
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2009

Analysis of electromyogram in rapid eye movement
sleep
Mehrnaz Shokrollahi
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Shokrollahi, Mehrnaz, "Analysis of electromyogram in rapid eye movement sleep" (2009). Theses and dissertations. Paper 946.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/946?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca


ANALYSIS OF 
ELECTROMYOGRAM IN RAPID 

EYE MOVEMENT SLEEP 

Mehrnaz Shokrollahi, B. Eng 

Ryerson University, Toronto, 2007 

A thesis 
presented to Ryerson University 

in partial fulfillment of the 
requirements for the degree of 

Master of Applied Science 
in the program of 

Electrical and Computer Engineering 

Toronto, Ontario, Canada, 2009 

@Mehrnaz Shokrollahi, 2009 

/ PRO. "= TY F 
RY~1SON U 'fVd~SlTY UBAARV 



Author's Declaration 

I hereby declare that I am the sole author of this thesis. 
I authorize Ryerson University to lend this thesis to other institutions or individuals for the 
purpose of scholarly research. 
Signature 

I further authorize Ryerson University to reproduce this thesis by photocopying or by other 
means, in total or in part, at the request of other institutions or individuals for the purpose 
of scholarly research. 
Signature 

ii 



Abstract 

ANALYSIS OF ELECTROMYOGRAM IN RAPID 
EYE MOVEMENT SLEEP 

@Mehrnaz Shokrollahi, 2009 

Masters of Applied Science 
Electrical and Computer Engineering 

Ryerson University 

The aim of this study is to analyze Electromyogram (EMG) signals in Rapid Eye Move­
ment (REM) sleep using different techniques to detect the level of normality and abnormality 
of normal and abnormal (patients with a lack of REM sleep atonia) subjects and predict the 
development of Parkinson's disease in abnormal subjects. 

Quantitative electromyography (EMG) signal analysis in the frequency domain using clas­
sical power spectrum analysis techniques have been well documented over the past decade. 
Yet none of these work have been done on EMG during Rapid Eye Movement (REM) Stage 
of sleep. 

In this work three techniques for classifying chin movement via EMG signals during sleep 
is presented. Three methods (Autoregressive modeling, Cepstrum Analysis and Wavelet 
Analysis) for extracting features from EMG signal during sleep and a classification algorithm 
(Linear Discriminant Analysis (LDA)) were analyzed and compared. 

EMG data are used to detect and describe different disease processes affecting sleep. 
Rapid Eye Movement Behavior Disorder (RBD) is an example of EMG abnormality in which 
patients lose their muscle control while in REM stage of sleep resulting in physically act­
ing out their dreams. An adaptive segmentation based on Recursive Least Square (RLS) 
algorithm was analyzed. This algorithm was used to segment the non-stationary EMG 
signal into locally stationary components, which were then autoregressive modeled using the 
Burg-Lattice method. The cepstral measurements described was used and applied to mod­
ify the coefficients computed from the autoregressive (AR) model. Yet due to the nature 
of the EMG, frequency analysis cannot be used to approximate a signal whose properties 
change over time. To address this problem a time varying feature representation is neces­
sary for analysis to extract useful information from the signal. As a consequence Wavelet 
coefficients were computed using discrete and continuous wavelet transforms. 

Furthermore, the classification performance of the above three feature sets were investi­
gated for the two classes (Normal and Abnormal). Res-q.lts showed wavelet analysis compared 
to AR modeling and cepstrum analysis is a better assessment in finding EMG abnormalities 
during sleep. However, these methods may be useful in distinguishing EMG patterns that 
predict the emergence of Parkinson disease in humans. 
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Chapter 1 

Introduction 

SLEEP and sleep-related problems play a role in a large number of human disorders, 

and affect every field of rnedicine. Clinicians and other healthcare professionals re­

ceive extensive training in order to be sufficiently qualified to detect and prevent diseases. 

Although the skills acquired by these medical facilitators are quite extensive, it is just as 

important for them to have access to an assortment of technologies, and to further improve 

their monitoring and treatment capabilities. In fact, these approaches may provide useful 

information to clinicians in the form of an easily applicable measure of disease treatment , 

which is sensitive to early neurodegenerations and treatment responses. 

Electrodes and signal acquisition technology can be used to gather a variety of biomedical 

signals such as electrocardiogram (ECG), electroencephalogram (EEG), electrooculogram 

(EOG), and electromyogram (EMG), which records the electrical activities of the heart, 

brain, eyes, and muscles respectively. The analysis of these signals can show the physiolog­

ical behavior of an organ or set of organs based on a quantity, which varies over time [I]. 

The information that these signals carry is significant in the development of better human 

understanding to further improve the healthcare and the quality of life of individuals. 

The science of health in society has improved in the past decade, yet about 170,000 to 

250,000 people die from a sudden cardiac arrest, 14.5 of every 1000 people die from severe 

sleep apnea, and the rate of cancer death in Canada in the year of 2008 was estimated to be 

73,000 people. In addition, statistics concerning the 10 year mortality data from the Sydney 

1 
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Figure 1.1: Annual Death in North America [3] 

multicentric study of Parkinson's disease shows that patients with this condition still die 

at a rate in excess of their peers despite advances in therapeutics and surgery [2). These 

diseases such as Severe Sleep Apnea or Parkinson's could cause traffic accidents, sudden 

cardiac arrest, or, reduce the quality of life. Therefore, society is still facing the most serious 

challenges of the world, in overcoming these fatal diseases. In this regard an extensive 

research is required for diagnostic and therapeutic of many diseases. Figure 1.1 shows the 

Annual Deaths in USA and Canada [3). Sleep is, closely, related to every facet of the daily 

life. In this respect, disturbed sleep affects not only the health and wellbeing of individuals, 

but also their quality of life [4). According to National Sleep Foundation (NSF), millions of 

· people suffer from lack of proper sleep. NSF has shown that at least 40 million Americans 

suffer from over 70 different sleep disorders, which in turn, directly affects their quality 

of life [5). The introduction of a number of new techniques, during the past few decades, 

including polysomnographic (sleep study), surface measurements of central nervous system 
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(CNS) activity, eye movements, and muscle activity, have allowed sleep to be described in 

electrophysiological terms [6]. Studying sleep behavior is very important, since it affects all 

humans. Therefore, this work is mainly dedicated to the analysis of sleep and to a type 

of disorder, called Rapid eye movement sleep Behavior Disorder (RBD). Before explaining 

the sleep macroarchitecture, the type of signals that are being used in sleep studies will be 

explained. 

1.1 Biomedical Signals 

Signals are functions of one or more independent variables, and typically contain information 

about the behavior or the nature of some phenomenon. In other words, systems usually 

respond to particular signals by producing other signals. Moreover, medical signals are very 

important and, are widely used in medicine to predict the disease, diagnosis of the disease, 

understand the effect of medicine, as well as response to therapy. As explained before, signals 

such as EEG, EOG, and EMG could be used to detect many sleep disorders, and in fact these 

signals are recorded in sleep laboratories from the subjects suffering from a sleep disorder, 

and further analyzed by sleep experts. The properties of EEG, EOG , and EMG signals help 

the sleep technicians score the various stages of sleep and develop a hypnogram - a graph 

of the sleep stages over time. The hypnogram reveals the macroarchitecture of sleep, by 

characterizing the alternation of different sleep stages. Each sleep staging decision is based 

on a 30-second window of the physiological signals, called an Epoch. 

1.1.1 EEG 

The EEG is a recording of the electrical activity of the brain, from the scalp. This recorded 

waveforms reflect the cortical electrical activity of the brain [1]. Figure 1.2 shows the main 

frequencies of the human EEG waves [7]. The different frequency types of the EEG wave 

has been used extensively in polysomnography to detect different sleep stages. 
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Figure 1.2: EEG waves [7] 

1.1.2 EOG 

The EOG signal has been frequently used in sleep recording , and it has been mostly used 

for recordings the eye movements in sleep research [8]. The eye movement (horizontal and 

vertical movements) aids doctors and sleep specialists to analyze the effect of medical drugs 

prescribed to a patient with different diseases, such as depression. Also, like EEG, EOG has 

been widely used in polysomnography to detect different sleep stages. 

1.1.3 EMG 

The electromyogram is used to record the electrical activity of muscles. When muscles are 

active they produce an electrical current which is proportional to the level of the activity. In 

polysomnography, the EMG consists of tonic (steady) and phasic (intermittently elevated) 

bursts in different stages of sleep. The phasic activity is defined as any burst of EMG 

activity lasting for 0.1- 2s, and has an amplitude of at least 50 J.LV, while tonic constitutes 

the remainder [9]. Figures 1.3 and 1.4 show the EMG signals during sleep for both normal 

and abnormal subjects respectively. It has been shown that by studying the behavior of 
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Figure 1.3: Normal chin EMG signal in Sleep 

these different signals one can detect the sleep abnormalities, in different subjects [7]. 

1.2 Sleep 

Sleep is a universal biological phenomenon, and in humans accounts for the way in which 

one spends a third of his/her life. Sleep is not an eventless process, on the contrary, many 

events occur in the body during this state: blood pressure falls, heartbeat slows down, mus­

cles relax, and the body's metabolic rate decreases. Sleep in normal adults is accomplished 

when a number of changes in the CNS bring about a set of behavioral, physiological, and 

psychological changes. The sleep-wakefulness cycle can be characterized by the polysomno­

graphic recording of three basic parameters: EEG, EOG, and EMG. From these three basic 

parameters three different states of sleep are distinguished: Waking state, Non-rapid Eye 

Movement (NREM) sleep, and Rapid Eye Movement (REM) sleep [10]. The following will 

show the characteristics of each state in details [6][11]. 

Wakefulness The signal has sinusoidal wave type characteristics, (alpha activity of 8-
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Abnormal EMG Signal in Sleep 

0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 
Time 

Figure 1.4: Abnormal chin EMG signal in Sleep 

12Hz), intermixed with lower amplitude irregular beta wave (13-35Hz). The EOG 

activity maybe slow or rapid, usually recorded, as out of phase or in phase deflections. 

The EMG activity is relatively high and tonic, and there are movement artifacts. 

Non-REM Sleep The subject is lying down motionless, his/her eyes are closed, and a 

given sensory input such as noise and light no longer induces behaviorial responses. 

From the polysomnography point of view, this state of sleep consists of 4 different 

stages of sleep. 

• Stage 1: The subject falls sleep and his/her muscles relax. The EOG has slow and 

predominantly horizontal eye movements. At the EEG level, the alpha activity 

has relatively low-voltage waves (50- 70J.LV) and the theta range of 4-7Hz. 

This Stage only last for a few minutes, if the subject is not disturbed. 

• Stage 2: This Stage consists of sleep spindles and K-complexes. Sleep spindles 

are detected as brief bursts of rhythmic waves, with a frequency of 12 - 14Hz 

and a duration of at least 0.5 s. On the other hand, K-complexes are defined to 



7 
be relatively high -amplitude potentials, as well as, having a negative sharp wave 

followed by positive components, with a total duration of more than 0.5s. The 

slow waves also happen in this Stage on irregular timely intervals. 

• Stages 3 and 4: These two Stages are characterized by having a delta wave of 

1-2Hz or slower, and an amplitude of 75J-LV or greater. The difference between 

these two Stages is that of in Stage 3, at least 20% to not more than 50% of the 

scoring epoch consists of delta wave activity. However, if more that 50% of the 

epoch contains delta wave activity, sleep is classified as Stage 4. These two Stages 

are also referred to as slow wave sleep. 

REM Sleep : The subject is more unresponsive in this stage than during NREM sleep. 

His/her eyes are periodically moving under the closed eyelids. This is the Stage in 

which the dreaming occurs. The polysomnography is characterized to have a low 

voltage EEG activity, which is closely similar to that of Stage 1. The theta activity of 

4-7Hz exists, which is often in conjunction with bursts of REM. In contrast, muscles 

are completely relaxed, yet, the flat EMG tracing is periodically interrupted by muscle 

twitches. The REM state of sleep is characterized by two different twitches. One is 

the discontinuous event such as muscle twitches and REMs, which is called the phasic 

events. The other is continuous processes such as desynchronizing EEG and muscle 

hypotonia, which is called tonic events. 

Therefore, in mammals, the wake-sleep cycle have conjunction with prominent changes in 

their behavior. A young adult spends 20-28% of his/her sleep in the REM sleep; 4-5% in 

Stage 1; 46- 50% in Stage 2; 6- 8% in Stage 3; and 10- 16% in Stage 4. As stated before 

at least 20% of the today 's population suffer from a sleep disorder. When one does not sleep 

or is perceived not to sleep adequately, his/her quality of life is undeniably affected. The 

next section is devoted to a general overview of the different sleep disorders followed by an 

explanation of effect of the EM G signals in REM sleep, as well as a disease, called REM 

Behavior Disorder (RBD). 
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1.2.1 Sleep Disorder 

Many sleep disorders not only diminish daytime performance, increase sleepiness, and affect 

mood of an individual, but can lead to serious consequences such as: high blood pressure, 

cardiovascular diseases, stroke, and even death. Therefore, in recent years there have been 

many works devoted to the study and diagnosis of sleep disorders, and in fact researches 

have made genuine progress in recognizing sleep disorders in the general population and in 

clinical settings. Some of the common sleep disorders are listed below: 

Insomnia Out of 30% of the individuals who experience insomnia symptoms, 10% of them 

suffer from insomnia syndrome [13][14]. Insomnia as a symptom is a diagnostic criterion 

of other mental disorders such as depression, and as a syndrome maybe secondary or 

comorbid to another disease [15]. Insomnia is defined as a complaint of difficulty 

initiating, or maintaining sleep, or having a poor quality sleep for a period of at least a 

month. There are many consequences related to insomnia such as: fatigue, sleepiness, 

mood disruption, and effectively generating other problems including falling asleep 

while driving vehicles. 

Sleep Apnea Obstructive sleep apnea, usually, involves when the breathing of the subject 

is disrupted in sleep. This disease usually creates loud snoring followed by 20 - 30s 

of silence. Because of a serious disturbance in the subject's normal sleep pattern, 

people with sleep apnea often experience extreme fatigue during the day, and their 

concentration and daytime performance suffer. It has been estimated that up to 50% 

of the sleep apnea patients have high blood pressure, which could result in a sudden 

cardiac death during the sleep and stroke (16]. 

Narcolepsy This disorder usually happens in young adults, and is usually illustrated by 

multiple refreshing naps during the day. The day time polysomnography shows signs 

of drowsiness on EEG signal, associated with REM periods. On the other hand, the 

night time polysomnography shows an increased number of awakenings, as well as an 

increased amount of Stage 1. Again because of sleepiness, individuals suffering from 
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narcolepsy are at higher risk of having accidents at home or at work, or even on the 

road. In addition, education, occupation, and social relations may be influenced which 

in turn will affect the quality of the life of the patient [17]. 

REM Sleep Behavior Disorder (RBD) RBD is characterized by elaborating movements 

correlated with dream during REM sleep [15] [18]. In this condition, patients lose their 

normal muscle atonia, and in turn enact their dreams. REM sleep in mammals involves 

a highly energized state of brain activity, with tonic (i.e., continuous) and phasic 

(i.e., intermittent) activations, occurring across a spectrum of physiologic parameters 

[19][20]. Sleep neurophysiologists refer to REM sleep as active sleep, because of the 

high level of brain activity; and as paradoxical sleep, because there is a virtual absence 

of skeletal muscle activity despite a highly activated brain state. Generalized skeletal 

muscle atonia is one of the three defining features of mammalian REM sleep. Thus, 

the paradox of REM sleep resides in the absence of overt motor expression, during 

an active brain and mind (dream) state. The loss of this customary paradox in RBD, 

bears serious clinical consequences such as: paradox lost, which means loss of safe sleep. 

