DEVELOPMENT AND IMPLEMENTATION OF INTERACTIVE
3D VIDEO ENVIRONMENT ON RUN-TIME

RECONFIGURABLE FPGA PLATFORM %;7 6
\ 1?%2
z'eE
o
By
Sergiy Zhelnakov, B.Sc.

Kiev Polytechnic Institute, Ukraine, 1984

A Thesis
Presented to Ryerson University
In partial fulfillment of the requirements
for the degree of Master of Applied Science

in the program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2006
© Sergiy Zhelnakov, 2006

PROPERTY. OF
RYERSON UNIVERSITY LIBRARY

UMI Number: EC53554

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53554
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, M| 48106-1346

Declaration of Authorship

I hereby declare that I am the sole author of this thesis

I authorize Ryerson University to lend this thesis to other institution or individuals for the

purpose of scholarly research

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research

‘. O N S Y TP
A I R R A

1

Borrower’s Page

Ryerson University requires the signatures of all persons using or photocopying this thesis.

Please sign below, and give address and date.

Name Signature Address Date

iii

Development and Implementation of Interactive 3D Video
Environment on Run-Time Reconfigurable FPGA Platform

Sergiy Zhelnakov,
Master of Applied Science, 2006,
Electrical and Computer Engineering,
Ryerson University

ABSTRACT
Video data processing tasks are traditionally performed either thirough software-based

systems when various algorithms must be applied to the data and when time issue is not
critical, DSPs — when certain time constraints are set but when the set of tasks is limited, or
ASICs — when the highest performance is required, the set of tasks is fixed and highly
optimized, the data stream doesn’t change, and the number of data streams is limited.

For a real-time system which must operate on multiple data streams which also can
change in time and on which various data processing algorithms must be applied neither of
the mentioned approaches can be used. Tfming requirements and power limitation does not
allow utilization of a sequential CPU. ASIC becomes too big to accommodate multiple
processing circuits for each algorithm and associated modes. Only Run-Time
Reconfigurable (RTR) FPGA approach allows implementation of such a system.

The thesis presents a real-time stereo vision system with elements of synthesis of
interactive 3-D virtual objects designed and implemented on the FPGA-based reconfigurable
platform. FPGA chip integrates a hybrid architecture system with multi-mode and multi-
stream processing ability for time critical tasks and with embedded microprocessor(s) for
computing complex algorithms for 3-D objects synthesis for which timing requirements are
not so strict.

An approach for the formal presentation and processing of the 3-D virtual objects and
their transformation is also analyzed and presented in this paper. Architecture synthesis and
optimization for a hybrid system are also considered.

The experimental results proved the effectiveness of proposed approach: the FPGA-
based system-on-chip provides stereo visualization in different modes (actual image and edge

detection image), with synthesized 3-D controls (pressed and released buttons).

Keywords: Stereo Vision, 3-D Synthesis, Reconfigurable Platform, FPGA

iv

Acknowledgements

I have been fortunate over the past few years to have worked with my supervising
professor, Dr. Lev Kirischian. His guidance, knowledge and support not only contributed
much to this work but inspired me to immerse in run-time reconfigurable systems.

My special thanks to professor, Dr. Vadim Geurkov for his valuable suggestions and
support during all the time of research and working on the project.

I would also like to thank the Department of Electrical and Computer Engineering for
providing facilities and technical resources needed for the research.

Many thanks to the members of the review committee for their participation and
consideration. My special gratitude to the OGS for support of this research through
scholarships.

I'd like also to express my deep gratitude to Mr. Jim Koch and members of the
Embedded Reconfigurable Systems Lab (ERSL), Ph.D. students Mr. Peter (Pil Woo) Chun
and Mr. Valeri Kirischian for their technical assistance during the implementation phase of
the project.

Last but not least, many thanks to my wife and kids for their understanding, patience
and support during all the time of working on this thesis, and to my parents whose wise

advises years ago opened the world of electrical engineering for me.

Table of Contents:

TR 1511100036101y (o) AU 1
Ll MIOVAION 1orevvrsessesseseessessessssssssssssssssssssessssssssssssssssssssssssssesssssessssessssseses 1
L2, ODJECUVES .ccririitiiiitiitintiiniitctinr ittt a s sas e b ssessensesaeens 5
1.3 Original CONtIiDULIONSccccociiiiiiiiiriiiiiiiieeetececesesstsstsssssssssssssssssssssssssessssnnsnnene 5
1.4, Thesis OrZanIZAtIONc.ccceceeueruerteirerrinenininenenetetsessets et sessessessesseseesssessens 6

2. OVERVIEW OF COMPUTING SYSTEMS FOR REAL-TIME STEREO AND
PANORAMIC VISION WITH ELEMENTS OF 3-D VIRTUAL OBJECTS SYNTHESIS... 8

/2 BRI 113 (0T L1 15 o) AR RRROR 8
2.2. Real-time VideOo SYSIEIMS.......coruerrerrreriruiiruinriinicinicneneesnessesssesresseesseesseessesssessaenes 13
2.3. Wide angle or panoramic vision SYSLEINS.......cccccvrveererucrerreeeesersnessessesscssesssessesseens 20
2.4. Elements of virtual reality teChniqueccccceevuevueriirirrininnciiinrinecnrcnecnecnens 25
W20 TR ©70) 161 L1] T)« H OO 27
3. THEORY AND METHODOLOGYcecceertreuerrtrrureenreesressessesseesesesssessesssssesssesssssessesses 29
CT DR F1 15 (04 111075 10 1 HN O 29
3.2. Synthesis of virtual 3-D ObJECtSceeeurreiirirniiriiiiiinicinte e 30
3.2.1. Translation tranSfOrmMationccceeeeeeereecerserrerienseeeecinsenieneeseseessesseesesseenee 32
3.2.2. Rotation tranSformation........cc.cceeeeeeeeverreererseenencreninneentineencseseseeeseseseeees 33
3.2.3. Projection tranSformation.........ccccceeeuereeeeerserreerernereseeeseesseessseesssessesesnseeaeees 37
3.24. Line segments representation for projected imagesccceeevreenrecrrceecssecnnens 40
3.2.5. Rasterizing POLYZOMSccccervueererrruerruiirutrinteninseesacstesssesseessesssesssesssessessseenees 45
3.2.6. Surface VISIDILILY ..cccceveeeverrernuernerreccirneeinterteeeereenesncestsatesesnessesssenessesseenes 47
3.3. System architecture synthesis and analysis........cc.ceeceeererenirrircersrcncnsensecsucsscsnennes 51
3.3.1. Design-oriented approachcocceceueruereeruerrerensencsueniiesensenseesesnesseseseesenns 51
3.3.2. Synthesis-oriented approach and design SPACEceceevevirrirrcenervernrenenucnene 52
3.3.3. Sequencing graph (or Data Flow Graph)ccccceevuievmvcvvncrircnnncennccnncnnnn 53
TG T SN 10 1 T4 11 11 SR 55
335, BINAING ettt ettt s ae b s s aens 56
3.3.6. Architecture OptimiZation.........ceevueeererreereeereneneesestsncesesetesessessesseseessssenes 57
3.377. Design space and Architecture Configuration Graph (ACG)ccccocevvevveennne 58
3.4, CONCIUSION...c.ceueuiiereireeeenrteneteseteseesetesetestesetssessssessasstssestsssstssestssssssestsessssenees 60
vi

4. DEVELOPMENT OF ARCHITECTURE AND IMPLEMENTATION OF THE

SYSTEM ... teeereceeceeceieeeeeseeseessessesseeseesessstssssssesssssssesssssesssssessessesssssssssesstessasssssasasssssseas 61
4.1, INFOQUCHION c.cveeereteeteeteeeeeeeeeeeeeeateaesstssesses st sr et et e bssses e e ae s e e ae s asssesnassessnesnsanes 61
4.2. Architecture synthesis for the real-time Stereo vision SYStem.......eeeeereeesuesuesueene 61

42.1. Architecture selection for the Image Capture Subsystem (ICS)c.ueeee. 62
.. 42.2. Architecture selection for the Visualization Output Subsystem (VOS).......... 63
423. Architecture selection for the Video Processing Subsystem (VPS)................ 63
4.2.4. Architecture of the SYSIEM......ccccevurieiruininririeintitereieseeesesresaesessessssssnsanens 73
4.3. Functional description oOf the SyStem.......cceeeriererrtenenenenentecececseccteene e 74
43.1. Image Capture Module (ICM)......ccoeeerrerninriiinticninesieceetstssinsesnsnesens 75
4.3.2. Video Processing Module (VPM).....ccccovermiieienrenenennnnnrenenensscesesacssessncsanes 77
4.3.3. Visualization Output Module (VOM)......ccovmimirmnrenenentencnnieececnncsninncnens 97
4.4, CONCIUSION.....ueeereeeeeeeeeeentesaeeeeeteeteetesssessaesssessesssessssssasssasssesssesssassnsssssssstsssesss 100

5. EXPERIMENTS AND RESULTScccceciririninrinriniereneenensessessssssssssssssssesssessssesnens 101
5.1. Experimental SEt-Up........ccecverrerererrerinesreentiestnsessnsestesestscstscsisisnssssssssnsssnssens 101
5.2. Experimental TESULLS......ccovevverrirmeerrenteeteitsiteesnesreneesetetstsatsaeststssessesasasnsnans 107
5.3. Analysis Of TESULLS c..ceeviemiuiuiirietiiirte ettt ettt s ees 109

6. CONCLUSIONS AND FUTURE WORKcocvninmininiiiirininnrenesnsssessssssesscssnssscsnes 114

7. BIBLIOGRAPHYooviieteeerenreteeeeeaeeessesstssssssssessessessessassssassessssessessessessessesssssessons 117

vii

List of figures:

