receiver. As shown in Fig. 2.3 (b), SU1 cannot detect the

primary transmitter due to shadowing from an obstacle, and thus interfere with PU1.

To overcome these problems, cooperative spectrum sensing schemes have been proposed

in the literature [24, 25]. A cooperative detection refers to the spectrum sensing meth-

ods where information from multiple SUs are incorporated to detect the presence of the

primary network.

2.4 Recent Advancements

During the past few years, several major developments have been performed in the spec-

trum allocation policy to accelerate the opportunistic use of the radio spectrum. This

includes the publication of the National Broadband Plan (NBP), a policy document re-

leased by the FCC that describes the spectrum management scheme to facilitate the

broadband usage for the upcoming years. The NBP recommends providing further pro-

ceedings on opportunistic use of the spectrum in addition to the already completed TV
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Figure 2.3: Receiver uncertainty and shadowing uncertainty problems in the transmitter
detection method.

white spaces (TVWS) proceedings. Moreover, the plan recommends vacating 500 MHz

for broadband use within the next ten years, and 300 MHz for mobile use in the next

five years.

In addition, the IEEE 802.11 has standardized the final rules for unlicensed devices

in TV bands [26]. A self-organizing network of beacon devices1 is under development

(IEEE 802.22.1), which is expected to provide additional protection for low-power PUs.

Moreover, the development of an IEEE 802.11 amendment to utilize the TVWS operation

for WLANs is led by IEEE 802.11af. Also, the IEEE 802.19.1 Working Group is aiming

1A beacon device generates beacons so that the network users can detect its presence [27].
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to develop a standard for wireless coexistence in the TVWS that will help mitigating in-

terference issues among CR-based Field Area Network/Automated Meter Infrastructure

in smart grids. In addition, there is an ongoing effort for secondary use of the 2360-2400

MHz band for medical body area networks [28]. An IEEE 802.15 Study Group has been

also created to investigate the use of TVWS.

In the field of sensor networks, which is mainly discussed in this dissertation, sev-

eral research works have been directed towards applying cognitive technology in wireless

sensor networks (WSNs) [13, 29–31]. The authors in [13] propose a CR-based WSN

and compare its performance with a standard ZigBee/IEEE 802.15.4 WSN; both de-

signs were built on the standard OPNET model that operate in the 2.4 GHz band. By

simulation work, the authors concluded that the maximum communication range in the

CR-based WSN is almost twice the standard ZigBee/IEEE 802.15.4 WSN for the same

transmission power. The longer communication range reduces the number of hops re-

quired in a multi-hop routing technique. In addition, it reduces the chance of having

the receiver uncertainty problem. Therefore, it improves the efficiency of the multi-hop

routing. Moreover, the authors claimed that the overall system throughput is improved

in the CR-based WSN.

The main design principles, advantages, and applications of CSNs are discussed in

[29]. In addition, the possibility of applying existing cognitive techniques to WSNs is
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investigated and several challenges in doing so are reported. Moreover, a distributed

WSN-based control system for intelligent and reliable operation of large power grids is

proposed in [30]. The network consists of several intelligent nodes that communicate

with nearby nodes as well as a control station. The proposed method employs dynamic

decision making and intelligent data fusion; therefore, even under changing environments,

dynamic reconfiguration is possible without grid downtime. Also, a cognitive WSN that

understands conflicting design objectives, finds optimum tradeoffs with given constraints,

and adapts to the dynamics of the network is proposed in [31].

The energy efficiency has been also addressed as a key design metric in CSNs. For

instance, a resource allocation problem from an energy efficiency standpoint is proposed

in [32]. A fully distributed channel selection and power allocation scheme has been

proposed to cover all subcarriers, subject to the required data rate and power constraints.

Recently, there have been worldwide efforts to provide international standards to

utilize the spectrum through CR technology. The FCC in the United States, the Office

of Communications (Ofcom) in the United Kingdom, and the Electronic Communications

Committee (ECC) of the Conference of European Post and Telecommunications (CEPT)

in Europe are the major regulatory agencies responsible for research and development

of the opportunistic use of the spectrum. Several standards including IEEE 802.22 [26],

IEEE 802.11af, ECMA 392 [33], IEEE SCC41, and ETSI RRS [34] are either under

19



development or have already been finalized. In the following, we discuss a few standards

in detail.

IEEE 802.22

The IEEE 802.22-based wireless regional area network (WRAN) aims to utilize the geo-

graphically unused spectrum by applying CR technology to coexist with the legacy TV

services on 54-862 MHz band, and to provide broadband access to hard-to-reach low-

population-density areas such as rural environments [26]. The IEEE 802.22 standard,

therefore, has been recognized as the CR standard [35]. Due to the fact that TV bands

employ low frequency, their propagation characteristics are suitable for long-range trans-

mission (up to 10-100 Km), and the IEEE 802.22 standard could be used for large-scale

smart grid networks. Hence, the standard has the potential for wide applicability world-

wide. While the IEEE 802.22 standard supports cognitive communication for WRANs, it

is not intended to support low data rate, low energy consumption requirements of sensor

networks. Currently, there is no standard for cognitive communication within CSNs.

In the IEEE 802.22 standard, spectrum sensing is listed as one of the main require-

ments of the cognitive process [36]. The sensing task consists of two stages: fast and

fine sensing [37]. In the fast sensing stage, a coarse sensing algorithm is applied, such

as the energy detection method. In the fine sensing stage, however, a more complicated
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method is employed such as waveform-based sensing, cyclostationary feature detection,

or matched filtering method. The standard requires certain conditions to be met, such

as the probability of detection has to be greater than 0.9, and the probability of false

alarm must be be smaller than 0.1 [38].

ECMA 392

ECMA 392 is the first CR standard that supports TVWS usage by personal/portable de-

vices [39]. The standard was initiated by the Cognitive Networking Alliance (CogNeA),

and a draft was later transferred to TC48-TG1. The standard documents the PHY

and MAC layers with several characteristics including flexible network formation and

real-time multimedia traffic support [39]. It is expected that new applications will be

enabled by ECMA 392 such as in-home high-definition (HD) video streaming for per-

sonal/portable devices, campus-wide wireless coverage, and interactive TV broadcasting

services.

2.5 Summary

This chapter discussed a brief introduction to the cognitive radio technology along with

several definitions associated with the cognitive radio concept. The spectrum sensing was

addressed as an important task in the realization of cognitive systems with an emphasize
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on the energy detection technique. The chapter also reviewed recent advancements and

standards in the field of cognitive radio.
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Chapter 3

Spectrum Occupancy Model

3.1 Background

In CR, appropriate modeling of the spectrum occupancy by both primary and secondary

networks is a prerequisite for CR analysis. The existence of a Markov chain by collecting

real-time measurements in 928-948 MHz is validated in [40]; the same methodology can

be applied to any spectrum band. A CTMC model is setup for dynamic spectrum access

in [41], where the radio systems attempt to operate in the same band. In [42], the wireless

channel in a CR network is modeled by using a Hidden Markov Model (HMM) trained

by the Genetic Algorithm. An HMM based channel status predictor is proposed in [43]

which provides the CR network with the functionality to find alternative channels to

perform the spectrum handover. Moreover, [44] assumes the spectrum usage statistics to
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be Poisson distributed, and proposes a technique to improve the performance of cognitive

networks by performing predictions on the channel usage behavior of PUs.

A channel usage model for the PU usage pattern is proposed in [45, 46]. The primary

channel is modeled as an ON-OFF source alternating between ON (busy) and OFF (idle)

periods. Once an OFF period is detected, SUs can utilize any portion of the remaining

OFF period for their own transmission. The time until the next transition (sojourn

time) of the ON and OFF periods for channel i are modeled by random variables T i
ON

and T i
OFF with the probability density function (PDF) fT i

ON
(y), y > 0 and fT i

OFF
(x), x > 0

respectively. The ON and OFF periods are assumed to be independent and identically

distributed (i.i.d.) random variables.

A CTMC approximation to model the primary channel usage pattern is suggested

in [47, 48]. Figure 3.1 depicts a transition diagram consisting of packet transmissions

and idle periods, where λ is the arrival rate of the PU and µ is the departure rate of

the PU. The holding time in the transmit state corresponds to the length of the packets,

which is largely influenced by the type of traffic. The packet lengths are assumed to be

deterministic in the traffic scenario to be analyzed [49].

In [50], a CR network is studied with fixed primary network structure and mobile

SUs in the same geographical area. As shown in Fig. 3.2, the primary network is further

divided in several cells, where each cell consists of a single access point and several
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Figure 3.1: A CTMC approximation to model the primary channel usage pattern.

primary receivers. A mobile SU can only operate in the spectrum when its distance

from the PU is greater than a system threshold or the PU is inactive, so as to avoid

interference with licensed users. A three-state CTMC system is then developed that

models the mobility-aware channel availability experienced by the mobile SUs. As shown

in Fig. 3.3, the system can be at busy, idle or primary protection region (PPR) state.

A primary channel is available when the SU is located outside the PPR, or the SU is

located inside the PPR but the PU is idle. Next, the model is reduced into a two-state

CTMC by merging the idle and PPR states into the OFF state, as shown in Fig. 3.3.

The process of spectrum occupancy as a CTMC system is modeled in [2]. The spec-

trum is assumed to consist of MB primary bands where each band is divided into NSB

sub-bands. The MB×NSB sub-bands are shared by the primary and secondary networks.

In this case, states are described by an integer pair (i, j), where i is the total number of

sub-bands used by SUs and j is the total number of primary bands used by PUs. The

arrivals of SUs and PUs are assumed to be Poisson processes with arrival rates λa and
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Figure 3.2: A CR network with mobile SUs.

Figure 3.3: A three-state CTMC system to model the mobility-aware channel availability
experienced by SUs.
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λb respectively. The corresponding service times are also assumed to be exponentially

distributed with rates µa and µb respectively.

As the PUs have the priority to use the spectrum, the SUs are forced to vacate the

band if a PU operates in the spectrum. Depending on the number of sub-bands occupied

by SUs in the new primary band, a forced termination in state (i, j) will move the state

to one of (i, j + 1), (i− 1, j + 1), (i− 2, j + 1), ..., (i− (NSB − 1), j + 1), (i−NSB, j + 1)

states, as shown in Fig. 3.4.

The majority of existing work assumes a simple cognitive system and analyze it

using Markov modeling. A cognitive network with one primary and two secondary users

is considered, and a primary-prioritized CTMC model is proposed in [51]. In [52], a

CTMC model is proposed to predict the behavior of open (un-utilized) spectrum access

in unlicensed bands. The model considers two types of secondary systems, but the

analysis does not include the PU. Moreover, [2] presents the CTMC model for a simple

case of one primary system and one secondary system.

In this chapter, we assume a CR network consisting ofN secondary users (with various

traffic conditions) and one primary user1. We describe the radio spectrum occupancy as

a CTMC model, and analytically derive the transition rate matrix based on the model.

1This model is easily expanded in case of multiple primary users. As long as this model is considered,
when a primary user starts transmission, the secondary users must quit transmission. Furthermore, the
primary users share the channel with a predefined medium access control protocol.
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i-NSB, j+1 i-(NSB-1), j+1 i-1, j+1 i, j+1
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Figure 3.4: A Markov chain model for CR; i is the total number of sub-bands used by
SUs, and j is the total number of primary bands used by the PU [2].

Moreover, an steady-state analysis is performed to derive the stationary state probability

(SSP) vector.

