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Abstract 

The goal of this thesis is to develop a methodology for designing 3D target shapes for accurate 

LIDAR pose estimation. Scanned from a range of views, this shape can be attached to the surface 

of a spacecraft and deliver accurate pose scanned. It would act as an LIDAR- based analogue to 

fiducial markers placed on the surface and viewed by CCD camera(s). Continuum Shape 

Constraint Analysis (CSCA) which assesses shapes for pose estimation and measures the 

performance of the Iterative Closest Point (ICP) Algorithm is used as a shape design tool. CSCA 

directly assesses the sensitivity of pose error to variation in viewing direction. Three of the 

CSCA measures, Noise Amplification Index, Minimal Eigen-value and Expectivity Index, were 

compared, and Expectivity Index was shown to be the best index to use as shape design tool.  

Using CSCA and numerical simulations, a Cuboctahedron was shown to be an optimal shape 

which delivers an accurate pose when viewed from all angles and the initial pose guess is close 

to the true poses. Separate from Constraint Analysis, the problem of shape ambiguity was 

addressed using numerical tools. The Cuboctahedron was modified in order to resolve shape 

ambiguity - the tendency of the ICP algorithm to converge with low registration error on a pose 

configuration geometrically identical, but actually different from a “true pose”. The numerical 

characteristics of geometrical ambiguity were studied, and a heuristic design methodology to 

reduce shape ambiguity was developed and is presented in this thesis. A Reduced Ambiguity 

Cuboctahedron is the resultant shape that delivers an accurate pose from all views and does not 

suffer from shape ambiguity. The shapes were subjected to simulation and experimental 

validation. They were manufactured using 3D Rapid Prototyper, and a NEPTEC Design Group 

TriDAR Scanner was used to obtain experimental data for three shapes: the Tetrahedron, 

Cuboctahedron, and reduced Ambiguity Cuboctahedron. The Tetrahedron, which has poorly 

constrained views, was included in the testing process as a comparison shape. The simulation 

and experimental results were congruent, and validated the design methodology and the designed 

shapes. 
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1 Introduction and Previous Work 

Pose estimation is a fundamental area of computer vision. It estimates a rigid transformation 

between data points obtained from a scanner with model points available in different electronic 

forms. Pose estimation has applications such as reverse engineering and 3D shape reconstruction 

[14], feature tracking and object recognition ([69], [86], [87], [17], and [21]). Many schemes 

have been developed for shape registration, including registration from monocular 2D images 

[22], registration from stereo images [45], and registration from range data [55]. In many of these 

schemes, data is extracted from the images in the form of features such as edges, surfaces, gray-

gradients etc. and 3D data is extrapolated from these features ([48], [90] and [91]). In the case of 

range data, 3D points are available directly from the scanner [43]. How the extracted features are 

further processed depends upon the application – for shape reconstruction, the data is meshed 

and surfaces created to reconstruct the original part(s), for feature tracking and recognition the 

data is compared to a number of models in a database and an appropriate 

classification/recognition is assigned ([33] and [54]). Non-rigid transformations [25] are also 

utilized, mostly for medical [15] and human-pose estimation [11] studies.  

Pose estimation can take the form of 2D-2D, where two dimensional pose is extracted from 2D 

images [13], 2D-3D, where three dimensional pose is extracted from 2D images [65], and 3D-

3D, where three dimensional pose is extracted from 3D data ([22] and [32]). Pose estimation is 

of vital importance in a number of applications, including medical imaging, human pose 

estimation ([12] and [18]), industrial processes, and spacecraft rendezvous and docking ([19] and 

[20]). 

 

A number of space operations have been identified that require unmanned rendezvous and 

docking capability ([3], [29], [31], [46], [66], [67], [78], [79], [92] and [93]). Current rendezvous 

and docking systems operate at very short distances (a few meters), providing only bearing and 

range towards the target [8], require that the target be oriented towards the approaching 

spacecraft, and may only be operated in certain lighting conditions. Current systems utilize 

fiducial markers – retro-reflectors or optical targets – to provide an easily detectable signal, and a 

review on usage of fiducial markers can be found in [26]. The use of LIDAR and advanced 

computer vision schemes lead to the possibility of new rendezvous and docking systems in the 
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future ([1], [30], [73], [74] and [85]). These systems would provide autonomous detection of a 

satellite at distances of a few kilometers in any orientation, and provide precise pose estimation 

and range in any illumination condition. The Neptec TriDAR [23] is one such system, a hybrid 

sensor that combines triangulation and LIDAR. It uses LIDAR for blob detection at long 

distances, pose estimation at distances of 200 m, and a triangulation sensor for pose estimation at 

short distances ([80], [81] and [82]). The Neptec TriDAR has been developed from NEPTEC’s 

Orbiter Boom Sensor System 3D laser camera that was used for Shuttle tile inspection on STS-

114 [84].  

For both 2D-3D and 3D-3D pose estimation, the Iterative Closest Point (ICP) Algorithm, 

introduced by Besl et. al. [6] is one of the most commonly used methods in computer vision [64]. 

The task of the ICP algorithm is to create a point-to-point correspondence between model and 

data, and then minimize the square of the distance between each correspondence pair by iterative 

rigid transformations (translation and rotation) [6]. While it is one the most commonly used and 

most accurate algorithms for 3D pose estimation, ICP suffers from two major problems. Firstly, 

it is computationally intensive, leading to a high computational cost for dense data points [34], 

and secondly, it has a tendency to fall into local minima – areas that provide good convergence 

for the algorithm, but are not the global solution to the pose problem ([56] and [61]). One case of 

the local minima problem occurs due to object ambiguity – essentially, without some identifying 

features or context, one configuration of the shape may be indistinguishable from another. For 

example a cube is an ambiguous shape where given 3D points on the surface of the cube, they 

may fit any similar surface (including vertices or edges) on any side of the cube. In this case, 

there may be good ICP convergence onto an incorrect pose. Many variants of ICP ([97], [34], 

[49], [50], [89], [27], [28] and [83]) have been developed in order to improve ICP performance, 

both for speed and robustness, including weighted ICP (WICP), gradient-based methods [53], 

and the use of shape descriptors and invariants ([100], [75], [77], [4] and [99]).  

ICP registration error is defined as the mean point-to-point error between the data and its closest-

point on the surface of the model for the final best-fit pose determined by the ICP algorithm. ICP 

pose error is defined as the difference between the actual “truth pose” of the data, and the final 

best-fit pose estimate determined by the ICP algorithm [6]. Both of these values and therefore the 

algorithm’s performance depend on the geometry of the object being studied. In order to predict 
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or analyze ICP convergence, eigenvalue-based multivariate analysis is applied to ICP error 

covariance matrices [44] (of which there are many forms). Principal Component Analysis (PCA) 

is the simplest form of such multivariate analysis, where a large number of correlated dimensions 

(variables) are reduced to a smaller number of uncorrelated variables and principal components 

using the eigenvalue decomposition of the ICP error covariance matrix. Constraint analysis 

(CA), an application of PCA, directly assesses the sensitivity of shape registration error from ICP 

to variation in pose [63]. Eigenvalue-based metrics derived from CA can be used to determine 

the constraint of a given shape ([96] and [63]).  Constraint Analysis is an attractive method of 

enhancing and predicting ICP as it is based on bulk calculation of data, avoids feature detection 

tasks, and is thus applicable to any shape[71]. This work is primarily based on a surface-integral 

approach to CA, labeled Continuum-Shape Constraint Analysis (CSCA) [71], which quantifies 

the constraint of any given shape. CSCA essentially turns constraint into a general well-defined 

shape property that is independent of scan parameters such as scan point density or noise 

characteristics [63]. The eigenvalue decomposition of the CSCA covariance matrix provides us 

with indices such as the Noise Amplification Index (NAI) ([96] and [68]) and the Expectivity 

Index (EI) [71] which can be used to directly assess the constraint of a given shape, and in the 

case of EI, directly predict ICP performance of the shape. 

Constraint Analysis leads to a number of applications for pose estimation in general, and space 

vehicle pose estimation in particular. These include: 

1) Selection strategy of scan window(s) and scan path planning for consistent ICP-based 

pose estimation and pose tracking. Work using the discrete method of CA and NAI is 

presented in [88] 

2) Shape design of industrial and space vehicle objects for high constraint and consist ICP-

based pose estimation and pose tracking, regardless of scan parameters. 

In terms of the shape ambiguity problem, describing all the symmetries of the object and creating 

an metric that can map these symmetries is required. During the literature survey, a work by 

Kazhdan in [51] was discovered with utilized just such a metric for measuring symmetries in the 

context of 3D shape representation and model retrieval from a database. Kazhdan presented a 

symmetry descriptor, a collection of spherical functions that represent a 3D model as a collection 
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of spherical functions that give the measure of a model’s reflective and rotational symmetry with 

respect to every axis passing through the center of mass, and utilized the Fast Harmonic 

Transform and the Fast Inverse Wigner-D Transform to compute all the rotational and reflective 

symmetries for a model about its center of mass. Zabrodsky et. al. ([113], [111] and [112]) define 

a continuous measure of symmetry as the minimum amount of work needed to transform a 

model into a symmetric model, measured as the sum of the squared distances that the points 

would need to be moved.  

 

Besl states that triangle-based polyhedral meshes are an ideal representation of 3D shapes for 

computer vision tasks [5]. Given that all our models will be faceted polyhedral models, and all 

complex shapes are derived from basic polyhedra, the study uses simple polyhedra as a starting 

point for the design of target shapes. A polyhedron is a 3D shape made up of planar polygonal 

faces. Two faces meet along edges, and any number of edges may meet at points called vertices. 