Figure 2-1. Wheatstone and Brewster StEI€OSCOPES.ccveueeverurrurrerteneesunsessessesensessesessessesseses 8
Figure 2-2. Parallax StEIEOZIAM.ccceceuiruerurrerireeitencnneteteeseesessesaeenessessessesesssssenseneesessenees 9
Figure 2-3. Typical Hardware Setup for designs based on FPGA-GPP combination. 13
Figure 2-4. Common Processing FIOW.......ccccccivuieiinvinninrenrerneneereteeseeesecsncesacssseeseesseesenne 14
Figure 2-5. Hardware setup of the high quality vision system by Leeser, et al...................... 15
Figure 2-6. Hardware setup and block diagram of the vision system by Genta, et al............. 16
Figure 2-7. Multicamera system CONfigUration.cceeeereeverueruerennincntesessienesscnsesuesesscsneneene 17
Figure 2-8. Digiclops camera system by Point Grey Research Inc..........cccoevcvvcvucvueivcnnennnne 17
Figure 2-9. Hardware setup for the system with switching RAM architecture...........cccceucee. 19
Figure 2-10. Tyzx stereo camera family: Scm, 22cm, and 33cm baselines and DeepSea
PIOCESSOLc.cueeeereeuerneestecstsenersstessesssessnesosssssssestossssssesssessessssssessssestesstessssessessntesstsssssssssssssassnes 20
Figure 2-11. Specially shaped (curved) mirror for panoramic vision.ceecceeeeeeceeecucecvenncee 21
Figure 2-12. Rotating mirror architecture for panoramic ViSion.........c..cceeeeeveeerserveseeruerveencns 21
Figure 2-13. Panoramic view using panning methodology..........ccccceeveeevuereirceeserscceesucnnnen. 22
Figure 2-14. Basic capture units and overlapping of camera VIEws.......cc.cecceeevecerreecruenernennes 22
Figure 2-15. Setup for creating stereo panoramic VideO.c.ceeeeveeeeereeeerserecrsensensersneseesueene 23
Figure 2-16. Comfortable viewing range for eye motion (VErsion).ceccceeeeevecrreecereuceeenne 24
Figure 3-1. Reference systems ClassifiCation.cccceeceeeeereereecireeecernrcenueeseenneeseeceensennees 31
Figure 3-2. Two approaches to translation transformations: translation of a set of points and
translation Of SPACE.c.cucvveetretirtiriiieenteeeteeeteeteeeeeeesteestee st st eesees et e see st sneeseesstensesnnens 32
Figure 3-3. Rotation in 2-D plane.ccccoveeiroerinierieiererreeecntereeeeeeeeneeseenesaeeseesessessesaeens 33
Figure 3-4. Right- and Left-handed coordinate systems and positive direction of rotation
ANELES. ..eeueeeuererereteereeeerreeestesseeseeseeseesaasseessseassesstessaassessesssestasseesseeesaseaaesatesstessessnesntessasnnens 34
Figure 3-5. Three consecutive rotations: yaw — pitch — roll........c.ccccoeceeeieeccnnnnecrcnrcnncnsenennce. 34
Figure 3-6. Parallel and perspective projection SChemes.coceeveveeruervereerecresrcrnenuccsncnenes 37
Figure 3-7. Two types of projection methods: world-to-screen and screen-to-world............. 38
Figure 3-8. Geometry of perspective ProJECLiON. «.....ceccereeeeeeerrerrvecreeerereeseessessesseessessesnessenes 38
Figure 3-9. Geometry of perspective projection for Stereo Vision.c.cecceuvvuervererirncnrueencnes 39
Figure 3-10. A line segment on the projection plane and image bitmap layout. 41
Figure 3-11. Line rasterizing for different values of the slope ratio ‘a’.......c.cecceeeveeevccccncnee. 41
Figure 3-12. Bresenham’s algorithm: the line passing through the pixel grid........................ 42
Figure 3-13. Bresenham’s algOTrithim........cccceieuerirnenenininnieenincictnieececeeeeteesseseessnesesnes 44
Figure 3-14. Objects in 3-D space and their perspective projection Views.ccccececeeeucences 45
Figure 3-15. Convex and CONCAVE POLYZOMNS.cereereerretereereereeeseereeseestesuessessesteseesessessescesenees 46
Figure 3-16. Rasterized triangle representation.cececeeeceeeeceereeruenvereesveseesiescscssessesessenees 46
Figure 3-17. Hidden surfaces illUSLrAtioN.c.cccrveereerereerieseerenensenreneeseessesnesseseesessessessenesseees 47
Figure 3-18. Visible and non-visible surfaces: back-face culling determination technique. ..48
Figure 3-19. A design-oriented approach to system implementation.cccceceeecevecrcenencnn 52
Figure 3-20. System architecture design Process SLAZES. «...c.ceurverceerrrererrerceerrerercesesesescnensneses 52
Figure 3-21. A synthesis-oriented approach to system implementation.c.ceceeceeeuerceuenene 53
Figure 3-22. Sequencing Graph (or Data Flow Graph) presentation.cecceeeveeeeeececeuencens 54
Figure 3-23. DFG for the eXample task.........cocereeererirrrenrerenrereneerenseseneseeseesessesesseseeesesessenenes 54
Figure 3-24. Scheduled DFG.cccoeieieeieeereeteceereeseeseaeseesesseesessessessassesssssessessessesessassesasnes 55
Figure 3-25. Possible variants of SCheduling.cccoeeururerereereenenreeneneerenesseresesseseesesesessenes 55
Figure 3-26. Variants of constrained scheduling and binding.cccecveeeruerererreerereneerenenene 56

viii

Figure 3-27. Design space for the SYStEeI.c.ceueeirirceireiririreeteieceseeeeeeseeeencenseesessesnene 57

Figure 3-28. Variants Of the IESOUICES.cc.ccvieveeereererrrenrininininreeeeseesreeraessesseesseeseesaesssssessens 58
Figure 3-29. Design space as an Architecture Configuration Graph (ACG).c.ccceeeeruenennnee 58
Figure 3-30. “Minimax” method for hierarchical arrangement of ACG........ccccccevverveererruennnne 59
Figure 4-1. Real-time stereo vision system block diagram............cceceeveeveererreercrrcrrcnennereenenens 61
Figure 4-2. Sobel edge detection algorithm SpPecifiCation...........cccvceeeeereerenenceesesnesussessennns 63
Figure 4-3. Two versions of the DFG for Sobel algorithm implementation (hardware and
GPP DASEA). ceeeeeneiireeerretieiiinereeeeerseeeteeeesssseseeeessesssssaassssssssessssssesessssssssesesssssssssssssssssssaesssssane 64
Figure 4-4. Three variants of DFG for Sobel algorithm architecture............ccccoeeerueeurrerurncnnes 65
Figure 4-5. Architecture Configuration Graph for Sobel algorithm implementation. 67
Figure 4-6. Data flow for the Capture SYSteML......ccevevrirnirrinicrrerncirtineeseesesssesseesssssessessessessens 68
Figure 4-7. DFG for 3-D synthesis task (transformation computation), hardware approach. 69
Figure 4-8. DFG for 3-D synthesis task (transformation computation), GPP approach......... 70
Figure 4-9. Block diagram of the Stereo Vision SYSteM.......ccceerrerreeereeeeseeessreeesseacsassssnesssenasns 73
Figure 4-10. Image Capture Module block diagram.cceceeeveereereecveeereecsneesssssessesssessaees 75
Figure 4-11. ICM output data fOrmat.coceeveeeeerirrmeeenrerneireereetrseeseesessssssssssssssssssssssesanes 76
Figure 4-12. Bayer color pattern for the active CMOS SENSOr area.cceceeeeeeerueeceecersnesnees 76
Figure 4-13. Video Processing Subsystem block diagram.........c.cecceveevucrervecncnsennesncnecsnennens 77
Figure 4-14. External memory architecture and utilization.cccceeeceeeerveereerereerseneneennee 78
Figure 4-15. Memory banks operational phases definition.........cococceevevcneivecnersncncncnenanne 79
Figure 4-16. CFRAME_FLAG signal definition.c.cc.coccvveeverreecuiicninnecncnsensecnennecnnensesnene 79
Figure 4-17. Pixel address on the screen and location in MEMOTY.........ccocueeveeerecrruenrucrrersnenane 80
Figure 4-18. Video Processing Module block diagram.........c.ccccevceerevencnrenscncnnncscncncnnennes 81
Figure 4-19. STROBE_GEN IP core: HSTROBE signal generation.ccccceeeeeeenneesuennenne 82
Figure 4-20. STROBE_GEN IP core: VSTROBE and CFRAME_FLAG signals generation.
... 82
Figure 4-21. STROBE_GEN IP core: PIXSTROBE signal generation..........cccceeceeerueeucnuenne 83
Figure 4-22. CDATA_CAPTURE IP core: pixels CoOunting.ccoeeeveeevvuenersncsensecsucsaennes 83
Figure 4-23. CDATA_CAPTURE IP core: lines counting.ccecceeueeveeveesreessecsrucssecssuesnnenne 83
Figure 4-24. CDATA_CAPTURE IP core: lines COUnter I€set.coeevvrvveruenvesuenreessesaecsnenes 84
Figure 4-25. CDATA_CAPTURE IP core: timing diagram..........c.ceccvuevvererenersucrececesnennens 84
Figure 4-26. WR_CONTR IP core: timing diagram.c.ceeceeuerverecrerersenscssecsscsecssessesseens 85
Figure 4-27. VGA timing reqUIrCIments.cccevueeueereererreeriesnessessesesisessessesnessesssessessessnesseses 86
Figure 4-28. RD_CONTROL IP core: timing diagram.........c.cceceererereereerreniesuenseessesennenenns 87
Figure 4-29. MEMCHIP_CONTR IP core: timing diagram, READ operation............c....... 88
Figure 4-30. MEMCHIP_CONTR IP core: timing diagram, WRITE operation..................... 88
Figure 4-31. RAMB16_CONTR IP core: timing diagram.........cccceceereerrerreenesuecnesueeecnenenns 89
Figure 4-32. 3D Synthesis IP core SChematicCs.c.coveevueeerenrenierennentecieieteteeereeeeeeesenns 90
Figure 4-33. Possible layouts of elementary triangle on the projection plane.c........ 92
Figure 4-34. 3D SYNTHESIS module functionality algorithm..........cceoeeeeeeeeenrenrennennnnene. 92
Figure 4-35. Virtual object space CONfigUIation..........covvueuereereeetnenisesnnestnienentsensecsneeseanes 94
Figure 4-36. Data reading and internal registers assignment SCheme.cccceveevereveeenrerennnne. 95
Figure 4-37. Color assignment SChEMEceueueriririrrnreenininrseeetstsseestseesssseeseneseessensns 96
Figure 4-38. Implementation of the multiplexer-based color assignment algorithm.............. 96
Figure 4-39. VGA_DATA IP core: timing diagram.eceeeeurueeenresssresssensesessesssessessssanenes 97
Figure 4-40. Block diagram of the Visualization Output Module.ccceeemnrnrnrereennnneee 98

ix

Figure 4-41. Shutter Glasses Control subsystem schematics.cccoceeeeevereereneereneerercnerncnnene 98