3.2 System Model

A CR network with one primary user and N secondary users U = {ui : 1 ≤ i ≤ N}

is studied2. The secondary users are assumed to form a single-hop CR Network within

the transmission range of which there are no other secondary networks interfering or

2From the secondary network’s perspective, the licensed channel cannot be used if a PU is present. In
other words, it is not a secondary network’s concern which PU is operating in the spectrum. We assume
a representative for the PUs; therefore, the secondary network cannot use the spectrum if a primary
representative is present.
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cooperating with that secondary network. Secondary users sense the primary channel to

discover spectrum opportunities. Each secondary user is assumed to be equipped with a

single identical antenna. We assume that the arrival and departure of the primary and

secondary users’ traffic are independent, continuous-time Poisson processes. Therefore,

we can model the spectrum access process by a continuous-time Markov chain (CTMC)

system. The primary users’ traffic is modeled with two random processes. The service

request is modeled as a Poisson process with arrival rate λP (s−1), and the service duration

(access duration) is negative-exponentially distributed with mean time 1/µP (s), so the

departure of the primary user’s traffic is another Poisson process with departure rate µP

(s−1) [51]. Similarly, the arrival and departure rates of secondary user i (1 ≤ i ≤ N) are

modeled as independent Poisson processes with λi (s
−1) and µi (s

−1) respectively.

We assume that the spectrum cannot be occupied by more than one user at any time,

i.e., there is no overlap between any two users. Therefore, the spectrum access process

is given by the model shown in Fig. 3.5. The state space vector x for the model is

x = {O, S1, S2, . . . , SN , P}. (3.1)

In (3.1), state O (idle) means no user operates in the spectrum, state P means the

primary user operates in the spectrum, and state Si means the ith secondary user operates
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in the spectrum (1 ≤ i ≤ N). We assume the initial state of the system to be state O. As

shown in Fig. 3.5, the system enters state P with arrival rate λP whenever the primary

user appears, and it returns to state O with departure rate µP when the primary user’s

service is complete. While the system is in state O, and the ith secondary user enters

into the spectrum, the system enters state Si with arrival rate λi. In case the primary

user arrives before the secondary user i’s service is complete, the system transits to

state P with arrival rate λP . Otherwise, the ith secondary user returns to state O with

departure rate µi when its service is complete. In the CTMC, when the secondary users

contend to access the idle spectrum using carrier sense multiple access, collisions occur

only when their service requests arrive exactly at the same time; this case rarely happens

for independent Poisson process [51]. Therefore, we disregard the collision state of the

secondary users.

3.3 Derivation of the Steady-State Probabilities

The state space vector (x) and the transition rate matrix Q are needed for a complete

CTMC model definition [53]. The state space vector is defined in (3.1). The transition
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Figure 3.5: The state transition rate diagram for the proposed CTMC model.

rate matrix is obtained for the CTMC model shown in for Fig. 3.5, as follows:

Q =













































−(λ1 + λ2 + ... + λN + λP ) λ1 λ2 . . . λN λP

µ1 −(µ1 + λP ) 0 . . . 0 λP

µ2 0 −(µ2 + λP ) . . . 0 λP

...
...

...
. . .

...
...

µN 0 0 . . . −(µN + λP ) λP

µP 0 0 . . . 0 −µP













































(3.2)

In the derivation of (3.2), the following points have been taken into consideration:
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• It is assumed that the system is stationary where all the transition probabilities,

Pij(s, t) = P [x(t) = j|x(s) = i], (s ≤ t, and i, j ∈ x), are independent of the

absolute time instants s and t, and depend on only the time difference (t− s) [54].

Therefore, the transition rate matrix Q(t) is independent of t, that is, Q(t) = Q.

• An off-diagonal element of the transition rate matrix, (qij , (i 6= j)), represents the

Poisson process rate of transition from state i to state j.

• A diagonal element qii, (1 ≤ i ≤ N + 2) is determined by

qii = −
∑

allj, i 6=j

qij , (3.3)

where 1 ≤ j ≤ N + 2.

An important objective of Markov chain analysis is to determine the state probability

vector Π(t) = [Π0(t),Π1(t),Π2(t), . . . ,ΠN (t),ΠP (t)], where the ith element of Π(t) is

given by [55]

Πi(t) = P [x(t) = i], ∀i ∈ x. (3.4)

The Πi(t) denotes the probability to find the system at state i at specific time instants.

Now, we perform the steady-state analysis by assuming that system has been running

long enough, and all parameters have achieved their steady state values [56]. Therefore
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the steady-state probability of state i is

Πi = lim
t→∞

Πi(t), (3.5)

The steady-state probability (SSP) vector (Π) is determined by solving (3.6) and

(3.7) given below:

ΠQ = 0 (3.6)

∑

∀j∈x
Πj = 1 (3.7)

The matrix equation in (3.6) can be expanded into a system of linear equations

presented in (3.8-3.10), as follows:

−Π0(λ1 + λ2 + . . .+ λN + λP ) + Π1µ1 +Π2µ2 + ... +ΠNµN +ΠPµP = 0, (3.8)

Π0λi − Πi(µi + λP ) = 0 (1 ≤ i ≤ N), (3.9)

(Π0 +Π1 + . . .+ΠN)λP − ΠPµP = 0. (3.10)
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Substituting ΠP from (3.8) into (3.7), we get

Π0 +Π1 + . . .+ΠN +ΠP = 1 ⇒

Π0 +Π1 + . . .+ΠN +
λP

µP

(Π0 +Π1 + . . .+ΠN ) = 1 ⇒

Π0 +Π1 + . . .+ΠN =
µP

µP + λP

. (3.11)

Now, we substitute (3.9) into (3.11) to obtain Π0:

Π0 +
Π0λ1

µ1 + λP

+ . . .+
Π0λN

µN + λP

=
µP

µP + λP

⇒

Π0(1 +
λ1

µ1 + λP

+ . . .+
λN

µN + λP

) =
µP

µP + λP

⇒

Π0 =
µP

(µP + λP )(1 +
∑N

i=1
λi

µi+λP
)
. (3.12)

Therefore, Π1,Π2, . . . ,ΠN given by (3.9) are as follows:

Πi =
λi

µi + λP

Π0 (1 ≤ i ≤ N), (3.13)

where Π0 is given by (3.12).

Finally, we substitute (3.11) into (3.7) to derive ΠP as follows:

ΠP = 1− Π0 −Π1 − . . .− ΠN = 1− µP

µP + λP

=
λP

µP + λP

. (3.14)
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Therefore, the SSP vector is determined by (3.12)-(3.14). As shown in (3.14), the

probability of being in state P is solely a function of the primary user parameters (λp

and µp) as expected. However, the probability of being in state Si (Πi) is a function

of both the primary and secondary user parameters as well as the number of secondary

users (N).

3.4 Numerical Analysis

In this section, we perform numerical analysis to evaluate our model. First, we study a

CR network with no active secondary user (N = 0), and compare the proposed model

with an existing model in the literature. Second, we consider a CR network with three

secondary users (N = 3) and examine the effects of the secondary users’ arrival and

departure rates on the SSP vector. Finally, we examine a case with a very large number

of secondary users.

3.4.1 No Active Secondary User (N = 0)

Here, the proposed model is evaluated for a special case where (N = 0). Fig. 3.6-

(a) depicts the state transition diagram in this case, where the state space vector is
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x = {O,P}. The SSP vector Π = [Π0,ΠP ] is given by (3.12) and (3.14) as follows:

Π0 =
µP

µP + λP

(3.15)

ΠP =
λP

µP + λP

(3.16)

In [1], the primary channel is modeled as an ON-OFF source alternating between ON

(busy) and OFF (idle) periods, as shown in Fig. 3.6-(b). Two parameters (u) and (1−u)

have been defined in [1] as the fraction of time in which the primary channel is in ON

and OFF respectively, as follows:

u =
λOFF

λON + λOFF

(3.17)

1− u =
λON

λON + λOFF

(3.18)

where λOFF and λON are the inverse of the mean values of TOFF and TON respectively,

i.e., E[TOFF ] =
1

λOFF
and E[TON ] =

1
λON

.

As can be seen in (3.15-3.18), ΠP and Π0 in our model represent u and (1 − u)

in [1] respectively. Moreover, λOFF and λON in [1] correspond to µP and λP respectively.

Therefore, our proposed model at this special case (N = 0) agrees with the model in [1].

Table 3.1 summarizes the above notations and results.
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Figure 3.6: The state transition diagram in: (a) our model at N = 0, (b) the existing
model in [1].

3.4.2 Three Secondary Users (N = 3)

Here, a CR network with three secondary users (N = 3) is considered, where the state

space vector is x = {O, S1, S2, S3, P}, and the state transition diagram is shown in Fig.

3.7. The secondary users’ stationary state probabilities (Π1,Π2,Π3) are given by (3.13),

and ΠP is calculated by (3.14). For this case, we arbitrarily set the primary user’s arrival

and departure rates to be λP = 2 (s−1) and µP = 4 (s−1) respectively, and investigate

the effect of secondary users’ parameters on the SSP vector for three cases as follows:

Table 3.1: The proposed model at N = 0 agrees with the existing model in [1].

The proposed model Existing model [1]

µP λOFF

λP λON

ΠP = λP

λP+µP
u = λOFF

λON+λOFF

Π0 =
µP

λP+µP
1− u = λON

λON+λOFF
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Figure 3.7: The state transition rate diagram for N = 3.

Case-I: Different Departure Rates and Identical Arrival Rates

We assume different departure rates µ1 < µ2 < µ3, and assume identical arrival rates

λ1 = λ2 = λ3 = λ. Thus, (3.13) simplifies to

Πi =
λ

µi + λP

Π0 (1 ≤ i ≤ 3). (3.19)

From the above equation, µ1 < µ2 < µ3 yields Π1 > Π2 > Π3, which confirms that for

a fixed value of λ, there is a higher probability to find the system at a state with lower

departure rate (µ). Fig. 3.8 (a) shows the stationary state probabilities for a secondary
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network with the following parameters, where the secondary user i is denoted by SUi,

and λi and µi are both in (s−1).

SU1 :



















λ1 = 3

µ1 = 2

, SU2 :



















λ2 = 3

µ2 = 4

, SU3 :



















λ3 = 3

µ3 = 6

The SSP vector in this case is Π = [0.2540, 0.1905, 0.1270, 0.0952, 0.3333].

Case-II: Different Arrival Rates and Identical Departure Rates

We assume different arrival rates λ1 < λ2 < λ3 but identical departure rates µ1 = µ2 =

µ3 = µ. Therefore, (3.13) simplifies to

Πi =
λi

µ+ λP

Π0 (1 ≤ i ≤ 3). (3.20)

As shown in (3.20), λ1 < λ2 < λ3 yields Π1 < Π2 < Π3. This confirms that for a fixed

value of µ, there is a higher probability to find the system at a state with larger arrival

rate (λ). The secondary users’ parameters are set as follows:

SU1 :



















λ1 = 2

µ1 = 3

, SU2 :



















λ2 = 4

µ2 = 3

, SU3 :



















λ3 = 6

µ3 = 3

39



1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) Network Users, Case-I

S
ta

ti
o
n
a
ry

S
ta

te
P

ro
b
a
b
il
it
ie

s

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Network Users, Case-II

S
ta

ti
o
n
a
ry

S
ta

te
P

ro
b
a
b
il
it
ie

s

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) Network Users, Case-III

S
ta

ti
o
n
a
ry

S
ta

te
P

ro
b
a
b
il
it
ie

s

Π
o

Π
1

Π
2

Π
3

Π
p

Π
o

Π
1

Π
2

Π
3

Π
p

Π
o

Π
1

Π
2

Π
3

Π
p

Figure 3.8: The stationary state probabilities for cases (a), (b), and (c).

The SSP vector is Π = [0.1961, 0.0784, 0.1569, 0.2353, 0.3333]. Fig. 3.8 (b) shows the

stationary state probabilities for this case.

Case-III: Identical Departure and Arrival Rates

In this part, we assume a secondary network where all secondary users have the same

arrival rates (λ1 = λ2 = . . . = λN = λ) and also have the same departure rates (µ1 =

µ2 = . . . = µN = µ). First, the SSP vector for a general case with N secondary users

is derived. Then, we consider a secondary network with N = 3 users, and sketch the

stationary state probabilities similar to the previous cases. Therefore, all the secondary
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users have the same stationary state probabilities:

Πi =
λµP

(µP + λP )(µ+ λP +Nλ)
(1 ≤ i ≤ N). (3.21)

Thus, for a CR network with N = 3 secondary users, and secondary users’ parameters

λ = 4 s−1 and µ = 6 s−1, the SSP vector is Π = [0.2667, 0.1333, 0.1333, 0.1333, 0.3333].

