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Abstract

Software Bug Localization involves a significant amount of time and effort on the part of

the software developer. Many state-of-the-art bug localization models have been proposed

in the past, to help developers localize bugs easily. However, none of these models meet

the adoption thresholds of the software practitioner. Recently some deep learning-based

models have been proposed, that have been shown to perform better than the state-of-

the-art models. With this motivation, we experiment on Convolution Neural Networks

(CNNs) to examine their effectiveness in localizing bugs. We also train a SimpleLogistic

model as a baseline model for our experiments. We train both our models on five open

source Java projects and compare their performance across the projects. Our experiments

show that the CNN models perform better than the SimpleLogistic models in most of

the cases, but do not meet the adoption criteria set by the practitioners.
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Chapter 1

Introduction

The quality of the software developed is important for the success of any software project.

Software quality assurance is the process that ensures that the software being developed,

meets all the expected quality standards [107]. A software bug is an anomaly in the

software product that causes the software to perform incorrectly or to behave in an

unexpected way [32]. Software quality assurance aims to detect, analyze and correct

bugs in the software and many organizations spend a significant amount of time and

resources during this process [33]. In fact, it is one of the most resource consuming tasks

in the entire software development life cycle [119]. In spite of this, software systems are

often shipped with bugs. Large software projects receive huge number of bugs every day.

For instance, the Eclipse [15] project had nearly 13,016 bugs reported in a span of one

year (2004 - 2005), with an average of 37 bugs reported per day, and a maximum of 220

bugs reported in a single day [24].

Once a bug is reported and confirmed, the software developer has to find the root

cause of the bug in the source code and then fix the root cause. This process is typically

manual and can take 30% – 40% of the total time needed to fix a problem [84]. This is

a painstaking process, especially for large software projects with hundreds of thousands

of source files. As a result, the bug fixing time increases, along with maintenance cost of

the project. Although the bug fixing task constitutes sub-tasks like understanding the

bug, validating the bug, locating the cause of the bug, and finally fixing the bug, it is

“locating the cause of the bug (Bug Localization)”, that consumes most of the developer’s

time [34]. Hence, there is a need for automated tools or approaches which perform bug
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Chapter 1. Introduction 1.1. Terminology

localization.

1.1 Terminology

Throughout the study the following terminology is used.

1.1.1 Software Bugs

The users of a software product often encounter a problem or a fault or an error in the

software that leads to an undesired outcome or even a software failure [107]. This problem

or flaw is also known as a software bug. Bugs arise from errors made by developers in

source code or its design.

1.1.2 Bug Reports

A bug report passes through various phases, before it is fixed and closed. Figure 1.1

illustrates the life cycle of a bug in Bugzilla [2] bug tracking system. On detecting a bug

or fault in the software, a user or software tester, reports the bug in a document called a

bug report or an issue report. A bug report is a software artifact which is logged by a user

or tester in a bug tracking system, such as Bugzilla or JIRA [11]. Before a bug report is

considered valid, it goes through various stages of quality checks. During these stages,

a bug is checked for duplicity, validity and, completeness (i.e., whether the information

given in the bug report is sufficient to identify the bug). After a bug passes through these

stages, it is assigned to an expert (“Assignee”), who is expected to have the knowledge

to fix the bug. The Assignee, refers to the information in the bug report to identify the

source files which need to be modified, in order to solve the issue in the bug report. Bug

reports typically consist of various fields such as Title, Version, Component, Product,

Quality Assurance (QA) Contact, Assignee, Reported Date, Importance, Attachments,

which contain description of the bug, screen shots or snapshots of an error message, stack

traces, etc. Figure 1.2 shows an Eclipse bug report from Bugzilla.

2
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Figure 1.1: Life Cycle Of A Bug [2]
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Chapter 1. Introduction 1.2. Motivation

Figure 1.2: Sample Eclipse Bug Report In Bugzilla

1.1.3 Bug Localization

“Bug Localization is the process of identifying the specific location(s) or region(s) of

source code (at various granularity levels, such as the directory path, file, method or

statement) that is faulty or buggy, and needs to be modified to repair or fix the fault or

bug” [66].

1.2 Motivation

As mentioned earlier, a bug is assigned to a developer, who is expected to fix the issue

in the bug report. The developer refers to the information in the bug report (to identify

the source files which need to be modified) to fix the issue in the bug report. Manu-

ally identifying the bug from the source files is a rigorous task, especially for large and

complex software systems. It involves a significant amount of time and effort on the

part of software developers. To reduce this workload, many researchers have proposed

various approaches or models, to pinpoint the locations of bugs in the source files. These
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Chapter 1. Introduction 1.2. Motivation

approaches can be classified into dynamic and static approaches. The dynamic approach

[23, 58, 95] uses the semantics of the program and the test case execution information to

localize bugs. The static approach [52, 77, 92] relies purely on the source code and bug

reports information. It uses pre-defined bug patterns and Information Retrieval (IR) or

Machine Learning (ML) to localize bugs.

IR can be defined as “Retrieving relevant document or documents that satisfy user

information needs, from large and unstructured collection of documents” [78]. IR models

are popular in bug localization domain mainly because of scalability and language inde-

pendence [92]. This means, even if a software project grows in size and complexity, that

the IR model will still remain applicable to the project. On querying an IR model with a

bug report, the model retrieves a ranked list of potential buggy source files, which contain

the fix for the issue in the bug report. Most of these models use IR-based techniques like

Term Frequency Inverse Document Frequency (TF-IDF) [72], Latent Semantic Analysis

(LSA) [43], Latent Dirichlet Allocation (LDA) [30], Vector Space Model (VSM) [97], and

revised Vector Space Model (rVSM) [136].

ML has also been used by many researchers to propose various models for localizing

bugs. ML is a subset of Artificial Intelligence, in the field of Computer Science, that often

uses statistical techniques to give computers the ability to “learn”, i.e., progressively

improve performance on a specific task, with data, without being explicitly programmed

[98]. Traditional ML approaches, such as topic modelling [29] and Naive Bayes [73], have

been used to build tools that can localize bugs.

Though all the above state-of-the-art models are able to localize bugs to some extent,

none of them could meet the expectations of the software practitioners, who are the end

users of these models [64]. These models are unable to bridge the lexical gap between

the bug reports and source code. To bridge this gap, recently some researchers [54, 67]

have proposed deep learning-based bug localization models.

Deep Learning [41] is the most sought after approach by many researchers nowa-

days. This is because deep learning-based models have proved to perform better than

traditional ML models in the areas of image processing [65], speech recognition [49], and

natural language processing (NLP) [35]. In fact, this is the reason why many recent

works use deep learning on software data to solve various software engineering problems,

such as user profiling [38], defect prediction [129], software artifact traceability [48], code

suggestion [121], processing programming languages [83], and bug localization [54, 67].
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In the past few years, different architectures of Deep Neural Nets (DNN) have been

proposed to localize bugs. Our objective to examine the effectiveness of these models

is motivated by the fact that all these deep learning-based models have been shown to

outperform other state-of-the-art bug localization models [54, 67, 68, 126].

1.3 Objective

Our primary objective is to examine the effectiveness of the deep learning model in

meeting the expectations of the software practitioner. We reach our primary objective

by answering the following research questions.

RQ1 : How can we minimize the lexical gap between natural language texts in bug

reports and technical/domain corpus in source code files in order to automatically local-

ize bugs?

RQ2 : How effective are the Convolution Neural Net (CNN) models in meeting the ex-

pectations of the software practitioner?

The secondary objectives include (a) to compare the performance of our deep learning

model with a traditional ML model, (b) to apply deep learning-based bug localization

models to five open source software datasets and compare the performance of the models

across the datasets, and (c) to observe the effect of varying source files on the perfor-

mance of the model. We reach these secondary objectives by answering the following

research questions.

RQ3 : How do the CNN models perform in comparison with a standalone logistic re-

gression model like SimpleLogistic models, on software bug localization data?

RQ4 : How do the CNN models perform across different open source software bug local-

ization datasets?

RQ5 : How does varying the source files in the dataset affect the performance of the

6



Chapter 1. Introduction 1.4. Proposed Solution

CNN and SimpleLogistic Models?

1.4 Proposed Solution

In order to address RQ1, we give a detailed explanation of the existing state-of-the-art

traditional and deep learning models and why a deep learning-based model could be a

potential solution for bridging the lexical gap between bug reports and source files. For

addressing RQ2, we train CNNs on open source datasets, which have been widely used in

the past bug localization studies. We then compare the performance of the CNN models,

with the expectations of the software practitioner [64]. We experiment with CNNs to

solve the Learning-To-Rank bug localization problem using the classification approach,

which generates scores for each sample in the dataset. This score gives the degree of

likeliness that the sample belongs to the positive or negative class.

In order to make a comparison with the CNN model, we initially chose one of the

classic models (namely, Naive Bayes) as our base-line model. However, classifiers like

Naive Bayes do not assign well-calibrated scores to the suggested source files. As bug

localization is a Learning-To-Rank IR problem, we need calibrated results (those which do

not have ties between the scores assigned to the suggested source files for a bug report)

in order to be able to correctly measure the performance of the resultant IR model.

Hence, we need a logistic regression model like the SimpleLogistic model that can give

us calibrated output scores and can also meet the computation and memory constraints,

which are inherent when dealing with large datasets like the ones used in this study. Thus,

RQ3 is addressed by training a SimpleLogistic model on the bug localization datasets

used in this study. The same experimental set up is used to train both the CNN and

SimpleLogistic models.

Next, for answering RQ4, we train the CNN model on five open source bug localization

datasets and evaluate the performance of the model on each of them. The experimental

set up is kept similar while training the models on each dataset, so as to make a fair

comparison between the models. We address the next research question, RQ5 by varying

the source files in each dataset. In the first case, we use all the source files in the project

repository. In the second case, we use only the source files which have been mapped to

at least one bug report in the past. In the last case, we consider only those source files

7
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which are Very Buggy, i.e., which have more than one bug report mapped to it in the

past. We evaluate each of these models to address RQ5.

1.5 Novelty & Contribution

To the best of our knowledge, no other work empirically examines the effectiveness of

deep learning-based bug localization models. Through our experiments, we study the

relevance of deep learning and traditional models in meeting the expectations of the

software practitioner. This study highlights the drawbacks of the current state-of-the-

art models and also the recent deep learning models, which is helpful to the future bug

localization research. Researchers who aim to build models that localize bugs can take

our study as a reference point. Also, the end-users, i.e., the software practitioners should

refer to our study before using any bug localization model, as it helps them identify the

setbacks of the current models. The major contributions of this work can be summarized

as follows.

• Through the experiments carried out in this study, we examine the relevance of a

deep learning-based bug localization model to the software industry.

• We evaluate a deep learning model (CNN) against a traditional ML model (Sim-

pleLogistic) on bug localization data.

• We extract the source files for all the bug reports based on the bug-commit mapping

for five open source datasets and train bug localization models on all of them.

• We empirically show the effect of varying the source files on the performance of

both the CNN and SimpleLogistic bug localization models.

1.6 Outline

In Chapter 2, we provide related works and a literature review on bug localization. In

Chapter 3, we introduce the methodologies that we use to build the bug localization

models and the approaches followed to evaluate the models. In Chapter 4, we analyze

the datasets used in the study and the experimental setup along with a detailed discussion

8
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of the results obtained. Finally, in Chapter 5, we provide a summary of the study, and

directions for future research.
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Chapter 2

Literature Review

As discussed in Chapter 1, the need for automated tools for bug localization, which help

software developers narrow-down potential buggy files from the entire source base, has

motivated many researchers to investigate this area and propose new approaches. The

motivation behind this study is based on the fact, that most of the state-of-the-art bug

localization models do not meet the expectations of the practitioners, who are the end

users of these models [64]. Recently some deep learning-based models [54, 67, 126], have

been proposed that link high-level, abstract concepts between bug reports and source

files. They do this by learning to relate the terms in bug reports and different code

tokens and terms in source files. They have been shown to be able to bridge the lexical

gap between the bug reports and source code. The performance of these models has been

shown to be better than the other traditional ML models in the literature. With this

motivation, we build a bug localization model using a CNN that is widely used in the

past for text classification. We compare its performance with a traditional ML model

like SimpleLogistic and also empirically examine its relevance to the software industry.

In this chapter, we discuss some significant research in bug localization, that uses

the traditional IR and ML approach. Also, we briefly mention research related to the

application of deep learning models to the bug localization problem. A brief description of

significant work done in the area of deep learning for NLP and for software engineering

problems is also included in this chapter. We conclude the chapter with an overview

of a survey, which highlights the expectations of the software practitioner on the bug

localization models and the future directions to be taken by researchers, to build effective
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models that are relevant to the industry.

2.1 Traditional Approaches

The automated approaches in bug localization can be broadly classified into two cate-

gories: dynamic approach and static approach. The semantics of the program and its

execution information with test cases, i.e., pass/fail execution traces are used in the dy-

namic approach. In this approach, we can localize a bug with higher granularity, i.e.,

pinpoint the buggy statement or a block in the source file. But this approach needs in-

formation pertaining to the execution of the test cases i.e. the pass/fail execution traces.

This makes these approaches dependent on the quality of the test suite used. In reality,

the adoption of functional testing in many software projects is poor [63]. Hence this

approach for bug localization may not be effective for all software projects.

The dynamic approaches proposed in the literature are: Spectrum-based fault local-

ization and Model-based fault localization. The Spectrum-based approach uses program

traces to correlate program elements at statement-, block-, function-, or component-level

in a program to the program failures. These approaches have been used to localize faults

in [23, 58]. Their techniques are based on the idea that a failed program element is

more suspicious, if it frequently appears in failed execution traces rather than passed

ones. Saha et al. [95] have proposed a model that uses this approach for localizing faults

in data-centric programs, which interact with databases. Model-based fault localization

techniques have been proposed by Feldman et al. [44] and Mayer et al. [79]. These

models are based on expensive logical reasoning of formal models of programs but are

often more accurate than the Spectral-based models.

The second type of automated approach, i.e., the static approach, does not need the

dynamic program information, like the execution traces. They rely only on the source

code and the bug reports information. These static approaches can be further classified

into two groups: program analysis-based and IR-based. The program analysis-based

approach uses predefined bug patterns to localize bugs. Hovemeyer et al. [52] used this

approach to propose a model called FindBugs. This model does not perform well as it

gives a large number of false positives and also false negatives [114].

The second type of static approach uses IR and ML techniques, to automate the

11



Chapter 2. Literature Review 2.1. Traditional Approaches

search for relevant or potential buggy source files for a given bug report. They use IR-

based techniques like TF-IDF, LSA, LDA, VSM, and rVSM. All these techniques work

on the same principle, i.e., the content of the bug report is the query, and the source

files in the project are the collection of documents returned by the query. Here, the bug

localization problem is treated as a Learning-To-Rank IR problem.

Rao et al. [92] probed into many of these IR techniques and concluded that simpler

techniques, such as TF-IDF, work better than complex ones. Lukins et al. [77] proposed

a bug localization model using LDA, which is a topic-modelling approach. Zhou et al.

[136] proposed the rVSM approach, which is a refined vector space model to leverage the

similarity between the bug reports and source files. Saha et al. [96] proposed a structured

retrieval model that employs the structure of bug reports and source code files, to achieve

better performance.

Kim et al. [60] have also experimented using Naive Bayes algorithm, with the previ-

ously fixed files as classification labels. The trained model is used to assign source files

to each bug report. Ye et al. [130] used the adaptive Learning-To-Rank approach, to

train the features extracted from source files, API (Application Programming Interface)

descriptions, bug-fixing, and change history. Both papers [60, 130] used additional fea-

tures like the metadata pertaining to bug reports (version, platform, priority, etc.) and

source files (bug-fixing histories). Ye et al. also used the text in the documentation

of the open source projects used in their study, to train the word embeddings for bug

reports and source files. Later, Cosine Similarity Analysis (CSA) [103] was performed

on the encoded bug reports and source files. On the other hand, Kim et al. did not use

the source file’s content for feature extraction. They only used the names of the fixed

files and labels for their classification model. Le et al. [70] have proposed a multi-modal

technique for bug localization that uses the dynamic information like program spectra

(i.e., a record of which program elements are executed for each test case) along with the

bug reports. The goal here is to create an adaptive model which is specific to each bug

report and map it to its possible location.

Most of these state-of-the-art models consider the source code and bug reports to be

of the same lexical space and try to correlate these artifacts by measuring their similarity

in the same space. It is important to note that none of these traditional approaches for

bug localization meet the expectations of the practitioners [64]. We discuss more about

this in Section 2.4. Recently, some deep learning-based bug localization models have

12
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been proposed, to solve the bug localization problem. We discuss these models in the

next section.

2.2 Deep Learning for NLP

Before we discuss the application of deep learning to the bug localization problem, we

give a brief overview of research, which involves the application of deep learning for NLP.

In NLP, learning word encodings (or word embeddings) is a crucial part of the entire

training process. Deep Learning is used to study these word vectors. Collobert et al.

[36] proposed a multi-layer neural network that works on many NLP tasks. The main

motivation behind this model was to avoid task-specific engineering. Another important

work, which led to a breakthrough in NLP (text classification) is [132]. Kim [132] has

experimented on a basic Convolution Neural Network (CNN) on open source datasets,

like Movie Reviews and proved that a simple CNN (with little hyper-parameter tuning

and using static word vectors), is capable of performing exceptionally well on the sen-

tence classification task. Kim experimented on four different variations of encoding of

the corpus (random, static, non-static, multi-channel). Kim’s experiments also proved

that, learning task-specific word vectors instead of static vectors improves the perfor-

mance of the model. A further improvement in the model was seen through the use of a

combination of static and non-static word vectors.

Santos et al. [39] trained character-level embeddings and combined them with the

pre-trained word embeddings. These were fed into the convolution layers of a CNN model

for identifying the Parts Of Speech in the text. Zhang et al. [128, 134] experimented

on character-level CNN models for classifying text. Their experiments proved that CNN

perform better than the other traditional models (such as bag-of words, n-grams, and

TF-IDF models) and also other deep learning models (such as word-based CNN and Re-

current Neural Networks (RNN)). They also proved that CNN do not require knowledge

of words in terms of semantics or context of words, to perform text classification.

Kim et al. [61] explored the application of character-level CNN for language mod-

elling. The output of the character-level CNN was used as the input to an LSTM at each

time step. The model proved to be effective for modelling different languages. John-

son and Zhang [56] trained a CNN from scratch without using pre-trained word vectors
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(Word2Vec [81] or GloVe [88]) and applied convolutions directly on One-Hot [101] vec-

tors. They also proposed a different version of the traditional bag-of-words approach.

This approach is space-efficient and also reduces the number of parameters that the net-

work needs to learn. The authors extended this model in [57] by proposing a new version

of word encodings called region embeddings. These embeddings are derived by using a

CNN which predicts the context of text regions in a sentence. The region embeddings

proved to be very effective on long-form texts (like Movie Reviews data) but not on short

texts (like tweets). The pre-trained word embeddings perform well on short texts rather

than long texts.

Zhang et al. [135] performed a sensitivity analysis on the effect of varying hyper-

parameters in a CNN model. This model proves to be very useful to researchers aiming

to train CNN models on different datasets. Nguyen et al. [85] built a CNN model

for relation extraction and classification tasks. Apart from using the pre-trained word

vectors, they also used the relative positions of the words to the entities, as inputs to the

convolution layer. This model requires that the positions of the entities is pre-defined

and that each input contains a relation. Sun et al. [111] and Zeng et al. [133] have also

explored similar models.

Another important application of CNN in NLP was proposed by Gao et al. [47] and

Shen et al. [102]. They experimented on how semantically meaningful representation of

sentences can be used for IR. One of the applications stated in their work is recommending

useful or potentially interesting documents to users, based on their past or current reading

list. They train the sentence representations based on the search engine log data of

the users. Another important work, on investigating the meaningfulness of the word

embeddings learned by a CNN model, was presented by Weston et al. [120]. They use a

CNN to predict the hashtags for Facebook posts, and also used the learned embeddings

for another task like recommendation systems.

Another type of DNNs, which are widely used and well recognized as a perfect fit for

NLP needs, is RNN. They have produced significant breakthroughs in many NLP tasks,

e.g., language modelling [82], machine translation [25], semantic entailment [113]. Long

Short-Term Memory (LSTM) is a variant of RNN which are proposed by Hochreiter et

al. [50, 51] and proved to be better than other DNN models for NLP. Tai et al. [113]

proposed a tree-structured LSTM for the task of semantic relatedness between natural

language sentences.
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In the next section, we discuss some important works, which applied deep learning

models to software engineering data.

2.3 Deep Learning for Software Engineering

Recently, deep learning models are being widely used to solve software engineering prob-

lems. Researchers in the software engineering community have demonstrated the use-

fulness of applying deep learning techniques to software engineering corpora to solve

problems in the areas of test case prioritization, defect prediction, bug localization, user

profiling, etc.

In order to profile the usage of a software product to improve the quality of the soft-

ware, Curro et al. [38] proposed an automatic approach to extract information about

user actions from publicly available video tutorials of a product. They used a Deep Con-

volutional Neural Network (DCNN) to recognize user actions and classify them. Their

work demonstrates the effectiveness of DCNN-based methods for extracting software us-

age information from videos. White et al. [121] applied deep learning to model software

engineering data like source code files and their model is applicable to other types of soft-

ware artifacts exhibiting sequential structure, such as execution traces, design documents,

and requirement documents. They also applied the deep learning models to code sug-

gestion and demonstrated higher effectiveness than other state-of-the-art models. Mou

et al. [83] have proposed a novel tree-based CNN architecture (TBCNN) for processing

programming languages. The structure of the program’s abstract syntax tree is captured

by the convolution kernel. TBCNN proved to be effective in program analysis tasks (e.g.,

program classification based on functionality) and in detecting unhealthy code (which

implements an inefficient algorithm). It also outperformed their baseline Support Vector

Machine (SVM) [37] model, including several commonly used neural network models like

DNN and RNN.

Guo et al. [48] applied RNN and their variants to establish links between software

engineering artifacts, namely Requirements and Design documents. They encoded the

corpora in the artifacts, using Word2Vec encoding and found the semantic vector for each

artifact using RNN. They calculated the relatedness score between these semantic vectors

using the architecture adapted from [113]. Another significant work, which applied deep
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learning to software engineering data was proposed by Lam et al. [67]. They applied

Restricted Boltzmann Machine (RBM)-based [105] DNN in combination of rVSM on

bug localization datasets. The features from the bug reports, source files, and API

descriptions were extracted using an autoencoder. The extracted features were later fed

in a DNN, which outputs a relatedness score between a bug report and source file. The

higher the relatedness score, the greater the probability that the source file contains the

root cause of that particular bug report.