A polyhedron is convex if its surface does not self-intersect, and a line segment joining any two 

points of the polyhedra is contained within the interior volume of the polyhedron[42]. There 

exist an infinite number of polyhedra, many created from non-rigid transformations of certain 

symmetrical core polyhedral [42]. The core convex polyhedra used in this study are the Platonic, 

Archimedean and Johnson solids. A Platonic Solid has all faces as congruent regular polygons 

with each vertex having an equal number of faces meeting at it. Archimedean solids differ from 

Platonic solids in that they have two or more types of polygons as faces meeting at identical 

vertices. A Johnson Solid is a polyhedron which can have any type of polygons as faces, in any 

vertex configuration. There exist 5 Platonic, 13 Archimedean and 92 Johnson solids. Each of 

these solids fall into a different symmetry group. A symmetry group is defined as the group of all 

isometries under which it is invariant [42]. The symmetry groups include: 

1. Tetrahedral symmetry (Td), the symmetry group for a Tetrahedron 

2. Octahedral symmetry (Oh), the symmetry group for a Cube and Octahedron 

3. Icosahedral Symmetry (Ih), the symmetry group for an Icosahedron and Dodecahedron 

4. n-fold Pyramidal Symmetry (Cnv) 

5. n-fold Prismatic Symmetry (Dnh) 

6. n-fold Antiprismatic Symmetry (Dnv) 
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1.1 Motivation 

Accurate pose estimation is a critical task for space computer vision applications including 

autonomous rendezvous and docking of spacecraft modules and future satellite servicing tasks. 

For decades, docking systems have been utilizing passive imaging systems that cannot operate 

over long distances and under rapidly changing illumination conditions. LIDAR-based scanners, 

immune to ambient lighting, are the preferred alternatives, and are currently used for on-orbit 

operations in conjunction with conventional CCD cameras for 3D pose estimation.  

The Iterative Closest Point (ICP) algorithm is the one of the most commonly used and reliable 

methods for 3D pose estimation. As all iterative algorithms, it needs an initial guess which must 

be relatively close to the true pose: otherwise, ICP has a tendency to converge to the local 

minima different from the true pose.  

Shape geometry is another aspect which plays an important role in ICP accuracy: poorly 

constrained shapes do not deliver accurate pose estimation even if the initial pose guess is close 

to the true pose. For example, in the rectangular prism shown in Figure 1, the shape is poorly 

constrained at any of the face views. It can be freely translated in any direction except the 

direction normal to the face without change of the ICP error values. The shape is better 

constrained at an edge view as it is only free to translate along the edge. The shape is best 

constrained at a vertex because any translation or rotation will result in change of the ICP error 

values.  

 
Figure 1: Constraint for a Rectangular Prism - Poor (left), Better (middle), Best (right) 

Therefore, to select a well-constrained view is an important step in successful pose estimation 

process. For space operations, this preliminary analysis and design can be done at the mission-

planning stage and an optimal shape and view can be selected for LIDAR scanning and 
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consequent pose estimation. A “hypothetic” spacecraft whose body shape would be well-

constrained and provide good pose estimation could be designed. But that seems unrealistic, 

given the wide range of specific technical requirements for the spacecraft surface. Alternatively, 

a three-dimensional optimal target shape can be attached to a surface of a spacecraft, scanned by 

LIDAR and deliver an accurate pose. This shape is analogous to a set of fiducial markers 

(circular “black on white” or coded targets) as shown in Figure 2, optimally attached to the 

surface of the object and viewed by CCD cameras.  

    
Figure 2: 2D Vision Markers (Left), Hypothesized 3D LIDAR Target/Marker (Right) on ISS Module. [Base 

Image Courtesy of NASA 

The major contribution of this thesis is the design methodology to produce a 3D target shape for 

LIDAR based ICP pose estimation for space vision applications.  The target needs to be both 

well constrained and unambiguous.  

The scan window problem is not considered, as in all cases, it is assumed that the entire target 

will be scanned, essentially providing a limited scan window on the entire spacecraft focused on 

the target. The major focus of this thesis will be on the development of a shape that provides 

good ICP convergence and low ICP error when scanned from a range of views. The object 

ambiguity problem will also be addressed via numerical simulations and analyses. LIDAR errors, 

edge effects, noise characteristics and problems associated with geometry-based LIDAR 

scanning are beyond the scope of this thesis, and will not be considered beyond a simple 
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demonstration of their existence. All simulated data is based upon rectangular even point spacing 

LIDAR raster scans, and all models of shapes studied are triangular mesh models. 

1.2 Thesis Organization 

Chapter 2, along with Appendix A, presents the theoretical background for this work. Chapter 3 

contains preliminary studies necessary to select an appropriate conditioning measure, determine 

the effect of polyhedral shape elements (vertices and faces), and the relationship between shape 

ambiguity and shape symmetry.  

The results of Chapter 3 are applied in the design of a target shape in Chapter 4, which consists 

of two parts: shape design for constraint and shape design for reduced ambiguity. First, all the 

regular convex polyhedra (all Platonic, Archimedean and Johnson solids) were studied and 

compared for desired constraint characteristics, and a core shape selected from these for 

additional optimization. Then, the selected core shape was deformed under various stretch and 

skew transformations and optimized for best constraint under a variety of view ranges. Finally, 

the optimized shape was further transformed with additional skew transformations in order to 

break its rotational symmetry and reduce ambiguity.  

For experimental validation, presented in Chapter 5, two designed shapes and a tetrahedron were 

manufactured and subjected to LIDAR scans at the NEPTEC facility in Ottawa. The problem of 

scanner sensitivity and noise characteristics dependant upon shape geometry was not addressed 

in this thesis, and requires further research inputs. Despite some of the problems encountered due 

to variable noise characteristics in the data, requiring the use of manual point-deletion, the 

experimental data clearly showed the designed-for characteristics in the shapes in terms of pose 

error and expected value congruence. Final conclusions and recommendations for future work 

are presented in Chapter 6. 
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2 Theoretical Foundations of the work 

The theoretical foundations of this work are derived from certain concepts first introduced by 

Simon [96], and further developed and expanded by McTavish and Okouneva [63][71]. 

2.1 Nomenclature 

o
F

  Observation Frame 

B
F

 Object/Target Body Frame 

m
F

 Model Frame 

{ }i
z

 
Set of observation points 

{ }ix
 

Position of the correspondence points on the model given in the 

Observation Frame 

{ }i
r

 
Set of correspondence points on the model 

i
∆r

 The point-wise Cartesian error vector set 

i
r∆

 

The set of magnitudes of the point-wise Cartesian error vector set. Note 

that for self-registration, depicts the 0
i

r∆ =  “True Pose” where is there is 

zero misalignment  

i
Ψ   A projection matrix that transforms a given pose into 

i
∆r  for a given point 

ˆ
i

n  The set of model surface normals at each point 
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i

×r  The skew matrix of { }i
r

0

0

0

x z y

i y z x

z y x

r r r

r r r

r r r

×

×

 − 
  

= −  
   −   

r �  

{ }i
ε  Set of zero-mean random vectors representing noise 

,i⊥∆r  

The point-wise Cartesian error vector set for the point-to-surface 

projection, mimicking the “closest point” selection of { }i
r in the ICP 

algorithm 

, ,i noise⊥∆r
 

The point-wise Cartesian error vector set for the point-to-surface project, 

disturbed by noise 

r 
A continuously variable local descriptor for the surface integral 

formulation, mimicking the point-wise Cartesian error 

m
d

 

The translation portion of the pose that aligns the Model Frame with the 

Observation Frame 

M
Φ   

The rotation portion of the pose that aligns the Model Frame with the 

Observation Frame 

M
C   

The rotation matrix arising from the translation portion of the pose-

alignment 

δ   A small translation vector 

θ  A small rotation vector 
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p  The small pose misalignment vector 

p~  
The small pose misalignment vector with a distance-scaled rotation vector 

set 

D  

A scale factor for scaling the rotation portion of the small pose 

misalignment vector 

E

 

The ICP cost function developed from the point-wise Cartesian error 

E⊥

 
The small-misalignment cost function 

,noiseE⊥  The small-misalignment cost function with additive noise 

o
E

 
The cost-function associated with the additive noise 

S
E

 

The cost-function associated with the continuum version of self-

registration 

Sv
E

 

The cost-function associated with the directional continuum version of self-

registration 

⊥E  The small-misalignment cost matrix 

ê

 
The error matrix projected onto the Observation Frame 

S
E

 The cost matrix associated with the continuum version of self-registration 
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Sv
E

 

The cost matrix associated with the directional continuum version of self-

registration

 

v̂   The view direction defined as a unit vector with components [ ]x y z  

α  Azimuth component of the view vector in non-Cartesian coordinates 

δ  Declination component of the view vector in non-Cartesian coordinates 

v  
The view factor that takes into account the surfaces observed by the scan 

and their angle to the view vector 

pA  The un-obscured projected area as seen from a viewpoint
 

 ,Sv δδE   The upper-left (translation) partition of the raw cost matrix. 

 
k

λ  
Eigenvalues of the Area-normalized, rotation scaled version of the cost 

matrix

 

NAIk   
Noise Amplification Index Value based on the Area-normalized, rotation 

scaled version of the cost matrix 

EIk  
Expectivity Index Value based on the Area-normalized, rotation scaled 

version of the cost matrix 

MEk   
Minimum Eigenvalue Index Value based on the Area-normalized, rotation 
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scaled version of the cost matrix
 

{ }2

εε p  The expected value of the mean pose-error 

N   Number of scan-points 

εσ  The standard deviation of the general point-to-point noise error. 

2.2 Key Definitions 

Shape Registration 

Registration is the task of finding correspondences between two or more sets of data. This can 

take the form of feature correspondence, or point correspondence. In the case of 3D-3D 

registration, point-correspondence often utilizes data from range scans. For “rigid” registration, 

given two sets of range data (either from two observations, or one observation and one model, or 

two models), the task is to find the relative rigid transformations (translation and rotation) that 

will align the two data sets. For model-based methods, registration is carried out between a set of 

observations and a model, illustrated in Figure 3. The observation of the object consists of N  

data points (in 3ℜ ) located by the vector set { }i
z as observed in the frame 

o
F . The frame 

B
F  

represents the pose of the object body to be determined. A set of corresponding points on the 

model,{ }i
r , is established relative to a model reference frame 

m
F . The location and orientation 

of the model represented by 
m

F  in the observation frame is specified by the origin position 
m

d  

and a rotation vector 
M

Φ  of the model reference frame 
m

F . 
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Figure 3: Shape Registration 

Pose Estimation 

Pose estimation is the task of finding some optimal translation (represented by the origin position 

of the model in the observation frame 
m

d ) and rotation (represented by 
M

Φ ) that minimizes the 

point-wise Cartesian error cost between the model and observation. Pose itself is most often 

represented as a 6-DOF vector. 