Fig. 3.8 (c) shows the stationary state probabilities for this case.

Note that the primary user’s stationary state probability (ΠP ) presented in (3.14) is

not a function of the number of secondary users (N) and the secondary users’ parameters

(λ and µ). Therefore, in all the above cases, ΠP has the same value ΠP = 0.3333.

3.4.3 Very Large Number of Secondary Users

Here, we consider a CR network with a very large number of secondary users (N = 100).

Without loss of generality, we randomly select each secondary user’s arrival and departure

rates within 0.1 ≤ λi ≤ 5 and 0.1 ≤ µi ≤ 7.5, and we set the primary user’s parameters

to be λP = 2.5 (s−1) and µP = 5 (s−1). Secondary users’ stationary state probabilities

are determined by (3.12) and (3.13), and ΠP is given by (3.14).

In the CTMC model, the primary user is granted the highest priority to operate in

the spectrum. Consequently, ΠP is independent of the number of secondary users (N),
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Figure 3.9: The stationary state probabilities in a secondary network with N = 100 SUs.

and does not change with a large N . As a result, the rest of the spectrum (which has not

been used by the primary user) would be available for the secondary access. As shown

in Fig. 3.9, due to the very large number of secondary users in this case (N = 100), the

probability to find the system at each secondary state is quite small.

3.5 Summary

The modeling of the spectrum occupancy in a CR network was studied in this chapter.

A continuous-time Markov chain (CTMC) was used to describe the spectrum occupation

by both licensed and unlicensed users. By analytical work, we derived the transition rate
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matrix and the probability state vector for the proposed model. In addition, numerical

analysis was conducted to examine the proposed model, and to compare the proposed

model with an existing model in the literature. We will use the CTMC model as a base

model for further analysis in the following chapters.
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Chapter 4

Application-Specific Spectrum

Sensing

4.1 Motivations

As the CR concept matures, CR networks are now envisioned to support a variety of

applications, ranging from the smart grid, public safety and broadband cellular, and

medical applications to wireless sensor networks (WSNs) [11, 57–59]. For instance, in the

aerospace industry, major aircraft manufacturers and many supply research groups have

shown strong interest in development and standardization of sensor networks for onboard

use within aircraft, e.g., the “Wireless Avionics Intra-Communications (WAIC)” project

by the Aerospace Vehicle System Institute. The WAIC refers to radio communication
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between two or more points within a single aircraft (not air-to-ground or air-to-air) [60].

Table 4.1 shows several examples of WAIC applications. As depicted, different applica-

tions have various design requirements; for instance, a sensor network for temperature

monitoring requires a low data rate link while some other application may require a high

data rate link. From another point of view, an engine prognostic sensor network may

have a high probability of presence due to its large data arrival rate, while a tire pressure

sensor network may have a low probability of presence due to its small data arrival rate.

While a CR network is supposed to change its parameters according to the charac-

teristics of both primary and secondary network environments, most existing algorithms

consider only the primary network’s characteristics to obtain the optimum sensing pe-

riod. This implies that the optimum sensing period would be identical for diverse CR

applications, while their characteristics could be vastly different. For instance, Fig. 4.1

compares a non-application-specific sensing approach with an application-specific sensing

scheme in CR. The PU’s properties are assumed to be the same for the two types of the

secondary applications. As shown, in a non-application-specific approach, the sensing

Table 4.1: A few examples of sensor networks in the WAIC project.

Application Type Low Data Rate High Data Rate

Sensing Fuel Tank, Temperature Engine Prognostic, Structural
Health Monitoring

Control and Com-
munication

Cabin Functions Avionics Communications Bus
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period is identical for both applications. On the other hand, in the application-specific

sensing method, the sensing period is selected to be greater for an application that has

a lower probability of presence. This results in significant improvement in the usage of

the CR network’s valuable resources such as time and energy.

The desired sensing method, therefore, must distinguish different types of secondary

applications, and provide a customized solution for each type. In this chapter, we pro-

pose an application-specific spectrum sensing method that considers both secondary and

primary users characteristics, and accurately finds the optimum sensing period. The pro-

posed method aims to reduce the cognitive network’s energy consumption by avoiding

unnecessary sensing tasks, while meeting the sensing requirements. To the best of our

knowledge, this is the first work showing that significant power consumption can be ob-

tained by considering the properties of both primary and secondary networks in cognitive

radio.

4.2 Energy Detection Method

Recently, a number of methods have been proposed for spectrum sensing, including energy

detection, matched filter detection, and cyclostationary feature detection. Among these

methods, energy detection is the most popular spectrum sensing technique due to its
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SU Activity

Non-Application-

Specific Sensing

Application-

Specific Sensing

Sensing 

Period
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OFF
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Period

Sensing 

Period

Sensing 

Period

ON

OFF

Figure 4.1: Non-application-specific spectrum sensing vs. application-specific spectrum
sensing in CR. The PU’s properties are assumed to be the same for the two types of
applications.

simplicity of hardware implementation and low signal processing cost [16, 61–66]. In this

work, we choose energy detection method as our spectrum sensing method for a CSN.

An energy detector measures the energy received on a primary channel and decides on

the existence of the PU by comparing it with a system threshold. A basic hypothesis

model for the model can be defined as follows [21]:

ri(n) =



















ni(n) : H0

ki(n)s(n) + ni(n) : H1

(4.1)

where ri(n) is the discrete received signal at the ith secondary user during the nth sensing
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task, s(n) is the transmitted signal by the PU, ni(n) is the additive white Gaussian noise

at the ith SU, and ki(n) is the channel gain of the sensing channel between the ith SU and

the PU. Both ni(n) and s(n) are assumed to be real-value and i.i.d. random processes

with zero mean and variance σ2
n and σ2

s respectively. Moreover, the transmitted signal is

assumed to be independent of the noise ni(n). H0 is a null hypothesis, which states that

the PU is absent in a certain spectrum band. On the other hand, H1 is the alternative

hypothesis, which indicates that there exists the licensed user’s signal.

In this method, the received signal is first pre-filtered by an ideal bandpass filter,

and the output of the filter is then squared and integrated over a time interval called

observation time TO to produce the following test statistic:

Yi =
1

M

M
∑

n=1

|ri(n)|2 (4.2)

where, M is number of received samples within TO. It can be shown that the test statistic

Y has a Chi-square distribution [67]. However, assuming the number of samples (M) is

large, the Chi-square distribution, based on the central limit theorem, can be closely

approximated by a Gaussian distribution [68]. The test statistic is then as follows:

Y ∼



















N (Mσ2
n, 2Mσ4

n), : H0

N
(

M(σ2
n + σ2

s ), 2M(σ2
n + σ2

s )
2
)

: H1

(4.3)
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where, N (µ, σ2) is the Gaussian distribution function with mean and variance µ and σ2

respectively. In the above hypothesis testing, the probability of false alarm Pf = Pr[Y >

ǫ|H0], and the probability of detection Pd = Pr[Y > ǫ|H1] can be expressed as follows:

Pf = Q
(ǫ−Mσ2

n

σ2
n

√
2M

)

, (4.4)

Pd = Q
(ǫ−M(σ2

s + σ2
n)

(σ2
s + σ2

n)
√
2M

)

(4.5)

where Q(x) = 1√
2π

∫∞
x

exp(−u2

2
)du is the Q-function, and ǫ is the decision threshold to

decide on the presence or absence of the PU.

Note that in the energy detection method, the RF front-end cannot differentiate

between the primary and secondary signals. In addition, it is assumed that SUs cannot

perform the transmission and sensing tasks at the same time. Therefore, it is necessary

to periodically perform the spectrum sensing task [12].

4.3 Application-Specific Spectrum Sensing

The proposed method is based on the continuous time Markov chain (CTMC) presented

in Chapter 3. As shown in Fig. 4.2, the operation of both secondary and primary

networks can be divided into three states. During the idle state, neither the secondary

nor the primary network operates in the spectrum. The secondary network operates in
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the spectrum within the secondary network transmission state, and the PU operates in

the spectrum within the primary user transmission state. We assume without loss of

generality a homogenous CSN with N secondary users, where each SU has the same

arrival rates λ1 = λ2 = · · ·λN = λs and also has the same departure rates µ1 = µ2 =

· · ·µN = µs. Hence, the probability of being at the idle state Π0, secondary network

transmission state Πs, and the primary user transmission state ΠP are given by (see

Chapter 3):

Π0 =
µP

(µP + λP )(1 +
Nλs

µs+λP
)
, (4.6)

Πs =
λs

µs + λP

Π0, (4.7)

ΠP =
λP

µP + λP

. (4.8)

During the secondary network transmission state, the secondary network must stop

data transmission every TT seconds and perform the sensing task. If the result of the

sensing task suggests that the PU is present, the secondary network must immediately

vacate the spectrum. However, if the sensing task suggests that the PU is still absent,

the secondary network will continue to operate in the spectrum for another TT seconds.

The sensing period (TPT ) in the secondary network transmission state is then obtained

by

TPT = TO + TT (4.9)
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Figure 4.2: The operation of the CSN is divided into three states: idle, secondary network
transmission, and primary user transmission.

where TO is the observation time.

If the CSN is at the idle state, the sensing task is performed every TPI seconds to

detect the spectrum opportunities. Therefore, the TPI is given by

TPI = TO + TI . (4.10)

4.3.1 Problem Definitions

• Definition 1: During the secondary network transmission state, the interference

ratio RI is defined as the expected fraction of the primary user transmission state

interrupted by the transmission of the secondary network, which will be derived
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in (4.19). The interference ratio threshold Rth
I is a predefined system parameter

which denotes the maximum acceptable RI .

• Definition 2: Within the idle state, the undetected opportunity ratio RU is defined

as the expected fraction of the spectrum opportunity undetected by the secondary

network, which will be derived in (4.24). The undetected opportunity threshold Rth
U

is a predefined system parameter that denotes the maximum acceptable RU .

4.3.2 Derivation of RI and RU

In this section, we derive the interference ratio and undetected opportunity ratio for

the proposed method. Fig. 4.3 depicts a tree-diagram to fully illustrate the situations

where a partial or complete interference, undetected opportunity, or secondary network

transmission may occur1.

In Fig. 4.3, the probability that the PU operates in the spectrum is denoted by ΠP .

Therefore, the probability that the PU does not operate in the spectrum is (1 − ΠP ).

In addition, the probability that the secondary network is at the transmission state is

given by
∑N

i=1Πi. Thus, the probability that the secondary network does not operate in

the spectrum is given by (1 −∑N

i=1Πi). The hypothesis testing probabilities will be as

follows:

1We assume that the secondary users share the licensed channel with a predefined medium access
control protocol.
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Case-G: U2 

Case-H: U3

PU activity changes

PU activity does not change

PU activity changes

PU activity does not change

PU activity changes

PU activity does not change

PU activity changes

PU activity does not change

SN has data, and starts 

transmission

SN has  no traffic

SN has data, but does 
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Correct sensing

Correct sensing
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SN has data, but does 

not transmit

SN: Secondary network

Figure 4.3: Illustration of cases of interference, undetected spectrum opportunity, and
interference-free transmission time in the hybrid spectrum sensing.
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• Pd is the probability that the sensing result suggests that the PU is present, given

that the PU is present.

• Pr[0|1] = 1 − Pd is the probability that the sensing result suggests that the PU is

absent, given that the PU is present.

• Pf is the probability that the sensing result suggests that the PU is present, given

that the PU is absent.

• Pr[0|0] = 1 − Pf is the probability that the sensing result suggests that the PU is

absent, given that the PU is absent.

The probability that the PU’s state varies within the transmission time TT is also

derived. If the PU is present, the probability that it continues to operate in the spectrum

for TT seconds is

Pr[t > TT |PU : present] = 1− Pr[t ≤ TT |PU : present] (4.11)

= 1− (1− e
− TT

µP ) = e
− TT

µP .