Serious injuries have the potential to occur as a result of dream acting behavior, leading 

to a compliant of "acting out my dream" [21]. The overnight polysomnography of the 

subjects also confirm the presence of muscle tone in REM sleep. In addition RBD can 

be an early warning for the emergence of Parkinsonism and other neurodegenerative 

conditions antedating the illness by many years [22]. 

Neuromuscular disorder in general may encompass many diseases that are via intrinsic 

muscle pathology, or via nerve pathology, which will in turn impair the functioning of the 

muscles. In other words, this type of disease could affect muscles and/ or nervous control. 

Therefore, studying the neuromuscular behavior of the subjects could help doctors and 

neurologist to detect many abnormalities. The mentioned disorders, if not detected, could 

result into Parkinson's, diabetes, periodic limb movements, and many more. The next 

subsection will explain some of these diseases and their relationship with EMG in sleep in 

more detail. 



EMG in REM for Normal Subject 
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Figure 1.5: Normal EMG signal in REM sleep 

1.2.2 EMG and RBD 

3.5 4 

10 
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X 104 

For patients with RBD, tonic tone is higher than in normal subjects. The increase in 

tonic EMG activity might reflect disease progression [19). It has been noted that RBD is a 

precursor to clinically evident Parkinson's disease, although medications may also affect this 

measure [20]. RBD is characterized by increased axial submental (under the chin) muscle 

tone. Therefore, chin EMG , which is routinely collected in sleep studies, can be used as 

a valuable signal in detecting early forms of neurodegenerative conditions. This may also 

provide a useful measure for assessing the response to neuroprotective drugs. Figures 1.5 

and 1.6 show the normal and abnormal EMG in REM sleep. 

It is worth noting that using the hypnogram for each signal, the EMG for different stages 

as well as REM sleep could be extracted. As a consequence Figures 1.5 and 1.6 are plotted 

using a hypnogram. As can be seen, the time axis of these two figures show different values, 

which is as a result of different REM periods of sleep for different subjects. 
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EMG in REM for Abnormal Subject 

2 3 4 5 6 
Time 

Figure 1.6: Abnormal EMG signal in REM sleep 

1.2.3 Parkinson's Disease 

Parkinson's disease (PD) and related movement disorders are common neurological diseases, 

particularly common in elderly people. Although the daytime phenomena of PD has been 

well recognized since the early 1800's, the frequent nocturnal symptoms, which occur in as 

many as 75% of patients, a~d the associated sleep abnormalities were not systematically 

studied until the 1960s. PD's characteristics, and pathological features have been known 

since the early 20th century, although its root cause is still uncertain [11]. 

Sleep medicine specialists have found that almost two-thirds of patients, with RBD, 

develop degenerative brain diseases, by approximately 11 years after diagnosis of RBD. 

That means, for every two RBD patients one will develop PD after 10 to 11 years. By the 

time a patient is diagnosed with PD about ninety percent of the patient's neurons are dead 

and medication becomes ineffective. However, if doctors could predict from RBD that a 

particular patient has the potential of developing a PD then treatment could start 10 years 

in advance, therefore increase recovery percentage of that patient. 
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The basic cause for sleep paralysis during REM happens in the brainstem, the part of the 

brain that connects the spinal cord with the cerebral hemispheres, and includes the pons , 

midbrain, and the medulla oblongata. Despite a complex process, doctors have observed 

that the brainstem undergoes changes in REM sleep, which results in paralysis of the body's 

voluntary muscles. Certain neurotransmitters, like acetylcholine (ACh) , become dormant , 

and do not naturally transmit motor activity to ensure restful and, inactive sleep during the 

most electrically active stage of sleep. On the contrary, in RBD patients, neurotransmitters 

are not blocked, and results in tonic or tensely contracted muscle movements. This will allow 

the sleeping person to move his/her muscles during REM. 

1.2.4 Data Acquisition 

A traditional scoring system for sleep has been established [10), with the electrophysiological 

parameters of EEG, EOG, and EMG. The system used for recording chin EMG signals 

during sleep includes 3 relatively midline electrodes, one above the jaw line, one below the 

jaw line, and one back-up electrode. The EMG signal is freely triggered and bandpass filtered 

at 10- 100Hz. The impedance of every electrode is less than 10KO with a minimum digital 

resolution of 12 bits per sample. The sampling rate is 256Hz, and similar electrodes are 

used to record EEG and EOG amongst other physiological parameters. Data collection from 

humans were facilitated through a protocol, approved by the Local Research Ethics Board 

(LREB). 

1.2.5 Dataset Type 

In this work, a subject is defined as historically normal if there is no history of any violent 

behavior during the night sleep; otherwise it is considered as abnormal. 4 volunteers with 

normal behavior and 4 subjects with RBD scheduled were selected to undergo the sleep test, 

independent of this work. Each subject slept at the clinic during a night, and signals such 

as EEG, EMG, and EOG were recorded from these subjects. 
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1.3 Signal Analysis 

Signal processing algorithms are needed to analyze and understand the signals. On the 

other hand, these techniques can exploit the intrinsic properties of the signal, which allows 

a specific function to be applied on the signal. Therefore, an analysis tool which could be 

tuned to characteristics of the signal is selected in such a way to extract the features of 

interest [23](24]. Thus, the primary goal of signal analysis is to extract useful information to 

understand the signal generation process, or extract features for signal classification purposes. 

Most of the methods in this area are treated under the disciplines of spectral estimation and 

signal modeling [25]. 

1.3.1 Signal Behavior 

The mathematical analysis of a signal requires the availability of a mathematical description 

for the signal itself. The type of description, usually referred to as a signal model, determines 

the most appropriate mathematical approach for the analysis of the signal [26] [27]. The term 

signal is used to refer to, either the signal itself, or its mathematical description, which is the 

signal model. The exact meaning will be apparent from the context. Clearly, this distinction 

is necessary if a signal can be described by more than one model. The most important 

classification of signal models are either deterministic or random. 

Deterministic Signals 

Deterministic signals are any signals which can be described by an explicit mathematical 

relationship. This characteristic of the signals allows for advanced prediction of signal quan­

tities. In the case of continuous time signal, the mathematical relationship is a given function 

of time [28]. 

Nondeterministic or Random Signal 

In contrast to deterministic signals, nondeterministic signals are defined to be signals that 

cannot be described, to any reasonable accuracy, by explicit mathematical relationships. In 
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other words, the lack of such an explicit relationship implies that the signal evolves in time 

in such an unpredictable manner. These signals are often called random. 

Yet, although random signals are evolving in time, in an unpredictable manner, their 

average properties can often be assumed to be deterministic. In other words, they can be 

specified by explicit mathematical formulas. At this point one could say that complete 

knowledge of the physics of the signal could provide an explicit mathematical relationship, 

at least within the limits of the uncertainty principle. This concept is a key to the modeling 

of a random signal, as a stochastic process. Random signals are further divided into two 

groups: 

Stationary : Stationary signal is a signal that its property does not change over time. In 

other words, it has a constant probability distribution for all time instants. This results 

in constant first and second order statistics such as mean and variance. 

Nonstationary : Nonstationary signal on the other hand has a time-varying probability 

distribution. This causes other properties that depends on probability distribution 

function (PDF) to be time-varying. 

It is a very well known fact, in the real physical world that there exists abundant kinds 

of signals. All those signals carry a lot of information that are of people's interests; peo­

ple develop diverse techniques to analyze, interpret, manipulate, and process those signals. 

Biomedical signals are types of signals that are strongly related with human body or human 

organisms. It has been shown that the type of most of these signals are nondeterministic, and 

further nonstationary, or quasistationary. Yet, in order to be able to apply signal process­

ing techniques on these types of signals, either the signal has to be divided into stationary 

components, or techniques that can be applied on nonstationary signals has to be used. The 

aim of this thesis is to analyze EMG signals by using these two different techniques. 
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1.4 Motivation 

As stated before, the nonstationary properties of biomedical signals, lead researchers to use 

techniques that could be applied either without or with segmenting the signal into stationary 

components. This thesis aims to evaluate the usefulness of these algorithms for biomedical 

signal applications via EMG in REM sleep. 

Adaptive signal processing is one of the techniques that has been used in this work to 

overcome the nonstationary problem. The method that has been used in this work is the 

Recursive Least Square (RLS) algorithm, which tries to "find and track" the optimum filter 

corresponding to the same signal operating environment, with complete knowledge of the 

required statistics. This will enable one to mark the stationary boundary, by studying the 

least square error of the signal. After dividing the signal into stationary components, Au­

toregressive (AR) modeling and Cepstrum analysis were applied to each stationary segment. 

Wavelet Transform (WT) is another method to analyze the nonstationary signal. WT 

is a very powerful technique that has been widely used in biomedical signal processing 

literature. This technique is a joint time-frequency analysis, which analyzes both the time 

and frequency properties of the signal simultaneously. One of the main advantages of the 

WT is the use of a varying size window to access accurate view of the signal either in time, or 

in frequency. The time-frequency information extracted from the signal is very important, 

since it's main objective is to analyze a time varying signal. 

As of recently, none of these methods have been applied on EMG signal during sleep. 

Therefore, the use of an overnight EMG recording to detect RBD represents a unique method­

ology with a novel clinical dataset. This is the motivation behind the work reported in this 

thesis. 

1.5 Organization of the thesis 

As previously stated, this thesis investigates the behavior of EMG in normal and abnormal 

subjects. The abnormality of the EMG in REM sleep might lead to very neurodegenera-
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tive disorders such as Parkinson disease (PD). If predicting that a subject is sensitive to 

generate PD, then the treatment could be started years prior to the diagnosis. As a result, 

this thesis focuses on signal processing techniques that will help understand and monitor 

neurodegenerative diseases. Figure 1. 7 shows the organization of the thesis. 

Chapter 2: Signal Analysis Methodologies 

This Chapter discusses the signal analysis by the way of adaptive signal processing, AR 

modeling, Cepstrum analysis and Wavelet Transform. The methodology of each of these 

techniques, as well as, its applications are discussed in this Chapter. 

Chapter 3: Parametric Signal Analysis of EMG in Sleep 

This Chapter uses adaptive signal processing techniques to segment the signal into stationary 

components. The technique which is used is the RLS algorithm. The goals, as well as , the 

applications of these types of algorithms have been discussed. AR modeling and Cepstrum 

analysis have been described, and were applied on each stationary signals. A brief discussion 

on the classification scheme used is also included, along with experimental results. 

Chapter 4: Wavelet Analysis of EMG in Sleep 

An important application that have been widely used in the recent biomedical literature is 

being discussed in this Chapter. This application is specefic to Wavelet Transform. Both 

the Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform ( CWT) are 

explained in this Chapter, followed by their application on the EMG. The overall performance 

and the advantages of using WT compared to the adaptive signal processing are discussed; 

followed by experimental results. The Receiver Operating Characteristic (ROC) curve is 

plotted at the end of this Chapter as well. 

Chapter 5: Conclusion 

Chapter 5 contains all the experimental discussion, a summary of the results, and directions 

for future work. 
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Figure 1. 7: Organization of the thesis 



Chapter 2 

Signal Analysis 

2.1 Literature Review 

I N the previous Chapter it was shown that the fundamental characteristics of random 

signals were captured in the following statement: Although random signals are evolving 

in time, in an unpredictable manner, their average statistical properties exhibit considerable 

regularity. This provides the ground for the description of random signals, using statistical 

averages instead of explicit equations. Thus, in practice, random signals are being analyzed 

using the statistical techniques. Their instantaneous values are described mathematically 

using theory of probability, random variables, and stochastic processes, because of their 

unpredictable behavior [29]. Within this framework one can develop, at least in principle, 

theoretically optimum signal processing methods that can inspire the development, and can 

serve to evaluate the performance of practical and statistical signal processing techniques 

[28]. 

As stated before, random signals, in stochastic context, are divided into two categories: 

stationary and nonstationary signals. Stationarity of a signal is concerned with its proba­

bilistic behavior. A signal is considered to be stationary, as long as some of its specified 

properties remain constant with time. These type of signals may allow for advanced predic­

tion of the signal quantities, since the signal may be described by a mathematical function. 

However; from a practical point of view, stationarity has been understood as time invari­

ance, only to the second order. As a consequence, given a stochastic signal x(t), the first 

18 
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order statistics such as mean value mx(t) and second order statistics such as variance a are 

constants and the autocorrelation function Rx is a non-negative definite function. These are 

shown in Equations 2.1 to 2.4 [28]: 

'fftx(t) = E[x(t)] = C 

a 2 = E[X(t)- mx(t)f 

Rx(ti : t2) = E[x(t1)x(t2)] 

In these equations c is constant, E is Expectation value or mean, and <P = t1 - t2. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The main objective of nonstationary signals are the statistical description, the depen­

dance of the modeling, the exploitation of the values of one or more discrete-time signals, 

their application to theoretical, and practical problems [29]. 

A nonstationary signal has a time-varying probability distribution which causes other 

quantities that rely on the probability density function (PDF) to also be time-varying. In 

this case the mean, variance, and autocorrelation functions would change with time, since 

they are computed from the PDF of a signal. Based on the fact that the Fourier Transform 

of the autocorrelation function is equal to the power spectral density (PSD) of a signal, the 

PSD of a nonstationary signal is also time-varying. Consequently, a nonstationary signal 

has time-varying spectral content. 

2.2 Adaptive Signal Processing 

The area of adaptive signal processing involves the use of optimal and statistical signal 

processing techniques to design signal processing systems, that can modify their character­

istics during normal operation (usually in real time). This may achieve a clearly predefined 

application-dependent objective [28], and may create signal processing tools which would be 

able to monitor time variations of statistical properties of the signals, and divide them into lo­

cally stationary components. One of these methods is modeling the nonstationary stochastic 
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time series which has been a continuing subject of research for many years. One important 

model for such time series, which has found widespread use, is the quasi -stationary au­

toregressive process, where it has been successfully applied to different areas such as speech 

processing, EEG, ECG, VAG (Vibroarthographic), and EMG (30](31]. In this model, statis­

tical properties of the time series are described solely by sets of AR parameters where each 

set remains constant within a certain time interval or "segment" of arbitrary length (station­

ary segment), and changes abruptly to a new set of parameters on reaching the boundary of 

the segments. In order to establish a quasi-stationary model for a given time series, and to 

estimate the parameter values in each segment, it is necessary not only to detect, but also 

to localize the segment boundaries as well as possible. An algorithm performing this job is 

called a segmentation algorithm (32] (33]. 

Segmentation can be done in two ways: 1) Fixed Segmentation which uses a fixed width 

window to divide the signal into constant-length segments, and 2) Adaptive Segmentation 

which tries to predict the behavior of the samples using past sample values. The drawback 

with the fixed segmentation technique is using constant-length reference window may cause 

problems of poor estimation of low-frequency components, and improper detection of sudden 

variations; another issue is defining an appropriate length for the window (31]. Adaptive 

Segmentation conversely, depending on the algorithm used, tries to predict the signal from 

the few past samples. This makes adaptive segmentation technique a powerful tool in signal 

processing. 

