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Abstract

An Efficient Tau-Leaping Simulation Method for Stochastic Biochemical Kinetics

Serguei Rousskikh

Master of Science in Applied Mathematics

Ryerson University

2018

Stochastic modeling and simulation of biochemical systems are topics of high in-

terest in Computational Biology. Stochastic mathematical models are critical in

accurately capturing the variability observed experimentally in cellular processes,

in particular when some species have low molecular numbers. Many, realistic bio-

chemical networks exhibit stiffness, due to the presence of multiple time-scales. For

such networks explicit simulation methods are computationally quite intensive. In

this thesis, we introduce an improved implicit tau-leaping strategy for the simulation

of stochastic biochemical kinetic models. Numerical tests on various biochemical

systems of interest in applications show the efficiency of our method.
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Chapter 1

Introduction to Biochemical

Systems

1.1 Motivation

Why is this topic so important? First and foremost, biochemical systems are at the

heart of modern medicine and biomedical research. The medical and biomedical

industry is already one of the highest grossing and socially vital economic sectors

in the world. As the global population continues to age, particularly in North

America and Europe, the reliance upon this industry will only continue to grow.

Biochemical research already provides us with the basis for revolutionary medical

procedures, treatments and medication. Yet, with all of the progress that has been

made in recent history, the field still has boundless potential. In this thesis we strive

to build on the massive amount of work already done with respect to biochemical

simulation, and develop a more efficient way of achieving results.

1



Aside from the broad economic and medical implications of computational biology,

the motivational factor at the heart of this research is our interest in improving

stochastic simulation of mathematical models of biochemical systems. In partic-

ular, our goal is to identify and correct inefficiencies in stochastic methods. The

focus of our study will be the tau-leaping method developed by Gillespie [13] for

simulating stochastic discrete models of biochemical kinetics.

In the study of biochemical networks we encounter a wide spectrum of systems

and a range of numerical strategies to approximate the solution of their mathemat-

ical models. Biochemical systems can be categorized into spectrum ranging from

small systems with few species and small population sizes to large systems with

many species and large populations sizes. On the small system side of the scale, an

appropriate solution algorithm would be the stochastic simulation algorithm (SSA)

[9], while on the opposite end one would often utilize ordinary differential equation

(ODE) solvers for the reaction rate equations (RRE). These methods have been

extensively studied and are currently heavily relied upon in the industry. This

however, does not mean that these techniques and others do not come without

their drawbacks. Thus, we turn our attention to the tau-leaping scheme. At its

core, the tau-leaping strategy is an improvement on the SSA. The SSA is built

upon the premise that we carry out each reaction consecutively, whereas the tau-

leaping mechanism allows us to jump several reactions ahead under certain condi-

tions. The tau-leaping method addresses two shortcomings of the SSA in particular,
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1) the SSA is extremely slow for a large number of reactant species and/or large

molecular amounts of certain species [13]; 2) the tau-leaping method, especially the

implicit variation, is far better suited to approximate stiff problems. Referencing

what was stated a few sentences before, no method comes without its faults, and

the tau-leaping methods are no different. Within the realm of this thesis we strive

to identify the inefficiencies associated with existing tau-leaping methods, on our

way to establishing a modified tau-leaping algorithm capable of being an accurate

and efficient alternative for a wider range of biochemical systems.

Finally, as with any other research undertaking we are motivated by a desire to

advance the field of computational biology and build on the work done by scien-

tists before us (McAdams & Arkin [21]; McAdams & Arkin [22]; Arkin et al. [23];

Elowitz et al. [6]; Fedoroff & Fontana [7]). In the next few paragraphs, we will

briefly explore the work of other computational biologists and the influence that

their work has had on this particular research area as well as the field in general.

Our first motivational piece comes from Harley H. McAdams and Adam Arkin

and their work concerning modeling of genetic activity. In 1997, they published a

paper titled “Stochastic mechanisms in gene expression” where they proposed that

the pattern of protein concentration, essential in controlling the promoter, which in

turn is responsible for gene expression, can be modeled using stochastic processes

at varying time intervals [21]. In 1998, McAdams and Arkin with the help of John

Ross explored the effect of fluctuations (noise) in rates of gene expression and con-
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sidered molecular level stochastic modeling as a noise-modeling mechanism [22].

McAdams and Arkin followed this up with a paper in 1999, “It’s a noisy business”.

They again explored the effects of noise on reaction rates and subsequently gene

expression, but this time on a nanomolar level [23].

In 2002, Michael B. Elowitz along with his team expanded on the research done by

McAdams and Arkin in a paper titled “Stochastic gene expression in a single cell”.

The endeavour focused on noise that arises from stochasticity. The team analysed

both intrinsic (stochasticity inherent in the biochemical process of gene expression)

and extrinsic (fluctuations in other cellular components) noise [6]. Their results

established a quantitative base for modeling noise in gene expression and revealed

how low intracellular copy numbers of molecules can fundamentally limit the pre-

cision of gene regulation. A similar study was conducted by Fedoroff and Fontana

titled “Small Numbers of Big Molecules” in 2002 [7].

1.2 Introduction

In the previous section we shed light upon the influence of biomedicine and biochem-

ical systems on healthcare, the economy and laid out our motivations for choosing

stochastic modeling of biochemical kinetics as a research topic. In this section we

will present the key concepts at high level, in order to facilitate a big picture un-

derstanding of the subject for the reader.

Consider a biochemical system, which contains a system of N different types of
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molecules, known as chemical species, which are involved in M types of chemical

reactions. We can think of this as a simple mathematical equation where different

numbers through various mathematical operations give some result, for instance

x + y = z + u. If we have several equations, then we have a system of equations,

which we can then solve using a variety of methods available at our disposal. Sim-

ilarly, we have chemical equations, where reactants (left side of the equation) go

through a chemical reaction to generate some products (right side of the equation).

For instance, chemical x reacts with chemical y to produce chemicals z and u (this

is expressed as x+y → z+u). If we have several reactions, then we have a chemical

system. Our goal is to model the evolution of the population of each of the chem-

ical species. The most accurate approach to modeling the effects of such systems

on molecular populations is to track the position and velocity of each individual

molecule while allowing it to evolve under the appropriate laws of physics [14].

Subsequently, we monitor the reactions as they take place and make the necessary

observations. This approach is known as the ”molecular dynamics” approach. Nat-

urally, we can deduce that even with a moderate species population this approach

becomes far too time-consuming when simulated on larger time intervals, relevant

in applications. However, we can often simplify the problem by ignoring the spatial

information and tracking the population size of each type of molecule as a function

of time. We can achieve this by making three critical assumptions. The first be-

ing, the well-stirred assumption, which states that molecules are uniformly spread

throughout the spatial domain [14]. In order to disregard the spatial aspect, we

must also assume thermal equilibrium and constant volume throughout the reac-
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tion system [16]. With these assumptions, the behaviour of the biochemical system

may be described using the Chemical Master equation (CME)[10].

As was aforementioned rather than taking a brute force approach known as the

molecular dynamics approach, we are interested in calculating the number of molecules

for each molecular species at a given time; this is known as the system state. The

Chemical Master equation (CME) is a large system of ordinary differential equa-

tions (ODE′s), with one equation for every state [10]. The CME, as we stated

before, is a valid model under three key assumptions: the system is well-stirred, it

is in thermal equilibrium and the volume remains constant throughout the reaction.

The issue with the CME is that once the system or the population size becomes

large, the system of ODE′s cannot be solved analytically and are computationally

very challenging to simulate directly.

This problem remained unsolved, until the breakthrough work of Dr. Daniel Gille-

spie. Dr. Gillespie is a renowned American physicist, with a Ph.D. from Johns

Hopkins University. His research took him to some of the leading technical univer-

sities in the United States, such as the California Institute of Technology (Caltech)

and the University of California Berkeley. In 1976, his research culminated in the

establishment of the stochastic simulation algorithm [9]. The SSA computes only a

single realization of the state vector rather than the entire probability distribution

[16]. This method allowed scientists the opportunity to simulate chemical reactions

stochastically. However, the SSA is not without faults of its own. While an exact
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solution of the CME, it comes at the price of high computational cost, particularly

when dealing with large species populations. It is this high cost, which leads us to

the tau-leaping methods.

Theoretically, one way that we can accelerate the simulation, in contrast to the

SSA, is by having more than one reaction fire during a time-step [14]. Mathemat-

ically, we can achieve this by making the time-step (τ) larger. This strategy is

known as the tau-leaping method. It was also developed by Dr. Gillespie as an an-

swer to the computational issues associated with the SSA. To avoid compromising

the accuracy of the method, there is a restriction that we must placed upon the

length of the step τ . Known as the leap condition, this restriction states that one

must ensure τ is small enough such that the propensity functions will not change

significantly. Naturally, there are other safeguards within the algorithm that guar-

antee the accuracy of the method, such as error percentages. In this thesis, we will

reference different types of tau-leaping algorithms. In particular, the explicit [14],

implicit [27] and adaptive tau-leaping methods,[2, 3]. Each of these strategies is es-

pecially effective under specific conditions and, as was stated previously, our main

objective is to develop a modified algorithm. The modified algorithm will incorpo-

rate elements of the former and correct inefficiencies associated with each technique.

Given that tau-leaping will serve as the keystone element of this research undertak-

ing, this scheme will be discussed in much greater depth in the subsequent chapters.

Tau-leaping has been referred to in the past as a “bridge process” [14]. This is
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indeed correct. Tau-leaping serves as the bridge between the CME and the Chem-

ical Langevin equation (CLE) [13] a stochastic continuous model. In the previous

section we have established that over the new time-step [t, t+ τ ] we have more than

one firing of a reaction. Additionally, we also make the assumption that the mean

of the Poisson random variables in the tau-leaping method is large. Once again

we will delve deeper into this in consequent chapters; for now, however, probability

theory dictates that a Poisson random variable can be accurately approximated

by a normal random variable with the same mean and variance. This assumption

serves as the backbone for the CLE. While our previous processes were discrete

and stochastic in nature, the normal random variable approximation has turned

the system state into a continuous and stochastic process.

While tau-leaping is the bridge to the CLE, it ultimately acts as the bridge be-

tween the CME and the reaction rate equations (RRE). We have seen that under

certain assumptions, through probabilistic approximation, a discrete and stochastic

process was reduced to a stochastic and continuous one. Now, if we were to disre-

gard the stochastic term of the CLE we reduce the model to the RRE, a continuous

and deterministic model. However, it is imperative to note that this reduction is

valid under a key assumption, the thermodynamic limit [14]. In Chapter 3 we

will describe the thermodynamic limit mathematically and how it facilitates the

reduction to the reaction rate equations.
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1.3 Review of Stochastic Simulation Techniques

This final section of the introductory Chapter will serve as a review or a quick

tutorial on the different types of stochastic simulation techniques at our disposal.

Some will be familiar, for instance the stochastic simulation algorithm (SSA), while

some may be new to the reader. We will break this section down into two categories,

exact methods and approximate methods.

1.3.1 Exact Methods

Before we begin, it is important to emphasize that when it comes to simulations

there is no such thing as an “exact” algorithm. The first exact method that we

mention is Gillespie’s stochastic simulation algorithm (SSA). We briefly discussed

this method in the previous section and will discuss it at much greater length in

Chapter 3. For now, all we will add, is that this method epitomizes accuracy and

if we were given unlimited computational capability this would be the method of

choice.

Next we move to a method that can be thought of as the predecessor to the SSA,

the first reaction method, also developed by Gillespie [14]. The algorithm computes

the time τi at which a reaction could be occurring, barring any reaction firing.

Subsequently, the index j of the first reaction is directly correlated to the index

of the reaction with the shortest time to reaction. Finally, we examine the exact

method developed by Michael A. Gibson and Jehoshua Bruck, called the next reac-

tion method [8]. The next reaction method is a modification of the aforementioned
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first reaction method. This method has the computational time proportional to the

logarithm of the number of reactions log(M). This is accomplished by construct-

ing a dependency graph from the set of reactions and incorporating an appropriate

data structure capable of amassing the propensities ai and possible times τi. This

method is unique for two particular reasons, i) it uses only a single random number

per simulation event, and ii) its computational time is proportional to the logarithm

of the number of reactions rather than the number of reactions itself.

1.3.2 Approximate Methods

Methods of this category are designed to approximate the exact solution as well

as possible, while being far more efficient than their exact counterparts. The first

type of approximate schemes that we mention are the various tau-leaping methods

that are at the heart of this work. Other methods are presented for the CME, CLE

and RRE. We briefly delved into these topics earlier, and we dissect these methods

much more meticulously later on.