If the PU is present, the probability of at least one transition of the PU’s state within

TT seconds is the complement event of (4.11). Therefore,

Pr[t < TT |PU : present] = 1− e
− TT

µP . (4.12)
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Similar to the above calculation, the probability that the PU’s state varies within the

idle time TI can be derived by substituting TI for TT in (4.11) and (4.12).

If the PU is absent, the probability that the PU continues to be absent for TT seconds

is

Pr[t > TT |PU : absent] = e
− TT

λP . (4.13)

Therefore,, if the PU is absent, the probability of at least one transition of the PU’s

activity within TT seconds is the complement event of (4.13), as follows:

Pr[t < TT |PU : absent] = 1− e
− TT

λP . (4.14)

Equations (4.13) and (4.14) hold for cases where the CSN is at the idle state by

substituting TI for TT .

As shown in Fig. 4.3, the secondary network will interrupt the primary user’s activity

at Case-A, Case-B and Case-E, as follows: The PU is operating in the spectrum, but

the secondary network’s sensing result suggests that the PU is absent (incorrect sensing

result). In addition, the secondary network has data to send and starts data transmission

for TT seconds. This will cause interference with the primary network. Based on the PU’s

activity, two cases can occur as follows:

• Fig. 4.3 Case-A: If the PU’s state changes at least once during the transmission

55



time (TT ), a partial interference happens (I1). Therefore, the expected interference

in this scenario can be expressed as

E[I1] = ΠPPr[0|1](
N
∑

i=1

Πi)(1− e
− TT

µP )ΠPTT . (4.15)

• Fig. 4.3 Case-B: If the PU’s state does not change during the transmission time, a

complete interference occurs (I2), and the secondary network will interfere with the

PU during the whole transmission period (TT seconds). Therefore, the expected

interference in this case is given by

E[I2] = ΠPPr[0|1](
N
∑

i=1

Πi)(e
− TT

µP )TT . (4.16)

A partial interference also happens under the following scenario: The PU is not

operating in the spectrum, and the secondary network correctly detects the absence of

the PU. In addition, the secondary network has data to send; therefore it starts data

transmission for TT seconds. However, the PU’s state varies from the OFF state to the

ON state during the transmission time, and causes a partial interference. Hence, the

expected interference when the PU is initially absent during the transmission time TT ,
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can be expressed as

E[I3] = (1− ΠP )Pr[0|0](
N
∑

i=1

Πi)(1− e
− TT

λP )ΠPTT . (4.17)

Finally, we obtain the interference ratio RI as follows:

RI =
E[I1] + E[I2] + E[I3]

TTΠP

(4.18)

where E[I1], E[I2], and E[I3] are derived in (4.15), (4.16), and (4.17) respectively. After

some algebraic manipulation, RI is obtained by

RI = (

N
∑

i=1

Πi)
{

(1− Pd)
(

e
− TT

µP (1−ΠP ) + ΠP

)

+ (1− ΠP )(1− Pf )(1− e
− TT

λP )
}

. (4.19)

In addition, as depicted in Fig. 4.3, the spectrum opportunities will be undetected

by the secondary network at the following circumstances:

• Fig. 4.3 Case-C: The PU is operating in the spectrum, and the secondary network

correctly detects the presence of the PU. The secondary network has data to send,

but it cannot start data transmission due to the result of the spectrum sensing.

Therefore, the secondary network goes to the idle state for TI seconds. However,

the PU’s state changes from the ON state to the OFF state within this period, so
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the new opportunity will be undetected (U1). The expected undetected spectrum

opportunity in this case can be expressed as follows:

E[U1] = ΠPPr[1|1](
N
∑

i=1

Πi)(1− e
− Ti

µP )(1− ΠP )TI . (4.20)

There are also undetected spectrum opportunities at the following scenarios: The PU

is not operating in the spectrum, but the secondary network suggests that the PU is

present (incorrect sensing result). In addition, the secondary network has data to send,

but it cannot perform data transmission due to the spectrum sensing result. Therefore,

the secondary network goes to the idle state for TI seconds. Based on the PU’s activity,

there will be two cases:

• Fig. 4.3 Case-G, PU’s state changes during the idle time (TI). Hence, a partial

spectrum opportunity will occur (U2). The expected undetected spectrum oppor-

tunity in this case can be expressed as follows:

E[U2] = (1−ΠP )Pr[1|0](
N
∑

i=1

Πi)(e
− Ti

λP )TI . (4.21)

• Fig. 4.3 Case-H: The PU’s state does not change within the idle time (TI), and

the entire spectrum opportunity will be undetected (U3). The expected undetected
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spectrum opportunity in this case is given by

E[U3] = (1−ΠP )Pr[0|0](
N
∑

i=1

Πi)(1− e
− TT

λP )ΠPTT . (4.22)

We obtain the undetected opportunity ratio RU as follows:

RU =
E[U1] + E[U2] + E[U3]

(1− ΠP )TI

(4.23)

where E[U1], E[U2], and E[U3] are derived in (4.20), (4.21), and (4.22) respectively. After

some algebraic manipulation, RU is derived by

RU = (
N
∑

i=1

Πi)
{

Pf

(

µPe
− TI

λP + 1− ΠP

)

+ΠPPd(1− e
− TI

µP )
}

. (4.24)

4.3.3 Throughput Analysis

An important objective of dynamic spectrum allocation is to obtain a high throughput for

the secondary network in a statistical sense. The more frequently the available spectrum

is used by the secondary network, the more efficiently the CSN will perform. The maximal

data rate of the ith secondary user is given by [69]

ri = W log2(1 +
PiGi

n0
) (4.25)
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where W is the communication bandwidth, Pi is the transmission power of user i, n0 is

the power of the additive white Gaussian noise (AWGN), and Gi is the channel gain for

user i. Without loss of generality, we assume a homogenous CSN where all SUs achieve

rs, the maximal data rate of each SU.

We consider the interference-free secondary network’s transmission for accurate through-

put analysis. As shown in Fig. 4.3, the secondary network transmission can occur in one

of the following circumstances:

• Fig. 4.3 Case-A: The PU is operating in the spectrum, but the secondary network’s

sensing result suggests that the PU is absent (incorrect sensing result). Also, the

secondary network has data to send. Based on the sensing result, therefore, the

secondary network starts data transmission for TT seconds. This will cause inter-

ference with the PU’s data transmission. However, if the PU’s state changes during

the transmission time, a partial interference-free secondary network’s transmission

happens (T1). Therefore, the expected interference-free transmission in this case

can be expressed as follows:

E[T1] = ΠPPr[0|1](
N
∑

i=1

Πi)(1− e
− TT

µP )(1− ΠPTT ). (4.26)

In addition, there are interference-free transmission cases as follows: the PU is not
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operating in the spectrum, and the secondary network correctly detects the absence of

the PU. In addition, the secondary network has data to send; therefore, it starts data

transmission for TT seconds. Based on the PU’s activity, two cases can occur:

• Fig. 4.3 Case-E: if the PU’s state varies from the OFF to the ON state during

the transmission time, a partial interference will happen. Hence, the expected

interference-free transmission in this case is given by

E[T2] = (1− ΠP )Pr[0|0](
N
∑

i=1

Πi)(1− e
− TT

λP )(1− ΠPTT ). (4.27)

• Fig. 4.3 Case-F: a complete interference-free transmission can happen if the PU’s

state does not change during the transmission time TT . The expected transmission

in this case is obtained by

E[T3] = (1− ΠP )Pr[0|0](
N
∑

i=1

Πi)(e
− TT

λP )TT . (4.28)

After some algebraic manipulation, the average interference-free transmission time

E[TNI ] = E[T1] + E[T2] + E[T3] is derived as,

E[TNI ] = (
N
∑

i=1

Πi)
{

ΠP (1− Pd)(1− e
− TT

µP )(1−ΠPTT ) + (1− Πp)(1− Pf) (4.29)

×
(

(1− e
− TT

λP )(1− ΠPTT ) + (e
− TT

λP ).TT

)

}

.
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We define the average throughput of the secondary network as

Γs = rsE[TNI ] (4.30)

where rs is given in (4.25).

4.3.4 Energy Consumption Analysis

The secondary network’s energy consumption consists of three elements: The energy

consumption to perform the sensing task Es, the energy consumption for the data trans-

mission Et, and the energy consumption during the idle state Eid. In this work, we

do not consider Eid as it is relatively small. Moreover, in contrast to the throughput

analysis, where only the interference-free secondary network’s transmission is considered,

both interfered and non-interfered data transmission must be considered for the energy

consumption calculation. In other words, both interfered and non-interfered data trans-

mission will drain the secondary network’s energy sources. As shown in Fig. 4.3, the

probability that the secondary network’s transmission state (both interfered and non-
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interfered) Pr[T ] can be derived as

Pr[T ] = ΠP (1− Pd)(

N
∑

i=1

Πi) + (1− ΠP )(1− Pf )(

N
∑

i=1

Πi) (4.31)

= (

N
∑

i=1

Πi)
(

ΠP (1− Pd) + (1−ΠP )(1− Pf )
)

.

Therefore, the total energy consumption of the secondary network E = Es + Et is

given by,

E =
( Tsim

E[TP ]

)

Es0 +
(

Tsim.Pr[T ]
)

Pt0 (4.32)

where Es0 is the unit energy consumption for each sensing task (J), Pt0 is the unit

transmission power (J/S), and Tsim is the simulation time. In addition, the average of

the sensing period E[TP ] will be derived in (4.35). The total power consumption of the

secondary network is obtained by P = E
tsim

.

4.3.5 Problem Formulation

According to the CTMC model shown in Fig. 4.2, the secondary network will be either

at the idle state or at the transmission state. Hence, the CSN’s objectives will be set for

each of these states as follows:
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4.3.5.1 Secondary Network Transmission State

If the secondary network is at the transmission state, the objective will be to maximize

the duration of data transmission TT . However, it is more likely to interfere with the PU

when the transmission time increases. Therefore, TT is allowed to increase only until the

interference ratio reaches a predefined threshold value (Rth
I ). Hence, in this state, the

spectrum sensing problem is defined as follows:

Maximize: T ∗
T

Subject to: RI ≤ Rth
I

where T ∗
T is the optimal transmission time. Moreover, the optimum sensing period within

the secondary network transmission state is then T ∗
PT = TO + T ∗

T .

Note that RI is an increasing function with respect to TT ; i.e.,
dRI

dTT
> 0. Hence, at the

maximum TT , the interference ratio will be equal to the largest possible amount (Rth
I ).

Therefore, an exhaustive search over TT from TO to the first value that satisfies RI ≤ Rth
I

is employed to find T ∗
T .

Proposition 1: RI is a monotonically increasing function of TT .

Proof : Differentiate RI w.r.t. TT ; after some algebraic manipulation we have,

(
1− Pf

1− Pd

)(
µP

λP

)e
( 1

µP
− 1

λP
)TT > 0. (4.33)
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Therefore, RI is a monotonically increasing function of TT .

4.3.5.2 Secondary Network Idle State

If the CSN is at the idle state, the objective is to maximize the duration of the idle

time TI . It is expected that the energy consumption associated with the sensing task

will be reduced by decreasing the sensing frequency. However, a large idle time increases

the chance of missing spectrum opportunities. Therefore, TI can only increase when

the undetected opportunity ratio is below the predefined threshold (Rth
U ). The spectrum

sensing problem in this case is then defined as

Maximize: T ∗
I

Subject to: RU ≤ Rth
U

where, T ∗
I is the optimal idle time. In addition, the optimum sensing period when the

secondary network is at the idle state will be T ∗
PI = TO + T ∗

I .

Similar to the previous case, RU is an increasing function with respect to TI ; i.e.,

dRU

dTI
> 0. Hence, at the maximum TI , the undetected opportunity ratio will have the

largest possible value (Rth
U ). Therefore, an exhaustive search over TI from TO to the first

value that satisfies RU ≤ Rth
U can be employed to find T ∗

I .