Iterative Closest Point (ICP) Algorithm 

The ICP algorithm registers a measured data set to a model using an iterative procedure.  In the 

observation frame, the position of the model points is given by the set { }ix , with 
i M M i
= +x d C r  

where 
M

C  is the rotation matrix corresponding to 
M

Φ  that transforms vector expressions from 

the model frame 
m

F  to the reference frame 
o

F . A point-based registration cost function E 

between the model and observed object is constructed from the sum of squared Euclidean 

distances 
i i

r∆ = ∆r  for the set of sampled pointes. The point-wise Cartesian error is constructed 

as 
i i i

∆ = −r x z . The cost function E is then: 

T

1

1

2

N

i i

i

E
=

= ∆ ∆∑ r r       (1) 
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The set of points ix are the transformed closest points { }ir on the model’s surface to the data 

points iz . A pose estimate for the body is found by aligning the model frame mF  within the 

frame
o

F  such that the above cost function is minimized.  The optimal alignment problem is then 

one of determining values for md  and MΦ  that minimize E.  The rotation vector MΦ  is 

represented as a quaternion used for iterative pose calculation based on Horn’s Method [41]. 

Horn’s Method, outlined in [41], provides a closed-form solution to the two-frame pose 

correspondence problem. The ICP algorithm selects a new set of closet points { }ir  for each 

iteration based on the previous iteration’s pose to refine the pose estimate, till the cost function 

achieves a selected threshold value or the maximum number of iterations is reached. 

Self Registration 

The concept of self registration is first used by Simon [96], but not identified as such. McTavish 

& Okouneva [63] define the concept of self registration as an analytical construction that 

describes the perturbation of a model from itself. 

 

Figure 4: Self-Registration 

Constraint Analysis 

Constraint Analysis (CA) is a method that utilizes eigen analysis to assess the sensitivity of the 

ICP registration error to variations in pose is assessed. Using Constraint Analysis, the ICP 

registration cost can be expressed as functions of different components of the pose. A given 

shape may produce large ICP cost under some combination of translation and rotation (for 

example, a polyhedron may show large ICP cost under pitch motion and z-translation, but not 
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yaw or roll motion).  This means that the shape is poorly constrained in certain components of 

the pose vector, but not in others. CA assesses the sensitivity of the ICP registration error to each 

of the components of the pose vector (i.e. sensitivity to roll or pitch or yaw or translation in any 

given orthonormal direction). 

2.3 Summary of Constraint Analysis 

2.3.1 Discrete Point-Based Constraint Analysis 

Under the self-registration principle, we define an ideal alignment 0E = i.e., the data and model 

points are perfectly aligned with 0ir∆ = , as the true pose. The true pose is perturbed by a small 

displacement δ  and a small rotation θ , to form the small pose p  or misalignment vector: 

     
 

=  
 

δ
p

θ
      (2)   

The physical extent of a shape from the key reference frame origin will lead to an imbalance of 

numerical influence between a dimensional translation and a dimensionless rotation. While the 

entire cost matrix could be non-dimensionlized by the normalization of point positions by a 

characteristic distance, this work deals with specific objects and pose accuracy needs to be 

assessed in a dimensional manner. For our purposes, the rotation portion of the pose vector 

p needs to be dimensionally scaled to balance its numerical influence on the cost gradient. Using 

a scaling distance D  the modified pose vector p~ is defined as: 

D D

δ

θ

     
= = =     
     

δ 1 0
p Dp

θ 0 1
�    (3) 

For all shapes considered in this study, the scaling distance D  was chosen to be the average 

model radius.  

We now define the 3 6×  projection matrix iΨ  as a projection matrix that transforms a given 

pose into i∆r  for a given point: 

ˆ ˆ
i i i i

Τ × = − Ψ n n 1 r      (4) 
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This mimics the “closest point” selection of { }ir in the ICP algorithm. The pointwise error vector 

becomes: 

,i i⊥∆ =r Ψ p�       (5) 

The corresponding cost matrix is defined from the applicable projection matrices as: 

1

1 N

i i

iN

Τ

⊥

=

= ∑E Ψ Ψ     (6) 

The cost can then be constructed as: 

1

2
E Τ

⊥ ⊥= p E p� �       (7) 

We now add simple noise iε  such that: 

    , ,i noise i i⊥∆ = −r Ψ p ε�      (8) 

Our small-misalignment cost function with additive noise is now: 

,noise

1 1
ˆ

2 2
o

E E Τ Τ

⊥ ⊥= − +p e p E p� � �    (9) 

with: 

1

1 N

o i i

i

E
N

Τ

=

= ∑ε ε      (10) 

1

1
ˆ

N

i i

iN

Τ

=

= ∑e Ψ ε      (11) 

2.3.2 Continuum Shape Constraint Analysis 

The continuum version of self-registration (Shown in Figure 5) replaces the stand-alone points 

from Figure 4 with differential surface area at a continuously variable location r.  
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Figure 5: Continuum Self-Registration Setup 

The cost function 
S

E and cost matrix 
S

E  associated with the continuum version of self-

registration are defined as: 

1

2
S

S

E dSΤ

⊥ ⊥= ∆ ∆∫ r r      (12) 

S

S

dSΤ

⊥ ⊥= ∫E Ψ Ψ      (13) 

Where the applicable closest-point project matrix, ⊥Ψ , is described in terms of the continuously 

variable locator r and n̂  is the unit normal at the location r, such that: 

T Tˆ ˆ ˆ ˆ ×

⊥
 = − Ψ nn nn r     (14) 

The scanning instrument is assumed to scan the figure from a single specified viewpoint and 

generate data points in a uniform distribution. Only surface regions that are visible within the 

instrument’s field-of-view will generate data. The relative location of the scan viewpoint (Figure 

6) defines the casting of measurement points on the target object and can be considered 

analytically for self-registration.  Also, the generated point density from a surface region will be 

proportional to its projected area in the view direction. The directional version of the cost matrix 

is developed by introducing a view factor v . The view aspect is demonstrated in Figure 6, and 

takes into account the surfaces observed by the scan and their angle to the view vector. 

ˆ ˆˆ ˆ 0

ˆˆ 0
v

Τ Τ

Τ

 >
= 

≤

v n v n

0 v n
   (15) 
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Figure 6: Directional Weighted Scan 

v̂  is the direction vector of the viewpoint from the surface location of r , which leads to our 

directional cost and matrix: 

1

2
Sv

S

E vdSΤ

⊥ ⊥= ∆ ∆∫ r r      (16) 

Sv

S

E vdSΤ

⊥ ⊥= ∫Ψ Ψ      (17) 

The continuum analog to the normalization by number of points is a normalization by area pA , 

the un-obscured projected area as seen from the viewpoint can be computed as: 

{ },trace
p Sv

A δδ= E      (18) 

and ,Sv δδE  is the upper-left (translation) partition of the raw cost matrix. 

Finally, the continuum-shape area normalized version of the cost 
Sv

E  and cost matrix 
Sv

E  are: 

1
Sv Sv

p
A

=E E       (19) 

1
Sv

p

E E
A

⊥ =       (20) 

This version of the cost and cost matrix is used for all further analysis and design in this work. 
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2.3.3 CSCA Indices and Expected Value 

The continuum version of the ICP cost matrix developed by McTavish & Okouneva [71] is an 

analogue to the discrete version developed by Simon [96] with an infinite point-density such that 

the scanned points approximate a surface. Therefore, we can expect the eigen characteristics of 

the matrix 
Sv

E  to be key indicators of constraint and hence ICP performance. All shape metrics 

used in this study are derived from the eigenvalues of this matrix: 

 

{ }eig
k Sv

λ = E       (21) 

The three indices demonstrated and used in this study are Noise Amplification Index (NAI) 

which was first introduced by Nahvi & Hollenbach [68], the Expectivity Index (EI) which was 

first introduced by McTavish & Okouneva (See Appendix A), and minimum eigenvalues (ME). 

Additional explanations and derivations for the three indices used, developed by McTavish, are 

presented in Appendix A. In summary, the indices are defined as: 

min
NAI

max

k
λ

λ
=       (22) 

 
1

EI

1

k k

k
λ

−

 
=   
 
∑      (23) 

 

ME mink λ=       (24) 

The expected value of the pose error can be computed directly from the EI and general noise 

characteristics of the data as: 

{ }2

EI

1

k N

ε
ε

σε =p i     (25) 

Where N is the number of scan points and εσ is the standard deviation of the general point-to-

point noise error. 
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2.4 A Note on View Directions & Function Representations in this 
Thesis 

The representations of vectors, views and rotations used in this thesis are presented in this 

section, with the equations used to convert between them. Additionally, an important graphical 

representation tool designed to various functions throughout the thesis is presented here. 

2.4.1 View Directions 

The view direction is defined as a unit vector with components [ ]x y z . Often it is required to 

represent the view or view vector using azimuth and declination angles, especially for certain 

optimization types. To this end, azimuth α and declination δ (Figure 7) are calculated as: 

 

( )

2 2 2

arctan 2 ,

arccos
2

y x

z

x y z

α

π
δ

=

 
 = −
 + + 

   (26) 

 

 

 
Figure 7: Scan angles declination and azimuth 

2.4.2 Function Representation 

One of the main visualization and graphical representation tools used in this thesis is a function-

sphere patch designed to show a function of three independent variables (the Cartesian 

coordinates of the view vector, x, y, z) in an intuitive and clear format. First, viewing directions 

are defined as a sphere map (Figure 8) of the desired resolution, and patched together to create a 

sphere-mesh. This mesh is demonstrated in Figure 8. The function value (index values, error 
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values, noise values etc.) for a given shape for a particular view is found by projecting the view 

direction out from the origin through the sphere surface, and the radial distance of the 

intersection is then taken as the function value. Figure 8 (right) shows the function-map of EI, 

along with the shape being studied and the view-sphere. In order to read the function value from 

any given view vector, one can simply read the radial distance to the surface of the function-map 

along the direction of the view vector. For additional clarity, the plots are color-coded with blue 

as minimum and red as maximum. As an example, Figure 9 shows the value of the EI function 

for a simple cube polyhedron. From this point, the function-sphere will be omitted from 

function-map plots for clarity, with the actual shape being studied overlaid on the function-

sphere. This allows one to see the geometrical regions and characteristics of the shape that give 

rise to different features of the function map. For example, in Figure 9, one can see that the 

highest values of EI (red) are found at the vertices of the cube. 