In this thesis we propose a modified adaptive explicit-implicit tau-leaping strategy

to simulate a large class of well-stirred biochemical systems. Our work improves

the state-of-the-art adaptive tau-leaping strategy [3], by eliminating the need for

symbolic computation the Jacobian required by Newton’s method for the implicit

tau-leaping technique. For this we use the finite-difference approximations. Our

results show that the new method maintains a similar accuracy and computational

cost, with minimal intervention from the user.
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1.4 Outline

This thesis will be constructed in the following way. The subsequent chapter will

entail a comprehensive review of the mathematical background, which will form the

basis for the rest of the thesis. The mathematical review will contain a discussion

on probability theory, Monte Carlo simulation techniques and stochastic processes.

In Chapter 3, we will delve into the background of biochemical systems including

in-depth analysis and rigorous derivations of the CME, SSA, tau-leaping, CLE and

the RRE. Chapter 4, will form the core of the of this thesis, with the introduc-

tion of several tau-leaping strategies notably featuring the state-of-the art adap-

tive explicit-implicit tau-leaping method followed by the new user-friendly modified

adaptive explicit-implicit tau-leaping scheme. In the following Chapter, we present

the numerical results which will justify the theoretical component of this thesis.

The final chapter, will entail rationalization the preceding work and contemplation

of topics for future study.
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Chapter 2

Mathematical Background

In this Chapter we cover the necessary mathematical theory for studying stochastic

modelling and simulation of biochemical systems. To begin this section we review

the necessary probability distributions, upon which our theories are based. Conse-

quently, we consider the Monte Carlo method, which is essential to the numerical

simulation of the stochastic models of biochemical kinetics. Finally, we discuss

several properties of stochastic processes that are key to stochatic modelling of

biochemical processes.

2.1 Probability Models

In this Section we explore three probability distributions, which will prove to be

critical in the derivations and proofs of future concepts. In particular, we consider

exponential, normal and Poisson distributions. Nonetheless, we begin with several

crucial definitions, including, probability density and mass functions, cumulative

distribution function and expectation (we refer the reader to [30] for more details).
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Definition 2.1.1. Probability mass function [30]. For any discrete random

variable X, we define the probability mass function (PMF) to be the function which

gives the probability of each x ∈ SX (where SX is the set of possible observed values

for X). We denote this as,

P (X = x) =
∑

{s∈S|X(s)=x}

P ({s}),

where S represents any arbitrary sample set. This function has a continuous coun-

terpart, known as the probability density function (PDF), which serves the same

purpose, only in continuous space.

Definition 2.1.2. Probability density function [30]. If X is a continuous

random variable, then there exists a function fX(x), called the probability density

function, which satisfies the following conditions,

1. fX(x) ≥ 0,∀ x for any real number;

2.
∫∞
−∞ fX(x)dx = 1;

3. P (a ≤ X ≤ b) =
∫ b
a
fX(x)dx for any a ≤ b.

A related concept, is the cumulative distribution function (CDF). The CDF applies

to both discrete and continuous distributions.

Definition 2.1.3. Cumulative distribution function [30]. The cumulative

13



distribution function for a discrete random variable is signified by,

FX(x) = P (X ≤ x) =
∑

{y∈S|y≤x}

P (X = y).

The continuous analogue has the following structure,

FX(x) = P (X ≤ x)

= P (−∞ ≤ X ≤ x)

=

∫ x

−∞
fX(z)dz.

The expectation is the average of the random variable we are interested in, it

should not be confused with the sample mean. Again, we combine the discrete and

continuous interpretations of expectation into one definition.

Definition 2.1.4. Expectation [30]. The expectation of a discrete random vari-

able X, designated by E(X) is denoted by,

E(X) =
∑
{x∈SX}

xP (X = x).

The expectation of the continuous analogue is as follows,

E(X) =

∫ ∞
−∞

xfX(x)dx.

Now, we discuss some important probability distributions. We begin with the

exponential distribution. In general a random variable, X, that is exponentially

14



distributed is represented as [30],

X ∼ Exp(λ),

where λ is the rate parameter. The exponential distribution has the probability

density function,

fX(x) =

{
λe−λx, x ≥ 0;

0, otherwise.

The exponential has the cumulative distribution function,

FX(x) =

{
0, x < 0,

1− e−λx, x ≥ 0,

and expected value,

E(X) =
1

λ
.

The exponential distribution will prove to be essential in the derivation of the

stochastic simulation algorithm.

The Poisson distribution is equally important, for, it will serve as the backbone

for our tau-leaping methods. This discrete probability distribution, has a parame-

ter λ, and a Poisson random variable is expressed as,

X ∼ Po(λ).
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Since it is discrete, it has an associated PMF given by,

P (X = k) =
λk

k!
e−λ, for k = 0, 1, 2, 3, . . . .

The expectation value is λ, that is,

E(X) = λ.

The final distribution to be discussed is the normal (or Gaussian) distribution. This

probability distribution will serve as the bridge from tau-leaping to the Chemical

Langevin Equation. A normal random variable X with mean µ and variance σ2, is

denoted by,

X ∼ N
(
µ, σ2

)
.

The associated PDF is written as,

fX(x) =
1

σ

√
2π exp

{
− 1

2

(x− µ
σ

)2}

Through integration of ∫ ∞
−∞

xfX(x)dx,

we obtain the expected value of the normal distribution X,

E(X) = µ.

As it was already mentioned, the normal distribution is essential in making the
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transition from tau-leaping to the CLE. This is achieved through the following

proposition.

Proposition 2.1.1. Normal approximation of Poisson distribution [30].

The Poisson distribution can be approximated by the normal distribution in circum-

stances where the mean of the Poisson distribution is large; in general the mean has

to be greater than a threshold, more precisely,

X ∼ Po(λ) ' N(λ, λ), for λ > 20.

In the context of this thesis, a formal proof is unnecessary, nonetheless we will

present the reasoning behind this property. The Poisson distribution is derived

from the binomial distribution. Using the Central Limit Theorem it can be proven

that the Binomial Theorem is well approximated by the normal distribution if the

number of successes (n) is large. Given, that the Poisson distribution is derived

from the binomial distribution, it also possesses this property. The only discrep-

ancy is the fact that the Poisson is approximated with the parameter λ as opposed

to the number of successes.

With this we conclude our review of probabilistic methods and distributions. The

next section will delve into the Monte Carlo method and its application to the

simulation of stochastic models of biochemical systems.
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2.2 Monte Carlo Method

The Monte Carlo scheme is a broad class of computational algorithms that use

random distribution over a large number of iterations, taking the average of said it-

erations and providing the desired results. An early variant of the method was first

used in Buffons needle experiment, and subsequently again in the 1930′s by Enrico

Fermi when studying neutron diffusion [1]; however, its use was not acknowledged.

Physicists Stanislaw Ulam and John von Neumann working at the Los Alamos Sci-

entific Laboratory in Los Alamos, New Mexico on a project regarding radiation

shielding, first coined the term Monte Carlo, which was a code name for their work

[25].

As was mentioned in the previous paragraph, the Monte Carlo strategy was first

applied to physics. Nevertheless, over time it has been increasingly applied to fields

other than physics such as computational biology and financial analytics. In regards

to systems biology, the Monte Carlo method is vital to the implementation, among

others, of the stochastic simulation algorithm and various tau-leaping methods.

Since the Monte Carlo technique proves to be a useful computational tool, let us

present it briefly below. Monte Carlo simulation is a strategy by which we simulate

many different realizations of the stochastic process of interest. We accomplish this

through random number generation from the appropriate probability distribution

and subsequent application within the parameters of the problem we wish to solve.

Our desired outcome is a probability distribution of the results.
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The Monte Carlo method is a crucial step in the implementation of both the SSA

and subsequent tau-leaping methods. In each case we wish to construct a distri-

bution of the number of species remaining following their evolution through time

in a biochemical system. Each method will adhere to a similar structure. In Sec-

tions 3.2 and 3.3 we will provide a detailed description of the algorithms, but for

now we focus strictly on the Monte Carlo component. Our initial step is to define

all the variables and set the parameter values for the simulation. In this case, the

parameters will include the number of species and reaction channels, the initial con-

ditions, the stoichiometric matrix and the reaction rate constants. The variables

are the molecular amounts of the biochemical species, depending on the time t.

After initialization, the algorithm simulates, the various trajectories species popu-

lations can take. In biochemical systems the accepted practice is to simulate ten

thousand trajectories. While this number may not seem huge, especially, when by

comparison, Monte Carlo simulations in financial mathematics require upwards of

a million trajectories, it will more than suffice. We have to be mindful of the fact

that we are dealing with tiny molecules, where for instance a 5% error is insignifi-

cant, while in financial terms a 5% error on a billion dollar deal could potentially

have a devastating impact. Using the ten thousand trajectories simulated, we can

construct a probability distribution based on the results.

In conclusion, the Monte Carlo method is essentially a practical manifestation of the

Law of Large Numbers fused with relatively simple statistics tools. Nevertheless, it
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is an indispensable part of our computational capabilities.

2.3 Introduction to Stochastic Processes

This section gives a brief introduction to stochastic processes, which are used in

stochastic modeling approaches of biochemical systems. Particular attention is

placed upon comprehension, derivation and application of Markov processes and

Kolmogorov’s equations. The interested reader is referred to [30] for more details.

2.3.1 Markov Process Introduction

Introductory sections dedicated to probability theory and computational aspects of

stochastic modeling, allows us to delve deeper into stochastic theory before transi-

tioning to biochemical systems theory. A stochastic process is a random variable,

in this case, the state change vector X(t),

X(t) =



x1(t)

x2(t)

...

xN(t)


which evolves in time [16]. The random variable, or hereafter, the system state

vector, can either be continuous or discrete.

Definition 2.3.1. Markov Process [30]. A Markov process is a stochastic pro-

cess that possesses the property that future states do not depend on the past states,
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given the present state.

In other words, Markov processes can be thought of as history-less. It is known

that Markov processes model the behaviour of biochemical kinetics remarkably well

and will serve as the underlying theoretical foundation to our research.

Armed with a general understanding of what stochastic and Markov processes are,

the next task is to construct a mathematical framework based on what was stated

earlier. Assume that the set

{θ(n)|n = 0, 1, 2, 3, . . . }

is a discrete time stochastic process. It is worth repeating that the state space S,

is such that θ(n) ∈ S, for all n can be continuous or discrete. A first order Markov

chain, is a stochastic process where future states are only dependent on the present

state,

P (θ(n+1)∈A|θ(n) = x, θ(n−1) = xn−1, . . ., θ
(0) = x0)

= P (θ(n+1)∈A|θ(n) = x), (2.1)

where A ⊆ S. The first order Markov chain depends on A, x and n. However, if

the process is independent of n, then,

P (θ(n+1)∈A|θ(n) = x) = P (x,A). (2.2)
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In this case, the Markov Chain is said to be (time) homogeneous, and the transition

kernel P (x,A) determines the behaviour of the chain [30].

2.3.2 Markov Process Notation

If S is discrete, the following notation is used,

P (x, y) = P (θ(n+1) = y|θ(n) = x). (2.3)

Furthermore, assuming the presence of a discrete and finite state space, S =

{x1, . . . , xm}, probability P can be rewritten in matrix form

P =



P (x1, x1) P (x1, x2) . . . P (x1, xm)

P (x1, x1) P (x2, x2) . . . P (x2, xm)

...
...

. . .
...

P (xm, x1) P (xm, x2) . . . P (xm, xm)


.

Matrix P is known as a stochastic matrix.

Definition 2.3.2. Stochastic Matrix [30]. An m × m matrix P is a stochastic

matrix if its entries are non-negative and the sum of all of its elements on each row

equal to 1.

Proposition 2.3.1. 1) If P1, P2 are m × m stochastic matrices then, the product

of P1 and P2 is also a stochastic matrix.

2) For all eigenvalues (λ) of a stochastic matrix P satisfy |λ| ≤ 1.

3) For a stochastic matrix P, there exists at least one eigenvalue λ = 1.
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Proof. Proof of Proposition 2.3.1.

Suppose we take an eigenvalue, λ, of a stochastic matrix P, there exists a vec-

tor x 6= 0 such that Px = λx. Let us denote by || · ||∞ the matrix ∞-norm, and by

|| · ||V∞ the ∞-norm for m-dimensional column vectors. It then follows that

||Px||V∞ = ||λx||V∞ ⇒ |λ| · ||x||V∞ = ||Px||V∞. (2.4)

||P ||∞ = max
x 6=0

||Px||V∞
||x||V∞

≥ ||Px||
V
∞

||x||V∞

||Px||V∞ ≤ ||P ||∞ · ||x||V∞ for any x 6= (0, 0, . . . , 0)T (2.5)

Substituting (2.4) into (2.5), we get.

|λ| · ||x||V∞ = ||Px||V∞ ≤ ||P ||∞ · ||x||V∞ where ||x||V∞ 6= (0, 0, . . . , 0)T

|λ| ≤ ||P ||∞ = max(P11 + P12 + · · ·+ P1m,

P21 + P22 + · · ·+ P2m,

. . . ,

Pm1 + Pm2 + · · ·+ Pmm)

= max(1, 1, . . . , 1)

=1

Thus,

|λ| ≤ 1.
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Now we set up the basis for the Chapman−Kolmogorov equations. Let us define,

for time tn [30],

P (θ(n) = x1) = π(n)(x1)

P (θ(n) = x2) = π(n)(x2)

...