Proposition 2: RU is a monotonically increasing function of TI .
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Proof : Differentiate RU w.r.t. TI ; after some algebraic manipulation we have

(
Pd

Pf

)(
λP

µP

)e
( 1

λP
− 1

µP
)TI > 0. (4.34)

Therefore, RU is a monotonically increasing function of TI .

4.3.5.3 Optimum Sensing Period

As noted before, the secondary network is at the idle state with the probability of Π0,

and at the transmission state with the probability of
∑N

i=1Πi. Therefore, the average of

the optimum sensing period is given by,

E[T ∗
P ] = Π0T

∗
PI + (

N
∑

i=1

Πi)T
∗
PT . (4.35)

4.4 Non-Application-Specific Spectrum Sensing

In this section, a non-application-specific approach for spectrum sensing is presented for

comparison purpose. In contrast with the hybrid method, where the properties of both

PU and SUs are considered, a non-hybrid method solely considers the properties of the

PU to find the optimal sensing period. Since the properties of SUs are unknown in this

method, it is assumed that in an event of interference, SUs interfere with the PU over
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the entire transmission time. Moreover, SUs miss the entire opportunity in an event

of undetected spectrum opportunity. Fig. 4.4 depicts a tree-diagram to illustrate when

interference and undetected spectrum opportunities happen in the non-hybrid scheme.

Similar to the hybrid method, the interference ratio RNH
I and the undetected oppor-

tunity ratio RNH
U in the non-hybrid method can be derived as follows:

RNH
I = (1− Pd)

(

e
− TT

µP (1− ΠP ) + ΠP

)

+ (1−ΠP )(1− Pf)(1− e
− TT

λP ), (4.36)

RNH
U = Pf

(

µPe
− TI

λP + 1− ΠP

)

+ΠPPd(1− e
− TI

µP ). (4.37)

In addition, similar to the hybrid method, the average throughput of the secondary

network can be written as

ΓNH
s = rsE[TNH

NI ] (4.38)

where rs is given in (4.25), and E[TNH
NI ] is derived by

E[TNH
NI ] = ΠP (1− Pd)(1− e

− TT
µP )(1− ΠPTT ) (4.39)

+(1−Πp)(1− Pf )
(

(1− e
− TT

λP )(1− ΠPTT ) + (e
− TT

λP ).TT

)

.

Moreover, similar to the hybrid method, the total energy consumption of the sec-
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Case-A: I1 and T1

Case-B: I2

Case-C: U1

Case-D: Neither I nor U

Case-E: I3 and T2

Case-F: T3

Case-G: U2

Case-H: U3

PU activity changes

PU activity does not change

PU activity changes

PU activity does not change

PU activity changes

PU activity does not change

PU activity changes

PU activity does not change

Incorrect sensing

Correct sensing

Correct sensing

Incorrect sensing

PU is present

PU is absent

Figure 4.4: Illustration of the events of interference, undetected spectrum opportunity,
and interference-free transmission time in the non-hybrid spectrum sensing.
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ondary network in the non-hybrid method ENH = ENH
s + ENH

t can be obtained by

ENH =
( Tsim

E[TNH
P ]

)

Es0 +
(

Tsim.Pr[T
NH ]

)

Pt0 (4.40)

where E[TNH
P ] = (1−ΠP )TPI +ΠPTPT , and Pr[TNH ] = ΠP (1− Pd) + (1−ΠP )(1−Pf).

The total power consumption of the secondary network in this case is obtained by PNH =

ENH

Tsim
.

4.5 Numerical and Simulation Results

We consider a homogenous CSN with two SUs (N = 2), and compare three CR networks

with different probabilities of presence (Πs1 < Πs2 < Πs3). The arbitrary probabilities of

presence are selected as follows: Πs1 = 0.24,Πs2 = 0.28, and Πs3 = 0.31.

4.5.1 Interference Ratio Analysis

Fig. 4.5 depicts the interference ratio curves for the secondary network 1, secondary

network 2, and secondary network 3 along with the optimum transmission time T ∗
T for

each network. As shown, T ∗
T is decreased when the secondary network’s probability of

presence is increased. This is due to fact that the interference ratio will sooner exceed

the Rth
I for a secondary network with a greater Πs. In addition, the proposed method’s
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performance is compared with the non-hybrid method. As depicted, the interference

ratio in the non-hybrid method RNH
I is identical for all the secondary networks as the

SU’s properties are not considered in the non-hybrid method. Moreover, the proposed

method manages to increase the SU’s optimum transmission time T ∗
T , as compared with

the non-hybrid method to improve the secondary network’s spectrum usage.

4.5.2 Undetected Opportunity Ratio Analysis

Similar to the previous simulation, three secondary networks are considered that have

different probabilities of presence Πs1 < Πs2 < Πs3. Fig. 4.6 depicts the undetected

opportunity ratio curves for these networks along with the optimum idle time T ∗
I for

each network. As expected, the optimum idle time is decreased in a secondary network

that has a greater Πs to response to the demand for more spectrum usage in such a

network. In addition, the proposed method’s performance is compared with the non-

hybrid approach. In the first place, the undetected opportunity ratio in the non-hybrid

method RNH
U is identical for all the above networks, as RNH

U is not a function of the

secondary network’s parameters. In the second place, the proposed method manages

to increase T ∗
I , as compared with the non-hybrid method to reduce the frequency of the

spectrum sensing, and thus to reduce the energy consumption associated with the sensing

task.
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Figure 4.5: Interference ratio for the secondary network 1, 2, and 3 (Πs1 < Πs2 < Πs3

and Rth
I = 0.2).
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Figure 4.6: Undetected opportunity ratio for the secondary network 1, 2, and 3 (Πs1 <
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4.5.3 Optimum Sensing Period Analysis

In this section, we study the optimum sensing period for two cases. First, the secondary

network’s departure rate µs is assumed to be fixed, and the secondary network’s arrival

rate λs varies (Case-I). Second, the secondary network’s arrival rate λs is fixed, and the

secondary network’s departure rate µs varies (Case-II).

Case-I: Fixed µs, Variable λs

Fig. 4.7 depicts the average of the optimum sensing period E[T ∗
P ] in Case-I. As shown,

E[T ∗
P ] is decreased when λs is increased. This is due to the fact that the secondary

network’s probability of presence is also increased when λs is increased. Therefore, in the

proposed method, the optimum sensing period is decreased to provide greater sensing

frequency (smaller E[T ∗
P ]) in response to the higher demand for spectrum usage in a

secondary network with greater λs.

In addition, E[T ∗
P ] is compared for different values of µs. As depicted in Fig. 4.7,

E[T ∗
P ] is increased when µs is increased. This is due to the fact that for a fixed value of

λs, the secondary network’s probability of presence Πs is decreased when µs is increased.

Therefore, E[T ∗
P ] is increased to reduce the sensing frequency (larger E[T ∗

P ]) and thus to

reduce the energy consumption associated with the sensing task.
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Figure 4.7: The average of the optimum sensing period in Case-I.

Case-II: Fixed λs, Variable µs

Fig. 4.8 depicts the average of the optimum sensing period E[T ∗
P ] in Case-II. As shown,

E[T ∗
P ] is increased when µs is increased. This is due to the fact that Πs is decreased when

µs is increased (see (4.7) and (4.6)). Therefore, in the proposed method, the optimum

sensing period is increased to provide smaller sensing frequency (larger E[T ∗
P ]). Hence,

the energy consumption associated with the sensing task will be reduced in a secondary

network with an smaller Πs.

Furthermore, E[T ∗
P ] is compared for different values of λs. As depicted in Fig. 4.8,

E[T ∗
P ] is increased when λs is decreased. This is due to the fact that for a fixed value of
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µs, the secondary network’s probability of presence Πs is decreased when λs is decreased.

Therefore, E[T ∗
P ] is increased to reduce the sensing frequency (larger E[T ∗

P ]) and thus to

reduce the energy consumption associated with the sensing task.

4.5.4 Throughput and Power Consumption Analysis

Fig. 4.9 depicts the average throughput Γs for two cognitive networks. As shown, Γs is

increased when TT is increased. Therefore, the optimum T ∗
T yields to the maximum Γs

for each secondary network. Each curve, therefore, is stopped at its corresponding T ∗
T

to avoid exceeding the RI threshold. In addition, for a fixed value of TT , Γs is greater

for a secondary network that has a greater probability of presence Πs, i.e, Γ2 > Γ1 when

Π2 > Π1. The proposed method is also compared with the non-hybrid approach. As

shown, the proposed method achieves up to a 11% greater throughput for the secondary

network 2, as compared with the non-hybrid scheme.

Fig. 4.10 depicts the total power consumption (P ) of the secondary networks 1 and 2.

In the first place, P is decreased when TI is increased, as expected. Hence, the optimum

T ∗
I yields to the minimum power consumption for each secondary network. Each curve,

therefore, is stopped at its corresponding T ∗
I to avoid exceeding the RU threshold. In the

second place, P is increased when the secondary network’s probability of presence Πs is

increased, i.e, P2 > P1 when Π2 > Π1. Finally, the proposed method is compared with
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Figure 4.9: The average throughput of the secondary networks (theoretical results).
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the non-hybrid approach. As shown, the proposed method manages to reduce the power

consumption by as low as 33% of the non-hybrid method for the secondary network 1.

Table 4.2 shows the simulation parameters used in this computer experiment.

As noted before, the proposed method aims to maximize the idle time TI during the

idle state. While the maximization of TI is desirable to reduce the secondary network’s

power consumption, it is in contrast with the achievable throughput of the secondary

network. In other words, larger idle time yields to less spectrum usage by the secondary

network. Hence, there is a trade-off between the power consumption minimization and

the throughput maximization.

In addition to the numerical analysis, we conduct simulation analysis to compare the

performance of the application-specific method with the non-application-specific scheme.

As shown in Fig. 4.11 and Fig. 4.12, the simulation results agree with the numerical

results presented in this chapter.

Table 4.2: Simulation parameters
for the throughput and power consumption analyses.

Parameter Value Parameter Value

W 200 KHz G 1

Es0 1 (mJ) Pt0 10 (mW)
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Figure 4.10: Total power consumption of the secondary networks (theoretical results).
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Figure 4.11: The secondary network’s average throughput, simulation analysis.
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Figure 4.12: The secondary network’s power consumption, simulation analysis.

4.6 Summary

In this chapter, we studied the problem of local sensing optimization in a cognitive

sensor network. In contrast with the majority of existing work, where the sensing opti-

mization is performed according to the properties of the primary network, we proposed

an application-specific method that obtains the sensing period based on the properties of

both primary and secondary networks. We then formulated two optimization problems

to find the optimum sensing periods based on the secondary network’s CTMC state.

In addition, the non-interfered system throughput and the total power consumption

of the secondary network were derived by using a probability tree-diagram. We compared
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the performance of the proposed method with a non-application-specific scheme. In the

following chapter, we will employ cooperative spectrum sensing to further improve the

performance of the spectrum sensing.
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Chapter 5

Energy-Aware Secondary User

Selection in Cooperative Spectrum

Sensing

5.1 Motivations

Cooperative spectrum sensing is a promising scheme to tackle the hidden terminal prob-

lem1 by exploiting multi-user diversity [24, 25, 70]. The performance of the spectrum

sensing is influenced by several factors, including sensing accuracy and energy consump-

tion especially in an energy-constrained CR network, such as a CR-based sensor network.

1The hidden terminal problem occurs when several users accessing a channel while they cannot see
or hear each other.
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In the literature, significant research effort has been made to tackle both issues individ-

ually. In [70], a partial spectrum sensing algorithm with decision result prediction and

decision result modification is developed to reduce the cooperative spectrum sensing en-

ergy. A new channel management scheme for the CR sensor networks is proposed in [71],

that increases the energy efficiency while not greatly disturbing PUs. According to the

outcome of the channel sensing, the algorithm adaptively selects its operating mode

among channel sensing, channel switching, and data transmission/reception. In [72], an

optimal scheduling of sensor active time in sensor-aided CR networks is proposed to ex-

tend the network lifetime. The sensors are divided into a number of non-disjoint subsets

such that only one subset of sensors is turned on at any time. Each subset is activated

successively while other sensors sleep.