Figure 4-42. Control signals for shutter glasses generated by CPLD.ccoceeueeverrueenennee. 99
Figure 4-43. Shutter Glasses analog control signals: timing diagram.cccceeeeeveereererrenenes 99
Figure 5-1. Experimental set-up for real-time stereo visualization..........cccceeeeueeeereereeruenen. 101
Figure 5-2. Designing system with Xilinx’ ISE Ver.7.1.04.cccccvverrerrreneneneerenenenneneenes 102
Figure 5-3. Debugging system with HP54620C logic analyzer..........c.cccceceeveereceereervecnennees 102
Figure 5-4. Debugging of the system with the Xilinx’ ChipScope Pro tool..............c........... 103
Figure 5-5. Photographic picture of the ICM (front and back sides).ccceceeeeereeererueneencne 104
Figure 5-6. Photographic picture of the Reconfigurable FPGA-based platform. 105
Figure 5-7. Photographic picture of the Visualization Output Module........c.cceeveeeeernennece. 105
Figure 5-8. Photographic picture of the Shutter Glasses control sub-module. 106
Figure 5-9. General layout of the stereo vision system: photographic image........c.ccccceeucn.. 106
Figure 5-10. Real-time images visualization: both virtual buttons released. 107
Figure 5-11. Real-time images visualization: one button pressed.cccceeeeerreerceceeruennenes 108
Figure 5-12. Real-time edge detection image viSualiZation.ccceceeeeeeceuceerenencncnnennne 109
Figure 5-13. Performance vs. CoSt analysiS.ccccoeveereririnuinunniiinscereniencnsesneessessessesseseeseene 113

List of tables:

Table 2-1. Summary of existing hardware-based real-time video systems and their basic

CRATACEETISTICS. «veveevevereeeseeesetesestesenteueeesesetesessestssestessansessssesssessesasesassasasnessestesestsssnsessasenees 26
Table 3-1. Number of arithmetic operations required for translation transformation per
VEITEX . 1erueeereeererssessseesusessesssessseessessssssessstsssnsssesssesssessssssaessasssasssesssesssessassssesssssssessssessassanssssasans 33
Table 3-2. Number of arithmetic operations required for rotation transformation computation
PET VEILEX. cecuuurnincriusiscsissisiasasssssesssesessesesssassessssssasssssssssssssssssssssstassssssesssssssssssssssessssssssassasasass 36
Table 3-3. Number of arithmetic operations required for perspective projection computation
PET VETEEX . cucueemumeneecntsissacseseasasassess s s s sassese st s s s s s s s st et et st a s s s e s e bbbt ba s e s s s s b s Rt st st n s 40
Table 3-4. Number of arithmetic operations required for the Bresenham’s algorithm
IMPIEMENLALION.cecririirriririririririiirrerene ettt ettt sttt asa s st s 44
Table 3-5. Data structure (array) for storing triangle’s pixel lines.......ccecceeevceveseccssicninienncnnns 47
Table 3-6. Number of arithmetic operations required for the back-face culling algorithm
implementation, per each surface of an ObJECL.cvvvveeeeeeenueeiiniiiiiiiiictcees 50
Table 4-1. Estimation of computational time for a tetrahedron image synthesis using
PicoBlaze cOmMpPUtational TESOUICES.cueuemruererrerenrersssanssssssssessssessessssssssstssssnssssesnassssasssssans 72
Table 4-2. HW-SW partitioning Of the tasks........cceceeereetneiesestnnncscnecnistiiiisiciisteneissenenes 74
Table 4-3. Structure of data in memory for a 3-D ObJECL.cueveeeeeririrrereneicciiiiiicienne 91
Table 4-4. Data format of the rasterized line segments and surfaces in memory. 93
Table 5-1. Design overview for the stereo vision system generated by ISE..........cccccueueeee 110
Table 5-2. Modern FPGA reSOUICES: OVEIVIEW. ...cc.ceuereerrersenssssssssessessesssesscsssssscssnessessessssnes 111

xi

List of Acronyms -

3-D — Three Dimensional

ACG - Architecture Configuration Graph
ASIC — Application Specific Integrated Circuit
CISC — Complex Instruction Set Computer (or Computing)
CLB - Configurable Logic Block

CPU - Central Processor Unit

CPLD - Complex Programmable Logic Device
DFG - Data Flow Graph

DSP - Digital Signal Processor

FPGA - Field Programmable Gate Array

GPP - General Purpose Processor

HDL — Hardware Description Language

ICM - Image Capture Module

ILP — Instruction Level Parallelism

IOB - Input Output Block

IP Core — Intellectual Property Core

ISE — Integrated Software Environment

LSB — Lowest Significant Bit

LUT - Look-Up Table

MSB — Most Significant Bit

LCD - Liquid Crystal Display

LVDS - Low Voltage Differential Signal

PCB - Printed Circuit Board

PLD — Programmable Logic Device

RISC - Reduced Instruction Set Computer (or Computing)
RTR - Real-Time Reconfigurability

SOC - System-On-Chip

VGA - Video Graphics Array

VHDL - Very High Speed Integrated Circuits (VHSIC) Hardware Description Language
VOM - Visualization Output Module

VPM - Video Processing Module

Xii

1. INTRODUCTION

1.1. Motivation

Visual information plays a special role in perception of the surrounding world by humans.
Still and motion images are considered the most important informative sources. Through vision
we perceive various information and knowledge, directions and instructions for all kinds of our
activities.

Special vision systems are widely used in many areas of human activity: in medical service
and research, e.g. computer tomography systems (CT), magnetic resonance imaging (MRI), X-
ray or ultrasound imaging systems, for telemedicine; in navigation systems for navy and
aviation, for spacecrafts, submarines and Unmanned Autonomous Vehicles (UAV) incorporate
sophisticated video systems built on the base of advanced image processing algorithms. Video
systems play a special role in space exploration as it was demonstrated by the latest NASA’s
mission to the Mars started in 2004. The images of the Martian surface sent to the Earth by two
autonomous rovers Spirit and Opportunity are hard to over-evaluate. Flight simulators provide
virtual airplane cabin set-up and environment for training of pilots. Entertainment and art are
based both on video and audio perception of a human.

The areas of application of real-time vision systems include also telematic systems used for
remote control of manipulators operating in hazardous environment. It is very required for
operating robotized manipulators in space, when the actual stereo scene is visualized in real-
time and interactive virtual controls images are dynamically generated on the visualization
device as well, thus making it possible for an astronaut not to look aside for activating a needed
control button.

Video systems also play important role in industry, engineering and science, for example,
for research of fast processes in chemistry and mechanics. High speed video recording is used
for cars collision research to provide engineers with the information on how to improve a car
design to reach better level of driving safety. It is also used in aerodynamics for study and
research of airplanes flight characteristics in different environmental conditions and of new

materials behavior under critical conditions.

Today’s video systems provide possibility to visualize both real-time (or recorded) video
and synthesized virtual three-dimensional graphical objects. Various captions, charts, diagrams
and artificially created backgrounds are an integral part of modern TV broadcasting.

Different image processing algorithms and techniques are widely employed in today’s
cinema industry for creating scenes from other planets or prehistoric creatures.

Stereo vision systems provide more realistic view of the surrounding world or virtual reality
than just “one-eye” view since scene depth information is there. Stereo vision techniques
necessarily integrate two sources of video data, i.e. two video cameras which should be
properly oriented in space to produce matched images. Panoramic vision systems are aimed to
provide a realistic view of the scene with a very wide angle of view (up to 360°).

The main purpose of real-time multi-channel vision systems is to process in a certain way
one or multiple video data streams. Data stream means that the data flow is homogenous and
regular. Each unit data bears information just about the current elementary picture component
(pixel) brightness. In general case, the system is doing the same operations over each coming
pixel or over a group of coming pixels from the current scanning line or from a number of
adjacent lines. It means that the computation can be performed in parallel and be deeply
pipelined.

A typical approach for real-time vision systems design is that a kind of hybrid architecture
is employed for implementation. On the one end of such a system are image sensors with
configuring hardware based on PLD devices (CPLD or FPGA). This hardware also performs
initial processing on incoming data to facilitate the interface between the data source (video
cameras) and the main processing system. The main processing system is usually built on the
base of a personal computer or high performance workstation, General Purpose Processor
(GPP), Digital Signal Processor (DSP), or Application Specific Integrated Circuit (ASIC). For
the visualization of real-time video and synthesized graphical objects the resources of a
standard PC with a powerful graphic card are usually used.

The main advantage of using a GPP, as well as host workstation for image processing is
that the task implementation migrates into the software design domain. It allows implementing
sophisticated algorithms using traditional, and thus well developed, technique of sequencing
programming. The evident drawback of this approach is that real-time processing is impossible

in this case. A GPP based system is not fast enough to produce a processed unit data at the rate

of real-time data rate. For example, for the standard VGA resolution of 640 x 480 pixels and
frame rate of 60 fps a system must output a processed pixel each 40nS. For a RISC
microprocessor operating at the clock frequency of 200MHz a clock cycle takes 5nS. Even if it
takes four clock cycles per one command execution, only two commands can be allocated
within a time slot of 40nS. It’s not enough just for reading data from memory. For real-time
video systems GPP approach for data processing is not acceptable.

Using DSPs for image processing tasks can significantly facilitate various algorithms
implementation, but deep pipelining and parallelism, as it is needed for stream data processing,
can not be reached.

From the performance point of view using ASICs for image processing tasks gives the best
results. But ASICs are very application specific devices destined only to mass production
sector. For example, ASICs for graphic adapters are built on the base of parallel vector
processor architecture. The performance of the modern graphic adapters is very impressive (for
example, ATI’s Radeon X1900 Series graphic adapter’s core speed is 650MHz, it incorporates
48 pixel shader processors, 8 vertex shader processor and 256-bit 8-channel GDDR3 SDRAM
[1]). But they are designed to perform only a particular processing task directed mostly to the
games industry: generating highly realistic synthesized 3-D image. The operational frequencies
for modern graphic processing ASICs are close to physical limits, and thus they need complex
cooling systems. ASIC based systems are also not reconfigurable, their architecture is fixed. If
a system needs to provide, for example, different resolution for different viewing angles, as it
may be needed for panoramic vision systems, or to process two or more data streams as it’s
needed for stereo vision, a standard ASIC can’t be used. For a multi-mode system a number of
ASICs must be employed. In this case the chips must communicate to each other via PCB’s
copper traces and the resulting cross-talks limit the performance of the system. Even if a single
chip’s core can operate at the speed of 500MHz and above, the PCB limits the data rate by
approximately 133MHz. For multiple-chip systems the power consumption increases and
reliability falls. Besides, time-to-market for the ASIC design is significantly higher than for
other approaches.