P (θ(n) = xm) = π(n)(xm)

π(n) = (π(n)(x1), π
(n)(x2), . . . , π

(n)(xm)) at time tn.

Then,

P (θ(n+1) = x1) =P (θ(n) = x1)P (x1, x1)+

+P (θ(n) = x2)P (x2, x1)+

+ · · ·+

+P (θ(n) = xm)P (xm, x1)

=(π(n)(x1), π
(n)(x2), . . . , π

(n)(xm)) ·



P (x1, x1)

P (x2, x1)

...

P (xm, x1))


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⇒π(n+1)(x1) = P (θ(n+1)) = π(n) ·



P (x1, x1)

P (x2, x1)

...

P (xm, x1))



π(n+1)(x2) = π(n) ·



P (x1, x2)

P (x2, x2)

...

P (xm, x2))


...

π(n+1)(xm) = π(n) ·



P (x1, xm)

P (x2, xm)

...

P (xm, xm)


π(n+1) = π(n+1)(x1), π

(n+1)(x2), . . . , π
(n+1)(xm) =

= π(n) ·



P (x1, x1) P (x1, x2) . . . P (x1, xm)

P (x1, x1) P (x2, x2) . . . P (x2, xm)

...
...

. . .
...

P (xm, x1) P (xm, x2) . . . P (xm, xm)


⇒ π(n+1) = π(n) · P
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Therefore, we obtain

π(n+1) = π(n) · P = π(n−1) · P · P = π(n−1) · P 2 = π(n−2) · P 3 = · · · = π(0) · P (n+1)

π(n) = π(0)P (n+1) (2.6)

Why does this result bear significance? Equation (2.6) above, states that the ini-

tial state and the stochastic matrix P determine future probability distributions.

Equipped with this knowledge, it can be deduced that if one step is dependent on

P, then two steps are dependent on P 2 and the nth-step is determined by P n, ac-

cordingly. Furthermore, suppose we have two different step sizes, for instance n and

p, then P n · P p = P (n+p) [30]. And this statement is of the utmost importance to

us because it forms the basis for the Chapman−Kolmogorov equations, which are

vital in deriving the stochastic discrete model of well-stirred biochemical kinetics,

namely the Chemical Master equation.

2.3.3 Markov Processes: Continuous Time, Finite State-

Space

This thesis deals with stochastic processes that are continuous in time and have

finite state-spaces. Therefore, it is necessary to get acquainted with this concept.

More details on these processes may be found in [30].

Definition 2.3.3. A stochastic process X(t) is a Markov process continuous in time
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if,

P (X(t+ dt) = x|X(s) = x(s)|s ∈ [0, t])

= P (X(t+ dt) = x|X(t) = x(t)), ∀t ∈ [0,∞), x ∈ S (2.7)

where S is the state space, S = {1, 2, . . . ,m}.

Identically to the discrete cases covered earlier, future behaviour of the process does

not depend on the past states, if the current state is known. Consider a process

which is characterized by one of the m states denoted earlier, if at time t it is in the

state x ∈ S, then future behaviour will be contingent upon the transition kernel,

p(x, t, x′, t′) ≡ P (X(t+ t′) = x′|X(t) = x),

the notation P (X(t + t′) = x′|X(t) = x) means the conditional probability X(t +

t′) = x′ given that X(t) = x. If the transition kernel is independent of t, then it

is considered to be homogeneous, and can be written as p(x, x′, t′). For each t′ the

transition is denoted by P(t’), a m ×m matrix. There are a few properties which

can be attributed to the transition kernel. First of all,

P (0) =



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


= I

where I is an m × m identity matrix. This is intuitive as no transition can take
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place in the absence of time. Similarly to what was stated in the previous section,

we can carry out regular multiplication operations with P because it is a transition

matrix for each value of t. The latter sentence gives the following identity,

P (t+ t′) = P (t) · P (t′) = P (t′) · P (t).

Let us denote by, Q, the transition rate matrix or just the rate matrix. The rate

matrix is defined to be [30]

Q :=
d

dt
P (t′)

∣∣∣
t′=0

. (2.8)

Thus,

Q = lim
δt→0

P (δt)− P (0)

δt

= lim
δt→0

P (δt)− I
δt

and therefore,

P (dt) = I +Qdt. (2.9)

It should be stated that P (dt) is a stochastic matrix (a matrix where its entries are

non-negative and the sum of all of its elements on each row equal to 1). From this

we can make a few deductions. First, given that the identity matrix I consists of

zeros, aside from the diagonal, leads us to the realization that off-diagonal elements

of Q are also non-negative. Secondly, since diagonal elements of P (dt) are bounded

above by 1, then Q’s diagonal elements must be non-positive. Lastly, knowing that

all rows of P (dt) and I sum to 1, logic dictates that the rows of Q must sum to 0.
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These properties must be satisfied by a rate matrix Q. Indeed,

1 = sum of elements in one row of P

= sum of all elements in same row of I

+ (sum of all elements in same row of Q)dt

= 1 + (sum of all elements in a row of Q)dt

=⇒ (sum of all elements in a row of Q) = 0.

Using equation (2.9) we can calculate the stationary distribution of the Markov

chain. If π is the stationary distribution of P (dt) it the follows that [30],

πP (dt) = π.

Since,

πP (dt) = π + πQdt = π

=⇒ πQdt = 0,

where we know dt 6= 0

=⇒ πQ = 0.

It should be noted here that π is a vector.
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We can write,

d

dt
P (t) =

P (t+ dt)− P (t)

dt

= lim
dt→0

P (t+ dt)− P (t)

dt

=
P (dt) · P (t)− P (t)

dt

=
(P (dt)− I) · P (t)

dt

=
(2.9)

Qdt · P (t)

dt
.

From the above we obtain,

d

dt
P (t) = Q · P (t). (2.10)

Then,

d

dt
P (t) =

P (t) · P (dt)− P (t)

dt

=
P (t)[P (dt)− I]

dt

=
(2.9)

P (t) ·Qdt
dt

.

Thus, we derived

d

dt
P (t) = P (t) ·Q. (2.11)

Equation (2.10) can be written out using the components i and j, which leads to

equations (2.12) [30],

d

dt
p(i, j, t) =

m∑
k=1

qik · p(k, j, t) for i, j = 1, 2, . . . ,m. (2.12)
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Equations (2.12) are known as Kolmogorov′s backward equations. Although the

set does look different then its predecessor, equation (2.10), upon a closer look it

is easy to identify that [p(i, j, t)](i,j) = P (t), (q)ik = Q and [p(k, j, t)](k,j) = P (t).

Carrying out a similar rearrangement of equation (2.11) we arrive at the following

equation [30],

d

dt
p(i, j, t) =

m∑
k=1

p(i, k, t) · qik for i, j = 1, 2, . . . ,m. (2.13)

The equation (2.13) is the set of Kolmogorov′s forward equations. Kolmogorov’s

forward equation can now be used to derive the Chemical Master equation in the

next chapter.
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Chapter 3

Biochemical Systems Background

The previous chapter provided the mathematical framework essential to study-

ing stochastic models of well-stirred biochemical systems upon which this thesis

is based. This Chapter commences with a thorough examination of the discrete

stochastic model of biochemical kinetics, the Chemical Master equation (CME) in-

cluding definitions of all assumptions made, foundational theory and the derivation.

The ensuing section will explore the motivation and underlying concepts behind the

stochastic simulation algorithm (SSA). This will be followed by a detailed analysis

of the tau-leaping method, which will be central in our use of the adaptive tau-

leaping method and the modification of the latter. Next, we will demonstrate that

the tau-leaping method can be reduced to the Chemical Langevin equation (CLE)

and subsequently to the reaction rate equations (RRE) under certain assumptions.

The culmination of this Chapter will be an outline of potential future work and

practical applications of this research.
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3.1 Chemical Master Equation

Definition 3.1.1. Chemical Master Equation [14]. The CME is the system

of equations that determines the probability of the system state to be in each possible

state of the well-stirred biochemical network, at the current time, provided that the

initial state is known.

The most refined model of biochemical systems is that of molecular dynamics. That

is, the position and velocity of each molecule are obtained at each time t. However,

this molecular dynamics approach bears enormous computational costs and is highly

impractical. The foundations upon which the CME is built is probabilistic. Under

certain simplifying assumptions, rather than keeping track of the positions and

velocities for every single molecule, the objective is to find the molecular population

number of each species depending on time. Consider a system where there are N

different types of molecules, or chemical species, denoted by {S1, . . . , SN}. These

molecules are involved in M types of chemical reactions denoted by {R1, . . . , RM}.

Implementation is contingent upon ignoring positions and velocities of individual

molecules, however, this simplification can only occur if the system is assumed to

be “well-stirred”.

Definition 3.1.2. Well-stirred. A well-stirred system is one where molecules of

each type are uniformly spread throughout the spatial domain.

The “well − stirred” assumption is fundamental in deriving the CME because,

most molecular collisions are non-reactive (elastic) [14]. Two consequences arise.

First, molecules, as stated in the definition, are spread uniformly throughout the
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spatial domain; secondly, velocities of molecules become thermally randomized to

the Maxwell-Boltzman distribution. Ergo, non-reactive collisions are negated and

the focus shifts to completed reactions, which significantly reduces computational

time. In addition to the well-stirred assumption, two more assumptions have to be

made. One, the system has to be in thermal equilibrium and two, the volume of

the spatial domain is constant.

At this point the introduction of a biochemical system would be beneficial to the

reader, as it can be used to demonstrate concepts currently being discussed. Con-

sider the following biochemical system [20], known as the decay-dimerization model.

We let Xi(t) represent the number of molecules of species Si at some time t.

Definition 3.1.3. State-change vector. The change in the vector of the species′

molecular populations induced by a single occurrence of a particular reaction is

known as the state-change vector of that reaction.

The system state vector at time t is denoted by,

X(t) =



X1(t)

X2(t)

...

XN(t)


.

At time t = 0 the initial state vector is given, X(t0) = x0. Change in the state vector

synonymously, the population of the species, is the result of a chemical reaction.

Thus, if the system is in state X(t) at time t and one reaction Rj happens, then
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the system state becomes X(t) + νj, where νj is the state change vector of reaction

Rj. For example, for the decay-dimerization model [20] we have,

S1
C1−→ 0 (3.1)

S1 + S1
C2−→ S2 (3.2)

S2
C3−→ S1 + S1 (3.3)

S2
C4−→ S3. (3.4)

Prior to advancing, we must make note of a few things. First of all, only the

molecules that are reactants, that is molecules that appear on the left side of the

reactions will be considered. For instance, in decay-dimerization it is apparent that

S3 does not react, as such, S3 can be disregarded. Next, it should be said that all

state-change vectors for each reaction channel will combine to form the ”stoichio-

metric matrix”. Drawing from our model, the state change vectors associated with

the first reaction channel being,

ν1 =

 −1

0

 .

For complete clarity, let us consider Reaction (3.1). In Reaction (3.1) one molecule

of species S1 is lost and nothing is gained in return, thus ν1 is written as above.

Similarly, in Reaction (3.2) one molecule of species S2 is exhausted and two molecules
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of species S2 are formed. The union of all the associated state change vectors will

form the stoichiometric matrix,

ν =

−1 −2 2 0

0 1 −1 −1

 .

Let us regress. The CME as has been noted at various times, is a stochastic model.

It would not be egregious to purport that a reaction can only occur if certain

molecules are to collide. Using probability theory, we know that P (A ∩ B) for

two independent variables is P(A) · P(B). Similar logic applies here. Therefore, the

probability that the next reaction takes place in the interval [t, t+dt), where dt is an

infinitesimal time step, is proportional to some combination of Si’s. The constant of

proportionality is called a reaction rate parameter. Naturally arises a question, why

is a constant necessary? As was discussed earlier, not all collisions lead to reactions,

therefore this constant is designed to account for unreactive collisions. This very

general equation reduces to three cases, first and second order, and dimerization.

This probability is also known as, and from henceforth will be referred to as, the

propensity function.

Definition 3.1.4. Propensity Function. The function aj(x) whose product with

dt gives the probability that a reaction Rj will occur in [t, t+dt) for an infinitesimal

time dt, given that X(t) = x.