 
Figure 8: View Sphere (Left) & Simple Polyhedron , View Sphere and EI Function (Right) 

 
Figure 9: Simple Shape and EI Function 



Ideal Target Design for LIDAR-based ICP Pose Estimation for Space Vision Tasks                      Chapter 3: Preliminary Studies 

 

 
Page 22 

3 Preliminary Studies for Ideal Shape Design 
Preliminary studies were conducted towards establishing the appropriate tools, desired trends and 

values, and thresholds for ideal shape design. First, the conditioning measures Noise 

Amplification Index (NAI), Expectivity Index (EI), and Minimum Eigenvalue (ME) were 

compared, and a measure selected that best reflects desired goals. Next, the performance of 

polyhedron geometrical elements such as vertices and faces were studied in order to extract 

desirable geometry for shape design. Finally, shape ambiguity was explored. 

3.1 Conditioning Measures 

There are three main conditioning measures of interest to this study, NAI, EI and ME (See 

Chapter 2), each with their own design advantages and disadvantages. All conditioning measures 

are derived from the eigenvalues of the error cost matrix shown in Equation (20). 

3.1.1 NAI 

The Noise Amplification Index (NAI) is a heuristically designed measure that minimizes the 

maximum pose error, but it only provides information about the two extreme eigenvalues. Here 

we compare the NAI values of a simple cube shape with noisy ICP registration error data. In this 

graph, the ICP Registration Error is plotted against the NAI value of the shape, calculated from 

Equation (22).  
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Figure 10: ICP Error vs. NAI 

Notice that while low values of NAI correspond to high values of error, there is no statistical 

significance to high values of NAI except a general low error – i.e. for values of NAI higher than 

a certain threshold, there is no way of selecting a “well” constrained shape area/view from a 

“better” constrained shape area/view, as all NAI values beyond a certain threshold yield low 

error. 

 
Figure 11: NAI Function Map of Cube (Top Hemisphere Only) 
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The NAI function map of the cube is presented in Figure 11. As can be expected, vertex-views 

are well-constrained, and face views, especially where multiple faces are not visible, show bad 

constraint. 

3.1.2 EI 

The Expectivity Index is an analytically designed measure that minimizes the expected pose 

error. As explained earlier, the EI is mathematically designed to balance the constraint in all six 

degrees of freedom, instead of just comparing the minimum and maximum error degrees of 

constraint. 

 

Figure 12: ICP Error vs. EI 

 

In the ICP registration error vs. EI plot shown in Figure 12, we notice that EI does in fact predict 

ICP error, showing a specific statistical correlation between the two. Figure 13 is the EI function 
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map of the same cube used earlier. Again, regions of good and bad constraint are similar to those 

found by using NAI, but intermediate zones are much better defined. 

 

Figure 13: EI Function Map of Cube (Top Hemisphere Only) 

3.1.3 ME 

The Minimum Eigenvalue (ME) Index defined in Equation (23) limits the worst possible error in 

the minimum-cost pose solution due to additive noise. ICP registration error vs. ME values are 

shown in Figure 14, and the ME function map is shown in Figure 15. Notice the similarity of 

Figure 14 to the plot of ICP Error vs. NAI (Figure 10) – it is the contribution of ME to the NAI 

function that limits the worst possible error in NAI.  
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Figure 14: ICP Error vs. ME 

 

 
Figure 15: ME Function Map of Cube (Top Hemisphere Only) 
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After considering each of the indices, we are left with either the EI or the ME as possible design 

tools – the NAI index does not predict pose error, and its usefulness occurs only because of the 

presence of the ME index within its equation. However, while the ME limits the worst possible 

error, i.e. it tells us which shapes, and which portions of shapes are badly constrained, it does not 

tell us which areas are best constrained. Therefore the EI index is chosen as a design tool due to 

its ability to account for badly constrained regions, as well as balance the contribution of all the 

eigenvalues of the cost matrix. Additionally, the analytical derivation of EI as presented in 

Appendix A makes this an extremely robust and reliable tool that can be used to directly assess 

the expected value of the pose error. 

3.2 Study of Shape Elements 

The 3D shape models used in this thesis for ICP pose estimation are faceted triangular meshes. 

In order to design a shape that delivers accurate pose estimation from a range of views, key 

shape elements, vertices and faces, must be analyzed. 

3.2.1 Vertex Studies  

Two parameters that characterize vertices are the number of faces connected to the vertex, and 

the dihedral axes between the faces, as shown in Figure 16. For the current analyses, regular n-

corns are studied, such that the dihedral axes between any two adjacent faces are equal to any 

other face-set. As projected surface area has a direct effect on EI, the area-normalized version of 

the cost matrix (Equation (17)) is utilized, from a view that is parallel to the normal of the vertex 

being studied. The particulars of the polyhedral geometry are presented in Figure 16. 

 
Figure 16: Polyhedron Geometry Study Parameters  
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Figure 17: 3-Corn with 45 o Dihedral (left) and 6-Corn with 25 o Dihedral (right) 

 

Polyhedral patches were created with an n number of sides connected to a common vertex. All 

patches had a common dihedral angle between their edges, shown in Figure 17. The resulting 

mesh was scanned from a view directly above the common vertex. In Figure 18, the value of EI 

is plotted versus dihedral angles for various n-corns.  

 

Figure 18: Vertex Studies 
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As can be seen from Figure 18, the lower the number of sides that share a vertex, the higher the 

EI profile. For a vertex that has 3 faces, the optimum value occurs as a dihedral angle of ~ 120 

degrees. 

In general, the fewer the number of faces connected to a vertex, the greater the EI profile of the 

mesh, with the maximum EI values for all vertex configurations occurring for dihedral angles 

between 100 and 150 degrees. 

3.2.2 Face Studies 

Faces are characterized by two parameters as well: the number of faces that share edges with the 

face studied, and the dihedral angles between them. For this study, a n sided polygon was created 

with a surface normal parallel to the view vector, and additional polyhedral patches attached to 

each edge, shown in Figure 19. The dihedral angle between the attached polygons and the 

original n sided polygon was varied. Here, only polygons with edge-to-edge correspondence are 

studied, with equal dihedrals all on faces. In Figure 20, the EI values are plotted vs. dihedral 

angles for various n-sided figures. 

 

Figure 19: 6-Sided Mesh with 70 o Dihedral (left) and 3-Sided Mesh with 20o Dihedral (right) 

 



Ideal Target Design for LIDAR-based ICP Pose Estimation for Space Vision Tasks                      Chapter 3: Preliminary Studies 

 

 
Page 30 

 

Figure 20: Face Study 

 
As seen from the figure above, the three-sided shape delivers the highest EI value, but shows 

general poor performance over a range of dihedral angles. As noted for the vertex study, the 

greater the number of sides connected to a face, the lower the index profile, which approaches 

zero for a faceted sphere. When combined with vertex effects, face effects define desirable 

geometry for well-constrained shapes. For example, a three-sided shape with a vertex dihedral 

angle of 120 degrees shows a good constraint profile from vertex views, but the same figure, 

when seen from face-views shows a very poor constraint profile.  

 

In general, the fewer the number of polygons attached to a central polygon, the better the EI 

profile, with some specific exceptions to the 3 and 4 sided figures. 

 

The entire range of EI values for all views on a polyhedron can be mapped, as shown in Figure 

21. The value of EI from each view is mapped as a function – the color index on the function 

shows intensity of EI; the original face is provided for reference. A Tetrahedron, with a dihedral 

angle of ~ 70 degrees shows relatively high EI values at the vertices, and zero index values at the 
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faces. In contrast, a Cuboctahedron, with a dihedral angle of ~ 120 degrees, each vertex 

connecting 4 sides, and each face connected to 3 or 4 sides. For this polyhedron, the dihedral 

angle is almost at the highest possible value for a 4-vertex, 3 and 4 face configuration.  

 

 

Figure 21: EI Map of Tetrahedron (top) and Cuboctahedron (bottom) 

 

Both figures and plotted on the same color scale. Given these results, we can identify our design 

requirement: a consistently high EI function over the entire range of views, without any dips and 

valleys (points where the EI function drops below a certain threshold range, or zeroes out). 
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It should be noted that edges have a specific zeroing effect on the EI, as any edge will only have 

two faces attached to it, and therefore have zero index value. Edge effects on the EI are 

minimized and overwhelmed by face and vertex effects when the view vector encounters more 

than two faces. 

3.3 Study of Ambiguity 

For our purposes, ambiguity is said to be a property of geometric shapes where the ICP 

algorithm converges on a pose different from the truth pose with low registration error. In other 

terms, this means that one configuration (face, vertices etc.) of a shape is, without some 

appropriate context, indistinguishable from another, as shown in Figure 22. Two ways to 

demonstrate ambiguity have been explored in this study – using ICP Pose Error, and ICP 

Registration Error. All polyhedron sizes were normalized to present the same average radius, and 

all ICP poses scaled for rotation. 

 

Figure 22: Two pose configurations with similar low ICP Registration Error, showing ambiguity of Cube 
polyhedron 

3.3.1 ICP Pose Error Method 

All polyhedrons to be studied were scanned from a view that yields a high EI value, and 

associated with a truth pose 
T

p . For example, the cube shape is scanned from a vertex view. 

Then, the ICP algorithm is provided with a range of initial poses 
I

p for the same data set, with 
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the final ICP pose fit result from the algorithm as p . Each initial pose estimate is associated with 

a pose error εIp , and the final pose error is εp calculated as: 

[ ]It T i I I
= − = ∆ ∆p p p δ θ    (27) 

[ ]z T
= − = ∆ ∆p p p δ θ    (28) 

We can then plot the initial pose error versus the ICP pose error, as shown in Figure 23.  