Another major focus of research is on the sensing accuracy – the precision in the task

of the PU’s signal detection – in a CR network. The sensing accuracy is evaluated by two

metrics: the probability of detection Pd and the probability of false alarm Pf . The larger

the Pd, the better are PUs protected from SU interference. On the other hand, the smaller

the Pf , the more efficiently the licensed channel can be used by SUs. A new cooperative

wideband sensing scheme is proposed in [73] which exploits the spatial diversity among

multiple SUs to improve the sensing accuracy. In [74], a large scale cognitive radio is

considered, and a sequential sensing and fusion approach is presented to minimize the
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average sensing time by dividing the users into different sets according to their SNR

parameters. Moreover, the sensing accuracy is evaluated in [75] for a cooperative sensing

technique through multiuser cooperation.

However, the performance of the cooperate spectrum sensing relies on several un-

certainties, such as the probability of error in the spectrum sensing task. A cognitive

framework, therefore, should be aware of each SU’s sensing accuracy, and give higher

weight to more accurate sensing reports. Most of the existing work has overlooked the

importance of the selection of the most eligible SUs for cooperate sensing.

In this chapter, we combine energy consumption and sensing accuracy in cooperative

spectrum sensing and propose a novel method that is both energy-aware and accurate.

First, we formulate and analytically solve an optimization problem to find the minimum

number of required cooperative users, while satisfying the sensing task requirements.

Then, we define a metric for sensing accuracy according to the most recent sensing

reports, and employ a probability-based approach to identify the most eligible SUs. We

also compare the network’s lifetime for several sensing accuracy thresholds, and discuss

the trade-off between the sensing accuracy and the network lifetime.
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5.2 Cooperative Spectrum Sensing

In the cooperative spectrum sensing, information from multiple SUs are incorporated to

decide on the presence of the PU. In this approach, each SU performs local spectrum

sensing independently and makes a binary decision on the presence or the absence of

the PU. The local decision is then forwarded to a single entity called fusion centre (FC).

Finally, the FC gathers all the local sensing results and makes a final conclusion to infer

the presence or absence of the primary network. The final decision is then forwarded to

all SUs, as shown in Fig. 5.1. We assume that the reporting channel is ideal in this work.

Several fusion rules have been discussed in the literature [76]. Here, we employ the

k-out-of-N fusion rule, where the spectrum is considered to be occupied by the PU when

at least k out of N cooperative users declare that the PU is present. Therefore, the

resulting hypothesis at the FC is given by

N
∑

i=1

Di(n) < k : H0

N
∑

i=1

Di(n) ≥ k : H1

(5.1)

In (5.1), N is the number of cooperative SUs, and Di(n) ∈ {0, 1} denotes the local

sensing result of the ith secondary user at the nth sensing process. Di(n) = 0 corresponds

to the absence of the PU, and Di(n) = 1 corresponds to the presence of the PU. The
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Figure 5.1: Cooperative spectrum sensing in a CSN.

probability of false alarm Pf in (4.4) is considered for the case of no signal transmission

(H0) and as such is identical for all secondary users [77]. In addition, we assume that,

compared with the distance from any SU to the primary transmitter, the distance between

any two SUs is small, so that the received signal at each SU experiences almost identical

path loss. In the case of an AWGN environment, therefore, we can assume σ2
s is identical

for all the secondary users. Consequently, Pd in (4.5) will be identical for all SUs [78].

Therefore, the probability that at least k secondary users declare that the PU is present
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given that the PU is absent, the global probability of false alarm Qf , is given by

Qf =

N
∑

i=k

(

N

i

)

(

Pf .Pact

)i(

1− Pf .Pact

)N−i
(5.2)

where Pact is the probability that the secondary network is active. Moreover, the prob-

ability that at least k secondary users declare that the spectrum is occupied by the PU,

given that the spectrum is occupied by the PU, the global probability of detection Qd, is

obtained by

Qd =

N
∑

i=k

(

N

i

)

(

Pd.Pact

)i(

1− Pd.Pact

)N−i
. (5.3)

The AND rule will be an special case of the k-out-of-N rule by letting k = N . The

global probability of false alarm and the global probability of detection, therefore, are

obtained by plugging in k = N in (5.2) and (5.3), as follows:

QAND
f = (Pf .Pact)

N (5.4)

QAND
d = (Pd.Pact)

N . (5.5)

Similarly, the OR rule will be an special case of the k-out-of-N rule by letting k = 1
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in (5.2) and (5.3) as follows:

QOR
f = 1− (1− Pf .Pact)

N . (5.6)

QOR
d = 1− (1− Pd.Pact)

N . (5.7)

5.3 Energy-Aware Cognitive User Selection

The proposed method aims to improve the performance of the spectrum sensing in two

directions. First, it selects a subset of SUs to perform the sensing/reporting task. The

minimum number of required secondary users (N∗) in the subset is derived to mini-

mize the network’s energy consumption, while satisfying the spectrum sensing require-

ments. Second, the proposed method identifies the most eligible SUs to perform the

sensing/reporting task.

5.3.1 Minimum Number of Required Cognitive Users in the

Subset

As noted before, it is expected to minimize the number of cooperative users in the subset,

so that the overall energy consumption of the secondary network is reduced. However,

the performance of the cooperative sensing will also degrade with fewer SUs (less multi-
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user diversity); therefore, there is an optimum size for the subset. We formulate the

cooperative sensing problem as follows:

Minimize: N∗

Subject to: Qf ≤ γf , and Qd ≥ γd

where N∗ is the minimum number of required cooperative SUs, and γf and γd are the

system thresholds set for the global probability of false alarm and the global probability

of detection respectively. In order to solve the above optimization problem, we first derive

ǫ from (4.5) as follows:

ǫ =
(

σ2
s + σ2

n

)

(

Q−1(Pd)
√
2M +M

)

(5.8)

where Q−1(·) is the inverse Q-function. Next, ǫ is plugged into (4.4) as follows:

Pf = Q
(Q−1(Pd).(σ

2
s + σ2

n)
√
2M +Mσ2

s

σ2
n

√
2M

)

. (5.9)

Note that Qf in (5.2) follows a binomial distribution. Therefore, we can use the
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incomplete beta function2 I to express Pf as a function of Qf as follows:

Qf = 1− Pr(i < k) = 1− Pr(i ≤ k − 1) = 1− I1−Pf .Pact
(N − k + 1, k) (5.10)

where Iz(a, b) =
B(z;a,b)
B(a,b)

is the regularized incomplete beta function, B(z; a, b) =
∫ z

0
ta−1(1−

t)b−1dt is the incomplete beta function, and B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt is the beta func-

tion. Using the inverse of the regularized incomplete beta function, Pf can be written as

follows:

Pf =
1

Pact

(

1− I−1
1−Qf

(N − k + 1, k)
)

(5.11)

where I−1
1−Qf

(·) is the inverse of the regularized incomplete beta function.

In a similar way, Pd can be derived from Qd in (5.3) as follows:

Pd =
1

Pact

(

1− I−1
1−Qd

(N − k + 1, k)
)

. (5.12)

Note that for a given k and N in the k-out-of-N fusion rule, I and I−1 are monoton-

ically increasing functions. Therefore, the optimization problem constraint Qf ≤ γf can

be written as

Pf =
1

Pact

(

1− I−1
1−Qf

(N − k + 1, k)
)

≤ ςf (5.13)

2The incomplete beta function is the cumulative distribution function of a random variable x with a
binomial distribution, where the probability of success is p and the sample size is n. Hence, Pr[x ≤ k] =
I1−p(n− k, k + 1) [79], page 1112.
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where ςf = 1
Pact

(

1− I−1
1−γf

(N − k + 1, k)
)

.

Similarly, Qd ≥ γd can be written as

Pd =
1

Pact

(

1− I−1
1−Qd

(N − k + 1, k)
)

≥ ςd (5.14)

where ςd =
1

Pact

(

1− I−1
1−γd

(N − k + 1, k)
)

.

As shown in (5.14), Pd ≥ ςd. Also, Q−1(·) is a monotonically decreasing function,

therefore, we get

Q−1(Pd) ≤ Q−1(ςd). (5.15)

In addition, Q(·) is a monotonically decreasing function as well. Hence, (5.9) and

(5.14) yield

Pf ≥ Q
(Q−1(ςd).(σ

2
s + σ2

n)
√
2M +Mσ2

s

σ2
n

√
2M

)

. (5.16)

Therefore, based on (5.13) and (5.16), the minimum number of required cooperative

users N∗ will be the minimum solution of the following inequality,

Q
(Q−1(ςd).(σ

2
s + σ2

n)
√
2M +Mσ2

s

σ2
n

√
2M

)

≤ ςf . (5.17)

Finally, an exhaustive search for N from 1 to the first value that satisfies (5.17) is
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employed to find N∗.

5.3.2 Identification of the Most Eligible SUs

In this section, we assume that the cognitive users achieve different sensing accuracy

levels. The probability of detection Pd, therefore, would be different for each secondary

user. However, Pf is identical for all the SUs because it is calculated for the case of

no signal transmission (H0), as discussed in the previous section. The operation of the

proposed method is divided into time units called epochs. Each epoch is further divided

into several sub-units called rounds, where each round lasts for T ∗
P seconds (the optimum

sensing period). Fig. 5.2 depicts a timeline for the proposed method. As shown, the first

W rounds in each epoch are assigned to the setup phase, and the remaining L rounds are

reserved for the operational phase. The secondary network will be active for a fraction

of L rounds within the operation phase with the probability of Pact.

r1 r2 rW+1 rW+2
rW+L

T ∗

P

Setup Phase

Epoch

Time

Operation Phase

Figure 5.2: The proposed method’s timeline.
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As mentioned earlier, Di(n) ∈ {0, 1} denotes the result of local sensing performed

by the ith secondary user during the nth sensing task. Also, let F (n) ∈ {0, 1} denote

the result of FC’s decision that is obtained by fusing all the collected reports at the FC

within the nth round. At the end of the setup phase, we define ∆i(n) as the total number

of differences between the ith secondary user’s local sensing and the FC’s global decision

within the last W rounds as follows:

∆i(n) =

W−1
∑

j=0

|Di(n− j)− F (n− j)|. (5.18)

We assume that the FC does not know the performance of the SUs a priori. Therefore,

during the setup phase, all SUs are required to perform the spectrum sensing/reporting

task. The most eligible SUs are then selected based on the SUs performance within this

phase. The smaller the ∆i(n) is, the more accurate the local sensing will be and vice

versa. Therefore, a probability-based method is proposed that selects a subset of SUs that

has the most accurate sensing results. Let us define ηi as a weighting factor assigned to

the ith SU (ui), where the probability to select ui is proportional to ηi. Since the proposed

method aims to reduce the amount of inaccurate sensing results, the probability that a

user ux with low ∆x(n) is selected must be higher than the probability that a user uy
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with a high ∆y(n) is selected. Hence, we define ηi(n) as

ηi(n) =
1

1 + r∆i(n)
(5.19)

where r is a positive real number such that r > 1. The probability to select ui within

the nth sensing task, therefore, is defined as the weighting factor assigned to ui over the

summation of all weighting factors, as follows:

Pi(n) =
ηi(n)

∑N
j=1 ηj(n)

. (5.20)

We note that the energy consumption is one of the biggest concerns in a CR-based

sensor network. Therefore, it is not prudent to choose the active users without considering

the remaining energy of each SU. In particular, there might be circumstances where a

particular SU has a high sensing accuracy due to its location (for instance, being close

to the PU). In such cases, if the energy level is not considered, the same SU would be

repeatedly selected, and its energy will be drained quickly. As a result, in addition to

the sensing accuracy, we consider the ratio of each SU’s energy to the initial secondary

network’s energy within each round, and revise the ηi(n) function defined in (5.19) as

follows:

ηi(n) =
1

1 + r∆i(n) + g e0
ei(n)

(5.21)
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where g is a positive real number such that g > 1, e0 is the initial energy of the cognitive

users, and ei(n) is the remaining energy of ui at the nth sensing process. We assume

that each time a SU is selected, its energy level will be drained by eu, where eu is the

energy consumed to perform a single sensing/reporting task. Note that (5.21) reduces

to (5.19) for g = 0. Fig. 5.3 depicts the proposed method’s flowchart, where r denotes

the current round, c setup and c op are the current number of rounds in the setup and

operation phases respectively, and epoch is the number of rounds in an epoch. As shown,

when mod(r − 1, epoch) ≤ W − 1, the algorithm goes into the setup phase. Otherwise,

it transits to the operation phase. The Check-Dead function is invoked at the beginning

of both phases to check if (1) any SU is dead, and (2) the secondary network is dead.

