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Abstract

Wavelet Packets-Based Speech Enhancement Techniques for Digital
Hearing Aids

Jiming Yang
Master of Applied Science
Electrical and Computer Engineering Department, Ryerson University, 2006

Hearing-impaired listeners often have great difficulty understanding speech in a noisy
background. The problem has motived the development of a new speech enhance-
ment scheme with the goal of improving speech in noise perception for the hearing
impaired listeners. In this thesis, a novel wavelet packet based noise reduction algo-
rithm and hearing loss compensation are presented for a single microphone hearing
aids application.

The noise reduction scheme utilizes noise masking threshold based suppression rule to
remove additive noise. The perceptual noise suppression rule is optimized to achieve a
balance between noise removal and speech distortion. Both objective and subjective
evaluations have shown superior performance of the proposed technique in a good
combination of low residual noise and low signal distortion.

The hearing loss compensation is realized by the wavelet-based loudness compression
in each critical band. The compensated speech is guaranteed above hearing-impaired
listener’s threshold of hearing and with growth of loudness corrected in the dynamic
range. Preference test among normal hearing person with simulated hearing loss has
shown compensated speeches are favored in various conditions.
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Chapter 1

Introduction

1.1 Overview

Speech communication has always been the most direct and interactive way to convey
information between humans. Under the modern technology settings, speech signal is
now communicated through radio, television, recorder, telephony, and the Internet.
In all speech communication settings, the quality and intelligibility of speech signal
is of high importance to exchange information efficiently and accurately.

In the real-world environment, the fidelity of most of the communication system
is corrupted by interference, which often takes the form of additive background and
channel noise, reverberation, or competing speech. Sufficiently high level of inter-
ference evokes communication difficulty for listeners. Particularly for listeners with
hearing impairments, who generally have great difficulty understanding the speech in
the presence of noise than normal hearing listeners. The difficulties are often expe-
rienced as tiresome and fatiguing with an increased effort to understand speech in
noise.

Various speech enhancement algorithms have been proposed in large number of
literatures. Much of the current effort in hearing aids research has been to develop
new algorithms that can perform well with speech in noise issue. However, due to the

random nature of the noise and the inherent complexities of the human speech, the



accuracy and robustness of the speech enhancement systems still pose considerable
challenges. The complexity and ease of implementation of the speech enhancement
and the noise reduction algorithms are important criterion when targeting applica-
tion in portable systems such as hearing aids and cellular phones. Noise reduction
techniques usually have trade off between the amount of noise removed and speech
distortions introduced during the speech processing, thereby limiting the performance

of speech enhancement systems.

1.2 Fundamentals of Speech Production and Human

Hearing

Speech production: Speech is produced by a cooperation of lungs, glottis (with
vocal cords), and articulation tract (mouth and nose cavity) . Figure 1.1 shows a
schematic view of the human speech production Ir_lechanism. As air is expelled from
the lungs through the trachea, the tensed vocal cords within the larynx are caused
to vibrate by the air flow. The air flow is chopped into quasi-periodic pulses which
are then modulated in frequency in passing through the throat, the oral cavity, and
possibly the nasal cavity. Depending on the positions of the various articulators (i-e.,
jaw, tongue, velum, lips, and mouth), different sounds are produced [1].

To put it in more simplified terms, when the vocal cords are tensed, the air flow
causes them to vibrate, producing the so-called voiced speech sounds. When the vocal
cords are relaxed, in order to produce a sound, the air flow either must pass through a
constriction in the vocal tract and thereby become turbulent, and producing unvoiced
sounds. Or it can build up pressure behind a point of the total closure within the
vocal tract, and when the closure is opened, the pressure is suddenly and abruptly

release, causing a brief transient sound.

Human hearing: The human ear has three main subdivisions: the outer, middle,

and inner ear. Figure 1.2 shows a simplified view of the human ear. The outer
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Figure 1.1: Human speech production mechanism [2]

ear consists of the pinna (visible part of the ear) and the meatus (auditory canal
or ear canal). The pinna is mainly responsible for sound collecting, and aids in
sound localization. The ear canal is a tube which directs the sound to the tympanic
membrane (eardrum). It acts as a half closed tube resonator enhancing sounds in the
range of 2-5 kHz. The middle ear consists of the eardrum and ossicles. The eardrum
receives vibrations traveling from the auditory canal and transfers them through the
ossicles to the oval window, which is the port to the inner ear. The ossicles act as lever,
amplifying when soft sounds are received and attenuating to protect against very loud
sound. The external and middle ears, which together form the conductive component
of the auditory apparatus, transmit sound waves from the external environment to
the sensory organ of hearing, the inner ear. As they transmit sound, they also amplify
and modify the frequency spectrum. The inner ear consists of the semicircular canals
that serve as the balance organ of the body and the cochlea that contains the basilar
membrane and organ of Corti, which together form the complicated mechanisms that
transduce vibrations into neural signal codes. During the process, the Corti performs

a frequency-to-place mapping of the mechanical oscillations into electrical impulses
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Figure 1.2: Simplified view of human ear [3]

that can be picked up by auditory nerve.

Psychoacoustics: Knowledge about the acoustic sound signals and the auditory
system physiology alone is not sufficient to understand the human hearing. Ultimately
only how human responded to sound that matters the most. Psychoacoustics studies
the relationship between the subjective perception of audio and the scientific measure-
ment of sound. The most important and fundamental principles of psychoacoustics
are critical bands, threshold of hearing and masking phenomenon.

In order to be audible to human being, sounds require a minimum Sound Pressure
Level (SPL). Often the level is determined in the absence of any external sound. The
auditory threshold is the average among the minimum SPL values obtained from
different people. This threshold is different from person to person and tends to
increase as one ages. Figure 1.3 shows an average human auditory threshold as a
function of frequency. From the figure one can see all frequencies are not heard in
the same way. Frequencies that make up speech are within the smallest range but

are heard better than others. For signal processing purpose, the auditory threshold
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Figure 1.3: Human auditory threshold [5]

can be well approximated by a non-linear function as [4]
T,(f) = 3.64(f/1000) 08 — 6.5¢~0-6(//1000-337 1 10=3(£/1000)*(dB SPL) ~ (1.1)

where f is the frequency variable and the threshold is measured in dB SPL. Any
signal component with an SPL that falls below the threshold will not be perceived by
human ears. In other words, to remove or introduce components to this region will
not effect signal’s perceptual quality.

From physiological point of view, a critical band is the smallest band of frequencies
that activate the same part of the cochlea. Human hearing system processes perceived
sound in non-equal subbands. This behavior can be modeled as a bank of overlapping
bandpass filters called auditory filters. The critical bands can be described as a
measure of the “effective bandwidth” of the auditory filter [6]. Another view of this
is that the critical bands represent an approximation of ear’s ability to discriminate
different frequencies. Experiments showed that the sound in each critical band can be
analysed independently. While the number and the width of critical bands are still in
dispute, Zwicker’s 25-Bark [7] and Moore’s ERB (Equivalent Rectangular Bandwidth)

[6] models are widely applicable. The critical bands also can be explained in another



way, adding up tones lying within a critical bands does not give any significant increase
in perceived loudness over that of one strongest tone. This phenomenon promotes
the auditory masking theory.

Auditory masking generally can be defined as a strong signal renders a weaker
signal inaudible. The strong signal is referred as masker and the weak signal as
maskee. Masking effects can be classified as simultaneous masking and temporal
masking. Simultaneous masking is a frequency domain phenomenon. At certain time
instance, a strong sound makes weaker neighbour frequencies sound imperceptible.
Determinant factors of simultaneous masking includes masker frequency, masker am-
plitude, masker maskee distance (inter/intra band masking effects), and the nature
of masker (tone or noise). Temporal masking is nonlinear perceptual phenomenon in
the time domain, where a stronger sound occurs in time domain masks the weaker
sound that is preceding it (pre-masking) or following it (post-masking). Determinant
factors of temporal masking includes masker frequency, masker intensity, masker du-
ration and temporal separation of masker and maskee. Figure 1.4 illustrates the
patterns of masking. Simultaneous masking mainly happens with a critical band.
Inter-band masking effect is much lower. Post-masking lasts in the order of 50 to 300
msec whereas pre-masking only has less than one-tenth of that duration. In general
every masker generates simultaneous masking, pre-masking, and post-masking on the
maskee signal. Simultaneous masking effect is more significant and its mechanism
is better understood than temporal masking. Hence most of the audio processing

research have focused on simultaneous masking.

1.3 Motivation

Hearing impairment may take many forms. The most common type of hearing loss
can be characterized as sensorineural hearing loss. This type of hearing loss is mostly
age-related and caused by long time exposure to excessive sound level. Sensorineural

loss refers to deteriorated function in the inner ear or along the nerve pathway be-
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Figure 1.4: Typical patterns of masking

tween the inner ear and the brain. Typical effects of this type of hearing loss include
increased absolute hearing thresholds, and abnormal perceived loudness recruitment.
Quieter sounds are often inaudible, and louder sound may sound softer and distorted
on the neural level. This type of hearing loss is usually permanent and not med-
ically treatable. Wearing hearing aids is the only choice for sensorineural hearing loss
individuals to achieve better hearing.