 

Figure 23: ICP Pose Error vs. Initial Pose Error for Cube Polyhedron 

 
The figure below shows an example of ICP fits associated with each pose cluster. For example, 

all initial poses 
I

p  that converge to a pose equal to the truth pose will be clustered near the 0 

value. All initial poses 
I

p  that converge onto a pose that is a single vertex away (in any 

direction, x, y, or z) from the truth pose will cluster at the next-best pose error values, and so on, 

such that the initial poses 
I

p  that converge onto a pose p  that is diagonally opposite the truth 

pose (i.e. on the vertex farthest away from the vertex scanned) will cluster around the worst 

pose-error result. 
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Figure 24: Pose Clustering showing Cube Ambiguity 

 

This plot shows us two important features. Firstly, it presents the clustering of pose error values, 

showing the convergence of the ICP algorithm on an incorrect pose given an incorrect initial 

value. All ICP runs with initial values within a certain range will converge on a particular pose. 

For our cube polyhedron, there are four such pose clusters, each a different “distance” away from 

the truth pose. The range of initial poses close to the “truth vertex” converge onto the correct 

pose, while the range of initial poses close to the vertex diagonally opposite from the “truth 

vertex” show the maximum pose error. Secondly, given noisy data, statistical measures of such a 

plot like standard deviation or best-fit curve slope can be used as measures of ambiguity. 

3.3.2 ICP Registration Error Method 

The polyhedron to be studied is scanned from a view that yields a high EI value. For example, 

the cube shape is scanned from a vertex view. Then, the ICP algorithm is provided with a range 

of initial poses. The ICP algorithm is further modified to hold the pose rotation vector quaternion 

constant, and iterate through the translation portion in order to find the closest fit. After ICP 
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convergence, the point-to-point ICP registration error is calculated. This yields a set of error 

values associated with each roll, pitch and yaw angle set of the initial pose estimate, and clearly 

shows the presence of multiple local minima. This shows that without knowledge of the 

polyhedron’s true pose, the ICP algorithm may fall into any of these minimums. Figure 25 shows 

the ICP registration error function as a surface plot.  

 
Figure 25: The Presence of multiple local minimums in the ICP Registration Error Function due to ambiguity 

in shape. 

 
Given that we need to represent a function of three independent variables (view parameters x, y 

and z), we can use our function-sphere map again to show ICP registration error, as in Figure 26 

for the cube shape. 
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Figure 26: ICP Registration Error Function for Cube 

 

Here, lower values of the function (blue) demonstrate low ICP registration error. The error is 

arbitrarily scaled for demonstration. This method has the advantage over the pose error method 

in that the number of minima can be counted and used as a measure of ambiguity, as long as the 

data is not too noisy and has clearly identifiable extrema. The pose error method shows pose 

clustering, i.e. convergence away from the true pose, but as each pose error is a magnitude 

calculation, it does not show how many distinct initial poses result in this erroneous 

convergence, for example, given the cube studied earlier, two distinct initial poses, associated 

with two distinct local minima may cluster around the same pose error value – a pose converging 

to the left of the true pose and one converging to the right of the true pose the same “distance” 

away from the true pose, and be a part of the same pose cluster. 
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3.3.3 Comparison of Ambiguity functions of various polyehdra 

The ambiguity characteristics and their relationship to shape geometry is studied here. The ICP 

Pose Error and ICP Registration Error method plots for multiple shapes are shown. 

 

 

 

 

Figure 27: Pose Error Method Plot (Top) and Registration Error Method Plot (Bottom) for Tetrahedron 
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Figure 28: Pose Error Method Plot (Top) and Registration Error Method Plot (Bottom) for Octahedron 
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Figure 29: Pose Error Method Plot (Top) and Registration Error Method Plot (Bottom) for Icosahedron 
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Figure 30: Pose Error Method Plot (Top) and Registration Error Method Plot (Bottom) for Cuboctahedron
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Note that the tetrahedron has four local minima and each incorrect pose cluster has the same 

error value versus the truth pose because of the geometrical configuration of the shape (i.e. each 

“incorrect” vertex is exactly the same distance away, translationally and rotationally, from the 

“truth vertex”). There is an obvious relationship between the number of minima and the 

rotational geometry of the shape. To compare, we look at the degree of rotational symmetry of 

some of the shapes studied and their number of local minima in Table 1. Definitions of rotational 

symmetry and Orders of Symmetry are provided in Chapter 1. 

Table 1: Comparison of Polyhedral Symmetry and Local Minima 

Shape Order of 

Symmetry 

Number of Rotational 

Symmetries 

Number of Local 

Minima 

Tetrahedron Td 12 4 

Hexahedron (Cube) Oh 24 8 

Octahedron Oh 24 8 

Dodecahedron Ih 60 20 

Icosahedron Ih 60 20 

Truncated 

Tetrahedron 

Td 12 4 

Cuboctahedron Oh 24 8 

 

Given this correlation between ambiguity and rotational symmetry, we compare the plots for a 

shape that has low rotational or mirror-rotational symmetry, the Stanford Bunny (Figure 31). 

 

Figure 31: Stanford Bunny Mesh 
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Figure 32: Stanford Bunny ICP Registration Error Function 

 In Figure 32, it is clearly seen that the Stanford Bunny has one strong global minimum, and a 

surrounding area where the function approaches minimal values. The error function in Figure 32 

has been scaled for demonstration. 

When we look at the Pose Error Method plot (Figure 33) for the Stanford Bunny (plotted on the 

same scale as that of the regular polyhedra), we notice that the overall pose error is low, and of 

similar magnitude, regardless of the magnitude of the initial pose estimate. This means that 

regardless of the orientation of the initial guess, the ICP algorithm is converging to a “good 

enough” pose. This, then, is the characteristic we are looking for when designing an ideal, 

ambiguity-free shape. However, it should be noted that the standard deviation of this plot, as well 

as the gradient of the ICP registration function is highly dependant upon the scan density, noise 

characteristics and constraint of the provided data, and therefore highly sensitive to variations in 

LIDAR sensors and noise. The general trend, however, is consistent, and enough to create crude 

guidelines for ambiguity reduction. 

Minimum 

Error View 
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Figure 33: Pose Error Method Plot for Stanford Bunny 

One strong global minimum (with some spread) in the registration-error function, and low pose 

error regardless of initial pose error magnitude in the pose error method plot are the 

characteristics we are looking for in an unambiguous target shape. Ambiguity is directly related 

to rotational symmetry of a shape, and therefore reducing the order of rotational symmetry of a 

shape will lead to an unambiguous shape. 

By combining the knowledge gained from these preliminary studies, we can use the EI and 

ambiguity indicators as tools to optimize an ideal target shape in the next chapter. 
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4 Shape Design 

The target shape design solution consists of two parts: design for optimal constraint, and design 

for reduced ambiguity. In the first part, a large number of shapes (Platonic, Archimedean and 

Johnson Solids) are studied, and the shape-family with the most desirable EI Function Map (as 

determined in Chapter 3) is selected.  

Here, shape-family refers to a specific polyhedron and all its derivatives by deformation, for 

example a shape-family would consist of a cube and all 6-sided prisms that are derived by 

deforming a cube. A view-cone is selected (the range of views for which the object has to be 

optimized), and the selected core shape (the undeformed, regular member of the shape-family) is 

deformed through iterative stretch and skew factors and a value for the fitness function of the 

shape is obtained for the view cone. The deformation values (stretch and skew) that yield 

maximal value for the fitness function are applied to the core shape.  

The new deformed shape is then processed through the ambiguity reduction process, where 

additional skews are applied to break the rotational symmetry of the shape while retaining high 

values of constraint. Finally, a reduced-ambiguity version of the high-constraint shape-family is 

created, and shapes are ready for final production and experimental validation. The design 

process is outlined in Figure 34. 
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Figure 34: Design Process for Target Shape Creation 



Ideal Target Design for LIDAR-based ICP Pose Estimation for Space Vision Tasks         Chapter 4: Shape Design 

 

 
Page 46 

4.1 Design of Well-Constrained Shape 

For the optimal constraint design, the EI was used as a tool to select a family of polyhedra that 

have the desirable EI function characteristics defined in Chapter 3. Then, numerical 

optimizations were performed upon the selected core shape in order to select the 3D shape 

transformation that will yield maximal performance for a given range of viewing directions. 

4.1.1 Polyhedron & Candidate Shape-Family Selection 

Based on the analysis developed in Chapter 3, entire classes of polyhedra were studied for the 

first part of this design process. The regular and quasi-regular families studied for desirable 

elements were the Platonic, Archimedean and Johnson Solids. Ideally, we would be able to 

identify a family of shapes that do not have any low EI values, and present high constraint when 

viewed from all angles. For example, we can identify the tetrahedron immediately as a poor 

candidate.  

 

 

Figure 35: EI Map of Tetrahedron 

Looking at Figure 35, we notice that it has relatively high values of EI (and therefore good 

constraint) at the vertices, but at a view that is just a few degrees away from a vertex view, the EI 

drops sharply to zero, because the shape is poorly constrained from this view. Table 2 

summarizes some of the results of the Shape-Family study. 
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Table 2: EI Minima/Maxima for Selected Polyhedra 

Family Name Dihedral Angles  Max Index Min Index 

Platonic Tetrahedron   70.53 0.0596 0.0000 

Platonic Dodecahedron 116.56 0.0644 0.0626 

Archimedean Cuboctahedron 125.26 0.0699 0.0543 

Johnson Elongated 

Triangular 

Dipyramid 

Various 0.0649 0.0000 

 

The index maps of two of the above solids, the Dodecahedron and the Elongated Triangular 

Dipyramid, are shown below.  

 

Figure 36: EI Map of Dodecahedron 
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Figure 37: EI Map of Elongated Triangular Dipyramid 

Of the 116 regular and quasi-regular polyhedra studied, as expected after the vertex and face 

study, the Cuboctahedron demonstrated the most desirable EI configuration. The EI function 

map of the Cuboctahedron is shown in Figure 35. There is a high index value from all views, and 

almost no gradient, and no index values ever drop to zero. Shapes with a higher number of sides, 

or faces consisting of higher-order polygons than a Cuboctahedron showed a more consistent 

value of EI, but lower overall constraint values. i.e. the gradient of the constraint function was 

low, as desired, but the maximum value of constraint was also low. The Cuboctahedron 

presented the most desirable tradeoff between low gradient and high EI maximums. 

