Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2008

Memory access behavior of dynamically allocated
data structures and programs with irregular access
patterns

Zhen Yu
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Yu, Zhen, "Memory access behavior of dynamically allocated data structures and programs with irregular access patterns” (2005).
Theses and dissertations. Paper 415.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/415?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

MEMORY ACCESS BEHAVIOR OF
DYNAMICALLY ALLOCATED DATA
STRUCTURES AND PROGRAMS
WITH IRREGULAR ACCESS
PATTERNS

Zhen Yu

BSc, Computer Science, Changchun University of Earth Sciences
MASc, Electrical and Computer Engineering, Ryerson University

A thesis presented to Ryerson University in partial fulfillment of the
requirements for the degree of Master of Applied Science of Electrical
and Computer Engineering

Department of Electrical and Computer Engineering
Ryerson University

May, 2005

(©Zhen Yu, 2005

PROPERTY OF
RYERSCH LRavEAEITY LIBRARY

UMI Number: EC53788

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53788
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individ-
uals for the purpose of scholarly research.

Signature:

I further authorize Ryerson University to reproduce this thesis by photocopy or
by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

Signature:

ii

Borrower’s Page

Ryerson University requires the signatures of all persons using or photocopying this
thesis. Please sign below, and give address and date.

Name

Signature

Address

Date

iii

Abstract
”Memory Access Behavior of Dynamically Allocated Data Structures and Programs
with Irregular Access Patterns”

ZHEN YU
Master of Applied Science in Electrical and Computer Engineering,
Ryerson University

With the development of modern computer, memory latencies have become a key
bottleneck for the performance of computer system. Since then, many research work
have targeted improving the performance of memory hierarchy. In this thesis, we
examine the behavior of dynamically allocated data structures(DADS) and programs
with irregular access patterns(PIAP). DADS and PIAP use dynamic memory man-
agement or algorithms with unpredictable behavior. By simulating some applications
of dynamically allocated data structures(DADS) and programs with irregular access
patterns(PIAP), it is found that general cache management policies can not effec-
tively use the treasurable cache resources for DADS and PIAP. We explored the use
of mathematical formula applied in signal processing to improve the performance of
memory hierarchy.

Keywords: performance evaluation, dynamically allocated memory references,
memory hierarchy.

iv

Acknowledgment

I like to thank my supervisor, Professor Nagi N. Mekhiel who gave me guidance in
this research to overcome many difficulties.

Another thanks to Professor Vadim Geurkov, Professor Grald L. Pizer, and Pro-
fessor Reza Sedaghat.

My thanks to Professor Lev Krischan, Professor Kaamran Raahemifar and Pro-
fessor Suprakash Datta (CS department in York University) for the graduate courses
that they offered.

I thank very much my dear parents. My father’s effort in taking care of my little
daughter, Rachelle and my mom’s hard work during her short visit.

I thank my husband, Dr. Qingmou Li who helped me during study time.

I appreciate the support of my families and friends.

List of Abbreviation

DADS Dynamically Allocated Data Structures
D-cache Data Cache

DRAM Dynamic Random Access Memory

FFT - Fast Fourier Transform
FIFO First In First QOut
GC Garbage Collectors

I-cache Instruction Cache

LRU Least Recently Use

oop Object Oriented Programming

PIAP Programs with Irregular Access Patterns
SPEC Standard Performance Evaluation Corporation
SRAM Static Random Access Memory

Contents

1 Introduction 1
1.1 Increasing Cache Size: 1
1.2 Prefetching: 3
13 VictimCache: e 5
1.4 Prefetching Buffer and Victim Cache: 5
1.5 Improving Performance of Specific Applications 5
1.6 Thesis Contributions 6
1.7 Thesis Organization., 7

2 Review of Modern Memory System 8
2.1 Cache Organization, 9

2.1.1 Direct Map i i e e e e e e e e e e e e 9
2.1.2 Set Associative e 9
2.1.3 Fully Associative 9
2.1.4 Prefetching and Victim Cache 9
2.2 Cache Replacement Policy 10
221 First InFirst OQut (FIFO) 10
2.2.2 Least Recent Use (LRU) 10
2.2.3 Random Replacement 11
2.3 Cache Write Policies, 11
231 DirtyBit. e e e 11
232 WriteThrough 12
233 WriteBack 12
2.4 Main Memory Structure 13
241 SRAM e e 14
242 DRAM e 14
25 VirtualMemory e 15
2.6 Performanceof System 16
2.7 Other Memory Structure 16

vii

28 Summary e e

Dynamically Allocafed Data Structures and Programs with Irregu-

lar Access Patterns 18
3.1 Dynamic Data Structure 18
3.2 Dynamic Allocation of Memory 19
3.3 Dynamically Allocated Data Structures (DADS) 20
3.3.1 Definition 20
3.3.2 malloc(),free() 20
3.4 Programs with Irregular Access Patterns (PIAP) 21
34.1 Multi-branch 22
3.4.2 Branch inside Looporloops 23
3.4.3 Difficulties for Cache Optimization: 25
344 Summary 25
Simulators and Benchmarks , 26
41 Simulators 26
411 SimpleScalar. 26
412 simICS. 28
4.2 SPEC CPU Benchmarks Overview 29
4.3 Programs with Irregular Access Patterns 29
4.3.1 Searching Algorithms 30
4.3.2 Sorting Algorithm 34
433 Summary 43
Results 44
5.1 Research Methodology 4
9.1.1 Simulation Environment: 4
9.1.2 Benchmark Selection 45

9.1.3 Distance Between Two Adjacent Elements for Measuring Spa-
tial Irregularity and Locality 46

5.1.4 Number of Accesses between Each Repeat Access for Measuring
Temporal Irregularity and Locality 49
5.2 Simulation of malloc() Function _ 51
5.3 Simulation Results of Each Algorithms | 54
5.3.1 Simulation Results of Sequential Search 54
5.3.2 Simulation Results of Binary Search. 58
9.3.3 Simulation Results of Bubble Sort 61

viii

5.3.4 Simulation Results of Quick Sort 65

5.3.5 Simulation Results of Shell Sort 70

5.3.6 Simulation Results of Merge Sort 74

9.3.7 Memory Management of C Versus Java 77

5.4 Using FFT To Analyze the Temporal Irregularity of Malloc() Function 79
5.4.1 Fast Fourier Transform(FFT) 79

5.4.2 Power Spectrum Analysis 80

55 SUMMATY . . .o ot vttt e e e 81

6 Conclusions and Future Work 82
6.1 ThesisSummaryt 82
6.2 Conclusions 82
63 Future Work. e 83
Bibliography 84
A Useful Information of Simple Scalar 89
Al Imstallation e 89
A1l Stepl.Download 89

A.1.2 Step 2. Unpackagefile 90

A.1.3 Step 3. Installing binary utilitycode 91

A.1.4 Step 4. Install SimpleScalar simulator. 92

A.1.5 Step 5. Build thecompiler 92

A.1.6 Step 6. Build thelibrary 94

A.1.7 Step 7. Build FORTRAN to C Transcode 95

A.1.8 Step 8. Test the overall installation 95

A.2 Experimental Procedure, 95
A.2.1 Stepl. Compile benchmark 95

A22 Step2. Simulation 96

B simICS Script 102

List of Figures

1.1 Miss rate vs cache organization. 3
2.1 Processor and different memory level. 8
2.2 Demonstration of different kinds of cache organization. 10
2.3 Cache write happen during the execution of program 12
2.4 Simulation results of miss rate of bubblesort. 13
2.5 Demonstration of memory structure. 14
2.6 Structureof SRAM. i e 14
2.7 Structure of DRAM. 15
2.8 Common extended memory hierarchies found in multiprocessors. . . . 17
4.1 Flow chart of the sequential search. 31
4.2 Flow chart of the binarysearch 33
4.3 Flow chart of the bubblesort. 35
44 Flowchart of theshellsort. 39
4.5 Flow chart of the mergesort. 41
5.1 Partial simulationresults. 47
5.2 Summary of distance between two adjacent elements and number of
accesses between each repeat access.. 50
5.3 Spatial irregularity of malloc() function. 52
5.4 Temporal irregularity of malloc() function. 53
5.5 Partial simulation results of malloc() function. 54
5.6 Spatial irregularity of sequential searchin C. 55
5.7 Temporal irregularity of sequential searchin C. 55
5.8 Spatial irregularity of sequential search in Java. 56
5.9 Temporal irregularity of sequential searchin Java. 57
5.10 Spatial irregularity of binary searchin C. 58
5.11 Temporal irregularity of binary searchin C. 59
5.12 Spatial irregularity of binary searchin Java. 60
5.13 Temporal irregularity of binary searchin Java. 60
5.14 Spatial irregularity of bubble sort in C. 62
5.15 Temporal irregularity of bubblesort in C. 63
5.16 Spatial irregularity of bubble sort in Java. 64
5.17 Temporal irregularity of bubble sortin Java. 65

5.18 Demonstration of repeat access of quick sort and bubble sort in C . . 67

5.19 Spatial irregularity of quicksort in C. 67

5.20 Temporal irregularity of quick sort in C. 68
5.21 Spatial irregularity of quick sort in Java. 69
5.22 Temporal irregularity of quick sortin Java. 69
5.23 Spatial irregularity of shellsortin C. 70
5.24 Illustration of shell sort’s memory behavior. 71
5.25 Temporal irregularity of shell sortinC. 71
5.26 Spatial irregularity of shell sortinJava.. 72
5.27 Temporal irregularity of shell sort in Java. 73
5.28 Spatial irregularity of mergesortin C. 74
5.29 Temporal irregularity of mergesortin C. 75
5.30 Spatial irregularity of mergesortinJava. 75
5.31 Temporal irregularity of merge sortin Java. 76
5.32 Power spectrum of temporal irregularity of malloc() function.. 80

List of Tables

1.1 Increasing of Cache Size of Intel Processor. . . .

5.1 Summary of Locality of DADS and PIAP in C.
5.2 Summary of Locality of DADS and PIAP in Java

xii

............

............

............

Chapter 1

Introduction

Memory latencies have become the key bottleneck, for the speed of processor has
increased by 60% yearly, while memory speed has only climbed by 10% every year.
Though larger and larger on chip cache was helpful for closing the memory-
processor speed gap, its efficiency is greatly degraded when a large, complex ap-
plications that use very large data sets. Large cache causes problems, because with
the increasing of cache size, the cache latency and accordingly miss penalty will in-
crease as well [10, 9]. On the other hand, no matter how large the on-chip cache
is, it can not store all the data all the time during the execution of program. Many
researchers are now working to improve cache performance. The cache performance

can be improved using the following methods:

1.1 Increasing Cache Size:

Since the concept of cache was first defined in 1965 by Wilkes [30], a lot of works have
been done to improve its performance. One method of improvement is increasing its
size. For example, Table 1.1 shows increasing the cache size of Intel processor since
the first processor.

Lager cache helps to improve performance, but it has limitations, because of the
reason mentioned before. Although technology makes speed of storage system faster,
the speed of processors increases at much faster rate. So it is important to find
the best cache size, speed, processor speed, bus speed, memory speed, etc. Martin

Karlsson and Erik Hagersten presented in their paper that a 2 way 32 KB cache

could outperform a cache with twice the associativity or double the size for many

applications in SPEC CPU2000(8].

Table 1.1: Increasing of Cache Size of Intel Processor.

Processor On-chip Cache Level 2 Cache
80486 8KB 0
Pentium 16 KB 0
Pentium II 32 KB 512(optimized for 32 bits)
Pentium III 256/512 KB
Pentium IV 256/512 KB

Computer is a system that has processor, cache, main memory, hard disk, video card,
mother boaid, and so on. As we know that improving one part of a system may not
improve performance of the whole system by the same value.

For example, cache miss rate can not be improved indefinitely with increasing
size, associativity. Performance will be limited by fraction that can not be improved
according to Amdahl’s Law [30]. Amdahl’s Law states that the performance improve-
ment of overall system due to the improvement of one portion of the system is limited
by the rest of the system that can not be improved. The speedup due to an enhance-
ment for the whole system is defined by Amdahl’s Law as: The performance of the
system using the enhancement divided by the performance of the system without

using enhancement. This speedup depends on two factors:
1. The fraction of time that can be enhanced.

2. The amount of enhancement or gain applied to the portion of the system that

can be improved. The over all speedup could be expressed as:

1

_ . Fractioneppance
1 Fradzonenhance + SpeeduPenhance

From the above equation, it can be seen that the relation between overall speed

Speedupoyerann = (1.1)

up and fraction enhancement is not a simple direct proportion.

2

Figure 1.1 is one of the example from our work — simulation result got from
sim-cheetah simulator in SimpleScalar by simulating sha benchmark in Mibench. Al-
though increasing cache size and associate is helpful in reducing miss rate, the miss
rate will keep in a certain level (like the flat surface in Figure 1.1), no matter how
much the cache size are increased. Based on this point of view, simply increasing
cache size and/or associate will not contribute to reducing cache miss rate all the

way. So new and more complex methods are believed to be more function.

‘%
\"»‘_
By F
@g.ﬁ%’
&5

: Q,"- . 0,

Figure 1.1: Miss rate vs cache organization.

1.2 Prefetchingﬁ

Cache prefetching is a good idea to avoid the memory latency. It prefetch data

and instructions to the data cache (D-cache) and the instruction cache (I-cache)

3

before they are needed. Alvin R. Lebeck, Jinson Koppanalil etc has introduced their
approach on improving instruction cache, called waiting instruction buffer (WIB),
to allow enough effective instruction window that helps the processor tolerate cache
misses [2]. Jarrod A Lewis, Bryan Black, Mikko H. Lipasti introduced their propose
of reducing invalid memory traffic. Such traffic arises from fetching uninitialized
heap data on cache misses. They also proposed a hardware mechanism to track
initialization of dynamic memory allocation regions on a cache block granularity. By
maintaining multiple base-bound representations of an allocation range (interleaving),
this structure can identify nearly 100% of all initializing store misses with minimal
storage overhead[3]. Yan Solihin, Jaejin Lee, Josep Torrellas increased the average
speedup to 1.53 by using a User-Level Memory Thread (ULMT) which performs a
correlation prefetching in software, sending the prefetched data into L2 cache [4].
G. Hariprakash, R. Achutharaman, Amos R. Orhondis proposed a hardware-based
stride prefetching technique (Dstride) and use the Level One data cache address to
predict the stride of the prefetch address [5]. Qianrong Ma, Jih-Kwon Peir, Konrad
Lai introduced a method to implement a zero-cycle load, by using Symbolic Cache
which is addressed by the content of store/load instructions to enable data accesses
in the front-end of the processor pipeline to shorten load-to-use latency[6]. Jih-Kwon
Peir, Shih-Chang Lai, Shih-Lien Lu, Jared Stark, Konrad Lai used a Bloom Filter
to identify cache misses early in the pipeline. For the processor to schedule the
instructions on load so data can be prefetched to cache more precisely [9]. Srikanth
T.Srinivasan, Roy Dz-ching Ju, Alvin R. Lebeck, Chris Wilkerson pointed out that
critical and non-critical loads as: “A load that needs to complete early to prevent
processor stalls is classified as critical, while a load that can tolerate a long latency is
considered non-critical ”, then presented a hardware scheme to estimate the criticality
of loads by keeping track of the load is dependence chain as well as the processor’s

ability to find and execute instructions independent of a load[14].

1.3 Victim Cache:

Itisa Wiseb idea to keep the data that have been evicted from the cache in victim
cache in case they are referenced again in the future. Martin Karlsson, Erik Hagersten
suggested streaming the dada through a small stage cache before deciding about the
cache replacement using Runtime Adaptive Cache Allocation(RASCAL)[9]. Andreas
Moshovos, Gurindar S. Sohi discovered that typical programs exhibit highly read-
after-read(RAR) memory dependence streams and proposed two techniques: One
using RAR (read after read) to predict the dependence, the other to convert the
LOADI1-USEL,..., LOADN-USEN chain into LOAD1 -USEL,..., USEN graph if RAR

dependence are among LOAD instructions[12].

1.4 Prefetching Buffer and Victim Cache:

Combining prefetching and victim cache can improve the performance much more
than just adopt one approach. for example, multimedia application; most of them
have a large loop in the program. This characteristic makes prefetech buffer and vic-
tim cache more feasible and accurate, so specific data layout methodology will have
great efficiency. But to do this, we need to answer the questions what to be prefetched,
What should be kept in the victim cache and how long the data should be in vic-
tim cache? Zhigang Hu, Stefanos Kaxiras, Margaret Martonosis has adopted both
prefetching and storing techniques. In prefetching, they use a time based prefetch
technique to preftech the right data at the right time. In storing in victim cache, they
also use a time-based method to only store conflict miss lines that will probably be
used in the victim cache [7]. Jinsuo Zhang proposed a new prediction schemes, stack
coloring, a new context predictor, global context predictor which greatly improved

the performance of the cache itself [10].

1.5 Improving Performance of Specific Applications

The performance of memory hierarchy can be improved by using prefetching, vic-

tim caching for different applications and data sets. It is significant for computer

5

system design to improve the performance of memory hierarchy but it is difficult
to get the best performance because it depends on algorithms used in each appli-
cation. Efe Yardimci and David Kaeli proposed changing the malloc library of C
compiler to increase the hit rate of data cache [1]. Joon-Sang Park, Micheal Pen-
ner, Viktor K. Prasanna optimized cache performance for fundamental graph algo-
rithms: Floyd-Warshall, Dijkstra, Prims algorithm and bipartite matching. A simple
cache-friendly graph representation, namely adjacency arrays is used[11]. C.Kulkarni,
C.Ghez, M.Miranda, F.Catthoor, H.De Man presented their methodology on data lay-
out for embedded multimedia application to split the existing arrays and then merge
them into groups based on the cache size and the line size to get a better hit rate
of cache [13]. Though all of them showed a good performance improvement, their
improving methods are limited to the algorithms that they are using. Things might
be easier if there is a relative general approach'to improve cache hit rate of most
algorithms.

Furthermore, Abdel-Hameed A. Badawy, Aneesh Aggarwal, Donald Yeung, Chau-
Wen Tseng’s ideas discussed combining software prefetching and locality optimization

to improve performance rather than using only one method [15].

1.6 Thesis Céntributions

The objective of this thesis is to underétand memory access behavior of a spécial
group of applications. In details it is to study the behavior of memory hierarchy
of contemporary object oriented programming (OOP); dynamically allocated data
structures (DADS) and program with irregular access pattern (PIAP). For example,
dynamic allocation of memory is DADS. Data are scattered in memory. The scattering
greatly decreases spatial locality which is needed by the cache. Also the branch inside
loop or loops of PIAP greatly reduces temporal locality. We found that spatial locality
and temporal locality are often at odd. And new cache management is needed. We
discussed possible method based on using FFT to improve prefetching of data in

irregular memory access.