It is well known that hearing-impaired listeners experience more difficulty in under-
standing speech with background noise than normal hearing listeners. Unfortunately,
the specific cochlear, conductive and linguistic mechanism responsible for diminished
speech understanding still remains unknown. One of the possible explanation would
be the speech is a highly redundant signal. Even if part of the speech is masked by
noise; other parts of the speech signal will convey sufficient information to make the
speech understandable. Such redundancy is much less for hearing-impaired person
since parts of the speech are either distorted or completely inaudible [8]. Previous
studies [8, 9] suggested hearing-impaired listeners generally need signal with much
higher SNR, compared to normal hearing listeners, to achieve similar speech recogni-
tion rate. Hearing aids with noise reduction mechanism can greatly reduce the effect

of additive noise and hence increase the speech intelligibility.
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Figure 1.5: Time waveform of noise and speech

Speech noise reduction is fundamentally very difficult due to the nature of the
most noise types. Another unsettled issue is how much noise removal is appropriate
while minimizing speech distortion. Noise is any unwanted signal present in the
desired signal. Here noise can be from the air conditioner, car, traffic or crowd of
people and could be environmental. Figure 1.5 shows sound waveform plots of speech
signal, white noise, factory noise , and babble noise. Some noise characteristics may
be very similar to speech itself, such as babble noise. How to differentiate desired
speech to babble speech? Some noise is actually meaningful such as siren and alarm
sound. How can this type of noise be retained? Signal processing such as noise
removal inevitably introduces speech distortion. How to determine the best trade-off
between noise reduction and speech distortion? Furthermore, special consideration ié
needed to deal with the joint effects of hearing loss and background noise on speech
perception.

The thesis presents a new approach for speech signal noise suppression with hear-



ing loss compensation for hearing aids application, in a goal of improving speech in

noise perception for hearing-impaired individuals.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 gives a general filter representation of
speech noise suppression followed by a review of various speech enhancement meth-
ods. Chapter 3 gives an introduction on wavelet analysis and its application to speechv
enhancement. The main contribution of this thesis begins in Chapter 4 , which
presents the details of the proposed modified perceptual time frequency subtraction
(PTFS) noise reduction algorithm and loudness compression hearing loss compen-
sation schemes. Chapter 5 presents detailed comparative subjective and objective
performance evaluations of the proposed method. Finally, Chapter 6 concludes the

thesis with summary and suggests directions for future research work.



Chapter 2

Methodology

2.1 General Filter Representation of Speech Enhance-

ment Techniques

In many situations, speech signals are degraded in ways of additional noise that
limit their effectiveness for communication purpose. Speech enhancement aims at
improving the performance of speech communication systems in noisy environments.
Many multi-channel and single channel noise reduction algorithms have been pro-
posed. However, most multi-channel scheme may not be suitable for hearing aids
application due to cosmetic reasons. Hence, discussion in this thesis is limited to sin-
gle channel speech signal enhancement. Discussion of the general filter representation
of speech enhancement in transfer domain is mainly based on the work of Fan et al.
[10].

Filtering in transform domains has been the main approach in modern speech
enhancement techniques. One of the reason is because the noise spectrum could be
estimated more accurately in transform domain than in time domain [10]. Figure 2.1
presents the block diagram of general speech enhancement in transform domain. The
procedure is described as follows :

Noise corrupted time domain signal z(n) first goes through analysis stage where

signal is windowed and transformed into specific transform domain. Transformation

10
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Figure 2.1: Speech enhancement: A General Filter representation

can be fast Fourier transform (FFT), short time Fourier transform (STFT), or wavelet
transform. Windowing is especially important for transforms which only localize in
time, such as the FFT. Transform coefficient X (k, ) is filtered to remove the signal
components that correspond to noise, where ¢ is time index and k is transformed spec-
tral component index. The filter transfer function (or gain function), 0 < H(k,i) <1
is a function of noise-to-input ratio (NI R). For a high NIR, it means signal contains
more noise, H(k,4) is made small (— 0) to suppress the noise components; while
small NIR corresponds to cleaner signal, H(k,1) is made large (— 1) to maintain
the signal components. The filter’s successfulness depends on the accuracy of NIR.
Practically, prior knowledge about noise is unavailable. Therefore, a noise estimator
is necessary to provide an accurate estimation of Ry(k,%). To get the filtered output

Y (k,1) in transform domain,
Y (k,i) = H(k,i)X(k,7) (2.1)

Finally, filtered coefficients are inversely transformed to the time domain to get the
estimated clean signal y(n).
The noise reduction scheme presented above can be commonly applied to widely

used speech enhancement algorithms such as the spectral subtraction, the Wiener

11



filter, wavelet shrinkage, and Ephraim-Malah filtering. Once the transform domain
is selected, the only difference is the transfer function H (k,1), which derived from
either optimizing certain cost function (Wiener filter) or applying some constrain to
differentiate noise and signal (spectral subtraction).

A noisy signal z(n) consists of a clean signal s(n) plus a noise component d(n),
assuming the signal and noise are independent to each other. y(n) is an estimated

clean version of s(n). In the transform domain can be expressed as

X(k,i) = S(k, ) + D(k, 1) (2.2)

where 1 is time index and % is transformed spectral component index. For Wiener
filter, the goal is to minimize the mean square error (MSE) between the target and

the estimated signal, or the cost function shown in Equation 2.3.

J(k,3) =B{(Y - SV~ 8)} = E{(HX - (X - D)[AX = (X = D))}  (23)

Filter transfer function in Equation 2.1 is obtained by taking partial derivative with
respect to H, and let the resulting equation to zero.
aJ

a5 = 2HE{XX} - E{XX} + E{DX} =0 (24)

This leads to the Wiener filter gain function and is given by
_E{DS}+E{DD} _ - E{DD} _

E{XX}  E{XX} - NIR 25)

The most widely adopted spectral subtraction is an intuitive idea to remove noise. Es-

H Wiener = 1

timated clean signal magnitude is obtained by subtracting estimated noise magnitude

from that of noisy signal, as shown in Equation 2.6.

VE{YY} = {/E{XX} — \/E{DD} = H/E{xX} (2.6)

12




Algorithm | Transfer Function

Spectral Subtraction Hgg=1-— \/ {%;
Wiener Filter Hwiener =1 — :TD{J‘;
Maximum Likelihood Hyp=1% 1+ \/T - %;
Non-linear Estimation Hyre = f(|D],|X])
Ephraim-Malah Rule Hg 1. = f(SNRyosty SN Ryrior)

Table 2.1: Transfer functions for different algorithms

Therefore, the spectral subtraction filter function is

Hss=1- VEIDDY | /NTR (2.7)

VE{XX}

Building upon the original form of spectral subtraction algorithm, many improve-
ment are proposed to resolve residue musical noise and related artifacts (missing
consonants) problems. Table 2.1 shows different algorithms and their corresponding

transfer functions.

After noise estimation is subtracted from the noisy signal, some portions of the
noisy signal remain and the resulting signal has narrow-band peaks across the spec-
trum. Those isolated peaks vary in frequency from frame to frame producing short
warbling sound, usually referred to as musical noise. Musical noise artifacts exist

mainly because of the discrepancy between the estimated noise and the actual ones.

2.2 Summary of Previous Techniques

2.2.1 Spectral subtraction

Spectral subtraction [11] has been one of the most influential speech enhancement
algorithm for its simplicity and effectiveness in dealing with wideband stationary

noise. The method utilizes the fact that human sound perception is far more sensitive

13



to the short-time speech spectrum than the phase [12]. This method essentially only
requires to estimate the mean noise power. Since the phase is less important, the
noisy signal phase is used to reconstruct the output signal. Implementation of spectral
subtraction is extremely efficient using the FFT architecture. The major limitation of
the technique is residual musical noise that degrades the intelligibility of the enhanced
speech.

Since only average noise spectrum is estimated during the speech pauses, fluctua-
tion in the actual noise spectrum of each frame leads to spectral spur in the resulting
signal. To resolve the problem, good noise statistics must be known or estimated from
non-speech portion of the noisy signal. This may not be trivial since no information
about the noise or the speech is known in real life. Basic spectral subtract delivers
fair result in terms of background noise reduction when SNR is not very low.

Goh et al. [13] suggested a simple way to reduce the musical noise by over-
subtracting the noise estimation from the signal spectrum. But this method also
eliminates more lower energy speech components. Low energy unvoiced speech is
particularly important to hearing-impaired individuals. It is necessary to keep this
kind of distortion to minimal [14]. An intuitive way will be performing* the spectral
subtraction iteratively [15]. Their results showed better segmental SNR, (SegSNR)
gain as more iterations were performed. As an inevitable result, more distortion of
the speech is also introduced.

Modified spectral subtraction using psychoacoustic properties reported improve-
ment in the past decade. Singh et al. [16] found improvements in speech quality
mean opinion score (MOS) test by including critical subband analysis instead of lin-
ear frequency scale in spectral subtraction. However, no significant improvement in
objective segmental SNR test. Nishimura et al. [17] implemented similar method in |
wavelet domain. They showed SNR gain but no improvement in intelligibility test was
achieved. Based on masking property of human auditory system, Virag [18] proposed

another spectral subtraction algorithm. Her further publication [19] results showed

14



the background noise was reduced and the residual noise was less structured, while
the distortion of speech remained acceptable. However, objective tests used such as
Itakura-Saito distortion and Articulation Index have poor correlation with subjective

perception.