It has been shown through literature that both fixed segmentation and adaptive segmen­

tation have been widely dedicated to segment the nonstationary signal into locally stationary 

signals. As of recently, none of these methods have been applied on EM G signal in REM 

sleep. Therefore, the use of an overnight EMG recording to detect RBD represents a novel 

methodology. 

To provide a comparative analysis of the techniques used in this thesis, other researches in 

the area of fixed signal processing and adaptive signal processing methods for non-stationary 

signals are included in Table 2.1. Michael et al. (34], directly calculated the boundaries 
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Table 2.1: Related works in fixed and adaptive segmentation for biomedical signals 

Source Method Application Drawback 

Michael et al. The Autocorrelation EEG No modeling 
[34] Function Fixed-size window 

Appel et al. The Generalized Non-stationary Computationally Complex 
(32] Likelihood Ratio Method Signal 

Tavathia et al. The Spectral Error VAG Cannot Detect 
(35] Measure (SEM) Sudden Variation 

Moussavi et al. Recursive Least Square VAG Threshold is a single 
(31] RLS dependent parameter 

Krishnan et al. Recursive Least Square VAG Computationally complex 
(36](37] Lattice (RLSL) 

for each segments from the autocorrelation function (ACF) in which the ACF method of 

adaptive segmentation makes use of the values of the short-time autocorrelation function 

estimated from the signal. The problem with the ACF is that it does not use any explicit 

modeling techniques. Appel et al. (32] on the other hand uses an adaptive segmentation 

technique by means of Kalman-Bucy filtering and generalized ratio techniques to detect 

and to estimate abrupt variations in the given signal. The Kalman-Bucy is an efficient 

recursive filter that estimates the state of a linear dynamic system from a series of noisy 

measurements. Nevertheless the computational complexity of this method is the drawback 

with this technique. Tavathia et al. [35] uses an adaptive segmentation method, based on 

the spectral error measure (SEM) on VAG signal. In this method the samples were modeled, 

using parameters of a constant-width reference window. A limitation of this method was 

that if a rapid variation occurs in the middle of a test window, the segment boundary will 

be at the beginning of the window, and not at the exact position of the variation. In 

Krishnan et al. (36] (37] an adaptive segmentation method was used based on the Recursive 

Least Square Lattice (RLSL). In this method a data sequence is replaced by an orthogonal 

set of variables which would increase the speed of adaptation, the ease of testing for the 

minimum phase condition, the convergence, and the tracking capability. However; this 

algorithm is computationally expensive since it involves updating forward prediction error 
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J m ( n), backward prediction error bm ( n), forward prediction error power F m ( n), and backward 

prediction error power Bm ( n). The character m and n , are model order and time instants 

of the RLSL algorithm respectively. Moussavi et al. (31] uses the Recursive Least Square 

Algorithm (RLS) in which the sum of squared difference between the RLS filter tap- weight 

vectors of adjacent time samples were compared with a variable threshold value for detecting 

segment boundaries. These methods have been applied on many different signals as well as 

images such as MR1 images. In this work the RLS algorithm was used to divide the EMG 

signal into locally-stationary segments, which will be discussed in more details in the next 

section (31]. 

2.3 Recursive Least Square Algorithm 

The least square principle was first introduced by the German mathematician Carl Friedreich 

Gauss, who used it to determine the orbit of the asteroid Ceres in 1821 by formulating the 

estimation problem as an optimization problem (28]. These principles show that adaptive 

filters can improve their performance, during normal operation, by learning the statistical 

characteristics through processing current signal observations. The goal of any adaptive 

filter such as the RLS Algorithm is to "find and track" the optimum filter corresponding 

to the same signal operating environment, with the complete knowledge of the required 

statistics. The performance of such adaptive filters are evaluated, by using the concept of 

stability, speed of adaptation, quality of adaptation, and tracking capabilities. Therefore the 

distinguishing feature of adaptive filters is that they can modify their responses to improve 

their performance during operation, without any intervention from the user (38]. 

An important feature of the RLS Algorithm is that it utilizes information, contained in 

the input data, and extends it back to the instant of time when the algorithm was initiated 

(38]. That is, given the least squares estimates of the tap-weight vector of the filter at time 

n - 1, the updated estimate of this vector at time n can be computed upon the arrival of 

new data. RLS adaptive filters are designed so that the updating coefficients always attain 

the minimization of the total squared error from the time the filter initiated operation up to 
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the current time. Therefore the filter coefficients are chosen to minimize the cost function, 

where the cost function is shown in Equation 2.5 [28]. 

n n 

~(n) = L An- lle(i)l2 = L An- lid(i)- WT x(i)l2 (2.5) 
i=l i=O 

where e(i) is the instantaneous error, and the constant A is the forgetting factor, 0 <A ~ 1. 

The value of the forgetting factor indicates how fast the algorithm forgets its past value, 

hence it ensures that data in the distant past are paid less attention. If the weight vectors 

are defined in Equation 2.6 

w(n) = [wo(n), w1(n), ... , WM- I(n)]T (2.6) 

and the tap-input vector at each input time instant n be defined as an M dimensional 

vector to be of the form of Equation 2. 7 

J2(n) = [x(n), x(n- 1), ... , x(n- M + 1)]T (2.7) 

then the estimation error is: 

e(n) = d(n)- wT(n)J2(n) (2.8) 

The performance index or objective function to be minimized in the sense of least squares 

is defined in Equation 2.9 

(2.9) 
i=l 

This is the cost function with the assumption of A = 1, where the main purpose of the 

algorithm is to minimize this value. Optimization of Equation 2.9 leads to the normal 

equation as defined below 

<P(n)w(n) = 8(n) (2.10) 

where 'W(n) from Equation 2.10 is the optimum value of the tap-weight vector for which 

the performance index is minimum, <P(n) is an MXM time-averaged correlation matrix of 

the input, and it is defined as follows: 

n 

<P(n) = L ;£(i)J?(i) (2.11) 
i=l 
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e(n) is an MX1 time-averaged cross-correlation matrix between the desired response and 

the input shown below 
n 

8(n) = L x(i)d(i) (2.12) 
i=1 

Since it would be difficult to solve the normal equation for the optimum value of the 

tap-weight, recursive techniques need to be considered. In order to achieve that, the sum­

mation of Equation 2.12 has to be broken into two parts. The first part corresponds to sum 

of all the terms except the last term ( i from 1 to n - 1), and the second part corresponds to 

the last term ( i = n). That is: 

n - 1 

<P(n) = [L x(i)xr (i)] + x(n)xr(n) (2.13) 
i=1 

n - 1 
Comparing Equation 2.11 with Equation 2.13, the [ L.: .x_(~)J?(i)] could be interpreted as 

i=1 

<P(n - 1). Therefore Equation 2.13 can be rewritten as a recursive expression, given by 

Equation 2.14, 

(2.14) 

Similarly Equation 2.12 could be rewritten as the recursive form of Equation 2.15, 

8(n) = 8(n- 1) + x(n)d(n) (2.15) 

To compute the least squares estimate 'w(n) for the tap-weight vector in accordance with 

Equation 2.10 the inverse correlation matrix <P(n) has to be calculated. However; this is 

time consuming, particularly, if the model order M is high. In order to reduce the time, a 

matrix inversion lemma called the "ABCD" lemma could be used. According to this lemma, 

(2.16) 

where A, C, A+ BCD and DA- 1 B + c-1 are all invertible functions. By applying Equa­

tion 2.16 to Equation 2.14 assuming <P( n) to be positive definite and therefore non-singular 

and also by assuming 



the ci> - 1 (n) would be as follows: 

B = x_(n) 

C= 1 

D=x.T(n) 
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However since the expression inside the bracket is constant therefore Equation 2.17 can be 

rewritten as follow: 

<I> - 1 (n - 1)x(n)xT(n)ci>- 1 (n - 1) 
<I> - 1 (n) = <I>- 1(n-1)-- - - -
- - 1 + x_T (n )<I>- 1 (n - 1 )x_(n) 

(2.18) 

For convenience of notation the <I>- 1 (n) has been redefined as 

P(n) = <I> - 1 (n) 

where P(O) = 5- 11, 5 is a small constant and, I is the identity matrix. The Kalman gain 

vector is defined as follows: 

K n = P(n- 1)x_(n) 
_( ) 1 + x_T(n)E(n- 1)x_(n) (2.19) 

Equation 2.18 can be rewritten as: 

P(n) = P(n- 1)- K(n)x_T(n)P(n- 1) (2.20) 

By multiplying both sides of Equation 2.19 by the denominator on the right-hand side of 

the same Equation 

K(n)[1 + x,T(n)P(n- 1)x_(n)] = P(n- 1)x_(n) (2.21) 

or: 

K(n) = [P(n- 1)- K(n)x_T(n)P(n- 1)]x_(n) (2.22) 

Comparing Equation 2.22 with Equation 2.20 

K(n) = P(n)x_(n) (2.23) . 
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where P(n) and K(n) have the dimensions of MXM and MX1 respectively. By using 

Equation 2.10 and Equation 2.15 a recursive equation for updating the least square estimate 

w(n) can be derived. 
'w(n) = <P- 1(n)8(n) 

= P(n)8(n) 
= P(n)8(n- 1) + P(n)x.(n)d(n) 

Substituting Equation 2.20 for P(n) in 2.25 leads to: 

w(n) = P(n- 1)8(n- 1) - K(n)x.T(n)P(n- 1)8(n- 1) + P(n)x.(n)d(n) 
= <P - 1(n- 1)8(n- 1) - K(n)J;.T(n)<P- 1(n- 1)8(n- 1) + P(n)J;.(n)d(n) 
= w(n- 1)- K(n)x.T(n)w(n- 1) + P(n)x.(n)d(n) 
= 'W(n- 1) + K(n)[d(n)- J;.T(n) 'w(n- 1) 

(2.24) 

(2.25) 

By defining a new variable a in Equation 2.25, the equation for updating the least square 

estimates would be derived as follows: 

'W(n) = 'W(n- 1) + K(n)a(n) 

In which a(n) can be defined as 

a(n) = d(n)- x.T(n)w(n- 1) 
= d(n)- 'WT(n- 1)J;.(n) 

(2.26) 

(2.27) 

a(n) is often referred to as the a priori error, reflecting the fact that this is the error obtained 

using the old filter. This means that it's value has been obtained prior updating the new 

data, since P(n) = <P - 1(n). Therefore, the RLS algorithm uses the information contained in 

all the previous input data to estimate the inverse of the autocorrelation matrix of the input 

vector. It uses this estimate to properly adjust the tap weights of the filter. The behavior of 

the RLS algorithm showed that the filter coefficients are much more stable and they adhere 

much closer to the correct values. 

In RLS algorithm, there are two variables involved in the recursion (those with time 

index n- 1): w(n- 1) and P(n- 1). In order to start the recursion the initial values of 

these parameters have to be provided. 

• w(O) 

If some a priori information about the parameters w is provided, this information will 
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be used to initialize the algorithm. Otherwise, the typical initialization is: 

w(O) = 0 

• P ( 0) Recalling the significance of P ( n) 

P(n) = ~- 1 (n) 

The exact initialization of the recursions uses a small initial segment of the data to 

compute its value. However, it is not a simple matter to select the length of data 

required for ensuring invertibility. The approximate initialization is, commonly, used, 

which is 

P(O) = 6- 1 I 

Thus P(n) is proportional to the covariance matrix of the parameters w(n). Since the 

knowledge of these parameters at, n = 0, is vague, a high covariance matrix of the parameters 

is to be expected, and thus the value assigned to b would be very small. 

For large data length, the initial values assigned at n = 0 are not important, since they are 

forgotten due to the exponential forgetting factor .A. 

2.3.1 The concept of Adaptive Learning Curve 

The concept of adaptive learning curve was developed early in the history of adaptive fil­

tering and has proved to be very useful in both the analysis and the application of systems, 

employing adaptive algorithms. The ordinate of the curve is the performance function which 

is being minimized by the chosen adaptive algorithm. The iteration index l indicates how 

many iteration the algorithm has gone through. The learning curve begins at the upper 

left at the performance function's initial value, and then declines with iteration number l 

toward an asymptote. For a perfect adaptive algorithm, the descent of the curve would be 

abrupt, indicating quick convergence, and the asymptote would be Jmin, the lowest value of 
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the performance function J attainable. Practical algorithms, however, is deviated from this 

model in three ways. Firstly, they would take some time to learn from the algorithm which 

will result in slower convergence. Secondly, the unpredictable behavior of the data might 

drive the performance function J upward for short intervals of time instead of proceeding 

monotonically downward. Thirdly, a problem might arise from the fact that some of the 

adaptive algorithms may not actually achieve the theoretical minimum [38]. One of the im­

portant examples would be the Least Mean Square (LMS) algorithm. This algorithm never 

converges, and instead "rattles around" the optimum coefficient choice. This results in an 

increase in the squared error, seen at the filter output. The presence of this extra squared 

error means that the learning curve for LMS adaptive filter reaches an asymptote which is 

always greater than the theoretical minimum of J. The shape of the learning curve and the 

performance function that has been chosen depends on many factors, such as: the choice of 

adaptive algorithm, the length of the filter, the choice of parameters used in the adaptation 

algorithm, and the nature of the input signal [40]. 

This learning curve would converge to a minimum value, J, if the signal is stationary. 

Figures 2.1 and 2.2 show the learning curve of both the LMS and RLS for a stationary 

signal respectively. From these two figures it can be seen that the RLS algorithm converges 

faster than the LMS algorithm. In case of a nonstationary signal, the learning curve will not 

converge to a single value. However, since a nonstationary signal consists of stationary or 

quasi-stationary segments, by using adaptive signal processing, one can segment the nonsta­

tionary signal into stationary parts. Therefore, time analysis of the signal can be performed 

on each stationary segment. One of these time-series analysis is Linear Prediction. 

2.4 Linear P rediction 

In linear prediction, a set of past samples of a signal x(n) is used to predict the sample values 

of the process for some time in the future. The filter that performs the prediction is called 

a predictor. System identification, time series modeling, spectral estimation of speech, and 

biomedical signals are all applications of the Linear Prediction. The predictor output x( n) 
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can also be expressed as a convolution of 

p 

x(n) = 2::: akx(n- k) (2.28) 
k=l 

where the tap weights ak are also known as the predictor coefficients. One approach to 

optimize the predictor coefficients so that the predicted sample x(n) is being closed to the 

actual sample x(n), is the method of least-squares. RLS which is a type of Least Square 

algorithm was explained in the previous Section. The error between x( n) and the predicted 

value x(n) is 
p 

e(n) = x(n) - x(n) = x(n) - L akx(n- k) (2.29) 
k=l 

where ak are obtained by minimization of the mean or total squared error, with respect to 

each of the coefficients. Time series modeling is a linear prediction technique that has been 

widely used in the area of biomedical signal processing. This has been explained in the next 

subsection. 

2.4.1 Time Series Modeling 

The signal x(n) is modeled as a linear combination of its past values, and the present and 

past values of a "hypothetical" input, 'U(n), to the system generating x(n) 

p p 

x(n) = L akx(n- k) + G L b(u(n -l) (2.30) 
k=l k=l 

where b0 = 0 and ak, bz, and G are the parameters of the system. Equation 2.29 can be 

specified in the transform domain. 

(2.31) 

There are three special cases of the model that are of interest: 

1. All-zero moving average (MA) model : ak = 0, 1 :::; k :::; P 

2. All-pole moving average (AR) model : bz = 0, 1 :::; l :::; Q 
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3. The pole-zero model given in Equation 2.30 is also known as the autoregressive moving 

average ( ARMA) model. 