1.7 Thesis Organization

We give a review of memory hierarchy in chapter 2. The technical details of DADS,
PIAP and their relations with memory hierarchy was mentioned in chapter 3. In
chapter 4, simulators and benchmarks used in this thesis are introduced. Simulation

results of DADS and PIAP are shown in chapter 5. Chapter 6 gives conclusion and

future work.

Chapter 2

Review of Modern Memory System

To optimize the performance of memory system, we need to focus on the architecture
of memory hierarchy. Although different processor design might lead to different
architecture, usually there have on-chip cache, Level 2 cache, physical main memory
and secondary storage media - hard disk. This multi-level hierarchy helps to reduce
repeating visit to lower level slow media. Our research is focused on the interaction

between applications and main memory.

Figure 2.1: Processor and different memory level.

Figure 2.1 shows the different between memory levels. If processor can not find
the required data in on-chip cache, lower level cache will be checked. If processor can
not find the data in level 1 or level 2 caches, then main memory will be visited. If the
data are not found in physical memory, then secondary storage(virtual memory ')
will be accessed. Cache is divided into blocks but main memory and virtual memory
are divided into pages. The transfer of data between cache and memory is done as

block. It is helpful to increase block size to reduce compulsory miss 2. But increasing

1Actually virtual memory are on the hard disk, but using different management policy
2or called first miss that is caused at the first time when a memory element is accessed.

block size can increases cache miss penalty because larger block size requires more
CPU cycles to fetch from the physical main memory.
If cache size, block size and associativity are organized properly, it will be helpful

for increasing the performance of the computer system.

2.1 Cache Organization

Usually there are two kinds of cache organizations, direct map or set associative,
victim and prefetching,.
2.1.1 Direct Map

When any memory element can only be mapped to exactly one location in the cache,
this design is called direct map and is shown in Figure 2.2 (a)[30]. Direct map can
also be looked as a one way set associative cache. It has the advantage of speed and

simple hardware design.

2.1.2 Set Associative

If any memory element can be mapped to two locations in the cache, The cache is
called a 2 way set associative cache, shown in Figure 2.2 (b)[30]. If any memory
element can be mapped to four locations, the cache is 4 way set associative.

2.1.3 Fully Associative

A special case of set associative cache is fully associative as shown in Figure 2.2

(c)[30]. It means that any element of memory can be mapped anywhere in the cache.

2.1.4 Prefetching and Victim Cache

As discussed in the previous chapter, prefetching and victim cache can help to improve

the performance by reducing the first miss and capacity miss.

Main Mamory

Bbeko b
Bbck 1 a c
Diract Map 2wy st Fully Assoc bt
Bbcko
Sato
Bbek1 | Y (v 8 ter) Y
Bbcke a1
Bckot) ¥ Bbeka con
Block4
Sote
Bbck6 Y
Bbcke be
Sot3 YM fad
Block7 Y anbeherd amwher
Bbcks
Sat4
Bbcks

Cache Location =91 mod9=1 Cache Set= 91 mod 4= 3

Figure 2.2: Demonstration of different kinds of cache organization.

2.2 Cache Replacement Policy

Since cache is only a small size storage media, there should be a methodology to
replace old data with incoming data. There are four policies used in replacement:

first in first out, least recent use, random replacement.

2.2.1 First In First Out (FIFO)

It is a simple policy to manage the ¢ache like a queue. The older the data the more
possibility to be replaced. The hardware design is easy to implement. While its
performance is not as the other policy, i.e., Least Recently Use (LRU).

2.2.2 Least Recent Use (LRU)

When the cache entry is full, the least recently used cache will be replaced. So the
data used most recently will be kept in cache. It helps to improve the performance

in some cases, but not for all applications.

10

2.2.3 Random Replacement

For random replacement policy, a random replacement algorithm picks any block with
equal probability to be flushed to main memory. It has the advantage of simplicity

to implement.

2.3 Cache Write Policies

Bubble sort algorithm shown below is used to demonstrate the cache write policies.
The modified data may need to be written back to memory according to algorithm’s
requirement like the one shown below. If alj] is larger than a[j+1], a[j] and a[j+1] will
be exchanged, new values of afj] and a[j+1] should be written back to main memory.

The cache status of each step are shown in Figure 2.3.

for(i=m-1;i>=0;i--)

{
for(j=0; j<m-1;j++)
{
if(aljl > alj+1D)
{
temp = aljl;
aljl = alj+1]1;
alj+1] = temp;
}
}
}

2.3.1 Dirty Bit

To separate the changed block and unchanged block, a one bit of each block is used
as dirty bit. If the content of the block has been written, the dirty bit is 1 means this

block needs to be written to memory if it is replaced.

11

Main Memory Direct Map Cache

Block 0 Block 0| afj+]=10 afj+1]=10 afi+1]=10 afj+1]=99
Block 1 afj]=99 Block1| al}]<99 a[jl-99 afjl=10 afjl=10

Block 2

Block 3

Block 4

Block 5
Block 90| afj+1]=10 | + g

Block 7,

Block 8
Block S[temps)OOO(temp=99 temp=99 temp=99

Step 1: Step 2: Step 3: Step 4:

afj] > afj+1] temp=al[j] afj] = afj+1] afj+1] = temp

Figure 2.3: Cache write happen during the execution of program

2.3.2 Write Through

It does not need dirty bit because each write goes to memory. It is good for cache

coherency in multi-processor system, but it is as slow as memory access.

2.3.3 Write Back

When cache blocks are marked dirty which means the blocks must be written to
memory before they are replaced. This approach is good for saving the cache-memory
bus bandwidth in some cases. But it may need snoopy protocol in the multi-processor
shared memory system. Figure 2.4 showed the simulation results of the two writing
policies. Bubble sort algorithm was simulated in SimpleScalar by using the same

cache configuration except write policies.

12

4

» 8 Read Miss of
write back

@ | Write miss of
write back

n : & Read miss of

& write through

» B Write miss of
write through

101

o]

C:L1Ceche Java: L1Cache C:12Cache Java:L2Cache

Figure 2.4: Simulation results of miss rate of bubble sort.

2.4 Main Memory Structure

The processor’s main memory is addressed by a physical address ranging from 0 to
(2¥)-1, where the address word in the processor has k bits. Main memory is important
in the computer system. For example, to run the simulation in this thesis work,
Two different computers were used, one uses 256 MB memory, the other uses 512MB
memory. For the same work, the first system took about 120 hours, the second took
around 93 hours. There are two basic technologies: DRAM(Dynamic Random Access
Memory) and SRAM(Static Random Access Memory). The memory is organized as
a n X n matrix and each element’s position is uniquely defined by a row number
and a column number. Thelrow and column indexing is shown in Figure 2.5. When
the CPU address is applied, it is first latched in a buffer, then the row and column
decoders will find the element, and its data is driven out through an amplifier to I/O

interface.

13

.--------PI Column Latch l
' Y
. l Column Decoder]
' At T i
: ’__ . am—
(]
Memory Array

(1024°1024)

Sense Amp & I/O

[~=o »~» 0| [= - »~mo|

nnuo-~aa>» 0OTC

INOQOOOU iOml
. e “e

Figure 2.5: Demonstration of memory structure.

24.1 SRAM

SRAM is the abbreviation of “Static Random Access Memory”. SRAM has an ad-
vantage of having faster access at the expense of low bit densities, because of using
4-6 transistors to store a single bit of data as shown in Figure 2.6[40]. Another ad-
vantage for SRAM is that data can be stored without refreshing. The SRAM’s power
consumption is higher than DRAM.

ROW
g - >°
4 :
Figure 2.6: Structure of SRAM.
24.2 DRAM

DRAM is the abbreviation of “Dynamic Random Access Memory”. The organization
of DRAM is shown in Figure 2.7[40].

14

ROW

NINNTOO
|

Figure 2.7: Structure of DRAM.

It uses a capacitor in the circuits and needs to be refreshed before the leaking of
capacitor will lead to undefined or wrong data. It is good for the implementation of
large memory. Compared to SRAM, its power consumption is lower. The design of
DRAM is complex and the price is cheaper than SRAM. Most of computer’s main
memory uses DRAM.

2.5 Virtual Memory

Virtual memory is managed by the operating systems, like Windows NT/2000/ME,
Linux, because main memory may not be enough to satisfy the requirement of the
operating system processes and applications. Virtual memory enlarge the address
space that a program can utilize.

Virtual memory is divided into pages by the operating system, with page size =

(2r), a logical address of 1+r bits is interpreted as (I,r). 1is page number, r is offset

15

within the page..

Translation Look aside Buffers, TLB, helps to speed the translation from virtual
address to physical address. This is a cache for page table entries. It stores recently
accessed page table entries. Each TLB entry represents a page of physical memory,

so a small number of TLB entries can cover a large amount of memory.

2.6 Performance of System

Time is used to measure performance of system. To calculate the CPU time, it
consists of two parts: first the clock cycle used to execute the program, second the

clock cycle used to wait for data. The following equations can be used to calculate 7_

the CPU time.

CPUsime = (CPUesecutionClockCycles+MeMOTYstauciockycles) X ClockCycleTime (2.1)

MemoryAccesses
Programs

Memorysaciockcyles = X MissRate X MissPenalty (2.2)

Each level of memory hierarchy has a different miss rate and different miss penalty.

2.7 Other Memory Structure

Multiprocessor systems use a shared memory as in Figure 2.8(a) anf Figure 2.8(b).
It uses local caches for each processor and need -snoopy cache protocol. Another
organization use distributed memory, each processor has its local memory and uses

manage protocol to communicate with each other [40].

2.8 Summary

In this chapter, we reviewed the principles of modern memory hierarchy which is

directly related to the latter research shown in this thesis work.

16

Processor 4 Processorn

.1 Cache L1 Cache
i Memory Memory |

v

Interconnection Network

(a) Distributed memory.

Processor 1 Processor 2 sesescecccacaanns Processor n

[y /) i
Y) 4 Y
Switch
[A 1 A
y \ 4 Y \
Interieaved First Level Cache

K f f § [

4 \ J Y

Interieaved Main Memory

(b) Shared cache.

Figure 2.8: Common extended memory hierarchies found in multiprocessors.

17

Chapter 3

Dynamically Allocated Data
Structures and Programs with
Irregular Access Patterns

Data Structures are used to represent information to be processed by a computer
program. Algorithms are the steps necessary to process that information. The algo-
rithm chosen to solve a particular programming problem helps to determine which

data structure should be used [17].

3.1 Dynamic Data Structure

A Dynamic data structure is a special instance of a data class that is required to
have methods that perform certain operations on the data structure. The specific
operations are insertion, deletion and query. To be a dynamic data structure, a data
class must have either an insertion or a deletion method. The query method is option
for dynamic data structure in a data class, but not every data class is a dynamic data
structure. A dynamic data structure changes when an application executes. The
changes can be divided into “changes of content” and “changes in layout”. Examples

for dynamic data structure included the algorithms of insertion and deletion in a tree

[16].

18

3.2 Dynamic Allocation of Memory

The capacity or size of memory has a limited in any computer. It is impossible to
put a full large data set of a process in memory in most applications. If the amount
of memory space is known ahead of time or with a reasonable upper limit, the space
can be allocated before the execution of the program. While in some cases, the
programmer can never know how much memory space will be used or the amount of
the space will be needed before execution. For example, when the space demand is
over the amount of physical capacity of memory or the free memory space, dynamic
allocation of memory locate the memory space needed to the program where it is
running [17].

The function used in dynamic allocation of memory in C is malloc() and free().
malloc() allocates the space from an area known as the heap, a special area of memory
reserved for dynamic allocation, and returns a pointer to the space. When there is
not enough space for the heap, malloc() returns NULL, and a pointer to VOID. When
the task is done, function free() is used to return the space.

The new() and delete() are the functions used by C++ programmers when they
apply the memory space and release them. All C and C++ programmer must remem-
ber to release the memory space used before. Otherwise, memory leak will happen.

For Java programmer, a run time garbage collection (GC) (in Java virtual ma-
chine) will automatically free the memory which is allocated automatically when an
object is created. We will discuss Java applications in chapter 5.

To allocate a memory space used to put number m integer data, by different

programming languages, we can use the following:

C: malloc(size); //free() is required
C++: int a=new float[m]; //delete() is required

Java: int [Ja = new int[m]; //run time GC involve

19

3.3 Dynamically Allocated Data Structures (DADS)

3.3.1 Definition

Dynamically Allocated Data Structures (DADS) are information whose structures will
change during the execution of algorithms, or its distributions are hard to predict for
algorithms. DADS have unpredictable memory distribution. In this thesis work, we
study dynamic allocation of memory and run time garbage collectofs in Java virtual

machine.

3.3.2 malloc(), free()

The functions malloc() and free() in C help the program to reach the highest perfor-
mance by dynamically using the main memory. All the free space in main memory
can be used by the program. Although they eliminate the memory space bottleneck,
they probably loose performance because malloc() uses a scattered memory space
rather than a sequential space, so not all data will be in the same block. This will
pollute cache by putting useless data in cache blocks. For example, an application
allocated a certain amount of memory space that is not only scattered in memory,
but also is accessed discretely by the application, for example, the search algorithm

shown below:

a=new float[m]; //Visual C++ éxpression equal to malloc()

for (i=0;i<m;i++)

{

fscanf (filer,"%f",&a[il);
}
fclose(filer);

int last =m ;

cout << "\nEnter the search query : ";
cin >> key;

while(first <= last)

{

20

mid = (first + last) / 2;
if (key > a[mid])
first = mid + 1;
else if (key < a[mid])
last = mid - 1;
else
{
FOUND = 1;
printf ("/d",mid);
break;

Usually, sub block are used to avoid the pollution of cache space. While, it only
solves one part of the problem (saving the cache space), still another even more im-
portant question is that the scattered data in memory, greatly reduces the advantage
of cache by increasing the conflict miss. A new idea should be found to improve cache
performance for DADS.

In order to get this new idea, we studied the memory behavior of DADS in a 2D
methodology. Unlike previous research, the memory was evaluated for: first, distance
between two adjacent elements, by looking at each physical memory address with next
- physical memory address, To see if the addresses are scattered or sequential. Second,
the frequency of each repeat of physical address to see if there are any temporal

locality of references there.

3.4 Programs with Irregular Access Patterns (PIAP)

Generally speaking, Programs with Irregular Access Patterns (PIPA) dynamically
changes behavior during the execution of programs by using branch, or branch inside

loop or loops, switch inside loop. Our work is focused on studying some applications

21

due to resource limitation!. PIAP should include all algorithms that show bad locality
compared with algorithms with regular memory access patterns. The characteristic
of PIAP is as following: multi-branch, branch inside loop or loops.

Once discussing branch, branch prediction should be discussed, a mechanism used
by the processor to predict the outcome of a program branch prior to its execution.
Chris H. Perleberg, Alan Jay Smith defined branch target buffer(BTB) as “A branch
target buffer (BTB) can reduce the performance penalty of branches in pipelined
processors by predicting the path of the branch and caching information used by the
branch”. They also realized there are two major issues in the design of BTB (Branch
Target Buffer). First, when to store and discard branch from BTB. Second, what
information to be stored in BTB. They presented that multilevel BT'B just slightly
improved the performance[20]. Jason R.C. Patterson proposed value range propaga-
tion for accurate static branch prediction. “The téchnique tracks the weighted value
ranges of variables through a program, much like constant propagation. These value
ranges may be either numeric or symbolic in nature. Branch prediction is then per-
formed by simply consulting the value range of the appropriate variable. In the pro-
cess, value range propagation both constant propagation and copy propagation[21]”.
Kevin Skadron, Pritpal S. Ahuja, Margaret Martonosi, Douglas W. Clark quantita-
tively shows the importance of combine branch prediction, instruction-window and
and cache configuration issue in conjunction[22]. Though many work have been done

in branch prediction, most the studies are applied to the instruction.

3.4.1 Multi-branch

Switch-case changes program flow. It is very hard to use current branch predictor
[20, 21, 22] to efficiently predict its behaviors.

The following is an example that translate 0 to 5 to name of fruits.

switch(*s)

{

! According to the equipment limitation, some large complex tasks take time as long as couple of
months to simulate and analyze one task.

22

case O:

return "Orange";

case 1:

return "Golden Delicious";
case 2:

return "Mango";

case 3:

return "Pine Apple";
case 4:

return "Grape Fruit";
case 5:

return "Peach";
default:

break;

Multi-branch is more unpredictable than other branch like if-then-else. Because
the probability of choosing up the right branch in switch-case structure is much more
lower than probability of branches in the if-then-else structure that simply take one

branch. So our work valuable for branch prediction as well.

3.4.2 Branch inside Loop or loops

Unlike most of multimedia and scientific calculation, there are usually several branches
(if-then-else, or switch-case) inside a loop or loops in PIAP, as shown below:

The core function of matrix multiply is:
n
Cij =Y Qikby; (8.1)
k=1

int i, j, k;

for(i=0; i<m; i++)
for(j=0; j<m; j++)
{

23

for(k=0; k<n; k++)

{
c[il [j] += alil [k1*b[k][j];

printf ("c[%d",i);
printf ("][%d",j);
printf ("]1=Yd",clil[j1);
cl[il [j1=0;

}

The core function of shell sort is:

int gap = 5;
while (gap > 0)

{
for (i=0; i < array_size; i++)
{
j=i;
temp = alil;
while ((j >= gap) && (alj-gapl> temp))
{
aljl = alj - gapl;
j=13 - eap;
}
alj] = temp;
}
if (gap/2 != 0)
 gap = gap/2;
else if (gap == 1)
gap = 0;
else

24

gap = 1;

Suppose that all the memory allocation are to contiguous location. A very good
spatial locality is shown in matrix multiplication program. If the block size is large
enough, 50% of misses could be reduced. In the shell sort program, locality depends
on block size and gap if the elements are distributed in a sequential way2. The
following equations show relations between block size (b), gap size(g) and distance
between elements which will be sorted in case when gap is g is a[i](asfi/). if spatial

locality=1, there are spatial locality, else not.

1, ifg x as[i] < b,
Spatialpocaity = { 0, ifg x asi] > b, (3.2)
0, ifg x as[i] =b.

As seen from the above equation and programs, PIAP are difficult for branch
prediction, prefetching data to cache, and keeping useful data in cache. We need
different cache optimization, or even a new memory hierarchy for both I-cache and

D-cache.

3.4.3 Difficulties for Cache Optimization:

It is easy to optimize few specific algorithms that works effectively in cache. It is
hard to find an effective approach to improve locality in all programs. For example,
there is no general approach to improve locality for programs written in C; there is
no general approach to improve locality for dynamic allocation of memory; etc.

The challenge is to find an effective approach to improve locality of DADS or

PIAP, because it is very difficult to predict data use in time or space.