2.2.2 Wiener filtering

Tsoukalas et al. [20] adapted Wiener filtering rule for audio enhancement applica-
tion. Wiener filter is the optimal filter for estimating speech in the minimum mean
squared error (MMSE) sense. Similar to spectral subtraction, analysis performed on
each frame is the power spectrum of the noise signal and an estimated noise power
spectrum. As Wiener filter is non-causal and zero phase, estimated signal will use the
phase information of the noisy one. Although the Wiener filter has a simple mathe-
matical representation in the frequency domain, it requires prior knowledge of both
speech and noise statistics, which are usually not known and needs to be estimated.
Without accurate knowledge of the spectra, the Wiener filter approximation is not
effective. It produces similar musical artifact as in spectral subtraction methods.

In [20] experiment results claimed little effect of musical noise. One main reason
may be only signals of 20 dB SNR are tested for audio restoring purpose. For speech
enhancement, this algorithm is further modified according to psychoacoustics rules in
[21]. This method only filtered frequency components containing sufficient large audi-
ble noise spectrum in order to reduce speech distortion. A 40% intelligibility increase
at -5 dB SNR is reported. Psychoacoustically quantifying the audible noise increases

the complexity of this short-time spectral amplitude (STSA) based algorithm.

2.2.3 Ephraim-Malah filter

Ephraim-Malah filter [22] is a modification of the MMSE filter by adding an estimator
for the priori SNR by modeling speech and noise spectral as statistically independent

Gaussian random variables. Its gain function is decided by two parameters: a priori

15



SNR ratio and a posterior SNR ratio. The smoothness of the priori SNR results in
a much lower residual noise without over filtering the speech itself. The implementa-
tion of Ephraim-Malah filter is straightforward despite its complicated mathematical
expression comparing to spectral subtraction and the Wiener filter. Since the priori
SNR needs to be estimated from the observation of noisy signal, again noise estimation
determines the effectiveness of the Ephraim-Malah filter.

Ephraim-Malah algorithm has been widely modified to achieve perceptually bet-
ter processed signal. The algorithm is adapted to discrete cosine domain [23] and
wavelet domain [24]. Both reported to achieve better noise reduction and more pleas-
ant sound than the original scheme. Recently, more sophisticated modification in-
corporating psychoacoustics rules [25, 26] have been developed aiming at reducing
only audible part of noise spectral or finding best trade off between speech signal
distortion and amount of unnatural residual noise. Such schemes reported to have
better overall speech quality, even though some musical tones and speech distortion
were still audible.

From above discussion in this chapter, one can conclude that successfulness of
spectral based speech enhancement techniques largely depends on the accuracy of
noise estimator or speech pause detection. The better the estimation is, the less
residual noise and speech distortion result. Over the last decade, there have been
great number of works on theory and practical methods to address the hearing-in-
noise problem. Unfortunately, the problem is fundamentally very difficult for the most
common types of noise. Furthermore, there are severe limits as to how much noise
reduction is practically possible [8]. Especially for hearing-impaired subjects, who
experience major difficulties when hearing in noisy environment. On the other side,
considering joint effects of hearing impairment and background noise on audit;oryv
perception will allow the development of signal processing scheme for hearing aids
application. By using a better suppression rule and incorporating psychoacoustics

model, the determinant effect of noise estimation can be lessen on the performance

A3
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Figure 2.2: Block diagram of proposed method

of a speech enhancement algorithm. Instead of targeting to remove as much noise
possible, the strategies used in this thesis is to reduce the effects of background noise

on overall sound quality and speech intelligibility if possible.

2.3 Proposed Method

In this thesis, we proposed a robust speech enhancement system for hearing aids
which will simultaneously conduct noise removal and hearing compensation by using
critical band wavelet packet transform. With a reasonable complexity, the new speech
enhancement scheme can improve perception in noise for hearing-impaired listeners.
The proposed speech enhancement scheme can be used to improve next generation
hearing aids device performance.

Figure 2.2 shows the block diagram of the proposed speech enhancement scheme.
First the noisy speech time series is decomposed according to psychoacoustic critical
bands by using wavelet packet transform (WPT). Wavelet coefficients of the noisy
speech are perceptually weighted through a weighting function incorporating mask-
ing properties. The denoised wavelet coefficients are then compressed to compensate

recruitment of-loudness problem of hearing-impaired on the Compression stage. In-
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verse wavelet packet transform (IWPT) transform the processed signal back to time
domain. To evaluate the processed speech on normal hearing subjects, Hearing loss
simulation introduces effect of hearing loss to both original noisy signal and processed
signal to simulate certain types of hearing impairment.

Detail of the proposed methodology will be discussed in Chapter 4.
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Chapter 3

Wavelet Packet Analysis

This chapter provides an overview of the fundamentals of the wavelet transform and
wavelet packet decomposition.

First, the underlying mathematics of the wavelet analysis is explained and then
it is extended to wavelet packet transform. Since this work is based on the wavelet
packet transform (WPT), fast filter bank implementation of the wavelet transform and
wavelet packet transform are presented with corresponding computational complexity

analysis.

3.1 Wavelet Transform Analysis

In order to present the idea, the Fourier transform is compared with the wavelet
transform.

The Fourier transform transforms the time domain signal to frequency domain by
using sinusoidal basis function to approximate the original signal. There are many
advantages for this kind of approximation, as signal can be analyzed for its frequency
content. However, the Fourier transform representation has a major drawback due
to using sinusoidal basis function. Fourier sine and cosine functions are localized
in frequency but not in time. In other words, they stretch infinitely in time, in

transforming to frequency domain, and the time information of the signal is lost. With
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Fourier analysis, it is impossible to tell which frequencies appear at what time. As a
result, Fourier transform can not be used to approximate a signal whose properties
change over time, i.e. non-stationary signal.

To address this problem, it requires a joint time-frequency representation. The
STFT is an intuitive modification of the Fourier transform to analyze non-stationary
signal. The basic idea behind the STFT is segmenting the signal by time-localized
windowing and performing Fourier transform to each segment at a time. The STFT
maps a signal into a two dimensional time-frequency representation. STFT achieves
some degree of compromise between time and frequency representation of signals. It
provides information about both when and what frequencies occur in a signal with
limited precision. The imprecision drawback comes from the fixed length time window
used to analyze the entire signal regardless of its frequency content of each segment.
STFT is able to do wideband frequenéy analysis using narrow window, or narrowband
frequency analysis using wide window, but not both simultaneously once the window
size is selected.

To analyze the signal flexibly, a size-variable window is needed to access accurate
view either in time or frequency. The wavelet transform gave exactly what to achieve

this. Continuous wavelet transform (CWT) is defined as

W (a,b) = —lﬁ / x(t)w*(t—%é)dt (3.1)

where @ > 0 and b are scale and translation parameters respectively, ¥ denotes the
basis function or mother wavelet, and W(a,b) is the continuous wavelet transform
of z(t). Equation 3.1 can be interpreted as inner product of z(t) and the complex

conjugate of the scaled and translated version of the basis function (wavelet)

(@)= [ (tbiundt =< o(2), Yiop(t) > (3.2)

where %w*(‘;—b) and a > 0,b€ R are real continuous variables. CWT can also be
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expressed in convolution form as

W (a,b) =< 2(0), Yfasy 1) >=2(0) x Yfusy (1) (33)

CWT in convolution form can be interpreted as the output of an infinite bank of
linear filters described by the impulse response wz‘a,b)(t) over the continuous range of
scale a [27].

While the FFT maps a one dimensional series into an one dimensional sequence of
coefficients, wavelet analysis maps it into a two dimensional array of coefficients. The
extra dimension of information allows localizing signal in both time and frequency.
But the two dimensional time-scale representation is highly redundant because of
the non-orthogonal basis functions used in CWT. In addition, infinite number of the
wavelets and the lack of analytical solutions of CWT make wavelet transform not
practical for signal analysis. | |

To solve the problem, the discrete wavelet transform (DWT) has been introduced.
To obtain DWT, the parameters a and b from CWT is discretized, much the same
way as DFT does, DWT can be scaled and translated in discrete steps. There are
many possible ways to discretize CWT, and most of the applications are primarily
interested in dyadically spaced wavelets, which is a natural choice for computational
effectiveness. Figure 3.1 shows a resulting time-frequency (time-scale) tiling from
dyadic sampling. For dyadic case, CWT parameters is discretized by a = 27and
b= 2k, (j,k € Z). Wavelet function and DWT are define as

Wix(t) = 27922792 — k) (3.4)

Wik =Y z(t)th;x(t) (3.5)

Note, indexing rather than bracket is used for a more compact form, and also the
conjugation is dropped since only the real-valued wavelet is used.

Dyadic sampling and restricting orthonormal basis wavelets functions will enable
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the use of Mallat’s multiresolution analysis (MRA) to obtain DWT of the discrete

signal.
b
—>
a ¢ 1
2
4
8

Figure 3.1: Time-frequency tiling of dyadic DWT

To form a complete basis in L?(R), it requires an infinite numbers of wavelets
to cover the spectrum. In practice, when the lower frequency part of the signal is
small enough, a low pass spectrum called scaling function ¢, introduced by Mallat,
can be used to represent the lower frequency portion. The scale function takes care
of the spectrum covered by wavelets up to a scale of j. The rest is represented by
wavelet function [28]. Scaling function at a given decomposition depth is a scaled and

translated version of the mother scaling function.
Pik(t) = 2792 (279/7 — k) (3.6)

A signal sequence z(t) can then be represented by its projection on Yk for j =
1,2,3,: -+, Jmaez, and its projection on to Pimazs Where jmee = log, N and N is the
block size of the sequence. Equation 3.7 shows the wavelet representation of any
function z(t) €L?(R).
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2(t) = Y ciathik(t) + dima kPimas i (t); (8.7)
ik

J=1,2,3,- -+, jmaz, Where jy,; is the coarsest scale. The coefficients c;; and djj, are
the discrete scaling coefficients and the discrete wavelet coefficients of z(t) respec-

tively.