In biomedical signal analysis, the all-pole model is the most widely used time series model. 

Therefore, in this work the AR modeling was applied on EMG signals. 

2.4.2 AR Modeling 

Modeling techniques such as autoregressive modeling (AR), also referred to as all-pole 

modeling, provide parameters which could potentially be correlated with the physiological 

system producing the signals. The AR model is a linear, second-moment stationary model 

[41]. Therefore the signal is modeled as a linear combination of its past values and some 

input: 
p 

x(n) =- :2: akx(n- k) + Gu(n) (2.32) 
k=l 

where ak are the AR coefficients and P is the model order. Model order indicates that for 

a given signal how many model parameters are sufficient to replicate the signal. Comparing 

the above Equation with Equation 2.29 
p 

x(n) = L akx(n- k) + e(n) (2.33) 
k=l 

It is evident from these two equations that AR coefficients are nothing but the predictor 

coefficients (i.e., ak = -ak), and Gu(n) = e(n). Therefore, the AR model of the current 

sample of the signal x( n) is described as a linear combination of previous samples plus an 

error term, e( n), which is independent of the past samples. P is the model order, where its 

value is very important. 

The transfer function H(z) of an AR process is given by H(z) = ~i;?, giving 

G 
H(z) = P k 

1 + L::k=l akz-
(2.34) 

Then H(z) = Arz), where A(z) = 1 + L::f=1 akz- k. The spectrum of the model can be 

estimated from Equation 2.35 as follows: 

1 
PAR( w) = -------::::-

11 + L::f=l akejwk 12 
(2.35) 
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AR modeling techniques have been found to provide a sufficiently accurate representation 

for many different types of signals in many different applications. This is the reason for many 

researchers to use AR modeling as an approach of their signal processing. Another reason is 

that the structure of the all-pole model leads to fast and efficient algorithms for finding the 

all-pole parameters. However, AR modeling requires the fitted signal be stationary over a 

given interval, yet, adaptive segmentation techniques could possibly segment the signal into 

stationary components. 

Another type of application that has been widely used in signal analysis, specially in 

speech analysis, is Cepstrum. Due to higher identification accuracy in speech recognition 

compared to AR, cepstrum analysis has been investigated in this work. The next Section 

will explain the cepstral analysis in detail [41][42]. 

2.4.3 Cepstrum Analysis 

In this section, a class of nonlinear techniques referred to as Cepstrum analysis or homomor­

phic deconvolution will be explained. These methods have proved to be extremely effective 

and useful in certain applications such as speech processing [43]. In addition, they illustrate 

the considerable flexibility and sophistication, offered by discrete-time signal processing 

technologies [24] [27]. 

In 1963, Bogert, Healy, and Thkey published a paper with an unusual title "The Que­

frency Analysis of Time Series for Echoes: Cepstrum, Pseudoautocovariance, Cross-Cepstrum, 

and Saphe Cracking" [24][44]. They observed that the logarithm of the power spectrum of 

a signal containing an echo has an additive periodic component, due to the echo. Thus, the 

Fourier transform of the logarithm of the power spectrum, should exhibit a peak at the echo 

delay. They called this function Cepstrum, interchanging the letters in the word spectrum 

because "In general, we find ourselves operating on the frequency side in ways customary 

on the time side and vice versa." (24][44][45]. Another class of systems proposed by (24] 

was called homomorphic systems, which in the classical sense, they satisfy a generalization 

of the principle of superposition; i.e., input signals and their corresponding responses are 
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superimposed by an operation having the same algebraic properties as the addition. The 

concept of homomorphic filtering is very general and has been studied most extensively for 

the combining operations of multiplication and convolution because many signal models in­

volve these operations. The transformation of a signal into its cepstrum is a homomorphic 

transformation, and the concept of the cepstrum is a fundamental part of the theory of 

homomorphic systems for processing signals that have been combined by convolution. The 

cepstrum has been proved as a valuable tool in speech coding and recognition applications, 

and has been extensively studied in the corresponding literature. The cepstrum of a signal 

is defined as the inverse Fourier Transform of the log power spectrum of the signal [46]. If 

all the poles of the H(z) are inside the unit circle, the logarithmic transfer function, lnH(z), 

can be represented by the Laurent Expansion as follows [47]: 
00 

ln H(z) = C(z) ~ L ciz- 1 (2.36) 
i =1 

Differentiating both sides of the second equal sign, with respect to z- 1 , and equating the 

coefficients of like powers with respect to z- 1
, the following recursive relations will be derived 

[41][48]. 

n - 1 
Cn = -an- 2: (1- k/n)akcn- k for 1 < n::; P 

k=1 
n - 1 

Cn =- 2: (1- k/n)akcn- k for n > P 
k=1 

(2.37) 

where an and en denote the nth AR model and Cepstral coefficients respectively, P is the 

model order, and n is the samples. 

Nevertheless, both AR modeling and Cepstrum analysis require the signal fitted be sta­

tionary over the given interval. But as explained in Chapter 1, biomedical signals such as 

EMG are nonstationary and these modeling can not be applied to them, unless the signals can 

be made stationary. Using the adaptive segmentation techniques explained in Section 2.2, 

the EMG signal, could be divided into stationary segments, and AR modeling and cepstral 

analysis can be applied to each stationary segment. These techniques as well as their result 

will be explained in more details in Chapter 3 [41][42]. Yet, applying techniques to the sig­

nal that do not need dividing the signal into stationary segments would be very useful. For 
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this reason the Wavelet Transform (WT) was also applied on the EMG signal. The result 

obtained from WT, compared to that of AR modeling and Cepstrum analysis made WT 

a better technique for classifying EMG into normal versus abnormal. Hence, WT will be 

explained briefly in Section 2.5 and in more detail in Chapter 4. 

2.5 Wavelet Transform 

In the previous Chapter, biomedical signals were shown to be nonstationary, and thus a non­

stationary analysis tool must be identified to extract useful information from these signals. 

Yet these techniques may not necessarily be accurate and precise, in detecting the stationary 

boundaries, therefore techniques that could directly be applied to nonstationary signals are 

useful in a variety of applications. Therefore, Wavelet Transform has been used to address 

this issue in this work. 

Wavelets are functions that satisfy certain mathematical requirements and are used to 

represent data or other functions. This idea is not new. Approximation using superposition 

of functions has existed since the early 1800 when Joseph Fourier discovered that he could 

superpose sines and cosines to represent other functions [49]. The fundamental idea behind 

wavelets is to analyze signals according to scale. Indeed, some researchers believe that using 

wavelets mean adopting a whole new mind-set or perspective in processing data [50][51]. 

To give the reader some back ground on wavelets, the Fourier Transform (FT) is compared 

with the WT [52]. 

The FT transforms the time domain signal to frequency domain by using sinusoidal 

basis function to approximate the original signal. There are many advantages for this kind 

of approximation, as signal can be analyzed for its frequency content. However, the FT 

representation has a major drawback due to using a sinusoidal basis function. Fourier sine 

and cosine functions are localized in frequency, but not in time. In other words, they stretch 

infinitely in time, in transforming to frequency domain, while the time information of the 

signal is lost. Therefore, with Fourier analysis, it is impossible to tell which frequencies 

appear at what time. As a result, FT can not be used to approximate a signal whose 
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properties change over time, i.e. nonstationary signal, since they result in poor estimation 

of sharp spikes. 

Another way to see the time resolutional difference between the FT and WT is to look 

at the basis function coverage of the time-frequency plane [52). In FT, the window plane is 

a fixed length window, which is simply a square wave, the square wave window truncats the 

sine and cosine basis function to fit a window of a particular width. Since a single window 

is used in the FT for all the frequencies , the resolution of the analysis is the same at all 

locations in time-frequency plane. Thus for many decades scientists were looking for more 

appropriate functions than the sines and cosines, which are the basis of the Fourier analysis, 

to approximate nonstationary signals. 

To address this problem, a joint time-frequency representation is required. The Short 

Time Fourier Transform (STFT) is an intuitive modification of the Fourier transform to 

analyze nonstationary signals [53). The basic idea behind the STFT is segmenting the signal 

by time-localized windowing, and performing Fourier transform to each segment at a time. 

The STFT maps a signal into a two dimensional time-frequency representation. The impre­

cision drawback comes from the fixed length time window, used to analyze the entire signal, 

regardless of frequency content of each segment. STFT is able to do wide-band frequency 

analysis using narrow window, or narrow-band frequency analysis using wide window, but 

not both simultaneously, once the window size is selected. STFT achieves some degree of 

compromise between time and frequency representation of signals. It provides information 

regarding, when and what frequencies occur in a signal with limited precision. The basis 

functions of the STFT provide a space-frequency resolution that is inadequate for capturing 

the wide variety of localized structures, and are common in biomedical signals. Addition­

ally, this transformation is computationally complex and memory intensive, when computed 

for signals and images. Consequently, for biomedical signal analysis , a multiresolutional 

approach may be a good alternative to the STFT. Multiresolutional analysis (MRA) tech­

niques can represent low and high frequency structures with different spatial resolutions, 

in a computationally efficient manner [53]. In order to isolate signal discontinuities, it is 
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ideal to have some very short basis functions. At the same time, in order to obtain detailed 

frequency analysis, one would like to have very long basis functions. To achieve this, one 

would like to have short high frequency basis functions and low frequency ones. 

Wavelet algorithm process data at different scales or resolutions. If a large window is 

being used to analyze the signal, the gross features would be noticed, and if small window 

is being used small features would be extracted. "The result in wavelet analysis is to see 

both the forest and the trees, so to speak." [49]. This makes wavelet a very useful technique. 

Yet by using wavelet, one can use approximating functions that are contained nearly in 

finite domains making wavelet well-suited for approximating data with sharp discontinu­

ities. Wavelet analysis techniques were independently researched and developed in the area 

of quantum physics, mathematics, electrical engineering and seismic geology [49]. Conse­

quently, a series of applications which utilize these techniques have been created. These 

applications may include data compression, computer and human vision schemes, data de­

noising, feature extraction and many more [49]. 

The wavelet analysis procedure is to adopt a wavelet prototype function called an an­

alyzing wavelet or mother wavelet. Temporal analysis is performed with a contracted, 

high-frequency version of the prototype wavelet, while frequency analysis is performed with 

a dilated, low-frequency version of the same wavelet. Because the original signal or function 

can be represented in terms of a wavelet expansion (using coefficients in a linear combina­

tion of the wavelet functions), data operations can be performed using just the corresponding 

wavelet coefficients. 

Another issue with the FT is that, FT has a single basis functions which utilize sine and 

cosine, where WT has an infinite set of possible basis functions. Thus the wavelet analysis 

provides immediate access to information that can be obscured by other time-frequency 

methods such as Fourier Analysis [49]. 

While the FT maps a one dimensional series into a one dimensional sequence of coef­

ficients, wavelet analysis maps it into a two dimensional array of coefficients. The extra 

dimension of information allows localizing signal in both time and frequency. But the two 
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dimensional time-scale representation is highly redundant, because of the non-orthogonal 

basis functions. 
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The WT results in a series of coefficients in time, representing indirectly the instantaneous 

frequency of the signal in time [54]. When WT is computed restrictively in dyadic (power of 

two) scales (a) and positions (b) of the data series, the method is Discrete Wavelet Transform 

(DWT), on the other hand, if such restriction is not applied the WT is Continuous Wavelet 

Transform (CWT) [55]. The temporal resolution of the frequency and amplitude estimations 
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by the CWT are adequate to follow frequency and amplitude transients of the original signal 

in the time domain. Continuous analysis is often easier to be interpreted, since its redundancy 

tends to reinforce the traits and makes all information more visible, this is specially true of 

very subtle information. Thus, the analysis gains in readability, and in ease of interpretation 

what it loses in terms of saving space. 

2.5.1 Continuous Wavelet Transform 

In order to obtain the decomposition map (scalogram) of the signal x(t), and to analyze the 

signal flexibly a size-variable window is needed to access accurate view of the signal, either 

in time or in frequency. The CWT gives exactly this achievement, which is shown below 

[56][57]: 
1 J t- b W(a, b)= Fa x(t)'ljJ*( - a- )dt (2.38) 

where a > 0, and b are scale and translation parameters respectively, 'ljJ denotes the basis 

function, often called mother wavelet, and W(a, b) is the CWT of x(t). Equation 2.38 can 

be interpreted as inner product of x(t), the complex conjugate of the scaled, and translated 

version of the basis function (mother wavelet) 'ljJ 

W(a,b) = j x(t)'l/J(a,b)*(t)dt =< x(t),'l/J(a,b)*(t) > (2.39) 

where 'l/J(?- ,b) = )a'l/J*C:b) , a > 0 and b E ~ are real continuous variables. By increasing 

or decreasing a, the basis function will be fitted to a segment of x(t); hence, a indirectly 

represents the frequency components of the signal. Fitting of CWT to the data results 

in calculation of a resemblance index between the signal x(t), and the wavelet located at 

position band scale a. 

The mother wavelet used to generate all the basis functions is designed based on some 

desired characteristics associated with that function. The translation parameter b relates to 

the location of the wavelet function as it is shifted through the signal. Thus, it corresponds 

to the time information in the wavelet transform. On the other hand, the scale parameter, 

a, corresponds to the frequency information of the signal. This is useful in most of the 
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applications, since the high frequency (low scales) components of the signal do not last for 

long and mostly appears as short bursts, while low frequency (high scales), usually last for 

entire duration of the signal. The benefit of the algorithm is that the sampling rate could 

be changed, with accordance of the scale change, without violating the Nyquist Algorithm. 

Nyquist algorithm states that, the minimum sampling rate to reconstruct the original signal 

is 2 times the highest frequency of the signal. Therefore, as the scale goes higher (low 

frequencies), the sampling rate can be decreased thus reducing the number of computations. 

2.5.2 Discrete Wavelet Transform 

As explained in the last section, the transformation of the signal is another form of represent­

ing the signal, in which the information content of the signal would not change. The discrete 

wavelet transform are those wavelets that are discretely sampled, and is based on the sub­

band coding, which yields to a fast computation of wavelet transform. Their implementation 

is easier than CWT, and is less time consuming [54]. 

One of the main differences between the CWT and the DWT is that, in CWT the signals 

are analyzed by using a set of basis functions, which are related to each other by simple 

scaling and translation. However, in DWT, the signal is passed through filters with different 

cutoff frequencies at different scales which is a time-scale representation of the signal. The 

two filters used in this technique are a lowpass filter and a highpass filter, often called filter 

banks [58]. 

DWT and Filter Banks 

Filters are one of the most widely used signal processing functions. Wavelets can be realized 

by iteration of filters. The resolution of the signal is determined by the filtering operations. 

This is the measure of the amount of detailed information in the signal. The scaling however, 

is determined by upsampling and downsampling operations. 

At each decomposition level, the half band filters produce signals spanning only half the 

frequency band, which results in doubling the frequency resolution since the uncertainty in 

frequency is reduced by half. Therefore, since the Nyquist theorem is 2 times the highest 
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frequency (w) in the signal, the highest frequency is now half that value (w/2). This can 

be sampled at a frequency of w radians thus discarding half the samples with no loss of 

information. This decimation by 2 halves the time resolution as the entire signal is now 

represented by only half the number of samples. Thus, while the half band low pass filtering 

removes half of the frequencies, and thus halves the resolution, the decimation by 2 doubles 

the scale. This approach will make a better time resolution at high frequencies, and a 

better frequency resolution at low frequencies. However most of the energy associated with 

a signal is located in the approximations. This allows us to roughly represent the signal by 

an approximation at any level, by omitting or reducing the detail values, without losing the 

information contained in the signal [54]. 