3.4.4 Summary

DADS and PIAP were discussed in this chapter. We discussed of the difficulties of
their use in improving memory performance and compared them with regular scientific

calculation similar to matrix multiplication.

2Suppose for the array a, a[n]’s physical address is always larger than a[n-1]’s.

25

Chapter 4

Simulators and Benchmarks

In this chapter, we give a brief overview of simulators and benchmarks used in this
thesis. Those are used to study memory access behavior of programs with irregu-
lar access patterns (PIAP). We did not use benchmarks as SPEC and used specific

programs and applications with know and well understood behavior.

4.1 Simulators

The most used simulators in academic and research are: SimpleScalar[18,19,26,23],
simICS[31, 32], Dinero[37] and simOS[36]. Full system simulators, as simICS and
simOS can simulate not only memory hierarchy, but also the full computer system.
In this chapter, we discuss SimpleScalar and simICS used in this thesis work. Sim-
pleScalar is used to get the results in Figure 1.1 and Figure 2.4. simICS is used to
get all the results in chapter 5.

4.1.1 SimpleScalar

SimpleScalar provides an infrastructure for computer system modeling that simpli-
fies implementing hardware and is capable of simulating the complete computer sys-
tem[26] in a user-friendly way. Users who just have a few knowledée in computer
architecture and operati'ng system, can use SimpleScalar. Though SimpleScalar is
easy to use, it is not easy to install. SimpleScalar has nine functions: sim-bpred,
sim-cache, sim-cheetah, sim-eio, sim-fast, sim-outorder, éim-proﬁle and sim-safe, that

we described below.

26

sim-bpred

sim-bpred is a branch predictor analyzer. It can support two level predictor config-
uration. Branch prediction was a frontier 20 years ago in the research of advanced
pipeline. It is still a hot research area nowadays, because the accuracy of branch
prediction is one of the major factors that directly affect the organization and speed

of modern pipeline.

sim-cache and sim-cheetah

Both sim-cache and sim-cheetah are functional cache simulators. The difference be-
tween them are: sim-cache can simulate up to two level data and instruction caches;
sim-cheetah can simulate one level cache with different configurations and associativ-
ity. Sim-cache can give statistic results of miss rate, hit rate, TLB miss rate, total

number of instructions simulated.
sim-eio

sim-eio provides the simulator with external traces and checkpoint files. sim-eio and
checkpoint file can be used to start any SimpleScalar in the middle of program ex-
ecution. It is possible to combine sim-eio and other functions to get useful trace

information.

sim-fast and sim-safe

sim-fast and sim-safe are fast, simple and easily used functional simulators. The
differences between them are: sim-fast is faster, cleaner and simpler than sim-safe.
The execution time for them is three to five times shorter than sim-cache and sim-

cheetah and sim-outorder.

sim-outorder

sim-outorder combines the functions of sim-cache, sim-bpred, sim-safe, sim-fast. Like
sim-cache, sim-outorder can simulate two level memory hierarchy; like sim-bpred,

it support two level branch predictors. As a performance simulator, sim-outorder

27

simulates a very detailed out-of-order superscalar processor. Though sim-fast and
sim-safe can provide the same kind of results as sim-outorder, it is not as accurate
as sim-outorder. But sim-outorder is greatly slower than sim-fast and sim-safe. sim-
outorder is the proper tool for conducting research in memory-hierarchy and modern

pipeline.
sim-profile

sim-profile produces detailed profiles on various information, from instruction classes,
branch profile information to memory accesses. Usually, it is used with other functions

to get more information.

4.1.2 simICS

SimICS is a commercial simulator [31, 32] and can fully model a target computer at
the operating system level. It allows simICS to be a machine irrelevant simulator.
For example, a Sun workstation with Solaris 2.6 installed (called target) can be sim-
ulated on an x86 machine with Intel processor and windows 2000 installed (called
host). SimICS can simulate multiprocessor, independent systems, even networks,
independent of the host type.

SimICS is a very good tool not only for computer architecture researchers but
also for programmers, operating system developers, compiler developers, database
developers, software testers, etc. The great advantage for simICS is its flexibility.

SimICS provides a virtual machine, named ”dredd”, which is a blank simulated
machine, like a brand new computer without installing any software. Users can
install the operating system on it. For example, Windows 2000 can be installed on
this virtual machine. This is important to researchers who are interested in studying
behavior of applications. It is the operating system that manages where processor can
get data and instruction. Studying the behavior of memory hierarchy with different
operating system is possible in simICS.

SimICS provides a modifiable disk image of the simulated machine and is easy

" to run benchmarks on the virtual machine. It is hard to use simple simulator to get

28

memory behavior information when executing operations of database system, such as
query, insert, search, sort, etc. The reason for that is searching, inserting and sorting
in a structure database system are much more complex than other application.
Though simICS is a very good full system simulator, it does have shortcomings,
which is the long simulation time. It needs at least 30 minutes to just boot an
operating system under simICS. Compiling on the simulated machine some times

takes up to 10 hours. Executing some benchmarks takes one or two days.

4.2 SPEC CPU Benchmarks Overview

If the simulator is a ruler, the benchmark would be the object measured. Benchmark
helps researchers to use the same application. In the thesis work, specific applications
are used in order to study the behavior of different applications with irregular access
patterns. A

SPEC uses programs written in C, C++ and fortran, widely used to evaluate
performance of computer system. Because SPEC benchmark’s characterize a work-
load for general-purpose computers, it is widely used by the computer architecture
research and industry for pérformance evaluation. There are two categories in SPEC:
integer and float point. Under each sub category, there is a self-contained set of pro-
grams and data. There are three different input data sets: test, train and ref, for each
program. Test data set is used as a test to make sure that the compiling is correct.
Train data set is used to make further testing for the logic of program and installation
of benchmarks. Ref data set is the data set used in real application. To test a design
or study behavior of SPEC benchmark, ref data set should be used. The research
group in University of Michigan [25] has reduced the ref data set to save simulation

time without lost much of the accuracy.

4.3 Programs with Irregular Access Patterns

Although current benchmarks are good for general computer architecture research,

they are not suitable for studying the PIAP. Because it is hard to understand each step

29

of the benchmark. Since the major objective of this thesis work is studying behaviors
of PIAP, we should know the details of the program. We selected all programs to be
PIAP.

Two groups of programs are developed one using C and the other using Java. The
first group is for the searching algorithms. It includes binary search and sequential
search. The second group is fof the sorting algorithms including bubble sort, quick

sort, shell sort and merge sort.

4.3.1 Searching Algorithms

Sequential Search

The sequential search also known as linear search is used to search a set of data for
a particular value and does not care about the repeat of elements in the list or if the
set of data is sorted or not. The flow chart of séquential search is shown in Figure
4.1.

Big O:

Sequential search runs in (O(N)), because sequential search has to check every
element of a list until a match is found. If the data are distributed randomly, on
average, (N =+ 2) comparisons will be required. The best case is when the value is
equal to the first element tested, in this case, only 1 time of comparison is needed.
The worst case is that the value is not in the list or is the last value, in which (N)
times comparisons are needed.

Roles:

Sequential search is used as a comparison with binary search algorithm in this
thesis work. The sequential search uses branch inside loop and it is sequential com-
pared with the binary search. The malloc() function in sequential search is also used
to study the dynamic allocation of memory, a part of the dynamically allocated data
structure (DADS). We expect good cache performance if malloc() gives the applica-
tion a sequential memory space.

Implementation:

The core algorithm of the sequential search is an iteration with a counter, shown

30

FOUND = 1

(initial a[0] to a[n])
v

get the value of key
i=0,FOUND =0

Figure 4.1: Flow chart of the sequential search.

below:

i=0;
FOUND=0;
while(i < m)
{
if (alil==key)
{ .
FOUND = 1;

//m is the length of the list.

printf ("We’ve got it. It is a[");

31

printf ("%d",i);
printf ("]=}f",key);
break;

else

i++;

}

Binary Search

Binary search is an algorithm of searching a set of sorted data for a specific data
element. It cannot be applied to compound structure because the data have to be
sorted at the very beginning. '

Binary search to first compares the key value with the element in the middle of
the list, like the root of balanced search tree, if the key is larger than the element,
reiaeat the search in the end part of list, until the value is found or all possible parts
of list are searched, without finding the key value.

If the key is smaller than the element, search the front part of the list, until the
value is found or all possible parts of the list is searched without finding the key value.

If the key is equal to the middle value, exit the search and display the element
which has the same value as the key.

If the value is not found exit.

The flow chart of bin;ry search is shown below in Figure 4.2.

Big O:

On average, the binary search is a logarithmic algorithm and executes in O(log, N)
or O(14log, N) times. It is considerably faster than the linear search. The best case
of binary search is when the key is exactly in the middle of the sorted data. In this
case only one time of compare is needed. The worst case is when key is in the first or
last portion of data or whén the key is found in the data. In this case, the complexity

is O(N + 2) times.

32

C initial a[0] to a[n])
'

get the value of key
i=0,FOUND=0

!

first=0, last=n

4

/firstl= last

Y

first = mid

ast=mid | ———y
| FOUND = 1 L1

Y

END

Figure 4.2: Flow chart of the binary search

Roles:

The algorithm of binary search is similar to searching a special binary search
tree. Binary search algorithm is used in this thesis work to study behavior of this
algorithm in the memory system. Its cache performance is much worse than the
sequential search because it does not have the same spatial locality like sequential
search. ’

Implementation:

Binary Search can be implemented using recursion or loop programming tech-

nique. In our program, an iteration is used, as shown below:

33

"The program makes first=0; last=N. where N is the size of the array.

while(first <= last)

{
mid = (first + last)/2; // Get mid point.
if (key > almid]) // If key is larger than the mid point
first = mid + 1; // Repeat search in the last half.
else if (key < a[mid])
last = mid - 1; // Repeat search in the first half.
else
{
FOUND = 1;
printf ("We’ve got it. It is a[");
printf ("%d",mid);
printf ("]=4f",key);
break;
}
}

4.3.2 Sorting Algorithm

a sorting algorithm is an algorithm that puts elements of a list into a certain order, of-
ten lexicographical order, in either ascending or descending order. Sorting algorithms
are important and efficient methods to optimize the performance of algorithms. It is

often used for canonicalizing data and producing human-readable output.

Bubble Sort

Bubble sort is a simple sorting algorithm, also called insertion sort. It is used to
sort the N elements array in ascending order. It first uses the first data element
af0] to compare it with all others. If a/0] is larger than afl], exchange a/0] and
a[1], otherwise do nothing. Then it compares af0] and /2] using the same method.

34

When a/0] have been compared with the last element, a/0]’s position is defined. The
algorithm repeats the same procedures for af1], af2], a/3],...... until all the elements
have been sorted. Figure 4.3 shows the flow chart of the bubble sort.

(inttial a[0] to &)

=0, =0

Y d_..-«-""-:ﬂ-’
—«.“'M.J_- L’! =
N

<al))> &P
Y
Swap g]j] and a[j+1]

'

j=jv1 e

i=i+1andj=0

¥
____,-"""H'g__r:;%\"‘«-.

—

—_—

Iy
(e)

Figure 4.3: Flow chart of the bubble sort.

b 4

Big O:
Bubble sort is a very time consuming algorithm. It takes O((n?)) times of itera-

tions.
Roles:

35

PROPERTY OF
RYEREGH UNEVEIEITY LIBRARY

Bubble sort is a sequential algorithm used for comparison. We also use it to study

malloc() function.

Implementation:

for(i=0;i<m-1;++i)

{
for(j=0;j<m-1;j++)
{
if(aljl > a[j+1D)
{
temp = aljl; //From here to
aljl = a[j+1];
a[j+1] = temp; //here swap a[j] and a[j+1]
}
}
}

Quick Sort

Invented by C.A.R.Hoare, quick sort useé a recursive divide and conquer strategy to
sort a list. The steps used in this algorithm are:

Pick a Pivot

The pivot is an element from the list that is used to compare it with other elements.

Comparison

If the element is larger than the pivot, the element will be moved to the right of
the pivot, otherwise, it will be moved to the left of the pivot. The elements at the
left are smaller than the elements at the right, after the sorting. Then select another
pivbt by using the same rules and repeat same comparison for the sub list. Repeat

the above step until all elements in the list are sorted. The algorithm uses recursions

36

to implement it in a program, recursion characteristic is a function to fulfill a task by
calling itself.

Big O:

In average quick sort has (O(N log, N))[35]. The best case for quick sort when
the sorting list are always balance(two equal length of sub list). Its running time is,
then (O(Nlog, N)). The worst case for quick sort happened when the pivot is the
smallest or the largest value in each comparison. The run time for worst case is equal
to (O(N)). Which is a linear complexity algorithm.

Roles:

Quick sort is one of the major algorithms used in this thesis work. It is one of the
typical programs with irregular access patterns (PIAP).

Implementation:

The following algorithm shows a quick sort algorithm. The left and right means

front part of list and back part of list. Its recursive data structure can be seen.

void quickSort(float a[l, int left, int right) {
int locks;
if(left < right)
{
int i=left;
int j=right;
float tmp;
float pivot=alleft];

for (;;)
{
while ((a[j] >=pivot) && (j>left))
=
while ((a[i] <pivot) && (i<right))
it++;
if (i<j)

{

37

tmp = alil;

alil = aljl;
aljl=tmp;

}

else

{
locks =j;
break;

}

}
quickSort(a, left, locks);
quickSort(a, locks+1l, right);

Pivot Picking Methodology

For random data, the pivot is selected from the first, last or middle element. The
first element is picked up as pivot in this quick sort algorithm because it is a random
list. Sometime, picking up the first element may lead to the worst case if the data
to be sort are not random. There are other methods to pick up the ‘pivot based on

arithmetic means of the first and last elements.

Shell Sort

Shell sort is proposed by Donald Shell. Shell sort is a sub-quadratic algorithm and is
a faster algorithm than bubble sort. It uses simpler coding than quick sort.

Shell’s idea helps to reduce the amount of data movement. It is a “diminishing
gap sort”, first a gap is defined (for example, gap=>5), then it compares, if a[0] is
larger than a[5], exchange them, otherwise, no exchange, then it compares a[l] with
a[6] using the same idea, and repeat, until a[n] is reached. Decrease the gap by 1, then
use the decreased gap to begin another iteration from a[0] until a[n], then decrease
gap by 1, until gap=0. Figure 4.4 shows the flow chart of shell sort.

Big O:

38

initial a[0] to a[n]
pick gap, i=0

Swap a[i] and a[i+gap}

i=i+1 -

_ Y N gap=gap - 1
i=0
(o)

Figure 4.4: Flow chart of the shell sort.

The worst case of shell sort is (O(N?)). The average is (O(N®/2)), when N is the
exact power of 2. It is hard to give an average and best case without discussing the
gap picking up and length of list.

Roles:

Shell sort uses unpredictable dynamically accessed memory referencing. Its spatial
locality is worse than bubble sort if the array is stored contiguously or relatively
contiguously. Temporal locality should become better and better during the execution
of shell sort. With the decreasing of the gap, temporal locality improves the execution '
of algorithms.

Implementation:

39

The following code shows a partial implementation in Visual C++. To make

coding more brief, an odd number was used as gap, rather than using dividing by 2.2

1

void shellsort(float a[l, int array_size) {
int i, j;
float temp;
int gap = 5;
while (gap > 0)

{
for (i=0; i < array_size; i++)
{
=i
temp = al[i];
while ((j >= gap) && (alj-gapl> temp))
{
aljl = alj - gapl;
j=1J- gap;
}
aljl = temp;
}
if (gap/2 != 0)
gap = gap/2;
else if (gap == 1)
gap = 0;
else
gap = 1;
}

1The gap equals to the length of list divided by 2.2.

40

Merge Sort

Merge sort is used to sort two sorted lists together. For example, two lists a[n] and
b[m] are to be sorted. A[n], b[m] are used to express two input list. C[k] is used to
express the sorting results. The flow chart of merge sort is shown below as Figure

4.5.

initial a[0] to a[n]
b[0] to b[m]

y

i=0, j=0, k=0
p=m+n

4 y

c[k] =bl[j] c[k] =ali]
Y Y
ji=j+1 i=i+1
k=k]|-1 k=k+1
Y
END

Figure 4.5: Flow chart of the merge sort.

Big O:

41

Merge sort runs in (O(N log, N)) times, with (O(N)) over head. It is not the
best algorithm, but it is a good algorithm when the two sorted lists are to be sorted
together.

"~ Roles:

Merge sort uses a divide-and-conquer algorithm. It is used as a comparison with
quick sort and shell sort because it has a better spatial locality than quick sort and
shell sort. But it has linear time complexity.

Implementation:

Though it is possible to implement merge sort in a recursive way, a simple way
using loops is adopted. This is simple and easy. The performance of memory hierarchy
should be different than when using recursive implementation. The implementation

is shown below.

i=0;
j=0;
k=0;
while (k<p) //p is the length of sorted array c
c
if (alil<b[jD)
{
clkl=alil;
i++;
}
else
{
clkl=b[jl;
j++;
}
k++;

42

if (i==m && j<n)

{
while (j<n)
{
clk]l=b[j]1;
j++;
kt++;
}
break;
}
if (i<m && j==n) //m == n in our benchmark’s data set.
{
while (i<m)
{
clkl=alil;
it+;
kt++;
}
break;
}

4.3.3 Summary

In this chapter, we discussed the simulators and programs used in this thesis work.
The objectives of this chapter are to introduce the simulators and prepare PIAP

programs; then analyze the complexities of PIAP programs.

43

Chapter 5

Results

This chapter shows the results of simulation. All results in this chapter are obtained
with simICS.

5.1 Research Méthodology
5.1.1 Simulation Environment:

The host operating system: Red Hat Linux 8.0

- Target operation system: Red Hat Linux 7.3

- Host memory: 1024 MB

- Target memory: 512 MB

- Host processor: Intel Pentium IV at 1.8 GHz with 256 L2 cache

- Target processor: 100 MHz Pentiuni IT without cache

- Compiler: gce v3.2 for C programs Java 2 for Java programs

We used Pentium IV computer with simICS installed to simulate a computer with
a 100 MHz Pentium II processor.

The speed of target processor does not affect memory access behavior. All level of
caches are disabled, in order to get more accurate trace for the memory access. This
condition is used in all the simulation results presented in the res:t of this chapter.
There are great differences between the simulation results with cache enabled and
cache disabled. Caches intercept processor accesses and changes the behavior of
accesses in memory, therefore caches should be disabled to get the real behavior of

access in main memory.

44

We used Pentium II architecture that represents the latest architecture provided
by simICS v.1.4.7. The highest speed is only 100 MHz. Furthermore, the objective
of this thesis work is to study the memory access behavior of DADS and PIAP
themselves. So the speed of processor or its architecture are not important.