 
Figure 38: EI Map of Cuboctahedron 
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The Cuboctahedron was chosen as our candidate for optimization and numerical study. 

Additionally, the Tetrahedron was chosen for further analysis in order to provide a comparison 

with the Cuboctahedron.  

4.1.2 Candidate Optimization 

A fitness function that measures the suitability of a shape for ICP pose estimation from a 

specified range of views (Figure 39) was defined as: 

αδδαδ
α δ

ddfF ′′′= ∫ ∫ )sin(),(
0 0

    (29)                             

Where ),( αδ ′f is the value of the EI defined over a view specified by azimuth α  and 

declination δ ′ . The fitness function is the mean value of the area-normalized EI over a solid 

angle of a cone with apex δ2 , calculated using the double quadrature method. 

 

Figure 39: Solid Angle over a cone of views 

 

Additionally, a threshold value was established in order to ensure that the fitness function value 

is not affected by null or very small EI values. 
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The deformation process of a polyhedron can be defined in the following way: Let 
XY

T be a set of 

numbers ( 0.005,0.01,0.015...,1)
XY

T = , called xy-skew ratios; and let 
Z

T be a set of numbers, 
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( 0.005,0.01,0.015..., 2)
XY

T = , called z-stretch ratios. Each vertex ( [ ]i i i i
V x y z= ) of a 

polyhedron is subjected to a translation presented in the following pseudocode. 

 

function 
i

V  = deformation( ,, ,
XY Z r i

T T V ) 

{ 

for 0.005 : 0.005 :1
XY

T =  

{ 

for 0.005 : 0.005 : 2
Z

T =  

{ 

for 1:1:i N=  

{ 













<












+

>












−

=

cir

r

ir

XY

cir

r

ir

XY

i

zzif
z

z
T

zzif
z

z
T

skew

,

min,

,

,

max,

,

1

1

 

















+−

=

ccirZ

iri

iri

i

zzzT

yskew

xskew

V

))(( ,

,

,

 

} 

} 

} 

} 

where N  is the number of vertices in the shape, [ ]c c c
x y z  are the coordinates of the 

polyhedron centroid, , , , ,r i r i r i r i
V x y z =   is the vertex-set of the unmodified, regular 

polyhedron, and ,max ,min,
r r

z z are the maximum (highest) and minimum (lowest) z-coordinates of 

the unmodified regular polyhedron. 

 

The fitness function for various shapes was studied. For example, looking at a 10
o
 view cone, 

Figure 40 and Figure 41 show the fitness function over the transformation parameters the 

Cuboctahedron and the tetrahedron.  
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Figure 40: Transformation Optimization Fitness Function of Cuboctahedron for 10o View Cone 

 

 

Figure 41: Fitness Function of Tetrahedron for 10o View Cone 

 

The Based on the fitness functions above, the optimal Cuboctahedron and tetrahedron are created 

for a 10
o
 view cone. 

F 

F 
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Figure 42: Transformed Cuboctahedron for 10o View Cone 

 

In Figure 42 we notice that the shape of the Cuboctahedron has been transformed into something 

that resembles a pyramidal Tetrahedron-like shape. This follows from the fact that for a narrow 

vertex-view cone, the Tetrahedron performs well. Figure 43, the Tetrahedron has been 

transformed to improve a 10 degree view performance from the top vertex. 

 

 

Figure 43: Transformed Tetrahedron for 10 Degree View Cone 
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For a 360
o
 view-cone, the untransformed regular Cuboctahedron was the optimal solution, and 

there existed no tetrahedron that would provide any non-zero fitness value for this cone. Since 

we desire high constraint from all views, the untransformed regular Cuboctahedron was chosen 

for experimental analysis & validation. 

4.1.3 Numerical Simulations 

Numerical simulations were carried out to verify the ICP performance of our optimized shapes. 

All shapes were scanned using a medium-sparse scan density (85 to 100 points per view), over 

the entire 360
o
 view map. Random noise (2 – 4 [mm]) was added to each scanned point, for 100 

noise trials per view case.  

The ICP Registration Error for the regular Cuboctahedron and the regular Tetrahedron were 

plotted versus the EI value for the shape. 

As can be seen in Figure 44, the Tetrahedron has poor performance, and high ICP error for low 

EI values. This occurs for any view that “sees” only two faces. It does contain some low error, 

high EI characteristics, but the large gap between low and high values, and the prevalence of the 

poor-performance poses validates the results in Section 4.1.1.  

In Figure 45 we notice that the regular Cuboctahedron has clustered low ICP registration error 

compared to the Tetrahedron. There are no values for which the EI is zero. Our candidate 

selection choice is validated as we look at the Pose Error performance of both shapes. In Figure 

46, the Tetrahedron again demonstrates its high gradient, with high pose error/low EI and low 

pose error/high EI clusters. Conversely, Figure 47 (Regular Cuboctahedron Pose Error vs. EI) 

shows only the low pose error/high EI clusters, exactly as desired for high constraint 

performance from all views.  
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Figure 44: ICP Registration vs. EI for Tetrahedron 
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Figure 45: ICP Registration Error vs. EI for Regular Cuboctahedron  
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Figure 46: Pose Error vs. EI for Tetrahedron 

Expected Value from Theory 

*             Mean Pose Error 
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Figure 47: Pose Error vs. EI for Regular Cuboctahedron

Expected Value from Theory 

*             Mean Pose Error 
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Finally, we look at the Pose Error vs. View Angles (Azimuth and Declination) for the 360
o
 

optimal Cuboctahedron (Figure 48) and the 10
o
 optimal Cuboctahedron (Figure 49). Figure 48 

shows low pose error from all views, as expected. Figure 49 for the 10-degree optimal 

Cuboctahedron shows low pose error for all views from 0
o
 to a little more than 10

o
, and high 

pose error elsewhere. However, there is a spread of low pose error, and low pose error for more 

than just the 10
o
 view-cone, demonstrating the remarkable constraint characteristics of the 

Cuboctahedron family of polyhedra. 
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Figure 48: Regular Cuboctahedron (Top Right), Pose Error vs. View Angles for Regular Cuboctahedron (Bottom) 
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Figure 49: 10o optimized Cuboctahedron (Top Right), Pose Error vs. View Angles for 10o optimized Cuboctahedron (Bottom)
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4.2 Design of unambiguous shape 

Using the polygon connectivity and dihedral angle sets of the selected candidate, 3D 

transformations were applied to the polyhedron in order to produce unique sets of dihedral 

angles, which are then tested against the ambiguity measures defined in Chapter 3. Due to the 

difficulty in counting local minima in-loop, especially for shapes that have poorly defined 

gradients and regions of minima, the best-fit slope of the pose-error method was minimized by 

the optimization. Finally, from the shapes designed by the optimization process, the EI map was 

used again to select a final shape that had the best constraint characteristics. At this point it 

should be noted that the optimization process makes a number of assumptions regarding shape 

concavity thresholds and face obliquity thresholds (i.e. there is no bound on these quantities), 

which is unrealistic given poor LIDAR performance under certain conditions.  

4.2.1 Candidate Selection & Optimization 

Based on the results of Section 4.1, and the constraint characteristics of even heavily modified 

Cuboctahedra, the Cuboctahedron shape was chosen again as a base shape for the reduced 

ambiguity design process. As shown in Chapter 2, ambiguity is directly related to rotational 

symmetry, so our design process begins by identifying a method to break rotational symmetry. 

The transformations described in Section 4.1.2 were now modified to a xy-skew and an xz-skew: 

( 1,....,015.0,01.0,005.0=XYT ), applied to each vertex of the polyhedron niVi ,...,2,1, = , as follows: 
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and  

( 1,....,015.0,01.0,005.0=XZT ), applied to each vertex of the polyhedron niVi ,...,2,1, = , as follows: 
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The skew ratios were chosen with similar rationale as in the optimization-for-constraint step, 

with all variables the same (See Section 4.1.2). ,min ,max ,min ,max, , ,
r r r r

y y x x  are the minimum and 

maximum y and x coordinate values, respectively, of the unmodified polyhedron. 

Additionally, the Adjacent Dihedral Set of each polygonal of the Cuboctahedron mesh are 

defined as the dihedral angles between each polygon of the Cuboctahedron and the polygons that 

share an edge with it. For example, Polygon #14 (Shown in Figure 50) is surrounded by 

Polygons 16, 21 and 13. Dihedral angels are calculated as: 

( )
jiji nn ˆˆarccos, ⋅=θ      (35) 

where n̂  is the unit-normal of the given polyhedral patch, creating an Adjacent Dihedral Set for 

Polygon #14 as [ ]13,1421,1416,14 θθθ . The Cuboctahedron has 20 such Dihedral Angle Sets, one 

for each triangular polygon (Even though the Cuboctahedron has 14 faces, each 4-sided face is 

broken down into 2 triangular polygons for a total of 2 x 6 + 8 triangles). The blue arrows in 

Figure 51 mark polygon normals.  
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Figure 50: Cuboctahedron Polygon Map and Normals 

 

The skews were then iterated such that the function G yielded a zero value if all Adjacent 

Dihedral Sets for the transformed shape are not unique (within a 3
o
 arc) sets, and a value of 1 if 

the sets were unique. The threshold value of 3
o
 was chosen arbitrarily, and should ideally depend 

on the characteristics of the LIDAR sensor, the point-density of the scan used, and noise 

characteristics. 

The transformation that yields both the best EI map (selected similarly to Section 4.1.1) is 

evaluated by applying the Pose-Error Method identified in Chapter 3. The resultant polyhedron is 

shown in Figure 51, with its EI Map in Figure 52. Green arrows in Figure 51 mark polygon 

normals. 
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Figure 51: Reduced Ambiguity Cuboctahedron Polygon Map and Normals 

 

Figure 52: EI Map of Reduced Ambiguity Cuboctahedron 

 

4.2.2 Numerical Simulations 

The results of the Pose Error Method evaluation presented below. 
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Figure 53: ICP Registration Error Method Ambiguity Measure for Reduced Ambiguity Cuboctahedron 
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Figure 54: Pose Error Method Measure for Reduced Ambiguity Cuboctahedron 
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Figure 55: ICP Registration Error vs. EI for Reduced Ambiguity Cuboctahedron 
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Figure 56: Pose Error vs. EI for Reduced Ambiguity Cuboctahedron
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The ICP Convergence and Pose Error characteristics of the Reduced-Ambiguity Cuboctahedron 

are comparable to the regular Cuboctahedron. ICP Registration error (Figure 55) is low, and the 

Pose Error vs. EI plot (Figure 56) shows the designed-for low pose error/high EI cluster.  