Inevitably the techniques mentioned (AR modeling, cepstrum analysis, and wavelet trans­

form) need a scheme to validate their behaviors. As a consequence a very simple classifier 

has been used in this study to classify the signals into normal and abnormal, as well as to find 

the level of normality and abnormality in different subjects. The results of the classification 

will be explained in Chapters 3 and 4. The next Section will explain a type of supervised 

classifier (Linear Discriminant Analysis) in details. 
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Automatic (machine) recognition, description , classification, and grouping of patterns are 

important problems in a variety of engineering and scientific disciplines such as biology, 

psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing 

[60][61]. The task of a classifier is to use the feature vectors to assign the object to the proper 

category. There are many classifiers with different approaches, different cost functions, and 

different algorithms. In order to choose the best classifier that best discriminates the different 

classes, the type of data and the amount of information existed in the data, is very important. 

Classification can be categorized as: supervised and unsupervised. The supervised algo­

rithm is an algorithm that a teacher provides with a category label, or cost of each pattern 

in the training set, and the purpose of this algorithm is to reduce the costs of these pat­

terns [62]. Conversely in unsupervised learning or clustering, there is no explicit teacher, 

and grouping is being formed by the system [62][63]. Since the classes are defined in this 

thesis i.e. Normal/ Abnormal, the supervised algorithm is being used. One of the supervised 

algorithm is the Linear Discriminant Analysis (LDA), which will be briefly explained in the 

next subsection and in more detail in Chapters 3 and 4. 

2.6.1 Linear Discriminant Function 

The main objective of Linear Discriminant Functions is to separate the classes as much as 

possible. A discriminant function that is a linear combination of the components of x can 

be written as 

(2.40) 

where w is the weight vector and w0 is the bias. In case of two classes the linear classifier has 

the following decision rule: Decide WI if g(x) > 0 and w2 if g(x) < 0. Thus xis assigned to 

WI if the inner product wr x exceeds the threshold w0 , and decide w2 otherwise. if g(x) = 0, 

x can ordinarily be assigned to either classes. The equation g(x) = 0 defines the decision 

surface that separates points assigned to WI from points assigned to w2 • When g(x) is linear, 
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this decision surface is a hyperplane. If xi and x 2 are both on the decision surface, then 

(2.41) 

and this shows that w is normal to any vector lying in the hyperplane. 

In general, linear discriminant function divides the feature space by a hyperplane decision 

surface. The orientation of the surface is determined by the normal vector, and the location 

of the surface is determined by the bias. The discriminant function g(x) is proportional to 

the signed distance from x to the hyperplane, with g(x) > 0 when xis on the positive side, 

and g(x) < 0 when xis on the negative side. 

In a two-category linearly separable problem, there is a set of n samples xi, x 2 , ... , Xn 

some labeled 'WI and some labeled w2 . This is being done to determine the weights w in a 

linear discriminant function g ( x) = wr x. 

A sampled x i is classified correctly if wxi > 0 and xi is labeled 'W1, or if wxi < 0 and 

xi is labeled w2 . Therefore, from this it can be concluded that in the two-category case 

all samples of w2 could be replaced by their negatives, and therefore the class label can be 

eliminated, in which wyi > 0 for all of the samples. Yi is the normalized sample. This is 

often called the solution or normalization sample. In order to find the solution to the set of 

inequalities, a criterion function has to be minimized [62]. 

2.6.2 Linear Discriminant Analysis 

One of the methods that could be used for discriminating of two or more classes is the Linear 

Discriminant Analysis (LDA). LDA produces a discriminant function that maps the input 

into the classification space. LDA searches for those vectors in the underlying space that 

best discriminate among classes, rather than those that best describe the data [64]. The 

goal of LDA is to seek a transformation matrix W that in some sense maximizes the ratio 

of the between-class scatter to the within-class scatter. A within-class scatter matrix Sw 

is defined as: 
c 

Sw = L L (x- Uti)(x- Tni)t (2.42) 
i=I x=Ci 
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where c is the number of classes, ci is a set of data belonging to the ith class, and mi is 

the mean of the i t h class. The within -class scatter matrix represents the degree of scatter 

within classes as a summation of covariance matrices of all classes. A between-class scatter 

matrix S8 is defined as: 
c 

SB = L ni(rni - rn)(rni- rn)t (2.43) 
i = l 

The objective of LDA is to seek a transformation matrix W that in some sense maximize 

the ratio of the between-class scatter and the within-class scatter. 

(2.44) 

LDA creates a linear combination of those which yields the largest mean differences of the 

desired classes [65][66]. 

Figure 2.6 shows an example of between class scatter and within class scatter. One of the 
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Figure 2.6: An example of between-class scatter over the within-class scatter in LDA 

software packages that can be used for discriminant analysis is the Statistical Package for 

Social Science (SPSS™) Software. The classification analysis of this thesis has been done 

with this software [67]. 
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The study of sleep recording is often frustrating due to the long length of the signal , as well 

as night time recording procedures. Recently, there has been considerable emphasis in the 

therapy of sleep abnormalities due to it's effect on people's lives. 

Computer aided signal processing saves time, standardizes the measurements, and en­

ables the extraction of features which could not have been extracted, otherwise. Therefore, 

considerable amount of work has been carried out in the time and frequency domain for 

classification of EMG. However, none of these works have been done on EMG in REM sleep. 

As a consequence the use of sleep EMG represents a unique methodology, and can be used 

to detect RBD. This involves a novel clinical dataset. One of the techniques that will be 

explained is the quantitative signal analysis in the frequency domain, using classical power 

spectrum analysis, which has been well documented over the past decade. Another technique 

is the application of wavelet transform on EMG, in REM sleep, which will be explained in 

the following Chapter. Wavelet transform is a tool for the analysis of transient, nonstation­

ary, or time-varying phenomena. The block diagram of the proposed method is shown in 

Figure 2.7. 



45 

Figure 2.7: The Proposed Method 



Chapter 3 

Parametric Signal Analysis of EMG in 
Sleep 

3.1 Introduction 

AS discussed in Chapter 1, the digitization of biomedical signals paves the way for a 

multitude of new applications. One of these applications is Computer-Aided Diagno­

sis (CAD), in which a computer program can act as "a second pair of eyes" to assist the 

physician with diagnostic results [53]. The result of the CAD system may be used to compli­

ment doctor's initial findings, as well as, provid useful information to clinicians in the form 

of an easily applicable measure of disease activity sensitive to early neurodegeneration, and 

treatment response. In general, the CAD aims to improve the quality of diagnoses which 

would result in superior form of health care. For such an application to be realized, a feature 

extraction and classification scheme must be identified which provides results that discrim­

inate between pathologies of the biomedical signals. As a way to realize this application, 

this Chapter will focus on feature extraction algorithms using AR modeling and Cepstrum 

analysis, and the next Chapter would focus on feature extraction algorithm using Wavelet 

Transform. 

As there is no other reported works for feature extraction and classification of EMG in 

REM Sleep, the research discussed in this Chapter is, the first reported work in the area. 

The following sections will cover the methods and techniques that will be used to classify 

46 
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Figure 3.1: Block Diagram of the AR modeling and Cepstrum Analysis 

the EMG signal in REM sleep, normal vs abnormal. First, the Adaptive segmentation tech­

nique would be explained which is being used to divide the signal into stationary segments, 

followed by a brief explanation of AR modeling and Cepstrum analysis. Next these coeffi­

cients would be used as features to the classifier. At last, a description of the classification 

scheme will also be included, followed by the experimental results. Figure 3.1 shows the 

algorithms and techniques for this Chapter. 

3.2 Adaptive Signal Processing 

As explained in the previous Chapters, biomedical signals are nonstationary, since their sta­

tistical properties change over time. This cause challenges in classifying the signal using well 

developed spectrum analysis methods. EMG is a nonstationary signal that its properties, 

such as spectrum, changes over time. However , it can be considered that EMG is locally 

stationary over short time intervals [33][41][68]. There are two types of techniques associ­

ated with this. One is fixed segmentation, and the other is adaptive segmentation. The 

fixed segmentation uses a fixed-size window for segmenting the signal. This technique is 

mostly used in applications such as STFT. Although fixed segmentation is simple, its per­

formance is not sufficient since the window size may not be accurate. If the window length 

is too long then the sudden variation of the signal may not be captured, and if the window 
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length is too short poor estimation of low frequency components may occur. Therefore, this 

method cannot guarantee stationarity, as well as , appropriate length of each chosen window. 

Conversely, adaptive signal processing involves the use of optimum and statistical signal 

processing techniques to design signal processing systems that can modify their characteris­

tics, during normal operation (usually in a real time). Moreover they can, achieve a clearly 

predefined application dependent objective, and create signal processing tools which would 

be able to monitor time variations of statistical properties of the signals, and divide them 

into locally stationary components [28]. As explained in Section 2.2 there are many adaptive 

signal processing techniques, used in the literature. In this work, the RLS algorithm has 

been applied on the EMG signal, and stationary segment boundaries have been marked. 

There are many advantages for RLS algorithm, compared to other algorithms [39]. Some of 

these benefits are listed below: 

• Fast rate of convergence, compared with other algorithms such as LMS (Least Mean 

Square). 

• Good tracking capability which insures numerical stability [40]. 

• Better steady state approximation of tap weights, since infinite memory RLS averages 

the value of each tap weight. 

The details of RLS algorithm for segmentation are discussed below. 

3.2.1 Recursive Least Square Algorithm 

The principle of adaptive filters is that they can improve their performance, during normal 

operation, by learning the statistical characteristics through processing current signal obser­

vations. The goal of any adaptive filter such as RLS is to "find and track" the optimum filter 

corresponding to the same signal operating environment, with complete knowledge of the 

required statistics. The performance of such adaptive filters are evaluated using the concept 

of stability, speed of adaptation, quality of adaptation, and tracking capabilities. Therefore, 
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the distinguishing feature of the adaptive filters is that they can modify their response to 

improve their performance during operation, without any intervention from the user (38]. 

RLS algorithm has been already explained in Section 2.3, however, the summary and 

initialization of the algorithm is shown below. 

1. Select an initial tap-weight vector at time n = 0, usually w = 0 and P(O) = 5- 1 I 

where 5 is a small constant and I is the identity matrix. 

2. For n = 1, 2, ... , N 

Receive an input sequence x.(n) for each time sample, where X.= [x(n)x(n-1)x(n-

2) ... x(n- N)] 

Compute the error a(n) = d(n)- wT(n- 1)x_(n) 

Compute the inverse autocorrelation function P(n) = P(n-1)-K(n)x.T(n)P(n-1) 

C h K 1 · f t K( ) P(n- l)x(n) ompute t e a man gain ac or _ n = l+!f.T(n)E(n - l)!f.(n) 

Update the weight vector w(n) = w(n- 1) + K(n)a(n) 

3. Calculate the sum error squared s using the two adjacent tap-weight vector s(n) = 

llw(n)- w(n- 1)11 2
. 

A procedure based on this idea was developed in the present study to divide the EMG 

signal into locally stationary components. This procedure operates in two steps [31 ]: The first 

step is the primary boundary detection algorithm in which the beginning of the stationary 

boundary would be marked; and the second step is the decision process on the location of the 

final segment boundary in which the end part of the stationary boundary is marked. Since 

having a segment with few number of samples might result in under modeling, a minimum 

of 120 samples is being used as the minimum segment length Lmin (31]. The order of the 

filter was set to be 7 in order to be low enough to detect transitional changes in the input, 

and also to provide fast convergence. The desired response was the original signal delayed 

by 5 samples. The delay of 5 samples was chosen based on (31]. The latter work was done 

on vibroarthography (VAG) signals in which the autocorrelation functions of typical VAG 
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signals were observed to drop off rapidly after about five samples; hence the authors assumed 

the signal with this delay to be independent of the original signal. Similar idea was used in 

this work because of the similarities of the two signals. Following would be the procedure of 

segmenting the signal: 

• Define a threshold value, three times the standard deviation of the s(n) vector [31]. 

• Compare each element of the s(n) vector with the threshold, and store all the points 

above the threshold as the Primary Segment Boundary (PSB), PSB = [a0 , a1 , ... , ap]. 

• Compare the adjacent elements of PSB to each other, and if the difference of the two 

values is less than the minimum length Lmin keep the first element and compare it to 

the next one. 

If ai- ai - l ~ Lmin, keep ai as one of the segment boundaries and check the next 

element, if ai- ai- l < Lmin' remove ai and continue. 

• Mark the end boundaries. 

Thus this algorithm, divides the EMG signal into few locally stationary components, 

and each segment is then considered as a separate signal. The number of segments in both 

the normal and abnormal signals varied, since they all have different characteristics and 

behaviors. 

After dividing the signal into stationary components different algorithms could be applied. 

In the next two sections AR modeling and cepstral analysis will be applied to each of these 

segments and the classification result of these will be explained at last. Figure 3.2 shows the 

block diagram of the RLS algorithm. 

3.3 AR Modeling 

Computer aided EMG processing saves time, standardizes the measurements and enables 

the extraction of features which could not have been exteracted, otherwise. Time domain 

P .OPalrl OF 
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Figure 3.2: Block Diagram of RLS Algorithm 
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techniques that rely on extracting features for classification directly from the EMG wave­

form, are somewhat difficult to measure automatically, whereas their manual measurement 

depends on one's intuition. Alternatively, signal analysis in the frequency domain reveals 

the frequency characteristics of the EMG signals. However, this analysis based on the FT 

power spectrum estimates, suffers from reduced frequency resolution and spectral leakage 

effects. The limitations inherent in the classical power spectrum density (PSD) estimation 

methods can be overcome, (or improved), by parametric modeling techniques such as AR 

or autoregressive moving average (ARMA). These techniques give better PSD estimators, 

higher spectral resolution, and avoid spectral leakage effects compared to nonparametric or 

classical spectral estimation techniques [41]. 

Parametric modeling is a typical method in dealing with random signals, as long as the 

signals are stationary. The basic idea for parametric modeling is that the present value of 

model output is assumed to be the linear combination of several past values of model output 

plus the linear combination of present and past values of model input. For such model either 

an adaptive model can be used, in which the values of the parameters gets updated at the 
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Parametric Modeling 

Autoregressive Moving Average Autoregressive Moving 

Non-Adaptive Adaptive 

I 
Kalman Filter 

Levinson Durbin Algorithm Burg Algorithm 

Figure 3.3: Techniques for Parametric modeling, using a rational transfer function and algorithms 
for autoregressive parameter estimation 

arrival of new data sample, or a non-adaptive model can be used, in which the signal has to 

be divided into stationary segments, i.e. sufficiently short segments [68]. The effectiveness 

of the algorithm used to estimate the values of the parameter has a key role in parametric 

modeling techniques [68]. Levinson-Durbin algorithm and the Burg algorithm are the two 

most popular algorithms for non -adaptive modeling, and Kalman filtering is an adaptive 

algorithm modeling. Figure 3.3 is summarization of these algorithms [68]. 

The relative simplicity and reliability of the Burg algorithm has made non-adaptive AR 

modeling, by far , the most popular method of time series analysis. For the information of 

the reader, this work used the application of AR modeling for several reasons: 

1. Some biomedical signals such as speech signal have an underlying autoregressive struc-

ture. 