Another recent work, which applied deep learning to bug localization data, is by

Huo et al. [54]. They adapted a Pairwise Learning-To-Rank approach to classify the

combined corpora of bug reports and source files into linked and non-linked records.

They proposed a new architecture called Natural Language And Programming Language

CNN (NP-CNN). Their experiments show that NP-CNN performs better than the other

state-of-the-art bug localization models. Huo et al. [126] also proposed another new

architecture for the bug localization problem using a combination of LSTM and CNN

called LS-CNN. They compared the performance of LS-CNN with 1) NP-CNN, 2) a

simple CNN [132], 3) a simple LSTM, and other state-of-the-art bug localization models,

such as Buglocator [136], Two-Phase [60], and HyLoc [67]. Their experiments proved

that the LS-CNN model outperforms the rest of the deep learning models, and also the

traditional models, on the same datasets.

2.4 Practitioner’s Expectations

There are numerous studies in the area of bug localization, some of which have been

discussed in the previous sections. Unfortunately, very few studies in the literature have

investigated the expectations of practitioners. In this section, we discuss one empirical

study that surveyed practitioners from diverse backgrounds, about their expectations of

research in bug localization [64]. This particular work has been one of our motivating

factors, to investigate and examine the relevance of a deep learning-based bug localization

model like CNN in meeting the expectations of the practitioners.

The main goal behind the survey conducted by Kochar et al. [64], was to compare

the needs of the industry to the current state-of-the-art research in this area. They did

this, by surveying 386 practitioners from more than 30 countries across 5 continents,
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about their expectations of research in bug localization. They then compared what

practitioners need, and the current state of research, by performing a literature review of

papers on bug localization techniques published in International Conference on Software

Engineering (ICSE), Foundations of Software Engineering (FSE), Transactional Software

Engineering (TSE), etc. in the years between 2011 and 2015.

The survey revealed that most of the practitioners are enthusiastic about the research

in this area, but have high thresholds of adoption. They expect any bug localization tool

to meet certain criteria, e.g.: the availability of debugging data, granularity level of

the file when suggesting buggy files for a bug report, reliability, scalability, efficiency,

ability to provide a rationale behind every suggestion of buggy file, and integration into

an Integrated Development Environment (IDE). We evaluate our CNN and also the

SimpleLogistic model against each of these criteria in Chapter 4 of our study. We discuss

each of these criteria in details below:

• Importance of bug localization: The survey showed that majority of practitioners

rated the bug localization research as “Essential” or “Worthwile”, with a minority

(less than 10%) rated the research as “Unimportant” or “Unwise”.

• Availability of debugging data: Most of the studies in bug localization assume that

debugging data like specification, test cases, bug reports are always available. The

survey showed that almost 80% of practitioners agree that bug reports are available

“most of the times”.

• Preferred level of granularity : Different studies propose bug localization models

that localize bugs in source files at different levels of granularity, i.e., file, method,

block, statement. 51.81% of practitioners in the survey prefer method level granu-

larity. Only 26.4% of practitioners prefer file level granularity.

• Minimum success criteria: The success criteria is defined in terms of Top-k rank

which is an IR metric used to evaluate the performance of bug localization models.

As we know, these models suggest a ranked list of source files as the potential buggy

files for a bug report. If the relevant or the buggy file appears at the bottom of

the list, then a developer is better off doing manual debugging rather than using

this model. The survey found that about 74% of developers gave Top-5 as the

minimum success criteria.
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• Trustworthiness : Based on the above criteria for success, the success rate of a

bug localization technique can be determined. A technique that is successful most

of the time (i.e., meets the minimum success criteria) is considered trustworthy.

The survey found that in order to achieve a satisfaction rate of 50%, 75%, and

90%, a bug localization model has to be successful 50%, 75%, and 90% of the time

respectively.

• Scalability : The survey found that in order to achieve a developer satisfaction rate

of 50%, 75%, and 90%, the bug localization model needs to be scalable enough to

deal with programs of size 10,000, 100,000, and 1,000,000 Lines Of Code (LOC),

respectively.

• Efficiency : In terms of efficiency, the survey found that in order to achieve a

developer satisfaction rate of at least 50%, the model should have a run time of

less than a minute. This threshold for efficiency was approved by almost 90% of

the practitioners who participated in the survey.

• Willingness to adopt : Almost all the practitioners in the survey are willing to adopt

a bug localization technique, if it satisfies the above criteria of trustworthiness,

scalability, and efficiency.

The most important implications that can be drawn from the survey conducted by

Kochhar et al. [63] are given below:

• Demand for bug localization solutions : It was found that almost all the practitioners

who participated in the survey recognized research in this field to be essential or

worth while. This is a clear indication that researchers need to continue innovating

and propose new solutions for the bug localization problem.

• Presence of a high adoption barrier : In spite of the above stated interest of the

practitioners in this area of research, most of them are not willing to adopt any

bug localization technique unless it satisfies all of the above stated criteria.

• A need for large improvement in reliability : It was found that even the best per-

forming studies could not satisfy even 75% of the respondents in the survey. Many

of the studies that can satisfy 50% of the practitioners work at a granularity that
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is considered very coarse by most of the practitioners, i.e., class- or file-level. One

particular study by Qi et al. [90] proposed a bug localization model that works

on the preferred level of granularity (method) and satisfies more than 50% of the

practitioners, but it has been shown to be effective on only small or medium sized

projects (less than 100k LOC). Hence, the existing bug localization techniques need

to improve to a large extent to satisfy the software practitioners.
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Chapter 3

Methodology

As discussed in the previous chapters, most of the state-of-the art traditional machine

learning models are unable to bridge the lexical gap between the bug reports and source

code. This can be derived from the fact that none of these models meet the expectations

of the practitioners in terms of performance, reliability, granularity, scalability, etc. [64].

Recently some deep learning-based models [54, 67, 126] have been proposed to link

bug reports and source code. They do this by learning to relate the terms in bug reports

and different code tokens and terms in source files. They have been shown to be able

to bridge the lexical gap between the bug reports and source code. The performance of

these models have been shown to be better than the other traditional machine learning

models in the literature. With this motivation, we build a bug localization model using a

CNN that is widely used in the past for text classification. We compare its performance

with a traditional machine learning model like SimpleLogistic and also empirically ex-

amine its relevance to the software industry. This chapter provides a foundation for the

experimentation done in our study. We briefly discuss the merits of deep learning and its

application in the area of bug localization. We also explain how CNNs are used for text

classification and how the same architecture can also be applied as a Pairwise Approach

to the Learning-To-Rank bug localization problem. We also give a brief overview of our

baseline model, built using SimpleLogistic. In Section 3.1 we discuss the Learning-To-

Rank IR problem and the different approaches used to tackle it. Next, we present some

basics of deep learning, followed by how and why deep learning is used in the area of bug

localization in Section 3.2. In Section 3.3 we explain the basics of CNNs, their application
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on textual data and then the effect of hyper-parameters on their performance. Next, we

go into some of the details of SimpleLogistic models [69, 109], in Section 3.4. We end

this chapter with a brief description of the various evaluation metrics used in our study.

Throughout this chapter, we use the term relevant file and buggy file interchangeably, as

by relevant file we mean the file that has the potential fix for a bug report. Similarly, the

terms non-relevant and non-buggy are used interchangeably, as by non-relevant we mean

the source files which are not buggy or do not have a fix for that particular bug report.

3.1 The Learning-To-Rank Problem

As specified in the previous chapter, automated bug localization approaches, which ana-

lyze the content of bug reports, are based on IR. They use IR to identify the source files

which have the potential fix for a given bug report. The query of this IR model is a bug

report and the retrieved documents is a ranked list of source files, with the most relevant

source file at the top and the least relevant at the bottom of the list. Hence, a bug

localization problem is a Learning-To-Rank IR problem. Tie-Yan Liu [76] has analyzed

the existing algorithms for Learning-To-Rank problems and categorized them into three

groups: Pointwise Approach, Pairwise Approach, and Listwise Approach. Each of these

approaches are briefly explained below:

Pointwise Approach

In this case, the Learning-To-Rank problem is approximated by a regression problem,

i.e., given a bug report-source code pair, the model predicts a relatedness score. The

higher the score, the greater is the probability that the source file is the relevant buggy

file for a given bug report. The pointwise approach has been used by many researchers

in the area of bug localization. This approach has also been applied to find the semantic

relatedness between natural language sentences [113] and also to establish traceability of

software artifacts like Requirement and Design Documents [48].

Pairwise Approach

In this case, the Learning-To-Rank problem is approximated by a classification problem,

i.e., learning a binary classifier that can identify the buggy source files in a given set of
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source files for a given bug report. This approach has been used in bug localization more

recently [54, 126]. Each bug report corpus and source file corpus is merged into a sentence

and fed into a classification model. Hence the Learning-To-Rank problem is converted

into a binary classification problem, with linked and non-linked as the class labels. The

linked records will be the bug reports and the corresponding source files changed in order

to fix the issue in the bug report. The non-linked records will be all the combinations

of bug reports and source files barring the linked records. The experimental set up and

the bug report split used in training and testing the model varies from study to study

[54, 67].

Listwise Approach

In this case, the order of a list of source files will be considered for prediction. The ob-

jective here, is to produce a ranking model that minimizes the dissimilarity to rankings

in the training data. This approach learns a ranking function by taking individual lists

as instances and minimizes a loss function defined on the predicted list and the ground-

truth list [127]. To the best of our knowledge, this approach has never been used in bug

localization research.

It is important to note that, from a practical perspective, for a given bug report, we

are only interested in the capability of distinguishing it’s buggy source files from all the

other source files in the repository. Besides ranking buggy source files over the other

source files (non-buggy files), there is no further interest in the relationship among buggy

or non-buggy files. Therefore, the Pairwise approach is the most suitable one for bug

localization problem [75].

3.2 Deep Learning

The modern deep learning models and training methods originated from research in

Artificial Neural Networks (ANNs). ANNs are inspired from biological neural networks

that constitute the brain [115]. They were designed to approximate complex functions

of the brain by interconnecting large number of computational units in a multi-layered

structure. A DNN is an ANN with multiple hidden layers between the input and output
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Figure 3.1: Machine Learning vs. DNN Models

layers [27, 99]. The benefit of this complex structure of a DNN, is the ability to represent

the data in multiple layers. This is one of the key advantages of DNNs over traditional

machine learning models, in which humans have to explicitly extract features from the

data, before training the model (Figure 3.1).

ANNs automatically discover “good internal representations”, i.e., features that make

the learning easier and more accurate, through backpropagation [94]. Backpropagation

is an effective and a widely recognized method for training a DNN. It calculates the

gradient of the error function with respect to the neural network’s weights. Consider a

simple neuron as shown in Figure 3.2. A neuron maps the inputs x = {x1, . . . , xK} to a

scalar output y through a weight vector w = {w1, . . . , wK} and a non-linear function f .

The output y is given by:

y = f(
K∑
i=0

wixi) = f(wTx). (3.1)

An additional element which is equal to 1 is added to the input vector along with

an additional weight called the bias. The function f which provides the non-linearity
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Figure 3.2: A Single Neuron Figure 3.3: Simple Neural Network

between the input and output is called the activation function. Some common activation

functions are discussed in detail in the next section. Let us consider a logistic function

f as the activation function, which is given by:

f(x) = 1/(1 + ex). (3.2)

So y becomes,

y = 1/(1 + ew
T x). (3.3)

If we plot y, we get a smooth and differentiable curve bound between 0 and 1 (see Figure

3.7). The derivative of this function will be used when we learn the weight vector w

via Stochastic Gradient Descent (SGD). When we train a neural network, the ulitimate

goal is to learn the weights by minmizing an objective function. Traditionally, objective

functions measure the difference between the actual output t and the predicted output

f(wTx). If we use a squared loss function, then the objective function is given by:

E =
1

2
(t− y)2 =

1

2
(t− f(wTx))2. (3.4)

We use SGD to find weights w to minimize the above objective function. To do this,

we iteratively update the weight parameters in the direction of the gradient of the loss
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function until we reach a minimum. The gradient of E is given by:

∂E

∂wi

=
∂E

∂y
· ∂y
∂u
· ∂u
∂wi

= (y − t) · y(1− y) · xi. (3.5)

We now calculate the gradient of E using backpropagation for a simple neural network

shown in Figure 3.3. It consists of an input layer, output layer, and a hidden layer. The

input layer consists of the input vector x = {x1, . . . , xK}. The hidden layer consists of a

vector of N neurons h = {h1, . . . , hN}. The output layer consists of one neuron for every

element of the output vector y = {y1, . . . , yM}.
Each element in the input layer is connected to every neuron in the hidden layer, with

wki as the weight associated with the connection between the k-th input element and the

i-th hidden neuron. A similar connection exists between the hidden and output layers

with w′ij denoting the weight associated with the connection between the i-th hidden

neuron and the j-th output neuron. Intuitively, we can think of wki as the the (k, i)-th

entry in a K × N weight matrix W and similarly weight w′ij as the (i, j)-th entry in a

N ×M weight matrix W ′. The output of each neuron is simply the logistic function

applied to the weighted sum of the neuron’s inputs. For instance, the output of an

arbitrary neuron in the hidden layer hi is given by:

hi = f(ui) = f

(
K∑
k=1

wkixk

)
, (3.6)

and similarly output of an arbitrary output neuron yj is given by:

yj = f(u′j) = f

(
N∑
i=1

w′ijhi

)
. (3.7)

The objective function in this case will be same as equation 3.5, but will be summed

over all the elements in the output layer. It is given by:

E =
1

2

M∑
j=1

(yj − tj)2 . (3.8)

Unlike the previous case, we now need to construct update equations for both sets of

weights, i.e., the input-to-hidden layer weights wki and the hidden-to-output weights w′ij.
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For this, we need to compute the gradient of our objective function E with respect to wki

as well as the gradient with respect to w′ij. In order to compute ∂E
∂w′

ij
, we use the chain

rule in calculus. From the chain rule, we first take the derivative of E with respect to y′j.
Then we take the derivative of yj with respect to w′ij which needs yet another application

of the chain rule. The final equation obtained, after following the above steps is given

by:

∂E

∂wki

=
M∑
j=1

[(yj − tj) · yj (1− yj) · w′ij] · hi (1− hi) · xk. (3.9)

The above process is called backpropagation because we begin with the final output error

yj − tj for the output neuron j and this error gets propagated backwards throughout the

network in order to update the weights.

In the previous paragraph, we mentioned the gradient descent optimization. Gradient

descent minimizes an objective function parameterized by the model’s parameters, by

updating the parameters in the opposite direction of the gradient of the objective function

with respect to the parameters. There are many other optimization algorithms apart from

SGD (like Momentum, Adam, Adadelta, RMSProp, Adamax, Nadam, and AMSGrad) that

are used for optimizing DNNs, see [93] for details. In our study, we have used the Adam

optimization algorithm [62] for the CNN models. Adam stands for Adaptive Moment

Estimation. It is straightforward to implement and computationally efficient, with little

memory requirements. Adam is different from the classical SGD. SGD maintains a single

learning rate for all weight updates and the learning rate does not change during training,

whereas Adam computes individual adaptive learning rates for different parameters from

estimates of first and second moments of the gradients. Adam optimization has proved

to be effective and well suited for learning problems that are large in terms of data. This

is supported by the fact that most of the recent deep learning researchers [54, 126, 132]

use this optimizer when training on large datasets.

As mentioned in Chapter 2, deep learning has been widely used for natural language

tasks like parsing, sentiment analysis, question answering and machine translation. They

have also been applied to solve software engineering problems like code suggestion, detect

code snippets of certain patterns and most importantly bug localization. The need for

deep learning came from the limitation of traditional Feedforward Networks or Multi-

Layer Perceptrons (MLPs) whose network parameters grew extremely large as the width
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and the depth of the network increased. DNNs on the other hand, can model complex

non-linear relationships. Their architecture generates compositional models where an

object is expressed as a layered composition of primitives [112]. In case of text, the

object is a sentence encoded using Word2Vec [81], GloVe word embeddings, or One-Hot

Encoding [101]. A detailed description of each of these encodings is given in Section 3.3.2.

The extra layers in a DNN enable composition of features from lower layers, potentially

modeling complex data with fewer units than a similarly performing shallow network

[27].

Different DNN architectures have been proposed to target various types of practical

problems. CNNs are one type of DNNs, which are widely used in image recognition and

video analysis tasks. RNNs on the other hand, are widely used for NLP-related tasks as

they proved to be a good fit for sequential data like NLP, audio data or temporal data.

LSTMs [51], are a variant of RNNs and have been proposed to address the vanishing

gradient problem which is prominent in the standard RNN models. Vanishing or Ex-

ploding gradients is a phenomenon that occurs when the network degrades when long

dependencies exist between the sequences. LSTMs include a memory cell that can main-

tain information in memory for long periods of time. This architecture of LSTM enables

it to tackle the vanishing gradient problem.

Many issues arise when DNNs are naively trained, two of the common issues being:

overfitting and computation time. Overfitting occurs when a machine learning algorithm

learns even the noise in the data. This occurs when the model or the algorithm fits the

data too well. In such cases the model shows low bias but high variance. Overfitting

occurs in DNNs when they try to model rare dependencies in the training data through

the multiple added layers of abstraction.

There are many ways to avoid overfitting of training data, the most significant be-

ing: regularization, dropout and k-fold cross validation. Regularization methods, such as

Ivakhnenko’s unit pruning [55], weight decay (L1 regularization), sparsity (L2 regulariza-

tion), can be applied during training [26].

Alternatively, another simple but effective method to avoid overfitting is dropout

regularization, where units from the hidden layers are omitted randomly during training

[40, 108]. Dropout does this by setting the activation of these hidden units to zero. This

prevents the co-adaption of feature detectors, as the remaining units are not influenced

anymore by the dropped-out units. k-fold cross validation is yet another method which
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is widely used not just in case of DNNs, but with any machine learning algorithm to

avoid overfitting. In k-fold cross validation, we divide the data randomly in k distinct

folds. We then train the model on k − 1 folds and then test the model on the remaining

fold. This process is repeated k times, each time selecting a different fold as the test fold.

During each iteration we calculate the performance of the model on the test fold. The

final performance of the model is the average performance over the k testing folds. The

pseudo code for k-fold cross validation is given below [86]:

1. Let the initial input data X be of n × D dimensions and output Y be of Y × 1

dimensions.

2. Let the final estimated performance of the model be Pk−fold

3. Divide the input data set [1, 2, 3, . . . , n] into k folds, F1, F2, F3,. . . , Fk such that

F1 ∪ F2 ∪ F3,. . .∪Fk and Fi ∩ Fj = Ø for i 6= j ∈ [1, 2, 3, . . . , k]

4. For all i = 1 to k

(a) Test Data Indices = Ite = Fi

(b) Train Data Indices = Itr = [1, 2, 3, . . . , n] \ Fi

(c) Train the model Fi using X(Itr) and Y (Itr)

(d) Calculate performance Pi of Fi using X(Ite) and Y (Ite)

5. Performance Pk−fold =

∑k
i=1 Pi

k

The second most commonly faced issue with DNNs is the computation time. The use

of the right set of hyper-parameters that fit the training data, such as the size (number of

layers and number of units per layer), the learning rate, and initial weights are very cru-

cial in training a DNN as the performance of the model depends on it. At the same time

searching through the entire configuration space for the optimal set of parameters, is not

feasible due to the cost in time and computational resources. Certain workarounds like

using mini-batches of training data where the gradient is computed on a mini-batch at

once, rather than on individual examples, do speed up the computations. But, the most

commonly used workaround which gives a significant speedup is using GPU-Accelerated
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Figure 3.4: GPU-Accelerated Computing

Computing. Pioneered by NVIDIA in 2007, GPU-accelerated computing is the use of

a graphics processing unit (GPU) together with a CPU to accelerate DNNs [9]. Unlike

a CPU, which consists of a few cores optimized for sequential serial processing, a GPU

has a massively parallel architecture consisting of thousands of smaller cores designed for

handling parallel workloads. GPU-Accelerated computing offloads the compute-intensive

portions of the training process to the GPU, while the remaining process still runs on

the CPU. Figure 3.2 depicts how GPU acceleration works. Most of the DNN libraries

(like Tensorflow [16], Keras [17], Caffe [3], and Theano [18]) support multi-GPU imple-

mentation, allowing users to significantly speed up the entire training process. As our

study involves empirically examining different CNN models with varying sample sizes

and text preprocessing techniques on different large open source projects, we have used

GPU-Accelerated computing to speed up our training process.

3.2.1 Deep Learning For Bug Localization

Given the fact that RNNs make more intuitive sense in dealing with NLP-related prob-

lems, it seems that CNNs would not do well on textual data. But this is not the case in

reality. CNNs have been proved to perform well on NLP tasks like Sentiment Analysis

[132], Spam Detection [125], and Topic Categorization[56]. A recent study in bug lo-
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calization has compared the performance of CNN and LSTM models using the Pairwise

Learning-To-Rank approach and the results were encouraging [126]. The corpus of a bug

report and that of a source file are combined into a single sentence and encoded using

One-Hot Encoding. This encoded data is used to train the classification model. The

architecture of the CNN model was adapted from [132]. As for the LSTM model, the

architecture has been adapted from [51]. After training the CNN and LSTM models,

the authors concluded that LSTMs performed better than the CNN models, but the

difference in performance was not significant. This can be attributed to the fact that

bug localization datasets do not contain pure natural language tokens but rather a mix

of natural language tokens, domain-related tokens, and other tokens (like source code

identifiers), which are neither natural language nor domain-related. This shows that the

sequence, i.e., the order of tokens in a sentence does not have a significant effect on the

performance of the model in bug localization. Hence losing information about locality

(which is prevalent in a CNN model) does not deteriorate the performance of the model

significantly. This makes the CNN models worth exploring on bug localization data.

Another advantage of using CNNs over LSTMs for bug localization is the memory

and speed. CNNs are faster and easier to train than LSTMs. Also, LSTMs need more

computation power and Random Access Memory (RAM) compared to a CNN. Taking

into account the above stated points, we have explored the CNN models on different

open source bug localization datasets, to empirically examine them. A more detailed

explanation about CNNs and the architecture of the CNN model used in our study, is

given in the next section.

3.3 Convolution Neural Nets (CNNs)

In this section we discuss basic concepts of CNNs.

CNNs are responsible for a major breakthrough in the field of Image Classification

[65]. They form the core of most of the Computer Vision systems in today’s world,

from Facebook’s automatic photo tagging to Waymo’s self-driving cars. As mentioned in

the previous section, recent research has shown that CNNs perform well on NLP-related

tasks. A CNN consists of an input and an output layer, as well as multiple hidden layers.

The hidden layers of a CNN typically consist of convolutional layers, pooling layers, and
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fully connected layers [71].