Based on the results of this chapter, three shapes (The Tetrahedron, the Regular Cuboctahedron, 

and the Reduced Ambiguity Cuboctahedron) were chosen for prototyping and experimental 

validation. 
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5 Experimental Validation 

Experimental Validation on three shapes (Regular Tetrahedron, Regular Cuboctahedron and the 

Reduced Ambiguity Cuboctahedron) was carried out in order to validate the design process, and 

provide real data for comparison with simulation data. At this point it should be noted that the 

simulation data presented in Chapter 4 is based on simple noise characteristics, scan point 

density and shape scale derived directly from the experimental setup, characteristics and test 

objects in order to better compare numerical simulation and experimental results. 

5.1 Experimental Development & Setup 

Mesh models of the Cuboctahedron and Reduced Ambiguity Cuboctahedron were exported and 

printed using a Rapid Prototyper (Figure 57). Figure 58 shows the two shapes printed. The 

shapes then had appropriate holes drilled into them for mounting. During the actual Experiment, 

the shapes were mounted on a roll-yaw mount at (Figure 60) provided by Neptec, and scan data 

was extracted using a commercial Laser Camera System (TriDAR) (Figure 61) developed by 

Neptec Design Group. The shapes were manually rotated to various pose configurations (Figure 

62), and scanned using various scan types and scan densities. For the purpose of this thesis, all 

analysis is based on the 256x256 Raster Scan data.  

 
Figure 57: 3D Printer (Rapid Prototyper) 
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Figure 58: Shapes being prepared for mounting 

 
Figure 59: Diagram of Experimental Setup 
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Figure 60: Roll/Yaw Tripod Mount provided by Neptec 

    
Figure 61: Mounted Cuboctahedron (Left) and LIDAR Scanner & Data Collection Station (Right) 

 

            
Figure 62: Three poses of the Reduced Ambiguity Cuboctahedron being prepared for scanning 
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5.2 Experimental Limitations & Data Characteristics 

In order to align the experimental results with simulation, a number of assumptions and 

considerations were made: 

 

1. The experimental results contained many background points, as well as noise that is 

extraneous to our studies. As shown in Figure 65, the data points exhibit a number of 

edge effects and artifacts. The data had to be cleaned manually to remove outliers, 

background, and some edge points from the original dataset. 

2. All theoretical values have been calculated with the Parallel Ray Assumption. With a 

distance of only 4 meters between the scanner and the target, this assumption is no longer 

wholly valid. Additionally, the dot size of the laser (Figure 64) from the scanning device 

is large, leading to high noise. The actual value of the noise was calculated from 

experimental data by using the RMS mean of the point-to-point registration error value 

for the best-fit ICP pose. This noise was calculated for each scan and each target. 

3. True Pose – uncertainty in the physical location of the origin [0,0,0] of the scanned data 

points (outside the scanner box), and uncertainties of physical setup measurement 

excludes the possibility of analytically calculating the true pose for each pose 

configuration. Therefore, ICP pose estimate resulting from the main 256x256 dense raster 

scan is used as the True Pose. Then, the scan is decomposed into sub sets of 100 points, 

creating 40 – 120 sparse scan sets, which are then compared against the ICP pose 

estimate from the dense scan in order to compute individual ICP Pose Error. 
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Figure 63: Complete Point Cloud with Background & Target obtained from scanner 

 

 
Figure 64: Laser Dot Size 
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Figure 65: Artifacts, Face Obliquity and Edge Effects in Data 

5.3 Data & Comparison 

Figure 66 shows the experimental pose error and mean pose error for the Tetrahedron. There 

were 23 views (poses) scanned for this target shape, with an average point-to-point registration 

error of 3 mm. 

Looking at the mean pose error and expected value of the pose error calculated from Equation 

(24), we notice the similarity to simulation data (Figure 67), as well as the close congruence 

between the expected value of the error and experimental mean pose error. 

Figure 68 shows the experimental results for the Regular Cuboctahedron, also similar to 

simulation data (Figure 70). This target shape had slightly higher noise characteristics, averaging 

to approximately 4 mm ICP point-to-point registration error. Seven poses were scanned for this 

target. The tight clustering of the low-error high EI validates our design methodology in 

selecting a shape for high constraint characteristics. 
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Figure 66: Regular Tetrahedron Experimental Pose Error & Expected Value 
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Figure 67: Regular Tetrahedron Simulation Mean Pose Error and Expected Value 

Expected Value from Theory 

*             Mean Pose Error 
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Figure 68: Regular Cuboctahedron Experimental Pose Error & Mean Pose Error 

Expected Value from Theory 

*             Mean Pose Error 
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Figure 69: Regular Cuboctahedron Experimental Pose Error & Mean Pose Error based on View # 
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Figure 70: Regular Cuboctahedron Simulation Mean Pose Error and Expected Value 

Expected Value from Theory 

*             Mean Pose Error 
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Figure 71: Regular Cuboctahedron Simulation Mean Pose Error and Expected Value based on View # 

 



Ideal Target Design for LIDAR-based ICP Pose Estimation for Space Vision Tasks                 Chapter 5: Experimental Validation 

 
Page 82 

 

Figure 72: Reduced Ambiguity Cuboctahedron Experimental Mean Pose Error and Expected Value 

Expected Value from Theory 

*             Mean Pose Error 
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Figure 73: Reduced Ambiguity Cuboctahedron Experimental Mean Pose Error and Expected Value based on View # 
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Figure 74: Reduced Ambiguity Cuboctahedron Simulation Mean Pose Error and Expected Value 
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Figure 75: Reduced Ambiguity Cuboctahedron Simulation Mean Pose Error and Expected Value based on View #
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The Reduced Ambiguity Cuboctahedron had the maximum ICP Registration Error overall, with 

an average of approximately 6 mm point-to-point error, possibly due to a greater degree of edge 

effects and effects due to face obliquity. 15 poses were scanned in the process. Figure 72 shows 

the experimentally obtained pose error and mean pose error, while Figure 73 shows the expected 

value of the pose error and mean pose error. When compared to the simulation data (Figure 74), 

we notice a higher error in experimental data. When the greater noise characteristics are taken 

into account, the higher pose error is adequately modeled by the expected value, as shown in 

Figure 73.  

The experimental results help us establish the validity of the Cuboctahedron as a desirable target 

shape in terms of constraint, as well as the simulation results and the expected value predicted by 

the Expectivity index. The uncertainty of True Pose, and the relatively low number of poses 

scanned makes valid calculation of the ambiguity of the experimental results difficult. However, 

given the difference in actual data and simulation data, it is obvious that scanner characteristics, 

including sensitivity to obliquity have to be taken into account when determining thresholds for 

the ambiguity-reduction process. Chapter 6 presents additional future work that has to be 

undertaken in order to apply the design methodology successfully.  
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6 Conclusions  

Accurate shape registration and pose estimation are critical tasks for computer vision 

applications including autonomous rendezvous and docking of spacecraft. Current docking 

systems utilize passive imaging cameras that cannot operate over long distances and in various 

illumination conditions. LIDAR-based scanners are the preferred alternatives for 3D pose 

estimation in space. The Iterative Closest Point (ICP) algorithm is the one of the most commonly 

used methods for 3D shape registration and pose estimation, but suffers from the problems of 

computational cost and a tendency to converge on local minima. Continuum Shape Constraint 

Analysis (CSCA) provides a tool that can be used to measure ICP performance for any 3D shape.  

Given the problem of ICP convergence for badly-constrained spacecraft shapes, this thesis works 

to design a 3D target shape for LIDAR scanners that would act as an analogue to fiducial 

markers for CCD cameras on spacecraft objects. The design of an ideal target shape eliminates or 

reduces the impact of various issues in the LIDAR-based pose estimation problem, including 

non-ideal scan windows and model uncertainties. It also allows us to design for maximum ICP 

performance, and eventually, reduced error due to model geometry. This work uses the 

theoretical development of Continuum Shape Constraint Analysis, and provides additional 

simulation and experimental validation of the tool. 

The study resulted in developing methodology for creating an “ideal” target shape for LIDAR 

based pose estimation. Following this methodology, two shapes were designed. The 

Cuboctahedron showed minimum registration and pose errors from all angles if the pose initial 

guess was close to the truth pose.  The Reduced Ambiguity Cuboctahedron showed similar 

performance regardless of the initial guess. Specific results, as well as recommended future work 

are included in this section.  

6.1 Summary of Specific Results 

 It was found that: 

1. EI was shown to be the best (among NAI and ME) design tool for selecting and 

optimizing a geometric shape for LIDAR pose estimation.  
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2. For vertex views of a shape, the EI profile was inversely proportional to the number of 

faces connected to this vertex. The vertex with 3 faces has the best EI profile for all 

dihedral angles. The max EI value for a n-sided vertex was always for angles between 

100 and 150 degrees. 

3. For face views, the fewer the number of polygons attached to a viewed face, the better the 

EI profile for the mesh with the exception of the 3 and 4 sided figures. 

4. The edge views deliver zero EI (pose is unconstrained as only two faces are viewed) 

unless the view contains additional faces. 

5. The best characteristic used for the target design was identified as a high overall EI 

profile without any steep local minima.  

6. Of the family of convex polyhedra studied (Platonic, Archimedean and Johnson solids), 

the Cuboctahedron showed the most desirable EI function, and the EI function remained 

high constraint, no-zero/no-valley even under various stretch and skew transformations. 

7. Shapes could be transformed and optimized for high constraint for a given range of views 

within a “view cone”. For a full 360
o
 view cone, the un-deformed Cuboctahedron 

provided the highest constraint, whereas for a 10
 o 

view cone (top view), a severely 

deformed Cuboctahedron with a stretch factor of 1.8 and a skew factor of 1 (no-skew) 

was found to be ideal. 