It means that for processing of a number of data streams which can change in time and
which may require different processing algorithms to be applied on data streams, a system must

provide high level of parallelism and reconfigurability, and has to be implemented within one

chip. So, the problem is that we are speaking about video systems that can incorporate several

algorithms and several modes of each algorithm. This is the requirement for many applications
nowadays (e.g. synthesis of complex virtual environments, MPEG 4, 7, 21 video compression,
object recognition, etc.)

Timing requirements and power limitations does not allow utilization of sequential CPU.
ASIC becomes too big to accommodate multiple processing circuits for each algorithm and
associated modes. Only Run-Time Reconfigurable FPGA approach allows implementation of
such kind of systems. On the other hand, insertion of artificial virtual images into real live 3D
background needs to perform complex algorithms but timing requirements are not so strict.
Thus, hybrid architecture which should consist of RTR FPGA and embedded ILP CPU may be
an optimal solution. Thus R&D in this area becomes important and highly demanded for
creating 3D virtual environment on a chip.

Modern FPGAs have huge amount of logic resources. For example, Xilinx’ Virtex-II Pro
FPGA XC2VP100 offers logic resources equivalent to 10 million system gates. Virtex-5 FPGA
has up to 330,000 logic cells (equivalent to 33 million system gates). These FPGAs incorporate
1 to 4 hard-wired PowerPC microprocessors. A number of various soft-wired microprocessor
cores can be embedded into a single FPGA: PicoBlaze, Microblaze, PIC family, i8051 and
others. It means that traditional software approaches can be integrated with a pure hardware
part of the design in a hybrid SoC (FPGA).

The whole stereo vision system can be implemented on a single FPGA chip: it will
incorporate all functional tasks, i.e. image capture from two data sources, data processing,
generating two (or more) output video data streams in VGA standard for stereo visualization,
synthesis of 3-D stereo virtual objects, etc. The system can be organized in such a way that
different modes are possible. For example, in one mode it can generate stereo video output for
visualization through shutter glasses, in another mode — to generate stereo video for projection
on the screen and visualization through polarized glasses, third mode — visualization of real-
time edge detection image, etc. The idea of using FPGA for real-time vision systems is actually
not a new one, but the approach of integration of the whole multi-mode, multi-source real-time
system on a single FPGA is the only practical solution to create a system which can be easily

modified and upgraded. Finally, this system can be dynamically reconfigurable.

1.2. Objectives

The objectives of this work are to research and develop the methodology of optimal
implementation of 3-D virtual environment on Run-Time Reconfigurable FPGA with hybrid
architecture and practically implement and verify the developed methodology.

These objectives are divided on the following tasks:

- develop and present an architecture of a multi-mode system-on-chip for real-time stereo

visualization;

- research and develop a technique for simple 3-D virtual objects synthesis using the
computational resources of a single chip system based on FPGA;

- develop and implement an application specific stereo image capture system providing
two-channel video stream data of the standard VGA resolution (640 x 480) from a pair of
image sensors;

- implement the real-time stereo vision system in hardware; the main functional
characteristics of the system are a) video data capture, b) visualization of real-time stereo
video, c) synthesis of 3-D virtual graphic objects (simple controls or cursors), d)
providing data exchange interface for integration of additional modules for various image
processing into the SoC.

- verify implemented algorithms for 3-D virtual object synthesis, edge detection, and color

decoding.

1.3. Original contributions

The main contributions to this thesis are as follows:
1) Analysis of existing hardware-based systems for real-time video presentation and
data processing with the following areas of research:
Overview of the development of techniques for stereo images visualization;
b. Literature research on existing hardware-based systems for real-time video
presentation, including stereovision and panoramic visualization;
c. Analysis of approaches and techniques for synthesis of 3-D virtual graphical

objects.

ii) Development and optimization of system architecture on the basis of the results of
the theoretical background investigation; the hybrid architecture for real-time
stereo-vision system with elements of 3-D virtual graphical object is elaborated.

iii) Implementation of developed system in a form of fully functional prototype
including:

a. Image Capture Subsystem (ICS) which integrates two image sensors and control
logic implemented on CPLD;

b. Video Processing Subsystem (VPS) on the base of Virtex-II FPGA from Xilinx
which incorporates all data processing tasks;

c. Visualization Output Subsystem (VOS) which generates output video signal for
standard VGA devices. It makes possible to visualize real-time video on a CRT
screen through shutter glasses or on the projection screen through polarized
glasses.

iv) Successful testing of algorithms and getting first working prototype of multi-mode
real-time interactive 3D video system on the base of Run-Time Reconfigurable
FPGA platform.

V) Performance versus cost analysis for different size of Virtex-II and Virtex-4 FPGA
chip families.

The obtained results give a practical confirmation that a hybrid based on FPGA SoC system
approach is an optimal solution for designing a multi-mode, reconfigurable real-time stereo
vision system operating on multiple data streams,. It can be successfully used for various
applications in different areas of science, engineering, industry (medicine, space exploration,
navigation, training systems, UAV navigation systems, surveillance systems, computer games

industry, and others).

1.4. Thesis organization

The thesis is organized in six chapters:
e Chapter 1 introduces the importance of tasks of real-time video information presentation
and analysis for various areas of human activity and reveals the idea of a SoC approach
for a fully functional multi-mode real-time stereo vision system with 3-D virtual graphic

objects synthesis. The chapter distinguishes the objectives for this research and presents

the main contributions fulfilled for this project successful implementation. It presents also
the organization of the thesis and the contents of its chapters.

Chapter 2 contains a review of existing hardware based systems for real-time vision,
including stereo and panoramic vision systems which were reported in journal
publications and books. It presents also a brief look on virtual reality systems and
practical interest in this kind of systems in various fields of activity. The chapter starts
with a brief historical review on the appearance and development of systems for visual
information presentation. The chapter concludes with the comparative analysis of the
existing hardware oriented systems which outlines practical importance of the design
approach elaborated in this thesis.

Chapter 3 presents research of the theoretical background in two areas related to the area
of investigation. First, the geometry of solid bodies in 3-D space is considered as well as
the formal approach to the transformations of the objects, namely translation and rotation.
The geometry of 3-D objects representation in 2-D projection planes, rasterizing of line
segments and object sides visibility aspect is also considered. The formal methods and
computations are considered from the point of view of the complexity of their
implementation in hardware. Second, the approaches to the architectural synthesis of
digital systems are investigated. The possible architectures for the main system
components are analyzed based on the principles of synthesis-oriented design approach
which allows obtaining optimal hardware/software partitioned and optimized architecture.
Chapter 4 presents the description of the architecture and design of the implemented real-
time stereo vision system with elements of 3-D virtual objects synthesis. Three main
subsystems, namely Image Capture Subsystem, Video Processing Subsystem, and
Visualization Output Subsystem, their architecture, functionality and interconnections are
revealed.

Chapter 5 contains information about the experimental setup, experimental results and
analysis of the results.

Chapter 6 concludes the thesis and presents summary of the research and design work
performed for the project implementation. Future development of the presented methods

and techniques as well as of the implemented system is outlined.

2. OVERVIEW OF COMPUTING SYSTEMS FOR REAL-TIME
STEREO AND PANORAMIC VISION WITH ELEMENTS OF
3-D VIRTUAL OBJECTS SYNTHESIS

2.1. Introduction

Prior to considering the existing systems for real-time stereo and panoramic vision and
elements of virtual environment, a brief look on history of the subject is presented.

Visual reproduction of the real world by the human originates from the ancient ages [2]. It’s
possible to admit that it started with rock drawings. The taste for real life scenes reproduction
expressed in fine arts in the new era.

An interesting fact is that the thoughts of depth perception go also into the distant past. In
A.D. 280 Euclid said that depth perception is to receive by means of each eye the simultaneous
impression of two dissimilar images of the same object [3].

In the 19" century, stereoscopic images appeared and became rather popular — two slightly
different images of the same scene or object viewed at a different angle (like our eyes perceive
the real world) are then viewed with special device using mirrors, presented by Sir Charles
Wheatstone in 1838, or prisms as in the stereoscope constructed by Sir David Brewster in 1849.
This device is considered the first practical stereoscope [3]. The functionality of these devices

is illustrated in Figure 2-1. It makes possible for each eye to admit the corresponding view and

to block the other.
®
5 Prisms
Mirrors b‘?’
Right
3 ere
g 2 1 =4
* K Left
a. ~ eye
¢
3 ,
)
O
Lefteye Righteye
Wheatstone stereoscope Brewster stereoscope

Figure 2-1. Wheatstone and Brewster stereoscopes. '

! Courtesy to [3]

There were even systems with just one picture — a set of mirrors shifted the original
image for each of the eyes so that the effect close to 3-D appeared.

One more technique for stereo imaging is so-called parallax stereogram. It is proposed
by F.E. Ives in 1903. A parallax stereogram consists of a fine, vertical slit plate and a specially

prepared picture place behind the slit plate as depicted in Figure 2-2.

] | |
|
Left-eye 1 (.
image N S | R;ghet
=
Right-eye / i
image Left
l\ eye
| Slit plate
l-(— Slit
a []

Figure 2-2. Parallax stereogram.”

The picture consists of the right-eye and left-eye images printed in fine stripes alternatively,
with approximately the same pitch as the slit plate. This technique showed some progress until
late in the 1950s. At present, however, the parallax barrier device place is mostly in museums
because of some crucial drawbacks among which are darkening of the image, diffraction of
light and surface reflection (slits were usually made on a glass surface).

The techniques for stereo images visualization existed before the appearance of
photography. In 1839, still photography comes to the scene — a technological jump to authentic
visual representation of the real world. It pushed the 3-D visualization devices market since a
real life scenes could be photographed and viewed in 3-D. Even the battle scenes from the
American Civil War were recorded in this way [4], the value of these images is impossible to
underestimate.

There is also other technique for stereoscopic still images viewing which is called the
anaglyph system. Its idea is that one lens of the glasses is of red color and the other is green (or
blue). The picture viewed without glasses appears as two slightly displaced images, one with
red lines, the other one with green (or blue).