We consider an SU to be dead when its energy level is less than eu. Moreover, the CNS

is pronounced dead if the number of alive SUs is less than N∗. Fig. 5.4 presents a

subroutine to check the number of dead SUs, called the Check-Dead function.

Let x denote the ratio of the accuracy multiplier to the energy level multiplier, i.e.,

x = r
g
. Therefore, (5.21) is re-written as,

ηxi (n) =
1

1 + g(x∆i(n) +
e0

ei(n)
)
. (5.22)

We consider (5.22) and study two cases highlighting the emphasis on the accuracy or
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Yes

No
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mod (r-1, epoch) 

 !"-1

B

r =1

All SUs perform local sensing task

Generate FC vector

A

B

C

Update energy vector, E

c_setup = W

c_setup = 1

Generate  

r ++

r ++

c_setup ++

A

c_op = 1

c_op = L

Generate  , and P

Select N* active SUs

Update energy vector, E

Generate FC vector

r ++

c_op ++

r  !rmax

Yes

No

No

(Operation phase)

Yes

(Setup phase)

B

START

END

Invoke Check_Dead Func. Invoke Check_Dead Func.

Figure 5.3: The proposed method’s flowchart; r denotes the current round, c setup and
c op are the current number of rounds in the setup and operation phases respectively,
and epoch is the number of rounds in an epoch.
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Check_Dead Function

Yes

e ( i ) � eunit

i =1

i � nalive

Yes

i ++

nalive ++

ndead --

RETURN
No

No

Yes

Yes

nalive < K

Remove s(i_tmp), e(i_tmp), �(i_tmp), 

P(i_tmp), and �(i_tmp)

i_tmp --

No

RETURN

Network is Dead

END

i_tmp = ndead

i_tmp = 0
Yes

No

Figure 5.4: Check-Dead: a subroutine to check the number of dead SUs. ndead and nalive

are the number of dead and alive SUs respectively.
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on the energy level of the secondary network, as follows:

• Case-I (x > 1): in this case, the sensing accuracy is emphasized by making the

accuracy multiplier (r) greater than the energy multiplier (g).

• Case-II (x ≤ 1): in this case, the emphasis is on the energy level by making the

accuracy multiplier (r) smaller than the energy multiplier (g).

During the operation phase, based on Pi(n), the most N∗ secondary users will be

selected at each round to perform the sensing/reporting tasks. The rest of the SUs,

however, will be inactive to save the secondary network’s energy consumption.

The probability to select the ith secondary user within the nth sensing task defined

in (5.20) can be revised to identify the most eligible secondary users with a reasonable

accuracy level, as follows:

P ′
i (n) =



















ηi(n)∑N
j=1

ηj(n)
, if ∆i(n) ≤ ∆th

0 , if ∆i(n) > ∆th

(5.23)

where ∆th is a predefined system threshold set for the sensing accuracy. Hence, the

secondary users that have a ∆ function greater than ∆th in each round are not eligible

to be selected, i.e., the probability to select those secondary users is zero.
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5.3.3 Evaluation Benchmarks

In the following, we set two benchmarks for the performance evaluation of the proposed

method:

• Sensing accuracy benchmark (P0) is defined as the probability to select an SU that

has ∆i(n) = 0, averaged over the simulation time as follows:

P0 = E
{

N
∑

i=1

Pr[∆i(n) = 0]
}

(5.24)

where E{.} is the average function. Note that the greater the P0 is, the more

accurate the cooperative sensing will be.

• Energy benchmark (Ple) is defined as the probability to select an SU which has the

lowest level of energy at each round (averaged over the simulation time). Hence, it

would be desirable to have the lowest value for the Ple.

5.4 Numerical and Simulation Results

In this section, we conduct several computer experiments to evaluate the performance of

the proposed method and to study the effects of adjustable parameters on the proposed

method. In the first place, the effect of system thresholds ςf and ςd on the minimum
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number of required cooperative users (N∗) is studied. Fig. 5.5 depicts N∗ as ςf varies; as

depicted, N∗ is reduced when the system requirement on Pf is more relaxed. Moreover,

as shown in Fig. 5.5, the minimum number of required cooperative users is increased

when the SNR is decreased (SNR = 10 log σ2
s

σ2
n
).

In the second place, Fig. 5.6 shows the minimum number of required cooperative

users as a function of ςd. As depicted, N∗ is increased when the system requirement on

the probability of detection is more tight, i.e., when ςd is larger. Moreover, as expected,

a larger number of cooperative users (N∗) are needed to perform the cooperative sensing

task when the system has a smaller SNR.

Here, we study the effect of the number of rounds within the setup phase (W ) on the

sensing accuracy. As shown in Fig. 5.7, P0 is greater for greater values of W . In other

words, the sensing accuracy will be improved by larger values of W .

In addition, the weighting function ηxi (n) defined in (5.22) is applied to investigate

the effect of emphasizing the accuracy versus emphasizing the remaining level of energy.

We use an arbitrary x > 1 value to emphasize the accuracy, and an arbitrary x < 1 value

to emphasize the energy. The simulation is run for 1 ≤ g ≤ 50, and the corresponding

P0 and Ple values are recorded. Table 5.1 summarizes the results of this simulation. As

depicted, the emphasis on the sensing accuracy improves the sensing accuracy benchmark

by 22%. Similarly, emphasis on the energy improves the energy benchmark by as much
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Figure 5.7: The effect of the number of rounds within the setup phase (W ).

as 20%.

We also examine the following extreme cases: in Case-A, the remaining level of energy

is not considered in the selection of the SUs, i.e., g = 0 in (5.21). Similarly, in Case-B, the

accuracy of the spectrum sensing is not considered, i.e., r = 0 in (5.21). Fig. 5.8 depicts

Table 5.1: Emphasizing the sensing accuracy vs. the secondary network’s energy.

Max. of the sensing accuracy
benchmark, max{P0}

Min. of the energy bench-
mark, min{Ple}

Emphasis on the accuracy,
(x = 5)

0.93 0.29

Emphasis on the energy, (x =
0.2)

0.76 0.24

Comparison Emphasis on the sensing accu-
racy increases P0 by 22%

Emphasis on the network’s
energy reduces Ple by 20%
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P0 and Ple benchmarks for the Case-A and the Case-B. As shown, the sensing accuracy

is improved when the accuracy multiplier (r) increases. However, the performance of

the proposed method in regard to Ple deteriorates. In addition, the performance of the

proposed method with respect to Ple is improved by increasing the energy multiplier (g)

in Case-B, while the accuracy (P0) does not vary with the change in the energy multiplier.

Therefore, among the Case-A and the Case-B, it is concluded that the algorithm pro-

vides a better performance with respect to the sensing accuracy in Case-A, and it has a

better performance in regard to Ple in Case-B. As shown in Fig. 5.8, the accuracy bench-

mark P0 is increased by as much as 39% in Case-A. Additionally, the energy benchmark

Ple is reduced by as low as 76% in Case-B.

5.4.1 The Secondary Network’s Lifetime

In another study, we consider a CSN with N = 9 secondary users. The minimum number

of required SUs to perform the sensing/reporting task is assumed to be N∗ = 5. We use

the P ′
i (n) definition in (5.23), and apply the k-out-of-N rule for k = 3. The number of

rounds in the setup and operational phases are set to be W = 10 and L = 90 respectively.

Furthermore, the initial energy of each SU is assumed to be e0 = 75 (J), and the energy

consumed to perform each sensing/reporting task is set to be eu = 0.1 (J). Table 5.2

summarizes the above parameters. Based on the sensing accuracy, SUs are also grouped
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Figure 5.8: The accuracy and energy benchmarks in Case-A and Case-B.

into three categories, as depicted in Table 5.3.

The secondary network’s lifetime is compared at different sensing accuracy thresholds.

The simulation is run and the number of SUs is recorded until the number of alive SUs

is greater than N∗; then we consider the network to be dead. As depicted in Fig. 5.9,

the secondary network’s lifetime is shortened by enforcing a better sensing accuracy

(an smaller accuracy threshold, ∆th). In other words, there is a trade-off between the

secondary network’s lifetime and the sensing accuracy.

Table 5.2: Simulation parameters.

Parameter Value Parameter Value

N 9 N∗ 5

W 10 L 90

e0 75 (J) eu 0.1 (J)
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Table 5.3: Classification of the secondary users into three categories.

SU1 − SU3 SU4 − SU6 SU7 − SU9

Pd 0.9 0.85 0.8

Sensing Accuracy Good Average Poor

Note that by setting a smaller value for the sensing accuracy threshold, SUs that

have better sensing accuracy would be selected more often; therefore, the energy of such

users will be deployed sooner. This is also depicted in Fig. 5.10. As shown, in the case

of ∆th = 0, SUs that have higher sensing accuracy are selected with higher frequency

compared to those that have lower sensing accuracy. For instance, SU1, SU2, and SU3

which have the highest sensing accuracies (see table 5.3) are selected more often, as

depicted in Fig. 5.10. However, in case of ∆th = 4, SUs are selected with almost the

same frequency.

5.4.2 The Fusion Rule’s Effect

In this section, several computer simulations are conducted to examine the effects of

different fusion rules on the proposed method’s performance. First, the average Pd of the

secondary users is varied, and the simulation is run for 10,000 rounds. Fig. 5.11 depicts

the probability of interference (PI) for the OR Rule, the AND Rule, and the Majority

Rule. As shown, the OR rule provides the smallest probability of interference among the

mentioned fusion rules. In the OR rule, even if one SU reports a local sensing decision
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of “1”, the FC will conclude that the PU is operating in the spectrum. Hence, the PU

is fully protected from the SUs interference unless all the cooperative SUs report a “0”.

On the other hand, in the AND rule, even if one SU sends a local decision of “0”, the

FC will conclude that the PU is not operating in the spectrum. Therefore, the AND rule

has the largest probability of interference. The probability of false alarm Pf is set to be

0.05. The acceptable range of Pd (the operation region) is set to Pd ≥ 0.8.

We also vary the average Pf of the cognitive users and run the simulation for 10,000

rounds. The probability of missed opportunities (Pm) is then examined among the men-

tioned rules. As shown in Fig. 5.12, the OR rule has the worst performance with the

largest probability of missed opportunities. In the OR rule, even one local sensing of “1”

makes the FC conclude that the PU is present. Therefore, if the sensing report is not

correct, a missed opportunity will occur. On the other hand, the AND rule has the best

performance with the smallest Pm. This is due to the fact that unless all SUs report a

“1”, the AND rule will conclude that the PU is not present. Hence, the number of missed

opportunities is minimal. For this computer simulation, the probability of detection Pd

is set to be 0.8, and the acceptable range of Pf (the operation region) is set to Pf ≤ 0.2.

As depicted in Fig. 5.11 and Fig. 5.12, the OR rule has the best performance with

respect to the probability of interference. However, it has the worst performance from

the missed opportunities point of view. On the other hand, the AND rule has the best

105



10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Average Pd of SUs

P
ro

b
a
b
il
it
y

o
f
In

te
rf

er
en

ce
,
P

I

 

 

AND Rule
OR Rule
Majority Rule (3−out−of−5)

Operation Region

(0.8 < Pd)

Figure 5.11: The probability of interference PI for different fusion rules.