In simplest terms, convolution can be visualized as a sliding window function applied

to a matrix. Figures 3.5 illustrates convolution operations on an image with a 3 × 3

filter. In this case, the input is an image and each entry in the input matrix corresponds

to a pixel (0 for black and 1 for white). The sliding window is called the kernel, filter

or feature detector. Each of the values in the filter are multiplied element-wise with the

original matrix. The result is then summed up to get the final value. The same operation

is repeated with each element by sliding the filter over the whole matrix to get the result

of the full convolution.

CNNs consist of several layers of convolutions with non-linear activation functions like

Rectified Linear Units (ReLU) or Tanh applied to the convolution results. Unlike the

traditional fully connected networks, where we connect each input neuron to each output

neuron in the next layer, in CNNs each region of the input is connected to a neuron in

the output. These local connections are a result of convolutions applied to the input to

compute the output. Each layer in a CNN consists of hundreds or even thousands of

filters of varied sizes. By training a CNN, we enable it to learn the values of its filters

based on the task that we want to accomplish. For instance, in Image Classification a

CNN may learn to detect edges from raw pixels in the first layer and then use the edges

to detect simple shapes in the second layer and then use the shapes to learn higher-level

features. The last layer in such cases is a classifier that uses the higher level features.

Figure 3.6 shows the architecture of a CNN for Image Classification. Another critical

aspect of a CNN is the pooling layer. These layers are applied after the convolution layers.

They subsample the input from convolution layer and the most common method used

for this is max pooling. It computes the global maximum over feature maps, resulting

into a feature vector. There are a couple of reasons why pooling is done. The first is that

pooling provides a fixed output matrix, which is required for classifying the data (image

or text). In case of textual data, pooling allows us to use variably sized sentences and

variable sized filters and still get an output of similar dimensions every time, to feed into

a classifier. The second reason is that pooling reduces the output dimensionality, but

at the same time keeps the required important features. This is more relevant in cases

where we encode our input sentences by simply converting each word in a sentence to its

index in the dictionary. This results in large dimensional matrices which are very sparse.
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Figure 3.5: Convolutions With 3 × 3 Filter. The red-coloured matrices are the inputs,
with the kernel/filter shaded in yellow. The subscripts in the yellow region are the values
of the kernel. The result of convolution in each step is shown to the right of the input
matrix in green.
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Figure 3.6: Image Classification Using CNN [4]

Pooling in such cases greatly helps in reducing the dimensions and yet, keep the

salient features in the data. A detailed explanation of the different pooling strategies is

given in the next section.

Local Invariance is another important aspect of CNN. Local Invariance means that

the information about the exact occurrence of a feature is lost. This occurs because

of the max pooling operation. In image-related applications, this does not affect the

performance of the model. For example, consider the case of Image Classification where

the task is to identify the image of a dog. We do not care where the dog occurs in the

image as long as CNN can identify the image as that of a dog. The same may apply even

for some types of textual corpora. For example, for a corpus which does not consist of

natural language words/tokens, i.e., where the order of word in a sentence is not essential,

local invariance does not affect the model. This is not the case for corpora which consist

of pure natural language words/tokens where the occurrence of a word in a particular

sentence is crucial. Hence in such cases, we lose global information about locality, but the

filters capture local information. Despite of this, CNNs applied to pure natural language

data perform quite well. We will discuss more about how CNNs perform on textual data

in the next section.

Compositionality is yet another important feature of a CNN. As explained earlier,

CNNs are feedforward neural networks, where each neuron in a layer receives input from

the neurons in the previous layer. These local receptive fields, allow CNN to recog-

nize more and more complex patterns in a hierarchical way, by combining lower-level,
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elementary features into higher-level features. This property is called Compositionality.

Filter Size is another tunable hyper-parameter of a CNN model. It refers to the

dimensions of the kernel or filter used for the convolution operation in the model. The

shaded yellow region of the input “Image” matrix in Figure 3.5 is a convolution filter

with size 3 × 3. In simple terms, the filter size tells us the number of neighbours in the

input matrix that can be seen by each neuron, when processing the current layer. If the

filter size is 3×3, that means each neuron can see towards it left, right, top, down, upper

left, upper right, lower left, and lower right, i.e., a total of 8 neighbour’s information.

Typically in NLP-related applications, filters that slide over the full rows of the input

matrix are used. This means that the width of the filters is kept similar to the width of

the input matrix.

Number Of Filters is another hyper-parameter which gives the filter count to be used

in each filter region. Naively, one can think of filters as feature detectors. The significance

of the number of feature detectors intuitively tells us the number of features that the

network can potentially learn. Also, each filter generates a feature map, which in turn

allow the network to learn the explanatory factors within the data. Hence, the more the

number of filters, the more will be the features that will be exposed to the model. But

this does not mean that increasing the filter count is always beneficial to the model, as

it might result in overfitting of the training data after hitting a saturation point. We

discuss more on this in the next section.

The Stride Size defines by how much we want to shift the filter at each stride. Stride

Size of 1 is typically used, but larger stride leads to a fewer applications of the filter and

hence a smaller output size.

Activation Function (or non-linearity) takes the the result of the convolutions and

performs a certain fixed mathematical operation on it. Some of the commonly used

activation functions are Sigmoid, Tanh,and ReLU. Each of these activation functions are

explained in detail below.

• Sigmoid: The Sigmoid non-linearity is shown in Figure 3.7. It takes a real-valued

number and “pushes” it into a value between 0 and 1. This means that large neg-

ative numbers become 0 and large positive numbers become 1. It has the following

mathematical form:

σ(x) = 1/(1 + e−x). (3.10)
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• Tanh: Figure 3.8 shows a Tanh Function. This non-linear function “squashes” a

real-valued number to the range [-1, 1]. Unike the Sigmoid function, the output

of Tanh is zero-centered. Therefore, in practice the Tanh non-linearity is always

preferred to the Sigmoid non-linearity. It is defined as:

tanh(x) = 2σ(2x)− 1. (3.11)

• ReLU: The Rectified Linear Unit (ReLU) is a very popular non-linear activation

function which is being frequently used in the last few years. Figure 3.9 shows

the ReLU function. In ReLU, the activation is simply thresholds at zero. The

advantage of using ReLU over Tanh and Sigmoid functions is the computation cost.

Tanh/Sigmoid neurons involve expensive operations (like exponential function),

whereas the ReLU can be implemented by thresholding a matrix of activations at

zero. Yet another advantage is that, ReLU was found to accelerate the convergence

of SGD compared to the other two functions [65]. It is given by:

r(x) = max(0, x). (3.12)

• Softplus: The Softplus function is a newer function compared to Sigmoid and Tanh

functions, and was first introduced by Dugas et al. [42] in 2001. Figure 3.10

illustrates the Softplus function. Unlike Sigmoid and Tanh functions, which have

upper and lower limits, a Softplus function’s output is in the range (0,∞), i.e., it

has a lower limit but no upper limit. It is given by:

s(x) = ln(1 + ex). (3.13)

3.3.1 On Textual Data

As discussed in Section 2.2, recent research has shown that CNNs perform well on textual

data for many text-related tasks like sentiment analysis, text classification, question

answering, and machine translation. This section discusses in detail how CNNs process

the textual data.
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Figure 3.10: Softplus Function
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As explained above, Local Invariance and Compositionality are two important features

of CNNs. CNNs perform well on textual data due to these two features. In text, n-grams

can be constructed from lower-order features and ordering is crucial locally but not at the

document or record level. For example, in trying to classify a movie review as positive

or negative, the location of “not bad, quite good” in the sentence is not important. We

need to only capture local order, i.e., the fact that “not” precedes bad and so forth.

It is important to note that CNNs are not able to encode dependencies which are long

in range. This is the reason that for tasks like language modelling where long-range

dependencies matter, RNN (more specifically LSTM) perform better.

In case of textual data, the input to a CNN would be sentences or documents repre-

sented as a matrix. Each row of the matrix represents a token (which is typically a word,

though it could also be a character) in a sentence. This means each row is a vector that

represents a word. As mentioned in the previous sections, these vectors can be encoded

using Word2Vec or GloVe word embeddings. These vectors could also be One-Hot vec-

tors that index the word into a vocabulary. For example, if we have a 100 word sentence

using a 50-dimensional embedding, the input matrix would be a 100 × 50 matrix. In

case of One-Hot encoding, if the dictionary size is 70, then the input matrix would be a

100 × 70 matrix. In image-related applications, the filters slide over local patches of an

image, but in case of text, filters typically slide over the full rows of the matrix (words).

It means that when using CNNs for NLP-related tasks, the width of the filter is kept

similar to the width of the input matrix [132]. This is typically the case when the higher

One-Hot dimensionality of the input data is reduced beforehand to a lower dimension

using Word2Vec or GloVe encodings.

We now discuss the architecture of the CNN model used in our study. Figure 3.11

[135] illustrates the CNN model used in our study. The architecture of this model has

been proposed by Yoon Kim in [132] (Figure 3.12). In Figure 3.11, d is the length of the

dictionary, i.e., the number of unique words/tokens in the entire corpus of our dataset.

Hence the dimensions of the input sentence matrix will be equal to n× d, where n is the

maximum sentence length and d is the dictionary size. It is important to note that we

pad all the sentences with a single unique token to make the sentence length of all the

documents equal to n. There are three filter regions of size 2, 3 and 4, each of which have

2 filters. Each filter performs convolution on the input sentence matrix and generates

feature maps of variable length, i.e., 2 feature maps for each region size. After this step,
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Figure 3.11: Architecture Of The CNN Model [135]
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Figure 3.12: CNN For Sentiment Analysis [132]

1-max pooling is applied to each of these feature maps, which results in 6 univariate

vectors. These vectors are then combined to form a single feature vector which is then

fed into a sigmoid layer. The sigmoid layer uses the feature vector to produce a real-

valued output which gives the degree of likeliness that the documents belongs to the

positive class (given that this is a binary classification problem). As mentioned in the

previous section, convolutions and pooling operations lose information about the local

order of words, but in spite of this, the network in Figure 3.11 performs well compared

to other machine learning models like Support Vector Machines for sentiment analysis

task on the Movie Review dataset [87].

The only change we made to the original architecture of Kim, is the use of a sigmoid

function instead of softmax function. The sigmoid layer generates a real-valued score

which gives the degree of likeliness that a particular document belongs to the positive

class. As explained in the first section of this chapter, we are using the Pairwise Learning-

To-Rank approach to localize bugs. Hence in order to convert the binary classification

model to a Learning-To-Rank problem, we need a score which helps in ranking the

documents. In this case, for a given bug report, we rank its corresponding source files

based on this score. The higher the score, the higher is the degree of likeliness that the

particular source file is linked to a bug report.
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3.3.2 Effect Of Hyper-Parameters

We now briefly discuss how each of the hyper-parameters affect the performance of a

CNN model for text classification. Zhang et al. [135] performed a sensitivity analysis

using the network shown in Figure 3.11, on nine sentence classification datasets which

are: the Movie Reviews dataset (MR) [87], Stanford Sentiment Treebank dataset (SST-

1) [106], SST-2 dataset (derived from SST-1, but pared to make it binary classification

problem), Subjectivity dataset (Subj) [87], Question classification dataset (TREC) [74],

Customer review dataset (CR) [53], Opinion polarity dataset (MPQA) [122], Opinosis

dataset (Opi) [46], and Irony dataset [117].

Input Word Vectors

In order to train a CNN model on textual data, we need to convert the words in the

sentences or documents into some set of word vectors. This is possible by encoding

the words. The kind of encoding applied to the input sentences has an impact on the

performance of the model. A brief explanation of these word encodings (also called word

embeddings) is given below.

One-Hot Encoding : This is a straightforward way to convert the words into numeric

vectors. Each word is converted into a sparse representation with only one element of the

vector set to 1, the rest being 0. For each token, its index in the vocabulary dictionary

defines the position of the one-hot element in the resultant vector. For example, consider

a dataset with V as the vocabulary, S as a sentence in the dataset and H as the resulting

One-Hot encoded vector.

V = {"bug", "defective", "file", "is", "this"}

S = "This file is defective"

H = [00001 00100 00010 01000]

this file is defective

Word2Vec Encoding : This encoding maps the high dimensional One-Hot style of

representation of words to a low dimensional vector. The Word2Vec model was first

proposed by Mikolov in [81]. It is a shallow, two-layer neural networks that are trained
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to reconstruct linguistic contexts of words. This encoding proved very effective in all

NLP-related tasks [132]. There are two different approaches for training a Word2Vec

model: Skip-gram and Continuous Bag Of Words(CBOW). Skip-gram involves taking

an input word and then attempting to estimate the probability of other words appearing

close to that word. CBOW takes the context words as input and tries to find the single

word that has the highest probability of fitting that context.

GloVe Encoding : This encoding was proposed by Pennington et al. [88]. GloVe

stands for Global Vectors Encoding. This model is trained by aggregating global word-

word co-occurrence statistics from a corpus, and the resulting representations showcase

interesting linear substructures of the word vector space. GloVe tries to capture the

counts of overall statistics of how often a word appears in the context of another word

whereas Word2Vec captures co-occurrences, one window at a time.

For natural language data, Word2Vec or GloVe encoding proves better than One-Hot

encoding, however different representations perform better for different tasks [135]. For

natural language sentence classification, One-Hot encoding performs poorly compared

to the other two encodings. However this may not be the case if the training data is

very large [135]. Nevertheless, as some prior works like Kim et al. [132] on sentence

classification using CNN showed that Word2Vec gives the best performance compared to

the other form of encodings, we first experimented with Word2Vec encoding on our data.

The resultant models performed poorly, which could be due to the fact that our corpus

has more domain-related words/tokens than natural language words or tokens. We then

experimented on One-Hot encoding of the corpus, which proved to be performing better

than the Word2Vec encoded models. So we One-Hot encode the data, before feeding

them into the CNN model.

Filter Region Size

The filter region size has some effect on the performance of the CNN models. Researchers

[135] have experimented on the Movie Reviews dataset [87] with multiple sizes for the

filter region. Table 3.1 shows the accuracy of the CNN model with multiple region size.

The change in accuracy can be seen with change in the filter region size, with filters (7,

7, 7, 7) giving the maximum accuracy in this case. This shows that the filter region size

is a hyper-parameter which has an effect on the performance and hence may need to be
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Multiple Region Size Accuracy(%)
(7) 81.65

(3,4,5) 81.24
(4,5,6) 81.28
(5,6,7) 81.57
(7,8,9) 81.69

(10,11,12) 81.52
(11,12,13) 81.53
(3,4,5,6) 81.24
(6,7,8,9) 81.62
(7,7,7) 81.63

(7,7,7,7) 81.73

Table 3.1: Effect of filter region size with several region sizes on the Movie Reviews
dataset [87, 135]

tuned when training a CNN model. In this study, we use four filters with region size of

(2, 3, 4, 5). This particular region size proved to be better compared to any other region

size, for training a CNN model on bug localization data [54].

Number Of Feature Maps

The best number of feature maps depends on the type of dataset. However, the exper-

iments made in [135] show that increasing the number of maps beyond 600 yields very

marginal returns, and often deteriorates performance which is due to the model overfit-

ting the training data. This means that when tuning this parameter, a search over a

space of 100 to 600 feature maps is recommended. Given the fact that increasing feature

maps increases the training time and may also give a worse performance, it is more pru-

dent to tune over the range mentioned above. In this study, we use 100 feature maps.

This particular number of feature maps, has been used widely in previous CNN models

for sentiment classification [132] and also in bug localization studies [54, 126].

Activation Function

Zhang et al. [135] experimented on various activation functions like ReLU, Tanh, and

Softplus. They have also considered a case, where they do not use any activation function.
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Dataset Tanh Softplus Iden ReLU
MR 81.28 80.58 81.30 81.16

SST-1 47.02 46.95 46.73 47.13
SST-2 85.43 84.61 85.26 85.31
Subj 93.15 92.43 93.11 93.13

TREC 91.18 91.05 91.11 91.54
CR 84.28 83.67 84.55 83.83

MPQA 89.48 89.62 89.57 89.35
Opi 89.35 64.77 65.32 65.02

Irony 67.62 66.20 66.77 66.46

Table 3.2: Performance of different activation functions [135].

They denote this by the identity function, “Iden”. The performance in terms of accuracy,

of different activation functions, on all the datasets used in the study is shown in Table

3.2. It can be observed from the results, that for 8 out of 9 datasets, the best activation

functions is either Iden or ReLU or Tanh. For some datasets, the performance of Tanh is

better than the other activation functions. This can be due to its zero centering property

[135]. As for ReLU, it is being more widely used recently by deep learning researchers,

due to its non-saturating form compared to a Sigmoid activation, and also because it has

been known to accelerate the convergence of SGD [65]. Another important observation,

that can be made from the results in Table 3.1 is that for some datasets, not applying any

activation function (i.e., Iden) gives better results. This shows that in some cases, linear

transformations capture the correlation between the input word vectors and the output

label better than non-linear transformations, though this cannot be said for a network

with multiple layers [135]. In our study, we have used ReLU activation function, as it

has been show to give good performance in previous bug localization studies [54, 126].

Pooling strategy

There are many pooling strategies that can be applied on a CNN model. Zhang et al.[135]

have experimented on each of the below pooling strategies.

• 1-Max Pooling : 1-Max pooling computes the global maximum over feature maps

resulting into a feature vector of length 1 for each filter.

• Local Region Pooling : This pooling strategy pools over small equal sized local
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regions instead of the entire feature map. This kind of pooling strategy was first

applied by Boureau et al. [31]. Every small local region of the feature map generates

a single number from pooling. These numbers are then concatenated to form a

feature vector for one feature map.

• k-Max Pooling : This pooling strategy is similar to the one applied by Kalchbrenner

et al. in [59]. In this method, the maximum k values are computed from the entire

feature map, and the relative order of these values is preserved.

• Average Pooling : In this pooling strategy, instead of the maximum, the average of

the regions is computed.

The analysis done by Zhang et al. [135] on the above pooling strategies showed that

1-max pooling consistently performed better than the other strategies on the sentence

classification task. This can be attributed to the fact, that the location of predictive con-

texts does not matter, and certain n-grams in the sentence can provide more information

to the model on their own, rather than when considered jointly with the entire sentence.

In our study, 1-max pooling strategy was employed.

3.4 SimpleLogistic

As explained in the introduction section of this chapter, the goal of our study is to

examine the effectiveness of a deep learning-based model in meeting the expectations of

the practitioner and also to compare its performance with a traditional machine learning

model. In other words, we are also comparing a non-linear learning model like CNN with

a linear generalized logistic model called SimpleLogistic. We trained the SimpleLogistic

model on the same set of datasets and the experimental setup, that has been used to

train the CNN models, to make a fair comparison between the two.

The SimpleLogistic model was proposed by Landwehr et al. [69]. It is a standalone

logistic regression model with in-built attribute selection. Landwehr et al. built these

regression models using the LogitBoost [45] algorithm which selects a subset of attributes

from the data. The experiments conducted by Landweher et al. proved that these models

are compact and perform better than the other state-of-the-art classifiers.
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Logistic regression (LR) models the posterior class probabilities Pr(G = j|X = x) for

the J classes via linear functions in x, where x is an independent variable. It ensures

that they sum up to one and remain in the range of [0, 1]. The model is of the form

Pr(G = j|X = x) =
eFj(x)∑J
k=1 e

Fk(x)
, (3.14)

where Fj(x) = βT
j · x. The estimates for βj is found by approaching the maximum

likelihood solution iteratively through numeric optimization algorithms.

LogitBoost is one such iterative algorithm. Friedman et al. [45] proposed this algo-

rithm for fitting additive logistic regression models by maximum likelihood. The pseudo

code for the LogitBoost algorithm [45] for J classes is given below:

1. Start with weights wij = 1/n, i = 1, . . . , n, j = 1, . . . , J , Fj(x) = 0 and pj(x) = 1/J

∀j.

2. Repeat for m = 1 . . .M :

(a) Repeat for j = 1 . . . J :

i. Compute working responses and weights in the jth class

zij =
y∗ij − pj(xi)

pj(xi)(1− pj(xi))
, (3.15)

wij = pj(xi)(1− pj(xi)). (3.16)

ii. Fit the function fmj(x) by a weighted least-squares regression of zij to xi

with weights wij.

(b) Set fmj(x)← J−1
J

(fmj(x)− 1
J

∑J
k=1 fmk(x)), Fj(x)← Fj(x) + fmj(x).

(c) Update

pj(x) =
eFj(x)∑J
k=1 e

Fk(x)
. (3.17)

3. Output the classifier argmaxj Fj(x).
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yi is the class label of example xi, y
∗
ij gives the observed class membership probabilities

for instance xi and is defined as:

y∗ij =

1, if yi = j

0, if yi 6= j
. (3.18)

The pj(x) are the estimates of the class probabilities for an instance x given by the

model fit so far. LogitBoost performs forward stage-wise fitting, i.e., in every iteration,

it computes the response variables zij that encode the error of the currently fit model on

the training examples and then tries to improve the model by adding a function fmj to

the committee Fj, fit to the response by weighted least-squared error.

If we constrain fmj to be linear in x, and continue to run the algorithm until con-

vergence, then we get a linear logistic regression model. But, if we further constrain fmj

to be a linear function of only the attribute that results in a least squared error, then

we arrive at the SimpleLogistic algorithm that performs automatic attribute selection.

In SimpleLogistic model we use cross-validation to determine the best number of Logit-

Boost iterations. In this process, only those attributes that improve the performance of

the model on unseen instances are included.

3.5 Evaluation Metrics

The following metrics have been widely used for evaluating the performance of the Bug-

Localization models [64, 67, 96, 130, 137]. Also, as mentioned earlier, we are trying to

solve the Learning-To-Rank bug localization problem through classification approach. So

we also include the metrics used to evaluate the performance of our classifier, like binary

classification accuracy, cross entropy loss, and AUC below.

Mean Average Precision (MAP):

MAP provides a single measure of quality of IR, when a query may have multiple relevant

documents [100] (like in the case of bug localization, where a single bug report can have

multiple relevant files). The IR model for bug localization will return a list of source files

for a given bug report. An effective algorithm would return all the valid links close to
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the top of the list [48]. MAP is computed as follows:

MAP =

n2∑
i=1

n1∑
j=1

Prec(j) ∗ t(j)
Ni

, (3.19)

where n1, n2 are the number of candidate source files and retrieved bug reports, respec-

tively, and Ni is the number of relevant files to a bug report i, and t(j) indicates whether

the instance in rank j is relevant or not (buggy or non-buggy). Prec(j) is the precision

at the given cut-off rank j defined as

Prec(j) =
Q(j)

j
, (3.20)

where Q(j) is the number of relevant source files in the top j positions.