8. The multiple local-minima problem of ICP, referred to as shape ambiguity in this study, 

was addressed by looking at various polyhedra. Two methods of measuring shape 

ambiguity were designed: 

a. A method that utilizes ICP registration error and counts minima in the ICP 

registration error function demonstrated a clear correspondence between the 

number of ICP minima and the shape’s rotational symmetry, but was difficult to 

use because of the difficulty in counting minima or determining threshold values 

for gradients. 

b. A method that utilizes ICP pose error and compares the pose-clustering of 

erroneous ICP output was found to demonstrate a general trend of increasing ICP 

pose error with an increasing ICP initial-guess pose error. Statistical values of the 

data output from this method, such as standard deviation and means can be used 

as a design tool. 
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9. A shape was heuristically designed by varying the sets of normals that correspond to the 

shape’s surface polygons, and analyzed using the ambiguity measurement tools in the 

study. It was found that breaking the rotational symmetry of the shape significantly 

reduces ambiguity, and lowers the number of local minima that ICP can fall into.  

10. Experimental validation for both constraint and ambiguity was carried out on selected 

shapes. The Cuboctahedron’s designed-for properties of high constraint and low ICP 

error were verified, as were the Tetrahedron’s undesirable characteristics. The reduced-

ambiguity Cuboctahedron was also verified to have high constraint.  

11. It was also found that for reduced-ambiguity designs, the sensor characteristics relating to 

object geometry (face obliquity and edge-effects) need to be considered in order to 

reduce data noise. 

6.2 Future Work 

Additional research work is recommended primarily in the area of LIDAR sensor sensitivity to 

target geometry, and noise considerations. In order to enhance the design methodology presented 

in this work, modifications need to be made to the thresholds and optimization functions in order 

to account for such. 

A number of LIDAR scanners need to be studied in order to determine common key 

characteristic of sensitivity to target geometry, including edge prevalence and face obliquity. A 

custom scanner metric needs to be designed that will combine this sensitivity with the noise and 

dot characteristics of the scanners studied, and can be applied directly to the optimization 

processes developed in Chapter 4.  

A rigorous and analytical treatment of ambiguity is required in order to remove the reliance of 

the ambiguity-reduction process on numerical trends and solutions, especially where these 

numerical trends are not wholly clear. A custom ambiguity metric needs to be designed that can 

be used as a design tool, similar to the EI metric, to minimize the shape’s ambiguity cost 

function, also to be developed.  
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It should be noted that this study is focusing on a single ideal target in any configuration versus 

multiple non-ideal targets in an ideal configuration. A comparative analysis between these two 

methods needs to be carried out, in terms of constraint, ambiguity and scanner sensitivity.  
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Appendix A: Sensitivity Indices for Discrete-Point Pose 
Estimation* 

In this appendix we exercise the small misalignment form of the computed registration cost 

function to produce three types of sensitivity index for pose estimation. The first two of these are 

the Minimum-Eigenvalue and related Noise Amplification (NAI) Indices. The first is a basic 

result. Nahvi and Hollerbach [68] derived the second as a parameter error sensitivity index in a 

general form for nonlinear least-squares optimization and Simon adapts it in for pose estimation, 

using it extensively in [96] for assessing marker point configurations. Our alternate derivation in 

the self-registration context more directly deals with the attainable accuracy by starting from the 

true pose and moving to the noise induced perturbed minimum. The third index, the Expectivity 

Index, is developed and used for assessing general pose estimation accuracy. Our work also more 

explicitly focused on the size of the point-wise error. 

The solution to the small misalignment cost function with added noise is: 

1

ε
−=p E e       (A.1)   

We can re-express the discrete-point cost matrix E and the Jacobian factor e  embedding the 

noise error in extended column form as: 
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   (A.2)  

We define pose-error uncertainty sensitivity indices k that range from zero when E is singular 

(unconstrained configuration) and favors better pose estimation with increasing value.  The 

indices are written in terms of the const matrix eigenvalues { } { }eig
k

λ = E noting that these are 

                                                
* Reproduced from work by McTavish and Okouneva under the Ryerson/Neptec/CSA Partnership Project 
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also the squared singular values of the { }col
i

Ψ matrix. For convenience, we write out the norm 

of the extended error vector as:  

{ }
2

1

col
N

i i

i

ε ε
=

= ∑       (A.3)  

and we identify an upper bound ε on the point-wise noise 
i

ε in order to write: 

{ }col
i

Nε ε≤ ⋅       (A.4)  

Minimum Eigenvalue Index 

The Minimum Eigenvalue Index is the basic result found from separating the noise error from 

the Jacobian and fully consolidating the geometry terms of the pose solution: 

{ } { }1
col coli iε ε−

≤ ⋅p Ψ E      (A.5)  

Since { } { }1 1 1col coli i

− − −=
T

Ψ E Ψ E E  we obtain 

{ }
min

1
col iε ε

λ
≤ ⋅p      (A.6)  

which is the standard result from linear algebra reflecting the maximum possible magnification 

of a norm-bounded vector. We define the Minimum Eigenvalue Index as 

min min MEk kλ λ =�       (A.7)  

and rewrite (A.5) as: 

{ }
ME

1
col i

k
ε ε≤ ⋅p       (A.8)  
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Noise Amplification Index 

Although its authors [68] present the development of NAI in the context of a norm bound, it is 

essentially a heuristic modification of the Minimum Eigenvalue Index that seeks to favour a 

more “spherical” pose-error space (balanced gradient in all pose directions) over a “less-

spherical” space. The square-root of the ratio of maximum to minimum eigenvalue of 

E quantifies the ratio of extreme dimensions for the “error hyper-ellipsoid” [96] and is also the 

condition number of the matrix { }col iΨ denoted here as κ . The inverse of this condition 

number has a maximum value of unity for a spherical pose-error space and less than unity 

otherwise. The NAI is thus constructed 

min min
NAI ME min

max max

1
k k

λ λ
λ

κ λ λ
⋅ = ⋅ =�    (A.9)  

And satisfies the norm relationship 

{ }
NAI

1
col i

k
ε ε≤ ⋅p       (A.10)  

though not generally a minimum upper-bound relationship (unless 1κ = where NAIk coincides 

with MEk . The same NAI can also be generated rapidly from (A.1) by not consolidating the 

geometry terms while generating a norm bound relationship: 

{ } { }1 1
col coli iε ε− −

≤ ≤p E e E Ψi i i    (A.11)  

leading directly to 

( ) { } { }max

min NAI

1 1
col coli i

k
ε λ ε ε

λ

 
≤ = 
 

p i i i   (A.12)  

which leads to an alternative interpretation of NAI. Recognizing the that e  is the spurious 

gradient of E  added to the self-registration cost function due to noise, NAI is an index that takes 

the most significant possible impact on the gradient magnitude (provided by maxλ ) and reflects it 
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through the worst possible (i.e. lowest) gradient direction (governed by the reciprocal minλ ). NAI 

seeks to minimize the hypothetical net effect of these two undesirable events. 

Before proceeding, we make the following comment regarding the use of either the Minimum-

Eigenvalue or the Noise Amplification Index. Though following from a consideration of pose-

error norm, we are generally working with noise that includes a range of bias and zero-mean 

random components. Especially when working with the larger data sets of a LIDAR scan, the 

likelihood that the most deleterious distribution of error required to “max out” such a norm 

bound would ever occur can be dismissed. The norm bound form can thus be misleading, 

especially when written in terms of the point-wise error ε  using (A.4), i.e., 

( )
NAI

1
N

k
ε ε

 
≤  
 

p i i      (A.13)  

which seems at first to indicate that the pose error is allowed to be larger if more points are used. 

Of course, as defined above, the k indices are dimensional with square-root of eigenvalue that 

also generally increases with N . This still conceals the fact that with a random component of 

noise error we will certainly find a lowering of the pose error due to simple averaging in the 

computed cost minimization. 

Although we use point-number normalized eigenvalues and indices in the text to tidy things up, 

the above comments are meant to underline the point that the norm-based indices are posed as 

general sensitivity metrics. Without further interpretation they may be used to compare different 

shapes or point configurations only under similar conditions with respect to the number of points 

involved and the nature of the error noise. 

Expectivity Index 

In this section we develop an index that is intended to differentiate between configurations or 

views according to net expected pose error across all directions in pose space. The actual 

location of the small-pose solution (A.1) is driven by the distribution of noise-error in the sample 

data set via the geometry of the nominal point locations. We avoid a heuristic appraisal of the net 



 

 
Page 95 

“size” of the pose-error space, and derive our index using elementary statistics, based on the 

assumption of zero-mean random noise. 

We examine the expected value of the pose-norm squared (i.e., the pose-error variance from the 

true pose): 

{ } { } { }{ }2 T Ttraceε ε ε ε εε ε ε= =p p p p p    (A.14)  

We presume the noise error { }iε  to be zero-mean, random and uncorrelated with a per-

component variance of 2

εσ  hence 

{ }T 2

ε ε εε ε σε =       (A.15)  

and, defining { }ˆ col i=Ψ Ψ , 

{ } ( ) ( ){ } ( )
2T

T 2 1 T 1 T 2 1 Tˆ ˆ ˆ
F

traceε ε ε εσ σε − − −= =p p E Ψ E Ψ E Ψi i   (A.16)  

where 
F
i is the Frobenius matrix norm.  Evaluating this norm via eigenvalues… 
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hence 

{ }T 2 1
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ε ε εσ
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∑p p i      (A.18)  

Taking the square root 

{ }T 1

k k

ε ε εσ
λ

ε = ∑p p i      (A.19)  

leads to our definition of the Expectivity Index: 
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1

EI

1

k k

k
λ

−

 
  
 
∑�       (A.20)  

This averaging of the eigenvalues that falls out of the Frobenius norm is essentially the harmonic 

mean, but without the averaging number. This index can be used as a relative indicator of 

statistical pose estimate accuracy, but also as an absolute predictor via 

{ }2

EI

1

k
ε εσε =p i       (A.21)  

if the noise standard deviation εσ is known. Unlike NAI, the Expectivity Index does not indicate 

isotropy of the pose-error space and thus says nothing directly regarding the distribution of the 

pose-error, only the expected value of its standard deviation. 
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