3.2 Multiresolution Analysis and Filter Banks

The wavelet transform can be thought of as a filter bank. At different filter stages,
output of the filters are wavelet and scaling coefficients. Filter bank is an analysis
scheme originally applied‘ in subband coding. The filter bank can be implemented
in several ways. One way is to use many bandpass filters to split the spectrum into
a number of frequency bands. Another way is to split the signal spectrum into two
equal parts by lowpass and highpass filters. Since the highpass band has enough
detail information, only the lower half band is further iteratively separated in the
same way until desired resolution is reached. The advantage of the second scheme is
only needed to design a pair of highpass and lowpass pass filters, while every bandpass
filter has to be designed separately in the first scheme. As a result, the disadvantage
of the second scheme is that the band coverage is fixed, while subband width of the
first scheme could be freely chosen [28].

The wavelet function gives the bandpass bands with doubled bandwidth and the
scaling function provides the lowpass band. In other words, the wavelet transform can
perform the same filter band subband analysis by feeding signal to a bank of iterative
highpass and lowpass filters. Mallat [29] derived a discrete orthogonal constant-Q
filter bank implementation of the wavelet analysis, generally referred to as multires-
olution analysis.

The MRA implementation of DWT analyzes the signal at different frequency

bands with different resolution by decomposing the signal in to a coarse and detail
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Figure 3.2: DWT decomposition tree [30]

information. The scaling functions and the wavelet functions are associated with the
lowpass and highpass filters respectively. Equations 3.8 and 3.9 show at level j + 1,
scaling (coarse) and wavelet (detail) coefficients can be obtained from level j scaling
coefficients by filtering with finite impulse response (FIR) lowpass filter h(n) and
highpass filter §(n)[30].

cis1(k) =) h(m — 2k)c;(m) (3.8)

djsa(k) =D §(m — 2k)c;(m) (3.9)

The filtering operation is achieved by convolving the sequence with the filter co-
efficients, or impulse response. The two equations also show a down-sampling, or
decimating, by 2 of the filtering outputs. Down-sampling of the filter outputs is an
important part of multirate filter banks. Without down-sampling, output of each
filter stage will be doubled of previous stage by having two filters. The decomposi-
tion of the complete sequence into different frequency bands is obtained by successive
highpass and lowpass filtering of the coarse coefficients followed by decimation by 2.
A tree-like structure in Figure 3.2 illustrates the recursive nature of the approach.

Upon resynthesis, start from coarsest resolution, first up-sampling by two then

highpass lowpass bank filtering. Perfect reconstruction can be achieved by appropriate
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Figure 3.3: The full binary tree for three-stage wavelet packet transform [30]

filter design technique.

3.3 Wavelet Packet Analysis

As a natural extension to the DWT, the wavelet packet transform (WPT) was intro-
duced by Coifman, Meyer and Wickerhauser [31]. Wavelet packet provide a powerful
and versatile multiresolution analysis of a signal. A logarithmic frequency resolution
of the DWT is not appropriate for some signal analysis. WPT as a generalization of
the wavelet transform, can achieve flexible time-frequency resolution according to the
signal characteristics. WPT allows high frequency band for further decomposition
just as in lower band. Splitting both highpass and lowpass band results in a full

binary tree filter bank structure, as shown in Figure 3.3.

Any node (4,k) of the binary tree is labeled by its depth j and location at the
same depth k from left to right. Node (j,k) corresponding to a space Wjx. The
recursive splitting defines a binary tree of wavelet packet spaces where each parent

node is divided into two orthogonal subspaces, as shown in Equation 3.10 [32].

Wik = W10k © Wip10k41 (3.10)
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Wavelet packet coefficients are computed with a filter bank algorithm that gener-

alizes the fast DWT as discussed in previous section.

3.4 Computational Complexity of Wavelet Analysis

Wavelet analysis of a length-N sequence using Mallat’s algorithm with filter banks
require O(V) operations [30]. The computational cost of the wavelet transform is the
convolutions carried out in each of the log, N stages. Since the number of coefficients
in the convolution is halved after down-sampling in each stage, the total operations
required for a full DWT decomposition is

N N N

O(N+'§+Z+§+"'+1)<O(2N) (3.11)

Therefor the complexity is linear with the length of the signal. In comparison, com-
plexity of the FFT implementation of the DFT is O(N log(N)) and that of DFT
direct implementation is O(N?).

In the wavelet packet case, uniform division is used, that means number of coeffi-
cients in each stage are the same. Length of N sequence has a complete decomposition
of log(NN) stages. The complexity of the WPT becomes O(N log(N)), similar to that
of the FFT.

Fair computational complexity has enabled wavelet analysis to be applied for real-
time application such as image processing, speech codec, and fingerprint recognition.
Applications on real-time portable system such as hearing aid device could become a

possibility in the foreseeable future.

3.5 Wavelet Transform for Noise Reduction

The wavelet transform introduced as an alternative way to analysis non-stationary
signal provides a new way of representing signal into well behaved expression that

has useful properties. A wavelet transform decorrelates signal structures, and filters
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uncorrelated noise. The noise is spread out evenly over all coefficients. In many
signals such as human speech, the energy is concentrated in a small number of wavelet
coefficients. The wavelet coefficients of a signal are considerably larger than that
of noise. Hence, by thresholding the wavelet coefficient useful signal component is
preserved while eliminating the noise. One popular technique is the wavelet shrinkage
algorithm by Donoho and Johnstone [33, 34]. It can be summarized into following

steps:
1. Decompose noise corrupted signal into wavelet coefficients
2. Apply a soft or hard thresholding to the noisy wavelet coefficients

3. Synthesize thresholded wavelet coefficients to obtain enhanced signal

For removing additive Gaussian noise, a global threshold

A =o0+/2In(N) (3.12)

is used for thresholding. Noise standard deviation o can be estimated by o =
MAD/0.675, where the median absolute deviation (MAD) is obtained from the first
decomposition stage of the wavelet transform [34]. N is the length of a frame. For

the wavelet-packet transform case, the threshold becomes

A =0+/2In[N log»(N)] (3.13)

One may notice that above wavelet denoising scheme does not require to estimate the
noise spectra. The threshold solely depends on the input level. Wavelet thresholding
provides a simple yet fair noise reduction solution. However, some problems arise
when the basic wavelet thresholding is applied to speech enhancement. Due to the
time variability and highly non-stationary nature of real-life additive noise to the
speech signal, a time-constant global threshold tends to over threshold the speech

signal, especially in higher frequency bands. Since unvoiced sounds are high frequency
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and noise like, removing these results in poor perceptual quality. Basic wavelet with
global thresholding is not sufficient for speech corrupted by real-life noises.

To improve wavelet based speech denoising method, effort has be focused on
the modification of threshold selection and thresholding function. Level-dependent
threshold [34] and node dependent threshold [35] have been proposed to better cope
with colored noise. Semi-soft thresholding [36] and u-law [35] thresholding were used
to lessen the effect of time-frequency discontinuities that lead to speech artifact. Some
[37, 36] suggested using a different threshold for voiced and unvoiced speech segment.
All modifications of basic wavelet thresholding improve speech enhancement results
to some degree. Among them algorithms that incorporating psychoacoustical model
38, 39, 40, 41] reported best improvement in term of speech quality. Therefore, the
proposed wavelet based noise reduction algorithm utilizing psychoacoustical model is

introduced in next Chapter.
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Chapter 4

Wavelet-based Noise reduction and

Compression

In this Chapter a new single-microphone speech enhancement scheme is proposed.
The approach reduces noise by perceptually filtering the wavelet coefficients corre-
sponding to noisy speech. Denoised speech is furthered enhanced by non-linear gain
derived from hearing-impaired person’s profile. Finally hearing loss simulation is used

to efficiently evaluate the proposed approach.

4.1 Noise Reduction: Modified PTFS

The flowchart of the proposed noise reduction algorithm is presented in Figure 4.1.
The detail of the algorithm will be explained in the following subsections. This noise
reduction algorithm by itself can be used for speech enhancement application. Or as
proposed in the thesis, cascaded with loudness recruitment compensation algorithm

for hearing aids signal processing application.

4.1.1 Perceptual Time-Frequency Subtraction

Li et al. [38] proposed a perceptual time-frequency subtraction (PTFS) algorithm

for speech noise reduction. Their approach provides the basis for the noise reduction
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Figure 4.1: Flowchart of the proposed noise reduction algorithm
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algorithm proposed in this thesis. It is a subtraction scheme in wavelet domain where
auditory masking properties are incorporated to form a non-linear weighting function.
Its basic assumption is the auditory system perceives sounds based on the SNR (
or signal-to-masking ratio, SMR) in each critical band. Their proposed weighting
function is given in Equation 4.1

BIE(w,(d))]/2

ot = (e @

where w; x(z) are wavelet coefficients of the noisy signal, [E(w? +(d))]*/? is the standard
deviation of noise and 3 is an adjustable constant. The weighting function can be
viewed as a filter that produces a non-linear transfer function as shown in Figure
4.2. The conventional one refers to the filter function that generated from spectral
subtraction algorithm.