Mean Reciprocal Rank (MRR):

MRR is a statistic measure for evaluating an IR model that returns a list of possible

documents (source files) to a sample of queries (bug reports), ordered by probability of

relatedness/correctness. The reciprocal rank of a query response is the multiplicative

inverse of its rank of the first correctly retrieved document: 1 for the first place, 1/2 for

the second place, 1/3 for the third place and so on. MRR is the average of the reciprocal

ranks of results for a sample of queries Q and is given by [91, 116]:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
. (3.21)

It is important to note that, unlike the MAP metric which considers all the relevant files

in the retrieved list, MRR considers only the rank of the first relevant source file. The

other relevant files in the list are ignored.

Top-k Rank:

It is the number of bugs whose relevant source files are ranked in the top k of the returned

results. Given a bug report, if the top query results contain at least one source file that

is relevant(buggy) to the bug report, then the particular bug is considered to be located.
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The percentage of all such located bugs gives the Top-k Rank. The higher the Top-k

Rank, the better is the performance of the bug localization model.

Binary Classification Accuracy:

Accuracy is one of the metrics used to evaluate the performance of a classification model.

Accuracy is given by:

Accuracy =
Number of correct predictions

Total number of predictions
(3.22)

More specifically for binary classification it is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
, (3.23)

where TP stands for True Positives, TN – for True Negatives, FP – for False Positives,

and FN – for False Negatives.

In the bug localization context,

• TP = combinations of bug report and source code files, which are correctly classified

by the model as ‘linked’ records.

• TN = combinations of bug report and source code files, which are correctly classified

as ‘not-linked’ records by the model.

• FP = combinations of bug report and source code files, which are wrongly classified

as ‘linked’ records by the model.

• FN = combinations of bug report and source code files, which are wrongly classified

as ‘not-linked’ records by the model.

Though we use accuracy as a metric to evaluate our model, it is alone not sufficient

to give a complete picture of the model’s performance. This is especially for cases where

we have an imbalanced dataset. Given that bug localization datasets are highly imbal-

anced (negative samples higher than positive samples), accuracy alone is not sufficient to

evaluate the performance of the model. It is for this reason we also use the AUC metric,

which is explained in detail below.
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Area Under Curve (AUC):

AUC is the area under the Receiver Operating Characteristic Curve (ROC), which is a

graphical plot that illustrates the diagnostic ability of a binary classifier system as its

discrimination threshold is varied. AUC values lie between 0.5 and 1, where 0.5 denotes

a bad classifier and 1 denotes an excellent classifier. AUC is not specific to the bug

localization problem. It is used to measure the performance of any classification model,

trained on imbalanced datasets. Bug localization is an imbalanced learning problem, as

a particular bug report will have only few relevant files (positive instances) but can have

many non-relevant source files (negative instances). The higher the AUC, the better is

the ability of the model to identify the relevant files from all the other source files in the

repository.

Cross Entropy Loss:

Cross entropy loss or log loss measures the performance of a classifier which outputs a

probability score in the range [0, 1]. Log loss increases as the predicted probability of

a sample differs from the actual label. For instance, if the model predicts a probability

of .05 when the actual observation label is 1, then this would results in a high loss

value. A perfect classifier will give a log loss of 0. Log loss penalizes the model heavily

for predictions that are predicted with high confidence but are actually incorrect. For

binary classification, the log loss is given by:

L = −[y log(p) + (1− y) log(1− p)], (3.24)

where y is a binary indicator (0 or 1) which gives the actual class label of a sample and

p is the model’s predicted probability that a sample belongs to a class.
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Evaluation

In this chapter, we discuss the various experiments carried out in this study, followed by

an in-depth analysis of our findings. Section 4.1 consists of the data extraction process for

the five open source software projects used in the study. Next, we give some descriptive

statistics and a brief analysis on the extracted data in Section 4.2. Section 4.3 consists

of steps followed to preprocess the data and build the traceability matrix. In Section 4.4,

we mention the experimental set up and the hyperparameters used to train the CNN and

SimpleLogistic models. In Section 4.5, we give the results of our experiments on CNN

and SimpleLogistic models on all the datasets. In Section 4.6, we address the research

questions stated in Chapter 1 along with an adequate explanation for each. We conclude

this chapter with the threats to validity in Section 4.7.

4.1 Data Extraction

In this study, we experimented on five open source benchmark datasets. The bug reports

and bug-commit mappings are publicly available1. We extracted the actual source files

based on the bug-commit mapping from the Git Hub [10] repository of each project.

Table 4.1 contains the time interval between which the bug reports have been created

and also the number of bug reports for each of the five projects. The bug reports for all

the projects are also available on the Bugzilla bug tracking system and the source files are

available in the Git Hub version control systems [5]. The datasets used in this study are

1http://dx.doi.org/10.6084/m9.figshare.951967
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Project Time Range Bug Reports
AspectJ 2002/03 - 2013/12 593
Tomcat 2002/07 - 2014/01 1056
SWT 2002/02 - 2014/01 4151

Eclipse 2001/10 - 2013/12 5262
JDT 2001/10 - 2014/01 6269

Table 4.1: The list of open source projects used in this study

all benchmark datasets which have been used widely in previous bug localization studies

[54, 60, 67, 68, 126, 137].

We now briefly describe each of the open source software projects used in this study.

AspectJ [14] is an aspect-oriented extension for the Java programming language. It is

available in Eclipse Foundation [8] open-source projects repository both as a stand-alone

as well as integrated into Eclipse. The Eclipse Foundation is an open source community

working to build a development platform consisting of the frameworks, tools and run-

times needed for “building, deploying and managing software across the lifecycle” [6].

Apache Tomcat [1], often referred to as Tomcat Server, is an open-source Java Servlet

Container developed by the Apache Software Foundation. The Standard Widget Toolkit

(SWT) [13] is a graphical widget toolkit for the Java platform. Eclipse Platform User

Interface [12] consists of several components, which provide the basic building blocks

for user interfaces built with Eclipse. The Java Development Tools (JDT) [7] project

provides the tool plug-ins that implement a Java Integrated Development Environment

(IDE) supporting the development of any Java application, including Eclipse plug-ins.

As mentioned earlier, the source files for each project have been extracted from their

respective GitHub repositories. A before-fix version of the source code package in the

git repository has to be checked out for each bug report. This will enable us to get the

actual version of the source file, before a fix has been made to it, to resolve the issue in

the bug report.

We now iterate over all the commits; and for each commit, we checkout the before-fix

version of the source code package. Then we find the difference between the before-fix

version and the current version of the source code. For example, consider AspectJ bug

423257. This bug was fixed at commit dd88d21. To check out the before-fix version
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Bug ID : 339286
Summary : Toolbars missing icons and show wrong menus.
Description : The toolbars for my stacked views were: missing icons, showing the wrong
drop-down menus (from others in the stack), showing multiple drop-down menus, missing
the min/max buttons ...

Figure 4.1: Sample Eclipse Bug Report

public class PartRenderingEngine implements IPresentationEngine {

private EventHandler trimHandler = new EventHandler()

{

public void handleEvent(Event event)

{ ...

MTrimmedWindow window =

(MTrimmedWindow) changedObj;

...

}

...

}

...

}

Figure 4.2: Code From PartRenderingEngine.java

of the source code package, we use the command git checkout dd88d21∼1 and then

we find the diff for all changes made. Instead of indexing all the source files again, we

index only the changed files, i.e., Added, Modified, or Deleted Java files between the two

commits. The shell scripts used for the above extraction are included in Appendix A.

The end result of the above extraction process will be the bug reports and their

corresponding buggy files. These buggy files can have one or more bug reports associated

with them. For extracting the content of all the other source files, we clone the current

git repository of the project and extract all the Java source files in it. We identify the

buggy files from the entire list of source files and label them as buggy. The rest of the

source files are labelled as non-buggy. Figure 4.1 shows a sample Eclipse bug report and
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Project Bug Reports Linked Records Non-Linked Records
AspectJ 593 2394 1,350,239
Tomcat 1056 2571 2,829,621
SWT 4151 8281 9,327,318

Eclipse 5262 10907 24,267,961
JDT 6269 16310 70,654,127

Table 4.2: Linked And Not-Linked Records

its buggy source file is shown in Figure 4.2.

Now that we have the buggy and also the non-buggy files, we create the traceability

matrix. We create an m × n Cartesian product of the list of all source files (both

buggy and non-buggy files) and bug reports. So if we have B bug reports and S source

files, we end up with a total of B × S records. We identify the linked or the relevant

records L in the B×S records, based on the bug-file mapping. The remaining records in

the traceability matrix after removing the linked records will be the non-linked records,

deemed NL. Thus, the number of non-linked records in the traceability matrix will be

NL = (B × S) − L. The linked records will be labelled as positive and the non-linked

records will be labelled as negative. Table 4.2 shows the linked and non-linked records

statistics for each project along with the number of bug reports.

4.2 Data Analysis

In order to address RQ5, we perform all our experiments on three variations of source

files. They are as follows.

• All Files : In this case, we consider all the source files and all the linked records in

the traceability matrix.

• Buggy Files : In this case, we consider only the source files which have at least one

bug report linked to it in the traceability matrix. Also, all the linked records in the

traceability matrix will be considered.

• Very Buggy Files : In this case, we reduce the set of buggy files, i.e., we consider

only the set of source files which have more than one bug linked to it in the trace-
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Project Bug Reports All Files Buggy Files Very Buggy Files
AspectJ 593 4439 2281 602
Tomcat 1056 2682 1041 437
SWT 4151 2249 1181 657

Eclipse 5262 4614 2868 1581
JDT 6269 11273 4610 1817

Table 4.3: Bug Reports And Source Files Statistics

ability matrix. The linked records in the traceability matrix, will also be reduced

accordingly, i.e., we keep only the linked records of those source files which have

more than one bug linked to them.

Table 4.3 shows the statistics for the datasets under study. Next, we analyze the

linked records in our traceability matrix, i.e., the bug reports and the source files linked

to them. Figure 4.3(a) shows the number of source files changed across the bug reports

in AspectJ. As observed from the bar plot, for the majority of the bug reports (about

65%), there is more than one source file mapped to the bug report. This shows that to

resolve an issue in a bug report, a developer will have to fix code in more than one source

file. The last bar shows that about 12% of bug reports have more than 7 source files

linked to them. Also, about 35% of bug reports have only 1 file mapped to them.

Figure 4.3(b) shows a bar plot for the number of bug reports associated with source

files in AspectJ. This histogram clearly shows that the highest number of source files

(more than 70%) are linked to not more than one bug report. The long tail of this

histogram indicates the presence of outliers in the data, i.e., certain files with large

number of bug reports associated with them. Figure 4.4(a) shows similar analysis on the

Tomcat dataset. In case of Tomcat, the majority of bug reports (about 65%) are linked

to one source file. Only about 5% of bug reports have more than 7 source files linked to

them.

Figure 4.4(b) shows the number of bug reports associated with source files in Tom-

cat. Similar to AspectJ, the majority of files (about 58%) are mapped to one bug report.

About 1% of files are linked to more than 15 bug reports. Also like AspectJ, the dis-

tribution is skewed with the long tails of the histogram indicating the outliers in the

dataset (i.e. certain files associated with large number of bug reports). Similar plots
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Figure 4.3: Analysis Of Linked Records - AspectJ

were obtained for the other three datasets - SWT, Eclipse, and JDT, and are included in

Appendix A. It can be observed from all the figures that the distributions for the number

of bug reports associated with files for all the five datasets are skewed with long tails

indicating the presence of outliers (source files with larger number of bug reports linked

to them).

It is important to note that all the datasets used in this study are highly imbalanced.

This can be observed from Table 4.3. The number of non-linked records, as explained in

Section 4.1, will be the product of source files and bug reports, with the linked records

deducted from the resultant product. The number of non-linked records is 500 - 12,000

times greater than the number of linked records. The performance of a neural network

classification model on a skewed (imbalanced) dataset tends to improve when the imbal-

ance is reduced [80]. We treat for imbalance by assigning larger weights to the positive

class, i.e., we penalize the models with a higher cost for every misclassification of a pos-

itive sample. Also, in order to examine how reducing sample size to treat imbalance

affects the model, we experiment on the three variations of source files shown in Table

4.2.
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Figure 4.4: Analysis Of Linked Records - Tomcat

4.3 Data Preprocessing

In this section, we discuss about the steps involved in preparing our data before training

our models. After we extract the data as per the procedure stated in the previous section,

we preprocess the corpus of bug reports (which is obtained from combining the summary

and the description fields of the bug report (see Figure 4.1)) and the corpus of the source

files. The following are the preprocessing steps:

• Punctuation and numbers: All punctuation symbols and numbers are removed from

the bug report and source file corpus.

• Java-related keywords, comments and package names: We also removed all java

language-related keywords and also the comments, copyright information, package

names from the source file corpus.

• Camel case: Camel case is applied to all the words in bug report and source file

corpus. For example the word ‘aspectView’ is split into ‘aspect’ and ‘View’; the

word ‘WorkBench’ is split into ‘Work’ and ‘Bench’.
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Project Dictionary Size
AspectJ 5391
Tomcat 6449
SWT 10417

Eclipse 7583
JDT 8068

Table 4.4: Dictionary Size After Preprocessing

• Porter Stemming: Porter Stemming [89] is applied to all the words to reduce them

to their stem form. All words which are deviationally related words like ‘program-

ming’, ‘programmer’, ‘programs’ are converted to the same stem ‘program’.

• Lowercase: All the words/tokens in the corpus are converted to lowercase.

The scripts used to parse the source code and preprocess the bug report and source

code corpus are included in Appendices C and D. After the above preprocessing steps,

we build the traceability matrix based on the heuristics specified in the previous section.

After this step, we merge the corpus of each bug report and its corresponding source file

in the traceability matrix. This will enable us to have a single text field for each positive

or negative record in the traceability matrix.

We initially experimented on a combination of distinct words/tokens in bug report

corpus with distinct words/tokens in source code corpus. We also experimented on the

bag-of-words approach, where we combine the corpus of bug reports and source files

and then remove duplicate words/tokens from the combined text field of each record

in the traceability matrix. The bag-of-words approach outperformed the distinct words

variation. Hence we adopt the bag-of-words approach, i.e., we keep only the distinct

words or tokens in the combined bug report and source code text field in the traceability

matrix for all the datasets. Table 4.4 shows the dictionary size for each dataset, i.e., the

number of unique words/tokens in the entire traceability matrix after preprocessing.

4.4 Experimental Setup

In this section, we discuss the experiments performed in our study on the five open source

datasets along with the exact setup used to train the CNN and SimpleLogistic models.
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As mentioned in the previous sections, we perform all our experiments on three sets of

variations of source files shown in Table 4.3 for both the CNN and SimpleLogistic models.

4.4.1 CNN Model

As mentioned in Chapter 3, the architecture of our CNN model is adapted from Kim et.

al. [132]. For each dataset, we first set aside 10% of the data as test set and the remaining

90% will be used for training and validation. The 90% data are split into 10 folds. Then

10-fold cross-validation is performed, i.e., one fold will be used as the validation set and

the remaining nine folds will be used to train the model. The same is repeated until each

fold becomes a validation set once2.

After each epoch, the trained model is tested on the validation set and its accuracy

and loss are recorded. At this point, we also compare the validation accuracy of the model

with the previously recorded validation accuracies. If at a particular epoch the validation

accuracy is higher than its previous values, then we save the weights of the model and

use the same model to predict on the 10% test set. The reason behind following this

approach is due to the fact that the model which gives the best validation accuracy is

more generalizable and will perform well on new/unseen data, i.e., the test set. At the

end of each fold, the performance of the model on the test set is measured using the

metrics explained in Chapter 3. The same process is repeated for all the folds.

Table 4.5 shows the hyperparameters used for training the model on all the datasets.

The values for most of these hyperparameters like the input encoding, number of filters,

filter size, number of hidden units, activation function, dropout rate, learning rate, and

optimizer type have been adapted from [132] and [126]. As for the batch size hyperpa-

rameter, most similar CNN models in literature used batch sizes of 32 or 64. Also, as

our datasets are large in size, batch size greater than 16 will lead to an overflow of the

GPU memory (as available GPU memory is 12 GB per GPU). It is for this reason that

for the larger projects (i.e., SWT, Eclipse and JDT) we use a batch size of 16. For the

other projects, we use a batch size of 32.

As for the number of epochs needed to train the model, this was decided based on

the observations made during training. We train the model till the network converges,

i.e., when the training and validation accuracies are similar. Also, we make sure we do

2The 10-fold cross-validation has been explained in detail in Chapter 3.
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Parameter Value
Input Encoding One-Hot

Filter Size [2,3,4,5]
Number Of Filters 100

Number Of Hidden Units 100
Activation Function ReLU

Drop-out Rate 0.5
Batch Size 16,64
Optimiser Adam

Learning Rate 1e-4
Epochs 5,10,50

Table 4.5: Hyperparamters - CNN Models

not over-train the model (i.e., when training accuracy is very high, but the validation

accuracy deteriorates), as this leads to overfitting. We explain more about overfitting

and the steps taken to avoid it in the coming paragraphs.

As explained in Chapter 3, there are predominantly three types of word encodings

used in the field of text analytics or NLP - One-Hot encoding, Word2Vec, and Glove.

Kim’s [132] work on sentence classification using CNN showed that Word2Vec gives the

best performance compared to the other form of encodings. Hence we experimented

with Word2Vec encoding on our data. The resultant models performed poorly, which

could be due to the fact that our corpus has more domain-related words/tokens (stack

trace in bug reports and all words/tokens in source code) than natural language words

or tokens (users’ or testers’ comments in bug reports). We then experimented on One-

Hot encoding (explained in Chapter 3) of the corpus. The One-Hot encoded models

outperformed Word2Vec encoded models. This finding is in-line with the findings made

by Huo et al. in [54, 126]. They have also used One-Hot encoding instead of Word2Vec

when experimenting on different open source bug localization datasets.

As mentioned in the previous sections, all the datasets used in this study are highly

imbalanced. But we train the model on a balanced dataset. We balance the training

data by applying higher class weights to the smaller class (i.e. positive class) which

will penalize the model for every misclassificaltion of a positive sample (linked record).

However, it is important to note that neither the validation set nor the test set are

balanced. During the training phase, after each epoch, we test the trained model on
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the imbalanced validation set. We save the weights of the model that gives the highest

validation accuracy across all the epochs in a particular fold. After all the epochs for a

fold, the best model obtained, i.e., one with the highest validation accuracy will be the

final model that is used to make predictions on the test set. The performance of the

model is calculated based on the predictions made by the model on this test set. This

gives us the performance of the model for the particular fold. We repeat the same process

for all the folds. The final performance of the model is average of the performance of the

model in each fold.

Another important issue which is commonly faced when training a machine learning

or deep learning model is overfitting. As explained in Chapter 3, overfitting means that

the model starts memorizing the training data instead of learning the abstract features

or patterns in the data. When a model starts to overfit the training data, its performance

on the test set will be low. The 10-fold cross validation approach is one effective way

to combat overfitting. Apart from this, we also adopt two regularization methods called

dropout and early stopping to avoid overfitting.

As explained in Chapter 3, dropout is a form of regularization used to avoid co-

adaptation of the training units by randomly dropping out the hidden units with certain

probability (0.5 in this case). Early stopping is another form of regularization, where we

stop training the models once the validation set error starts to deviate by a large extent

from the previously observed validation error values. If we continue to train the models

past this point, the training accuracy improves at the cost of a deteriorating validation

accuracy. Such models will give a high generalization error, making them unfit for new

or unseen data. Figures 4.5 and 4.6 illustrate the accuracy and loss plots for AspectJ

and Tomcat respectively.

The CNN model is implemented using the Keras deep learning library [17] with Ten-

sorFlow [16] as the back-end. The source code of the model is included in Appendix E.

All the models were trained using multiple GPUs. I/O and other non-compute intensive

operations were performed on a CPU and the compute-intensive operations were carried

out on 2 - 3 GPUs (depending on the availability of Compute Canada resources).
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Figure 4.5: Epoch Vs Accuracy & Loss - AspectJ
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Figure 4.6: Epoch Vs Accuracy & Loss - Tomcat
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Parameter Value
Fixed Iterations (I) 0

Max Boosting Iterations (M) 500
Weight Trimming (beta) 0.0, 0.1

Table 4.6: Hyperparameters - SimpleLogistic Models

4.4.2 SimpleLogistic Model

We use Weka [20] command-line interface to run the SimpleLogistic models on all our

datasets. The experimental set up is the same as that used to train the CNN models.

In this case, we first convert the string attributes into numeric attributes representing

the word occurrence information from the text contained in the strings using Weka’s

StringToWordVector [22]. Next, we apply a Class Balancer [19] to the training data, to

reweight the instances in the data so that each class has the same total weight. Similar

to the previous setup, the validation and the test sets are not balanced. After this step

we apply the SimpleLogistic [21] models on the dataset with 10-fold cross validation. The

hyperparameters used to train the SimpleLogistic models are given in Table 4.6.

In order to reduce the training time for the larger datasets, we follow a heuristic

proposed by Sumner et al. [110] which states that weight trimming by a factor β of 0.1

improves the training time without affecting the performance of the model. This means,

that only the training instances carrying 100∗ (1−β)% of the total weight mass are used

for building the simple linear regression model.

4.5 Results

In this section, we give a detailed explanation of the steps followed to compute the metrics

mentioned in Chapter 3, i.e., AUC, MAP, MRR, Top-5 Accuracy. All the results in the

study are obtained after testing the trained model on the 10% test set. The output of

the CNN model is a score, indicating the degree of likeliness that a sample belongs to the

positive class (linked). This means that the higher the score the higher is the probability

that the particular combination of bug report and source file are linked. The same is the

case with SimpleLogistic models.

As mentioned in Chapter 3, the bug localization problem is a Learning-To-Rank
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IR problem which is solved using a classification approach. In order to estimate the

performance of the model in classifying the instances, we use the AUC metric. For

measuring the performance of the model in ranking the relevant source files for a bug

report, we use IR metrics like MAP, MRR and Top-5 Accuracy. We do this by first

filtering each record in the test set based on the bug report. For each bug report, we sort

the source files based on the predicted scores obtained. Once we have the sorted list for

all the bug reports in the test set, we calculate the following IR metrics:

• MAP: For every bug report, we sort its corresponding source files in the test set

by descending order of the predicted scores. After this, we calculate AP as per

equations 3.19, 3.20 for each bug report and find the mean of AP to get the MAP

score.

• MRR: Similar to MAP, after preparing the ranked list of source files in the test set

for each bug report, we calculate the RR as per equation 3.21. Next, we compute

the mean of RR of each bug report, to get the MRR score.

• Top-k Rank: We get the Top-k Accuracy by calculating the percentage of bug

reports for which at least a single relevant source file is present in the top k positions

of the ranked list of source files present in the test set.