First and second order propensities are fairly intuitive, however the dimerization

propensity leaves room for questions. The answer is also in fact straightforward; it
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represents the number of ways we can choose an unordered pair of objects from a

total of Xm molecules using combinatorics.

The expression of these propensities are justified by kinetic theory principles [16].

First order. Sm
Cj−→ products of reaction, =⇒ aj(X(t)) = cjXm(t).

Second order. Sm + Sn
Cj−→ products of reaction, where m 6= n,=⇒ aj(X(t)) =

cjXm(t)Xn(t).

Dimerization. Sm + Sm
Cj−→ products of reaction,=⇒ aj(X(t)) = 1

2
cjXm(t)

(Xm(t)− 1).

Utilizing the results from the preceding section we can now derive the Chemical

Master equation from the Kolmogorov forward equations [30].

Theorem 3.1.1. Kolmogorov forward equations for a biochemical system may be

written as ,

d

dt
p(x0, t0, x, t) =

M∑
i=1

[
ai(x−νi, Ci)p(x0, t0, x−νi, t)−ai(x,Ci)p(x0, t0, x, t)

]
, (3.5)

for any t0 ∈ IR, x0, x ∈ S,where S is the state− space.

Equations (3.5) are known as the Chemical Master equation, a discrete stochastic

model of well-stirred biochemical kinetics.
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Proof. Using Kolmogorov’s forward equations (2.13), we obtain,

d

dt
p(x0, t0, x, t) =

∑
x′∈S

qx′,xp(x0, t0, x
′, t) (3.6)

=

[ ∑
x′∈S,x′ 6=x

qx′,xp(x0, t0, x
′, t)

]
+ qx,xp(x0, t0, x, t) (3.7)

Since

P = I +Qdt,

we derive the following property of the entries of the matrix Q:

qx,x +
∑

x′∈S,x′ 6=x

qx,x′ = 0

and thus

qx,x = −
∑

x′∈S,x′ 6=x

qx,x′ (3.8)

Substituting (3.8) into (3.7), we get

d

dt
p(x0, t0, x, t) =

∑
x′∈S,x′ 6=x

qx′,xp(x0, t0, x
′, t)−

∑
x′∈S,x′ 6=x

qx,x′p(x0, t0, x, t)

=
∑

x′∈S,x′ 6=x

[
qx′,xp(x0, t0, x

′, t)− qx,x′p(x0, t0, x, t)

]
.

Given that x′ 6= x and qx′,x 6= 0 it then follows that it is only possible that x′ = x−νj.

This in turn means that qx−νj ,x 6= 0. Following a similar train of thought, we can

state that given x′ 6= x and qx,x′ 6= 0 then x′ = x+ νj, and thus qx+νj ,x 6= 0.
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Using what we just stated, it follows,

d

dt
p(x0, t0, x, t) =

M∑
j=1

[
qx−νj ,xp(x0, t0, x− νj, t)− qx,x+νjp(x0, t0, x, t)

]
. (3.9)

Also, we note from the definition of a propensity function that,

qx−νj ,x = aj
(
x− νj, Cj

)

qx,x+νj = aj(x,Cj)

Then, after substituting in (3.9), we derive:

d

dt
p(x0, t0, x, t) =

M∑
j=1

[
aj(x− νj, Cj)p(x0, t0, x− νj, t)

− aj(x,Cj)p(x0, t0, x, t)

]
(3.10)

Thus we have arrived at the Chemical Master equation. Parts of this section will be

revisited in the rest of the chapter, in particular when we derive the Reaction Rate

Equation (RRE). In what follows we use the notation P (x, t|x0, t0) to represent the

probability that X(t) = x if X(t0) = x0. With this notation the CME becomes,
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d

dt
P (x, t|x0, t0) =

M∑
j=1

(P (x− νj, t|x0, t0)aj(x− νj)− P (x, t|x0, t0)aj(x)) . (3.11)

The CME (3.10) is clearly faster to solve numerically than the molecular dynamics

approach and is accurate. However, the solution of the CME is computationally

very challenging to approximate directly, hence it is still very slow. The CME is

a system of ordinary differential equations with one ordinary differential equation

(ODE) for every single state thus it has a large dimension in general. Solving the

CME directly came to be replaced by the SSA, which will be discussed at length in

the next section.

3.2 Stochastic Simulation Algorithm

As we discussed in the introduction and the preceding section, the set of CME equa-

tions becomes impossible to solve analytically when the system is sufficiently large.

The stochastic simulation algorithm (SSA) also known as Gillespie’s algorithm was

first introduced in 1945 by Joseph L. Doob [4]. It however was not until 1976, and

Daniel Gillespie presented it, that the method became a biokinetic mainstay [9].

The SSA uses the Monte Carlo method to generate trajectories with a distribution

in exact agreement with the solution of the CME. Enhanced computational capabil-

ity of the SSA is a direct result of the explicit simulation mechanism. Additionally,
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we have numerously mentioned that the SSA is an upgrade on the direct solution of

the CME, but never examined why. In order to facilitate our explanation we refer

to definition 2.1.1 in Chapter 2, which declares, ”for a discrete random variable X,

the probability mass function (PMF) is the function that outputs the probability of

each event x ∈ Sx (where Sx is the sample space)” [30]. Indeed, the SSA takes a

sample from the probability mass function of the solution set of CME rather than

the whole PMF.

Below, we provide the theoretical justification of the SSA. Let us first introduce

the quantity P0(τ |x, t) [16] which denotes the probability that no reaction occurs in

the next time interval [t, t+ τ ], given the state vector X(t) = x. Next, consider the

time interval [t, t + τ + dτ), where dτ is an infinitesimal time step, where at most

one reaction can occur. The probability that no reaction occurs over [t, t+ τ + dτ)

is denoted by “event C”. Similarly, “event A” will signify the probability that no

reaction happens during [t, t + τ) and “event B” as the probability that no reac-

tion happens over [t + τ, t + τ + dτ). Then the probability that event C occurs is

equivalent to the probability of events A and B taking place.

P (C) = P (A) · P (B). (3.12)

Since the events in the interval [t, t+τ) and those in [t+τ, t+τ+dτ) are independent

the “and” can be expressed using multiplication, and then the key to advancing

the derivation is, restating P(B) differently. P(B) can be thought of as 1 - the

probability of each reaction occurring in the interval, [t+ τ, t+ τ + dτ). Using this
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reconfiguration, equation (3.12) leads to,

P (C) = P (A) · (1− P (Bc)). (3.13)

Then using the definition of a propensity (recall that the propensity function coupled

with an infinitesimal time step is equivalent to the probability of a reaction occuring

in the next time step), equation (3.13), can be expressed as,

P (C) = P (A) ·

(
1−

M∑
k=1

ak(x)dτ

)
. (3.14)

Then, using our initial statements and notation, this can be rewritten as,

P0(τ + dτ |x, t) = P0(τ |x, t)

(
1−

M∑
k=1

ak(x)dτ

)
. (3.15)

Rearranging the above we arrive at,

P0(τ + dτ |x, t)− P0(τ |x, t)
dτ

= −asum(x)P0(τ |x, t),

where asum(x) :=
∑M

k=1 ak(x). Equivalently, this can be restated as,

d

dτ
P (τ |x, t) = −asum(x)P0(τ |x, t). (3.16)

Approaching the limit as dτ → 0, leads to a linear scalar ODE, which by definition

has the initial condition P0(0|x, t) = 1 [16]. We remark that, P0(0|x, t) = 1, signifies

that the probability that no reactions take place in no time is always 1. Solving the
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ODE (3.16) with this initial condition, the following result is obtained,

P0(τ |x, t) = e−asum(x)τ . (3.17)

Now we introduce the quantity p(τ, j|x, t) which denotes the probability that the

next reaction will be i) the jth reaction and ii) will occur in the time interval

[t + τ, t + τ + dτ). As before event i) is signified by D and ii) by E. Events D and

E are again independent of each other by virtue of similar logic expressed a few

paragraphs earlier, thus,

P (D ∩ E) = P (D) · P (E). (3.18)

As earlier we assume dτ to be an infinitesimal time step where no more than one

reaction can take place. Using established definitions of P0 and propensity, we

arrive at equation,

p(τ, j|x, t)dτ = P0(τ |x, t)aj(x)dτ. (3.19)

Recall the earlier result in the form of equation (3.17). Substituting equation (3.17)

into (3.19) and cancelling the dτ terms, we obtain the following,

p(τ, j|x, t) = e−asum(x)τaj(x). (3.20)
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Finally, equation (3.20) can be rearranged ensuring that the a’s are gathered and

outside the exponential function, simplifying our algorithm,

p(τ, j|x, t) =
aj(x)

asum(x)
asum(x)e−asum(x)τ . (3.21)

Before analysing the significance of what was just derived, let us examine in greater

detail the mathematics behind this equation. This will require two propositions.

We begin with the time to next reaction.

Proposition 3.2.1. Simulation of time to next reaction [30]. Recall the

definitions presented in Section 2.1, it is apparent that τ is exponentially distributed

with parameter asum(x). Then,

τ =
1

asum(x)
ln

(
1

ξ1

)

where ξ1 is a uniformly distributed random variable (ξ1 ∼ U(0, 1)) necessary for

simulation.

Proof. We have to solve e−asum(x) = ξ1 with ξ1 is uniformly distributed in [0,1].

Consequently,

e−asum(x) = ξ1

−asum(x) = ln (ξ1)

τ = − 1

asum(x)
ln (ξ1)

τ =
1

asum(x)
ln

(
1

ξ1

)
(3.22)
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Equation (3.22) is the time to next reaction simulated by the SSA, with asum(x)e−asum(x)τ

serving as the PDF.

Proof that the index of the next reaction is indeed
aj(x)

asum(x)
, requires Proposition

3.2.2.

Proposition 3.2.2. Index of time to next reaction [30]. The reaction chan-

nels Rj are exponentially distributed, with the parameters aj(x), that is,

τj ∼ Exp(aj(x)),

where j = 1, 2, . . . , n, are independent random variables. Then,

τ0 ≡ min
i=1,2,...,M

τj ∼ Exp(asum(x)).

Given that the SSA is a critical component of this thesis, consequently, this is an

equally important proposition; thus, we will take the time to provide the proofs.

Proof. For a exponential random variable X ∼ Exp(λ), P (X > x) = e−λx.In our
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case, X = τj, λ = aj(x)

P (X0 > τ) = P
(

min
j
{Xj} > τ

)
= P (|X1 > τ | ∩ |X2 > τ | ∩ · · · ∩ |XM > τ |)

=
M∏
j=1

P (Xj > τ)

=
M∏
j=1

e−aj(x)τ

= e−x
∑M

j=1 aj(x)τ

= e−asum(x)τ .

Thus, τ0 ∼ Exp(asum(x)).

Lemma 3.2.3. [30] If we suppose X ∼ Exp(λ) and Y ∼ Exp(µ) are independent

random variables, then,

P (X < Y ) =
λ

λ+ µ
.

Proof. We can derive that,

P (X < Y ) =

∫ ∞
0

P (X < Y )|Y = y)f(y)dy

=

∫ ∞
0

P (X < Y )f(y)dy

=

∫ ∞
0

(1− e−λy)µe−µydy

=
λ

λ+ µ
,
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since f(y) = µe−µy.

Proposition 3.2.4. [30] If τj ∼ Exp(aj(x)), i = 1, 2, . . . ,M are independent ran-

dom variables, let k be the index of the smallest of the τj. Then k is a discrete

random variable with the PMF,

πj =
aj(x)

asum(x)
, j = 1, 2, . . . ,M.

Proof. Let us consider,

τj = P (τk < min
j 6=K
{τj})

= P (τk < Y ).

Then, according to Lemma 3.2.3,

τj =
ak(x)

ak(x) + a−k(x)

=
ak(x)

asum(x)
.

Note: Y = minj 6=k{τj}, such that, Y ∼ Exp(a−k(x)), where a−k(x) =
∑

j 6=k

aj(x). Why is this result meaningful? Primarily, it is because our two variables are

gathered in one equation (3.21), a joint density function. This in turn, maintains

independence between the two variables, while optimizing the computational cost.

Recall that, j represents the next reaction index and τ defines the time to next re-

action. Each of the independent variables can be simulated using a uniform sample
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on the (0,1) interval, with time to next reaction being simulated using the expo-

nential distribution. With all of that being said, we present Gillespie’s algorithm

also known as the SSA,

1. Initialize the simulation X(t0) = x0 at t = 0 and set the parameters M , N ,

cj’s and ν.

2. Evaluate {ak(X(t))}Mk=1 and asum((X(t))) :=
∑M

j=1 ak(X(t)).