The idea of stereoscopic viewing of still images evoked the engineers to work on the

development of techniques for stereo (or 3-D) vision of motion pictures. The beginning of the

2 Courtesy to [3]

20" century brings'motion picture to life. L’arrivée du train made by Auguste and Louis
Lumiére and shown in France in 1903 is officially the first 3-D motion picture made for public
exhibition [4].

There are different systems for 3-D motion picture viewing which are in use till our days.
One system uses the same anaglyph two-color glasses and correspondingly projected images.
It’s not the truly color stereo vision, but the human brain has an ability to reconstruct images in
a way that perceived objects appear like color ones.

Another approach, the Polaroid system, which is being used for commercial 3-D movies
since early 1950s, is based on a light polarizing materials invented by American inventor
Edwin H. Land in 1932. In this method, known as Natural Vision, two films are recorded by
two recording devices located at a certain distance one from another (usually close to a distance
between human eyes). Then the images are projected on a screen through the lenses that
polarize light at different angles. The lenses of the glasses which are worn by viewers are
similarly polarized. In this way each eye perceives only image projected from the
corresponding film [2]. All these systems employ projection method for obtaining 3-D effect.

In the late 1980s, efforts to improve picture quality took two routes: increase in frame rate
(Showscan operates at 60 frames per second) or increase in overall picture size height as well
as width (IMAX and Futurevision) [2].

It is not fair not to mention television which came into every home in the 50s of the 20™
century. In the 1920s and 30s, television came into being based on the inventions and
discoveries of many engineers and scientists [5]. The 'first' generation of television sets was
electro-mechanical devices. The display (TV screen) had a small motor with a spinning disc
and a neon lamp, which generated a blurry reddish-orange picture about half the size of a
business card. From the 1940s the TV sets are fully electronic devices. In the recent several
years, sophisticated High Definition TV systems which provide amazing image quality are
available in each electronics store. But, today’s television systems are still not much related to
3-D viewing.

The last but not least aspect related to the present thesis is computer graphics. It is
concerned with all aspects of producing pictures or images using a computer. The field began
around 50 years ago, with the display of a few lines on a cathode-ray tube (CRT). Now, the

images generated by computer are nearly undistinguishable from photographs of real objects.

10

The range of possible applications of systems based on computer graphics is extremely wide. It
is an important communication tool for all engineers to deal with plans, diagrams, schematics,
and other illustrations [6]. There are systems for training of pilots with simulated airplanes,
generating graphical displays of a virtual environment in real time. Feature-length movies made
entirely by computer have been successful, both critically and financially [7]. Computer
graphics and the corresponding digital image processing topics are widely used in medicine.
Today’s architectural design is impossible without applications based on computer graphics.
The same story is related to design of electronic digital and analog systems, VLSI chips design
and all kinds of software development. No comments are needed about the vast field of
computer games.

When 3-D technologies are considered in relation to computer graphics on a personal
computer, there are two major techniques. First, the representation of 3-D objects on a flat
screen. The objects change their position and orientation in space and the system (very often it
is interactive) represents the current view of the objects in real time. This task is performed by
special techniques which require powerful graphic adapters, CPU and software utilities and
programming languages (like DirectX from Microsoft or Virtual Reality Markup Language,
VRML). The performance of a graphic adapter is measured in the number of elementary
geometrical figures (the body of the 3-D object is composed of this kind of triangles or
polygons) processed per second. For today’s graphic adapters this number reaches hundreds of
thousand per second, and the cost of most advanced adapters is several hundred dollars. The
second technique aimed at real 3-D visualization. One approach is based on using the shutter
glasses and the corresponding alternating frames output on the monitor’s screen. The second
approach utilizes projection of two images through polarization filters. It’s also possible to
view 3-D still images using the anaglyph system.

Virtual reality (VR) systems are built on the same principles as standard computer
graphics applications. They generate two video data streams, one for each eye. The images for
each eye are almost the same for the distant objects but quite different for close objects. For
close objects the parallax effect is taken into consideration for computation of objects
representation on the screens. The viewer usually wears a helmet with LCD glasses, so that

each eye admits only its own image. VR systems are usually interactive. There are special

11

devices (a kind of manipulators like a glove, for example) which allow to interact with virtual
(i.e. generated by computer) objects like buttons, doors, etc.

Another 3-D technology which still lives mostly in the physics research labs is
holographic vision. Holography offered for the first time a method of spatial imaging
satisfactory for accommodation. It means that it provides a genuine 3-D image which may be
viewed from different points so that a viewer can walk around a holographic object. Before
holography, all the methods proposed or used relied only upon convergence and parallax. But
holographic process is accompanied by many practical disadvantages which are mostly
attributed to the use of coherent light sources (lasers) in the recording and in most of the
reconstructing process. Some of those are: the “filming” can’t be done in real sun or artificial
light; the recorded and reconstructed images are monochromatic; the object must be still in
order that a good hologram be produced, thus the holography is still problematic for moving
objects image reconstruction; the setup is expensive [3].

There are at least two common features for all computer graphic systems mentioned
above which are related directly to the task of the present thesis. First, they all require
significant hardware and software resources. The most of the systems are PC-based with
advanced graphic cards. Second, it’s problematic for these systems to deal with real-time, i.e.
live, video. For the standard VGA resolution of 640 x 480 pixels and frame rate of 60 fps the
output data rate is around 25MHz. It means that the system must read data from a certain
memory location, perform necessary processing on it and output the resulting pixel data to a
visualization device each 40nS. For two video channels as it is needed for stereo vision the data
rate becomes SOMHz (20nS per unit data processing). For panoramic vision this value becomes
even more challenging. Another parallel process must store incoming data from multiple video
data sources into memory. Definitely this kind of tasks must be implemented in hardware and
thus pipelined and performed in parallel for maximal performance.

Since the objective of this thesis is an attempt to implement a real-time stereo vision
system, expandable to a panoramic vision system, with elements of virtual 3-D elements
synthesis as a System-on-Chip, an overview of systems, techniques and approaches is presented
below. This overview is an attempt to cover three areas of research. First, a look at real-time
video systems (both one-channel and stereo) based on hardware design approach; hardware

setups for data capture and data processing. Second, hardware and software setups and

12

particular techniques for wide angle or panoramic vision systems are considered. Third, a look
at approaches used in virtual reality systems which may be used for implementation in a

system-on-chip for simple 3-D objects synthesis.

2.2. Real-time video systems

There are specialized embedded systems built on base of the programmable logic and
DSP. These systems usually comprise image sensor(s) with necessary control logic, a
framegrabber and the processing element (FPGA or DSP). Most of the designs utilize
prefabricated development boards and video cameras with a certain data transmission interface
which is to be integrated into design.

The idea of using FPGA to process the data flow from an image sensor is not a new
one. In 1991, Sartori [8] designed an FPGA based system that captured data directly from the
image sensor, implemented an edge detection algorithm, and facilitated a parallel data interface
to the host processor. The image resolution was only 32 x 32 pixels with 1-bit monochrome
data, and the FPGA was running at 4MHz.

Scalera, et al. [9] designed a system which included an FPGA and DSP that interfaced
directly to microsensors and preprocessed the data in order to reduce the amount of information
necessary to transmit to the host processor. The goals of that project were to minimize power
consumption and size. The typical hardware setup for designs based on FPGA-GPP (here GPP
stands for General Purpose Processor) combination is given by the authors and is presented in
Figure 2-3. FPGA in this setup is used for data capture, storing data in memory (SRAM) and
preliminary data processing with the purpose to facilitate a parallel data interface with the next

stages of processing performed by GPP or DSP.

Serial PortsIComm Links

Config(s)

User 10

Figure 2-3. Typical Hardware Setup for designs based on FPGA-GPP combination.?

? Courtesy to [9]

13

Figure 2-4 illustrates common processing flow for such kinds of systems. In the Scalera, et
al. architecture the box “Signal Conditioning” is related to FPGA and the boxes “Signal
Processing” and “Communications Processing” correspond to the tasks executed by GPP (or
DSP). In general case these boxes (or tasks) can be assigned to processing devices in another

manner. For us the setup in which all the tasks are executed in FPGA is of major interest.

Sensors Conditioning [==)| Processing [=>| Processing) Radio

Figure 2-4. Common Processing Flow.*

Lienhart, et al. [10] were able to implement real-time video compression on three image
sequences in parallel at 30 fps using FPGA. Their input data came from the host PC via the PCI
bus, however, it was noted that that the solution could be implemented with a direct camera
connection. In that design FPGA is loaded with sophisticated computational tasks such as
discrete cosine transform (DCT) of the 8 x 8 pixel blocks of an image, quantization of the
results and data compression using entropy coding mechanism.

J.Woodfill and B.V.Herzen presented a Real-Time Stereo-Vision on the PARTS
Reconfigurable Computer in 1997 [11]. It consists of 16 FPGAs connected in a partial torus,
each associated with two adjacent SRAMs. The application implemented on the PARTS engine
was a depth map on the images of 320 x 240 pixels at 42 fps. The device was plugged into a
PCI slot of a PC. The data was coming prom the host PC and the processed disparity map was
sent to the host processor via the PCI bus.

Leeser, et al [12] presented a system including high quality video camera (1024 x 1024
pixels resolution and up to 30 fps) and frame grabber connected directly to an FPGA
processing board. The hardware setup for the system is presented in Figure 2-5. The advantages
of this setup include minimizing the movement of large datasets and minimizing the latency by
starting to process data before a complete frame has been acquired. The FPGA design consists

of two parts running concurrently. One part packs incoming data into 64-bit words and then

4 Courtesy to [9]

14

writes and reads data to and from memory. The data is stored in the on-board memory. When
the data is read, it is stored in the on-chip memory for faster access. The second part is a
custom block which contains the logic for application specific algorithms. The processed data
is then stored in output memory chips. Upon the request of a host PC via the PCI bus the data is
sent to the PC.

MEMORY 2

FIREBIRD BOARD

Figure 2-5. Hardware setup of the high quality vision system by Leeser, et al.’

The system was designed for two particular applications, one for the real-time
implementation of Retinal Vascular Tracing (RTI), the other for Particle Image Velocimetry
(PIV) in the computational fluid dynamics. The system was built using the modules available
on the market, such as camera module 1M30P from Dalsa, framegrabber module from Dillon
Engineering and FPGA board Firebird from Annapolis Microsystems.

An embedded stereoscopic vision system for an autonomous rover is presented by G.
Genta, et al. [13]. The system incorporates two CMOS sensors interfaced to a FPGA which
configures cameras and captures incoming data. The data then is then passed to a DSP for
processing. The on-board processing module provides the rover control system with the
information about obstacles and distances to the objects in front of the rover. The compressed
data is also sent to a remote host via radio link. The hardware setup and the block diagram of

the vision system are presented in Figure 2-6.