2. Generally, any signal can be modeled as an AR process , as long as, an appropriate 

model order is selected. 
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3. Availability of many algorithm to estimate the model parameters, and find a solution 

to the linear system equations such as the autocorrelation method, covariance method, 

and Burg method. 

4. Shows better resolution than traditional Fourier spectrum. 

The method derived by Burg for estimating the AR parameters minimized the forward and 

backward error in linear predictors, which can be viewed as an order-recursive least-square 

lattice method. The advantages of using Burg method is as follows [27]. 

• Results in high frequency resolution. 

• Yields a stable AR model. 

• Computes more efficiently. 

As stated before, the Burg algorithm is based on minimizing the sum of the squared forward 

and backward prediction error. The cost function is defined as follows [1][27] 

N 

e = I: J?n(n) + b~(n) (3.1) 
n=m+1 

where fm(n) and bm(n) are forward and backward prediction error for order of m respectively 

and N is the length of the input data. 

(3.2) 

bm(n) = bm- 1 (n- 1)- rmfm- 1 (n) (3.3) 

The above two equations are the recursion equations for forward and backward prediction 

error updates, and r is the reflection coefficient. The reflection coefficient is being used to cal­

culate the AR coefficients. Equation 3.4 calculates the reflection coefficient and Equation 3.5 

finds the AR parameters using the r values. 

_ 
2 
L~;:~fm-1(n)bm-1(n -1) 

rm- L~::~ [f~-1 (n)b~_ 1 (n- 1)] 
(3.4) 
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(3.5) 

As can be seen from Equation 3.5, calculating the AR coefficients requires the values of the 

reflection coefficients of the current stage and the AR coefficients from the previous stages . 

Another very important aspect of the use of AR model is the selection of the order P. 

As a general rule, if a small model order is being used, a highly smoothed spectrum will be 

obtained. And if a model order selected is too high, the risk of introducing false low-level 

peaks in the spectrum will exist. One indication of the AR model is the mean -square value 

of the residual error. This residual error decreases as the model order increases. There has 

been much work done by various researchers to find the best order that fits the signal (69][70]. 

The Akaike Information Criterion (AIC) proposed by Akiake (69] is a well known algorithm 

that is based on selecting the order that minimizes 

AIC(P) = ln&!p + 2P/N (3.6) 

where &~p is the estimated variance of the linear prediction error. As the order increases the 

&~p decreases and therefore, ln &~p decreases, however, 2P / N increases, with an increase in 

P. Yet at some P the minimum value could be obtained (27](69]. 

Therefore, in general, the AIC tries to find the order that minimizes the prediction error. 

Hence, that order could be used as a model order to estimate the model parameters. Yet the 

signal is required to be stationary. In this work AIC was applied on each stationary segment 

for each signal. After calculating the AIC values for each segment for different model orders, 

and averaging all the AIC values for each signal the minimum AIC was obtained. Figure 3.4 

shows AIC for these signals. Figures 3.5 and 3.6 show one segment of the normal and 

abnormal subject respectively, followed by the the spectrum of the signal. AR coefficients 

are shown, as well followed, by the model spectrum. As can be seen in both of these figures 

the model spectrum matches the spectrum of the signal, and this could be another proof 

that the model order used, was appropriate. 

The model order based on this algorithm was chosen to be 25. Accordingly 25 AR 

coefficients were calculated for each segment; and were used as features to classify the signal 

into normal and abnormal. This has been shown in Section 3.5. 
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Finding the Model Order Using AIC Algorithm 
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Figure 3.4: Finding the optimum model order, using the AIC criterion 
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Figure 3.5: Model spectrum of the Normal Signal 
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Figure 3.6: Model spectrum of the Abnormal Signal 

Another type of application that has been widely used in signal analysis, specially in 

speech analysis, is cepstrum. Due to higher identification accuracy in speech recognition 

compared to AR as well as the non-linearity involved, Cepstrum analysis has been investi­

gated in this work. The next section explains the cepstral analysis in detail [41]. 

3.4 Cepstrum Analysis 

The motivation of using cepstrum as a diagnostic tool in this study was due to their docu­

mented higher identification accuracy in speech recognition, compared to the AR coefficients 

and the non-linear mapping provided [71][72]. Cepstral analysis have been applied to speech 

recognition for a long time where it has been proved to be a valuable tool, and has been 

extensively studied in the corresponding literature [24][44][46][73]. As shown in the previ­

ous Chapter and again in Equation 3.7, 25 cepstrum coefficients (c1 to c25) were directly 



calculated from the AR coefficients ( a1 to a25 ). 

n - l 

Cn = -an- 2:: (1- k/n)akCn- k for 1 < n::; P 
k=l 

n - l 

Cn =- 2:: (1- k/n)akcn- k for n > P 
k=l 
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(3.7) 

These coefficients were calculated for each stationary segments of each signal, and then 

they were fed to a classifier. The classifier, used in this work is Linear Discriminant Analysis 

(LDA). Leave-One-Out (LOO) method was used for estimation of the classification accu­

racy of the LDA classifier [1]. Next section will demonstrate the results achieved, using AR 

and Cepstrum coefficients. 

3.5 Time-Series Analysis of Sleep EMG 

Automatic (machine) recognition, description, classification, and grouping of patterns are 

important problems in a variety of engineering and scientific disciplines such as: biology, 

psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing 

[60][61]. 

The motivation behind using pattern classifier i~ that the coefficients achieved from AR 

modeling and Cepstrum analysis are abstract coefficients. Abstract coefficients are coeffi­

cients that do not have meaning by themselves, and a classifier has to be used to judge 

their behavior. Aside from distinct classification, the level of abnormality and normality is 

of great importance for neurologists and sleep specialists as this may represent a signal that 

can be used to follow disease progression or response to therapy. 

One of the simplest classifier used, is the Linear Discriminant Analysis (LDA). LDA 

produces a discriminant function that maps the input into the classification space. LDA 

searches for those vectors in the underlying space that best discriminate among classes, rather 

than those that best describe the data [64]. The goal of LDA is to seek a transformation 

matrix W that maximizes the ratio of the between-class scatter to the within-class scatter. 

One of the techniques that could be used to validate the behavior of the classifier is 

the LOO method. The idea behind this method is to exclude one of the available samples, 
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and train the classifier based on the rest of the samples, then test the data with that one 

sample. This procedure is repeated for all the available samples. In other words, 100 

involves using a single observation from the original sample as the validation data, and the 

remaining observations as the training data. This is repeated such that each observation in 

the sample is used once as a validation data. 

3.5.1 Results 

As already mentioned the original database consists of 4 normal and 4 abnormal signals. 

After applying the adaptive signal processing techniques to the REM stage of these signals 

the number of stationary segments were calculated to be 956 signals. 409 of these segments 

were marked as abnormal and 547 of them were marked as normal. To test the performance 

of the proposed feature extraction and classification scheme, all the stationary segments were 

used. The objective of the proposed system for the EMG signals were as follows: 

1. To validate the techniques used in this work such as AR modeling and Cepstrum 

Analysis. 

2. To find the level of normality and abnormality in different signals. 

3. To find the disease progression in different subjects and/or their response time to 

therapy. 

4. To prevent subjects from Parkinson Disease by studying their neuromuscular behavior 

in REM Sleep. 

3.5.2 Classification Result 

Classification using LDA was performed using the statistical analysis package SPSS™ (Sta­

tistical Package for the Social Science) [67]. The following subsection will present the classi­

fication results as a confusion matrix, which shows how many signals were correctly classified 

and how many signals were misclassified. The results of LDA and 100 for AR modeling are 
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shown in Tables 3.1 and 3.2, and the results of LDA and 100 for Cepstrum Analysis are 

shown in Tables 3.3 and 3.4 respectively. 

From Table 3.1, LDA classification results of EMG in REM Sleep are shown, indicating 

that the correct classification rates were 89.8% (normal as normal) and 69.7% (abnormal as 

abnormal). Misclassification rates were computed to be 10.2% (normal as abnormal) and 

30.3% (abnormal as normal). An overall classification rate of 81.2% was achieved for the 

EMG in REM sleep using AR modeling, and an average misclassification rate of 18.8% was 

achieved. From Table 3.2, LOO classification results of EMG in REM Sleep are shown, 

indicating that the correct classification rates were 88.7% (normal as normal) and 68.5% 

(abnormal as abnormal). Misclassification rates were computed to be 11.3% (normal as 

abnormal) and 31.5% (abnormal as normal). An overall classification rate of 80.0% was 

achieved for the EMG in REM sleep using AR modeling, and an average misclassification 

rate of 20.0% was achieved. 

As shown in Table 3.3, the LDA classification rates of the EMG signal in REM sleep 

using Cepstrum were: 86.5% (normal as normal) and 68.0% (abnormal as abnormal). Mis­

classification rates were computed to be 13.5% (normal as abnormal) and 32.0% (abnormal 

as normal). An overall classification rate of 78.6% was achieved for the EMG in REM sleep 

using Cepstrum Analysis and an average misclassification rate of 21.4% was achieved. 

However, the result of LOO classification in Table 3.4 indicates 86.3% (normal as normal) 

and 67.5% (abnormal as abnormal) were correctly classified. Misclassification rates were 

computed to be 13.7% (normal as abnormal) and 32.5% (abnormal as normal). An overall 

classification rate of 78.2% was achieved for the EMG in REM sleep using cepstral analysis 

and an average misclassification rate was 21.8%. Figures 3.7 to 3.10 show the distribution 

of normality and abnormality in different subjects. In these Figures Nand A refers to Normal 

and Abnormal respectively. This is a valuable asset for doctors and neurologists since this 

may represent a signal that can be used to follow disease progression or response to therapy. 

In order to prove the classification results, first, 3 dominant AR coefficients and 3 dom-
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Table 3.1: Confusion matrix containing the number of correct classified EMG in Sleep as either 
normal or abnormal using Discriminant classification and AR modeling 

Normal or Abnormal Predicted Group Membership 

Count 

% 

Normal Abnormal total 
Normal 491 56 547 

Abnormal 
Normal 

Abnormal 

124 
89.8 

30.3 

285 
10.2 

69.7 

409 
100 

100 

Table 3.2: Confusion matrix containing the number of correct classified EMG in Sleep as either 
normal or abnormal using Leave-one-out classification and AR modeling 

Normal or Abnormal Predicted Group Membership 

Count 

% 

Normal Abnormal total 
Normal 485 62 547 

Abnormal 
Normal 

Abnormal 

129 
88.7 

31.5 

280 
11.3 

68.5 

409 
100 

100 

inant cepstral coefficients of both normal and abnormal are plotted, followed by the ROC 

curve included in the next subsection. Figure 3.11 shows the separation of AR modeling 

coefficients of the normal and abnormal segments, and Figure 3.12 shows the separation of 

cepstrum coefficients of normal and abnormal segments. 

ROC Curve 

Receiver Operating Characteristics (ROC) analysis is an established method of measuring 

diagnostic performance in medical signals and medical imaging studies. The basic idea 

behind the ROC Curve is the method of specifying the true positive (TP) rate and false 

positive (FP) rate. The TP rate is the percentage of target samples that are correctly 

classified as target samples, and the FP is the percentage of nontarget samples that are 

incorrectly classified as target samples. An ROC curve is a plot of operating points showing 

the possible tradeoff between a classifier's TP rate versus its FP rate. The TP is often called 
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Table 3.3: Confusion matrix containing the number of correct classified EMG in Sleep as either 
normal or abnormal using Discriminant classification and Cepstrum Analysis 

Normal or Abnormal Predicted Group Membership 

Count 

% 

Normal Abnormal total 
Normal 473 74 547 

Abnormal 
Normal 

Abnormal 

131 
86.5 

32.0 

278 
13.5 

68.0 

409 
100 

100 

Table 3.4: Confusion matrix containing the number of correct classified EMG in Sleep as either 
normal or abnormal using Leave-one-out classification and Cepstrum Analysis 

Normal or Abnormal Predicted Group Membership 

Count 

% 

Normal Abnormal total 
Normal 472 75 547 

Abnormal 133 
Normal 86.3 

Abnormal 32.5 

276 
13.7 

67.5 

409 
100 

100 

sensitivity and (1-FP) is referred to as specificity. In other words, ROC curve describes 

the inherent tradeoff between sensitivity and specificity of a diagnostic test by plotting 

the sensitivity vs. specificity points obtained from a threshold of the decision stage of the 

proposed algorithm. Measure of effectiveness of an algorithm is then given by the area under 

the ROC curve (AUC) [74]. 

In order to plot the ROC Curve for the proposed method, the two classes (normal and 

abnormal), and the predicted group membership of each of the signals were analyzed. From 

these two the TP and FP samples were calculated. Figure 3.13 shows the ROC curve of the 

AR modeling and Figure 3.14 shows the ROC curve of the Cepstrum Analysis. The AUC of 

the AR modeling was calculated to be 0.797 (79.7%) and the AUC of the Cepstrum analysis 

was calculated to be 0.772 (77.2%), which closely matches the result from the confusion 

matrices. 
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As discussed before, a total of 8 normal and abnormal EMG in REM sleep were used for this 

experiment. These 8 signals were first segmented into stationary components using adaptive 

signal processing techniques. 956 samples were extracted from them in which 54 7 of them 

were normal segments and 409 of them were abnormal segments. On each of these stationary 

segments, modeling techniques were applied. To evaluate the performance of these techniques 

a classifier was used. These signals were correctly classified (normal as normal and abnormal 

as abnormal) at a rate of 79.8% for AR modeling while achieving a misclassification rate of 

20.2%, and the correct classification result for Cepstrum analysis was at a rate of 77.2% and 

a misclassification rate of 22.8%. 

As shown by the result, cepstrum does not significantly improve the accuracy, compared 

to AR modeling unlike in speech processing. Although cepstral coefficients show better 

separability in the feature space, and emphasize the spectral difference in the low-frequency 
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band, however, the frequency band of the chin EMG is very lower than the speech signal. 

This might be the reason by which cepstrum does not increase the accuracy, by much. 

Aside from distinct classification, the level of abnormality and normality is of importance 

for neurologists and sleep specialists, as this may represent a signal that can be used to follow 

disease progression or response to therapy. Since, this is the first work in the area of EMG 

signal during REM Sleep, the results are promising, and show great potential for applications 

such as therapy and prediction of fatal diseases. This is especially true since all techniques 

were done in a fully automated manner, without any intervention or assistance from the 

user. This means that such a system could, in fact , be used as a tool, which could either 

(1) approximate the level of normality and abnormality in different subjects and/or (2) an 

earlier diagnosis to different diseases such as Parkinson to prevent for further development 

of the disease. 

Nevertheless, since both these techniques might lack the stationarity properties, and also 



67 
since the diagnostic yield of the cepstral coefficient and the AR spectral measures were simi-

lar, applying other techniques such as Wavelet Transform would be useful. These techniques 

do not need dividing the signal into stationary segments, since they could directly be applied 

to nonstationary signals, which in turn makes them more powerful in signal processing tech­

niques. Wavelet transform has its energy concentrated in time to give a tool for the analysis 

of transient, nonstationary, or time-varying phenomena. The next Chapter discusses the 

two wavelet transform (Discrete Wavelet Transform and Continuous Wavelet Transform) in 

more details, followed by their implementation and results. 