3. Select two independent uniform (0,1) random numbers ξ1 and ξ2.

4. Evaluate j, the smallest integer satisfying
∑j

k=1 ak(X(t)) > ξ1asum((X(t))).

5. Compute τ = ln(1/ξ2)/asum((X(t))).

6. Update X(t+ τ) = X(t) + νj and t to t+ τ .

7. Go to step 1.

Nearing the end of the topic, conclusions can be drawn. The SSA is a vast im-

provement over solving the CME directly, in terms of computational cost. Also, the

SSA is an exact Monte Carlo method for the CME, generating a possible sequence

of reaction events. In the following section, our attention is turned to tau-leaping,

a topic at the heart of this thesis. An obvious shortcoming of the SSA is that the

algorithm advances through time one reaction at a time, therefore, it can be very

slow when some very fast reactions happen in the system. In contrast, tau-leaping

provides a platform where the system can fire several reactions during one time-step.

48



3.3 Tau-Leaping

Gillespie [13] proposed a strategy to accelerate the SSA in which each time step τ

advances the system through possibly many reaction events.

A common theme within this thesis will be the inefficiencies of methods associated

with high computational costs. The SSA, while an exact method, is nonetheless

computationally expensive when some reactions are fast. We mentioned in the pre-

vious Section that the SSA progresses one reaction at a time. This in turn implies

that at each iteration random number generation has to be utilized, the state vector

updated and so on. The idea behind tau-leaping is allowing many reactions of each

type to fire over one time step and then to update the state vector. However, the key

to the tau-leaping method is maintaining accuracy comparable to the SSA, while

improving execution speed. This is accomplished by mandating the leap condition,

which states that the propensity cannot change its value significantly as a result of

the larger time step.

Definition 3.3.1. Leap Condition [14]. A time step τ satisfies the leap condi-

tion if τ is sufficiently small such that the propensity aj(x(s))does not undergo any

observable change for any 1 ≤ j ≤M and any t ≤ s ≤ t+ τ .

Mathematically speaking, this can be written as,

aj(x(t+ τ)) ' aj(x(t)), for any 1 ≤ j ≤M.

The leap condition requires propensities aj(x(t)) to remain almost constant during
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the step, while the number of reactions that will fire is calculated using a count-

ing process. The probability of the j-th reaction firing over the time step τ is

aj(x(t))τ , by the multiplication rule for independent variables. Subsequently, we

need to determine how many of these events occur over [t, t+ τ). This can be well

approximated using a Poisson distribution, with mean and variance, aj(x(t))τ in

Pj(aj(x), τ). Putting everything together garners the general tau-leaping equation

[13],

X(t+ τ) = x+
M∑
j=1

νjPj(aj(x), τ). (3.23)

where the random variables {Pj(aj(x), τ)}Mj=1 are independent Poisson random vari-

ables and X(t) = x.

An exact representation of the stochastic process X(t) was given by Kurtz [18].

If X(t) = x, then

X(t+ τ) = X(t) +
M∑
j=1

νjPj

(∫ t+τ

t

aj(X(s))ds)

)
. (3.24)

Using the leap condition we can make the following assumption,

aj(X(s)) ' aj(X(t)), for all t ≤ s ≤ t+ τ.

Then,

∫ t+τ

t

aj(X(s))ds '
∫ t+τ

t

aj(X(t))dt = aj(X(t))τ (3.25)
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Using (3.24) and (3.25) we get,

X(t+ τ) ' x+
M∑
j=1

νjPj(aj(x), τ).

Thus the tau-leaping method (3.23) is an approximate Monte Carlo strategy for

solving the CME. In the introduction tau-leaping was characterized as the “bridge equation”

to the Chemical Langevin Equation (CLE) from the CME. Let us investigate this

claim further. We begin by making the assumption that τ is small enough to satisfy

the leap condition, but also large enough to ensure that the number of firings for

each reaction channel Rj is much larger than 1 (i.e. aj(x(t))τ � 1, for 1 ≤ j ≤M).

Now we invoke Proposition 2.1.1 from Chapter 2, which states that a Poisson ran-

dom variable with a large mean and variance, can be well approximated by a normal

random variable with the same mean and variance [30].

3.4 Chemical Langevin Equation

Section 3.3 featured comprehensive coverage of the tau-leaping method; tau-leaping

is considered to be a bridge to the Chemical Langevin equation (CLE). Recall from

the previous section that we made the assumption that τ is chosen such that (i) the

leap condition is satisfied and (ii) the average number of firings for each reaction

channel Rj is aj(x(t)) · τ � 1 for any 1 ≤ j ≤M .

If Pj(aj(x), τ) in equation (3.23) is replaced by aj(X(t))τ +
√
aj(Y (t))Zj, where Zj
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are independent normal variables with mean 0 and variance 1, then we get,

X(t+ τ) = X(t) + τ
M∑
j=1

νjaj(X(t)) +
√
τ

M∑
j=1

νj

√
aj(X(t))Zj. (3.26)

The algorithm for simulating the above is,

1. Select independent samples {Zj}Mj=1 from the normal distribution with mean

0 and variance 1.

2. Substitute samples from first step into equation (3.26), to obtain X(t + τ)

and update time t to t+ τ .

3. Return to step 1.

This algorithm is to be repeated for as many simulations as needed (the standard

number of Monte Carlo trajectories used for stochastic simulation of biochemical

systems is 10,000). Also noteworthy is the fact that equation (3.26) is the Euler-

Maruyama solution to equation (3.27).

dX(t) =
M∑
j=1

νjajX(t)dt+
M∑
j=1

νj

√
ajX(t)dWj(t), (3.27)

where, Wj(t) are independent scalar Brownian motions. Equation (3.27), is, in fact

a system of stochastic differential equations which is called the Chemical Langevin

equation.
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In the paragraph above we briefly mentioned a key concept, Brownian motion,

let us explore it further. Brownian motion is a physical phenomenon pioneered

by Robert Brown [26] and later developed by Albert Einstein and Jean Perrin, for

which Perrin would eventually be awarded a Nobel Prize in Physics in 1926 [19].

From the physics perspective, Brownian motion is the random motion of a particle

surrounded by fluid. The motion is the result of continuous and random pounding

of the particle by the surrounding atoms. Einstein was able to derive an equation

for the average displacement of the particle, however this is not necessary in the

context of this thesis. Eventually Brownian motion was adopted into the world of

biochemical simulation, since the simulations tend to move in random trajectories,

mimicking the movement of the particle in fluid described above.

The conclusory paragraph is a good time to make two remarks. First of all, the

CLE is dependent on two assumptions, one, the time step has to be small enough

not to cause a significant variation in the propensities, yet large enough to satisfy

the approximation of the Poisson distribution by the normal distribution. Secondly,

the CLE is a “bridge process” itself, as we shall see in the next section.

3.5 Reaction Rate Equation

The reaction rate equations constitutes a model of well-stirred biochemical systems.

We have traced simulation of biochemical systems from the molecular dynamics

approach, to the CME, then via the tau-leaping method we arrived at the CLE and
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now it is time to dissect the RRE. As was aforementioned, the RRE is simply the

deterministic part of the CLE [16]. We said that this simplification can be achieved

through the thermodynamic limit. Well in that case, the question begs itself, what

is the thermodynamic limit?

Definition 3.5.1. Thermodynamic Limit [14]. The thermodynamic limit is de-

fined as the limit in which the species populations Xi, and the system volume Ω

all approach infinity, but in such a way that the species concentrations Xi/Ω stay

constant.

As this limit approaches infinity, the propensities grow proportionally to the size

of the system. This occurs for both types of propensities, unimolecular and bi-

molecular. The latter is a result of the inversely proportional relationship be-

tween the reaction constants and the system volume. Therefore, as the propen-

sities grow, so do both sides of equation (3.27). However, the term on the right(∑M
j=1 νjajY(t)dt

)
will grow much faster than the square root term on the left(∑M

j=1 νj
√
ajY(t)dWj(t)

)
. Naturally, as the limit approaches infinity, the term

on the left becomes negligible, thus reducing (3.27) to the reaction rate equations

(RRE).

Similarly to what we presented in Section 3.1, the rate constants, cj, can be cato-

gorized into the three identical scenarios we described for the CME; for first and

second order reactions and dimerization.

Propensity functions for the first and second order reactions and the dimeriza-
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tion are:

First order. Sm
Cj−→ products of reaction, then aj(X(t)) = cjXm(t).

Second order. Sm + Sn
Cj−→ products of reaction, where m 6= n, then aj(X(t)) =

cjXm(t)Xn(t).

Dimerization. Sm + Sm
Cj−→ products of reaction, then aj(X(t)) = 1

2
cjXm(t)2.

Therefore, to achieve the transformation from the CLE to the RRE, we induce

the necessary assumptions mentioned in the previous paragraph followed by appli-

cation of Definition 3.5.1.

All that remains is derivation of the reaction rate equations. We start by recalling

the general model of the Chemical Master equation,

d

dt
P (x, t|x0, t0) =

M∑
j=1

(P (x− νj, t|x0, t0)aj(x− νj)− P (x, t|x0, t0)aj(x)) .

Proof. In order to derive the RRE the expectation of both sides of the CME has to
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be taken [30].

∂

∂t
E(Xt) =

∂

∂t

∑
x∈S

x · p(x, t)

=
∑
x∈S

x · ∂
∂t
p(x, t)

=
∑
x∈S

x ·

[
M∑
j=1

aj(x− νj, cj) · p(x− νj, t)− aj(x, cj)p(x, t)

]

=
M∑
j=1

∑
x∈S

[
x · aj(x− νj, cj)p(x− νj, t)− x · aj(x, cj)p(x, t)

]

where x = (x− νj) + νj

=
M∑
j=1

[∑
x∈S

(x− νj)aj(x− νj, cj)p(x− νj, t)

+
∑
x∈S

νjaj(x− νj, cj)p(x− νj, cj)−
∑
x∈S

x · aj(x, cj)p(x, t)

]
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taking y = (x− νj)

=
M∑
j=1

[∑
y∈S

y · aj(y, cj)p(y, t)

+
∑
y∈S

νjaj(y, cj)p(y, cj)−
∑
x∈S

x · aj(x, cj)p(x, t)

]

the y and x terms will cancel

=
M∑
j=1

νj

[∑
y∈S

aj(y, cj)p(y, cj)

]
.

Consequently,

∂

∂t
E(Xt) =

M∑
j=1

νj
∑
y∈S

aj(y, cj)p(y, t)

where ∑
y∈S

aj(y, cj)p(y, t) = E(aj(cj)).

We obtained [30],

∂

∂t
E(Xt) =

M∑
j=1

νjE(aj(ci)) (3.28)

The above equation is derived when expectation is taken in the CME. However, the

reaction rate equations are

∂

∂t
E(Xt) =

M∑
j=1

aj(E(xt), cj)) (3.29)

or, if we denote y(t) = E(Xt), then,
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dy(t)

dt
=

M∑
j=1

νjaj(y(t)).

At this point, it is critical to mention that equation (3.28), as it is written, may

be different than equation (3.29). The two equations coincide for systems with at

most order one reactions. For second order reactions they may differ, nevertheless

empirical results attest that the RRE maintains its purpose. The reason behind

this discrepancy is that, in general,

E(cjXiXk) = cjE(XiXk) 6= cjE(Xi)E(Xk).

as Xi and Xk may not be independent.

As was briefly mentioned in the introduction, the reaction rate equations was

the conventional model of biochemical systems until stochastic model of the CME

proved to be more accurate. An additional drawback to the RRE, as demonstrated

earlier, is the fact that there are inconsistencies between the theoretical base and

empirical results. Nevertheless, for simulating systems with very large numbers of

chemical species, the RRE remains the gold standard to this day.

3.6 Potential Applications

In the introduction we briefly touched on the overall impact of the medical and

biomedical industry on society and what role biochemical systems have to play

within that. The future of systems biology will continue to be intertwined with
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medicine and biomedical engineering [17]. In this section we will delve into the spe-

cific projects for which systems biology is utilized as well as other industries that

can benefit from this research.

The medical field that has perhaps benefited most from the advancement of com-

putational biology is cancer research [17]. Cancer is the biggest medical challenge

of our time. As the global population continues to live longer, cancer rates are

rising and according to the Canadian Cancer Statistics 2017 report by the Cana-

dian Cancer Society, it is said that half of the Canadian population will develop

it during their lifetime. Biochemical systems strive to predict the future stages of

the disease, as well as the response to medication in hopes of a cure. Just in recent

history we have seen that patients are living longer with their cancers and some

forms of it which we considered untreatable are now being if not treated at the very

least managed. Other promising applications for systems biology include treatment

or possible cure for inflammatory diseases, diabetes and disorders of the nervous

system [24].