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Probability of False Alarm, Pf

P
ro

b
a
b
il
it
y

o
f
M

is
se

d
O

p
p
o
rt

u
n
it
ie

s,
P

m

 

 

OR Rule
AND Rule
Majority Rule (3−out−of−5)

Operation Region

(Pf < 0.2)

Figure 5.12: The probability of missed opportunities Pm for different fusion rules.

106



performance with respect to the missed opportunities, but it has the worst performance

with respect to interference. However, as shown in Fig. 5.11 and Fig. 5.12, the Majority

rule provides a close result to the best options (that is the OR rule in the interference

study, and the AND rule in the missed opportunities study). Therefore, we conclude that

the Majority rule has the best overall performance among the examined rules. This can

be also verified by studying the probability of error (Pe), as performed in Fig. 5.13. As

shown, the Majority rule has the smallest probability of error. Similarly, the probability

of false alarm Pf is set to be 0.05, and the operation region is set to Pd ≥ 0.8.

In another computer simulation, we consider a CSN with N = 20 secondary users,

and assume that the minimum required number of cooperative users is N∗ = 10. We run

the simulation for 10,000 rounds and record the probability of error for different values

of k in the k-out-of-N rule to examine the effect of other fusion rules. As depicted in Fig.

5.14, the Majority rule has the best performance with the minimum Pe. The OR rule

and the AND rule, however, have the worst performances as discussed before.

In addition, we perform numerical analysis for rounds 1 ≤ r ≤ 10 to further enlighten

the proposed method’s approach for spectrum sensing. We consider a CSN with five

SUs (N = 5), where the minimum number of required SUs is assumed to be N∗ = 2.

Moreover, the initial energy of each SU is set to e0 = 1 (J), and the energy consumed to

perform each sensing/reporting task is eu = 0.1 (J). The duration of the setup phase is
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Figure 5.14: The probability of error Pe for different values of k in the k-out-of-N rule
(1 ≤ k ≤ 10). The minimum required number of cooperative users is considered to be
N∗ = 10.
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set to be W = 2 rounds, and the number of rounds within the operation phase is L = 4

rounds. As shown in Fig. 5.15, rounds {r1, r2, r7, r8} are assigned to the setup phase,

and rounds {r3, r4, r5, r6, r9, r10} are assigned to the operation phase. The PU’s ON-OFF

pattern is also depicted in Fig. 5.15 as [1 1 0 0 0 1 1 0 1 1]. As discussed, at the end

of the setup phase, the ∆ vector is generated. The ∆ vector, therefore, is generated as

∆(2) = [0 1 2 1 2]T and ∆(8) = [0 0 0 1 1]T at round r2 and r8 respectively.

Similar to the previous simulation, we assume that each SU can accomplish a sensing

accuracy that might be different from other SUs. Let ne(i) denote the total number of

errors between the ith SU’s sensing result and PU’s ON-OFF state3. Without loss of

generality, we assume that ne = [0, 1, 3, 4, 6]. Secondary users are then classified based

on their sensing accuracy into three groups: good (SU1 and SU2), average (SU3 and

SU4), and poor (SU5).

In the operation phase, first the weighting function and P matrices are calculated. We

use ηxi defined in (5.22), and emphasize the sensing accuracy (x = 5, g = 20). Second,

N∗ = 2 secondary users that have the greatest P values are selected to perform the

sensing/reporting tasks. Fig. 5.16 depicts the above matrices, where N∗ = 2 secondary

users that are selected are indicated by an “*” sign. For instance, (SU1 and SU2) are

selected in round r3, and (SU1 and SU4) are selected in round r4. The selected SUs then

3Although the secondary network is not aware of the primary user’s state, we use this information
for the evaluation purpose.
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

1 1 0 0 0 1 1 0 1 1

1 1 0 0 1 1 1 0 1 1

1 1 0 0 0 1 1 0 X X

0 1 0 X 0 X 1 0 1 1

0 0 X X X X 1 0 1 1

1 0 X 0 X 0 0 0 X X

0 0 X X X X 0 0 X X

SU 4

SU 5

PU

ROUND

FC (OR-Rule)

Operation PhaseSetup Phase

SU 1

SU 2

SU 3

Setup Phase Operation Phase

Figure 5.15: The operation of the proposed method is divided into the setup phase and
the operational phase. An “X” indicates that the corresponding SU does not perform
senseing/reporting, a “1” means the PU is detected, and a “0” means the PU is not
detected.

report their local sensing results to the FC. Third, the final decision is made by the FC

according to the received sensing reports. Fig. 5.15 shows the sensing results obtained

by the selected SUs, where an “X” indicates that non-selected SUs do not perform the

sensing/reporting tasks.

In addition, each time an SU is selected, its energy level will be reduced by eu. Fig.

5.16 depicts the energy level of each SU in the e matrix. As shown, during the early

rounds, the difference in ηx values is mostly due to the sensing accuracy, because all SUs

start with the same level of energy (e0). However, after a few rounds, when the energy

level of SUs is not balanced any more (SUs that have better sensing accuracy have been

selected more often), the selection of SUs is performed due to both sensing accuracy

∆i(n) and ei(n), as discussed in (5.22).
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

0 0 0.0385 0.0338 0.0291 0.0244 0 0 0.0099 0.0099 SU1

0 0 0.0079 0.0077 0.0077 0.0074 0 0 0.0196 0.0148 SU2

  = 0 0 0.0044 0.0044 0.0044 0.0044 0 0 0.0291 0.0244 SU3

0 0 0.0079 0.0079 0.0077 0.0077 0 0 0.0066 0.0066 SU4

0 0 0.0044 0.0044 0.0044 0.0044 0 0 0.0074 0.0074 SU5

0 0 0.6087* 0.5798* 0.5453* 0.5039* 0 0 0.1362 0.1568 SU1

0 0 0.1256* 0.1323 0.1445* 0.1538 0 0 0.2697* 0.2341* SU2

P = 0 0 0.07 0.0759 0.0828 0.0914 0 0 0.4006* 0.3863* SU3

0 0 0.1256 0.1361* 0.1445 0.1595* 0 0 0.0911 0.1049 SU4

0 0 0.07 0.0759 0.0828 0.0914 0 0 0.1024 0.1179 SU5

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.2 SU1

0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.4 0.3 0.2 SU2

Operation PhaseSetup PhaseSetup Phase Operation Phase

0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.4 0.3 0.2 SU2

e = 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.5 0.4 SU3

0.9 0.8 0.8 0.7 0.7 0.6 0.5 0.4 0.4 0.4 SU4

0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.6 0.6 SU5

Figure 5.16: Illustration of the weighting factor η, the probability matrix P , and the
energy consumption matrix e for rounds 1 ≤ r ≤ 10. An “*” in P matrix indicates the
active SUs at each round.
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As shown in Fig. 5.16, during rounds r3 − r6 and r9 − r10, SU1, SU2, SU3, SU4, and

SU5 are selected 4, 4, 2, 2, and 0 times respectively. In other words, the selection process

took place 6 times, with 2 SUs selected each time (12 times in total). Out of the 12

selections, 8 times selected SUs belonged to the good sensing accuracy (66%), 4 times

selected SUs belonged to the average sensing accuracy (33%), and 0 times selected SUs

belonged to the poor sensing accuracy (0%).

5.5 Summary

In this chapter, we reviewed cooperative sensing in cognitive sensor networks. An opti-

mization problem was formulated and analytically solved to find the minimum number

of required cooperative users. We then defined a metric for spectrum sensing accuracy

and proposed a novel energy-aware user selection method that identifies the most el-

igible cooperative users through a probability-based approach that employs weighting

functions.

In addition, two benchmarks were defined for the purpose of the proposed method’s

evaluation. We also compared the network lifetime for several sensing accuracy thresh-

olds, and discussed the trade-off between the sensing accuracy and the network lifetime.

Moreover, the effect of different fusion rules were discussed and it was concluded that the

Majority rule has the best overall performance among the examined rules. The chapter
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ends with a numerical analysis to further enlighten the proposed method’s approach to

the cooperative spectrum sensing.

113



Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

In this dissertation, we studied spectrum sensing in cognitive radio networks. We high-

lighted the importance of spectrum occupation modeling and described the spectrum

usage in cognitive radio by a continuous-time Markov chain model. The model was

mathematically defined by deriving the transition rate matrix and the probability state

vector. Through numerical analyses, we validated the model for several cases including

an extreme case with a very large number of secondary users. The model was also ex-

amined for a special case with no active secondary user and compared with an existing

model in the literature; it was discussed that the model agrees with the existing work

in this case. The Markov chain served as a base model for our analysis through this
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dissertation.

We elaborated the significance of sensing period optimization on the secondary net-

work power consumption and throughput. We also discussed the current drawback in

the most existing methods where the sensing period is obtained based on the primary

network’s properties only. This drawback is highlighted by knowing that there exist

numerous cognitive radio applications with various sets of design requirements. On the

other hand, a cognitive radio network should be aware of its surroundings, and the traffic

characteristics of the secondary network are important, especially when it has exception-

ally low or high probability of presence. We, therefore, proposed an application-specific

spectrum sensing method that finds the local sensing period according to the properties

of both primary and secondary networks. We defined and analytically derived the inter-

ference ratio and the undetected opportunity ratio parameters. Then, two optimization

problems were formulated based on the secondary network’s state in the Markov chain,

and the optimum sensing period in each state was analytically derived.

In addition, we examined the secondary network’s power consumption and its through-

put in the application-specific and the non-application-specific sensing approaches. It was

elaborated that while the non-application-specific method provides an identical solution

for different types of secondary networks, the application-specific approach provides a

customized solution for each network. The performance of these schemes were compared
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through various numerical and simulation analyses. It was concluded that, as compared

with the non-application-specific approach, the proposed method managed to increase

the average throughput of the secondary networks by up to 11%. Also, the proposed

method significantly decreased the secondary network’s power consumption by as low as

33% of the non-hybrid approach. We also discussed the trade-off between the throughput

maximization and the power consumption minimization.

We also investigated the cooperative spectrum sensing in cognitive radio and discussed

the main advantages of cooperative techniques in spectrum sensing. We then addressed

and analytically solved two important problems in the cooperative spectrum sensing: the

minimum number of cooperative users and the most eligible cooperative users. We also

defined a metric for the sensing accuracy and proposed a novel method that identifies the

most eligible secondary users through a probability-based approach that uses a weighting

function.

Two benchmarks were defined to examine the effects of emphasizing on the sensing

accuracy and the remaining energy level of the secondary users. In particular, we studied

two extreme cases where only one of the parameters was considered in each case. By

numerical analysis, it was concluded that the accuracy benchmark was increased by

as much as 39% by only considering the sensing accuracy and ignoring the remaining

energy level. Additionally, the energy benchmark was reduced by as as low as 76% by
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only considering the remaining level of energy and ignoring the sensing accuracy. We also

compared the network’s lifetime at several sensing accuracy thresholds and discussed the

trade-off between the sensing accuracy and the network’s lifetime. Moreover, the effects of

several fusion rules were studied, including the OR-Rule, the AND-Rule and the Majority

rule. Through several simulations, it was concluded that the Majority rule had the best

overall performance among the fusion rules. Finally, a numerical analysis was performed

to further enlighten the proposed method’s approach to the spectrum sensing.

6.2 Future Directions

The proposed sensing methods through this dissertation are based on a continuous-time

Markov chain model that is developed as part of this work. The proposed sensing methods

can be further enriched by assuming more sophisticated spectrum occupation models.

In addition, the current work assumes a fixed network structure where the location

of the primary and secondary users does not vary by time. However, in reality, there

exist a number of applications where the location of the users is not fixed. Therefore,

it is essential to address the spectrum sensing optimization in cognitive radio networks

with mobile users. Adding mobility to SUs can provide sensing diversity as a single SU

might obtain the channel usage information from different geographical locations. The

probability of detection, therefore, is expected to be improved. A possible direction to
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reduce the complexity of sensing period optimization in a mobile cognitive radio network

would be to estimate the channel usage information based on the previous sensing results.
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