Chapter 4 

Wavelet Analysis of EMG in Sleep 

4.1 Introduction 

W AVELET is a small wave, which has its energy concentrated in time to give a tool 

for the analysis of transient, nonstationary, or time-varying phenomena. They 

are functions that satisfy certain mathematical requirements, and are used in representing 

data or other functions. Wavelet not only has oscillating wave-like characteristics but also 

has the capacity to allow simultaneous time and frequency analysis. The Fourier transform, 

provides information about the frequency domain; however, time localized information is 

essentially lost in the process. The problem with this is the inability to associate features 

in the frequency domain with their location in time, since frequency spectrum will result in 

changes throughout the time domain. In contrast to the Fourier transform, the wavelet ex­

pansion maps the signal into a two dimensional array of coefficients. In other words, this two 

dimensional representation allows localizing the signal into time and frequency. The wavelet 

analysis procedure is to adopt a wavelet prototype function, called an analyzing wavelet or 

mother wavelet. Temporal analysis is performed with a contracted, high-frequency version 

of the prototype wavelet, while frequency analysis is performed with a dilated, low-frequency 

version of the same wavelet. These operations are applied to the mother wavelet to calculate 

the wavelet coefficients, which represent the correlation between the wavelet and a localized 

section of the signal. Because the original signal or function can be represented in terms 

of a wavelet expansion (using coefficients in a linear combination of the wavelet functions), 
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data operations can be performed, using the corresponding wavelet coefficients. This gives 

the ability to look at different scales and resolutions, which means an approximation of the 

signal look stationary, while at the detailed level discontinuities become apparent [75]. 

4.2 Motivation Behind the Study 

As already explained in the previous Chapters, the stationary property, in its usual definition, 

means the independence of statistical properties relative to an absolute time. Nevertheless, 

the most natural local quantities which intrude into the description of nonstationary random 

signals, are related to time (76]. However, when analyzing signals with nonstationary nature, 

it is often beneficial to be able to acquire a technique that could be used without segment­

ing the signal into stationary components, as opposed to the one explained in Chapter 3. 

Furthermore, it would be practical to find techniques that enable one to find a correlation 

between the time and frequency domains of a signal, in order to study both time and fre­

quency aspects simultaneously. The operation of translation and scaling seems to be basic 

to many practical signals and signal generating processes, and their use is one of the reasons 

that wavelets are efficient expansion functions. Another advantage of WT is that, it uses 

long duration windows for capturing the low frequency components, and short duration win­

dows for capturing high frequency components; based on the assumption of rapid changes 

in high frequency components and slow changes in low frequency ones. This means that at 

high frequencies the WT is sharper in time, while at low frequencies the WT is sharper in 

frequency. 

Hence, the motivation behind using wavelet in this work, is the ability to analyze the 

signal without dividing it into stationary components; as well as the high efficiency of its 

use in many practical applications. To the best of Author's knowledge, there has been no 

reported literature on the application of WT on the EMG in REM Sleep. Therefore, the 

techniques used in this thesis is novel. 

The following sections will cover the methods and techniques that will be used to classify 

the EMG signals in REM sleep, normal vs abnormal, using WT. First the concept of DWT 
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Figure 4.1: Block Diagram of the Wavelet Analysis 

and CWT will be examined, followed by their applications on both sleep and nonsleep 

EMG. Then description of the classification scheme used will be included, and finally the 

experimental results. Figure 4.1 shows the algorithm and the techniques for this Chapter. 

In the past, numerous research has been dedicated to EMG, using WT [56)[77)-[80). To 

provide a comparative analysis of the techniques used in this thesis, the research in the area 

of EMG analysis, using WT, is included in Table 4.1. Their main focus is extraction and 

classification of Motor Unit Action Potential (MUAP). The researchers have used variety of 

WT methods, including DWT, CWT and WPT (Wavelet Packet Transform). 

4.3 Discrete Wavelet Transform 

DWT transforms a discrete signal from time domain into time-scale domain. This results 

in a set of coefficients, which are organized to enable not only a spectrum analysis of the 

signal, but also to enable a spectral behavior study of the signal in time. In DWT a signal is 

represented by inner products that are temporal shifts and dilation of a prototype function 

'ljJ, often called mother wavelet [81). Wavelets can be realized by iteration of filters, which 
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Table 4.1: Related works in Wavelet Transform 
Source Method Application Result --..... 

Gazzoni et al. CWT Detection and Classification Automatic Detectioll' 
[77] ofMUAP ofMUAP 

Hu et al. Relative Wavelet Packet Extract features from Uses less features/-.... 
[78] Energy (RWPE) surface EMG accuracy is higher 

Leao et al. CWT Evaluation of stretch Suitable for extractioUT 
[56] reflex response from EM G analysis of stretch reflex 

High accuracy on -Diab et al. DWT Uterine EMG 
[79] stimulated signal low 

accuracy on real signal 
Arvetti et al. CWT Effectiveness of active High Accuracy 90% 

[80] hand using EM G 

are one of the most widely used signal processing functions. In other words, the lower 

resolution coefficients can be calculated from the higher resolution coefficients by a tree 

structured algorithm called a filter bank. In DWT, the filtering is being used to measure the 

amount of details in the signal, and the scale is determined by upsampling and downsampling 

operations. This allows an efficient calculation of the expansion coefficients. In other words, 

this could be achieved by decomposing a signal, breaking it into two components, where each 

carry information about source signal. 

-

Filters from the filter bank, used for decomposition, come in pairs: low-pass and 

high-pass. The filtering proceeds by down-sampling (the obtained filtering result is "re-sampled", 

so that every second coefficient is kept). Low-pass filtered signal contains information about 

slow changing component of the signal. They looking similar to the original signal only the 

number of samples is two times shorter. Conversely, the high-pass filtered signal contains in­

formation about fast changing component of the signal [81]-[86]. There are many advantages 

in using DWT, which are itemized below: 

• Efficient to compute. 

• Easy to implement 

Next subsection explains the wavelet decomposition and filter banks, in more detail. 
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Figure 4.2: 1-Level Wavelet Decomposition 

4.3.1 Wavelet Decomposition 

As explained in the previous sections, DWT is being done by using a set of filters. The 

output of different filter stages are the wavelet and scaling function transform coefficients. 

The filtering is done by splitting the signal spectrum into two equal parts, a low-pass and a 

high-pass part. The high-pass part usually has the most details of the signal, often known 

as noise. Yet, the low-pass part contains less details which could be split again and again 

until the number of the bands are satisfactory. Therefore, the decomposition process can 

be iterated, with successive approximations being decomposed in turn; so that one signal is 

broken down into many lower resolution components, called the wavelet decomposition tree. 

This is shown in Figures 4.2 and 4.3. 

Continuous analysis is often easier to be interpreted, since its redundancy tends to rein­

force the traits, and makes all information more visible. This is specially true of very subtle 

information. Thus, the analysis gains in "readability" and in ease of interpretation what it 

loses in terms of saving space. 

4.4 Continuous Wavelet Transform 

As explained before, the idea behind the time-frequency joint representations is to segment 

the signal of interest into several parts, and then analyze the parts separately. It is clear that 
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analyzing a signal in this way will provide more information about the when and the where of 

different frequency components. CWT is shifted along the signal, and for every position the 

spectrum is calculated. Then, this process is repeated many times with a slightly shorter (or 

longer) window for every new cycle. In the end, the result will be a collection of time-scale 

representations of the signal, all with different resolutions. The CWT is in the mathematical 

form below: 

1 J t- b W(a, b)= ~ x(t)'lj;*(-)dt 
ya a 

(4.1) 

In this Equation a is scale factor, b is the translation factor, and )a is a factor for energy 

normalization across different scales. In other words, the continuous transform displays 

the temporal structure of the various different frequency components of the signal [87]. The 

scaling factor and the translation factor are two important phenomena in CWT applications, 

and they could vary according to the application in which they are being used. 
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4.4.1 Scaling Factor 

It has been already alluded to the fact that wavelet analysis produces a time-scale view of a 

signal, which in turn is a result of scaling and shifting of wavelets. Scaling a wavelet simply 

means stretching (or compressing) it. Therefore, there is a correspondence between wavelet 

scales and frequency, as revealed by wavelet analysis: 

• Low scale a:=:> Compressed wavelet :=:> Rapidly changing details :=:> High frequency. 

• High scale a ===> Stretched wavelet ===> Slowly changing I coarse features :=:> Low fre­

quency. 

As a result, when the scale factor, a, is enlarged its effect on frequency is compression, 

as the analysis window is contracted by the amount of 1 I a. That means, the more stretched 

the wavelet, the longer the portion of the signal with which it is being compared, and thus 

the coarser the signal features, being measured by the wavelet coefficients. And the more 

compressed the wavelet, the smaller the portion of the signal being compared, and thus more 

rapidly changing detailed features, being produced and measured. Figure 4.4 is an example 

of different scaling in CWT. 

Fitting of the wavelet, CWT, to the data results in calculation of a resemblance index 

between the signal x(t) and the wavelet located at the position band scale a. The higher this 

value, the more correlated the signal is with the mother wavelet. Unlike DWT, CWT can 

operate at every scale, from the original signal up to some maximum scale, by trading off 

the need for detailed analysis with available computational complexity. The scales that were 

used in this work were 15- 100 and 150- 300 in order to measure both the low frequency 

components (i.e. higher scales) and the high frequency components (i.e. lower scales). The 

result from these scale showed that most of the energy is in the higher scales and therefore, 

using higher scales would be a better choice. However, due to the length of the signal and 

the computational time that it takes, both higher and lower scales could not be analyzed 

simultaneously, and only one of them was analyzed at a time. 
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Figure 4.4: Scaling of Wavelet 

4.4.2 Mother Wavelet 

Another very important factor in both CWT and DWT is the selection of the mother wavelet. 

A suitable mother wavelet selection is the kernel of feature extraction [79]. It must be well 

adapted to the events, to be classified. Multiresolutional Analysis (MRA) assures that once 

a scaling function is specified, the associated function 'ljJ ( t) can be generated. This happens 

prior to the analysis, rather than being derived from the data set. There are many different 

wavelets shapes available. They ranged in shape, from square to triangular waveforms, to 

Gaussian and Mexican Hat shapes. Within a given family of wavelets (i.e. Daubechies) 

the waveform can be ranged from simple to primarily biphasic, to much smother and mul­

tiphasic form. Each has its own properties, such as: orthogonality, regularity, symmetry, 

and support width. These are discriminative properties that are important to keep in mind 

when choosing the mother wavelet. The basic requirement for mother wavelet for DWT 

is orthogonality since it avoids redundancy in decomposition of the signal, and ensures the 

unique reconstruction for finite energy signals. Orthogonality means: 

• Scaling and translated functions are orthogonal. 

• Scaling and wavelet functions are orthogonal. 

• Scaling and wavelet functions are orthogonal in function space. 
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Figure 4.5: Daubechies Wavelet 

Daubechies Wavelets (Db) along with Symlet (sym) and Coiflets are among the family 

of wavelets that have these properties [81 ](87]. Within each family of wavelets, these are 

wavelet subclasses, which can be distinguished by the number of coefficients and level of 

iterations. Another very important feature of each family of wavelets is number of vanishing 

moments which is closely related to the number of coefficients. Because of its properties and 

ease of use, the mother wavelet that was used in this work was the Daubechies wavelet. This 

was applied to both DWT and CWT. 

Daubechies Wavelet 

As explained before the main characteristic of the Daubechies family of wavelet is the or­

thogonality. Another very useful characteristic of this family is that they have a maximum 

number of zero moments of the wavelet, which would result in a high degree of smoothness 

for the scaling and wavelet functions. Figure 4.5 shows the Daubechies (Db4), used in this 

work. Next section will show the results achieved from applying wavelet on EMG signal 

during REM sleep. 
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It has been shown through literature that wavelet has been widely dedicated to many appli­

cations such as compression, noise removal, and classification. These applications vary from 

biomedical signals such as ECG [88], EMG [89] EEG [90], biomedical images [91] and many 

more [92]. Yet as of recently, none of these methods have been applied on EMG signal, dur­

ing REM sleep; therefore the use of an overnight EMG recording to detect RBD represents 

a novel approach. 

4.5.1 Algorithm 

As explained in Chapter 1 the EMG consists of tonic (steady) and phasic (intermittently 

elevated) bursts in the REM sleep. The phasic REM activity is defined as any burst of 

EMG activity lasting for 0.1 - 2s and has an amplitude of at least 50J.L V, while tonic REM 

constitutes the remainder [9]. For patients with RBD tonic tone is higher than in normal 

subjects. The increase in tonic EMG activity might reflect disease progression [19]. 

The EMG signal in REM Sleep was originally processed using DWT. As stated before, the 

sampling rate to record the EMG signal is 256 samples/s. Therefore 1-level decomposition 

would consists an approximation of 0 r-...~ 64Hz and a detail signal of 64 r-...~ 128Hz. Since most 

of EMG spectral characteristics are in the range of 0 r-...~ 64Hz, approximation coefficients 

can be a better representation of the decomposed signal than the detailed coefficients. 

Although the DWT provides good space-frequency localization and is scale invariant; it 

is a well known fact that the DWT is shift variant [54]. This means that for different trans­

lations of an input signal, a different set of DWT coefficients would be generated [53] [82] [83]. 

This shift variant property of the DWT is widely known, and several solutions have been pro­

posed. Thus far, in this work, to overcome the problem, the DWT was not further applied to 

the signal, and CWT was used; this is because the redundancy of some applications of CWT 

can improve the shift invariance of the transform as well as analysis gains in "readability", 

and in ease of interpretation what it loses in terms of saving space [93]. Therefore, the one 

level decomposition DWT was used to capture the tonic and phasic twitches for each signal, 



,-----------.~ 
The Normal 

Segmented Signal 

---·[§J----<D-

High Frequency 

500 DWT Coefficietns 

Low Frequency 

500 DWT Coefficietns 

Figure 4.6: 1 Level Decomposition EMG of Normal Segment 

78 

and then the CWT was applied to the approximation coefficients of the DWT to extract 

useful features from the CWT coefficients. Figures 4.6 and 4.7 show 1-level decomposition 

of EMG for normal and abnormal segments respectively. 

As stated before, the WT was mainly used to overcome the adaptive segmentation of the 

nonstationary signals. However, this was not possible due to the long length of the signal as 

well as the redundancy of the CWT coefficients. To solve this issue, the EMG signal in REM 

sleep was segmented into fixed length components, and the wavelet analysis was applied on 

each of these segments separately. The extent of this fixed segment was chosen to be 1000 

samples, which corresponds to almost 4s of data. This was on an average significantly longer 

than the segments, used in modeling work, presented in Chapter 3. 

The plot of the CWT shows the signal in time and scale. This representation clearly 

indicates at what time and which scale the energy is distributed throughout the signal. This 

energy representation is very important in classifying the signal into normal and abnormal, 
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Low Scale to high Scale 

Figure 4.9: CWT of Abnormal Signal for Scale 15 to 100 

since the abnormal signal is expected to have higher energy distribution throughout each seg­

ment. Therefore, the coefficients extracted from CWT, which shows the energy distribution 

of the signal, could be used as features input to the classifier. 

At first the scale used to classify the signal was very low, this means that since the scale 

is low, the high frequency signals are being analyzed. However, since most of the information 

was in low-frequency components the higher scales were analyzed in more detail. As a result , 

the range of the scale used was 15 to 100. Figures 4.8 and 4.9 show the CWT representation 

of normal and abnormal subjects respectively. These two figures are chosen from two different 

segments of both normal and abnormal signals. In addition, the distribution of energy in each 

of these signals, for different scales, are very much different from each other. Nevertheless 

from both these Figures, it is shown that the maximum energy is within the higher scales. 