The weighting function is dividéd into three regions according to (Signal-+Noise)-
to-Noise ratio: noise-masking, signal-noise, and signal masking regions by two thresh-
olds Tjow and Thign. In noise masking region where noise power is strong enough to
make speech inaudible, weighting function is set to be close to zero. In signal mask-
ing region where signal is sufficiently strong to make noise inaudible, a unity gain is
applied to retain all speech components. In signal-noise region where both speech
and noise are audible, a non-linear gain is applied to suppress noise from the signal.
In wavelet domain, the noise power is estimated during non-speech segment. Experi-
mental results show that the PTFS algorithm yielded improvement in speech quality
in terms of SNR gain, especially in unvoiced portions. A significant noise reduction
result was achieved during speech pause segments.

The new noise reduction scheme proposed in the thesis includes two primary mod-
ification to the above original PTFS algorithm: (1) the signal processing is done in the
wavelet domain via adaptive wavelet packet transform instead of fixed wavelet trans-
form. Furthermore, considering auditory masking is observed over a Bark scale, the

decomposition tree structure of the conventional wavelet packet transform is altered
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Figure 4.2: Weighting function of PTFS algorithm [38]

to approximate critical bands. (2) The second modification is the noise suppres-
sion structure. The proposed weighting function is adapted based on noise masking
threshold instead of SNR. Algorithms that utilized masking threshold to adjust noisy
signal showed superior perceptual speech quality to SNR-based rules [42, 25, 21].

4.1.2 Perceptual Wavelet Packet Decomposition

In this research, we utilize a wavelet packet decomposition algorithm mentioned in
the previous works [40, 41, 25, 43]. This algorithm, usually referred as perceptual
wavelet packet decomposition (PWPD), is designed to adjust the decomposition tree
structure of the conventional wavelet packet transform to approximate the critical
bands of the psychoacoustic model as lese as possible. The primary advantage of
PWPD is integrating a psychoacoustic critical bands model. As mentioned in Chapter
1, critical bands are of great importance since subjective responses to each bands are
significantly different. In fact, a music noise reduction can already be obtained by

applying noise reduction to subband derived from frequency group of the human
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auditory system instead of applying it to each frequency components [44, 45].
Critical band analysis scales is based on the widely used Zwicker’s Bark scale
[7]. Bark scale z can be approximately expressed as a function of linear frequency in

Equation 4.2:
z(f) = 13arctan(7.6 x 107*f) -+ 3.5arctan(1.33 x 107*f)? [Bark] (4.2)

The corresponding critical band width (CBW) of the center frequency in each Barks

can be expressed as
CBW(/.) = 25 + 75(1 + 1.4 x 1076 £2)%%° [Hg] (4.3)

where f, is the center frequency in Hz. From physiological point of view, the human
auditory frequency ranges from 20 Hz to 20 kHz, i.e. about 25 Barks. Since this
research mainly focuses on the speech signal, its bandwidth mainly falls in the 200
Hz - 2500 Hz frequency range. Speech signal is sampled at 8 kHz per second yielding
bandwidth of 4 kHz. For 4 kHz bandwidth, approximately 18-Bark scale is sufficient
instead of the original 25 Barks. Specific to our implementation, a 5 level non-
symmetry decomposition is employed to create 18 approximate critical bands (or
subbands). Table 4.1 lists the center frequencies, CBW, and the lower/upper cutoff
frequencies of critical bands up to 4000 Hz defined in [7].

According to the critical bands model above, the tree structure of PWPD is con-
structed as shown in Figure 4.3. Considering the binary tree nature of wavelet packet
decomposition of the signal, PWPD results in 3 different bandwidths: 125 Hz at level
5, 250 Hz at level 4 and 500 Hz at level 3. Resulting subband and its bandwidth is
described in Table 4.2. A discrete time domain speech signal z(n) of length N after
PWPD will be corresponding to a set of wavelet coefficients w;,, where j = 3,4,5
is the decomposition level and m = 1,2,...,18 is subband index. Theoretically, the

number of coefficients in each w;,, would be N/27.
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Critical Band Center Criti(fal Lower/Upper
(Bark) Frequency (Hz) Bandwidth Cutoff
(Hz) Frequency (Hz)
1 62.5 125 —/125
2 187.5 125 125/250
3 312.5 125 250/375
4 437.5 125 375/500
5 562.5 125 500/625
6 687.5 125 625/750
7 812.5 125 750/875
8 937.5 125 875/1000
9 1062.5 125 1000/1125
10 1187.5 125 1125/1250
11 1375 250 1250/1500
12 1625 250 1500/1750
13 1875 250 1750/2000
14 2125 250 2000/2250
15 2375 250 2250/2500
16 2750 500 2500/3000
17 3250 500 3000/3500
18 3750 500 3500/4000

Table 4.1: Critical bands under 4 kHz

Level (j) | Subband index (m) | Bandwidth (Hz)

5 1,.2,..8 125
4 9,..15 250
3 16, ...,18 500

Table 4.2: Subbands of PWPD
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4.1.3 Modified PTFS

Equation 2.2 could be rewritten as
Xj(m) = Sjx(m) + Djx(m) (4.4)

where X x,S;jk, and Djy are the wavelet coefficients of noisy, clean and noise signal
of frame m respectively. The estimated clean speech signal §j,k can be expressed as

noisy signal multiplied by the weighting function or gain Hj;.
8jx(m) = Hy(m) - X;(m) (45)
The error or deviation between clean and enhanced signal is defined as:

e;6(m) = S (m) — S;x(m) (4.6)
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Substituting Equations 4.4 and 4.5 into Equation 4.6

gjx(m) = Hj(m)- (Sjr(m) + Djr(m)) — Sju(m)
= [Hj(m) —1] - S;x(m) + Hj(m) - Djx(m) (4.7)

= eg(m)+ep(m)

where eg(m) = [H;j(m) — 1] - Sjx(m) represents the speech distortion and ep(m) =
Hj(m) - Dj(m) represents the residual noise in wavelet domain.

As a relatively simple single-input speech enhancement algorithm, PTFS showed
superior noise suppression compared to classical techniques such as spectral subtrac-
tion and hard/soft wavelet thresholding. A weighting function solely depended on the
segmental SNR achieved similar result as in spectral flooring and over-subtracting
noise floor [46], and it eliminated the musical noise. However, it was done at the
expense of introducing speech distortion. Experiment results showed that PTFS
processed speech sounds unnatural and muffled, especially under low SNR condi-
tion. One main reason is the thresholds T}, and Thignh are based on global wavelet
threshold. As a result, it will significantly reduce the speech intelligibility for the lis-
teners. Unless perfect information of noise is available, it is not practical to minimize
the speech distortion and the residual noise simultaneously. Instead, the proposed
method in the thesis is to find a balance between the two under the consideration of
perceptual properties. Therefore, it is necessary to modify the weighting function so
that it is adapted based on the noise masking threshold. If the noise is smaller than
NMT, human ear cannot perceive the noise. In this case, unity gain is applied to
minimize speech distortion. In other words, noise suppression is only applied to noise

that is audible to human ears.
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The weighting function in Equation 4.8 is derived from [42]
1
1+max{,/§,% - 1,0}

where s? is estimated noise power and Th,, is the noise masking threshold. Accurate

H; = (4.8)

NMT estimation facilitates speech enhancement scheme to achieve balance between
noise reduction and potential processing distortion. Most of the existing masking
threshold estimation algorithms are based on a similar model of the human auditory
system. Among the algorithms that of Johnston’s [47] and ISO MPEG-1 are widely
used. The masking threshold estimation implemented in this thesis is mainly based

on Johnston’s. The following is a brief description of the algorithm.

1. Compute the Bark spectrum energy

The masking threshold is estimated on the wavelet coefficients of PWPD. The wavelet
coefficients are grouped in to critical bands. Energy in each critical band is summed

as shown in Equation 4.9
bhe

BE) =Y 1X;xl? (4.9)
k

=bl
where £ = 1,2, ...,18 are critical band index, bl¢ and bh, denote the lower and higher
boundary of the critical band respectively.

9. Spreading function applied on the critical band energy

The spreading function is used to estimate the effects of masking across critical

bands. It is calculated as a matrix S(i,j) given as

S(i, §) = 15.81 + 7.5(i — j + 0.474) — 17.5y/1 + (i — j + 0.474)? (4.10)

where i is the bark frequency of the masked signal and j is the bark frequency of the
masked signal, spreading is calculated for Bark frequency distance limited to (|i—j| <

25. Figure 4.4 shows the spreading function for Bark distance of —5 < 7 —j < 12.
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Figure 4.4: Spreading function

The convolution of the B(£) with the spreading function is implemented as a matrix

multiplication given as

C(€) = 50, 5) * B(E) (4.11)

The value of C(€) denotes the spread critical band spectrum for band &.

3. Calculating the noise masking threshold

There are two kinds of noise masking thresholds: tone masking noise and noise
masking tone. In order to determine the noise-like or tone-like nature of the signal,
the Spectral Flatness Measure (SFM) is used. The SFM is defined as the ratio of the
geometric mean G, of the power spectrum to the arithmetic mean A,, of the power
spectrum.