5 Courtesy to [12]

15

Figure 2-6. Hardware setup and block diagram of the vision system by Genta, et al®

For visual navigation systems extraction of relevant visual information is an important
issue. The images are changed when a vehicle moves, the cameras change their orientation in
space since the “camera head” may tilt or rotate. Thus, a special technique for the images
interpretation, correlation and cameras calibration must be applied. A method called Active
Vision or Dynamic vision which serves to this purpose is presented by E.Grosso and
M.Tistarelli [14]. A cooperative schema is proposed in which motion and stereo vision is used
to define scene structure and determine free space areas. In this approach binocular disparity is
computed on several stereo images over time and combined with visual data flow from the
same sequence to obtain a relative-depth map of the scene. Active control strategy also
considerably reduces the need for calibration of the visual data sources, i.e. video cameras. The
existing correlation methods used for computing the disparity map are considered by
Hirschmiiller [15]. These methods are typically based on adaptive window approach and its
simplifications. Hirschmiiller presents also his approach for improvements in Real-Time
correlation-based stereo vision. His technique includes novel multiple window approach for
decreasing errors at object borders, general error filter for invalidation of uncertain matches,
and a border correction method which improves object borders further. The overview of
methods used for disparity map generation is also given by M.Kuhn, et al [16]. The existing
methods are subdivided in three groups based on the used techniques: SSD (sums of squared
differences), Census transformation and occlusion detection. Stereo vision based on
correspondence matching between camera images is a typical method of 3-D instrumentation.

A well-known method for correspondence matching is using of sum of absolute differences

6 Courtesy to [13]

16

(SAD). Parallel processor architecture for implementation of this method is presented by
K.Miura, et al. [17]. This approach can be taken into consideration for FPGA-based designs.

K.Yoshida and S.Hirose introduced real time stereo-vision with multiple arrayed
camera in 1992 [18]. The idea of the multiple arrayed camera (MAC) is to facilitate the
correspondence (correlation) computations using simple geometric relationship of images on
the same scanning lines. But it requires additional hardware resources and significantly

complicates the system. The configuration of multicamera system is presented in Figure 2-7.

Figure 2-7. Multicamera system configuration.’

A trinocular system for feature detection for stereo-vision-based unmanned navigation
is presented by B.K.Quek, et al. [19]. They use software methods for advanced features
detection form stereo images. The stereo video data source is a trinocular stereo-vision system

(Digiclops) manufactured by Point Grey Research Inc. (Canada), see Figure 2-8.

Figure 2-8. Digiclops camera system by Point Grey Research Inc.?

? Courtesy to [18]
8 Courtesy to [19]

17

It is supplied with a software development kit (Triclops SDK) which can be used for
disparity images generation. This is an example of a complete system which can be used for a
particular task. But again, a PC is needed for working with this system. The geometrical
background of the trinocular stereo vision is presented by N.Ayache and F.Lustman [20]. They
conclude that the main advantages of trinocular versus binocular stereo are simplicity,
reliability, and accuracy. But it requires additional hardware and more computation resources
are needed.

The importance of 3-D stereo in conjunction with interactive image control for medical
visualization is illustrated by D.Maupu, et al. [21]. Their work relates to the endovascular
operations. A primary difficulty with endovascular procedures is that they are typically guided
only by flat-projection images nowadays. All 3-D information is collapsed into a projection
view making 3-D perception of the vascular network difficult. The proposed technique
provides a clinician with a 3-D image of a patient’s vasculature so that he could move injection
needle to a needed vein more accurately. The approach requires the preoperative creation of a
3-D model of each patient’s portal venous system. This 3-D model is then correlated with a real
fluoroscopic image of a patient’s affected organ. Special algorithms and OpenGL library
resources are used to correlate 3-D model and real image since the injected needle causes
displacement of the veins. The system includes also a head tracker which allows adjusting the
image on a screen depending on the clinician’s head location so that it’s possible to view the
veins on the monitor from different angles. This implementation is actually not a pure real-time
application. Besides, it requires rather expensive setup. But it shows the link between 3-D
applications in different fields and thus possible implementation of approaches used in, for
example, robotic vision, for medical purposes. It also shows importance of virtual objects
synthesis as an integral part of vision systems.

A typical approach for real-time vision systems design is that they utilize a set of
processing devices such as programmable logic devices (typically FPGA), microcontrollers,
DSPs, and, finally, personal computer. From another hand, today FPGA vendors offer devices
with logic and computational resources enough to hold all the design inside one chip. This
approach is used for some designs. For example, K.Appiah and A.Hunter present their Single-
Chip FPGA implementation of Real-time Adaptive Background Model [22]. They use a digital

video camcorder as a data source and a prototyping platform with a Xilinx Virtex Il FPGA. So-

18

called switching RAM architecture is implemented in the design which means that the data of
the whole frame coming from video camera is written to the memory bank 1, and the next fame
data is written to the bank 2. For the next frame the banks are switched again. At the same time,
data reading is performed from the bank which is not busy with data writing. The memory
banks for the background image are switched by the same scheme. The setup for the system

is illustrated in Figure 2-9.

read background data

bank #4
background

b model
write background data

Figure 2-9. Hardware setup for the system with switching RAM architecture.’

There are techniques for environment modeling with stereo vision. An overview of
existing approaches is given by D.Murray and J.J Little [23]. They use a surface element model
named patchlet in their method. This approach is interesting in a way that virtual object can be
not only fully synthesized based on mathematical models but also originate from real images,
i.e. real objects.

A high Speed Stereo Vision System operating at frame rates up to 200 fps is presented
by J.L.Woodfill, et al. [24]. It implements a DeepSea processor (ASIC) which computes
absolute depth based on a highly parallel, pipelined architecture that implements the Census
stereo algorithm, see Figure 2-10. In this paper the advantages of stereo depth computation are
distinguished as follows. First, stereo is a passive sensing method. Active sensors, which rely
on the projection of some signal into the scene, often pose high power requirements or safety
issues under certain operating conditions. They are also detectable — an issue in security or
defense applications. Second, stereo sensing provides a color or monochrome image which is

exactly (inherently) registered to the depth image. This image is valuable in image analysis,

? Courtesy to [22]

19

either using traditional 2-D methods, or novel methods that combine color and depth image
data. Third, the operating range and depth (Z) resolution of stereo sensors are flexible because
they are simple functions of lens field-of-view, lens separation, and image size. Almost any of
operating parameters is possible with an appropriate camera configuration, without requiring
any changes to the underlying stereo computation engine. Fourth, stereo sensors have no

moving parts, an advantage for reliability.

Figure 2-10. Tyzx stereo camera family: 5cm, 22cm, and 33cm baselines and DeepSea

processor. 10

2.3. Wide angle or panoramic vision systems

Panoramic vision systems are also presented by numerous workgroups. One approach to
get a panoramic image is to use a specially shaped, curved mirror and a conventional camera, it
is presented by J.S. Chahl and M. V. Srinivasan [25] and S.Derrien and K.Konolige [26]. A
reflector provides larger fields of view than a wide angle camera. Besides, it provides more
predictable geometry of a reflective surface. The shape of the curved reflector is such that it
provides a linear relationship between the angle of incidence of light onto the surface, and the
angle of reflection onto the sensor array with respect to the centre of the array as illustrated in
Figure 2-11. This property ensures that the camera provides uniform sampling of the

environment in the vertical plane, independent of elevation angle.

10 Courtesy to [24]

20

Figure 2-11. Specially shaped (curved) mirror for panoramic vision."!

Other group of approaches is based on using a mirror rotation mechanism as presented
by T.Nakao and A. Kashitani [27] and illustrated in Figure 2-12, or a single- or double-mirror
pyramid as introduced by H.Hua and N.Ahuja [28].

(side view) . -
. Mirror \ ijection Surface

Link for vertical - [L;
mirror angle, -} 4 Opical Axis

(perspeclive view)
Mirmror

Link for vertical -~

Motor

Cam

Motor

~—— Camtra

Figure 2-12. Rotating mirror architecture for panoramic vision."?

Another approach utilizes the panning methodology when a camera rotates up to a full
view of 360° around a rotation axis, as presented by M.Barth and C.Barrows [29] as depicted in
Figure 2-13. When compared to wide angle lens or mirror methods, the panoramic view
produced by this technique have far greater resolution and inherently contain very high azimuth
angle precision. But this approach requires sophisticated mechanics and thus is more

complicated and power consuming than other techniques.

' Courtesy to [25]
12 Courtesy to [27]

21

image plane

-
oo = camera

rotation axis

Figure 2-13. Panoramic view using panning methodology."

But single-camera techniques can’t provide stereo video. For this purpose a cluster of
cameras needed as in a system for Real-time panorama generation and display in tele-

immersive applications presented by W-K.Tang, et al. [30], as illustrated in Figure 2-14.

4

Figure 2-14. Basic capture units and overlapping of camera views.'

The paper also gives a view on the classification of systems for virtual reality. Most of
the existing systems fall into one of three categories: geometry-based, image-based or hybrid
systems. Geometry-based virtual reality system uses geometrical objects to represent scenes.
Flight simulators for training pilots are a typical example. Since a real scene can be arbitrary
complex, modeling a real scene may result in huge amount of data which cannot be rendered in

real-time. From another hand, scenes can be represented using the image-based approach. The

13 Courtesy to [29]
1 Courtesy to [30]

22

reconstructed environment is realistic and the modeling process can be avoided, or at least
simplified. Hybrid systems make use of both the geometric and image models.

Both theoretical and practical view on a multicamera setup for generating Stereo
panoramic video is given by S.Tzavidas and A.Katsaggelos [31] and by S.Peleg, et al. [32]. The
authors reviewed the existing techniques for panoramic video generation and give a theoretical
background for the multicamera setup optimization, see Figure 2-15. There is also an issue on
errors in composition of panoramic images. The analysis of errors in terms of two intrinsic
camera parameters, namely the focal length and the radial distortion coefficient is given by

S.B.Kang and R.Weiss [33].

Figure 2-15. Setup for creating stereo panoramic video."

When the image is generated by two or more cameras, as it happens for panoramic
imaging systems, an issue of color distortion may arise since cameras can operate at different
lighting conditions caused by different viewpoints. Several linear approaches for color
transform and mapping are presented by G.Y.Tian, D.Gledhill and D.Taylor [34].