Consequently the higher scales (150 rv 300) were analyzed. Figures 4.10 and 4.11 show the 

CWT representation of scales 150 to 300. 

The algorithm used in this work tries to predict the scale that maximizes the CWT 

coefficients. The higher the coefficients, the more correlated the signal to the mother wavelet 
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Figure 4.11: CWT of Abnormal Signal for Scale 150 to 300 
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and thus higher the energy. The reason for this procedure was to avoid comparing different 

scales of the CWT with each other. Comparing different scales with each other would result 

in wrong outcome and/or variable accuracy. Since the energy was mostly distributed in 

higher scales the scale that gave the highest energy coefficients was 100 and 300 respectively 

for all the 8 different signals. The result of the CWT coefficients for these scales were fed to 

a classifier, and the classification accuracy was calculated. The next subsection shows the 

classification accuracy of classifying the EM G segments into normal and abnormal, using 

WT. 

4.5.2 Results 

The original database consists of 4 normal and 4 abnormal signals. As stated before, the WT, 

specially, CWT could not be directly applied to the signal, because of the long computational 

time and the memory that it uses to compute the coefficients. Therefore, the signals were 

divided into smaller components in such a way that the computational time is shorter than 

of other applications such as adaptive signal processing and AR modeling, explained in the 

previous Chapter. Since each of the signals had a different length, the number of segments 

varied from signal to signal. As a result, when segmenting the signal into fixed ( 1000 samples) 

components, the number of fixed segments were calculated to be 2350 signals. 1641 of these 

segments were marked as abnormal and 709 of them were marked as normal. Most of 

the biomedical researchers suffer from a low number of dataset to validate their results. 

Nevertheless it is difficult to predict what an optimum dataset size maybe. Therefore, to 

test the performance of the proposed feature extraction and classification scheme, all of the 

fixed segments were used. The objective of the proposed system for the EMG signals were 

as follows: 

1. To validate the techniques used in this work; 

2. To compare the results of the three applications used in this work (AR modeling, 

Cepstrum Analysis and Wavelet Transform); 
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3. To find the level of the normality and abnormality in different signals; 

4. To find the disease progression in different subjects and/or their response time to 

therapy; 

5. To prevent subjects from Parkinson Disease by studying their neuromuscular behavior 

in REM Sleep; 

4.5.3 Classification Result 

Classification using LDA method was performed using SPSS™ [67]. The following sub­

section will present the classification results as a confusion matrix, which shows how many 

signals were correctly classified and how many signals were incorrectly classified. The LOO 

method was also used to prove that these results will work on a different dataset. The results 

of LDA and LOO for scale 15 rv 100 are shown in Tables 4.2 and 4.3, and for scales 150 rv 300 

are shown in Tables 4.4 and 4.5. 

Table 4.2: Confusion matrix: containing the number of correct classified EMG in Sleep, as either 
normal or abnormal, using Discriminant classification and WT for Scale 15 to 100. 

Normal or Abnormal Predicted Group Membership 

Normal Abnormal total 
Normal 691 18 709 

Count 
Abnormal 143 1498 1641 

Normal 97.5 2.5 100 
% 

Abnormal 8.7 91.3 100 

From the Table 4.2, LDA classification results of EMG in REM Sleep are derived, indicat­

ing that the correct classification rates were 97.5% (normal as normal) and 91.3% (abnormal 

as abnormal). Misclassification rates were computed to be 2.5% (normal as abnormal) and 

8.7% (abnormal as normal). An overall classification rate of 93.1% was achieved for the 

EMG in REM sleep using WT, and an average misclassification rate was 6.9%. In Table 4.3, 

LOO classification results of EM G in REM Sleep are shown, indicating that the correct 
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classification rates were 97.5% (normal as normal) and 91.3% (abnormal as abnormal). Mis-

classification rates were computed to be 2.5% (normal as abnormal) and 8.7% (abnormal as 

normal). An overall classification rate of 93.1% was achieved for the EMG in REM sleep 

using WT and also an average misclassification rate of 6.9% was achieved. The latter shows 

that the system will work for a different group of dataset. 

Table 4.3: Confusion matrix: containing the number of correct classified EMG in Sleep, as either 
normal or abnormal, using Leave-one-out method classification and WT for Scale 15 to 100. 

Normal or Abnormal Predicted Group Membership 

Count 

% 

Normal Abnormal total 
Normal 691 18 709 

Abnormal 
Normal 

Abnormal 

144 
97.5 

8.8 

1497 
2.5 

91.2 

1641 
100 

100 

The results for the higher scales show a higher accuracy, which are determined to be as 

follows: From Table 4.4, LDA classification results of EMG in REM Sleep are driven, indicat­

ing that the correct classification rates were 97.9% (normal as normal) and 94.6% (abnormal 

as abnormal). Misclassification rates were computed to be 2.1% (normal as abnormal) and 

5.4% (abnormal as normal). An overall classification rate was 95.6% for the EMG in REM 

sleep, using WT, and an average misclassification rate was 4.4%. From Table 4.5, LOO clas­

sification results of EM G in REM Sleep are driven, indicating that the correct classification 

rates were 97.9% (normal as normal) and 94.5% (abnormal as abnormal). Misclassification 

rates were computed to be 2.1% (normal as abnormal) and 5.5% (abnormal as normal). 

Therefore an overall classification rate of 95.5% was achieved for the EMG in REM sleep, 

using WT, and an average misclassification rate was 4.5%. 

The results achieved using WT, compared to AR modeling and Cepstrum analysis, is 

more promising, and shows that analyzing both the time and frequency (scales) of the signal 
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Table 4.4: Confusion matrix: containing the number of correct classified EMG in Sleep, as either 
normal or abnormal, using LDA classification and wavelet WT for Scale 150 to 300. 

Normal or Abnormal Predicted Group Membership 

Count 

% 

Normal Abnormal total 
Normal 694 15 709 

Abnormal 
Normal 

Abnormal 

89 
97.9 

5.4 

1552 
2.1 

94.6 

1641 
100 

100 

Table 4.5: Confusion matrix: containing the number of correct classified EMG in Sleep, as either 
normal or abnormal, using Leave-one-out method classification and WT for Scale 150 to 300. 

Normal or Abnormal Predicted Group Membership 

Count 

% 

Normal Abnormal total 
Normal 694 15 709 

Abnormal 
Normal 

Abnormal 

90 
97.9 

5.5 

1551 
2.1 

94.5 

1641 
100 

100 

for longer duration is more accurate in detecting RBD in different subjects. Figures 4.12 

to 4.16 show the distribution of normality and abnormality in different subjects. In these 

Figures N and A refer to Normal and Abnormal subjects respectively. This is a valuable 

asset for neurologists since this may represent a signal that can be used to follow the disease 

progression or the response to therapy. 

In order to prove the classification result the three dominant Wavelet Coefficients of 

both normal and abnormal are plotted, followed by the ROC curve in the next subsection. 

Figure 4.16 shows the separation of WT coefficients of the normal and abnormal segments. 

ROC Curve 

In order to plot the ROC Curve for the proposed method, the two classes (normal and 

abnormal) and the predicted group membership of each of the signals were analyzed. From 

these two, the TP and FP samples were calculated. Figures 4.17 and 4.18 show the ROC 
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Figure 4.14: Distribution of Normality in Normal subjects for Scale 150-300. 
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Figure 4.15: Distribution of Abnormality in Abnormal subjects for Scale 150-300. 
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curve of the wavelet analysis for scale 15 - 100 and 150 - 300 respectively. The AUC of 

these curves are calculated to be 0.944 (94.4%) and 0.962 (96.2%). These values, compared 

to those obtained in Chapter 3, show that WT is a better technique for detecting the RBD. 

Figure 4.19 demonstrates this fact in more detail. 

4.6 Discussion 

Since most of the signal processing techniques have to be done on stationary signals and also 

since most of the biomedical signals are nonstationary or cyclo-stationary, techniques that 

either segments the nonstationary signal into a stationary such as adaptive signal processing 

[94], as well as techniques that can be applied to nonstationary signals themselves such as 

the WT, are very beneficial [95]. For this reason CWT and DWT analysis were investigated 

in this study for the assessment of EMG recorded from normal and abnormal (REM sleep 

behavior disorder) subjects during sleep. This approach showed a better performance than 

previous methods that was attempted such as AR modeling and Cepstrum Analysis. This 

approach may provide useful information to clinicians in the form of an easily applicable 

measure of disease activity sensitive to very early neurodegeneration, and treatment response. 
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Figure 4.17: ROC for classification of EMG in REM sleep using WT for Scale 15 -100 
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Figure 4.19: ROC for classification of EMG in REM Sleep 



Chapter 5 

Conclusions 

5.1 Sleep Related Problems 

Sleep is closely related to every facet of daily life. In this respect, disturbed sleep affects 

not only the health and well being of individuals but also the quality of their life. Sleep 

and sleep-related problems play a role in a large number of human disorders, and therefore 

affect every field of human healthcare. Clinicians and other healthcare professionals receive 

extensive training in order to be sufficiently qualified to detect, prevent, and cure diseases. 

Although the skills acquired by these medical facilitators are quite extensive, it is just as 

important for them to have access to an assortment of technologies to further improve their 

monitoring and treatment capabilities. In fact, this research may offer useful information 

to clinicians in an applicable measure to early treatment of many diseases. In this respect 

many incurable diseases may be prevented by the help of the signals that can be detected 

before it becomes very late. 

The introduction of a number of new techniques during the past few decades, includ­

ing polysomnographic (sleep study) surface measurements of central nervous system (CNS) 

activity, eye movements, and muscle activity, has allowed sleep to be described in electro­

physiological terms. Therefore, studying sleep behavior and particularly the sleep signals are 

very important, since it affects all humans. In consequence this thesis was mainly dedicated 

to the analysis of sleep and a common type of disorder called Rapid Eye Movement Sleep 

Behavior Disorder (RBD). 
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It is a well known fact, in the real world that, there exists abundant kinds of signals. All 

those signals carry lots of information that are of human's interests. People develop diverse 

techniques to analyze, interpret, manipulate, and process those signals. Biomedical signals 

are a type that have strong relationship with human body or human organs. It has been 

shown that the type of most of these signals are nondeterministic and further nonstationary 

or quasistationary. Yet, in order to be able to apply signal processing techniques to these 

types of signals, either the signal has to be divided into stationary components or techniques 

that can be applied to nonstationary signals has to be employed. The aim of this thesis was 

to analyze these two different types of techniques on EMG in REM sleep. 

As previously stated, the thesis investigates the behavior of EMG signal in normal and 

abnormal subjects. The abnormality of the EMG in REM sleep will lead to early neurode­

generative disorders such as Parkinson Disease (PD). Thus studying the behavior of the 

EMG in REM sleep is very important. Since, by predicting, if a subject is sensitive to gen­

erate PD, then the treatment could start years prior to the diagnosis. Therefore, finding a 

good signal analysis tool will permit the professionals to predict and prevent this disease. 

As a result, this thesis focuses on signal processing techniques that are easy to implement 

and can help doctors for treatment and prediction of some neurodegenerative diseases. 

5.2 Parametric Signal Analysis of EMG in Sleep 

As discussed in Section 3.5 a total of 8 normal and abnormal EMG in REM sleep were 

used for experimentation. These 8 signals were first segmented into stationary components , 

using adaptive signal processing techniques. Total of 956 samples were extracted from them, 

54 7 were normal segments and 409 were abnormal segments. On each of these stationary 

segments modeling techniques were applied. To evaluate the performance of these techniques 

a classifier was used. These signals were correctly classified (normal as normal and abnormal 

as abnormal) at a rate of 80.6% for AR modeling while achieving a misclassification rate of 

19.4%, and the correct classification result for Cepstrum analysis was at a rate of 78.4% and 

a misclassification rate of 21.6%. 
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As shown in Section 3.5.2, Cepstrum did not significantly improve the accuracy, compared 

to AR modeling unlike in speech processing. Although Cepstral coefficients show a better 

separability in the feature space and emphasize the spectral differences in the low-frequency 

band, the frequency band of the chin EMG is much lower than the speech signal. Therefore, 

cepstral analysis did not increase the accuracy by much. 

Nevertheless, since both these techniques might lack the stationarity properties, and also 

because the diagnostic yield of the cepstral coefficients and the AR spectral measures were 

similar, applying other techniques such as Wavelet 'Itansform was useful. These techniques 

do not need dividing the signal into stationary segment since they could directly be ap­

plied to nonstationary signals which in turn makes them more powerful in signal processing 

techniques. 

5.3 Wavelet Analysis of EMG in Sleep 

Since most of the signal processing techniques have to be done on stationary signals and 

also since most of the biomedical signals are nonstationary or cyclo-stationary, techniques 

that either segments the nonstationary signal into stationary forms such as adaptive signal 

processing (94], as well as techniques that can be applied to nonstationary signals themselves 

such as the Wavelet Thansform are very beneficial (95). For this reason Continuous and Dis­

crete Wavelet Thansform analysis were investigated in this study for the assessment of EMG 

recorded from normal and abnormal (REM sleep behavior disorder) subjects during sleep. 

This approach showed a better performance than previous methods, that was attempted, 

such as AR modeling and cepstral analysis. This approach may provide useful information 

to clinicians in the form of readily applicable tools to diseases that are preventable. 

As discussed in Section 4.5.2 the 4 normal and 4 abnormal signals had to be segmented 

into smaller components due to the computational time and memory storage issues that 

the author had. As a result, the number of fixed segments were calculated to be 2350 

signals. 1641 of these segments were marked as abnormal and 709 of them were marked as 

normal. DWT was applied to each of these segments and further CWT was applied to the 
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DWT's approximation coefficients. Since the distribution of energy coefficients were seen 

to be higher as shown in Figures 4.10 and 4.11. Thus higher scales were also applied on 

the segments. However, again because of the computational time and memory issues both 

high and low scales could not be analyzed simultaneously. To evaluate the performance of 

this technique Linear Discriminant Analysis (LDA) was applied. The signals were correctly 

classified (normal as normal and abnormal as abnormal) at a rate of 94.4% while achieving a 

misclassification rate of 5.6% for scale 15-100, and for scale 150-300 the correct classification 

rate was 96.25% and a misclassification rate of 3. 75%. 

Aside from distinct classification, the level of abnormality and normality was very im­

portant, as this may represent a signal that can be used to follow a disease progression or a 

response to therapy. The results were promising and show great potential for applications 

such as therapy and prediction of serious neurological diseases. This was specially true since 

all techniques were done in a fully automated manner, without any intervention or assis­

tance from a user. Hence, such a system could, in fact, be used as a tool, which could either 

(1) approximate the level of normality and abnormality in different subjects and/or (2) an 

earlier therapy to different diseases such as Parkinson to prevent for further development of 

the disease. 

5.4 Future Work 

Some of the following points could be addressed in the future research endeavors, 

1. Other types of adaptive signal processing could be used such as Recursive Least Square 

Lattice (RLSL) algorithm, which is based on calculating the conversion factor values of 

each input sample for adaptive segmentation, and further provide segment boundaries. 

2. Extract dominant poles from the AR coefficients and characterize them in terms of 

frequency and energy distribution to the signal. 

3. Reduce the computational time of the CWT which could result in applying the CWT 

to the whole signal. 
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4. All these algorithms could be applied to different stages of sleep to find other sleep 

disorders. 

5. The effect of number of features extracted as well as the database size on classification 

performance could be examined. 
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