With that we conclude this chapter. We started by outlining the basic assump-

tions and constructs, followed by an exhaustive examination that took us from the

Chemical Master equation (a stochastic model, discrete in time and space) all the

way to the reaction rate equations (a deterministic model continuous in time and

space). Along the way we provided a step-by-step dissemination of each of the

methods we used, in tandem with rigorous proofs. In the next chapter, we focus on
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the development of effective tau-leaping strategies.
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Chapter 4

Algorithms and Models

This Chapter will serve as the apex of this research endeavour and is based upon

the following framework. Building on the content from Section 3.3, the explicit

and implicit tau-leaping techniques will be discussed at length. Subsequently, we

will introduce and analyze adaptive tau-leaping methods, using the explicit and

implicit tau-leaping schemes. In this chapter we propose an innovative adaptive

explicit-implicit tau-leaping method which generalizes the state of the art variable

tau-selection strategy of Cao et al. [3]. We use a pseudo-Newton’s scheme to ap-

proximate the solution of the tau-leaping method, by employing finite-difference

strategies to approximate the Jacobian. This eliminates the need for user’s inter-

vention. The final act will serve as a review of methods and tools we use in the

analysis of the results, followed by the results themselves.
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4.1 Explicit Tau-Leaping

Recall that, if the leap condition is satisfied on [t, t+τ), then the explicit tau-leaping

method is

X(t+ τ) = x+
M∑
j=1

νjPj(aj(x)τ), (4.1)

given that X(t) = x.

The implicit tau-leaping scheme operates on a similar principle. It is known that

the explicit method is well-suited to handle non-stiff problems. In the next section,

we devote a paragraph to stiffness, which plays a central role in selecting the ap-

propriate tau-leaping simulation strategy: explicit for non-stiff systems or implicit

for stiff ones. For now, let us return to explicit tau-leaping. The explicit tau-

leaping strategy requires that the step-size τ is chosen such that the leap condition

is obeyed. Applying this condition leads to a sequence of non-uniform step-sizes on

each trajectory. Such a method is said to incorporate adaptivity. A constant step-

size implementation of the tau-leaping scheme is not justified theoretically and it

may lead to inaccurate results. The next two paragraphs will contain the algorithm

for each respective τ selection process.

We begin with the “vanilla”, or the explicit method sans adaptivity. The first

step, as with all other algorithms, is to choose the initial conditions X(t) = x0 at

t = 0. For this vanilla method, the leap-size τ is fixed, thus it is chosen at this

step. Secondly, within a time loop ranging from time t = 0 to the preconditioned
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final time, the propensities are calculated. Subsequently, using the Poisson random

number generator with the parameter aj(x(t)) ·τ (still within the loop), the solution

is advanced according to (4.1) and t is updated by t + τ . Thus, one trajectory of

the biochemical system is computed. Finally, return to step one and continue the

process until an appropriate number of trajectories is available.

Our attention will now shift to the adaptive explicit tau-leaping method. As the

reader might have guessed, the only difference between the algorithm above and the

current method is the selection strategy of τ . First of all, automatic selection of τ

is now performed over each step of the time-loop. In this method, the choice of τ is

contingent upon the type of reaction that will fire next. In this context, there are

two types of reactions, critical and noncritical [2]. Critical reactions are those, for

which the population of reactant falls below a certain threshold; non-critical reac-

tions are those that do not satisfy this condition. Throughout the simulation, the

algorithm categorizes reactions in this manner at each time-step. Based on whether

or not a reaction is critical, the algorithm has to make a decision, either proceed

with the explicit tau-leaping method with an associated τ for non-critical reactions

or the SSA with also an accompanying τ for critical reactions. Adaptive switching

between tau-leaping and the SSA is the result of the SSA being better equipped

to simulate smaller population sizes; this is evident given that the SSA progresses

one reaction at a time. Finally, once the algorithm has classified the reactions and

chosen the appropriate τ , steps three and four are identical to the prior paragraph.
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Everything discussed previously can be algorithmized into a multi-step procedure

and formally integrated into the following algorithm due to Cao et al [2].

1. Initialize t = 0, X(0) = x0; set the simulation parameters: tolerance ε, criti-

cal threshold nc, the final time T and the reaction rate constants cj.

2. At each time t categorize the reactions. We begin, by introducing Lj which

represents the number of times a reaction can fire before one of the reactants is

exhausted

Lj = min
i∈[1,N ],νi,j<0

[
xi
|νi,j|

]
,

where νi,j represents the state-change vector. A reaction Rj is deemed to be critical

if Lj < nc; for our purposes the generally accepted value of nc = 10 was used .

3. Armed with the knowledge of which reactions adhere to which class, we intro-

duce Jcr and Jncr, respectively denoting the set of critical and non-critical reaction

indices. If all the reactions happen to be critical, then set τ = ∞ and proceed to

step 5.

4. If non-critical reactions are present, then the following multi-step is used to

calculate the explicit candidate for τ .

I) First the highest order of reaction (or HOR(i)) for a chemical species Si is de-

termined. As was discussed earlier, reactions found only on the left side of the
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equation will be considered. The order of a reaction is equivalent to the number of

times a reactant is seen in each reaction; the highest such number is the HOR(i).

II) In this step the value of εi is computed, where,

εi =
ε

gi
. (4.2)

ε is the tolerance and gi = gi(xi) is calculated in the following way,

i) If HOR(i)=1,

gi = 1. (4.3)

ii) If HOR(i)=2, gi=2, unless two Si molecules are used in one reaction, in which

case,

gi =

(
2 +

1

xi − 1

)
(4.4)

iii) If If HOR(i)=3, gi=3, unless two Si molecules are used in one reaction, in

which case,

gi =
3

2

(
2 +

1

xi − 1

)
. (4.5)
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If a third-order reaction requires three Si molecules, then,

gi =

(
3 +

1

xi − 1
+

2

xi − 2

)
. (4.6)

III) Calculation of the explicit candidate for the next time step requires the following

two quantities,

αi(x) :=
∑
j∈Jncr

νijaj(x), (4.7)

βi(x) :=
∑
j∈Jncr

ν2ijaj(x). (4.8)

IV) The explicit candidate for the next time step is given by τ ′,

τ ′ = min

{
max{εxi/gi, 1}
|αi(x)|

,
max{εxi/gi, 1}2

[βi(x)]2

}
. (4.9)

5) Compute the sum ac0(x) of all the propensities of critical reactions. Using this

generate a second candidate τ ′′, with equation (4.10)

τ ′′ =

(
1

ac0(x)

)
· ln

(
1

r1

)
, (4.10)

for r1 a sample of U(0,1), the uniform distribution over (0,1).

6) If τ ′ < τ ′′ then τ = τ ′ and we proceed with the explicit tau-leaping (4.1),

else τ = τ ′′ followed by simulation with the SSA of the slow reactions.
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7) Exit this sequence, return to step 2 and repeat until a sufficient number of

trajectories has been generated.

This marks the end of adaptive explicit tau-leaping scheme, for now. As we shall

soon see, it also features prominently in adaptive tau-leaping.

4.2 Implicit Tau-Leaping

The main objective of the implicit tau-leaping method is to efficiently simulate

stiff systems, which are expensive to solve numerically by the explicit tau-leaping

strategy.

4.2.1 Stiffness

The primary reason for different variants of tau-leaping is stiffness. Stiffness is

defined as the presence of slow and fast dynamics in the system, with the fast ones

being stable [27]. Often biochemical systems arising in applications involve slow and

fast reactions. After a short transient, fast reactions reach a partial equilibrium.

To be more precise, in order for a system to be considered stiff, there has to be at

least two orders of separation between the fast and slow reaction propensities. For

problems that are stiff we use implicit methods because they are better suited than

their explicit counterparts. The issue with explicit methods is that the step size

has to be kept small in order to ensure stability [27]. Implicit methods on the other

hand have no such restriction on the step size in order to be stable.
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4.2.2 Newton’s Method

In many ways the discussion regarding the implicit tau-leaping method is very

similar to the previous Section. For this very reason we shall focus only on the

major discrepancy between the two, the implicit part. The implicit tau-leaping

equation is given by [27],

X(t+ τ)
.
= x+

M∑
j=1

[Pj(aj(x)τ)− τaj(x) + aj(X(t+ τ))τ ]νj, (4.11)

if X(t) = x. Note that only the deterministic part is implicit, while the stochastic

component is in an explicit form. Equation (4.11) may be written as

F (X(t+ τ), x) = 0 (4.12)

where

F (X(t+ τ), x) = X(t+ τ)−
M∑
j=1

aj(x(t+ τ)) ∗ τjνj −

[
x+

M∑
j=1

[Pj

(
aj(x), τ)− τaj(x)

]
νj

]
. (4.13)

Equation (4.12) will be solved to find X(t+ τ), the system state at the future time,

t + τ . Note that (4.12) is an implicit equation in X(t + τ). To solve this implicit

problem numerically, we use Newton’s method.

Newton’s method was first developed by its namesake Isaac Newton. The method

originally proposed by Newton through the years has evolved into a version that
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varies from the original. An important contributor to Newton’s method was Joseph

Raphson, so much so that the method is often referred to as the Newton-Raphson

method. Newton’s method for a generic equation F (X) = 0 is

X(n+1) = X(n) −

[
∂F

∂X

(
X(n)

)]−1
· F
(
X(n)

)
, (4.14)

where the n-th iteration X(n) is an N -dimensional array and F is an N -dimensional

function of X. What we have is a system composed of N equations and N un-

knowns, where

X =



X1

X2

...

XN


and

F (X) =



F1(X)

F2(X)

...

FN(X)


.

X(0) = X(t) serves as the initial guess for the implicit tau-leaping method (4.11)

on [t, t+ τ). A challenge of this strategy is the computation of the Jacobian. This

portion of the method has to be derived symbolically, which may be challenging,

especially in the presence of large systems. Also, it requires the user’s intervention,

which is a drawback of this technique. Nevertheless, the Jacobian is given by the
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following matrix,

J =



∂F1(X)
∂X1

∂F1(X)
∂X2

. . . ∂F1(X)
∂XN

∂F2(X)
∂X1

∂F2(X)
∂X2

. . . ∂F2(X)
∂XN

...
...

. . .
...

∂FN (X)
∂X1

∂FN (X)
∂X2

. . . ∂FN (X)
∂XN


(4.15)

The algorithm outlined in Section 4.1 will form the skeleton of the implicit algo-

rithm. A novelty is the addition of Newton’s method. This addition is expressed in

the form of one extra step. This step consists of solving the implicit equation (4.12)

using Newton’s method. We iterate until ||X(n+1) −X(n)|| ≤ TOL, for some given

tolerance TOL. As before the simulation continues until one trajectory is attained,

at which time we return to the first step. More formally, the algorithm will adhere

to the following structure (see also [27]).

1. Specify the parameters, including the stoichiometric matrix, number of species,

reaction channels and simulations, tolerances TOL and ε, rate constants, final time

T , nc and empty arrays capable for storing critical and non-critical reaction indices.

2. Initialize the time t = 0 and the state X(0) = x0.

3. Compute the propensity functions and consequently update after each simu-

lation.

4. For each trajectory, at each time t categorize the reactions. We begin, by
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introducing Lj which represents the number of times a reaction can fire before one

of the reactants is exhausted:

Lj = min
i∈[1,N ],νi,j<0

[
xi
|νi,j|

]
.

A reaction Rj is deemed to be a critical reaction if Lj < nc; for our purposes the

generally accepted value of nc = 10 was used.

5. Armed with the knowledge of which reactions adhere to which class, we intro-

duce Jcr and Jncr, respectively denoting the set of critical and non-critical reaction

indices. If all the reactions happen to be critical, then set τ = ∞ and proceed to

step 7.

6. Identify reversible reactions in the system at hand. Our objective is to create

a set of indices which correspond to reversible reactions not in partial equilibrium,

which will be signified by Jne. Partial equilibrium is defined as the condition where

correspondent, a+(x) and a−(x) are close to each other. The difference between

the two must be smaller than each respective propensity. Specifically, the partial

equilibrium condition is,

|a+(x)− a−(x)| ≤ δmin{a+(x), a−(x)},

where the generally accepted value of δ is 0.05. If the system is already in equilib-

rium then τ can be chose to be sufficiently large.
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7. If reactions that are non-critical and not in partial equilibrium are present,

then the following multi-step is used to calculate the implicit candidate for τ .

I) We first determine the highest order of reaction (or HOR(i)) for a chemical

species Si. As was discussed earlier, only the reactant species are considered. The

order of a reaction is equivalent to the number of times a reactant is seen in each

reaction; the highest such number is the HOR(i).

II) In this step the value of εi is computed, where,

εi =
ε

gi
. (4.16)

ε is the tolerance and gi = gi(xi) is calculated using 4.3, 4.4, 4.5 and 4.6.