SimICS was adopted in studying the behavior of memory access of dynamically
allocated data structure (DADS) and programs with irregular access patterns (PIAP)
because it has trace command that gets the trace of all steps of the execution for

DADS and PIAP. The trace results is shown in Figure 5.1.

5.1.2 Benchmark Selection

It is very hard to understand the behavior of each program in SPEC CPU 2000.
We need to study memory access behavior therefor we used programs with known
behaviors.

The PIAP discussed in chapter 4 are used in many applications. For example,
binary search is the fastest way to search in database; merge sort is popular and is
used to combine and order two sorted data sets. So we prepared some applications.
We used random generated numbers with these programs.

In Figure 5.1, the first column is an instruction access or a data access. The
second column is the pipeline cycle number and the pipeline organization inside the
processor. The third column shows which processor executed the instruction in this
row. The forth and fifth columns show the logic address and the operation used.
The sixth column gives the physical address of operation. We analyzed the physical
address because it has the real memory location during the execution of process or
thread.

We only analyzed data access because instruction cache shows a very good spatial
and temporal localities. We introduced new parameters to help us understand the
behavior of accesses in memory: the distance between two adjacent elements and the

number of accesses between each repeat access.

45

5.1.3 Distance Between Two Adjacent Elements for Measur-
ing Spatial Irregularity and Locality

This parameter is used to analyze the distribution of physical memory address for.the
dynamic allocation of memory and programs with irregular access patterns (PIAP)
in their spatial locality. It is important to know the distribution for the prefetching.
For illustration: oxffe81000 is the physical address of the first data access as shown in
Figure 5.1 minus 0x1b9702e0 which is the physical address of the second data access
as shown in Figure 5.1. The absolute value of the substraction result is called distance
between two adjacent elements. The distance between the second and the third data
accesses could be calculated. The distance between the third and the fourth could be
calculated, and so on, until the process or thread ended or until all simulation results
are calculated. By calculating the distance between two adjacent elements, we can

find if there are any potential predictable access patterns in the dynamic memory |
allocation function or program with irregular access patterns (PIAP). Those access
patterns are greatly helpful for optimizing spatial locality in cache management. We
studied the distance between two adjacent elements, and also the frequency (described

below) of occurrence of each element.

46

"S}[nsal uorjR[UIS [BIjIRg 1°Q 2anSi g

(ewmypeey) Bupssedo eleg

. peay 83
S50y jeaday ssalppy |Bo1sAyd BJUM :8p
& ssappy. 2160y 10559001g uopansY| - == —
8p0oJ Alquiassy X3H Ul apo) aulyoe PR :)
H 0 W ssaippy 1e3ishud -Joquiny euyedid "
{) _
B 000°GE03X) &83Aq y PemH @M JueA Awkm\.qunuo X Am:.nn;ocxo 1> AmEEacnxc ¥P> 0 NdD [226LEL8 Tegep ———L—
[gLL»qROa%x0) 33d paoxp’xps acwm 2 A3 Srxpsds . NdD (RGEGBYGT 1asuy (=——-d
. 0xp ®834q v pesd 88 Fuea Awowﬁmnnu? Ammuﬁmﬁxa:v Amauorm%xc.%v 0 02D [TZ6LETS Teqep i
[¢sx29] [789] 3ad paomp’xwe acw ©B ¥D 98- <0205L67Txp:d> Swemnm%xe:v.Aowomnmocxc:uv 0 4D [Lsesgysy | rawup -
0208980®%0_T 0F 3{ <vz06rEaTXpid> | <o7 183> p nad [9Gggency | rasuy & ——-
0xg B83AQ p BITIM I0 THYA <000TEVFFX0: <QD02qgp8xXQs AvAooounmo .a:,.uv 0 NdD [0zZ6LETH Te3ep w——1—
%3/ {xpa) 33d pIosp Aow g0 68 <IZOSGLEITXpid> <g0gAGOIXY: T> <IZ0BAPHIXQ:8I> b NAD (§5E5895T | fawuy (———-d
xqa ‘xoa dud 6P 6€ <®Z0OGLEITXD3d> <VZ08APOBXY T> <FZOBEPOPXQ3#I> 0 NAD (P&EEEYST | :3suy (———-d
09 Juy Th <6206L69T%pd> <6Z08q80 XY T> <GZ084BDBX0:¢I> 0 nad [£6£5896T | :3suy All.:"
0002R803%0 883Aq p pedY €8 JUEA A&R.sqnnxe & Amﬁﬂmocxo:u «Eannmoic YP> 0 NAD (proLces TeIep ———1—
faLLeqgoexg] x3d paowp’xpe aow ¥ B . 3TXpd>) IED> 2 [ZGE£5BYGT 2IRUY “.Allll.
0X) B93AG b PemY.GN JUTA Awouﬁaﬁu? éa«osasa ﬁ. A:&S.,m xe VP> 0 0dD [BI6LECH Teep 4——1—
[Fex09] [F80] 33d paoxp’xws aocw 28 ¥D 98 <0ZOGLESTXDrd> €02089g09X0: 1> <070gq80BX0I83> § NAD [TSESBYST | taruf <=—=d
0z08aBQexp_1f{ 0¥ 3 <87064631xp:d> <B70gAYOBXG:T> <OZOGARNEXY:i63> D NdD [0GE5896) | :3suf (———-d
0%Q B33AQ y IITIN.IN TUVA <O0QTEPFFX):0> €00039802X0: 1> <QD0AQEORXQI®P> 0. .NAD (LI6LETH Tegep ———1
x%a/[xps] 33d piowp sow ZD 6B-.<3g05L69TXpid> <PZ0BAGOAX 1> <2708980ax0:#9> D ndH {6ve589ST] tasup (m——-d
xqs ‘x39 dwd OB BE <PZOSLEITXDId> | <BZOFAGOIXQ: T> <PZOGABOPX0:FI> 0. 13D (BYESBIST | 3k (———-
x99 duy Th. <6T05L69TXDid> <6TOYRGOPXY: T> <6Z08UGOBXQ: 43> D NAD {L¥EL589GT | 3wuy Al...l.."
0007R8D3Xg 6934q b nnex FueRa Awkmgouu?nv éﬁméaeé:v éiﬂscoxc;uv D nad [sT6LE2E Tvgep a———1—
lgLieqgoexp] 23d paoxpixpe acw 2xpids . ax : 4D _[9¥gee9st | raguy ——--
0%Xp %9349 b vawm R JUeA Avowono.ﬁx? Acewﬁ nuxc ﬁ. nocmop qQPXYI¥P> O NAD [SI6LELS Te3ep i
[vax08] [¥88] 33d PIOKP‘x¥s Adw 98 ¥D 98 <0Z0SLEITXDd> Swomnmcuxc:v é«o@écexc;uv 0 NaD (SyCegysy | 3vuy (———-
0Z08A8UBX0_T 7 _3{ <870G{EITXDid> BXQ1 TS 183> o nan vy 138U
0%Xg 593Aq ¥ SITIN OO THVA <000THFIX0’ éoounmcexo;v. éoounmo xcE >0 04D TRINPp]

The Distribution of Distance between Two Adjacent Elements

There is a domain for distance between two adjacent elements that has a minimum
value and a maximum value. We divided the minimum to maximum domain to sub-

domains. The numbers of elements in each sub-domain are counted. The following

example is given to show the distribution of elements in the sub-domains:

Total number of data references = 719,379

The number of elements that have the distance between two

adjacent elements less than 1024B = 409,279

Ratio for elements of distances between them to total number

of elements in a program less than 1024B = 43.106684/,

Portion
Portion
Portion
Portion
Portion
Portion

Portion

In this example, distance between two adjacent elements are divided into two
domains: bigger than 1024B and equal or less than 1024B. The portion of equal or
less than 1024B is listed as 43.10668% of total number of elements, which is 409,279
divided by 719,379, and multiplied by 100%. The second domain of results, represents)
domain 0 to 16, 17 to 32, 33 to 64, 65 to 128, 129 to 256, 257 to 512 and 513 to 1024”
respectively. For example, there are 288,481 elements in the sub domain 0 to 16 which

is 93.028378% of elements with total distance equal or less than 1024B. Here, "B” is

of
of
of
of
of
of
of

distance
distance
distance
distance
distance
distance

distance

<= 16, 288481, 93.028378% of the 43.10668%
<= 32, 6801, 2.193163% of the 43.10668%
<= 64, 6927, 2.233796/, of the 43.10668/
<= 128, 3416, 1.101580% of the 43.10668
<= 256, 2553 0.823283}, of the 43.10668/
<= 512, 1684 . 0.543051% of the 43.10668%
<= 1024, 238 0.076749/, of the 43.10668

added because this distance maps to memory accesses specified in byte;

48

5.1.4 Number of Accesses between Each Repeat Access for
Measuring Temporal Irregularity and Locality

Some memory addresses would probably be accessed more than once during the exe-
cution of process. This repeat access is important for cache. This affect data stored
in cache and the period of time stay in cache before they are evicted.

To measure how long before the same memory address is accessed again, we calcu-
lated number of data accesses between each access of the same address. For example,
the physical address (in Figure 5.1) 0x1c973778 was accessed for three times. There
are two data accesses between the first and the second time. So the number of accesses
between the first and the second access is counted as 2. There are two data accesses
between the second and the third access. So the number of access between the second
and the third access is counted as 2 as well. Though the content of the same address
might be different during the execution of the process?, it is important to study the
behavior of repeat'accesses of memory addresses without caring too much about the
content? This helps in understanding data access patterns stored in cache.

The distance between two adjacent elements and number of accesses between each
repeat access is shown below as Figure 5.2.

In Figure 5.2, the right curves illustrate the distance between two adjacent ele-
ments, the left curves illustrate the number of accesses between each repeat access.
For example, the curve with value 10034c0 is the absolute value of 0x1b9702b8 minus
0x1c973778. It is the distance between these two elements. On the other hand, the
curve on the left with value 4 shows the number of accesses between the first and
the fifth data access. Both of the accesses referenced the same physical address in
memory - 0x1b9702b8.

11t is depended on the program itself, garbage collection methodology of compilers, etc. For
example, the memory claimed is freed by program or it is been overwritten by the upcoming opera-
tion. Part of memory space is not visited long enough, so the garbage collection function in compiler
probably released the memory space.

2Actually all data needed to run the program is in the memory because the simulation environ-
ment is 512MB memory and our applications.

49

daxt:
Jaals
data:
iusi:
data:
dast:
Iostz
FET
2 data:

Aol s

Anmls

datn:

Iasle
~data:
/o inmts
RET 3 P

dosls

{
{
{
[
l
1
{
{
!
i
i
i
I
{
l
i
[
i
I
i
{
{

15588706]
15588707]
8184131]
155587 0%]
2184132]
15583706]
15588710]
155387 11]
81841733)
155887 12]
15585713]
31841243
155887 14]
$134135)
155887 15)
155857 167
155887 17)
81241%6)
155887 18]
15584719]
8194137)
155387 201]

Cri
celr
npu
opy
cpu
CrRu
ot H
Lopy
L H
Gpu
fogic i
(933 H
nyy
oPs
(03514
194 L
oy
Eif
opa
[
Geir
nre

DAV BDIVDDADDIDDIDD DD

<pr0xle¥7 5der

wpeOx 187 BE20x
<ps0x1b97020b8>
<psOx1e9750275)1008460
<p1Ox1c973778
<psfxla975829
<p0z1eq? 5026
<psOx]e87 50240
<pr0xfLeB 1000
<prfnled? i ler
<pr0210:97 5020
<t Q17 02k
<ps0x1097 5023
<p:Ox1c973778
<pr0x bt 29
<pdnle¥? 5200
G Gxle9T 802
<p:0x1b9702b8.
<pr0x1e87 50 2as

<prdzleds 54}20;) 10034¢0
<pe0x1c973778>
<pr0x216¢9750230

3500888

4d62
34bc

10034¢0

Figure 5.2: Summary of distance between two adjacent elements and number of accesses

between each repeat access.

Distribution of Repeat Accesses

Here is an example of number of accesses between each repeat access.

Total number of repeat accesses:380,134

Min: 1,

Less than 1,000,000: 318,773,

10, 82.11Y%
100, 6.75%

Less than

Less than

Less than 1000,
10,000,
100,000,

1,000,000,

Less than

Less than

Less than

Mean: 27,023.027101,

1.61Y%
0.66Y%
0.24Y

7.63%

50

Max: 630,469

Ratio: 83.858281J

The first row shows the total number of repeat accesses of physical addresses. Its
value is 380,134 in this example. Here only the repeat of addresses themselves is
counted. For example, if an address is accessed for ten times, it is counted as 9 times
repeat access. The second row shows the minimum number of accesses between each
repeat access which is 1 and the maximum number of accesses between each repeat
access which is 630,469. The mean is the average of all values of number of accesses
between each repeat accesses. It is 27,023.027101 in this example. Mean is important
for improving the performance of memory hierarchy by using simple statistic function.

The third row shows how many numbers of accesses between each repeat access
are equal or less than 1,000,000, the forth row shows its portion over the total number
of repeat accessed address shows in the first row of the example. The rest part of
results show the portion of each sub-domain as for equal or less than 10,000,000. For
example “1.61%” means that there are 1.61% of accesses that repeat are found from

101 to 1000 sub-domain to that total number in equal or less than 1,000,000.

5.2 Simulation of malloc() Function

As discussed in chapter 3, malloc() function is used in Dynamically Allocated Data
Structure(DADS). So studying malloc() function is important in this thesis work.
Malloc() function is studied by using 10 programs. The malloc() function is used to

read 500 integer into dynamic memory. The C program is shown below:

int i, m; //define variable for reading
char fName[128]; //Store file name
int *a; //Point the memory address

FILE *filer; //Point each row of the file.

printf("Input the file name:");

scanf ("%s", &fName);

51

if ((filer=fopen(fName,"rt"))==NULL)

printf("can not open file\n");

fscanf (filer,"%d",&m);

a=malloc(m*sizeof (int));

for (i=0;i<m;i++)

{

fscanf(filer,"%d",&alil);
}
fclose(filer);

<=1024
40.72%

>1024
59.28%

(a) Overall spatial irregularity of malloc()
function.

//Apply for dynamic memory space

//read each row into array a

129 to 256B
4.41°

65101288 1% 257t an 513 to
9.64% 183% 04
33 to 64B 0.05%

5.95%
17 to 32B 0 to 16B
7.76% 70.97%

(b) Spatial irregularity of malloc() function equal
or less than 1024B.

Figure 5.3: Spatial irregularity of malloc() function.

From the results in Figure 5.3(a) and 5.3(b), It is clear that the effect of spatial

locality is an important factor of memory access performance for malloc() function,

because there are 59.28% of elements have distance between two adjacent elements

over 1024 Bytes. It means that even in a prefetch buffer is as big as 1KB, there will

have 60% misses. Fortunately, most of elements with distance between two adjacent

elements below 1024B are distributed in 0-16B value range (70.97%). It means if the

prefetch buffer or cache block are as big as 16B, nearly 30% of potential miss could

52

be avoided.

<=1M
57.30%

(a) Overall temporal irregularity of mal-
loc() function.

10K to
1001 to 100k 100K to
10K 13.12% M

4.00% 3.16%

101 to 1K
6.92%

0to10
52.92%

11 to 100
19.87%

(b) Temporal irregularity of malloc() function
equal or less than 1M. .

Figure 5.4: Temporal irregularity of malloc() function.

Malloc() has temporal irregularity as : elements that repeat within 1M is 57.30%
of the total number of elements that have repeat access. When we consider elements
that repeat in less than 1M, we found the following is shown in Figure 5.4(a) and
5.4(b): repeat within 1 to 10 accesses is 52.92% (Figure 5.4(b)) of 57.30%(Figure
5.4(a)); repeat within 11 to 100 accesses is 19.87% (Figure 5.4(b)) of 57.30%(Figure
5.4(a)); repeat within 101 to 1K accesses is 6.92%(Figure 5.4(b)) of 57.30%(Figure
5.4(a)); repeat within 1001 to 10K accesses is 4.00% (Figure 5.4(b)) of 57.30%(Figure
5.4(a)); repeat within 10K to 100K accesses is 13.12% (Figure 5.4(b))of 57.30%(Fig-
ure 5.4(a)); repeat within 100K to 1M accesses is 3.16% (Figure 5.4(b)) of 57.30%(Fig-
ure 5.4(a)). On the other hand, the temporal locality is also an important factor in
performance of memory hierarchy is shown Figure 5.4(a) and 5.4(b). The partial se-
quential results of number of accesses between each repeat access are shown in Figure

5.5.

53

Temponal Locality of malloc() Function

300C0

2000

20000

Number of Accesses
@
=
<

100C0

5000

Accasses betwoon Each Repoat Access

Numbaer

3

Figure 5.5: Partial simulation results of malloc() function.

5.3 Simulation Results of Each Algorithms
5.3.1 Simulation Results of Sequential Search

Compared with binary search, sequential search is more regular. It searches the key
word or value one by one in the array. So its memory access is more sequential than
binary search. '

Sequential search in C has the spatial irregularity as: elements that have the
spatial irregularity less than 1024B is 63.21% shown in Figure 5.6(a)(This indicate
low spatial irregularity.); elements that have the spatial irregularity within 0 to 16B is
81.74%(Figure 5.6(b)) of the 63.21%(Figure 5.6(a)); elements that have the spatial
irregularity within 17 to 32B is 5.03%(Figure 5.6(b)) of the 63.21%(Figure 5.6(a));
elements that have the spatial irregularity within 33 to 64B is 4.17%(Figure 5.6(b))
of the 63.21%(Figure 5.6(a)); elements that have the spatial irregularity within 65 to
128B is 4.97%(Figure 5.6(b)) of the 63.21%(Figure 5.6(a)); elements that have the
spatial irregularity within 129 to 256B is 2.35%(Figure 5.6(b)) of the 63.21%(Figure
5.6(a)); elements that have the spatial irregularity within 257 to 512B is 1.38%(Figure

54

65t0128p 129t0256B 257 to 512B
4.97% 2.35% 1.38% S513to

>1024. <=1024 33 to 64B 1024B
63.21%
36.79% % 417% 0.36%
17 to 32B
5.03% 0 to 16B
81.74%

(a) Overall spatial irregularity of sequen- (b) Spatial irregularity of sequential search in C
tial search in C. equal or less than 1024B. :

Figure 5.6: Spatial irregularity of sequential search in C.

5.6(b)) of the 63.21%(Figure 5.6(a)); elements that have the spatial irregularity within
512 to 1024B is 0.36%(Figure 5.6(b)) of the 63.21%(Figure 5.6(a)).

1001 to 10K to 100K to
10K 100K 1M
2.34% 44 % 3.84%

2;}};{7 101 to 1K
e T 5.72%

11 to 100
15.68%
<=1M 0to10
74.29% 69.98%
(a) Overall temporal irregularity of se- (b) Temporal irregularity of sequential search in C
quential search in C. equal or less than 1M.