SFMdB =10 logm gﬂ (4.12)
m

Then the coeflicient of tonality is defined as follows:

SFM

sra— ) (4.13)

a = min(

where SF M, corresponds to a signal which is assumed to be entirely tone-like and
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Figure 4.5: Relative offset O(¢) for noise masking threshold calculation

is set to -60 dB A zero dB SFM indicates a signal that is completely noise like. To
find the masking threshold the following offset is subtracted from the spread critical

band spectrum in dB.
O(¢) =a(14.5+&) +5.5(1 — o) (4.14)

To avoid accurate estimation of signal tonality that reduces the computation load,
a simple estimation of O(¢) by Sinha and Tewfik [48] is used in the thesis. Based on
the fact that the speech signal has a tone-like nature in lower critical bands and a
noise-like nature in higher bands, the resulting value of O(¢) are represented in Figure
4.5

The noise masking threshold T'(€) is obtained by subtracting the offset O(§) from
the spread critical spectrum C(&)

T(€) = 10!°810(C(§)-0(£)/10) (4.15)

4. Renormalization and integration of the absolute threshold of hearing
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Since convolving subband energy with spreading function increases energy in each
wavelet subband. The renormalization process takes this into account by multiplying
each T'(£) by the inverse of the energy gain. Final noise masking threshold Th,,(£) is

shown in Equation 4.16.

Thal) =76 = () T (4.16)

Finally, the masking threshold is compared with absolute threshold of hearing.
If in any critical band noise masking threshold is lower than the absolute hearing
threshold, it is changed to the absolute threshold of that critical band.

An accurate estimation of the NMT is very important to the algorithm perfor-
mance. It is found out in the experiment that a roughly denoised speech will greatly
help finding the NMT accurately. Especially if the signal is under low SNR condi-
tion. A simple level-dependent thresholding method [49] is used for finding the rough
estimation of clean speech in the proposed algorithm. In each frequency band the

threshold is proportional to the standard deviation of the noise in that band. The

Ty = o,/2log(N;) (4.17)

where o; = MAD;/0.6745, N; is the number of samples in scale j. MAD; is the

threshold used at level j is

absolute median estimation at scale j.
After the noise reduction process, the estimated clean speech is passed to next

stage to compensate for hearing loss effect.

4.2 Recruitment Compensation: Loudness Compres-
sion
As stated in the previous Chapter, elevated auditory threshold and associated loud-

ness recruitment are the symptoms of sensorineural hearing loss. Recruitment here

means a growth or increase. Threshold of hearing is raised non-uniformly with fre-
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Figure 4.6: Hearing threshold and dynamic range

quencies and sometimes the threshold of pain is lowered. Thus the distance between
the two thresholds so called the dyné,mic range is reduced. Figure 4.6 shows a hearing
threshold of a typical hearing-impaired person. Individuals with this type of hearing
loss experience unusual loudness relationship. Equal sound intensity increments do
not produce equal increments in the loudness perception uniformly across all the fre-
quency range, as it should be for normal hearing listeners. Reduced dynamic range
causes small change in intensity to give larger changes in perceived loudness.

The signal processing approach to the problem is to find a preprocessing operator
to enhance a signal that will undergo a known distortion. In the hearing aids case,
the distortion comes from the effects of the hearing impairment, and the preprocessor
forms the hearing aids device [50]. The hearing aids’ function is to offset the effect
of hearing impairment. So individual with hearing loss can perceive sound as a
normal hearing will do. As an aid to hearing-impaired, simple linear amplification will
not solve the problem. Since it makes the high frequency consonants audible while
amplifies the low frequency vowels over the threshold of pain. So a limited maximum
signal level is used to avoid this kind of discomfort. Linear amplification provides

fair hearing loss compensation only when the input level is not very low and there is
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insignificant word to word amplitude variation [51].

To make the sound audible, the dynamic range of the incoming sound needs
to be manipulated to fit in the dynamic range of impaired hearing. That leads to
amplitude compression concept described by Villchur [52] . The basic idea of loudness
compression is to restore the natural dynamic range of input speech to the impaired
listener to provide all the speech cues in a more natural way. Signal should be in the
audible range of impaired ears in order to be heard. Soft sound for normal should be
soft for impaired ear and loud sound should be loud. It is called compression since
the processing reduces the dynamic range of the signal in a certain way.

Conventional amplitude compression chooses parameters based on normal con-
versation and remains fixed regardless of input condition. It will tolerate only small
input variations. An input too weak will not get a sufficient gain and an input too
strong will be clipped, resulting in unnatural speech and reduced intelligibility. Thus,
compression with gain varying in time and frequency according to the input level
is highly desired. In order to compensate loudness, the spectral analysis should be
similar to human auditory system, such as the PWPD used in this thesis.

The loudness compression proposed in the thesis is input independent, wavelet-
based amplitude compression over a human auditory model. It is based on the work
of Drake et al.[53] and Li et al. [51].

In this thesis, loudness compression is calculated in each critical bands, since
loudness summation is strongly associated with critical bandwidth. Compression can
be viewed as a gain applied to the original input. Gain is applied in such a way as
to amplify the coefficient from a given equal loudness curve in the normal-hearing
person’s hearing profile to the corresponding equal loudness curve in the hearing-
impaired person’s profile. Gain is calculated for each critical band such that the log |
intensity above hearing threshold to dynamic range of hearing is the same for the
hearing-impaired listener as the corresponding ratio for the normal-hearing listener

[63]. Refer the idea to Figure 4.7, and mathematically the following equation should
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hold.

dl ll
d_i = i:' (4.18)

where d and d' are the dynamic ranges of normal hearing and impaired hearing re-
spectively; ! is the distance between uncompressed wavelet coefficients W and normal
hearing threshold 77", and !’ is the distance between compressed wavelet coefficients
W'and impaired hearing threshold T%™; € is critical band index. £ footnote is omitted

for simplicity of the following equations:

d = Tpain — Tmor

d = TrHr_Tim (4.19)
I = W-Trr
ll — Wl _ Tim

Note the above variables in Equation 4.19 are in dB SPL. From Equation 4.19 and

4.18, compressed wavelet coefficient in dB in one critical band can be expressed as

W'=Tim+l'=Tim+ill=Tim+ Tpain _ Tim

d Tpain _ Tnor (W - an) (420)

T™" is taken from typical normal hearing person’s profile. 7™ and TP%" can be
retrieved from hearing-impaired individual’s audiogram test. Upon reconstruction
from wavelet domain, a loudness compensated speech will result.

Since a critical band decomposition in wavelet domain already exists in the pre-
vious noise reduction module, the complexity of compressed coefficients computation
is minimum. The compressed coefficients are guaranteed to be within the impaired

hearing person’s dynamic range, regardless of the input speech intensity.
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4.3 Hearing Impairment Simulation

It is important to know how the signal processing helps the impaired listeners. Given
the most of the research setting, it is not realistic to have impaired hearing persons to
do listening tests repeatedly. Therefor, simulation of hearing loss on normal listening
person is highly desirable.

Simulated hearing loss gives a realistic experience of auditory consequences of
hearing impairment to the normal hearing listeners. It can be used as a hearing pro-
tection educational tool. By limiting simulation to certain aspect of hearing loss, it
will greatly facilitate the development of newer generation of hearing aids devices.
Real hearing-impaired subjective listening tests are often very expensive and time
consuming. Subjects with different types and degree of hearing loss introduce indi-
vidual bias effects in the test results. These issues make test on hearing-impaired
subjects prohibitive in the signal processing algorithm development stage. A good
hearing loss simulation algorithm will improve signal processing algorithm develop-
ment and fitting for hearing aids. An ideal hearing loss simulation should account for
the following psychoacoustics characteristics: elevated threshold in quiet, abnormal
growth of loudness, and reduced temporal and spectral resolution [9].

There are two major classes of hearing loss simulations. The first one simulates
elevated threshold in quiet by adding spectrally shaped masking noise. The second
class based on multi-band dynamic range expansion. Unfortunately, there is very few
detailed formulation of any kind of hearing loss simulation in the literature.

Simulation with shaped masking noise gives only general effect of hearing loss. It
is more suitable for educational demonstration purpose. The method in the second
category is used here so it is possible to control the characteristics of certain hearing
loss. Implementations in [54] and [55] both belong to this category. Subjective tests
have confirmed the effectiveness of the method in simulating sensorineural hearing
loss. A hearing loss function (HLF) is utilized to calculate how much the hearing loss

gain should be introduced. The gain is frequency and input level dependent.Figure
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Figure 4.8: Expansive input-output function at 1000 Hz and 4000 Hz

4.8 shows a sample input-output function at 1000 Hz and 4000 Hz for simulating a
specific hearing impaired listener.

The hearing loss simulation is a reverse process of loudness compression to some
degree. Since the PWPD already provided the critical band decomposition, the next
step is to calculate the energy in each band and apply the right hearing loss gain.
After inverse transform the normal speech is mapped into the impaired one. The
hearing loss simulation algorithm can simulate sensorineural hearing impaired. It
is useful in the algorithm developing stage but the intention is not to replace the

subjective test altogether.
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Chapter 5

Performance Evaluation

Both objective and subjective measures are used to evaluate the performance and
to find efficient parameter settings for speech enhancement in this thesis. Speech
quality measures based on the ratings by human listeners are called subjective speech
quality measures. Using human as an acoustic measuring device is the intuitive and
ultimate way to evaluate the speech quality. However, it is not desirable due to
potential various subject bias, poor control of listening conditions, and the ambiguity
associated with the interpretation of “good quality”. Subjective tests are generally
simple but usually very expensive in terms of time and cost consumption. Objective
quality assessment for noise reduction schemes is needed to reduce time-consuming
and cost-intensive subjective listening tests. Objective quality measure should be
consistently repeatable, and most importantly should incorporate psychoacoustics
knowledge.