III) Calculation of the implicit candidate for the next time step requires the follow-

ing two quantities,

αi(x) :=
∑

j∈Jnecr

νijaj(x), (4.17)

[βi(x)]2 :=
∑

j∈Jnecr

ν2ijaj(x), (4.18)

where Jnecr = Jncr ∩ Jne is the set of non-critical reactions which are not in partial

equilibrium.
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IV) The implicit candidate for the next time step is τ ′,

τ ′ = min

{
max{εxi/gi, 1}
|αi(x)|

,
max{εxi/gi, 1}2

[βi(x)]2

}
. (4.19)

8. Compute the sum ac0(x), of the propensities of all critical reactions. Using

this generate a second candidate τ ′′ according to,

τ ′′ =

(
1

ac0(x)

)
· ln (1/r1), (4.20)

for r1 a sample of U(0,1), the uniform distribution over (0,1). τ ′′ is the step to the

next slow reaction.

9. If τ ′ < τ ′′ then τ = τ ′ and we proceed with the implicit tau-leaping method, else

τ = τ ′′ followed by simulation with the SSA.

10. Applying the implicit tau-leap step by solving (4.11) with respect to X(t+ τ),

using Newton’s method (4.14) for F given by (4.13).

11. Exit this sequence, return to step 2. Repeat until a sufficient number of trajec-

tories has been generated.

The next section will entail a detailed discussion regarding an adaptive tau-leaping
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method, a strategy which fuses the explicit, implicit schemes and the SSA.

4.3 Adaptive Explicit-Implicit Tau-Leaping Method

This Section commences with what brought the preceding one to a close, fusion

of the three central schemes into what is known as an explicit-implicit adaptive

tau-leaping method. A discussion regarding the effectiveness of this algorithm will

be given at the end of the section.

The adaptive tau-leaping algorithm is similar to the implicit method with adaptiv-

ity, with some exceptions. Let us present the adaptive implicit-explicit tau-leaping

algorithm (see also [3]).

1. Specify the parameters, including the stoichiometric matrix, number of species,

reaction channels and simulations, tolerances TOL and ε, rate constants, final time

T , nc and empty arrays capable for storing critical and non-critical reaction indices.

2. Initialize the time t = 0 and the state X(0) = x0.

3. Compute the propensity functions and consequently update after each simu-

lation.

4. For each trajectory, at each time t categorize the reactions. We begin, by

introducing Lj which represents the number of times a reaction can fire before one
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of the reactants is exhausted:

Lj = min
i∈[1,N ],νi,j<0

[
xi
|νi,j|

]
.

A reaction Rj is deemed to be a critical reaction if Lj < nc; for our purposes the

generally accepted value of nc = 10 was used.

5. Armed with the knowledge of which reactions adhere to which class, we intro-

duce Jcr and Jncr, respectively denoting the set of critical and non-critical reaction

indices. If all the reactions happen to be critical, then set τ = ∞ and proceed to

step 8.

6. Identify reversible reactions in the system at hand. Our objective is to create

a set of indices which correspond to reversible reactions not in partial equilibrium,

which will be signified by Jne. Partial equilibrium is defined as the condition where

correspondent, a+(x) and a−(x) are close to each other. The difference between

the two must be smaller than each respective propensity. Specifically, the partial

equilibrium condition is,

|a+(x)− a−(x)| ≤ δmin{a+(x), a−(x)},

where the generally accepted value of δ is 0.05. If the system is already in equilib-

rium then τ can be chose to be sufficiently large.
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7. If non-critical reactions are present, then the following multi-step sequence is

used to calculate the explicit candidate for τ . Note in the adaptive explicit implicit

method, we now have two τ candidates, τ (ex) and τ (im) corresponding to the explicit

and implicit candidates respectively. The way we compute the quantities changes.

The explicit scheme will still correspond to the indices set Jncr, while the implicit

method will draw from the set Jnecr. The latter is set that we have not yet seen,

and represents the set that is non-critical and not in partial equilibrium, in the set

theory notation this is formulated as Jnecr = Jncr ∩ Jne.

I) We first determine the highest order of reaction (or HOR(i)) for a chemical

species Si. As was discussed earlier, reactions found only on the left side of the

equation will be considered. The order of a reaction is equivalent to the number of

times a reactant is seen in each reaction; the highest such number is the HOR(i).

II) In this step the value of εi is computed, where,

εi =
ε

gi
. (4.21)

ε is the tolerance and gi = gi(xi) is calculated using 4.3, 4.4, 4.5 and 4.6.

III) Calculating the explicit candidate for the next time step requires the following

two quantities,

αi(x)(ex) :=
∑
j∈Jncr

νijaj(x), (4.22)
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[
βi(x)(ex)

]2
:=

∑
j∈Jncr

ν2ijaj(x). (4.23)

IV) Calculating the implicit candidate for the next time step requires the next

two quantities,

αi(x)(im) :=
∑

j∈Jnecr

νijaj(x), (4.24)

[
βi(x)(im)

]2
:=

∑
j∈Jnecr

ν2ijaj(x), (4.25)

where Jnecr = Jncr ∩ Jne is the set of non-critical reactions which are not in partial

equilibrium.

IV) The explicit candidate for the next time step is given by τ (ex),

τ (ex) = min

{
max{εxi/gi, 1}
|αi(x)(ex)|

,
max{εxi/gi, 1}2

[βi(x)(ex)]2

}
. (4.26)

And the implicit candidate by τ (im),

τ (im) = min

{
max{εxi/gi, 1}
|αi(x)(im)|

,
max{εxi/gi, 1}2

[βi(x)(im)]2

}
. (4.27)

8. Compute the sum of ac0(x), the propensities of all critical reactions. Using
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this generate a second candidate τ2, with equation (4.37)

τ2 =

(
1

ac0(x)

)
· ln (1/r1), (4.28)

where r1 is a sample from the unit-interval uniform distribution. τ2 represents the

step to the next slow reaction.

9. If τ (im) is greater than Nstiffτ
(ex), where Nstiff usually takes on the value 100,

then the system is considered to be stiff, we let τ1 = τ (im). Otherwise τ1 = τ (ex).

10. If τ2 > τ1 then τ = τ1 and we proceed with explicit tau-leaping (4.1) if τ1 = τ (ex)

or implicit tau-leaping (4.11) if τ2 = τ (im). Else τ = τ2 followed by simulation with

the SSA for the slow reactions.

11. Update X(t + τ), set time to t = t + τ and exit this sequence. Return to

step 2 and repeat until a sufficient number of trajectories has been generated.

This adaptive strategy is considered to be the state-of-the-art tau-leaping method

[3]. Aside from the fact that adaptivity along with explicit and implicit schemes is

far more efficient than the SSA, there are compelling reasons that underscore the

superiority of this algorithm. The first such reason is harmonization of explicit,

implicit methods and the SSA. Throughout this thesis we have demonstrated time

and time again that each of the aforementioned schemes is well designed for specific

degrees of stiffness of the system. For the regions where the problem is non-stiff, the
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algorithm uses the explicit tau-leaping scheme, while in the regions of stiffness, it

switches to the implicit tau-leaping strategy. In the regions where some molecular

amounts are below the threshold, the SSA is the preferred strategy, as it prevents

negative population numbers. Thus, the adaptive explicit-implicit method expands

the computational horizons and broadens the scope of problems that can be solved

using it. This elicits a smooth transition to the second reason, automatization; for

without it the marriage of the three strategies would be difficult at best. However,

in the case of the implicit tau-leaping method, a Newton step is employed to solve

a non-linear system of equations. Symbolic computation of the Jacobian maybe ex-

pensive or it may require the user’s input. This is a drawback of Newton’s method

for the implicit tau-leaping step. The method we proposed in the next Section will

address this issue.

Despite its computational prowess, the adaptive explicit-implicit tau-leaping method

is not with out faults, however, we will leave this discussion for the subsequent Sec-

tion and the conclusion.

4.4 Modified Adaptive Tau-Leaping Method

In the previous section we heaped praise upon the increased automatization ob-

served in the adaptive explicit-implicit method but also noted that room for im-

provement exists. Automatization is the proverbial double-edged sword. On one

hand, the checks and balances are carried out mechanically, one the other, the

Jacobian has to be inputted by the user. Approximating the Jacobian using the
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finite-difference method limits the need for symbolic computation.

The finite-difference strategy will be used to approximate the Jacobian in New-

ton’s method. The results we publish in Chapter 5, will affirm the accuracy of the

new user-friendly modified algorithm.

From the previous paragraph it is apparent that the difference between this amal-

gamated method and its adaptive predecessor lies in Newton’s method. As such,

all of the steps outlined in the previous section apply here as well. While other

finite-difference schemes may be used to estimate first order derivatives, we apply

the forward finite-difference scheme, for simplicity. Thus we estimate ∂Fk

∂Xi
by,

∂Fk
∂Xi

(X1, . . . , Xn) =
F (X1, . . . , Xi, Xi + h,Xi+1, . . . , Xn)− Fk(X1, . . . , Xn)

h

for any 1 ≤ i ≤ N and 1 ≤ h ≤ N . Here 0 < h � 1. Recall that X is an

N -dimension array and F is N -dimensional function of X. The Jacobian will be

approximated by matrix (4.29)

∂F

∂X
(x) ' 1

h

[
F (X1 + h,X2, . . . , Xn)− F (X), F (X1, X2 + h, . . . , Xn)− F (X),

. . . , F (X1, X2, . . . , Xn + h)− F (X)

]
(4.29)

with

F (X) = [F1(X), F2(X), . . . , FN(X)]T .
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In the case of the implicit tau-leaping method F (X) is given by formula (4.13) in

Section 4.2.2. We note that for large biochemical systems, the computation of the

exact Jacobian is challenging, while the finite-difference approximation is straight-

forward.

With this approximation Newton’s step in the implicit scheme becomes a pseudo-

Newton’s method, which may, theoretically, be less accurate per iteration and there-

fore it may require more iterations to achieve the same accuracy. However, the

numerical tests performed (see Chapter 5) show that the same accuracy is obtained

with very similar computational costs. The implementation of the new method is

straightforward, even for large systems.

Leaning upon the foundation built in the previous three Sections we are now ready

to present the algorithm for the modified explicit-implicit tau-leaping method.

1. Specify the parameters, including the stoichiometric matrix, number of species,

reaction channels and simulations, tolerances TOL and ε, rate constants, final time

T , nc and empty arrays capable for storing critical and non-critical reaction indices.

2. Initialize the time t = 0 and the state X(0) = x0.

3. Compute the propensity functions and consequently update after each simu-

lation.
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4. For each trajectory, at each time t categorize the reactions. We begin, by

introducing Lj which represents the number of times a reaction can fire before one

of the reactants is exhausted:

Lj = min
i∈[1,N ],νi,j<0

[
xi
|νi,j|

]
.

A reaction Rj is deemed to be a critical reaction if Lj < nc; for our purposes the

generally accepted value of nc = 10 was used.

5. Armed with the knowledge of which reactions adhere to which class, we intro-

duce Jcr and Jncr, respectively denoting the set of critical and non-critical reaction

indices. If all the reactions happen to be critical, then set τ = ∞ and proceed to

step 7.

6. Identify reversible reactions in the system at hand. Our objective is to create

a set of indices which correspond to reversible reactions not in partial equilibrium,

which will be signified by Jne. Partial equilibrium is defined as the condition where

correspondent, a+(x) and a−(x) are close to each other. The difference between

the two must be smaller than each respective propensity. Specifically, the partial

equilibrium condition is,

|a+(x)− a−(x)| ≤ δmin{a+(x), a−(x)},
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where the generally accepted value of δ is 0.05. If the system is already in equilib-

rium then τ can be chose to be sufficiently large.

7. If non-critical reactions are present, then the following multi-step sequence is

used to calculate the explicit candidate for τ . Note in the adaptive explicit implicit

method, we now have two τ candidates, τ (ex) and τ (im) corresponding to the explicit

and implicit candidates respectively. The way we compute the quantities changes.

The explicit method will still correspond to the indices set Jncr, while the implicit

scheme will draw from the set Jnecr. The latter represents the set of reactions which

are both non-critical and not in partial equilibrium, in the set theory notation this

is formulated as Jnecr = Jncr ∩ Jne.

I) We first determine the highest order of reaction (or HOR(i)) for a chemical

species Si. As was discussed earlier, reactions found only on the left side of the

equation will be considered. The order of a reaction is equivalent to the number of

times a reactant is seen in each reaction; the highest such number is the HOR(i).

II) In this step the value of εi is computed, where,

εi =
ε

gi
. (4.30)

ε is the tolerance and gi = gi(xi) is computed using 4.3, 4.4, 4.5 and 4.6.