Figure 5.7: Temporal irregularity of sequential search in C.

Sequential search in C has the temporal irregularity as : elements that repeat
within 1M is 74.29%(Figure 5.7(a)) of the total number of elements that have repeat
access. When we consider elements that repeat in less than 1M, we found the following
is shown in Figure 5.7(a) and 5.7(b): repeat within 1 to 10 accesses is 69.98%(Figure
5.7(b)) of 74.29%(Figure 5.7(a)); repeat within 11 to 100 accesses is 15.68%(Figure
5.7(b)) of 74.29%(Figure 5.7(a)); repeat within 101 to 1K accesses is 5.72%(Figure
5.7(b)) of 74.29%(Figure 5.7(a)); repeat within 1001 to 10K accesses is 2.34%(Figure

55

5.7(b)) of 74.29%(Figure 5.7(a)); repeat within 10K to 100K accesses is 2.44%(Figure
5.7(b))of 74.29%(Figure 5.7(a)); repeat within 100K to 1M accesses is 3.84%(Figure
5.7(b)) of 74.29%(Figure 5.7(a)).

513 to

257 to 512B 1024B

129 to 256B 2.13% 0.78%
247% - n
65 to 128B *
53.52%

>1024 33t064B] 17t032B
6629% 6.35% 7.05%
(a) Overall spatial irregularity of sequen- (b) Spatial irregularity of sequential search in Java

tial search in Java. equal or less than 1024B.

Figure 5.8: Spatial irregularity of sequential search in Java.

Sequential search in Java has the spatial irregularity as: elemgg;ts that have the
spatial irregularity less than 1024B is 33.71% shown in Figure 5.8(a) which indicate
lower spatial irregularity than sequential search in C; elements that have the spatial
irregularity within 0 to 16B is 53.52%(Figure 5.8(b)) of the 33.71%(Figure 5.8(a))
that is lower than sequential search in C as well; elements that have the spatial
irregularity within 17 to 32B is 7.05%(Figure 5.8(b)) of the 33.71%(Figure 5.8(a));
elements that have the spatial irregularity within 33 to 64B is 6.35%(Figure 5.8(b))
of the 33.71%(Figure 5.8(a)); elements that have the spatial irregularity within 65 to
128B is 27.70%(Figure 5.8(b)) of the 33.71%(Figure 5.8(a)); elements that have the
spatial irregularity within 129 to 256B is 2.47%(Figure 5.8(b)) of the 33.71%(Figure
5.8(a)); elements that have the spatial irregularity within 257 to 512B is 2.13%(Figure
5.8(b)) of the 33.71%(Figure 5.8(a)); elements that have the spatial irregularity within
512 to 1024B is 0.78%(Figure 5.8(b)) of the 33.71%(Figure 5.8(a)). |

Sequential search in Java has the temporal irregularity as : elements that repeat
within 1M is 76.42%(Figure 5.9(a)) of the total number of elements that have repeat

access. When we consider elements that repeat in less than 1M, we found the following

56:

>IM 1001t0 10Kto

23.58% 10K 100K 100K to
e 1.70% | 457% M

11.30%
101 to 1K Ry

6.86% 0to10

54.60%

<=1M 11 to 100
76.42% 20.96%

(a) Overall temporal irregularity of se- (b) Temporal irregularity of sequential search in
quential search in Java. Java equal or less than 1M.

Figure 5.9: Temporal irregularity of sequential search in Java.

is shown in Figure 5.9(a) and 5.9(b): repeat within 1 to 10 accesses is 54.60%(Figure
5.9(b)) of 76.42%(Figure 5.9(a)); repeat within 11 to 100 accesses is 20.96%(Figure
5.9(b)) of 76.42%(Figure 5.9(a)); repeat within 101 to 1K accesses is 6.86% (Figure
5.9(b)) of 76.42%(Figure 5.9(a)); repeat within 1001 to 10K accesses is 1.70%(Figure
5.9(b)) of 76.42%(Figure 5.9(a)); repeat within 10K to 100K accesses is 4.57%(Figure
5.9(b)) of 76.42%(Figure 5.9(a)); repeat within 100K to 1M accesses is 11.30%(Figure
5.9(b)) of 76.42%(Figure 5.9(a)).

There are great difference of the portion of spatial irregularity less than 1024B
between C and Java in sequential search. For C, it is 63.21% shown in Figure 5.6(a),
for Java, it is 33.71% shown in Figure 5.8(a). Though the temporal irregularity equal
or less than 1M for Java is better than C, 76.42% shown in Figure 5.9(a) versus 74.29%
shown in Figure 5.7(a), the temporal irregularity from 0 to 10 for Java (41.73%) and
C (52.00%) is greatly different®. So it is good for C in temporal locality compared to

Java in the sequential search algorithm.

3For Java: portion of < 1M is 76.42%, portion of 0 to 10 is 54.60% of total number of < 1M, so
portion of 0 to 10 in total temporal irregularity is ’

76.42% x 54.60% = 41.73%

For C, the calculation is the same. This calculation methods are also applicable to table 5.1 and
table 5.2. :

57

5.3.2 Simulation Results of Binary Search

Considering the algorithm of binary search itself, its memory access behavior should

be greatly different from the sequéntial algorithm.

>1024

<=1024
56.89%

(a) Overall spatial irregularity of binary (b) Spatial irregularity of binary search in C equal
search in C. or less than 1024B.

Figure 5.10: Spatial irregularity of binary search in C.

Binary search in C has the spatial irregularity as: elements théf have the spatial
irregularity less than 1024B is 56.89% shown in Figure 5.10(a); elements that have the
spatial irregularity within 0 to 16B is 93.03%(Figure 5.10(b)) of the 56.89%(Figure
5.10(a)); elements that have the spatial irregularity within 17 to 32B is 2.19%(Figure
5.10(b)) of the 56.89%(Figure 5.10(a)); elements that have the spatial irregularity
within 33 to 64B is 2.23%(Figure 5.10(b)) of the 56.89%(Figure 5.10(a)); elements -
that have the spatial irregularity within 65 to 128B is 1.10%(Figure 5.10(b)) of the
56.89%(Figure 5.10(a)); elements that have the spatial irregularity within 129 to
256B is 0.82%(Figure 5.10(b)) of the 56.89%(Figure 5.10(a)); elements that have the
spatial irregularity within 257 to 512B is 0.54%(Figure 5.10(b)) of the 56.89%(Figure
5.10(a)); elements that have the spatial irregularity within 512 to 1024B is 0.08%(Fig-
ure 5.10(b)) of the 56.89%(Figure 5.10(a)).

There is approximately 50%(63.21% versus 43.11%) difference between binary
search and sequential search in C for the distance between two adjacent eléments

that equal or less than 1024B used as spatial irregularity. The explanation for this

58

is that binary search is similar to searching in a spacial case of balanced search tree
as mentioned in chapter 3, search could go left or right after each comparison until
the key words or value is found or not found. So the data accesses are not sequential.

This means that the data references are more scattered than in sequential algorithm.

10K to
1001 to 100K
100K ¢
10K 0.00% M
0,
>1M 0.90% 051%

101 to 1K
38.81% Oto10
<=1M 11 to 100 56.17%
77.54% 3.62%
(a) Overall temporal irregularity of binary ~ (b) Temporal irregularity of binary search in C
search in C. equal or less than 1M.

Figure 5.11: Temporal irregularity of binary search in C.

The performance of binary search for temporal locality is better than malloc()
function itself, for example, portion of temporal irregularity equal or less than 10
in binary search is 43.55% shown in Figure 5.11(a) and 5.11(b), and for malloc()
function is 30.32%* shown in Figure 5.4(a) and 5.4(b)

Binary search in Java has the spatial irregularity as: elements that have the spatial
irregularity less than 1024B is 31.63% shown in Figure 5.12(a); elements that have the
spatial irregularity within 0 to 16B is 70.97%(Figure 5.12(b)) of the 31.63%(Figure
5.12(a)); elements that have the spatial irregularity within 17 to 32B is 9.47%(Figure
5.12(b)) of the 31.63%(Figure 5.12(a)); elements that have the spatial irregularity
within 33 to 64B is 9.05%(Figure 5.12(b)) of the 31.63%(Figure 5.12(a)); elements

4For binary search: portion of < 1M is 77.54%, portion of 0 to 10 is 56.17% of total number of
< 1M, so portion of 0 to 10 in total number of accesses between each repeat access neighbors is

77.54% x 56.17% = 43.55%

For malloc() function, the calculation is the same.

59

129 to 256B
1024 270 257 to 512B
3L63% 650 128B

3.84%

2.76% 51310

1024B
1.21%

33t0 64B
9.05%

0
>1024 17to 32B %09;?;
6837% ' 9.47% e
(a) Overall spatial irregularity of binary (b) Spatial irregularity of binary search in Java
search in Java. - equal or less than 1024B.

Figure 5.12: Spatial irregularity of binary search in Java.

that have the spatial irregularity within 65 to 128B is 3.84%(Figure 5.12(b)) of the -
31.63%(Figure 5.12(a)); elements that have the spatial irregularity within 129 to
256B is 2.70%(Figure 5.12(b)) of the 31.63%(Figure 5.12(a)); elements that have the
spatial irregularity within 257 to 512B is 2.76%(Figure 5.12(b)) of the 31.63%(Figure
5.12(a)); elements that have the spatial irregularity within 512 to 1024B is 1.21%(Fig-
ure 5.12(b)) of the 31.63%(Figure 5.12(a)).

10K to
1001t 190K 100K to
10K 1M
1.87%
101 to 1IK
1M 6.97%
45.81%
1213261"20-/ 0to10
58.51%
(a) Overall temporal irregularity of binary ~ (b) Temporal irregularity of binary search in Java

search in Java. equal or less than 1M.

Figure 5.13: Temporal irregularity of binary search in Java.

Binary search in Java has the temporal irregularity as : elements that repeat
within 1M is 54.19%(Figure 5.13(a))of the total number of elements that have re-
peat access. When we consider elements that repeat in less than 1M, we found the

following is shown in Figure 5.13(a) and 5.13(b): repeat within 1 to 10 accesses is

60

58.51%(Figure 5.13(b)) of 54.19%(Figure 5.9(a)); repeat within 11 to 100 accesses is
23.46%(Figure 5.13(b))of 54.19%(Figure 5.13(a)); repeat within 101 to 1K accesses is
6.97%(Figure 5.13(b)) of 54.19%(Figure 5.13(a)); repeat within 1001 to 10K accesses
is 1.87%(Figure 5.13(b)) of 54.19%(Figure 5.13(a)); repeat within 10K to 100K ac-
cesses is 4.01%(Figure 5.13(b))of 54.19%(Figure 5.13(a)); repeat within 100K to 1M
accesses is 5.18%(Figure 5.13(b)) of 54.19%(Figure 5.13(a)).

For binary search, there are great difference between C and Java. For C the
portion of spatial irregularity equal or less than 1024B is 56.89% shown in Figure
5.10(a). While the same value for Java is 31.63% shown in Figure 5.12(a). The
portion of temporal irregularity for C equal or less than 1M is 77.54% shown in
Figure 5.11(a), for Java is 54.19% shown in Figure 5.13(a).

5.3.3 Simulation Results of Bubble Sort

Interesting results are shown for bubble sort and shell sort. Their temporal localities
are all larger than malloc() function. The portion of 1-10 of temporal irregularity of
bubble sort and shell sort are 40.66% and and 40.16% respectively shown in table 5.1
in page 78. All of them are higher than malloc() function. This is because the swap
function in the sorting algorithms helps to increase their temporal locality. The swap

function is given below:

for(j=0;j<m-1;j++)

{
if(aljl > alj+1D)
{
temp = aljl; //From here to
aljl = alj+11;
a[j+1] = temp; //here swap alj] and a[j+1]
}
}

61

This repeats a branch inside loop. Since the algorithm of sorting data set is
random, there are 50% probdbility that the variable “temp” will be visited. Consider
the randomization of data set, branch can be executed repeatedly or not. If the branch
were executed repeating in couple of iterations, then number of accesses between each
access of physical memory address of “temp” will equal or less than 10. The accessing
of physical memory address of “temp” helps to increase the portion of temporal
locality from 0 to 10.

For merge sort shown in Figure 5.28(a), 5.28(b), Figure 5.29(a) and Figure 5.29(b),
its simulation results should be close to malloc() function because the algorithm is
working in three dynamic allocated memory space sequentially. It is also tested by
the results shown in this chapter late on.

513 to
1024B
0.05%

257 to 512B
0.18%

<=1024

2851% 129 to 256B g
38.64% 0to 16B
57.52%
65 to 128B
>1024 151% 33to64p 1710328
7149% 1.00% 1.10%
(a) Overall spatial irregularity of bubble (b) Spatial irregularity of bubble sort in C equal or
sort in C. less than 1024B.

Figure 5.14: Spatial irfegula.n’ty of bubble sort in C.

Bubble sort in C has the spatial irregularity as: elements that have the spatial
irregularity less than 1024B is 28.51% shown in Figure 5.14(a); elements that have the
spatial irregularity within 0 to 16B is 57.52%(Figure 5.14(b)) of the 28.51%(Figure
5.14(a)); elements that have the spatial irregularity within 17 to 32B is 1.10%(Figure
5.14(b)) of the 28.51%(Figure 5.14(a)); elements that have the spatial irregularity
within 33 to 64B is 1.00%(Figure 5.14(b)) of the 28.51%(Figure 5.14(a)); elements
that have the spatial irregularity within 65 to 128B is 1.51%(Figure 5.14(b)) of the
28.51%(Figure 5.14(a)); elements that have the spatial irregularity within 129 to 256B
is 38.64%(Figure 5.14(b)) of the 28.51%(Figure 5.14(a)); elements that have the spa-

62

tial irregularity within 257 to 512B is 0.18%(Figure 5.14(b)) of the 28.51%(Figure
5.14(a)); elements that have the spatial irregularity within 512 to 1024B is 0.05%(Fig-
ure 5.14(b)) of the 28.51%(Figure 5.14(a)).

10K to
1001
to 100K 100K to
10K 0.00%
0.90% M
’ 0.51%

>TM
27.61%

101 to 1K
38.81% 0t010
<=IM 11 to 100 56.17%
72.39% 3.62%
(a) Overall temporal irregularity of bubble (b) Temporal irregularity of bubble sort in C equal
sort in C. or less than 1M.

Figure 5.15: Temporal irregularity of bubble sort in C.

Bubble sort in C has the temporal irregularity as : elements that repeat within
1M is 72.39%(Figure 5.15(a)) of the total number of elements that have repeat ac-
cess. When we consider elements that repeat in less than 1M, we found the fol-
lowing is shown in Figure 5.15(a) and 5.15(b): repeat within 1 to 10 accesses is
56.17%(Figure 5.15(b)) of 72.39%(Figure 5.15(a)); repeat within 11 to 100 accesses is
3.62%(Figure 5.15(b))of 72.39%(Figure 5.15(a)); repeat within 101 to 1K accesses is
38.81%(Figure 5.15(b)) of 72.39%(Figure 5.15(a)); repeat within 1001 to 10K accesses
is 0.90%(Figure 5.15(b)) of 72.39%(Figure 5.15(a)); repeat within 10K to 100K ac-
cesses is 0.00%(Figure 5.15(b)) of 72.39%(Figure 5.15(a)); repeat within 100K to 1M
accesses is 0.51%(Figure 5.15(b)) of 72.39%(Figure 5.15(a)).

Spatial irregularity equal or less than 1024B of bubble sort in C is 28.51% shown
in Figure 5.14(b). It is one times less than malloc() function (40.72%) shown in
Figure 5.3(b). There should be some factors that affect the performance of bubble
sort. It is because of the loop inside loop style used in bubble sort that decreased the
performance. Suppose that there are 1000 elements in the array which will be sorted

by bubble sdrt, all data are processed in a sequential way inside the loop. Inside

63

the loop, the memory access behavior of bubble sort should be similar to malloc()
function, if the variable “temp”’s physical memory address is not too faraway from all
elements in the array. After the inner loop, the last accessed memory address is the
memory address of the last element of the array. Since malloc() function allocated
memory space as sequential as possible, there will be a big distance gap that is larger
than the length of array. _ ‘

There are similar problems for shell sort. It will be discussed later in this chapter.

129 to 256B 257 ¢o 512B 310

3.33% 470% 1024B

>1024 65 to 128B 5.78%
49.48% 3.75%

33to 64B
<=1024
50.52% 792% 17 to 32B ‘;;;;;B
7066% * (4
(a) Overall spatial irregularity of bubble (b) Spatial irregularity of bubble sort in Java equal

sort in Java. or less than 1024B.

Figure 5.16: Spatial irregularity of bubble sort in Java.

Bubble sort in Java has the spatial irregularity as: elements that have the spatial
irregularity less than 1024B is 50.52% shown in Figure 5.16(a); elements that have the
spatial irregularity within 0 to 16B is 66.87%(Figure 5.16(b)) of the 50.52%(Figure
5.16(a)); elements that have the spatial irregularity within 17 to 32B is 7.66%(Figure
5.16(b)) of the 50.52%(Figure 5.16(a)); elements that have the spatial irregularity
within 33 to 64B is 7.92%(Figure 5.16(b)) of the 50.52%(Figure 5.16(a)); elements
that have the spatial irregularity within 65 to 128B is 3.75%(Figure 5.16(b)) of the
50.52%(Figure 5.16(a)); elements that have the spatial irregularity within 129 to
2568 is 3.33%(Figure 5.16(b)) of the 50.52%(Figure 5.16(a)); elements that have the
spatial irregularity within 257 to 512B is 4.70%(Figure 5.16(b)) of the 50.52%(Figure
5.16(a)); elements that have the spatial irregularity within 512 to 1024B is 5.78%(Fig-
 ure 5.16(b)) of the 50.52%(Figure 5.16(a)).

64

10K to 100K to
100K 1M 0to10
17.38% 45.23%

1001 to
<=1M 10K
I124% 8.06%

>IM 101 to 1K 11 t0 100
62.76% 10.79% 17.11%

(a) Overall temporal irregularity of bubble (b) Temporal irregularity of bubble sort in Java
sort in Java. equal or less than 1M.

Figure 5.17: Temporal irregularity of bubble sort in Java.