The training time and memory needed to train the models for the three variations of

source files for all the datasets are given in Tables 4.7, 4.8, and 4.9, respectively. The

AUC, MAP, MRR, and Top-5 Accuracy for all the datasets for the three variations of

source files, for both the CNN and SimpleLogistic models are given in Tables 4.10, 4.11,

and 4.12, respectively. As the training time and the resources needed to train the models

are very difficult to obtain for the CNN models, we computed the metrics on all the 10

folds for only the smaller projects in our study, i.e., AspectJ and Tomcat. For the other

projects, we computed the metrics on only the first fold. As for SimpleLogistic models,

we could compute the metrics for all the 10 folds and average the values to get the final

score.
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Dataset CNN Model SimpleLogistic Model
Memory (GB) GPUs Time (days) Memory (GB) Time (days)

AspectJ 40 2 21 250 17
Tomcat 80 3 70 550 *
SWT 145 0 150 3000 *

Eclipse 170 0 150 3000 *
JDT * * * * *

Table 4.7: Memory And Training Time - ‘All Files’

Dataset CNN Model SimpleLogistic Model
Memory (GB) GPUs Time (days) Memory (GB) Time (days)

AspectJ 10 1 7 50 4
Tomcat 80 3 24 80 13
SWT 120 3 110 2500 *

Eclipse 120 3 110 2500 *
JDT * * * * *

Table 4.8: Memory And Training Time - ‘Buggy Files’

Dataset CNN Model SimpleLogistic Model
Memory (GB) GPUs Time (days) Memory (GB) Time (days)

AspectJ 10 1 3 50 2
Tomcat 100 3 6 300 4
SWT 120 3 60 800 *

Eclipse 120 3 50 2500 *
JDT 120 3 80 2500 *

Table 4.9: Memory And Training Time - ‘Very Buggy Files’

* indicates that the computations could not be carried out, due to lack of availability of resources on
Compute Canada clusters
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Dataset CNN Model SimpleLogistic Model
AUC MAP MRR Top-5 AUC MAP MRR Top-5

AspectJ 0.9 0.25 0.27 44% 0.9 0.3 0.33 52%
Tomcat 0.84 0.16 0.17 23% * * * *
SWT 0.86 0.24 0.26 38% * * * *

Eclipse 0.6 0.04 0.04 5% * * * *
JDT * * * * * * * *

Table 4.10: Results - ‘All Files’

Dataset CNN Model SimpleLogistic Model
AUC MAP MRR Top-5 AUC MAP MRR Top-5

AspectJ 0.86 0.34 0.38 61% 0.84 0.43 0.47 63%
Tomcat 0.84 0.29 0.32 40% 0.77 0.05 0.05 5%
SWT 0.87 0.3 0.3 51% * * * *

Eclipse 0.72 0.13 0.14 18% * * * *
JDT * * * * * * * *

Table 4.11: Results - ‘Buggy Files’

Dataset CNN Model SimpleLogistic Model
AUC MAP MRR Top-5 AUC MAP MRR Top-5

AspectJ 0.83 0.44 0.47 64% 0.79 0.16 0.17 24%
Tomcat 0.81 0.35 0.37 52% 0.66 0.25 0.26 36%
SWT 0.82 0.3 0.3 51% * * * *

Eclipse 0.75 0.16 0.17 23% * * * *
JDT 0.67 0.11 0.12 17% * * * *

Table 4.12: Results - ‘Very Buggy Files’

* indicates that the computations could not be carried out, due to lack of availability of resources on
Compute Canada clusters

4.6 Discussion

4.6.1 Minimizing The Lexical Gap Between Bug Reports And

Source Files

As discussed in Chapter 2 of this study, many state-of-the-art models have been pro-

posed in the past to automatically localize bugs. These approaches can be classified
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into dynamic and static approaches. The dynamic approaches use the semantics of the

program, test case execution traces, whereas the static approaches use pre-defined bug

patterns and IR or ML to localize bugs. The IR or ML approaches are the most popular

ones used in bug localization research. These models use IR- or ML-based techniques

like TF-IDF, LSA, LDA, VSM, rVSM, Naive Bayes, etc. The key drawback of all these

approaches is that they are unable to minimize the lexical gap [28, 85, 130] between the

natural language corpus in the bug reports and the technical corpus in the source code.

Some attempts have been made in the past to overcome this drawback. Ye et al.[130]

used additional corpus from the documentation of the APIs used in source files. This

approach did not help as the documentation of APIs does not have the buggy information

specific to a project, rather they contain information regarding more general tasks. Kim

et al. [60] used the names of the previously fixed source files as classification labels on

the bug reports instead of the actual source file content. The problem with this approach

is that for a new bug report, the model cannot suggest files that have not been buggy or

faulty before.

As none of these state-of-the-art models were successful in this task, in recent years

some researchers have proposed deep learning-based models which aim to eliminate or

reduce the lexical gap between bug reports and source files. Lam et al. [67, 68], Huo et al.

[54, 126] proposed deep learning models based on RBM, CNN, LSTM to localize bugs.

Their work proved that unlike the other state-of-the-art traditional models, the deep

learning models are able to minimize the lexical gap between bug reports and source

files. They concluded that DNNs are able to do this, by learning to link high-level,

abstract concepts between bugs reports and source code files.

As mentioned in the previous chapters, a simple CNN with little hyper-parameter

tuning has been shown to perform significantly well for classifying text [132]. As discussed

in Chapter 3, the two key concepts of CNNs are Local Invariance and Compositionality.

These key features enable CNNs to able to recognize images with high accuracy [65].

They also enable CNNs to perform well on certain NLP-related tasks like sentiment

analysis [132], identifying Parts Of Speech [39], text classification [134], etc. CNNs

construct higher-order features (n-grams) from lower-order features and preserve the

local information about locality. CNNs lose the global information about locality due

to the Local Invariance feature. Nevertheless, this does not affect the performance of

the model when performing sentiment analysis or text classification, as in these cases
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the ordering of words is not of importance at the document level. For instance, in case

of Movie Review sentiment analysis, it is important that the model is able to learn the

local order of the words like - “not bad, quite good” which are crucial for identifying the

sentiment of the sentence, and not the exact occurrence of these words in the sentence or

document. This means that, CNNs are good at identifying the polarity of a sentence but

cannot encode long-range dependencies in a sentence. This is the reason why LSTMs are

more preferred for tasks like language modelling.

As discussed earlier, bug localization is a Learning-To-Rank IR problem which can

be solved using the Pairwise approach, where each sentence is a combination of bug

reports and source files and the task is to identify the positive (linked) and negative

(non-linked) records. Hence a CNN model, which has been widely used in the past for

learning the polarity of a sentence [132] could be a potential model that can correctly

classify the corpus related to bug report and source code files, by learning to relate the

natural language or domain-related terms/tokens in bug reports and different code tokens

in source files.

Conclusion

From the above discussion, we can conclude that a deep learning-based model like CNN

could be a potential approach that could eliminate or minimize the lexical gap between

bug reports and source code files.

4.6.2 CNN vs SimpleLogistic models

We now compare a non-linear DNN (CNN model) and a traditional ML (SimpleLogistic

model) in terms of performance, training time and memory. Tables 4.10, 4.11, and 4.12

compare the two models for using ‘All Files’, ‘Buggy Files’, and ‘Very Buggy Files’,

respectively, for all the datasets.

• Performance: In the case of AspectJ, the SimpleLogistic model outperforms the

CNN model in terms of MAP, MRR, and Top-5 Rank, when considering all the

source files in the dataset. The same trend continues even when we train the model

on only the buggy source files in the dataset. This trend is reversed when we further

reduce the buggy source files. In this case, the CNN model performs significantly
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better than the SimpleLogistic model. In the case of Tomcat, the CNN models

outperform the SimpleLogistic models in all the three variations of source files, in

terms of MAP, MRR and Top-5 Rank.

• Training Time: Tables 4.7, 4.8, and 4.9 show that CNN training takes between

3 and 21 days for the smallest project (AspectJ), and between 80 and 110 days

for the largest project (JDT). The training time for each dataset, is influenced by

the number of GPUs used. The greater is the number of GPUs used, the lesser

will be the time required to train the model. For instance, in case of AspectJ for

‘All Files’ variation, the training time with 1 GPU is 42 days. But as we used

2 GPUs, the training was reduced to 21 days. If we compare the training times

across projects, per GPU, then CNN takes between 3 and 42 days for the smallest

project and between 150 and 330 days for larger projects like Eclipse. The dataset

size decreases as we reduced the buggy files in the project, which is the reason

why training times decrease as we move from ‘All Files’ to ‘Very Buggy Files’

variation for both CNN and SimpleLogistic models. The CNN models have very

high training time compared to the SimpleLogistic models, but if we consider the

SimpleLogistic models alone, their training time is still high. This shows that even

the traditional linear models like SimpleLogistic take large time to train on bug

localization datasets.

• Memory: To train, the CNN models need from 10GB to 150GB of memory, while

the SimpleLogistic models require 50GB to 3000GB of memory.

Conclusion

From the above discussion, we can conclude that the computation resources in terms

the memory or the number of GPUs, required to train the deep learning-based or the

traditional ML-based bug localization models are huge. From a practical perspective, ob-

taining these computation resources is both expensive and challenging for the mainstream

software practitioners, who might not have the budget to access such resources.

We can also infer from the above discussion, that both the models have their own

merits and demerits. The CNN model outperforms the SimpleLogistic model in most

of the cases, but they have their own drawback of high training time. SimpleLogistic
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models though fast, need a lot of memory and their performance is not as good as CNN

models in most of the cases.

4.6.3 Performance Across Projects

We now discuss the performance of the models across the projects (see Tables 4.10, 4.11,

4.12).

For all the three variations of source files, the AUC for the CNN models for all the

datasets is between 0.6 - 0.9. AUC greater than 0.5 is deemed as a good classifier, and

as most of the values are around 0.8, we can conclude that the CNN and SimpleLogistic

models are fairly good at classifying the samples across any bug localization dataset.

As for the MAP metric, for the ‘All Files’ variation, the values across the projects

range from 0.04 - 0.25. When considering only the buggy files in the dataset, the MAP

values range from 0.13 - 0.34. Finally, for the ‘Very Buggy Files’ variation, the MAP

scores across the projects are in the range 0.11 - 0.44. MAP greater than 0.3 means that

3 out of the first 10 predictions are correct or relevant to the search query. That means,

higher the MAP, better is the performance of the IR model. The trend in performance

of the MAP across all the projects, for all the three variations of the source files, shows

that the CNN models perform poorly for larger projects like Eclipse and JDT. This could

be attributed to the fact that, for the larger projects, the datasets are more imbalanced

as compared to the smaller projects. This makes it even more difficult for the models

to identify or learn patterns in the few sets of linked records are present in the dataset.

Nevertheless, this may not always be the only factor which affects the performance of the

models across the projects. For instance, although Tomcat is a smaller dataset compared

to SWT, the CNN models gives a higher MAP score for SWT dataset for two variations.

This could be due to the quality of the artifact corpus in the datasets. The datasets

which contain bug reports that have more information related to the buggy source files

like stack traces, exception messages (showing the buggy source file paths) can be more

easily linked to their buggy source files. This is because of the lexical match between bug

reports and source code corpus, making it easier for the model to learn their relationship.

The MRR metrics trend is similar to the MAP one. For each of the variations of the

source files across all the projects, the MRR scores lie between 0.04 - 0.27, 0.14 - 0.38,

and 0.12 - 0.47, respectively. MRR of 0.5 means that, for a search query, its first relevant
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or correct item in a ranked list of 10 items is present in the 5th position. This shows

that the higher the MRR, the better is the performance of the model. Similar to the

previous case of MAP, the CNN models give a lower MRR scores for larger projects, i.e.,

for Eclipse and JDT. The same explanation as above can be given to this trend.

The Top-5 ranks trends across the projects for all the variations of source files are

in the range of 5% - 44%, 18% - 61%, and 17% - 64%, respectively. Top-5 rank of 50%

means that for 50% of the bug reports, at least one relevant file is in the 1 to 5 positions

of the retrieved ranked list. This clearly shows that a well performing model will have a

high Top-5 score. As with MAP, MRR scores, the Top-5 rank is higher for AspectJ and

then SWT. Tomcat has lesser Top-5 score compared to these two datasets. The larger

projects, Eclipse and JDT, have the lowest Top-5 scores.

Conclusion

We can conclude that the performance of the CNN models is dependent on the size

of the dataset, as it performs significantly better on smaller projects compared to the

larger projects for all the three variations of source files. This trend is uniform across

all the metrics, i.e., MAP, MRR, and Top-5. The only exception to this trend is the

SWT dataset. The SWT project, though significantly larger than the Tomcat dataset,

has better or similar performance to Tomcat data. As discussed above, this could be

due to the quality of the bug report corpus in a dataset. Bug reports which have stack

traces and tokens/words related to their buggy source files are more easily traceable, than

those which have pure natural language data with no information about their potential

buggy files. Hence the dataset size along with the quality of the bug report corpus in

the dataset are the major factors that affect the performance of the CNN model for a

particular dataset.

4.6.4 Effect Of Varying Buggy Files

We now examine the effect of varying the buggy source files in the datasets. When

reducing the number of source files, the performance of the CNN models improve. This

can observed from Tables 4.10, 4.11, and 4.12. For all the projects, i.e., AspectJ, Tomcat,

SWT, and Eclipse, the MAP scores increase from 0.25 to 0.44, 0.16 to 0.35, 0.26 to 0.3,

0.04 to 0.17, respectively. The same observation can also be made for other metrics, i.e.,
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Figure 4.7: Plots For Metrics - CNN Model - AspectJ - ‘All Files’
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Figure 4.8: Plots For Metrics - CNN Model - AspectJ - ‘Buggy Files’
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Figure 4.9: Plots For Metrics - CNN Model - AspectJ - ‘Very Buggy Files’
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MRR and Top-5 Rank. We conjecture that this improvement may be because reducing

the number of files is reducing the search space, i.e., reserving more relevant files actually

enables the model to easily identify the linked or the relevant files in the dataset.

Figures 4.7, 4.8, and 4.9 illustrate the range of AP, RR, and also the Top-1 to Top-

5 ranks across the bug reports for AspectJ. From the bar plots, we can observe that

only 9% of the bug reports have AP of 1 when considering all the source files. This

score improves to 14% and then to 22% as we reduce the number of buggy source files.

Different values of MAP (between 0.1 and 0.7) are considered across different IR systems

based on the information needs of the end user [78]. In fields like traceability studies

and bug localization, an IR model is considered to be effective if MAP values are greater

than 0.5 [48, 126]. MAP equal to 1 means the model is a perfect IR model. We can also

observe that only 13% of bug reports have MAP greater than 0.5. This score increases to

20% when considering only the buggy source files in the dataset. It further increases to

30% when using very buggy files to train the model. Similar observations can be made

for the RR scores for AspectJ. An RR score of 1 means, the model is a perfect IR model.

The percentage of bug reports with RR increases from 15% to 29% when reducing the

buggy source files. As for the Top-k rank for AspectJ, for the ‘All Files’ variation, 16%

of the bug reports have at least one relevant file in the first position of the ranked list

of source files. This score increases to 23% and 33% as we reduced the number of buggy

source files. The same trend can be observed even for Top-2, Top-3, Top-4, and Top-5

ranks. Similar plots have been generated for all the other datasets and are included in

Appendix A.

Also, from Tables 4.10, 4.11, and 4.12, we can observe the effect of varying the number

of buggy source files on the performance of the model for the other datasets. In case

of Tomcat, the Top-5 rank increased from 23% to 40% and when further reducing the

relevant buggy files, it went up to 52%. The same trend can also be noticed in case of

MAP and MRR for the Tomcat dataset. When considering all the source files in the

dataset, the MAP value is 0.16. This score improves to 0.29 for ‘Buggy Files’ and to 0.35

when further reducing the buggy source files. Similarly, MRR values increased from 0.17

to 0.32 and further to 0.37, as we reduced the buggy source files in the dataset.

Similar experimentation of varying the source files has also been performed on SWT,

Eclipse, and JDT datasets. The trends in case of SWT are quite similar to the above

trends. The Top-5 rank increases from 38% to 51% when considering only the buggy
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files. Similarily, in case of MAP and MRR the scores improve by 0.06 as we reduce the

files. But unlike the other datasets, for SWT, the performance is almost similar when

further reducing the buggy source files. This means considering ‘Very Buggy Files’ does

not have any affect on the performance of the model, as the MAP, MRR and Top-5 values

do not change. Eclipse on the other hand follows the same trends as seen in AspectJ and

Tomcat datasets. Though the improvement in performance in terms of MAP, MRR, Top-

5 is not very large, there is still some difference in performance when varying the number

of buggy source files in the dataset. As for JDT, due to the lack of GPU resources with

RAM of more than 500GB, we could not run the models for the ‘All Files’ and ‘Buggy

Files’ variations.

As for the SimpleLogistic models, the effect of varying source files is not very clear, as

in some cases it tends to improve the performance of the model, whereas in some cases

it does not.

Conclusion

From the above discussion, we can conclude that considering ‘Very Buggy’ files improves

the performance of the CNN models. An important point to note from the above observa-

tion is that, most of the recent deep learning-based models [54, 67, 68, 126] consider only

the ‘Very Buggy Files’ in order to improve the performance of the DNN models. This

beats the practical relevance of these models, as the end users would use these models

to localize the buggy files from the entire set of source files and not from only the ‘Very

Buggy Files’ present in the project.

4.6.5 Practical Relevance

We now examine the practical relevance of the CNN model and the other state-of-the-art

models in bug localization research. In this study we examine the effectiveness of the

below models:

• BugLocator (BL) [137]: The BugLocator ranks the source files based on the textual

similarity between the bug report and the source code using rVSM. It also takes into

consideration information about similar bugs that have been fixed before. Zhou et
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al. [137] performed experiments on AspectJ, Eclipse, and SWT datasets used in

this study.

• Two-Phase (NB) [60]: Kim et al. [60] proposed a Two-Phase prediction model

for localizing bugs using Naive Bayes approach. Lam et al. [67] and Huo et al.

[54] used these models on the same datasets used in this study to compare the

performance of their models with the Two-Phase model.

• Learning-To-Rank (LR) [130]: Ye et al. [130] introduced an adaptive ranking

approach to leverage the domain knowledge of source code files into methods, API

descriptions of library components used in the code, the bug-fixing history, and

the code change history. When a user queries the model with a bug report, it

computes the ranking score of each source file as a weighted combination of an array

of features encoding the domain knowledge. The weights are trained automatically

on previously solved bug reports using the Learning-To-Rank technique. Lam et

al. [67] used this model on the open source bug localization datasets (that we used

in this study) to compare the performance of their models with the LR model.

• BLUiR (Bug Localization Using Information Retrieval) [96]: Saha et al. [96] uti-

lized the structured code information from bug reports and source files to enable

more accurate bug localization. The user needs to first input the source files in

which he/she would like to localize the bugs. BLUiR, builds the abstract syntax

tree (AST) of each source code file using Eclipse, JDT and traverses the AST to

extract different program constructs. Then, it tokenizes all the identifier names and

comments in source files. The same is done with the bug reports. Later TF-IDF is

applied between the source code and bug report tokens.

• AmaLgam [118]: Wang et al. [118] proposed a model which combines version

history, similar bug reports and structure information for locating the buggy source

code. Their aim to compose various variants of VSM with different weighting

schemes, is achieved by a genetic algorithm (GA) based approach which explores the

space of possible compositions and outputs a heuristically near-optimal composite

model.

• HyLoc [67]: Lam et al. [67] used an RBM-based DNN in combination with rVSM
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Dataset Model Top-5 MRR MAP

AspectJ

HyLoc 71.2% 0.52 0.32
LR 45.5% 0.33 0.25
BL 47.7% 0.32 0.22
NB 16% 0.1 0.07

Tomcat

HyLoc 72.9% 0.6 0.52
LR 66.5% 0.55 0.49
BL 61.8% 0.48 0.43
NB 9% 0.08 0.07

SWT

HyLoc 69.0% 0.45 0.37
LR 58.2% 0.41 0.36
BL 38.3% 0.28 0.25
NB 19% 0.14 0.11

Eclipse

HyLoc 70.5% 0.51 0.41
LR 60.1% 0.47 0.40
BL 49.3% 0.37 0.31
NB 10.6% 0.07 0.06

JDT

HyLoc 65% 0.45 0.34
LR 55.2% 0.42 0.34
BL 40.2% 0.30 0.23
NB 15% 0.11 0.08

Table 4.13: Comparison Of HyLoc With
Other Models [67]

Dataset Model Top-10 MAP

AspectJ

BL 62.2% 0.41
BLUiR 65.9% 0.43

AmaLgam 69.3% 0.42
CNN 77.3% 0.51

NP-CNN 83.6% 0.54
LSTM 79.2% 0.51

LSTM+ 85.5% 0.54
LS-CNN 86.9% 0.56

Eclipse

BL 72.7% 0.42
BLUiR 75.4% 0.44

AmaLgam 77.3% 0.44
CNN 82.1% 0.49

NP-CNN 87.2% 0.54
LSTM 86.9% 0.52

LSTM+ 87.2% 0.54
LS-CNN 89.5% 0.56

JDT

BL 70.3% 0.44
BLUiR 74.5% 0.43

AmaLgam 75.7% 0.44
CNN 85.9% 0.51

NP-CNN 88.2% 0.53
LSTM 86.8% 0.52

LSTM+ 88.3% 0.54
LS-CNN 91.7% 0.58

Table 4.14: Comparison Of DNN-based
Models With Other Models [126]
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to localize bugs. rVSM collects the textual similarity features between bug reports

and source files. The RBM-based DNN was used to learn to relate the terms in bug

reports to potentially different code tokens and terms in source files. They experi-

mented on the same datasets used in this study and also compared the performance

of their model with all the above state-of-the-art models. Their experiments show

that HyLoc outperforms the other models. Table 4.13 shows the comparison made

by Lam et al [67] using the above state-of-the-art models.

• NP-CNN [54] and LS-CNN [126]: Huo et al. [54, 126] proposed variants of the CNN

and LSTM deep learning models called NP-CNN and LS-CNN. They compared

the performance of their models with some of the above state-of-the-art models on

open source bug localization datasets. The CNN model used in our study has been

previously used as a baseline model by Huo et al. [54], [126]. They proved that

their NP-CNN and LS-CNN models outperform the CNN model and also the other

state-of-the-art bug localization models. Table 4.14 shows the comparison made by

Huo et al [126] against the above models.

From Tables 4.10, 4.14 we can observe that the experiments on the CNN models

made by Huo et al. [126] on AspectJ, Eclipse and JDT datasets yielded results which

are different from those obtained in our study. This can be attributed to the fact the

Huo et al.[126] experimented on the reduced set of source files. They compared their

NP-CNN and LS-CNN models with baseline models such as the CNN model proposed

by Kim [132] and some of the above state-of-the-art models.