The speech samples used in the evaluation tests are taken from the TIMIT speech
database. They are sampled at 8 kHz. To evaluate the noise reduction performance,
both synthetic and real life noise are added to corrupt the clean speech signal. Dif-
ferent types of background noises from the NOISEX-92 database have been used
including car noise, factory noise, and babble noise. The variance of noise is adjusted

to obtain SNRs in the noisy signals according to Equation 5.1, ranging from -5 dB to
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15 dB. SNR<10 dB is considered very low SNR condition.

o) =0+ (2D st ) 40 &

5.1 Noise Reduction Evaluation

In this section, a detailed performance evaluation is presented in the forms of ob-
Jective and subjective speech quality tests. To start, temporal and spectral plots of
clean, noise degraded, and enhanced speech using the proposed algorithm is shown
to illustrate the performance.

The processed sentence is “Good service should be rewarded by big tips”, degraded
with AWGN at SNR=5 dB. From temporal waveform plot in Figure 5.1(a), one can
see noticeable noise reduction by the proposed PWS algorithm. In Figure 5.1(b),
the spectrum of the estimated speech in a voice segment is mostly preserved with
noise removed. The spectrum in segment corresponding to the speech pause is almost
clean. If observed carefully, one will notice some low frequencies components of noise
is left untouched, this will help preserve speech intelligibility.

The remaining of this Section will cover the details of objective and subjective

evaluations with comparison to other techniques.

5.1.1 Objective Evaluation

The PESQ (Perceptual Evaluation of Speech Quality) measure (ITU 2001) [56] and
segmental SNR are utilized for the objective evaluations in this research. PESQ was
recently adopted as an ITU-T recommendation (P.862) for signal distortion in audio
and speech codec evaluation. Objective measures such as Itakura-Saito distortion,
Articulation Index, Segmental SNR, and SNR have been correlated to subjective
tests at 59%, 67%, 77%, and 24%, respectively [57], while the PESQ results have
a 93.5% correlation with subjective tests [56]. Poor correlation measures tend to

emphasize more on the similarity of actual waveforms of the signals instead of how
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Figure 5.1: Waveforms and spectrograms of the clean, noisy, and estimated speech
(SNR=7 dB, AWGN)

49



they actually sound. As a result, PESQ and Segmental SNR tests are chosen for
objective evaluation.
For comparison purpose, the sample signals are also processed by the following

speech enhancement algorithms.
e SS: Spectral subtraction
o WT: Wavelet thresholding
e EM: Ephraim-Malah algorithm
e PTFS: Perceptual time-frequency subtraction
e PWS: Proposed perceptual wavelet subtraction

5.1.1.1 Segmental SNR Test

Segmental SNR (SegSNR) is the most widely used time domain measure of speech
quality. SegSNR is defined as an average of the SNR values of all short segments

(frames) over the entire signal.. It can be formulated as in Equation 5.2.

M-l N-1 . 9
SegSNR = L 3" 10-log | =55 Zi=.0 [(s(i + mAN)] i
M m=0 Yoico [(s(i+mN) —5(i + mN))

(5.2)

where N is the number of signal samples in one segment (frame) and M is the number
of frames.

From the formulation, it is easy to figure out that the technical measure such as
the SegSNR incorporates little speech distortion information. In terms of objective
measures, a SegSNR gain is define as the difference between the SegSNR value of the
processed signal and the unprocessed signal. SegSNR. poses a problem in which silence
intervals in the speech appear. In silence frame, the original speech is close to zero,
any amount of noise can give rise to a large negative SNR for that segment, which
could significantly bias the overall measure of SegSNR. This problem can be resolved

by including the SegSNR of the frame only if the frame energy is above a specified
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threshold [57]. Since SegSNR has been so extensively used in most speech processing
research as objective quality evaluation, it is included in this research as a direct
comparison to other techniques proposed in the literatures, even though SegSNR is
not an ideal perceptual measure.

Tables 5.1, 5.2, 5.3, 5.4 show a comparison of SegSNR gain of different algorithms

with four types of noises. Figure 5.2 shows comparison of SNR gain performance of

SegSNR  Gain
Added noise type | SNR  SegSNR | SS WT EM PTFS PWS

-5.00 -19.55 | 5.78  5.59 9.72 15.75 14.62
0.00 -14.55 |4.81 445 8.38 12.98 11.54
AWGN 5.00 -9.55 3.8 3.71 6.18 9.91 8.89
10.00 -4.55 |2.60 2.55 3.50 7.09 6.33
15.00 0.45 0.83  0.64 041 4.49 3.50

Table 5.1: SegSNR gain compare (AWGN noise)

different noise reduction algorithms. Blue line is segmental SNR of the noisy signal.

Table 5.1 shows under additive white Gaussian noise, proposed algorithm and
original PTFS performed very well with PTFS outperforming by small margin. E-M
algorithm achieved better results than WT and SS did. At high SNR algorithms
SegSNR gain values converged, which showed most algorithms performed well under
AWGN noise at high SNR (SNR>15 dB).

SegSNR  Gain
Added noise type | SNR  SegSNR | SS WT EM PTFS PWS

-5.00 -19.30 | 4.16 2.72 738 T7.54 13.74
0.00 -14.30 |4.11 0.95 6.23 6.49 10.71
Factory 5.00 -9.30 |3.68 -0.04 425 519 841
10.00 -4.30 |238 -0.89 1.66 4.06 6.44
15.00 0.70 0.04 -2.09 -136 280 4.25

Table 5.2: SegSNR gain compare (Factory noise)
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SegSNR  Gain
Added noise type | SNR  SegSNR | SS WT EM PTFS PWS

-5.00 -19.01 | 4.51 1.99 8.23 892 13.07
0.00 -14.01 | 4.20 1.30 733 6.65 10.50
Babble 5.00 -9.01 | 3.88 0.39 580 5.77 8.55
10.00 -4.01 |3.10 -0.63 3.53 4.79 6.50
15.00 0.99 136  -2.02 044 4.16 4.02

Table 5.3: SegSNR. gain compare (Babble noise)

~SegSNR,_ Gain
Added noise type | SNR  SegSNR | SS WT EM PTFS PWS

-5.00 -19.02 | 8.54 1.22 12.58 9.34 13.77
0.00 -14.02 | 800 -0.16 10.50 7.97 10.94
Car 5.00 -9.02 |6.77 -0.76 7.72 5.75  8.87
10.00 -4.02 |4.58 -1.40 4.37 4.07 6.95
15.00 0.98 191 -2.54 0.69 270 4.70

Table 5.4: SegSNR gain compare (Car noise)

Under real-life noise condition: factory noise, car noise, and babble noise are
tested. The proposed algorithm was able to show higher gain, while PTFS and other
algorithms performed moderately. Algorithms performed in a similar fashion under
factory noise and babble noise and it is because both types of noise are a mixture
of others. All algorithms except WT handled reported higher gain under car noise,

since car noise is almost stationary noise.

5.1.1.2 PESQ Test

PESQ represents both the original and the degraded speech using psychophysical
parameters. It is done by transforming the signals from the physical domain to the
psychophysical domain through frequency warping and level compression. A distance
measure is used to calculate the PESQ score [56]. Figure 5.3 presents the block
diagram of PESQ algorithm. Signals under analysis are time aligned and level aligned
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Figure 5.3: Block digram of PESQ algorithm [56]

to allow meaningful comparison. Auditory transformation mimics the key properties
of human hearing. Disturbance parameters are calculated using no-linear averages
over specific differences between the loudness of the two signals. These disturbance
parameters are converted to a PESQ score.

The PESQ score lies on a scale from -0.5 to 4.5, fhough in most cases it is between
1 and 4.5. Value 4.5 represents a perfect perceptual match between the original and
the processed signals. The PESQ score tends to be optimistic for poor quality speech
and pessimistic for good quality speech. The difference between the processed signal’s
quality and the unprocessed signal’s quality prediction by PESQ is referred to as
PESQ Improvement. While PESQ has not been validated for speech enhancement
evaluation, its design indicates that it is well suited for this purpose.

Results are compared with those obtained by other noise reduction techniques.
PESQ results are shown in Table 5.8. Figure 5.4 elaborates the same result in bar

chart.

With AWGN noise condition in Table 5.5, the proposed method consistently
yielded better results than other techniques. Particularly at very low SNR condition
(SNR<0 dB) where basic SS and WT methods failed to provide good improvement.