Bubble sort in Java has the temporal irregularity as : elements that repeat within
1M is 37.24%(Figure 5.17(a) of the total number of elements that have repeat ac-
cess. When we consider elements that repeat in less than 1M, we found the fol-
lowing is shown in Figure 5.17(a) and 5.17(b): repeat within 1 to 10 accesses is
45.23% (Figure 5.17(b)) of 37.24%(Figure 5.17(a)); repeat within 11 to 100 accesses
is 17.11%(Figure 5.17(b)) of 37.24%(Figure 5.17(a)); repeat within 101 to 1K accesses
is 10.79%(Figure 5.17(b)) of 37.24%(Figure 5.17(a)); repeat within 1001 to 10K ac-
cesses is 8.06%(Figure 5.17(b)) of 37.24%(Figure 5.17(a)); repeat within 10K to 100K
accesses is 1.43%(Figure 5.17(b))of 37.24%(Figure 5.17(a)); repeat within 100K to
1M accesses is 17.38%(Figure 5.17(b)) of 37.24%(Figure 5.17(a)).

5.3.4 Simulation Results of Quick Sort

The quick sort have more jumps compared to other sort algorithms. For example,
suppose there is an array of 1000 elements to be sorted and that all the pivots during
the sorting are in the middle between b[0] to b[1000]. In the first recursion, b[0] is
used as the pivot. In the second recursion, b[0] is the pivot of the front of array and
b[500] is the pivot of the end part of the array. The pivots for recursion will be b[250],
b[125], b[63], b[32], b[16], b[8], b[4] and b[2] for the front part of array. Suppose b[4]
is the pivot, and that the elements to be sorted are: b[4], b[5], b[6], b[7]. If the

65

physical addresses are arranged sequentially from b[4] to b[7], then spatial locality
should be good in this case. It means the spatial locality of quick sort algorithm
is better than other sort algorithms because of the recursion that handle very small
amount of elements. This explains the higher spatial locality shown in quick sort
compared to bubble sort and shell sort. Further more, suppose that the memory
addresses distribution are continuous. Then 0 to 16B spatial irregularity is 24.10%
of quick sort shown in Table 5-1 in page 74?7, which is lower than malloc() function,
but better than bubble sort and shell sort.

Quick sort itself has the average of temporal irregularity (6854.7 shown in Table
5-1 in page 78) larger than all the other sorting algorithms and dynamic allocation
of memory. The temporal irregularity in the portion of 0 to 100 for quick sort is
28.10% and for bubble sort is 40.66% as shown in Table 5-1 in page 78. The temporal
irregularity equal or less than 1M are: 72.39% for bubble sort as shown in Figxire
5.15(a) and 53.26% for quick sort as shown in Figure 5.20(a). Figure 5.18 explains
the behavior of quick sort and bubble sort. The data accesses in recursion and loop
are represented by “X” and “Y”. The column 1 means reading data. “X” means that
the memory space are not referenced before. The column 2 represents the data access
of the first recursion or loop. The data that is accessed in this recursion or loop are
marked “Y”, because it is not the first time for program to visit the specific memory
space. The column 3 represents the second recursion, etc. Although the loop inside
loop of bubble sort program has a low temporal locality, The recursive scattered data
access in quick sort has even lower temporal locality from 0 to 10. It is possible for’
bubble sort to have good temporal locality in the last outside loops. But quick sort
written in recursion can not get such benefit when sorting a large data set.

Quick sort in C has the spatial irregularity as: elements that have the spatial ir-
regularity less than 1024B is 38.31% shown in Figure 5.19(a); elements that have the
spatial irregularity within 0 to 16B is 62.92%(Figure 5.19(b)) of the 38.31%(Figure
5.19(a)); elements that have the spatial irregularity within 17 to 32B is 12.28%(Fig-
ure 5.19(b)) of the 38.31%(Figure 5.19(a)); elements that have the spatial irregularity
within 33 to 64B is 9.50%(Figure 5.19(b)) of the 38.31%(Figure 5.19(a)); elements

66

QUICK SORT BUBBLE SORT

Level3 Level2 Level1 1 1 2
Y\Y Y| X | ®em | X Y
7N R L
B B B R I I R
\: y| X [m=| x v
N
ST N I B =
Y v y| x [Eesg]| x v

Figure 5.18: Demonstration of repeat access of quick sort and bubble sort in C

129 to 256B

o TS5
65 to 128B ’ S13to
8.36% 1024B
1.17%
33 to 64B
9.50%

<=1024 17 to 32B 0 to 16B

>1024

61.69% 3831% 12.28% 62.92%
(a) Overall spatial irregularity of quick (b) Spatial irregularity of quick sort in C equal or
sort in C. less than 1024B.

Figure 5.19: Spatial irregularity of quick sort in C.

that have the spatial irregularity within 65 to 128B is 8.36%(Figure 5.19(b)) of the
38.31%(Figure 5.19(a)); elements that have the spatial irregularity within 129 to
2568 is 3.99%(Figure 5.19(b)) of the 38.31%(Figure 5.19(a)); elements that have the
spatial irregularity within 257 to 512B is 1.78%(Figure 5.19(b)) of the 38.31%(Figure
5.19(a)); elements that have the spatial irregularity within 512 to 1024B is 1.17%(Fig-
ure 5.19(b)) of the 38.31%(Figure 5.19(a)).

67

10K to
1001to joor

10K
5.18%

100K to
™M
3.51%

s

101 to 1K \

8.74% 0to10

SIM 52.76%

46.74%

<=M 11 t0.100
53.26% 28.92%

(a) Overall temporal irregularity of quick (b) Temporal irregularity of quick sort in C equal

sort in C. or less than 1M.

Figure 5.20: Temporal irregularity of quick sort in C.

Quick sort in C has the temporal irregularity as : elements that repeat within 1M is
53.26%(Figure 5.20(a)) of the total number of elements that have repeat access. When
we consider elements that repeat in less than 1M, we found the following is shown in
Figure 5.20(a) and 5.20(b): repeat within 1 to 10 accesses is 52.76%(Figure 5.20(b)) of
53.26%(Figure 5.20(a)); repeat within 11 to 100 accesses is 28.92%(Figure 5.20(b))of
53.26%(Figure 5.20(a)); repeat within 101 to 1K accesses is 8.74%(Figure 5.20(b)) of
53.26%(Figure 5.20(a)); repeat within 1001 to 10K accesses is 5.18% (Figure 5.20(b))
of 53.26%(Figure 5.20(a)); repeat within 10K to 100K accesses is 0.89% (Figure
5.20(b)) of 53.26%(Figure 5.20(a)); repeat within 100K to 1M accesses is 3.51%(Figure
5.20(b)) of 53.26%(Figure 5.20(a)).

Quick sort in Java has the spatial irregularity as: elements that have the spatial
irregularity less than 1024B is 41.35% shown in Figure 5.21(a); elements that have the
spatial irregularity within 0 to 16B is 60.93%(Figure 5.21(b)) of the 41.35%(Figure
5.21(a)); elements that have the spatial irregularity within 17 to 32B is 7.73%(Figure
5.21(b)) of the 41.35%(Figure 5.21(a)); elements that have the spatial irregularity
within 33 to 64B is 7.13%(Figure 5.21(b)) of the 41.35%(Figure 5.21(a)); elements
that have the spatial irregularity within 65 to 128B is 3.11%(Figure 5.21(b)) of the
41.35%(Figure 5.21(a)); elements that have the spatial irregularity within 129 to 256B
is 17.71%(Figure 5.21(b)) of the 41.35%(Figure 5.21(a)); elements that have the spa-

68

129t0256B 257 toS12B 513 ¢,
17.71% 2.45% 1024B

65 to 128B 0.94%
3.11%

33 to 64B
0to16B

- T13% 1710328
>1024 60.93%
58.65% 1.73%)
(a) Overall spatial irregularity of quick (b) Spatial irregularity of quick sort in Java equal
sort in Java. or less than 1024B.

Figure 5.21: Spatial irregularity of quick sort in Java.

tial irregularity within 257 to 512B is 2.45%(Figure 5.21(b)) of the 41.35%(Figure
5.21(a)); elements that have the spatial irregularity within 512 to 1024B is 0.94%(Fig-
ure 5.21(b)) of the 41.35%(Figure 5.21(a)).

1001to 10K to
10K 100K

2.40% \ | 137%

<=1
g 101 to 1K
6.82% 0 to 10
>IM 11to 100 57.30%
62.04% 22.44%
(a) Overall temporal irregularity of quick (b) Temporal irregularity of quick sort in Java

sort in Java. equal or less than 1M.

Figure 5.22: Temporal irregularity of quick sort in Java.

Quick sort in Java has the temporal irregularity as : elements that repeat within
1M is 37.96%(Figure 5.22(a)) of the total number of elements that have repeat ac-
cess. When we consider elements that repeat in less than 1M, we found the fol-
lowing is shown in Figure 5.22(a) and 5.22(b): repeat within 1 to 10 accesses is
57.30% (Figure 5.22(b)) of 37.96%(Figure 5.22(a)); repeat within 11 to 100 accesses
is 22.44%(Figure 5.22(b)) of 37.96%(Figure 5.22(a)); repeat within 101 to 1K ac-
cesses is 6.82%(Figure 5.22(b)) of 37.96%(Figure 5.22(a)); repeat within 1001 to 10K

69

accesses is 2.40%(Figure 5.22(b)) of 37.96%(Figure 5.22(a)); repeat within 10K to
100K accesses is 1.37%(Figure 5.22(b)) of 37.96%(Figure 5.22(a)); repeat within 100K
to 1M accesses is 9.67%(Figure 5.22(b)) of 37.96%(Figure 5.22(a)).

5.3.5 Simulation Results of Shell Sort

- 129t0256B 257 to 512B 513 to
<=1024 2,949,

28.84% 65;361;81; 021%
b 0to16B
33 to 64B 2717%
123%
>1024 17 to 32B
71.16% 64.13%
(a) Overall spatial irregularity of shell sort (b) Spatial irregularity of shell sort in C equal or
in C. less than -1024B. :

Figure 5.23: Spatial irregularity of shell sort in C.

Shell sort in C has the spatial irregularity as: elements that have the spatial ir-
regularity less than 1024B is 28.84% shown in Figure 5.23(a); elements that have the
spatial irregularity within 0 to 16B is 27.17%(Figure 5.23(b)) of the 28.84%(Figure
5.23(a)); elements that have the spatial irregularity within 17 to 32B is 64.13%(Fig-
ure 5.23(b)) of the 28.84%(Figure 5.23(a)); elements that have the spatial irregularity
within 33 to 64B is 1.23%(Figure 5.23(b)) of the 28.84%(Figure 5.23(a)); elements
that have the spatial irregularity within 65 to 128B is 2.06%(Figure 5.23(b)) of the
28.84%(Figure 5.23(a)); elements that have the spatial irregularity within 129 to
256B is 2.94%(Figure 5.23(b)) of the 28.84%(Figure 5.23(a)); elements that have the
spatial irregularity within 257 to 512B is 2.27%(Figure 5.23(b)) of the 28.84%(Figure
5.23(a)); elements that have the spatial irregularity within 512 to 1024B is 0.21%(Fig-
ure 5.23(b)) of the 28.84%(Figure 5.23(a)).

Shell sort shows bad spatial locality. The reason is that it is possible that the
distance between two adjacent elements is large as shown in Figure 5.24. -

Shell sort in C has the temporal irregularity as : elements that repeat within 1M

70

Oxlcbdfebd | a[0] =100
Oxlcbdfebd | a[1] =1

Oxlcbdfeb? | a[2] =99
Oxlcbdfebb | af3] = 102
Oxlcbdfebf | a[4] =17

Ox1cbcfeb8 a[5] =6
0x1cbdfebe a[6] =89
Oxlcbdfebd | a[7]=12

Oxlcbdfeb4 ;| g[8] =

Figure 5.24: Illustration of shell sort’s memory behavior.

10K to 100 k to
>1IM 100K 1M

20.89% 1001 to 0.24%
. 10K 13.74%

2.15%

0to10
50.77%

101 to 1K
<=1M 12.59% 11 t0 100
79.11% 20.51%
(a) Overall temporal irregularity of shell (b) Temporal irregularity of shell sort in C equal
sort in C. _ or less than 1024B.

Figure 5.25: Temporal irregularity of shell sort in C.

71

is 79.11%(Figure 5.25(a)) of the total number of elements that have repeat access.
When we consider elements that repeat in less than 1M, we found the following is
shown in Figure 5.25(a) and 5.25(b): repeat within 1 to 10 accesses is 50.77%(Figure
5.25(b)) of 79.11%(Figure 5.25(a)); repeat within 11 to 100 accesses is 20.51%(Figure
5.25(b)) of 79.11%(Figure 5.25(a)); repeat within 101 to 1K accesses is 12.59% (
Figure 5.25(b)) of 79.11%(Figure 5.25(a)); repeat within 1001 to 10K accesses is
2.15%(Figure 5.25(b)) of 79.11%(Figure 5.25(a)); repeat within 10K to 100K accesses
is 0.24%(Figure 5.25(b)) of 79.11%(Figure 5.25(a)); repeat within 100K to 1M accesses
is 13.74%(Figure 5.25(b)) of 79.11%(Figure 5.25(a)).

The loop inside loop programming structure is an impdrtant factors that decreased
the locality of shell sort. The factors mentioned here are the major reasons that lead
to the bad performance of spatial locality. 4

Shell sort shows a good performance in temporary locality as the number of ac-
cesses between each repeat access is as high as 40.16% for 0 to 10. It is also because

of the algorithm itself. Memdry access related to shell sort is shown in Figure 5.24 as

arrows.
A 257to 512B 513 to

>1024 <=1024 129 to 256B 271 % 10248
53.12% 46.88% 6510 128B2.59% 120%

3.75%

33to 64B
8.76% 0to16B
17t0 32B T72.24%
8.75%
(a) Overall spatial irregularity of shell sort (b) Spatial irregularity of shell sort in Java equal
in Java. or less than 1024B.

Figure 5.26: Spatial irregularity of shell sort in Java.

Shell sort in Java has the spatial irregularity as: elements that have the spatial
irregularity less than 1024B is 46.88% shown in Figure 5.26(a); elements that have the
spatial irregularity within 0 to 16B is 72.24%(Figure 5.26(b)) of the 46.88%(Figure
5.26(a))'; elements that have the spatial irregularity within 17 to 32B is 8.75%(Figure

72

5.26(b)) of the 46.88%(Figure 5.26(a)); elements that have the spatial irregularity
within 33 to 64B is 8.76%(Figure 5.26(b)) of the 46.88%(Figure 5.26(a)); elements
that have the spatial irregularity within 65 to 128B is 3.75%(Figure 5.26(b)) of the
46.88%(Figure 5.26(a)); elements that have the spatial irregularity within 129 to
256B is 2.59%(Figure 5.26(b)) of the 46.88%(Figure 5.26(a)); elements that have the
spatial irregularity within 257 to 512B is 2.17%(Figure 5.26(b)) of the 46.88%(Figure
5.26(a)); elements that have the spatial irregularity within 512 to 1024B is 1.20%(Fig-
ure 5.26(b)) of the 46.88%(Figure 5.26(a)).
10K to

1001 to 100K 100K to
10K 0.92% 1M
3.58% 5.40%

101 to 1K
6.79%

0to10

>IM 11 to 100
66.58% 23.37% 59.95%
(a) Overall temporal irregularity of shell (b) Temporal irregularity of shell sort in Java equal
sort in Java. ’ or less than 1M.

Figure 5.27: Temporal irregularity of shell sort in Java.

Shell sort in Java has th¢ temporal irregularity as : elements that repeat within
1M is 33.42%(Figure 5.27(5)) of the total number of elements that have repeat ac-
cess. When we consider elements that repeat in less than 1M, we found the fol-
lowing is shown in Figure 5.27(a) and 5.27(b): repeat within 1 to 10 accesses is
59.95% (Figure 5.27(b)) of 33.42%(Figure 5.27(a)); repeat within 11 to 100 accesses
is 23.37%(Figure 5.27(b)) of 33.42%(Figure 5.27(a)); repeat within 101 to 1K accesses
is 6.79%(Figure 5.27(b)) of 33.42%(Figure 5.27(a)); repeat within 1001 to 10K ac-
cesses is 3.58%(Figure 5.27(b)) of 33.42%(Figure 5.27(a)); repeat within 10K to 100K
accesses is 0.92%(Figure 5.27(b)) of 33.42%(Figure 5.27(a)); repeat within 100K to
1M accesses is 5.40%(Figure 5.27(b)) of 33.42%(Figure 5.27(a)).

73

5.3.6 Simulation Results of Merge Sort

For spatial irregularity and temporal irregularity, merge sort in C is the closest to
malloc() function as shown in table 5.1 in page 78. It is because the sorted three

arrays are all allocated by malloc() function.

65 to 1288 129 to 256B 257 to S12B 513 to
6.48% 5.87% 1024B

0.50%

<=1024
_ 36.92% 5.85%

33to 64B
4.36%

>1024 17to 32B 0to 16B

63.08% 6.05% 70.89%
(a) Overall spatial irregularity of merge (b) Spatial irregularity of merge sort in C equal or
sort in C. less than 1024B.

Figure 5.28: Spatial irregularity of merge sort in C.

Merge sort in C has the spatial irregularity as: elements that have the spatial ir-
regularity less than 1024B is 36.92% shown in Figure 5.28(a); elements that have the
spatial irregularity within 0 to 16B is 70.89%(Figure 5.28(b)) of the 36.92%(Figure
5.28(a)); elements that have the spatial irregularity within 17 to 32B is 6.05%(Figure
5.28(b)) of the 36.92%(Figure 5.28(a)); elements that have the spatial irregularity
within 33 to 64B is 4.36%(Figure 5.28(b)) of the 36.92%(Figure 5.28(a)); elements
that have the spatial irregularity within 65 to 128B is 5.85%(Figure 5.28(b)) of the
36.92%(Figure 5.28(a)); elements that have the spatial irregularity within 129 to
256B is 6.48%(Figure 5.28(b)) of the 36.92%(Figure 5.28(a)); elements that have the
spatial irregularity within 257 to 512B is 5.87%(Figure 5.28(b)) of the 36.92%(Figure
5.28(a)); elements that have the spatial irregularity within 512 to 1024B is 0.50%(Fig-
ure 5.28(b)) of the 36.92%(Figure 5.28(a)).

Merge sort in C has the temporal irregularity as : elements that repeat within
1M is 57.30%(Figure 5.29(a))of the total number of elements that have repeat ac-
cess. When we consider elements that repeat in less than 1M, we found the fol-

lowing is shown in Figure 5.29(a) and 5.29(b): repeat within 1 to 10 accesses is

74

1001t0 10K to 100K to

10K 100K
5.91%
101 to 1K 01010
>IM 13.32% 5654%
42.70%
<=1M 11 to 100
" 5730% 16.32%
(a) Overall temporal irregularity of merge (b) Temporal irregularity of merge sort in C equal

sort in C. or less than 1M.

Figure 5.29: Temporal irregularity of merge sort in C.