But from the practical relevance perspective, the same CNN model used by Huo

et al. [54] does not perform strongly when trained on the entire set of source files

from the project repository. This is an important observation because, when a software

practitioner uses this model, he/she would expect the model to locate buggy source

files from the entire source base. Hence the actual effectiveness of any bug localization

model can only be determined when the model is trained on the entire set of source code

files available in the project repository. This motivated us to experiment on different

variations of the buggy source files in our study, to examine the effect of the size of

search space on the effectiveness of CNN models.

We now compare the performance of our CNN model and also each of the above

models with the expectations of the software industry. The criteria to be met by any
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bug localization model in order to satisfy the software practitioner are given below [64]:

• Granularity: All the models work on file- or class-level granularity. But almost

52% of the practitioners prefer method level granularity and only 26% prefer file

level granularity. So the above state-of-the-art models are able to satisfy only about

26% of the practitioners in terms of granularity.

• Success Criteria: This is defined by the Top-k Rank metric. Almost 75% of the

developers gave 100% Top-5 rank as the minimum success criteria for any model.

Another 25% are satisfied with a 100% Top-10 Rank. From Table 4.13 we can

observe that HyLoc[67] outperforms all the other models like LR [130], BL [137]

and NB [60] in terms of Top-5 Rank. But it gives a Top-5 Rank in the range 65%

- 73% across different projects. The DNN models trained by Hou et al. [126] in

Table 4.14, give a Top-10 Rank in the range 77% - 92% . But these values cannot

be used to examine the practical relevance of the DNN models, as they are not

trained on the entire set of source files in the datasets. This can supported by the

fact that the same CNN architecture used in our study gives Top-5 Rank ranging

from 44% - 64% for AspectJ (see Tables 4.10, 4.11, 4.12). For the other projects,

like Tomcat, SWT, Eclipse and JDT the Top-5 Rank is 23% - 52%, 38% - 51%,

5% - 23%, 17% respectively. This shows the CNN models can suggest at least one

buggy or relevant file in Top-5 positions for less than 50% of bugs. This shows that

these models do not meet the the minimum success criteria of the practitioners.

• Trustworthiness: If a model meets the above success criteria atleast 50% of the

time, then it will achieve 50% of the developer’s satisfaction rate. But given that

none of the state-of-the-art models or the DNN models meet the success criteria,

i.e., the Top-5 Rank of 75% developers, the trustworthiness of these models is low.

• Scalability: About 50%, 75%, 90% of satisfaction rates can be achieved if a model

is scalable enough to localize bugs in projects containing 10,000 LOC, 100,000 LOC,

and 1,000,000 LOC. Ye et al. [130] and Zhou et al. [136] built models that could

satisfy about 75% of the practitioners, i.e., they could localize bugs from programs

of size greater than 100,000 LOC. Also, Huo et al. [54], Lam et al. [67] experimented

on open source projects with programs of size above 100,000 LOC. In our study we

have experimented on the same open source datasets each having programs sizes
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of 160,000 LOC for AspectJ, 409,021 LOC for Tomcat, 1,057,102 LOC for Eclipse

and 745,326 LOC for SWT, 1,523,382 LOC for JDT. This confirms that the models

in our study are all scalable and satisfy about 75% (in case of AspectJ, Tomcat,

SWT) and 95% (in case of Eclipse, JDT) of the practitioners. The same can also

be said for the prior models [54, 67] which used the same datasets.

• Efficiency: To achieve a satisfaction rate of at least 50%, the model should localize

bugs in less than a minute. About 90% of the practitioners are satisfied with

this efficiency threshold. Most researchers when proposing a new bug localization

approach, do not state the execution time of their models. Nevertheless, a recent

research by Lam et. al [67, 68] state that their HyLoc models takes a maximum of

1.5, 4.1, 3.8, 4.8, 2.4 minutes to predict the relevant buggy source files for one bug

report in Tomcat, AspectJ, Eclipse, JDT, SWT respectively. So for the smallest

project, i.e., AspectJ with about 593 bug reports, Hyloc takes about 2431 minutes

to localize buggy files. As for the CNN models trained in our study, the time taken

to predict relevant source files for all the bug reports for AspectJ, Tomcat, SWT

and Eclipse and JDT projects is 8, 28, 226, 494, 900 minutes respectively. This

shows that the CNN model is more efficient than the HyLoc model in terms of

execution time. Nevertheless, neither of these models meet the efficiency criteria of

the software practitioner. Potentially, this can be rectified by adding more compute

power.

Conclusion

The three important points worth noting from the above discussion are:

• Researchers do not use the entire set of source files from the repository when exper-

imenting on a particular bug localization approach. This will prevent them from

evaluating their models from a practical relevance perspective. This is the major

setback in the evaluation process of the bug localization models.

• Apart from using IR metrics, to measure the performance of the models, researchers

should verify if their models meet the criteria stated by software practitioners in

[64], as they are the end-users of these models.

80



Chapter 4. Evaluation 4.7. Threats To Validity

• From the above discussion, it is evident that the software developers should be

cautious while using the current bug localization models and should not depend on

them blindly to localize bugs, at least till more effective approaches evolve.

4.7 Threats To Validity

In this section we discuss the threats to validity, classified as per [124, 131].

4.7.1 Internal Validity

Interval validity relates to the experimental errors and biases in the study. We mitigate

the bias by reusing the bug reports dataset that has been used in prior studies [54, 67,

68, 126, 130, 137]. To reduce the experimental errors, we have carefully checked our

implementation to the best of our abilities.

4.7.2 Construct Validity

Construct validity relates to the applicability of the set of evaluation metrics used in this

study. The metrics like MAP, MRR and Top-k Rank are well-known information retrieval

metrics and have been used before to evaluate many past bug localization approaches

[92, 96, 104, 136]. Thus, we believe there is little threat to construct validity.

4.7.3 Conclusion Validity

We made sure the model is generalizable by avoiding overfitting. As the model used in our

study is a non-linear model, over-fitting is a common problem. In order to prevent that,

we have employed the dropout technique [108], which is simple yet effective. Dropout

prevents co-adaptation of hidden units by dropping out values randomly. Moreover, we

are performing 10-fold cross validation. Also, the risk of insufficient generalization is

reduced by evaluating the models on five open source projects.
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4.7.4 External Validity

Software engineering studies suffer from the variability of the real world, and the gen-

eralization problem cannot be solved completely [123]. Wieringa et al. [123] indicate

that in order to build a theory, we need to generalize a theoretical population and have

adequate knowledge of the architectural similarity relation that defines the theoretical

population. Although we have used five open source projects in this study, our empirical

evaluation may not be generalizable to other open source projects or industrial projects.

The goal of the study was not to build a new model, but to experiment on the recently

proposed deep learning-based bug localization models and examine their relevance in

research and industry. The aim of the study was to also point out the pitfalls in the

current research in this field and gain a better understanding of the various factors like

dataset size and the artifact corpus on the performance of the model. The same empir-

ical examination can also be applied to other software products with well-designed and

controlled experiments.
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Conclusion and Future Work

5.1 Conclusion

In this study we examine the effectiveness of a deep learning-based bug localization model

and compare it with a traditional ML model. We also observe the effect of varying the

buggy files on the performance of the model. We perform all our experiments on five

open source bug localization datasets (AspectJ, Tomcat, Eclipse, SWT, and JDT).

We give a detailed explanation about the lexical gap that exists between bug reports

and source code files and also discuss the various attempts made in the past bug lo-

calization studies, to reduce this lexical gap. We also explain why we have chosen to

experiment on a CNN model and the motivation behind examining the effectiveness of

a deep learning-based bug localization model. We also cover the fundamentals of deep

learning and logistic models. Then, we explain the architecture of the CNN model used

in our study and also the IR metrics used to evaluate the models. Next, we discuss the

data extraction process followed to obtain the bug localization data for all the five open

source projects. Then, we mention the data preprocessing steps followed to generate

the bag-of-words corpus from bug reports and source code files. After this, we go into

the details of how we generated the traceability matrix. Next, we give some descriptive

statistics of the data and also analyze the linked records in the traceability matrix.

We apply the CNN and SimpleLogistic models on the traceability matrix for each

of the five datasets, for all the three variations of buggy source files. We also describe

the experimental setup and metric computations for both models. Next, we compare
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the CNN model with the SimpleLogistic model in terms of performance, training time,

and memory and discuss the merits and demerits of these models. Also, we compare the

performance of the CNN model across all the datasets for all three variations of buggy

source files: ‘All Files’, ‘Buggy Files’, and ‘Very Buggy Files’. Then, we observe the

trends in the performance of both the CNN and SimpleLogistic models across the three

variations of source files.

Finally, we evaluate the CNN model against the expectations of the software practi-

tioner and discuss the drawbacks of the current state-of-the-art bug localization models.

Our first research question (RQ1) was: How can we minimize the lexical gap between

natural language texts in bug reports and technical/domain corpus in source code files in

order to automatically localize bugs? To address this research question, we discuss the

existing state-of-the-art traditional and deep learning models and how a deep learning

model like CNN could be a potential solution that could minimize the lexical gap between

bug reports and source files.

Our next research question (RQ2) was:How effective are the CNN models in meeting

the expectations of the software practitioner? To address this question, we train a CNN

model which has been widely used in the past for text classification and bug localization

purposes. We then examine the CNN model and other modern bug localization models

against the expectations set by the software practitioner. We found that none of these

models meet the practitioner’s criteria in terms of granularity, success rate, trustworthi-

ness, and efficiency. Nevertheless, the deep learning-based models could still meet the

scalability criteria to some extent.

Our next research question (RQ3) was: How do the CNN models perform in compar-

ison with the SimpleLogistic models on software bug localization data? To address this,

we calculate metrics for all the five datasets on the predictions made by the CNN and

SimpleLogistic models. Then, we compare both models using IR metrics MAP, MRR,

and Top-k rank. We found that the CNN models outperform the SimpleLogistic models

in most cases. CNN models require higher training times compared to the SimpleLogistic

models. Nevertheless, SimpleLogistic models still take more than 100 days to train, es-

pecially for large projects. SimpleLogistic models require a very large amount of memory

(about 50 - 3000GB) in comparison with the CNN models (10 - 120GB).

Our next research question (RQ4) was: How do the CNN models perform across dif-

ferent open source software bug localization datasets? To address this, we train the CNN
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model on all the five open source bug localization datasets and compare the performance

of the model across the datasets. We found that the performance of the model is de-

pendent on the size of the dataset, as it performs significantly better on smaller projects

compared to the larger projects for all the three variations of source files. The model

gives the best performance on the smallest dataset (AspectJ) and the worst on the largest

dataset (JDT). This trend is uniform across all the metrics, i.e., MAP, MRR, and Top-5.

The only exception to this trend is the SWT dataset, which is larger than the Tomcat

dataset but yields better or similar performance to Tomcat.

Our next research question (RQ5) was: How does varying the source files in the

dataset, affect the performance of the CNN and SimpleLogistic Models? To address this,

we vary the source files in the dataset based on three variations: ‘All Files’, ‘Buggy

Files’, and ‘Very Buggy Files’. We observe the performance of the CNN model across

these three variations for AspectJ, Tomcat, SWT, and Eclipse datasets. Our experiments

show that reducing the number of buggy source files improves the performance of the

model. This could be due to the fact that reducing the search space enables the model

to easily identify the linked or the relevant files in the dataset.

We believe that our experiments highlight the drawbacks of the experimental setup

for the modern deep learning models. Recent works consider only a subset of the buggy

source files in the repository when training the models. This approach prevents us from

knowing the effectiveness of these models from a practical standpoint. This is because,

in a real-time scenario, a practitioner would want the model to localize a buggy source

file from the entire source base and not just from a subset of files.

Most researchers consider only the IR metrics to evaluate the performance of their

proposed approach or model to localize bugs. We believe that in addition to this, the

models should be examined to verify if they meet the expectations of a software practi-

tioner. Also, even though deep learning models perform well, compared to the traditional

ML models on bug localization data in most cases, they have their own set of demerits

such as high training time and large amount of hardware resources, such as GPUs and

memory. We believe that our study is of interest to software practitioners, as it provides

enough evidence to convince the practitioners that they should be cautious while using

the current deep learning models and should not depend on them blindly to localize bugs.
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5.2 Future Work

Going forward, we would like to experiment with different traditional ML models and

DNN architectures which localize bugs at a more finer granularity level and which are

more efficient. We would also like to ensure that we build a model that achieves at

least 75% practitioner’s satisfaction rate. Also, there are no studies which build scalable

bug localization models on industrial datasets. Hence, we will explore options needed to

tackle the scalability problem on commercial software.

Though there has been a large number of publications and research in the last 10 -

15 years on bug localization, it is still an evolving area of research. The critical challenge

for a researcher in this field would be to build a model that finally meets the adoption

thresholds set by the software industry.
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Additional Figures
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Figure A.1: Analysis Of Linked Records - SWT
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Figure A.2: Analysis Of Linked Records - Eclipse
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Figure A.3: Analysis Of Linked Records - JDT
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Figure A.6: Plots For Metrics - CNN Model - Tomcat - ‘Very Buggy Files’
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Appendix B

Data Extraction Scripts

Script to extract source files from git repo based on the bug-commit mapping. We extract

the version of the source file before the bug fix (commit) was made for each bug report.
1

#Script: data.py2

#Execution : python data.py <missing bug file> <new file>3

# To filter out only bugs and commits from the other mappings.4

import csv, sys, os5

file = os.path.join(sys.path[0], sys.argv[1])6

newfile = os.path.join(sys.path[0], sys.argv[2])7

print os.path.join(sys.path[0], file)8

print os.path.join(sys.path[0], newfile)9

with open(file, "rb") as csvfile:10

reader = csv.reader(csvfile, delimiter=",")11

for row in reader:12

data = ([row[1]],row[2].split("\r\n"))13

with open(newfile, "a+") as newcsvfile:14

writedata = csv.writer(newcsvfile)15

writedata.writerows(data)16

17

#Script: filter.sh18

#Execution : ./filter.sh19

# To get the head value of each commit.20
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while read line;21

do echo $line;22

git checkout $line~1;23

head=$(git rev-parse --short HEAD~1); echo "$head,$line" p0 >>24

head_commit.out; git checkout master; done <25

eclipse_commits_filtered.csv26

27

#Script: diff.sh28

#Execution : ./diff.sh29

# To get the difference between the head and the commit30

#!/bin/bash31

while read line32

do33

echo $line34

head=$(echo $line | awk -F\, ‘{print $1}’)35

commit=$(echo $line | awk -F\, ‘{print $2}’)36

files=()37

files=$(git diff --name-status $head $commit | grep ".java$" | grep -E "^38

A|^M|^D")39

#echo -ne ${files[@]} >> $commit.out40

printf ‘%s\n’ "${files[@]}" >> $commit.out41

done < head_commit.out42

43

#Script: extract.sh44

#Execution : ./extract.sh45

# To extract the files based on the diff information.46

#!/bin/bash47

while read line48

do49

head=$(echo $line | awk -F\, ‘{print $1}’)50

commit=$(echo $line | awk -F\, ‘{print $2}’)51

while read newline52

do53
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type=$(echo "$newline" | cut -f 1)54

file=$(echo "$newline" | cut -f 2)55

if [[ $type == "A" ]]; then56

git checkout $commit57

if [ -f "$file" ] && [ -e "$file" ]; then58

folder=${file%/*}59

[ ! -d "$HOME/Sravya_Backup/Eclipse_Repo_NewMap/$folder" ]60

&& \61

mkdir -p "$HOME/Sravya_Backup/Eclipse_Repo_NewMap/62

$folder"63

echo "$file exists in $commit"64

cp "$file" "$HOME/Sravya_Backup/Eclipse_Repo_NewMap/65

$folder"66

else67

echo "$file doesn’t exist in $commit"68

fi69

git fetch --all && git reset --hard origin/master && git70

checkout master71

72

elif [[ $type == "D" ]] || [[ $type == "M" ]]; then73

git checkout $head74

if [ -f "$file" ] && [ -e "$file" ]; then75

folder=${file%/*}76

[ ! -d "$HOME/Sravya_Backup/Eclipse_Repo_NewMap/$folder" ]77

&& \78

mkdir -p "$HOME/Sravya_Backup/Eclipse_Repo_NewMap/79

$folder"80

echo "$file exists in $commit"81

cp "$file" "$HOME/Sravya_Backup/Eclipse_Repo_NewMap/82

$folder"83

else84

echo "$file doesn’t exist in $commit"85

fi86
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git fetch --all && git reset --hard origin/master && git87

checkout master88

fi89

done < $commit.out90

done < head_commit.out91
92
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Source Code Parser Scripts

The below shell script is used to parse the java source code files to extract source code

corpus. To Execute the below shell scripts, run the below commands on Linux shell:
1

for file in ${find . -name \*.java\*};2

do data=${../java-code.sh $file | ../code-to-words.sh3

-k ../java-keywords | awk ’!x[$0]++’ |4

paste -sd ‘ ’}; echo -e $file ‘\t’ $data;5

done > AspectJ_file_data.txt6

7

8

# Script: code.words.sh9

#!/bin/bash10

set -e11

basedir=${dirname "$0"}12

13

keyword_opts=()14

stopword_opts=()15

16

while getopts k:s:h opt17

do18

case $opt in19

k)20
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keyword_opts+=( "-f" "$OPTARG" )21

;;22

s)23

stopword_opts+=( "-f" "$OPTARG" )24

;;25

h)26

echo "$0 [[-k <keywords-file>]|[-s <stopwords-file27

>]]* [<input-file>]*"28

exit29

;;30

esac31

done32

33

# Select sed34

if [ command -v gsed >/dev/null 2>&1 ]; then35

SED=gsed36

else37

SED=sed38

fi39

40

# Discard punctuation & numeric literals.41

function extract_identifiers() {42

$SED -e ‘s/0[xX][[:alnum:]]\+//g’ -e ‘s/[^[:alpha:]_]\+/\n/g’ | grep43

-v ‘^$’44

45

}46

47

# Split camel case into individual words, taking into account all-caps48

# abbreviations, such as XML or JPEG, and split at underscores49

function split_words() {50

$SED -e ‘s/\([[:lower:]]\)\([[:upper:]]\)/\1\n\2/g’ \51

-e ‘s/\([[:upper:]]\+\)\([[:upper:]][[:lower:]]\)/\1\n\2/g’ \52

-e ‘s/_\+/\n/g’53
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}54

55

function ignore_keywords() {56

grep -vw "${keyword_opts[@]}" -e "^$"57

}58

59

function lowercase() {60

tr [:upper:] [:lower:]61

}62

63

extract_identifiers | split_words | lowercase | ignore_keywords64

65

66

# Script: java-code.sh67

#!/bin/bash68

set -e69

70

if [ $# -eq 0 ]71

then72

srcs="."73

else74

srcs="$@"75

fi76

77

function ignore_comments() {78

cpp | grep -Evx ’#.+’79

}80

81

# Ignore import and package statements.82

function ignore_package_names() {83

grep -Evx ’[[:space:]]*(import|package)[[:space:]].+’84

}85

86
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# -exec cat works with paths that contain spaces,87

while pipe through xargs cat does not88

find $srcs -name ’*.java’ -exec cat {} \; | ignore_comments |89

ignore_package_names90

#find "$srcs" -name ’*.java’ -exec cat {} \;91

92

#java-keywords93

list94

serializable95

observable96

throwable97

int98

double99

float100

string101

boolean102

constructor103

exception104

null105

throwable106

declare107

java108

abstract109

continue110

for111

new112

switch113

assert114

default115

goto116

package117

synchronized118

do119
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if120

private121

this122

break123

implements124

protected125

throw126

else127

import128

public129

throws130

case131

enum132

instanceof133

return134

transient135

catch136

extends137

try138

final139

interface140

static141

void142

class143

finally144

strictfp145

volatile146

const147

native148

super149

while150
151
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Data Preprocessing Scripts

The below R script is used to preprocess the data and generate train, test data.
1

#rt-polarity.pos : Linked records (bug report text and source file text2

combined)3

#rt-polarity.neg : Non-Linked records(bug report text and source file4

text combined)5

6

library(tm)7

library(hash)8

library(SnowballC)9

library(textstem)10

library(data.table)11

12

tomcat <-dbConnect(MySQL(), user=’root’, password=’’, dbname=’tomcat’,13

host=’localhost’)14

results<-dbSendQuery(tomcat,15

"SELECT bug_id,summary,description,files16

FROM bug_and_files17

ORDER BY report_time DESC")18

res<-dbFetch(results,n=-1)19

Tomcat<-as.data.frame(res)20

Tomcat["combined_text"]<-paste(Tomcat$summary,Tomcat$description,sep=" ")21
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## expanding the files columns to make sure there is one file per row22

Tomcat$files<-gsub("\\.java","\\.java<delim>",Tomcat$files)23

s <- strsplit(Tomcat$files, split = "<delim>")24

Tomcat<-data.frame(bug_id= rep(Tomcat$bug_id, sapply(s, length)),25

combined_text = rep(Tomcat$combined_text, sapply(s, length)),26

files = unlist(s))27

Tomcat$files<-trimws(Tomcat$file,which="both")28

29

# Linked Files30

Tomcat_Linked_Files<-read.csv(31

file="/Volumes/CORSAIR/Results/Tomcat/Tomcat_Linked_file_data.txt",32

sep="\t",header = FALSE,33

col.names=c("file","file_text"))34

Tomcat_Linked_Files$file<-gsub("\\./","",Tomcat_Linked_Files$file)35

Tomcat_Linked_Files$file<-trimws(Tomcat_Linked_Files$file,36

which="both")37

38

# Removing all files which do not have any content in them.39

Tomcat_Linked_Files<-Tomcat_Linked_Files[!Tomcat_Linked_Files40

$file_text=="",]41

42

Tomcat_All_Files<-read.csv(43

file="/Volumes/CORSAIR/Results/Tomcat/Tomcat_file_data.txt",44

sep="\t",header = FALSE,45

col.names=c("file","file_text"))46

47

Tomcat_All_Files$file<-gsub("\\./","",Tomcat_All_Files$file)48

Tomcat_All_Files$file<-trimws(Tomcat_All_Files$file,which="both")49

Tomcat_All_Files$file_text<-as.character(Tomcat_All_Files$file_text)50

Tomcat_All_Files<-Tomcat_All_Files[!Tomcat_All_Files$file_text=="",]51

52

# Separate Non-Linked Files53

Tomcat_Non_Linked<-Tomcat_All_Files[! Tomcat_All_Files$file %in%54
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Tomcat_Linked_Files$file,]55