One of the main issues for generating stereo video for panoramic vision is the viewing
angle where the image can be perceived by a viewer as stereo. It means that side viewing
angles doesn’t keep stereo, or depth, information. A human’s viewing angle comprises two
kinds of viewing fields: binocular and monocular. This issue is discussed by A. Simon, R.

Smith, and R.R. Pawlicki [35] and illustrated in Figure 2-16.

13 Courtesy to [31]

23

Version o
Limit 20

Binocular o
Field = 110_~7

Monocular
Field R

Monocular W/‘

Field L. o
~95" from Fovea

to edge of Retina

Figure 2-16. Comfortable viewing range for eye motion (version).'®

The binocular field of human is approximately 110°. A viewer perceives comfortable 3-
D view of an object if the object is located within +20° zone from the median plane. It means
that if a fixation point moves outside the version limit of +20°, the viewer usually fixes the
view by rotating his or her head in the direction of an object.

This conclusion is very important and must be taken into consideration for reproduction
(e.g. projection) of stereo and panoramic images. For a fixed viewing direction there are
viewing zones which doesn’t carry 3-D information. It means that for certain applications we
can generate stereo images for binocular field of the viewing range, and limit the projection of
the side, or monocular, zones, or fields, by just “flat” one camera look. Two examples of
systems for panoramic vision are CAVE™ and i-CONE™ [35]. They are designed to present a
stereoscopic image with a very wide angle of view (up to 360°). These systems integrate a
number of graphics channels and produce a seamless combined image which is continuously
updated in accordance with view direction of single head-tracked viewer. Omni-stereo
panoramic system provides stereo perception is correct in every view direction without head

tracking is also reported [35].

16 Courtesy to [35]

24

N Aasitd

2.4. Elements of virtual reality technique

Interactive control elements for stereo and panoramic vision systems are considered as a
part of virtual reality systems. Virtual Reality (VR) technology is regarded as a natural
extension to 3-D computer graphics with advanced input and output devices [37]. A
hierarchically structured constraint-based data model for solid modeling in a VR environment
is presented by Y.Zhong, et al. [36]. This model is considered for CAD systems. Generating
objects for VR systems is a computation intensive task a typical instrumentation setup for
which includes a powerful workstation or a PC.

The issue of implementation of VR techniques for possible applications was widely
discussed in 90s. In 1994, L.M.Stone, et al. [38] presented a general view on characteristics of
VR systems, data in 3-D environments, augmented reality, and virtual reality market
opportunities. Three important characteristics are distinguished for VR techniques. First, VRs
exhibit high interactivity — there is a tight coupling between the user’s actions and the feedback
generated those actions. Second, they support embodiment: some sort of representation of the
user in the same spatial framework as the data. Third, the VR representation is spatial in nature;
virtual objects are situated in a spatial framework. This definition makes no mention of the
technologies such as gloves and head-mounted displays with which VR has become popularly
associated. The first head-mounted display was demonstrated by Evans and Sutherland in 1965
[39].

Virtual Reality systems are defined in 1995 by O. Karagali [40] and by J.M. Zheng, et
al. [41] in 1998 as advanced human-computer interface that simulates a realistic environment
which allows participants to interact with it, for example, in the design of industrial products
for function, assembly, styling etc. It consists of three-dimensional, interactive, computer
generated environments. These environments can be models of real or imaginary worlds. Their
purpose is to represent information through synthetic experience. Conceptualization of complex
or abstract systems is made of possible by representing their components as symbols that give
powerful sensory cues, related in some way to their meaning. The environment exists only
inside a computer. Unlike graphic images, the Virtual World is generated from an object data

model that can be viewed in real time.

25

The summary of the basic characteristics of existing real-time video systems

implemented in hardware is presented in Table 2-1.

Table 2-1. Summary of existing hardware-based real-time video systems and their basic

characteristics.
. Sys- Elements of
Video | Real- | o exT:::ilg:met o | FPGA | tem- | Video data Frame virtual vgf;ﬁga-
Systems | time anoramic based on- source grabber objects tion
p chip synthesis
Sartori application | application
v - - v " i -
[8] v specific specific a
Scalera v . . v - n/a n/a - n/a
(9]
three
Lienhart image - form host -
[10] v sequen- na v PC a wa
ces
Woodfill-
Herzen v v na v . | form host na - na
PC
[11]
standard standard
hc-zze]eser v - - v - camera frame - n/a
module grabber
Genta _ application | application _
[13] Y Y na v specific | specific n/a
Quek trinocular
[19] Y Y) n/a) system na - n/a
standard
Maupu v (pc 3-D
3-D n/a - camera n/a v .
[21] based) module graphics
Appiah- standard :;:I‘ttiiv'ge
Hunter v - n/a v v camera n/a p n/a
122) module background
modeling
Woodfill- standard
Gordon- v v n/a v - fnaé?ﬂ: n/a - n/a
Buck [24]
(Tyzx)
CRT with
shutter
Proposed v v v v v applica}t_ion appliggtion v glasses
system specific specific or
projection
screen

26

2.5. Conclusion

There are numerous implementations of one-channel or stereo vision systems built on
programmable logic devices, mostly on FPGAs. When an application requires intensive
computation resources, for example, for advanced image processing tasks, for images
correlation or for disparity map generation, a part of the design migrates to a DSP based system
or to a PC. From another hand, modern FPGAs have huge logic and computational resources to
integrate sophisticated systems inside a single chip. For example, Xilinx Virtex-2Pro FPGA has
logic resources equivalent to 10 million system gates. For Virtex-5 FPGA the number is around
33 million. These FPGAs have 1 to 4 embedded PowerPC microcontrollers. Besides, modern
FPGAs can efficiently implement practically any 8-bit microcontroller, and available soft cores
support popular instruction sets such as the Microchip PIC, Intel 8051, Atmel AVR, Motorola
6502, 8080, and Zilog Z80 microcontrollers [42]. There are also specifically designed soft core
microcontrollers like MicroBlaze and PicoBlaze for Xilinx FPGAs.

For multi-mode real-time systems which process a number of data streams (two data
streams for stereo vision) FPGA-based approach is the only possible one which can incorporate
all necessary tasks in a SoC. The set of tasks related to stereo or panoramic vision includes:
multi-channel data capture, deep parallel and highly pipelined data processing (including data
processing for synthesis of virtual 3-D objects).

The advantages of this approach are the following:

a) It simplifies hardwafe design since all the design sits inside one single chip, and
thus there are no PCB effects (cross talks and delays). The complexity of the design
sits inside the FPGA which can operate at core speed up to S00MHz.

b) It increases reliability (less hardware is employed) and decreases power
consumption;

¢) The system is reconfigurable, i.e. the design can be easily changed if other
algorithms must be implemented on the same platform.

d) The system can be dynamically reconfigurable [43, 44, 45] when a library of
computational specific soft IP cores can be stored in on-board non-volatile memory

and be loaded into the FPGA chip [46, 47] when necessary [48, 49].

27

e) The system can be built using a self-restoration mechanism [50]. This technique

requires a special approach for the system design.

As aresult, a complex system can be implemented utilizing less hardware resources
than the system built using traditional approaches, i.e. when all modules which may be needed
for a particular task sit on the board. What’s more, for processing of a number of data streams
which can change in time and on which various processing algorithms can be applied the
system must provide high level of parallelism and must be reconfigurable. It means that the
system has to be implemented as a SOC and thus only in SRAM-based FPGA.

For existing systems listed in the table above the task of visualization is not of main
concern since they mostly perform a kind of intermediate processing between the capture
system and host PC. For the proposed system visualization is one of the tasks which are
implemented also in hardware. Visualization can be realized in two modes: using shutter
glasses and CRT monitor for video output, or projecting two images through polarization filters
on a special screen which preserves the polarization of the light beams. A viewer can perceive

stereo image through correspondingly polarized glasses.

28

3. THEORY AND METHODOLOGY

3.1. Introduction

Extraction of relevant visual information means that all video sources (two for stereo
vision) must be properly oriented in space and generate images with minimal color distortion
which may be caused by different lighting conditions. Besides the mechanical adjustment of the
video cameras and lenses, correlation methods are employed to calibrate generated images. The
methods for correspondence matching are typically based on calculation of sum of absolute
differences (SAD) [17]. This problem becomes of primary importance for navigation systems
where precise disparity maps are expected to be generated. For the systems aimed at just
visualization of stereo video the exact correspondence of images is not as important and good
results can be obtained by simple mechanical adjustment of cameras or projecting devices
orientation.

The proposed system’s task is to integrate real-time stereo video with synthesized elements
of 3-D virtual objects. For synthesis of graphical objects which should be a part of the
background image it is important to know the correct motion of the camera and its calibration
[51]. Otherwise, the synthesized object won’t look natural in the scene. The major issue for the
present thesis is to consider the formal approach to virtual 3-D objects generation applicable for
a system-on-chip. These images are not tied to the background (they can be used just as virtual
buttons or cursors). Thus, precise calibration and correlation of stereo images, as well as the
motion of cameras are not within the scope of this thesis work and the mathematical
background for this task is not considered. From another side, the task of the implementation
includes image capture by video cameras and image color decoding since available on the
market CMOS Image Sensors provide data in so-called Bayer pattern so that each pixel
(elementary image element) keeps only one color component data. The other color components
for each pixel should be taken from the adjacent elements of the image. Certain approaches can
be applied to this task realization, and possible solutions should be analyzed and optimized.

Therefore, two theoretical aspects that must be considered for the realization of the

presented system can be distinguished and must be analyzed.

29

First — synthesis of virtual 3-D images. For this task realization the geometry of 3-D objects ;
and their transformation in space as a function of time must be analyzed. Certain mathematical
models are resulting from the analysis, and

Second — based on the mathematical models and algorithms which must be implemented a
set of possible architectural solutions for implementation of the system’s tasks can be obtained
based on special methods of architectural synthesis. After that, optimization of the system
architecture must be done with the purpose to design a system with optimal resources and

performance characteristics.

3.2. Synthesis of virtual 3-D objects

In engineering applications, the picture is not the final result. Instead, the model is the result
and the picture is only a means of communicating information about the model [6].

The basic point is that the visible world around us has three dimensions and can be modeled
by Euclidian three-dimensional space, or 3-D space. To represent a position in 3-D points are
used. The notation A(Xx, y, z) stands for a point in 3-D space with the coordinates x, y and z
(known as Cartesian coordinates) each of which is a distance from the reference point, or the
beginning of coordinates, along the orthogonal axes X, Y, and Z. A line segment connecting
two points is characterized by two pairs of coordinates. A scalar is a value that describes only
magnitude, for example how far the point is from the origin. A vector is a directed line
segment.