56.54%(Figure 5.29(b)) of 57.30%(Figure 5.29(a)); repeat within 11 to 100 accesses is
16.32%(Figure 5.29(b)) of 57.30%(Figure 5.29(a)); repeat within 101 to 1K accesses
is 13.32%(Figure 5.29(b)) of 57.30%(Figure 5.29(a)); repeat within 1001 to 10K ac-
cesses is 5.91%(Figure 5.29(b)) of 57.30%(Figure 5.29(a)); repeat within 10K to 100K
accesses is 1.87%(Figure 5.29(b)) of 57.30%(Figure 5.29(a)); repeat within 100K to
1M accesses is 6.04%(Figure 5.29(b)) of 57.30%(Figure 5.29(a)).

513 to
<=1024
3131 257 to 512B 10248
129 to 256B 1.95% 0.93%
1.85%
65 to 128B
29.99%

51024 33t064B 17t032B 0to16B

65.69% 6.38% 6.70% 52.21%
(a) Overall spatial irregularity of merge (b) Spatial irregularity of merge sort in Java equal
sort in Java. or less than 1024B.

Figure 5.30: Spatial irregularity of merge sort in Java.

Merge sort in Java has the spatial irregularity as: elements that have the spatial
irregularity less than 1024B is 34.31% shown in Figure 5.30(a); elements that have the
spatial irregularity within 0 to 16B is 52.21%(Figure 5.30(b)) of the 34.31%(Figure
5.30(a)); elements that have the spatial irregularity within 17 to 32B is 6.70%(Figure

75

5.30(b)) of the 34.31%(Figure 5.30(a)); elements that have the spatial irregularity
within 33 to 64B is 6.38%(Figure 5.30(b)) of the 34.31%(Figure 5.30(a)); elements
that have the spatial irregularity within 65 to 128B is 29.99%(Figure 5.30(b)) of
the 34.31%(Figure 5.30(a)); elements that have the spatial irregularity within 129 to
2568 is 1.85%(Figure 5.30(b)) of the 34.31%(Figure 5.30(a)); elements that have the
spatial irregularity within 257 to 512B is 1.95%(Figure 5.30(b)) of the 34.31%(Figure
5.30(a)); elements that have the spatial irregularity within 512 to 1024B is 0.93%(Fig-
ure 5.30(b)) of the 34.31%(Figure 5.30(a)).

10K to
1001to 100K 499k ¢,
>IM 10K 3.69% M

101to 1K 1.52%
6.86%

5.711%

<=IM 11 to 100 0010

67.10% 23.22% 59.01%
(a) Overall temporal irregularity of merge (b) Temporal irregularity of merge sort in Java
sort in Java. equal or less than 1M.

Figure 5.31: Temporal irregularity of merge sort in Java.

Merge sort in Java has the temporal irregula;ity as : elements that repeat within
1M is 67.10%(Figure 5.31(a)) of the total number of elements that have repeat ac-
cess. When we consider elements that repeat in less than 1M, we found the fol-
lowing is shown in Figure 5.31(a) and 5.31(b): repeat within 1 to 10 accesses is |
59.01% (Figure 5.31(b)) of 67.10%(Figure 5.31(a)); repeat within 11 to 100 accesses
is 23.22%(Figure 5.31(b)) of 67.10%(Figure 5.31(a)); repeat within 101 to 1K accesses
is 6.86%(Figure 5.31(b)) of 67.10%(Figure 5.31(a)); repeat within 1001 to 10K ac-
cesses is 1.52%(Figure 5.31(b)) of 67.10%(Figure 5.31(&)); repeat within 10K to 100K
accesses isb 3.69%(Figure 5.31(b)) of 67.10%(Figure 5.31(a)); repeat within 100K to
IM accesses is 5.71%(Figure 5.31(b)) of 67.10%(Figure 5.31(a)).

76

5.3.7 Memory Management of C Versus Java

Unlike C or C+4+, there is no malloc() and no free() function in Java, all memory
management in Java is automatic. It is a runtime garbage collectors (abbreviation
“GC”) that free the memory. It means that GC will free the memory then will be
allocated automatically by themselves when an object is created. It is possible that
garbage collectors (GC) misused the program procedure and releases the memory
space earlier. It is possible for Java programmers to “force” an object to be freed by
assigning all variables and array elements to null. The next time the Java garbage
collectors (GC) run, that object is reclaimed. The trade off for this situation is
temporal locality, as it can be seen from the simulation results in table 5.1 and table
5.2. |

Because of the totally different memory management of the two programming
languages, their results are greatly different. It is hard to say which is good, and
which is bad. Conipared with C, Java shows a good performance in spatial locality
but bad temporal locality in sorting algorithm, it’s performance in searching algorithm
are not as good as C’s.

There are many different types of garbage collectors in Java’s garbage collection
strategy. More accurately, many garbage collection methods is in the garbage collec-
tor (GC) of Java. The copying used by garbage collectors (GC) that improves the
performance of spatial locality in Java. It moves all live objects to a new area in
order to place them side by side at the time of moving, this helps to eliminate any
free space that might separated the objects in the previous area known as free space.
The objects are copied to the new area on the fly, and forwarding pointers are left
in their previous locations. It allows objects encountered later in the traversal that
refer to already copied objects to know the new location of the copied objects. There
are also some other garbage collectors in Java, like increment garbage collectors, par-

~ allel garbage collectors, etc. Garbage collectors are widely used in any contemporary
programming language, like Java, C#, XML, etc.

It is hard to know which memory allocation method, malloc() and free() or garbage

77

collections, is good. Some bugs in the garbage collectors will lead memory leak. But
there will also be memory leakage if a C program claims the memory spaces without

release.

Table 5.1: Summary of Locality of DADS and PIAP in C.
Locality Malloc | Sequential | Binary | Bubble | Quick | Shell | Merge
S| <1024B | 40.72% | 63.21% | 43.11% | 28.51% | 38.31% | 28.84% | 36.92%
0tol6B [28.90% | 51.67% | 40.11% | 16.40% | 24.10% [18.50% | 26.17% |
T| <1M |57.30% | 74.29% | 77.54% | 72.39% | 53.26% | 79.11% | 57.30%
0tol0 [30.32% | 52.00% | 43.55% [40.66% | 28.10% | 40.16% | 32.40%
Mean | 1359.5 3260.7 | 27023.0 | 4632.1 | 6854.7 | 2256.9 | 2617.5

Table 5.2: Summary of Locality of DADS and PIAP in Java.

Locality Sequential | Binary | Bubble Quick Shell Merge
S| <1024B 33.71% 31.63% | 50.52% | 41.35% | 46.88% | 34.31%
0 to 16B 18.04% 22.45% | ~33.78% | “25.19% | 33.87% | 17.88%
T <1M 76.42% 54.19% | 37.24% | 37.96% | 33.42% | 67.10%
0 to 10 41.73% | 31.71% | 16.84% | 21.57% | 20.04% | 39.60% |
Mean 30989.1 | "32109.9 | 21526.2 | "25472.1 | 24138.6 | 57571.2

In table 5.1 and table 5.2, “S” and “T” in the first column means spatial locality
and temporal locality respectively. The mean is the average of all temporal irregu-
larity in the form of all value of number of accesses between each repeat access. We
find that Java’s temporal locality is so bad that the means for Java are more than 10
times of C. The bigger the mean the worse the temporal locality.

From table 5.1 and table 5.2, It can be seen that bubble sort and shell sort shows
the worst spatial localities in C. But they show the best spatial localities in Java.
For C, shell sort shows the best temporal locality and quick sort shows the worst
temporal locality; sequential search shows the best spatial locality. For Java program

bubble sort shows the best spatial locality; sequential search shows the best temporal

locality.

78

5.4 Using FFT To Analyze the Temporal Irregu-
larity of Malloc() Function

We would use digital signal processing techniques to analyze simulation results of
malloc() function, in order to find the characteristics of repeat memory accesses.
We could improve the performance of malloc() function by adding FFT functions in

memory management as a part of compiler.

5.4.1 Fast Fourier Transform(FFT)

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm. It was
first discussed by Cooley and Tukey in 1965[39]. It reduces the number of computa-
tions needed for N points from O(2N?%)to O(2N xlog, N) For length N input sequence
x, the DFT is a length N vector, Equation of FFT is shown below.

om(i — 1)(n — 1)
N

N w(t—1)(n —
z(n) = 1 X'Zaicos(2 (=1 —1)

NXE =) (5)

) + b; sin(

a; = real(z(7)), b; = —imag(z(z)),1 <n< N

Equation 5.1 can also be represented in a simple form as equation 5.2.

N
L > a; cos 2km + by sin 2km (5.2)

z(n) = v X
i=0

where
k— (t—=1)(n-1)
N

In equation 5.2, k is the period. If the most significant period or range of period
are known, the behavior of z(n) can be predicted. z(n) represents the function of
temporal locality of malloc() function according to the sequential execution step. In
other Words, the memory access behavior of temporal locality is predictable. Power
spectrum analysis is used to find the period or periods. Repeated accesses to some
address represents a specific frequency with given amplitude, in which the amplitude
depend on number of occurrence of address, frequency represents how often it is

visited(temporal locality).

79

5.4.2 Power Spectrum Analysis

Since temporal locality of malloc() function can be expressed as a sum of N sine and
cosine waves. If the wave with large amplitude can be found, the temporal locality
of malloc() function can be predicted by superposition of those wave. In another
word, the larger the amplitude, the bigger the affect of the temporal locality. Power
spectrum analysis is used to find period of the wave with large amplitude. It means
to find the periods of terms in equation 5.2 with larger a; and(or) b;. Or in another
word. Suppose Y is the results after FFT. “The magnitude of Y squared is called
the power and a plot of power versus frequency is a periodogram(38]”. Based on this

point of view, periodogram is given as Figure 5.32.

% 10° Periodogram of Temporal Iregularity of malloc{} function

45 T T T T T L]] L) T
.

Ll=0.15!9§

Power

0 0.05 0.1 0.15 02 025 03 035 04 045 05
Frequency

Figure 5.32: Power spectrum of temporal irregularity of malloc() function.

The period of maximum power is 1578.9 in Figure 5.32.It means that the most
significant term in equation 5.2 has a period of 1578.9. Once knowing the period
of other peaks in Figure 5.4.2. z(n) can be expressed in a close and simple way by

adding some sine and cosine terms. The sum can then be used to predict the future

80

behavior of function z(n). It means that the temporal locality of malloc() function

can be predicted after certain steps of execution.

5.5 Summary

Simulation results of dynamically allocated data structure (DADS) and programs
with irregular access patterns (PIAP) are listed and analyzed in this chapter. We
have the following results: First, temporal locality and spatial locality are often at
odd. Second, Performance of sequentially algorithms are defined by the memory
allocation. Third, it is possible to improve dynamic allocation of memory by using

FFT methods.

81

Chapter 6

Conclusions and Future Work

In this chapter, we give the conclusions based on the simulation results about behavior
of dynamically allocated data structure (DADS) and programs with irregular access
patterns (PIAP).

6.1 Thesis Summary

We have reviewed modern memory hierarchy in chapter 2. the definition of dynam-
ically allocated data structure (DADS) and programs with irregular access patterns
(PIAP) are given in chapter 3. Chapter 4 introduced the simulation methodology
used in this thesis work. Chapter 5 gives the simulation results of DADS and PIAP

benchmark (chapter 5). We give the conclusions in chapter 6.

6.2 Conclusions

Although large cache may not help the performance of the system, researcher are
still using larger cache hoping that miss rate is reduced but larger cache increase and
access time and reduce performance. Because cache performance can not be increased
by just increasing its size or associativity, we must found new dynamic management
of cache. This could be achieved with understanding behavior of access in memory.
Our results show that spatial locality and temporal locality are often at odd. For
example, the temporal locality of bubble sort (portion of 0 to 10 of total is 40.66%)
in C is very good. But its spatial locality (portion of 0 to 16B of total is 16.40%) is

82

the worst of all. Another important example is the comparison of Java and C. Java’s
spatial locality is a little bit better than spatial locality of C. Temporal locality in
C is better than Java. But good memory management policy is the best solution to
improve performance of memory hierarchy. We need new management technique or
improve the performance of current memory hierarchy.

Applying FFT in the malloc() function, mentioned in chapter 5, could be helpful
in improving the accuracy of prefetching. To implement this, we can either add FFT
functions to operating system or to compiler.

we defined dynamically allocated data structure (DADS) as the data structure that
use dynamic allocation of memory, automatic memory allocation (garbage collection
required). We defined programs with irregular access patterns (PIAP) as program
that dynamically changes behavior during the execution by using branch, or branch
inside loop or loops, switch inside loop or loops.

The memory access behavior of searching and sorting algorithms are different.
For searching algorithm, spatial locality of the sequential search is better than spatial
locality of the binary search. This is because searching algorithms use branch inside
one loop. But the sort algorithms’ memory access behavior are strongly related to
the algorithms themselves, not just the memory management. The characteristic of
sorting algorithms are branch inside two loops or we call it branch inside loops. This
programming characteristic makes the memory accesses so scattered and the spatial
locality very unpredictable.

We believe that software approaches might improve the performance of memory

hierarchy of branch inside loops programming.

6.3 Future Work

We have found that FFT can predict characteristic of temporal locality of malloc()
function, and more simulations are required to find more details. We might be able
to improve memory performance by implementing this method of using FFT in the

future.

83

Bibliography

1]

2l

(3]

(4]

[5]

[6]

Efe Yardimci, David Kaeli, Profile-guided, Tuning of heap-based Memory Access.
High Performance Memory Systems, Pages: 153-162, Springer Verlag, New York,
2003

Alvin R.Lebeck, Jinso Koppanalil, Tong Li, Jaidev Patwardhan, Eric Roten-
berg, A Large, Fast Instruction Window for Tolerate Cache Misses.Proceeding
29th Annual International Symposium on Computer Architecture, Page:59-70,
Anchorage, Alaska, May, 2002

Jarrod A. Lewis, Bryan Black, Mikko H. Lipasti, Avoiding Initialization Miss to
the Heap. ACM SIGARCH Computer Architecture News, Volumne 30, Session
3: Memory systems, Issue 2, Page183-194, IEEE Computer Society, Washington,
DC, USA, ISBN-ISSN 1063-6897, 07695-1605-X, 2002

Yan Solihin, Jaejin Lee, Josep Torrellas, Using a User-Level Memory Thread
for Correlation Prefetching. ACM SIGARCH Computer Architecture News,
Volumne 30, Issue 2, Session 5: Memory systems, Pages:171-182, IEEE Com-
puter Society, Washington, DC, USA, ISBN:0163-5964, 2002

G. Hariprakash, R. Achutharaman, Amos R. Omondi, DSTRIDE: Data-cache
miss-address-based stride prefetching scheme fof multimedia processor. Computer
Systems Architecture Conference, ACSAC 2001. Proceedings. Australasian, 29-
30 Jan. 2001 Pages:62-70

Qianrong Ma, Jih-Kwon Peir, Konrad Lai, Symbolic Cache: Fast Memory Ac-

cess Based on Programming Syntaz Correlation of Load and Store. Proceedings

84

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

International Conference on Computer Design, Pages: 54-61, Austin, TX, USA,
September, 2001

Zhigang Hu,Stefanos Kaxiras, Margaret Martonosi, Timekeeping in the Memory
System: Predicting and Optimizing Memory Behavior. Proceeding of 29th Inter-
national Symposium on Computer Architecture (ISCA 2002), Pages: 209-220,
25-29 May 2002, Anchorage, AK, USA. IEEE Computer Society 2002

Martin Karlsson, Erik Hagersten, Timestamp-based Selective Cache Allocation.
Proceedings of the ACM SIGPLAN workshop on Memory System Performance,
Goterberg, Sweden, July, 2001

Jih-Kwon Peir, Shih-Chang Lai, Shih-Lien Lu, Jared Stark, Konrad Lai,
Memory-Wall: Bloom Filtering Cache Misses for Accurate Data Speculation and
Prefetching.Proceedings of the 16th international conference on Supercomputing,

Pages: 189-198, New York, NY, USA, June, 2002

Jinsuo Zhang, The predictability of Load Address. ACM SIGARCH Computer
Architecture News, Volume 29, Issue 4 Pages: 19-28, 2001, ISSN:0163-5964

Joon-Sang Park, Micheal Penner, Viktor K. Prasanna, Optimizing Graph Al-
gorithm for Improve Cache Performance. IEEE Transactions on Parallel and

Distributed Systems, Volume: 15, Issue: 9, Pages: 769-782, Sept. 2004

Andreas Moshovos, Gurindar S. Sohi, Reducing Memory Latency via Read-after
Read Memory Dependence Prediction. IEEE Transaction on Computers, Volume:

51, Issue: 3, Pages: 313-326 March, 2002

C.Kulkarni, C.Ghez, M.Miranda, F.Catthoor, H.De Man, Cache Conscious
Data Layout Organization for Embedded Multimedia Applications. IEEE Trans-
actionon Computers, Volume: 54, Issue: 1, Pages: 76-81 January, 2005

Srikanth T.Srinivasan, Roy Dz-ching Ju, Alvin R. Lebeck, Chris Wilkerson, Lo-
cality vs. Criticality. Proceedings 28th Annual International Symposium on Com-

puter Architecture, Pages: 132-143, ISSN:0163-5964, 2001

85

[15] Abdel-Hameed A. Badawy, Aneesh Aggarwal, Donald Yeung, Chau-Wen Tseng,
Evaluating the Impact of Memory System Performance on Software Prefetching
and Locality Optimizations. Proceedings of the 15th international conference on

Supercomputing, Sorrento, Italy, Pages: 486-500, 2001

(16] Todd King, Dynamic Data Structure: Theory and Application. Academic Press,
Inc, San Diego, California, USA, ISBN: 0124075304, 299p, 1992

[17) Adam drozdek, Donald L. Simon, Data Structure in C. International Thomson
Publishing, London, UK, ISBN: 0534934951, 480p, April 1, 1995

[18] Doug Burger, Todd M. Austin, The SimpleScalar Tool Set, Version 20. Uni- .
versity of Wisconsin-Madison Computer Sciences Department Technical Report

No.1342, June, 1997

[19] SimpleScalar website: hitp//www.cs.wisc.edu/ simplescalar

http//www.simplescalar.com.