56

# Combining Linked and Non-Linked files57

# This is the complete set of files in AspectJ repo.58

Tomcat_Files<-rbind(Tomcat_Linked_Files,Tomcat_Non_Linked)59

60

## remove all test case related files61

Tomcat_Files<-Tomcat_Files[!grepl("tests\\/", Tomcat_Files$file),]62

Tomcat_Files<-Tomcat_Files[!grepl("testdata\\/", Tomcat_Files$file),]63

64

# Text Pre-Processing65

# Normalizing the source code text66

Tomcat_Files$file_text<-stem_strings(Tomcat_Files$file_text)67

Tomcat_Files$file_text<- gsub(’\\s+’, ’ ’, Tomcat_Files$file_text)68

Tomcat_Files$file_text<- gsub(’^\\s+’, ’’, Tomcat_Files$file_text)69

Tomcat_Files$file_text<-trimws(Tomcat_Files$file_text,which="both")70

71

# Normalizing the bug report text72

Tomcat$combined_text<-gsub("[[:punct:]]"," ",Tomcat$combined_text)73

Tomcat$combined_text<-gsub("[[:digit:]]"," ",Tomcat$combined_text)74

Tomcat$combined_text<-gsub("([A-Z])", " \\1", Tomcat$combined_text)75

Tomcat$combined_text<-76

gsub("(?<=\\b\\w)\\s(?=\\w\\b)", "",Tomcat$combined_text,perl=T)77

Tomcat$combined_text<-tolower(Tomcat$combined_text)78

Tomcat$combined_text<-stem_strings(Tomcat$combined_text)79

Tomcat$combined_text<- gsub(’\\s+’, ’ ’, Tomcat$combined_text)80

Tomcat$combined_text<- gsub(’^\\s+’, ’’, Tomcat$combined_text)81

82

# Bug Ids and Bug Reports83

dfBRRandom<-unique(Tomcat[sample(nrow(Tomcat)),c("bug_id","combined_text84

")])85

86

# Dump bug reports to file87
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write.table(dfBRRandom,88

file="/Volumes/CORSAIR/Results/Tomcat/Tomcat_dfBR_Long.txt",89

sep="\t", row.names = FALSE, col.names = FALSE)90

91

# Shell script keeps only unique words in the bug reports.92

93

dfBRRandom<-read.csv(94

file="/Volumes/CORSAIR/Results/Tomcat/Tomcat_dfBR_Short.txt",95

sep="\t",header = FALSE,col.names = c("bug_id","combined_text"))96

97

# Files and the extracted textual content from File98

dfFileRandom<-Tomcat_Files[sample(nrow(Tomcat_Files)),]99

100

distinct_file_names<-data.frame(101

files=dfFileRandom$file,file_text=dfFileRandom$file_text)102

103

distinct_bug_reports<-data.frame(unique(dfBRRandom))104

105

count_of_distinct_bug_reports <- length(unique(106

distinct_bug_reports$bug_id))107

108

count_of_distinct_file_names <- nrow(distinct_file_names)109

110

linked_data_tbl <- hash(keys = paste(Tomcat$files,111

Tomcat$bug_id,sep="#"), values = 0)112

113

print(paste("Total Number of bug reports:",count_of_distinct_bug_reports)114

)115

116

print(paste("Total Number of source files:",count_of_distinct_file_names)117

)118

119

write.table(data.frame(),file="/Volumes/CORSAIR/Results/Tomcat/120
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All_Files/rt-polarity.neg",col.names = FALSE,row.names = FALSE,quote121

= FALSE)122

123

write.table(data.frame(),file="/Volumes/CORSAIR/Results/Tomcat/124

All_Files/rt-polarity.pos",col.names = FALSE,row.names = FALSE,quote125

= FALSE)126

127

write.table(data.frame(bug_id=as.integer(),sentence=as.character()),128

file="/Volumes/CORSAIR/Results/Tomcat/All_Files/bug_id_sentence",129

col.names = FALSE,row.names = FALSE,quote = FALSE)130

131

cnt <- 1132

133

for(i in 1:count_of_distinct_bug_reports){134

cat(paste("Processing bug report:",i,"\n"))135

bug_report_id<-distinct_bug_reports[i,1]136

bug_report_text<-distinct_bug_reports[i,2]137

start_id <- cnt138

end_id <- cnt + nrow(distinct_file_names) - 1139

dat <- data.frame(row_id = seq(start_id, end_id), bug_id =140

bug_report_id, bug_report_text = bug_report_text, file =141

distinct_file_names$files,142

file_text=distinct_file_names$file_text,class_label = "neg")143

144

#update class of linked records145

linked_rows_ids <- which(has.key(paste(dat$file,146

bug_report_id,sep = "#" ), linked_data_tbl))147

148

dat$class_label<-as.character(dat$class_label)149

dat$class_label[linked_rows_ids] = "pos"150

dat$sentence<-paste(dat$bug_report_text,dat$file_text,sep=" ")151

cnt <- end_id + 1152

153
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#save data to positive and negative files154

pos_rows_to_append<-dat[dat$class_label=="pos","sentence"]155

neg_rows_to_append <-dat[dat$class_label=="neg","sentence"]156

tot_rows_to_append <-dat[,c("bug_id","sentence")]157

158

pos_file_path <- paste("/Volumes/CORSAIR/Results/Tomcat/All_Files/",159

"rt-polarity.pos", sep="")160

161

neg_file_path <- paste("/Volumes/CORSAIR/Results/Tomcat/All_Files/",162

"rt-polarity.neg", sep="")163

164

tot_file_path <- paste("/Volumes/CORSAIR/Results/Tomcat/All_Files/",165

"bug_id_sentence", sep="")166

167

write.table(pos_rows_to_append,file=pos_file_path,168

append=TRUE,row.names=FALSE,quote = FALSE,col.names =FALSE)169

170

write.table(neg_rows_to_append,file=neg_file_path,171

append=TRUE,row.names=FALSE,quote = FALSE,col.names =FALSE)172

173

write.table(tot_rows_to_append,file=tot_file_path,174

append=TRUE,row.names=FALSE,quote = FALSE,col.names =FALSE,sep="\t")175

176

}177

178

### LMT Stratified 10 fold Sampling (9 fold into train and 1 fold into179

test)180

181

library(data.table)182

library(caret)183

184

pos.data<-read.csv(185

file="/home/spoliset/parse_source_code186
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/Eclipse/bag_of_words/All_Files/rt-polarity.pos",187

header = FALSE,col.names="sentence")188

pos.data["true_label"]<-1189

neg.data<-fread(190

file="/home/spoliset/parse_source_code191

/Eclipse/bag_of_words/All_Files/rt-polarity.neg",192

sep=",",header = FALSE,quote = "")193

colnames(neg.data)<-"sentence"194

neg.data<-as.data.frame(neg.data)195

neg.data["true_label"]<-0196

full.data<-rbind(pos.data,neg.data)197

train.index <- createDataPartition(full.data$true_label, p = .9, list =198

FALSE)199

train <- full.data[ train.index,]200

test <- full.data[-train.index,]201

nb.pos.train<-train[train$true_label==1,]202

nb.neg.train<-train[!train$true_label==1,]203

nb.pos.test<-test[test$true_label==1,]204

nb.neg.test<-test[!test$true_label==1,]205

write.table(data.frame(),206

file="/home/spoliset/LMT_bow/Eclipse/All_Files/rt-polarity.pos.train207

", col.names = FALSE,row.names = FALSE,208

quote = FALSE)209

write.table(data.frame(),210

file="/home/spoliset/LMT_bow/Eclipse/All_Files/rt-polarity.neg.train211

", col.names = FALSE,row.names = FALSE,212

quote = FALSE)213

write.table(data.frame(),214

file="/home/spoliset/LMT_bow/Eclipse215

/All_Files/rt-polarity.neg.test216

", col.names = FALSE,row.names = FALSE,217

quote = FALSE)218

write.table(data.frame(),219
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file="/home/spoliset/LMT_bow/Eclipse220

/All_Files/rt-polarity.pos.test221

", col.names = FALSE,row.names = FALSE,222

quote = FALSE)223

write.table(nb.pos.train[,"sentence"],224

file="/home/spoliset/LMT_bow/Eclipse/All_Files/rt-polarity.pos.train225

", append=TRUE,row.names=FALSE,226

quote = FALSE,col.names =FALSE)227

write.table(nb.neg.train[,"sentence"],228

file="/home/spoliset/LMT_bow/Eclipse/All_Files/rt-polarity.neg.train229

", append=TRUE,row.names=FALSE,230

quote = FALSE,col.names =FALSE)231

write.table(nb.pos.test[,"sentence"],232

file="/home/spoliset/LMT_bow/Eclipse/All_Files/rt-polarity.pos.test233

", append=TRUE,row.names=FALSE,234

quote = FALSE,col.names =FALSE)235

write.table(nb.neg.test[,"sentence"],236

file="/home/spoliset/LMT_bow/Eclipse/All_Files/rt-polarity.neg.test237

", append=TRUE,row.names=FALSE, quote = FALSE,col.names =FALSE)238
239
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Scripts For CNN Model

The below scripts classify the combined records of bug reports and source files into linked

and non-linked records using Convolution Neural Nets. data helpers.py script is used for

reading the data, building the vocabulary and padding the input sentences. model.py

script is used to train and test the CNN model.
1

# Script: data_helpers.py2

# Dependencies: Keras with Tensorflow backend3

4

import numpy as np5

import re6

import itertools7

from collections import Counter8

import sys9

from scipy import sparse10

from keras.preprocessing.text import Tokenizer11

12

PAD = "<PAD/>"13

def load_labels(pos_file_name, neg_file_name):14

#TODO update comments15

"""16

Loads polarity data from files, splits the data into words and17

generates labels.18
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Returns split sentences and labels.19

"""20

pos_labels_cnt = 021

neg_labels_cnt = 022

23

with open(pos_file_name) as f:24

for line in f:25

pos_labels_cnt = pos_labels_cnt + 126

27

with open(neg_file_name) as f:28

for line in f:29

neg_labels_cnt = neg_labels_cnt + 130

31

y = np.concatenate([[1] * pos_labels_cnt, [0] * neg_labels_cnt], 0)32

33

return y34

35

36

def build_vocab_new(files):37

"""38

Builds a vocabulary mapping from word to index based on the sentences39

.40

Returns vocabulary mapping and inverse vocabulary mapping.41

"""42

vocabulary = {}43

word_id_cnt = 144

max_words_in_sentence = 045

for file in files:46

with open(file) as f:47

for line in f:48

words = line.strip().split(" ")49

50

#comput maximum number of words in a sentence51
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if len(words) > max_words_in_sentence:52

max_words_in_sentence = len(words)53

54

#build a mapping between word and numeric index55

for word in words:56

if word not in vocabulary:57

vocabulary[word] = word_id_cnt58

word_id_cnt = word_id_cnt + 159

60

#Add the padding word to the dictionary61

vocabulary[PAD] = 062

63

#build an inverse vocabulary64

vocabulary_inv = {v: k for k, v in vocabulary.iteritems()}65

66

#print(vocabulary_inv)67

68

return [vocabulary, vocabulary_inv, max_words_in_sentence]69

70

def build_input_data(files,labels, vocabulary, max_words_in_sentence):71

72

labels_cnt = len(labels)73

x = np.zeros((labels_cnt, max_words_in_sentence), dtype = np.int32)74

sentence_ind = 075

for file in files:76

with open(file) as f:77

for line in f:78

words = line.strip().split(" ")79

word_ind = 080

for word in words:81

x[sentence_ind, word_ind] = vocabulary[word]82

word_ind = word_ind + 183

sentence_ind = sentence_ind +184
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85

return x86

87

def load_data():88

"""89

Loads and preprocessed data for the dataset.90

Returns input vectors, labels, vocabulary, and inverse vocabulary.91

"""92

vocabulary, vocabulary_inv, max_words_in_sentence =93

build_vocab_new(["./data/rt-polarity.pos", "./data/rt-polarity.neg"94

])95

y = load_labels("./data/rt-polarity.pos", "./data/rt-polarity.neg")96

x = build_input_data(["./data/rt-polarity.pos",97

"./data/rt-polarity.neg"],y, vocabulary, max_words_in_sentence)98

99

return [x, y, vocabulary, vocabulary_inv]100

101

# Script model.py script102

103

from keras.layers import Input, Dense, Embedding, merge,104

Convolution2D, MaxPooling2D, Dropout, Lambda105

from sklearn.cross_validation import train_test_split106

from keras.layers.core import Reshape, Flatten107

from keras.callbacks import ModelCheckpoint108

from data_helpers import load_data109

from keras.optimizers import Adam110

from keras.models import Model111

from sklearn.model_selection import StratifiedKFold112

from keras import backend as K113

import numpy as np114

import h5py115

import tensorflow as tf116

from sklearn import metrics117
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from keras import metrics as k_metrics118

import functools119

from keras.utils import multi_gpu_model120

from sklearn.utils import class_weight121

122

seed = 5123

np.random.seed(seed)124

125

print(’Loading data’)126

x, y, vocabulary, vocabulary_inv = load_data()127

128

shuffle_indices = np.random.permutation(np.arange(len(y)))129

x = x[shuffle_indices]130

y = y[shuffle_indices]131

132

sequence_length = x.shape[1]133

134

vocabulary_size = len(vocabulary_inv)135

print("Vocabulary Size: {:d}".format(len(vocabulary_inv)))136

137

nb_classes=vocabulary_size138

filter_sizes = [2,3,4,5]139

num_filters = 100140

drop = 0.5141

142

epochs = 25143

batch_size = 64144

145

hidden_dims = 100146

147

148

class_weight = class_weight.compute_class_weight(’balanced’, np.unique(y)149

, y)150
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151

class_weight = {0: class_weight[0], 1: class_weight[1]}152

153

print("Class Weight:",class_weight)154

155

kfold = StratifiedKFold(n_splits=10, shuffle=False, random_state=seed)156

157

cvscores = []158

auc_scores = []159

160

fold_counter = 0161

162

for train, test in kfold.split(x, y):163

164

fold_counter = fold_counter + 1165

166

print("Current Fold : ", fold_counter)167

168

# to save test data of the current fold to file169

170

test_file_name = "test_data_" + str(fold_counter)171

true_labels_file_name = "true_labels_" + str(fold_counter)172

train_lables_file_name = "train_labels" + str(fold_counter)173

pred_file_name = "predictions_" + str(fold_counter)174

175

test_indices = test.flatten().tolist()176

#np.set_printoptions(threshold=’nan’)177

file_test = open(test_file_name, ’a’)178

file_labels = open(true_labels_file_name, ’a’)179

180

for i in test_indices:181

sent_text = np.vectorize(vocabulary_inv.get)(x[i]).tolist182

()183
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new_sent_text = [j for j in sent_text if j != ’<PAD/>’]184

final_sent = ’ ’.join(new_sent_text) + "\n"185

file_test.write(final_sent)186

file_labels.write(’%d\n’ % y[i])187

188

file_test.close()189

file_labels.close()190

191

np.savetxt(train_lables_file_name,y[train],fmt="%1.2f")192

193

input_shape = (sequence_length,)194

output_shape = (input_shape[0], nb_classes)195

inputs = Input(shape=input_shape,dtype=’int32’)196

197

198

# One-Hot Encoding Layer199

200

ohe=Lambda(K.one_hot,201

arguments={’num_classes’:nb_classes},202

output_shape=output_shape)(inputs)203

204

reshape = Reshape((sequence_length,nb_classes,1))(ohe)205

206

conv_0 = Convolution2D(num_filters, filter_sizes[0], nb_classes,207

border_mode=’valid’,208

init=’normal’, activation=’relu’, dim_ordering=’tf’)(reshape)209

210

conv_1 = Convolution2D(num_filters, filter_sizes[1], nb_classes,211

border_mode=’valid’,212

init=’normal’, activation=’relu’, dim_ordering=’tf’)(reshape)213

214

conv_2 = Convolution2D(num_filters, filter_sizes[2], nb_classes,215

border_mode=’valid’,216
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init=’normal’, activation=’relu’, dim_ordering=’tf’)(reshape)217

218

conv_3 = Convolution2D(num_filters, filter_sizes[3], nb_classes,219

border_mode=’valid’,220

init=’normal’, activation=’relu’, dim_ordering=’tf’)(reshape)221

222

maxpool_0 = MaxPooling2D(pool_size=(sequence_length -223

filter_sizes[0] + 1, 1),224

strides=(1,1), border_mode=’valid’, dim_ordering=’tf’)(conv_0)225

226

maxpool_1 = MaxPooling2D(pool_size=(sequence_length -227

filter_sizes[1] + 1, 1),228

strides=(1,1), border_mode=’valid’, dim_ordering=’tf’)(conv_1)229

230

maxpool_2 = MaxPooling2D(pool_size=(sequence_length -231

filter_sizes[2] + 1, 1),232

strides=(1,1), border_mode=’valid’, dim_ordering=’tf’)(conv_2)233

234

maxpool_3 = MaxPooling2D(pool_size=(sequence_length -235

filter_sizes[3] + 1, 1),236

strides=(1,1), border_mode=’valid’, dim_ordering=’tf’)(conv_3)237

238

merged_tensor = merge([maxpool_0, maxpool_1, maxpool_2, maxpool_3239

],240

mode=’concat’, concat_axis=1)241

242

flatten = Flatten()(merged_tensor)243

244

dropout = Dropout(drop)(flatten)245

246

dense = Dense(hidden_dims, activation="relu")(dropout)247

248

output = Dense(1, activation="sigmoid")(dense)249

117



Chapter E. Scripts For CNN Model

250

251

# this creates a model that includes all the above layers.252

253

with tf.device(’/cpu:0’):254

model = Model(input=inputs, output=output)255

256

checkpoint = ModelCheckpoint(’weights.best.hdf5’, monitor=’257

val_acc’,258

verbose=1, save_best_only=True, mode=’auto’)259

260

callbacks_list = [checkpoint]261

262

adam = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)263

264

parallel_model = multi_gpu_model(model, gpus=4)265

266

parallel_model.compile(optimizer=adam,267

loss=’binary_crossentropy’, metrics=[’accuracy’])268

269

parallel_model.__setattr__(’callback_model’,model)270

271

parallel_model.fit(x[train], y[train], batch_size=batch_size,272

epochs=epochs,273

verbose=1, validation_split=0.1, class_weight = class_weight,274

callbacks=callbacks_list) # starts training275

276

# Load weights which gave best val accuracy and compile the model277

.278

Evaluate on test set and calculate metrics279

280

print(’Loading Best Weights..’)281

282
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model.load_weights("weights.best.hdf5")283

284

model.compile(optimizer=adam, loss=’binary_crossentropy’, metrics285

=[’accuracy’])286

287

print(’Evaluating on Best Weights..’)288

289

scores = model.evaluate(x[test], y[test], verbose=0)290

291

yp = model.predict(x[test], batch_size=50, verbose=1)292

293

np.savetxt(pred_file_name,yp,fmt="%1.2f")294

295

auc = metrics.roc_auc_score(y[test],yp)296

297

print("AUC",auc)298

299

print("%s: %.2f%%" % (’Binary Classification Accuracy’, scores300

[1]*100))301

302

cvscores.append(scores[1] * 100)303

304

auc_scores.append(auc)305

306

307

print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores)))308

309

print("%.2f (+/- %.2f)" % (np.mean(auc_scores), np.std(auc_scores)))310
311
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Scripts For LMT Model

The below commands classify the combined records of bug reports and source files into

linked and non-linked records using LMT Models. For both the train and test sets, we

first convert the sentences into word vectors. For training set, we balance the positive

and negative classes and then apply the LMT Models with 10-fold cross validation. We

save the trained model and test it on the test set. The predictions on the test set are

saved in the Results LR.txt file.
1

module load java2

export CLASSPATH=$CLASSPATH:/home/spoliset/tools/weka-3-8-2/weka.jar3

4

java -Xmx200g weka.core.converters.TextDirectoryLoader5

-dir /home/spoliset/weka_CLI_sample/Training >6

/home/spoliset/weka_CLI_sample/Training/input_train.arff7

8

java -Xmx200g weka.filters.unsupervised.attribute.StringToWordVector9

-tokenizer "weka.core.tokenizers.WordTokenizer10

-delimiters \" \\r\\n\\t.,;:\\\’\\\"()?\!\""11

-W 10000 -i /home/spoliset/weka_CLI_sample/Training/input_train.arff12

-o /home/spoliset/weka_CLI_sample/Training/output_train.arff13

14

java -Xmx200g weka.filters.supervised.instance.ClassBalancer15

-num-intervals 1016
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-i /home/spoliset/weka_CLI_sample/Training/output_train.arff17

-o /home/spoliset/weka_CLI_sample/Training/output_train_cb.arff18

-c first19

20

java -Xms200g -Xmx500g weka.classifiers.functions.SimpleLogistic -I 021

-M 500 -H 5022

-W 0.523

-t home/spoliset/weka_CLI_sample/Training/output_train_cb.arff24

-x 1025

-d /home/spoliset/weka_CLI_sample26

/Training/LR.model27

-c first 2>&1 | tee28

/home/spoliset/weka_CLI_sample/Training/Results_LR.txt29

30

java -Xmx200g weka.core.converters.TextDirectoryLoader31

-dir /home/spoliset/project/spoliset/weka_CLI_sample/Testing >32

/home/spoliset/weka_CLI_sample/Testing/input_test.arff33

34

java -Xmx200g weka.filters.unsupervised.attribute.StringToWordVector35

-tokenizer "weka.core.tokenizers.WordTokenizer36

-delimiters \" \\r\\n\\t.,;:\\\’\\\"()?\!\""37

-W 10000 -i /home/spoliset/weka_CLI_sample/Testing/input_test.arff38

-o /home/spoliset/weka_CLI_sample/Testing/output_test.arff39

40

java -Xms200g -Xmx500g weka.classifiers.misc.InputMappedClassifier41

-L /home/spoliset/bow_LR/Eclipse/Buggy_Files_Reduced/Training/LR.model42

-t /home/spoliset/weka_CLI_sample/Training/output_train_cb.arff43

-T /home/spoliset/weka_CLI_sample/Testing/output_test.arff -M -v44

-classifications "weka.classifiers.evaluation.output.prediction.CSV" >45

/home/spoliset/weka_CLI_sample/Testing/Results_LR.txt46
47
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Evaluation Metrics Scripts