At higher SNR, all techniques’ performance improved as expected.
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PESQ Score

Added noise type | SNR | Noisy SS WT EM PTFS PWS

-5 1.61 179 1.72 209 207 2.30
0 1.87 2.07 2.01 226 233 2.56
AWGN 5 2.15 234 224 246 247 2.81
10 242 255 251 2,60 276 2.98
15 2.65 2.69 271 277 296 3.13

Table 5.5: PESQ results comparison (AWGN noise)

PESQ Score

Added noise type | SNR. | Noisy SS WT EM PTFS PWS

-5 1.92 195 213 2.61 231 235
0 221 232 232 257 245 2.61
Factory ) 241 254 250 271 248 2.87
10 269 2.78 269 2.8 252 3.1
15 2.81 3.00 287 297 2.78 3.27

Table 5.6: PESQ results comparison (Factory noise)

PESQ Score

Added noise type | SNR | Noisy SS WT EM PTFS PWS

-5 1.85 181 1.79 192 180 2.12
0 1.70 191 186 2.05 193 241
Babble b) 238 182 245 2.06 225 2.69
10 259 262 264 266 2.65 2.95
15 2.78 283 285 285 282 3.15

Table 5.7: PESQ results comparison (Babble noise)

PESQ Score

Added noise type | SNR [ Noisy SS WT EM PTFS PWS

-5 234 243 232 259 251 2.64
0 2.56 2.62 253 2.72 268 2.90
Car 5 278 290 275 291 280 3.12
10 3.00 314 298 3.03 296 3.32
15 3.26 3.24 319 313 3.07 3.47

_Table 5.8: PESQ results comparison (Car noise)
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In the real-life noise cases, PESQ results are shown in Tables 5.6, 5.7, and 5.8.
The performance is the worst in cases of babble noise, since this noise has similar
statistics as speech signal. The proposed method managed to retain gain in this
situation. It is interesting to note that PESQ evaluated WT algorithm much better
than in segmental SNR test. WT algorithm removed more perceptually irrelevant high
frequency components, which resulted in lower SegSNR value. This is one example
in which SNR evaluation could be misleading in some cases.

EM algorithm is believed to be more percéptually meaningful by minimizing the
MMSE between the logarithms of the spectra of the original and estimated speech.
PESQ results confirmed this point. The proposed method consistently outperformed
EM algorithm in all noise cases. This shows the proposed method successfully en-

hanced noisy speech perceptually.

5.1.2 Subjective Quality Evaluation

Since SNR gain cannot faithfully reflect perceptual quality of the enhanced speech.
Although more and more researchers are using PESQ for speech enhancement eval-
uation purpose, PESQ has not yet been validated for evaluating effects and arti-
facts generated from noise reduction algorithms. Subjective listening tests were done
to confirm evaluation results. In this thesis, the Degradation Mean Opinion écore
(DMOS) is used to do subjective evaluation. In the DMOS, listeners hear the reference
and the test signal sequentially, and are asked to rate degradation level by comparing
them. The DMOS provides greater sensitivity than the MOS, in evaluating speech
quality, because the reference speech is provided.

Listeners are asked to give rating base on overall effect in terms of noise reduction,
signal distortion, and sentence intelligibility. Grades of DMOS are provided in Table
5.9.

Eleven normal hearing subjects (5 male and 6 female) in the age group of 21 to 34

years participated in the experiments. All of them had no difficulty in clearly hearing
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Rating | Degradation Level

5 Inaudible
Audible but not annoying
Slightly annoying
Annoying
Very annoying

=N W >

Table 5.9: DMOS rating scale

DMOS
Added noise type | SNR | EM PTFS PWS
0 |2.86 214 2.71
AWGN ) 3.08 251 3.21
10 | 3.35 3.00 3.43

Table 5.10: Subjective test results (AWGN noise)

the test stimuli. Test signals were produced by two-males and two females, including
3 speech sentences and one singing sentence. The DMOS results are showed in Table
5.10 and Table 5.11.

By comparing subjective DMOS score with PESQ prediction, results in both tables
are consistent with the perceived speech quality improvement trend. Under AWGN
noise case, proposed PWS algorithm performed slightly better than the EM algorithm.
At low SNR both performances are comparable. PTFS algorithm reported poorer
performance than what was predicted by PESQ . Main reason could be listeners’

dis-likeness of “muffled” speech. Even though PWS processed speech signals that

DMOS
Added noise type | SNR | EM PTFS PWS
0 2.24 2.06 2.67

Babble ) 276 245 3.16
10 ]3.02 256 3.32

Table 5.11: Subjective test results (babble noise)
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contained some residual noise, listeners preferred these to EM processed ones.

The overall performances in babble noise case are poorer than in AWGN case for
all algorithms as expected. Listeners consistently preferred PWS results in babble
noise condition. Especially at lower SNR, PWS results are noticeably better.

From above SegSNR, PESQ, and DMOS evaluations, the proposed method has
been shown to perceptually remove background noise and minimize speech distortion'.
It is able to improve quality of speech corrupted with strong color noise, under which

conventional techniques normally fail.

5.2 Hearing Loss Compensation Evaluation

In order to compensate hearing loss, frequency spectrum shaping and dynamic range
compression of the input signal need to be performed. Transparency of signals is not
necessarily maintained in processed signal. The compressed speech does not sound
quite “normal” to normal hearing person. PESQ is not directly applicable to measure
speech quality, since it computes distance between input and output signal with fixed
perceptual criteria. Only subjective listening test was done to evaluate hearing loss
compensation performance.

The listening tests were conducted by normal hearing subjectives with masking
noise to simulate hearing impairment. A subjective “A-B” preference listening test
was done. FEach listener is presented with signals with and without hearing loss
compensation, and has to indicate which one is preferred. A no-preference choice is
also allowed.

Table 5.12 and Table 5.13 show the “A-B” preference test results. WITH: signal
processed with hearing loss compensation algorithm; W/O: signal without hearing
loss compensation process.

In both additive noise conditions, more listeners favored hearing loss compensa-
tion. Especially at higher SNR, majority preferred with compensation. By observing

results of different SNR condition, it is found out that signal distortion significantly
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A-B test

Added noise type | SNR | preferred WITH preferred W/O No preference
0 47.2% 38.9% 13.9%
AWGN 5 61.1% 27.8% 11.1%
10 83.3% 13.9% 2.8%

Table 5.12: Subjective test results on compression (AWGN noise)

A-B test
Added noise type | SNR | preferred WITH preferred W/O No preference
0 44.4% 38.9% 16.7%
Babble 5 52.8% 33.3% 13.9%
10 75.0% 19.4% 5.6%

Table 5.13: Subjective test results on compression (Babble noise)

effects preference. One explanation is that the loudness compression algorithm is

designed to take clean signal as input. Any distortion in the signal will be applied

with some gain in the same way as speech components.

Overall, hearing loss compensation is effective provided the input is relatively free

of distortion.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main goal of this thesis is to improve the perceptual quality of degraded speech
for hearing-impaired listeners when only one microphone is available. The study
provided a working framework for speech enhancement for hearing-impaired person
by incorporating psychoacoustics model and perceptual auditory features of hearing
loss. The speech enhancement scheme developed can facilitate the design of hearing
aids.

The noise reduction techniques proposed is based on the speech enhancement sys-
tem by Li et al. [38] . The proposed algorithm employs a noise masking threshold
(NMT) to balance the degree of noise suppression and speech distortion. By evalu-
ating the proposed method subjectively and objectively, results showed improvement
in many aspects. In SegSNR tests, the proposed method reported over 10 dB gain
in low SNR condition (SNR< 0 dB). PESQ results showed the proposed method
received 10% higher score (average of all SNR conditions) than the next best per-
formed technique in all noise cases. In subjective DMOS tests, the proposed method

received 14% and 6% higher score (average of all SNR conditions) than EM algorithm
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in AWGN and babble noise respectively. For both white Gaussian noise and real-life
noise conditions, the proposed method consistently outperformed other conventional
techniques. Even under low SNR condition, the proposed method managed to give
fair result while others failed.

The proposed hearing loss compensation scheme utilized critical-band loudness
compression in wavelet domain. The processed speech is guaranteed to be within
the residual dynamic range of the impaired listener. As a result, it could improve
speech quality and intelligibility. Subjective tests showed strong preference for the
compensated speech. When input signal is clean, benefit of loudness compression is
apparent. About 83% of the subjects preferred hearing loss compensation in AWGN
noise, and 75% in babble noise. As for the noisy signal case, input can be preprocessed

by the proposed noise reduction algorithm.

The major contributions of this thesis include: Proposed a speech enhance-
ment framework that would simultaneously perform noise reduction and hearing loss
compensation. Cascading the two processing stages in the same domain is computa-
tionally efficient. The cleaner speech after noise reduction stage could further enhance

the performance of hearing loss compensation.

e Developed a wavelet based critical band noise reduction strategy utilizing psy-
choacoustics model. Speech processed by the new algorithm showed reduced

level of residual noise and better perceptual quality.

e Developed a wavelet based loudness compression algorithm. Compression gain
is calculated in each critical band rather than in linear subbands. Algorithm

parameters can be easily modified according to specific individual’s profile.

e Detailed performance evaluation with comparison with other techniques. Both
subjective and subjective correlated objective tests were performed. Tests from

both categories showed consistent results, therefor the evaluations are reliable.
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6.2 Future Work

There are a number of potentially promising further developments of the proposed

method in this thesis. These include:

e To better represent impaired cochlear frequency resolution, equivalent rectan-

gular bandwidths (ERB) instead of critical-band width is worth investigating.

e The possibility of estimating the NMT considering elevated hearing threshold of
impaired person, i.e. customizing the estimation of the NMT to each hearing-

impaired individual.

e Formulate an algorithm to estimate the NMT without relying on the pre-

estimated speech.

e The techniques could be extended to the wider-band audio signal.
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