[20] Chris H. Perleberg, Alan Jay Smith, Branch Target Buffer Design and Optimiza-
tion. IEEE Transactions on Computers, Volume: 42, Issue: 4, Pages:396 - 412,

April 1993

(21] Jason R.C. Patterson, Accurate Static Branch Prediction by Value Range Prop-
agation. ACM SIGPLAN Notices , Proceedings of the ACM SIGPLAN 1995
conference on Programming lénguage design and implementation, Volume: 30,

Issue: 6, Pages: 67-78, La Jolla, CA, USA, June, 1995

[22] Kevin Skadron, Pritpal S. Ahuja, Margaret Martonosi, Douglas W. Clark,
Branch Prediction, Instruction-Windows Size, and Cache Size: Performance
Tradeoffs and Simulation Technique. IEEE Transaction on Computers, Volume:

48, Issue: 11, Pages: 1260-1281, November, 1999

[23] Naraig Manjikian, More Enhancements of the SimpleScalar Tool Set. ACM
SIGARCH Computer Architecture News, Volume: 29, Issue: 4, Column: Regular
contributions, Pages: 5-12, September 2001

86

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Jason F. Cantin, Mark D. Hill, Cache Performance for Selected SPECCPU2000
Benchmarks. ACM SIGARCH Computer Architecture News, Volume 29, Issue
4, Column: Regular contributions, Pages: 13-18, September, 2001

AJ Klein Osowski, John Flynn, Nancy Meares, David J. Lijia, Adapting the
SPEC2000 Benchmark Suite for Simulation-Based Computer Architecture Re-
search. Kluwer International Series In Engineering And Computer Science Series,
Workload characterization of emerging computer applications, Pages: 83-100,

2001

Todd Austin, Eric Larson, Dan Ernst, SimpleScalar: An Infrastructure for Com-
puter System Modeling. IEEE Transaction on Computers, Volume: 35, Issue: 2,
Pages: 59-67, Feburary, 2002

John L. Henning, SPEC CPU2000: Measuring CPU Performance in the New
Millennium. IEEE Transaction on Computers, Volume: 33, Issue: 7, Pages: 28-

35 July, 2000

Luiz Andre Barroso, Kourosh Gharachorloo, Edouard Bugnion, Memory Sys-
tem Characterization of Commercial Workloads. The 25th Annual International

Symposium on Computer Architecture, Pages: 3-14, 1998

M. Wilke, Slave Memory and Dynamic Storage Allocation. IEEE Transaction on
Electronic Computers, Pages: 270-271, April, 1965

J. Hennesay, D.A.Patterson, A Quantitative Approach. Morgan Kayfmann Pub-

lishers, Inc, San Francisco, California, 1996
simICS website, http://www.simics.net.

P.S. Magnusson, N. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Larsson, A. Moestedt, B. Werner, Simics: A Full System Simulation
Platform. IEEE transaction on Computers, Volume: 35 Issue: 2, Pages: 50-58,
Feburary, 2002

87

[33] Website of SPECCPU Benchmark: http://www.spec.ory.

[34] Banks, Jerry, John S. Carson II, Barry L. Nelson and David Nicol, Discrete-event
System Simulation Prentice-Hall International Series in Industrial and System

Engineering, Upper Saddle River, NJ, 594p, 2001

[35] Weiss, Mark Allen, Data Structure and Problem Solving Using C++. Addison
Wesley Longman Inc. Menlo Park, California, ISBN: 020161250X, 2000

[36] SIMOS’s website: http://simos.stanford.edu
[37] Dinero’s website: http://www.cs.wisc.edu/ markhill/DineroIV.
[38] MatLab Help file

[39] James W. Cooley and John W. Tukey, An algorithm for the machine calculation
of complex Fourier series. Mathematic Computing 19, Pages 297301, 1965

[40] Hennessy, John L.Computer organization and design: the hardware/software in-

terface. Morgan Kaufmann, San Mateo, California, 648p, 1994

[41] David E. Culler, Jaswinder Pal Singh, with Anoop Gupta Parallel Computer
Architecture, A hardware and Software Approach. 1025p, San Francisco, Morgan
Kaufmann Publishers, 1999

88

Appendix A

Useful Information of Simple
Scalar

IN this appendix, we would like to write down the helpful information of Simple
Scalar. Though SimpleScalar is not our major simulator in this thesis work, it is

valuable to record many tips that not foundin its’ tutorial material.

A.1 Installation

Hardware and software environment of this installation Hardware: Intel PIII CPU,
256 MSDRAM, 80Ghard disk Operating system: Redhat Linux 7.0 (dural boot from
Windows 2000) |
A.1.1 Step 1. Download

Download the following files from the websit of simplescalar.

http://www.cs.wisc.edu/ "mscalar/simplescalar.html

simplesim.tar.gz

This is the simulator suite. to install the SimpleScalar simulator, this is a must for

the installation.

simpleutils.tar.gz

This is the binary utilities , To use SimpleScalar to simulate the behavior of bench-

mark, this is a must. Though SimpleScalar can run without this, it is a must for us

89

to do the work.

simpletools.tar.gz

The gee-2.6.3 compiler and fortran to C tools are included in this file. Cross compiling
is supported after install Gee-2.6.3 compiler. This help us to compile our benchmarks

in SimpleScalar compiler.

simplebench.big.tar.gz and simplebench.little.tar.gz

Those two files are the precompiled SS SPEC95 binaries. Only one is used on specific
system. After installing the SimpleScalar simulator, we will know which is what we
need.

”simplebench.big.tar.gz” is for the big-endian computer system.

"simplebench.little.tar.gz” is for the little-endian computer system.

A.1.2 Step 2. Unpackage file

Type the command to unzip each file

gunzip filename.gz

After this there should be a .tar suffix of each file. To unpackage the .tar file we
need to use tar command.

tar 9 tar -xvf filename.tar

If all files are downloaded, there should be the following subdirectories:

simplesim-3.0 holds code for five SimpleScalar processor simulators and all sup-
porting code files.

gee-2.6.3 holds the GNU C compiler code, targeted toward the SimpleScalar ar-
chitecture.

binutils-2.5.2 contains the GNU binary utilities code, ported to the SimpleScalar
architecture.

glibc-1.09 contains the GNU libraries code, ported to the SimpleScalar architec-

ture.

90

£2¢-1994.09.2 contains the 1994 release of AT&T, Bell Labs’ FORTRAN to C
translator code, some old benchmarks is written in FORTRAN.

ssbig-na-sstrix sslittle-na-sstrix target directories for the ported cross-compiler,
compiled GNU binary utilities, and libraries that are targeted to the SimpleScalar
architecture. (Which directory is used depends on the endian-ness of the host ma-
chine).

spec95-big precompiled SimpleScalar SPEC95 binaries, big endian versions spec95-

little pre-compiled SimpleScalar SPEC95 binaries, little endian versions

A.1.3 Step 3. Installing binary utility code

In this case, we installed all of the softwares under the directory, /usr/local, so the
command of installing binary utility code are the following:

cd /usr/local/binutils-2.5.2 configure —host=i586-intel-linux —target=sslittle-na-
sstrix —with-gnu-as —withgnu- 1d —prefix=/usr/local make make install

Three points of the configure command which need to pay attention to is:

—host=i586-intel-linux Here,

i586-intel-linux (CPU-COMPANY-SYSTEM) represents the host architecture and
system information. In this case, it means that the CPU is Intel Pentium I, the operat-
ing system is Linux (CPU-COMPANY-SYSTEM). Though my computer is Pentium
III, it is not supported in the latter installation, so I have to degrade hardware sys-
tem. If the system is different from mine, people can get a complete list of supported
HOST strings in /usr/local/gce-2.6.3/INSTALL.

—target=ss little-na-sstrix

Here point out that the target is little endian SimpleScalar compiler. If the system
if big endian, just change sslittle-na-sstrix to ssbig-na-sstrix.

—prefix=/usr/local

This option tell where the software is installed.

91

A.1.4 Step 4. Install SimpleScalar simulator

Once the binutils have been built, build the simulators themselves. This is necessary
to do before building gcc, since one of the binaries is needed in the cross-compiler
 build.

cd /usr/local/simplesim-3.0 make config-pisa make make sim-tests vi pipeview.pl
textprof.pl

configure these two perl scripts by placing the location of the perl executable on
the first line of each script. Though the command seems simple, I have tried several
times. The possible problems are:

Can not find ANSI C compiler or compiler is wrong

In this case, we need to edit the Makefile in the directory /usr/local/simplesim-
3.0. Make sure all compile options are set for your host, the develbper of simple
11 scalar has listed the options for the OS/compiler combinations that were tested,
uncomment one of these if appropriate.

Warning in make

I have met tons of warning after make. Though there is warning, it works. So do
not stop, if there is a warning, unless error comes out.

Pisa or alpha

I have failed to use command make config-alpha So pisa binary is insatlled The
reason is SimpleScalar/Alpha binaries musf be built on Digital Alpha OSF Unix (or

with a suitable cross compiler). For sure, my computer is not an alpha one.

A.1.5 Step 5. Build the compiler

Command sequence of installation

cd /usr/local/gce-2.6.3

configure —host=i586-intel-linux —target=sslittle-na-sstrix —with-gnu-as —withgnu-
1d —prefix=/usr/local
- make LANGUAGES=c

../simplesim-3.0/sim-safe ./enquire -f ;! float.h-cross

make install

92

Error and resolution

During the installation, we have met big problems in two steps on is make LAN-
GUAGES=c the other is ../simplesim-3.0/sim-safe ./enquire -f ;! float.hcross

When doing make LANGUAGES=c

Error which key words is
sys_errlist[]

The first error which I have met in this step is
sys_errlist[]

is conflict with something in stdio.h. The resolution is edit the following files:

ccep.c

Replace line 194

(extern char *sys_errlist[];

)
with
#if !defined(__linux__)

extern char *sys_errlist[];

#endif

sdbout.c
Replace line 56

#if defined(USG) && !defined(MIPS) && !defined (hpux) &%
!defined (WINNT)

with
#if defined(USG) && !defined(MIPS) && !defined (hpux) &&
!defined (WINNT) && !defined(__linux__)

gee.c

Replace line 172

93

(extern char *sys_errlist[];)
with

#if !defined(__linux__) extern char #*sys_errlist([];

#endif
When doing

../simplesim-3.0/sim-safe ./enquire -f

>! float.h-cross

, the result of this command shown some performance information, for example, page
miss and replace, etc. The two compiling errors which I have met are:

SFcode should not be the SF type. To solve this error, we need to change the
file bc -typecd.def. We make the change in line 17 as following: DEFTYPECODE
(SFcode, ”SF”, SFmode, SFtype) Change to DEFTYPECODE (SFcode, ”DF”, DF-
mode, DFtype)

Error of
sys_errlist[]1--2

Since we have make change in the file named cccp.c related to the first error. But this
error is not presented in the previous step. We certainly need to make change in other
program. This time we need to change the file under the directory /usr/local/gcc-
2.6.3/cp. It is called g++.c. The error is in line 90. Change *extern const char

xconst sys_errlist[]; to extern const char

xconst sys_err[];

A.1.6 - Step 6. Build the library

The binary code of library is provided by the developer in the subdirectors: ssbig-
nasstrix/ lib for big endian; sslittle-na-sstrix/lib for little endian, so we must not

build the code in glibc-1.09, and it is also suggested”by the developer that nqt'to do

94

it unless the library code is changed. But I have tried it. The command to build the
library are:
cd /usr/local/glibc-1.09
configure —prefix=/usr/local/sslittle-na-sstrix ss littleg-na-sstrix unsetenv TZ
make

make install

A.1.7 Step 7. Build FORTRAN to C Transcode

This step is not a must if we will not use FORTRAN benchmarks in the future. To
build the f2c tool, just using the following command:

cd /local/usr/f2¢-1994.09.27

make

make install

A.1.8 Step 8. Test the overall installation

After the last 7 steps of installation, the tool set should now be ready for use. To run
a test:

cd /usr/local/simplesim-3.0

sim-outorder

tests/bin.little/test-math

This test generate about a page of output, and run very quickly. If a big-endian

host is running, use the test programs in the "bin.big” directory).
A.2 Experimental Procedure

A.2.1 Step 1. Compile benchmark

After compiling, there will be the execution file under the directory where the com-

mand is typed. Compile a C‘program

sslittle-na-sstrix-gec g O o ExecutionFileName SourceFileName Im

95

Compile a benchmark Since each benchmark of the SPEC2000 is composed with
several programs. Only compililig one program can not compile or can not work after
compiling.

To compile a benchmark, we need to do the following:

cd /usr/local/spec2000/benchspec/benchmark name/src/ sslittle-na-sstrix-gec g

O o ExecutionFileName *.c Im
Compile a Fortran program sslittle-na-sstrix-f77 g O o ExecutionFileName Source-
FileName Im

This is from the tutor of SimpleScalar, Since Fortran to C program has installed,

I have not used this command.
Compiling a SimleScalar assembly program
sslittle-na-sstrix-gec g O o ExecutionFileNam¢ SourceFileName Im
Disassembling a program

sslittle-na-sstrix-objdump x d 1 AssemblingProgramName

A.2.2 Step 2. Simulation

Select simulator To simulate the compiled benchmark, first we need to select the
simulator among the 8 simulators, sim-fast, sim -safe, sim-eio, sim -profile, sim-bpred,
sim-cheetah, sim-cache, sim-outorder, in SimpleScalar.

The function of each simulator is listed in Below

sim-fast

This simulator implements a very fast functional simulator. This functional simu-
lator implementation is much more difficult to digest than the simpler, cleaner sim-safe
 functional simulator. By default, this simulator performs no instruction error check-
ing, as a result, any instruction errors will manifest as simulator execution €rrors,’
possibly causing sim -fast to execute incorrectly or dump core.

sim-safe ‘

This simulator implements a functional simulator. ‘This functional simulator is the
simplest, most user-friendly simulator in the simplescalar tool set. Unlike sim-fast,

this functional simulator checks for all instruction errors, and the implementation is

96

crafted for clarity rather than speed.

sim-eio

This simulator implements simulator support for generating external event traces
(EIO traces) and checkpoint files. External event traces capture one execution of a
program, and allow it to be packaged into a single file for later re-execution. EIO
trace executions are 100% reproducible between subsequent executions on the same
platform. This simulator also provides functionality to generate checkpoints at ar-
bitrary points within an external event trace (EIO) execution. The checkpoint file
(along with the EIO trace) can be used to start any SimpleScalar simulator in the
middle of a program execution.

sim-profile

This simulator implements a functional simulator with profiling support. Run
with the -h’ flag to see profiling options available.

sim-bpred

sim-bpred implements a branch predictor analyzer

sim-cheetah

It implements a functional simulator driver for Cheetah. Cheetah is a cache simu-
lation package written by Rabin Sugumar and Santosh Abraham which can efficiently
simulate multiple cache configurations in a single run of a program. Specifically, Chee-
tah can simulate ranges of single level set-associative and fully-associative caches.

sim-cache

sim-cache implements a functional cache simulator. Cache statistics are generated
for a user-selected cache and TLB configuration, which may include up to two levels
of instruction and data cache (with any levels unified), and one level of instruction
and data TLBs. No timing information is generated.

sim-outorder

This simulator implements a very detailed out-of-order issue superscalar processor
with a two-level memory system and speculative execution support. This simulator
is a performance simulator, tracking the latency of all pipeline operations.

Simulating The following command can be used for getting different kind of sim-

97

ulating results.

./sim-fast mcf

usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

./sim-safe mcf

e

usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

./sim-eio mcf

usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

./sim-profile mcf

usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

./sim-bpred mcf

.

usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

./sim-cheetah mcf
usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

./sim-cache mcf

usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

./sim-outorder mcf

usr/local/spec2000/benchspec/cint2000/181.mcf/data/test/input/inp.in

The option selection helps to implement the idea of architecture design. If the
simulation is based on one design, only one or two simulator will be used, not all of

them. The simulation results of sim-fast is listed below:

MCF SPEC version 1.6.1
by Andreas Loebel

98

Copyright (c) 1998,1999
ZIB Berlin All Rights Reserved.
nodes : 646 active

arcs : 4727

simplex iterations : 3487
flow value : 420008515
new implicit arcs: 33663
active arcs : 38390
simplex iterations : 4865
flow value : 380006269
checksum : 113792

optimal

sim: #** simulation statistics*x*

sim_num_insn 210007313

executed sim_elapsed_time 55
seconds sim_inst_rate 3818314.7818
insts/sec) 1d_text_base 0x00400000

base

1d_text_size 112352
bytes

1d_data_base 0x10000000

segment base

1d_data_size 19060

uninit’ed -‘.bss’ size in bytes

total number of instructions

#
total simulation time in
simulation speed (in

#

program text (code) segment
program text (code) size in
program initialized data

program init’ed ‘.data’ and

99

1ld_stack_base 0x7fffc000
(highest address in stack)

1d_stack_size 16384

1d_prog_entry 0x00400140
PC)

1ld_environ_base 0x7f£f£8000

address address

1d_target_big_endian O

endian-ness, non-zero if big endian

page_count 23720

allocated mem.

page_mem 94880k

allocated mem.

ptab_misses 25796

misses memn.

ptab_accesses 995860727

mem.

ptab_miss_rate 0.0000

rate

Simulation Environment

program stack segment base

program initial stack size

program entry point (initial

program environment base

target executable

mem.

total number of pages

total size of memory pages

total first level page table

total page table accesses

first level pagé table miss

The hardware configuration is PIII, 800Mhz, 265MSDRAM, 40Gharddisk;

100

Operating system is Redhat Linux V7.0, dural boot from MS-Windows2000.

Benchmark, mcf is used to get the simulation results. The command to compile
the benchmark is

sslittle-na-sstrix-gcc g O o mef /usr/local/spec2000/benchspec/181.mcf/src/*.c

Im

101

Appendix B
simICS Script

T is not difficulty to install simICS by following the instruction on simICS user’s
Iguide. It is a very good simulator that us adopted to get the simulation results in
many kind of formats. To get the simulation results which is satisfied to the require-
ment of our thesis work, we need to write our own script to configure the memory

system. The below is the script that used to support our simulation environment.

split0 = SIM_new_object("id-splitter", "splitO")

SIM_new_object ("generic-cache", "icache")

icache

icache.cpu = conf.cpu0

icache.lines = 0
icache.lsize = 32
icache.assoc = 2

icache.queue = conf.cpu0

icache.write_through = 0

102

icache.read_miss_penalty = 8
icache.enabled = 1
dcache = SIM new_object("generic-cache", "dcache")

dcache.cpu = conf.cpu0

dcache.lines = 0
dcache.lsize = 32
dcache.assoc = 1’

dcache.enabled = 1

dcache.queue = conf.cpul

dcache.write_through = 0

dcache.read_miss_penalty = 8

12cache = SIM_new_object("generic-cache", "l2cache")

12cache.cpu = conf.cpul

]
o

12cache.lines

12cache.lsize 32

103

12cache.assoc = 4

12cache.enabled = 1

12cache.read_miss_penalty = 100

12cache.write_miss_penalty = 110

12cache.write_through = 0

#connect the caches together:

conf.phys_memO.timing_model = splitO

split0O.ibranch = icache

splitO.dbranch = dcache

dcache.next_cache = 12cache
jicache.next_cache = 1l2cache

33

R NS SRt 104

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2005

	Memory access behavior of dynamically allocated data structures and programs with irregular access patterns
	Zhen Yu
	Recommended Citation

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117