Scripts used to calculate AUC and other IR metrics: MAP, MRR, Top 5 for both CNN

and LMT Models
1

# Functions For calculating Performance Metrics.2

# Data should have the linked and non-linked records for a single3

bug/test case and the actual labels.4

# 1 is linked and 0 is not linked.5

6

AP<-function(data){7

relevant_record_indexes <- which(data[,2] == 1)8

relevant_record_indexes_count <- length(relevant_record_indexes)9

ap <- ifelse( relevant_record_indexes_count == 0, 0,10

mean(seq(1:relevant_record_indexes_count)11

/relevant_record_indexes))12

return(ap)13

14

}15

16

ap_lbls<-function(labels, positive_lbl = 2){17

relevant_record_indexes <- which(labels == positive_lbl)18

relevant_record_indexes_count <- length(relevant_record_indexes)19

ap <- ifelse( relevant_record_indexes_count == 0, 0,20
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mean( seq(1:relevant_record_indexes_count) /21

relevant_record_indexes ))22

}23

24

RR<-function(data){25

reciprocal_rank<-1/(which(data[,2]== 1)[1])26

return(reciprocal_rank)27

}28

29

TOP_10<-function(data){30

# Hits/Total Suggestions31

top_10_relevant_record_indexes <- which(data[1:10,2] == 1)32

top_10_relevant_record_indexes_count <- length(33

top_10_relevant_record_indexes)34

return(top_10_relevant_record_indexes_count)35

}36

37

MAP<-function(aps){38

return(mean(aps[aps!=0]))39

}40

41

MRR<-function(rrs){42

return(mean(rrs[!is.na(rrs)]))43

}44

45

# bug reports which have atleast 1 relevant file in its top 10 results of46

source files divided by no of bugs which have relevant files in the test47

set48

TOP10<-function(top10,n){49

return(length(top10[top10 > 0])/n)50

}51

52

53
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# To calculate MAP, MRR and Top 10 Rank for the CNN model54

# 1 Linked, 0 Not Linked55

# Files needed:56

# the test set with the actual combined sentences of bug report and57

source file58

# the total file with bug id and combined sentences generated in data59

generation.60

# the true labels of the records in the test set.61

# the predicitions made by the model on the test set.62

63

library(data.table)64

65

df.total.set <- fread(66

file="/Volumes/CORSAIR/CNN-Lesser-Source-Files/67

bug_id_sentence",sep="\t",68

col.names = c("bug_id","sentence"))69

70

df.test_data <- read.csv(71

file="~/Downloads/test_data_1",header = FALSE,72

col.names = "sentence")73

74

df.test_data$sentence<-as.character(df.test_data$sentence)75

df.true_labels <-read.csv(76

file="~/Downloads/true_labels_1",77

header = FALSE,col.names="relatedness_score")78

79

df.preds<-read.csv(80

file="~/Downloads/predictions_1"81

,header = FALSE,col.names="pobability_linked")82

83

# Add bug ids to the test data to identify the combined records84

pertaining to a bug id.85

df.test_data$bug_id <-86
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df.total.set$bug_id[match(df.test_data$sentence, df.total.set$sentence)]87

88

# cbind all the above to get the bugid, probability_linked,89

relatedness_score90

df.MAP_file<-cbind(df.test_data[2],df.preds,df.true_labels)91

df.MAP_file <- df.MAP_file[order(df.MAP_file$bug_id),]92

93

# Save File94

# This file has the bug id, prediction score, true label95

write.table(df.MAP_file,file="~/Downloads/test_map",96

col.names = FALSE,sep=",",row.names = FALSE)97

Test_Case_Preds="~/Downloads/test_map"98

99

ap<-function(data,average_prec_all,cnt_sentences){100

data<-data[rowSums(is.na(data))!=ncol(data), ]101

data <- data[order(-data[,1]),]102

aps<-AP(data)103

cat(paste(’AP:’,aps,"\n"))104

average_prec_all[cnt_sentences]<-aps105

return(average_prec_all)106

}107

108

rr<-function(data,rr_all,cnt_sentences){109

dat<-dat[rowSums(is.na(dat))!=ncol(dat), ]110

dat <- dat[order(-dat[,1]), ]111

rrs<-RR(dat)112

cat(paste(’RR:’,rrs,"\n"))113

rr_all[cnt_sentences]<-rrs114

return(rr_all)115

116

}117

118

top_10<-function(data,top_10_all,cnt_sentences,bugs_with_rel_files){119
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dat<-dat[rowSums(is.na(dat))!=ncol(dat), ]120

dat <- dat[order(-dat[,1]), ]121

top_tens<-TOP_10(dat)122

cat(paste(’Top 10:’,top_tens,"\n"))123

top_10_all[cnt_sentences]<-top_tens124

return(top_10_all)125

}126

average_prec_all<-vector(mode="numeric")127

rr_all<-vector(mode="numeric")128

top_10_all<-vector(mode="numeric")129

130

prev_sentence<-’dummy’131

dat<-matrix(nrow=1000000,ncol=2)132

con = file(Test_Case_Preds, "r")133

cnt_sentences<-0134

cnt<-0135

line_no<-0136

while ( TRUE ) {137

line = readLines(con, n = 1)138

line_no<-line_no+1139

cat(paste(’Reading Line:’,line_no,"\n"))140

cnt<-cnt+1141

if ( length(line) == 0 ) {142

break143

}144

line_split<-unlist(strsplit(line, ","))145

current_sentence<-line_split[1]146

if(prev_sentence != current_sentence){147

cnt_sentences<-cnt_sentences+1148

cat(paste(’This is a New Bug:’,cnt_sentences,"\n"))149

# get the prev sentence and calculate AP150

if(!all(is.na(dat))){151

cat(paste(’Calculating MAP and MRR of sentence:’,152
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(cnt_sentences-1),"\n"))153

average_prec_all<-ap(dat,average_prec_all,cnt_sentences-1)154

rr_all<-rr(dat,rr_all,cnt_sentences-1)155

top_10_all<-top_10(dat,top_10_all,cnt_sentences-1)156

dat<-matrix(nrow=1000000,ncol=2)157

cnt<-1158

}159

}160

prev_sentence<-current_sentence161

dat[cnt,1]<-as.numeric(line_split[2])162

dat[cnt,2]<-as.numeric(line_split[3])163

164

}165

close(con)166

167

# For calculating the AP for the last sentence in the data168

average_prec_all<-ap(dat,average_prec_all,cnt_sentences)169

170

# For calculating the RR for the last sentence in the data171

rr_all<-rr(dat,rr_all,cnt_sentences)172

173

# For calculating the Top 10 for the last sentence in the data174

top_10_all<-top_10(dat,top_10_all,cnt_sentences)175

176

# Final MAP177

mean_average_precision<-MAP(average_prec_all)178

round(mean_average_precision,5)179

180

# Final MRR181

mean_reciprocal_rank<-MRR(rr_all)182

round(mean_reciprocal_rank,5)183

184

# Final Top 10 Rank185
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no_bugs_rel<-length(average_prec_all[average_prec_all!=0])186

top_10_rank<-TOP10(top_10_all,no_bugs_rel)187

round(top_10_rank,5)188

189

# Calculate AUC190

df.true_labels$relatedness_score<-as.factor(df.191

true_labels$relatedness_score)192

auc(roc(df.preds$pobability_linked,df.true_labels$relatedness_score))193

194

# histogram of AP distibution195

hist(average_prec_all[average_prec_all!=0],196

main = "Distribution of AP",xlab="AP",ylab="Bug Reports")197

198

# histogram of Top 10 distirbution199

hist(top_10_all[which(average_prec_all!=0)],200

main = "Distribution of Top 10 Rank",201

xlab="Number of Relevant Files In Top-10",ylab="Bug Reports")202

203

# histogram of RR distribution204

hist(rr_all[which(average_prec_all!=0)],205

main = "Distribution of RR",xlab="RR",ylab="Bug Reports")206

207

208

## R Script to convert the predicted values to probability linked scores209

library(tidyr)210

df.preds<-read.csv(file="/Volumes/CORSAIR/Results/LR/AspectJ/All_Files/211

Results_LR.txt", header = TRUE,sep = ",")212

213

df.preds["probability_linked"]<--1214

215

# Updat the above column based on the below logic:216

# Actual,Predicted,Probability_Belongs_To_Predicted_Class,217

Probability_Belongs_To_Positive_Class218
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# pos neg p 1-p219

# neg pos p p220

# pos pos p p221

# neg neg p 1-p222

223

df.preds$prediction<-as.numeric(df.preds$prediction)224

df.preds$actual<-as.character(df.preds$actual)225

df.preds$predicted<-as.character(df.preds$predicted)226

227

df.preds[df.preds$actual=="2:neg" & df.preds$predicted=="1:pos" & df.228

preds$prediction< 1.000,"probability_linked"]<-229

df.preds[df.preds$actual=="2:neg" & df.preds$predicted=="1:pos" & df.230

preds$prediction< 1.000,"prediction"]231

232

df.preds[df.preds$actual=="1:pos" & df.preds$predicted=="2:neg" & df.233

preds$prediction< 1.000,"probability_linked"]<-234

1-(df.preds[df.preds$actual=="1:pos" & df.preds$predicted=="2:neg" & df235

.preds$prediction< 1.000,"prediction"])236

237

df.preds[df.preds$actual=="2:neg" & df.preds$predicted=="2:neg" & df.238

preds$prediction< 1.000,"probability_linked"]<-239

1-(df.preds[df.preds$actual=="2:neg" & df.preds$predicted=="2:neg" & df240

.preds$prediction< 1.000,"prediction"])241

242

df.preds[df.preds$actual=="1:pos" & df.preds$predicted=="1:pos" & df.243

preds$prediction< 1.000,"probability_linked"]<-244

df.preds[df.preds$actual=="1:pos" & df.preds$predicted=="1:pos" & df.245

preds$prediction< 1.000,"prediction"]246

247

248

write.table(df.preds[,"probability_linked"],file="/Volumes/CORSAIR/249

Results/LR/AspectJ/All_Files/derived_predictions_LR.csv",col.names =250

FALSE,row.names=FALSE,sep=",")251
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252

#########################################################################253

# To calculate MAP, MRR and Top 10 Rank for the LMT model254

# 1 Linked, 0 Not Linked255

# Files needed:256

# (1) The test set with the actual combined sentences of bug report and257

source file.258

# (2) The total file with bug id and combined sentences generated during259

data generation in R.260

# (3) The true labels of the records in the test set.261

# (4) The predictions made by the model on the test set.262

#########################################################################263

library(data.table)264

library(stringr)265

library(tm)266

library(AUC)267

# For bag of words files268

df.total.set<-269

fread(file="/Volumes/CORSAIR/Results/270

AspectJ/bag_of_words/All_Files/bug_id_sentence",271

sep="\t",col.names = "sentence")272

df.total.set$bug_id <- word(df.total.set$sentence,1)273

df.total.set$sentence<-removeNumbers(df.total.set$sentence)274

df.total.set$sentence<-trimws(df.total.set$sentence,which="both")275

276

df.pos.test_data<-277

read.csv(file="/Volumes/CORSAIR/Results/278

LR/AspectJ/All_Files/rt-polarity.pos.test",header = FALSE,279

col.names = "sentence")280

df.pos.test_data["true_labels"]<-1281

282

df.neg.test_data<-283

read.csv(file="/Volumes/CORSAIR/Results/284
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LR/AspectJ/All_Files/rt-polarity.neg.test",header = FALSE,285

col.names = "sentence")286

df.neg.test_data["true_labels"]<-0287

288

df.test_data<-rbind(df.pos.test_data,df.neg.test_data)289

df.true_labels<-as.data.frame(df.test_data[,"true_labels"])290

colnames(df.true_labels)<-"relatedness_score"291

df.test_data$sentence<-as.character(df.test_data$sentence)292

df.test_data$sentence<-trimws(df.test_data$sentence,which="both")293

294

# Probabilities derived after converting the model predictions295

# to prob_linked296

df.preds<-297

read.csv(file="/Volumes/CORSAIR/Results/298

LR/AspectJ/All_Files/derived_predictions_LR.csv",299

header = FALSE,300

col.names = "probability_linked")301

302

# Add bug ids to the test data to identify the combined records303

pertaining304

# to a bug id.305

df.test_data$bug_id<-df.total.set$bug_id[match(df.test_data$sentence,306

df.total.set$sentence)]307

308

# cbind all the above to get the bugid, true_labels, prediction309

310

df.MAP_file<-cbind(df.test_data[,c("bug_id","true_labels")],df.preds)311

df.MAP_file <- df.MAP_file[order(df.MAP_file$bug_id),]312

313

# Re-ordering the columns : bug id, prediction score, true label314

df.MAP_file<-df.MAP_file[c(1,3,2)]315

316

# Save File. This file has the bug id, prediction score, true label317
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write.table(df.MAP_file,318

file="/Volumes/CORSAIR/Results/LR/AspectJ/All_Files/test_map_LR",319

col.names = FALSE,sep=",",320

row.names = FALSE)321

Test_Case_Preds="/Volumes/CORSAIR/Results/LR/AspectJ/All_Files/322

test_map_LR"323

324

ap<-function(data,average_prec_all,cnt_sentences){325

data<-data[rowSums(is.na(data))!=ncol(data), ]326

data <- data[order(-data[,1]),]327

aps<-AP(data)328

cat(paste(’AP:’,aps,"\n"))329

average_prec_all[cnt_sentences]<-aps330

return(average_prec_all)331

}332

333

rr<-function(data,rr_all,cnt_sentences){334

dat<-dat[rowSums(is.na(dat))!=ncol(dat), ]335

dat <- dat[order(-dat[,1]), ]336

rrs<-RR(dat)337

cat(paste(’RR:’,rrs,"\n"))338

rr_all[cnt_sentences]<-rrs339

return(rr_all)340

341

}342

343

top_5<-function(data,top_5_all,cnt_sentences,bugs_with_rel_files){344

dat<-dat[rowSums(is.na(dat))!=ncol(dat), ]345

dat <- dat[order(-dat[,1]), ]346

top_fives<-TOP_5(dat)347

cat(paste(’Top 5:’,top_fives,"\n"))348

top_5_all[cnt_sentences]<-top_fives349

return(top_5_all)350
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}351

average_prec_all<-vector(mode="numeric")352

rr_all<-vector(mode="numeric")353

top_5_all<-vector(mode="numeric")354

prev_sentence<-’dummy’355

dat<-matrix(nrow=1000000,ncol=2)356

con = file(Test_Case_Preds, "r")357

cnt_sentences<-0358

cnt<-0359

line_no<-0360

while ( TRUE ) {361

line = readLines(con, n = 1)362

line_no<-line_no+1363

cat(paste(’Reading Line:’,line_no,"\n"))364

cnt<-cnt+1365

if ( length(line) == 0 ) {366

break367

}368

line_split<-unlist(strsplit(line, ","))369

current_sentence<-line_split[1]370

if(prev_sentence != current_sentence){371

cnt_sentences<-cnt_sentences+1372

cat(paste(’This is a New Bug:’,cnt_sentences,"\n"))373

# get the prev sentence and calculate AP374

if(!all(is.na(dat))){375

cat(paste(’Calculating MAP and MRR of sentence:’376

,(cnt_sentences-1),"\n"))377

average_prec_all<-ap(dat,average_prec_all,cnt_sentences-1)378

rr_all<-rr(dat,rr_all,cnt_sentences-1)379

top_5_all<-top_5(dat,top_5_all,cnt_sentences-1)380

dat<-matrix(nrow=1000000,ncol=2)381

cnt<-1382

}383
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}384

prev_sentence<-current_sentence385

dat[cnt,1]<-as.numeric(line_split[2])386

dat[cnt,2]<-as.numeric(line_split[3])387

388

}389

close(con)390

391

# For calculating the AP for the last sentence in the data392

average_prec_all<-ap(dat,average_prec_all,cnt_sentences)393

394

# For calculating the RR for the last sentence in the data395

rr_all<-rr(dat,rr_all,cnt_sentences)396

397

# For calculating the Top 10 for the last sentence in the data398

top_5_all<-top_5(dat,top_5_all,cnt_sentences)399

# Final MAP400

mean_average_precision<-MAP(average_prec_all)401

round(mean_average_precision,5)402

403

# Final MRR404

mean_reciprocal_rank<-MRR(rr_all)405

round(mean_reciprocal_rank,5)406

407

# Final Top 5 Rank408

no_bugs_rel<-length(average_prec_all[average_prec_all!=0])409

top_5_rank<-TOP5(top_5_all,no_bugs_rel)410

round(top_5_rank,5)411

412

df.true_labels$relatedness_score<-as.factor(df.413

true_labels$relatedness_score414

)auc(roc(df.preds$probability_linked,df.true_labels$relatedness_score415

))416
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# histogram of AP distribution417

hist(average_prec_all[average_prec_all!=0],418

main = "Distribution of AP",xlab="AP",419

ylab="Bug Reports")420

421

# histogram of Top 5 distribution422

hist(top_5_all[which(average_prec_all!=0)],423

main = "Distribution of Top 5 Rank",424

xlab="Number of Relevant Files In Top-5",425

ylab="Bug Reports")426

427

# histogram of RR distribution428

hist(rr_all[which(average_prec_all!=0)],429

main = "Distribution of RR",430

xlab="RR", ylab="Bug Reports")431
432
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neural network based language model. In Eleventh Annual Conference of the In-

ternational Speech Communication Association, 2010.

[83] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural networks

over tree structures for programming language processing. In Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages 1287–1293.

AAAI Press, 2016.

[84] S. S. Murtaza, A. Hamou-Lhadj, N. H. Madhavji, and M. Gittens. An empirical

study on the use of mutant traces for diagnosis of faults in deployed systems. J.

Syst. Softw., 90:29–44, April 2014.

143



REFERENCES REFERENCES

[85] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen.

A topic-based approach for narrowing the search space of buggy files from a bug

report. In 2011 26th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2011), pages 263–272, Nov 2011.

[86] R. Pal. Predictive Modeling of Drug Sensitivity. Academic Press, 2016.

[87] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? sentiment classification using

machine learning techniques. In Proceedings of EMNLP, pages 79–86, 2002.

[88] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word repre-

sentation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pages 1532–1543, 2014.

[89] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[90] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. Darwin: An approach to

debugging evolving programs. ACM Trans. Softw. Eng. Methodol., 21(3):19:1–

19:29, July 2012.

[91] D. R. Radev, H. Qi, H. Wu, and W. Fan. Evaluating web-based question answering

systems. Ann Arbor, 1001:48109.

[92] S. Rao and A. Kak. Retrieval from software libraries for bug localization: A com-

parative study of generic and composite text models. In Proceedings of the 8th

Working Conference on Mining Software Repositories, MSR ’11, pages 43–52, New

York, NY, USA, 2011. ACM.

[93] S. Ruder. An overview of gradient descent optimization algorithms. CoRR,

abs/1609.04747, 2016.

[94] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. nature, 323(6088):533, 1986.

[95] D. Saha, M. G. Nanda, P. Dhoolia, V. K. Nandivada, V. Sinha, and S. Chandra.

Fault localization for data-centric programs. In Proceedings of the 19th ACM SIG-

SOFT symposium and the 13th European conference on Foundations of software

engineering, pages 157–167. ACM, 2011.

144



REFERENCES REFERENCES

[96] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug localization

using structured information retrieval. In 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 345–355, Nov 2013.

[97] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Commun. ACM, 18(11):613–620, November 1975.

[98] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of research and development, 3(3):210–229, 1959.

[99] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks,

61:85–117, 2015.

[100] H. Schütze, C. D. Manning, and P. Raghavan. Introduction to information retrieval,

volume 39. Cambridge University Press, 2008.

[101] A. Shaffy. One-Hot Encoding of Text. https://medium.com/@athif.shaffy/

one-hot-encoding-of-text-b69124bef0a7.

[102] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. A latent semantic model with

convolutional-pooling structure for information retrieval. In Proceedings of the

23rd ACM International Conference on Conference on Information and Knowledge

Management, pages 101–110. ACM, 2014.

[103] A. Singhal et al. Modern information retrieval: A brief overview. 2001.

[104] B. Sisman and A. C. Kak. Incorporating version histories in information retrieval

based bug localization. In Mining Software Repositories (MSR), 2012 9th IEEE

Working Conference on, pages 50–59. IEEE, 2012.

[105] P. Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. Technical report, COLORADO UNIV AT BOULDER DEPT OF

COMPUTER SCIENCE, 1986.

[106] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.

Recursive deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empirical methods in natural language

processing, pages 1631–1642, 2013.

145



REFERENCES REFERENCES

[107] I. Sommerville. Software Engineering. Addison-Wesley Publishing Company, USA,

9th edition, 2010.

[108] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. J. Mach.

Learn. Res., 15(1):1929–1958, January 2014.

[109] M. Sumner, E. Frank, and M. Hall. Speeding up logistic model tree induction. In

Proceedings of the 9th European Conference on Principles and Practice of Knowl-

edge Discovery in Databases, PKDD’05, pages 675–683, Berlin, Heidelberg, 2005.

Springer-Verlag.

[110] M. Sumner, E. Frank, and M. Hall. Speeding up logistic model tree induction.

In European Conference on Principles of Data Mining and Knowledge Discovery,

pages 675–683. Springer, 2005.

[111] Y. Sun, L. Lin, D. Tang, N. Yang, Z. Ji, and X. Wang. Modeling mention, context

and entity with neural networks for entity disambiguation. In IJCAI, pages 1333–

1339, 2015.

[112] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection.

In Advances in neural information processing systems, pages 2553–2561, 2013.

[113] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representa-

tions from tree-structured long short-term memory networks. arXiv preprint

arXiv:1503.00075, 2015.

[114] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu. To what extent

could we detect field defects? an empirical study of false negatives in static bug

finding tools. In 2012 Proceedings of the 27th IEEE/ACM International Conference

on Automated Software Engineering, pages 50–59, Sept 2012.

[115] M. van Gerven and S. Bohte. Artificial neural networks as models of neural infor-

mation processing. Frontiers Media SA, 2018.

[116] E. M. Voorhees and D. Harman. Overview of the sixth text retrieval conference

(trec-6). Information Processing & Management, 36(1):3–35, 2000.

146



REFERENCES REFERENCES

[117] B. C. Wallace, L. Kertz, E. Charniak, et al. Humans require context to infer ironic

intent (so computers probably do, too). In Proceedings of the 52nd Annual Meet-

ing of the Association for Computational Linguistics (Volume 2: Short Papers),

volume 2, pages 512–516, 2014.

[118] S. Wang, D. Lo, and J. Lawall. Compositional vector space models for improved

bug localization. In 2014 IEEE International Conference on Software Maintenance

and Evolution, pages 171–180, Sept 2014.

[119] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer, and B. Jones. Systematic

testing of real-time systems. In 4th International Conference on Software Testing

Analysis and Review (EuroSTAR 96), 1996.

[120] J. Weston, S. Chopra, and K. Adams. Semantic embeddings from hashtags. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1822–1827, 2014.

[121] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk. Toward deep

learning software repositories. In Proceedings of the 12th Working Conference on

Mining Software Repositories, MSR ’15, pages 334–345, Piscataway, NJ, USA, 2015.

IEEE Press.

[122] J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emo-

tions in language. Language resources and evaluation, 39(2-3):165–210, 2005.

[123] R. J. Wieringa and M. Daneva. Six strategies for generalizing software engineering

theories. Science of computer programming, 101:136–152, 4 2015. eemcs-eprint-

25555.
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