III) Computing the explicit candidate for the next time step requires the following
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two quantities,

αi(x)(ex) :=
∑
j∈Jncr

νijaj(x), (4.31)

[
βi(x)(ex)

]2
:=

∑
j∈Jncr

ν2ijaj(x). (4.32)

IV) Computing the implicit candidate for the next time step requires the next

two quantities,

αi(x)(im) :=
∑

j∈Jnecr

νijaj(x), (4.33)

[
βi(x)(im)

]2
:=

∑
j∈Jnecr

ν2ijaj(x), (4.34)

where Jnecr = Jncr ∩ Jne is the set of non-critical reactions which are not in partial

equilibrium.

IV) The explicit candidate for the next time step is given by τ (ex),

τ (ex) = min

{
max{εxi/gi, 1}
|αi(x)(ex)|

,
max{εxi/gi, 1}2

[βi(x)(ex)]2

}
. (4.35)

And the implicit candidate by τ (im),

τ (im) = min

{
max{εxi/gi, 1}
|αi(x)(im)|

,
max{εxi/gi, 1}2

[βi(x)(im)]2

}
. (4.36)
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8. Compute the sum of ac0(x), the propensities of all critical reactions. Using

this generate a second candidate τ2, with equation (4.37)

τ2 =

(
1

ac0(x)

)
· ln (1/r1), (4.37)

where r1 is a sample from the unit-interval uniform distribution. τ2 represents the

step to the next slow reaction.

9. If τ (im) is greater than Nstiffτ
(ex), where Nstiff usually takes on the value 100,

then the system is considered to be stiff, we let τ1 = τ (im). Otherwise τ1 = τ (ex).

10. If τ2 > τ1 then τ = τ1 and we proceed with explicit tau-leaping (4.1) if τ1 = τ (ex)

or implicit tau-leaping (4.11) if τ2 = τ (im). The implicit system (4.11) with F given

by (4.13) is solved by the pseudo-Newton method using the approximate Jacobian

(4.29). Else τ = τ2 followed by simulation with the SSA for the slow reactions.

11. Update X(t + τ), set time to t = t + τ and exit this sequence. Return to

step 2 and repeat until a sufficient number of trajectories has been generated.

Before presenting the numerical results, let us review the content of this Section.

We began with the explicit tau-leaping method and introduced the concept of adap-

tivity. We described the automatic selection of the time-step based on quasi-steady

states when stiffness is present; we also presented the implicit tau-leaping method,

which is well-suited to approximate stiff systems, due to the absence of step-size
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restriction. In the same subsection, we also introduced Newton’s method, a numer-

ical solution to the implicit component of equation (4.11). Using the algorithms

developed in Sections 4.1 and 4.2 the state-of-the-art adaptive explicit-implicit tau-

leaping method was presented. It is considered to be state-of-the-art because it

combines the explicit and implicit methods with the SSA to form an algorithm de-

signed to approximate a wide spectrum of systems.

Finally, our contribution is the modification of the adaptive explicit-implicit tau-

leaping scheme is the creation of a new algorithm that is far more user-friendly in

the absence of symbolic computation that is equally accurate and efficient in com-

parison to the original adaptive strategy. The new strategy is designed for larger

systems, but not large enough where simulation with the CLE or RRE would prefer-

able, and systems featuring complex propensity functions (for instance, propensity

functions that are not polynomials).
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Chapter 5

Numerical Results

Numerical results presented in this thesis will be underpinned by three models,

stiff, decay-dimerization and cycle systems. We illustrate the advantages of our

new adaptive explicit-implicit tau-leaping strategy for the Chemical Master equa-

tion over the state-of-the-art tau-selection scheme by Cao et al. [3] and the exact

Stochastic Simulation Algorithm developed by Gillespie.

5.1 Stiff Model

The first model we consider is a stiff model [28].
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S1 + S2
C1−→ S3

S3
C2−→ S1 + S2

S1 + S3
C3−→ S2

S2
C4−→ S1 + S3

S3 + S2
C4−→ S1

S2
C4−→ S3 + S2

The simulation interval is [0,0.01], the stoichiometric matrix is,

ν =


−1 1 −1 1 1 −1

−1 1 1 −1 −1 1

1 −1 −1 1 −1 1

 ,

with rate constants,

c =



25

104

10−3

10−1

10−2

2



,
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and propensities,

a =



c1x1x2

c2x3

c3x1x3

c4x2

c5x2x3

c6x1



.

For this model the initial conditions are,

X(0) =


1000

1000

10

 ,

with a tolerance (TOL) of 0.0275 and h = 0.1.

After simulating 10,000 trajectories of the exact SSA, the explicit-implicit variable

step-size tau-leaping scheme and the modified explicit-implicit variable step-size

tau-leaping strategy, we present our findings below. Figure 5.1 shows the histograms

at t = 0.01 of species X1 generated with the above three methods. Figures 5.2 and

5.3 present the histograms for species X2 and X3 respectively. The accuracy of the

modified adaptive tau-lap method matches very well that of the standard adaptive

tau-leaping scheme, both matching well the accuracy of the exact SSA. Moreover,
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the speed-up of the modified adaptive tau-leaping scheme is defined as,

speed− up(%) =
CPU(SSA)

CPU(mod τ − leap)
· 100.

For this model

speed− up(%) = 1496.82

for the modified adaptive explicit-implicit tau-leaping scheme.

Figure 5.1: Stiff Model: Histogram of the X1 species (SSA vs. Adaptive Tau-
Leaping vs. Modified Adaptive Tau-Leaping) at t=0.01
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Figure 5.2: Stiff Model: Histogram of the X2 species (SSA vs. Adaptive Tau-
Leaping vs. Modified Adaptive Tau-Leaping) at t = 0.01

Figure 5.3: Stiff Model: Histogram of the X3 species (SSA vs. Adaptive Tau-
Leaping vs. Modified Adaptive Tau-Leaping) at t = 0.01
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5.2 Decay-Dimerization Model

We have partially familiarized ourselves with this model through our demonstration

of fundamental concepts in Section 3.1. Nonetheless, we restate it while filling in

missing information such as the rate constants and propensities. It should be noted

this model is inherently stiff. The model is subjected to the following reaction

channels [20],

S1
C1−→ 0

S1 + S1
C3−→ S2

S2
C2−→ S1 + S1

S2
C4−→ S3

The model operates on the time interval [0,3], with the stoichiometric matrix,

ν =

−1 −2 2 0

0 1 −1 −1

 ,
rate constants,

c =



1

0.1

25

0.04


,
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and propensities,

a =



c1x1

c2
x1(x1−1)

2

c3x2

c4x2


.

The initial conditions are,

X(0) =

 1000

1000


with a tolerance (TOL) of 0.04 and h = 0.1.

We ran simulations on 10,000 trajectories for the SSA, the adaptive explicit-implicit

method and the modified adaptive explicit-implicit strategy. The histograms ob-

tained with the above techniques at t = 3 are presented in Figure 5.4 for species

X1 and in Figure 5.5 for species X2. We remark the good agreement among these

methods, showing the accuracy of the adaptive explicit-implicit algorithms. The

modified variable step-size tau-leaping is as accurate as the state-of-the-art adap-

tive tau-leap strategy. From Table 5.2, we see that the speed-up of the modified

tau-leaping scheme over the SSA is

speed− up(%) = 463.86.

93



Figure 5.4: Decay-Dimerization model: Histograms ofX1 species (SSA vs. Adaptive
Tau-Leaping vs. Modified Adaptive Tau-Leaping) at t = 3

Figure 5.5: Decay-Dimerization model: Histograms ofX3 species (SSA vs. Adaptive
Tau-Leaping vs. Modified Adaptive Tau-Leaping) at t = 3
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5.3 Modified Cycle Model

The last model we ponder upon is the cycle model [29].

S1
C1−→ S2

S2
C2−→ S3

S3
C3−→ S1

S1 + S4
C4−→ S5

S5
C5−→ S1 + S4

The model operates on the time interval [0,0.05], with the stoichiometric matrix,

ν =



−1 0 1 −1 1

1 −1 0 0 0

0 1 −1 −1 0

0 0 0 −1 1

0 0 0 1 −1


.

With rate constants,
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c =



1.50 · 103

5.00 · 103

1.00 · 103

1.66 · 10−4

8.00 · 10−2


,

and propensities,

a =



c1x1

c2x2

c3x3

c4x1x4

c5x5


.

The initial conditions are,

X(0) =



1000

800

400

40

50


.

with a tolerance (TOL) of 0.05 and h = 0.1.

For this model, we performed 10,000 simulations with each of the following al-

gorithms: SSA, the state-of-the-art adaptive explicit-implicit algorithm and the

modified explicit-implicit technique. The histograms for at t = 0.05 of the three

simulation methods for the species X1 are shown in Figure 5.6, Figure 5.7 for
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species X2 and Figure 5.8 for species X3. These results demonstrate that the mod-

ified variable step-size tau-leaping performs as well as the state-of-the-art adaptive

tau-leaping scheme, both consistent with the results obtained using the SSA. This

demonstrates that the leaping techniques are accurate. The CPU times of the three

methods are given in Table 5.1. We note that the speed-up of the modified adaptive

tau-leaping scheme over the SSA is,

speed− up(%) = 395.53.

Figure 5.6: Modified Cycle model: Histograms of X1 species (SSA vs. Adaptive
Tau-Leaping vs. Modified Adaptive Tau-Leaping) at t = 0.05.
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Figure 5.7: Modified Cycle model: Histograms of X2 species (SSA vs. Adaptive
Tau-Leaping vs. Modified Adaptive Tau-Leaping) at t = 0.05.

Figure 5.8: Modified Cycle model: Histograms of X3 species (SSA vs. Adaptive
Tau-Leaping vs. Modified Adaptive Tau-Leaping) at t = 0.05.
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5.4 Table of Results

SSA (s) Adaptive (s) Modified Adaptive (s)

Stiff 4926.64 375.41 329.14
Decay-Dimerization 8398.42 1856.73 1810.57

Cycle 8696.21 2260.13 2198.61

Table 5.1: Computational times of the SSA, Adaptive and Modified Tau-Leaping
Methods.

Adaptive vs. SSA (%) Modified Adaptive vs. SSA (%)

Stiff 1312.33 1496.82
Decay-Dimerization 452.50 463.86

Cycle 382.70 395.53

Table 5.2: Improvement in computational speed of the adaptive tau-leaping method
vs. SSA.
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Chapter 6

Conclusion and Further Research

Topics

This thesis studied effective simulation methods for stochastic models of well-stirred

biochemical systems, with a focus on the explicit and implicit tau-leaping strategies

for the Chemical Master equation. Since many biochemical systems in applications

have stiff mathematical models, it is essential to develop effective computational

tools to study them. One critical tool for overcoming stiffness is adaptive time-

stepping. Our first conclusion is confirmation of time-wise computational improve-

ment of the adaptive explicit-implicit tau-leaping scheme in contrast to the exact

stochastic simulation algorithm for the Chemical Master equation. The numeri-

cal results substantiated that the state-of-the art adaptive tau-leaping method was

faster than the SSA up to an order of magnitude of 14. This strategy uses New-

ton’s method for the implicit tau-leaping steps. Arguably the most important result

garnered is the performance of the modified adaptive explicit-implicit tau-leaping
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algorithm in terms of accuracy and efficiency. The proposed modified scheme em-

ploys a pseudo-Newton’s method. The numerical results and computational cost of

the modified method were closely aligned with the state-of-the-art adaptive scheme.

This is vital given that the modified adaptive explicit-implicit tau-leaping technique

is more user-friendly following the replacement of the symbolic computation com-

ponent, a challenge to potential users, with the finite-difference approximation of

the Jacobian. The method is ideal for larger systems not well-suited for simulation

using the CLE or RRE and those with complex propensity functions, particular

propensities not in polynomial form. Finally, we have demonstrated using smaller

and larger models that the methods are well-suited to handle a large class of prob-

lems.

Reflecting on this work three topics of interest immediately come to mind. First

is the issue of negative species populations. This scenario presented itself on more

than one occasion. This phenomenon becomes especially problematic in systems

with species with low population numbers, which remain close to zero on some

time-interval. Species populations falling below zero contaminate the results; intu-

itively it is evident that negative populations do not exist. A second topic worth

exploring is a machine learning problem. A parameter that did not receive much

attention and was left largely unchanged, was the tolerance. Using machine learning

techniques one could condition the algorithm to optimize the relationship between

efficiency and accuracy, by adjusting the tolerance according to system predispo-

sitions. Finally, there remains a need for further automatization to minimize the
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amount of human input. Additionally, this would allow the algorithm to handle

more complex systems, perhaps even problems beyond biochemical kinetics.
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