Points, scalar values and vectors are tools for virtual world creation. An object in 3-D can
be represented as a number of points (vertices) connected by line segments. The elementary
polygons of an object (or body) create the surface of object. Objects in virtual world can move
and change their orientation. If there is a restriction for a body requiring that the distances
between all of its points can’t change, then we deal with a rigid body. It possesses six degrees
of freedom in 3-D space. A single degree of freedom is represented by a scalar value. When it
is changed, the change in the object state occurs. In 3-D space an object can move in any of
three possible directions, i.e. three translations are possible along each of axes. Besides, three
different rotations around axes are possible. Thus, there are six degrees of freedom. For a rigid
body any transformation can be expressed by two different types of transformations: translation

and rotation. If the shape of an object changes too, other kind of transformations must be used.

30

The most common transformations related to structure deforming are scaling and shearing
when the size and the shape of the object change [52]. The methodology of solid objects
presentation and transformation in 3-D space and on the projection plane is presented in [54].
An important aspect is how to represent an object in space and how to select a reference
system for the description of object transformation in space. Figure 3-1 illustrates possible
views on the space. First reference system is the one which is tied to the object itself (object
space). The object is located somewhere in reference to other objects and viewers, so we can
define a space including all objects (world space). A viewer has his or her own system of
reference tied to his or her eye (actually, there are two view spaces for each eye). Finally, we

can distinguish a view of the object on a projection plane, or screen (screen space).

y r 3 y A
: ’ Viewer

S <

a

. , X X
iject space .. World space View space Screen space

XV

Figure 3-1. Reference systems classification.'’

In this section the formal approaches to translation and rotation transformation are
considefed. For the visualization of the synthesized images the projection transformations must
be considered as well as the techniques for the pixelwise presentation (or rasterizing) of the line
segments in the projection plane. The last issue to be analyzed is visibility of a 3-D figure
surfaces. Definitely, some surfaces of a 3-D body are turned to a viewer so that he or she can
see them while other surfaces are hidden, i.e. located behind visible surfaces. For a certain
surface the visibility aspect can be different for stereo images (i.e. for right and left eye views).
A view space will be used for the description of an object location in space. Screen space is

used for all manipulations with the projected images an object.

17 Courtesy to [54]

31

3.2.1. Translation transformation

Translation transformations can be considered in two ways: either as a transformation of a
set of points in a static coordinate system or as a transformation of the space as illustrated in
Figure 3-2 for 2-D space. Both approaches are productive and convenient for different

situations.

L ‘B
- > >
(o] tx=x X 0 . X
o' . /Xl

Figure 3-2. Two approaches to translation transformations: translation of a set of points and

translation of space.

New coordinates of the displaced points in 3-D space can be expressed as

" '— "
xX'=x+t, y=y+i, Z=z+t, [3-1]

And the displacement vector can be defined as E(tx 201,

To represent the translation in the matrix form specially adjusted coordinate vectors are used. A

unit constant is added to the three coordinate so that a point in 3-D space is represented as

[x y z 1] . It allows using matrix multiplication for the translation transformation:

1 0 0 O
01 0O

[x vy z 1] 00 10 =[x+s, y+t, z+t, 1] [3-2]
ot 1

So, the translation transformation for a vertex of an object will require 3 addition operations, as

illustrated in Table 3-1. For example, for a cube it gives 24 additions, for tetrahedron — 12.

32

Table 3-1. Number of arithmetic operations required for translation transformation per vertex.

Translation Number of operations
Operation ADD SuUB MUL DIV
Coordinate X computing
Coordinate Y computing
Coordinate Z computing
TOTAL

[0) Y g Y
o|o|o|o
(o] [o]le] (o]
ojojo|o

3.2.2. Rotation transformaﬁon

The second basic type of transformation is rotation of an object in space. Any rotation can
be composed of three components which are rotation about each axis x, y, and z. Consider a 2-
D case for finding the coordinates of a point when the system of references rotates
counterclockwise by angle a, as depicted in Figure 3-3.

AN

Figure 3-3. Rotation in 2-D plane."®

The projections of x and y on the new axis X’ and Y’ can be expressed as

X x = x - cos(); Yx' = (—x) - sin(@); (33
X, =y-sin(@); Y, = y-cos(a).
And therefore the coordinates of the point A in the new rotated system of references are
x'= X'y + X; = y-sin(@) + x - cos()
— : [3-4]
y=Y,+Y =y cos(a) — x - sin()
The component Y, has negative sign because x is projected on the negative side of the

rotated axis Y.

18 Courtesy to [54]

33

Now we can eXpress the rotation of a point in 3-D space. Three factors affecting the
form of the 3-D rotation must be taken into account: the kind of reference system; directions of
positive rotations; and the order in which rotations are applied. A certain set of these factors
must be used in a particular application to obtain adequate result of space transformations. The
factors are illustrated in Figure 3-4. The rotation angles are defined as roll for the XY plane
turns around the Z axis, pitch for the ZY plane turns around the X axis, and pitch for the ZX
plane turns around the Y axis. For the further discussion the Left-handed reference system and

the positive direction of rotation as depicted in Figure 3-4 are employed.

Y Y Y
z /2
p . pitdl a-rell
X X 7 X
z Y -yaw
Right-handed Left-handed Positive direction
coordinate system coordinate system of rotation angles

Figure 3-4. Right- and Left-handed coordinate systems and positive direction of rotation

angles.

The order of rotations is also important. In general case, applying different sequence of
the rotations to an object might cause different resulting orientation of object in 3-D space.
With respect to a viewer’s head typical order of rotation the sequence y (yaw) — B (pitch) —a.

(roll) is widely used, as shown in Figure 3-5.

Y yaw Y pitch Y roll

v
x

N
x
x

Figure 3-5. Three consecutive rotations: yaw — pitch — roll.”

The resulting expressions for three consecutive rotations in accordance with the

sequence Y—B—a can be obtained as follows.

19 Courtesy to [54]

34

x" = zsin(y) + xcos(y) X=x x" = y"sin(@) + x" cos(@)
y=y y" =y’ cos(B) — ’sin(5) y" = y"cos(e) — x" cos(ax)
’ = zcos(y) — xsin(y) 7" =y’ cos(B) + z’cos(B) "=7"
These nine formulas can be applied to the coordinates (x, y,z) and produce as a result the

[3-5]

transformed coordinates (x”, y”,z”) .

The matrix representation of three consecutive rotations [3-5] is;

cos(p) 0 —sin(p)| |1 0 0 cos(e) —sin(e) O
x y =[x y 2| 0 1 0 .10 cos(B) sin(B) |-|sin(@) cos(a) O [3-6]
sin() 0 cos(y) | |0 —sin(B) cos(B) 0 0 1
It’s possible to express the resulting coordinates (x”, y”,z”) directly from the original
coordinates. The first step is to get rid of x", y",2”:
x" = zsin(y) + xcos(y)
y” = ycos() — zcos(y)sin(f) — xsin(y) sin(f) 3-71
Z" = ysin(fB) + zcos(¥) cos(f) — xsin(y) cos(S)
The second step is to eliminate x”, y”,z”:
x” = x{sin(y)sin(B)sin(a) + cos(y) cos(a)] + ylcos(B) sin(@)] + z[sin(¥) cos(a) — cos(p)sin(B)sin(@)]
[3-8]

y” = xsin(y)sin(f5) cos(a) —cos(y) sin(@)]+ y[cos(B) cos(@)] + z[—cos(y)sin(B) cos(&x) —sin(y) sin(@)]
2" = A-sin(y) cos(B)]+ ylsin(B)] + zlcos(y) cos(B)]
All the coefficients in the square brackets can be computed only once for a given rotation of an

object (i.e. for all the vertices of the object). The resulting equations can be rewritten as:

”
X =mx1x+my1y+mzlz m,\:l myl mzl X
” __ 4 4 ”m| _ .
y = mx2x+ myZy + mzZZ or [x y <] - mx2 my2 mz2 1y [3 9]
”m —
Z =myx + my3y + m;2 m,; my3 mg z

The expressions for the coefficients m are:
m, = sin(y)sin(f)sin(a) + cos(y) cos(a)
m, = cos(f)sin(a)
m,, = sin(y)cos(ax) — cos(y) sin(f) sin(@)
m_, = sin(y)sin(f)cos(a) — cos(y)sin(x)
m,, = cos(ff)cos(@) [3-10]
m,, =—cos(y)sin(f)cos(a) —sin(y)sin(x)
m = sin(y) cos(f)
m, =sin(f)

m,, = cos(y) cos(f)

35

Rotation transformations are based on trigonometric functions. A common approach for
evaluation of trigonometric functions is to use power series. A Maclaurin power series for sine

and cosine functions in the narrow domain around zero are:

3 xS x2 x4

. x
sin(x) = x—§+§—... and cos(x) —1——5!—+Z—... [3-11]

Using only two terms of the Maclaurin power series for computing sine and cosine [3-11] in the

domain [— !4,z 4] gives acceptable results with the error within 2.19% for cosine and

3 2

0.34% for sine: sin(x) = x— % , cos(x) =1 —% [3-12]

. . T)
For the angles outside of the narrow domain [_Z’Z] the regular nature of sin and cos
functions can be used: the period of the functions is 2=, that is sin(x) = sin(x+27) and
. . . . /4
cos(x) = cos(x £ 27) ; the relation between sin and cos functions: sin(x) = cos(x —3) ; and,

besides, sin(x) =sin(z —x), sin(x) = —sin(—x), cos(x) =—cos(7 —x), and cos(x) = cos(-x).

So, for the rotation computation the system will need to perform operations as it is indicated in

Table 3-2Table 3-2.

Table 3-2. Number of arithmetic operations required for rotation transformation computation
per vertex.

Rotation Number of operations
Operation ADD SUB MUL DIV
sin(a)
sin(B)

sin(y)
cos(a)

cos(B)
cos(y)

Mz3
Coordinate X computing
Coordinate Y computing
Coordinate Z computing

TOTAL:

OV IW|W[=|Of=|wW|=|w|w|[=|w|Nd[M[]w]ww
DO |O|0|0|0|0|O|o|o|o|o(o|=|a|alalala

3

N
NINdININ|jOjlo|o|o|o|o|olol=|o|lololololo
Olo|o|o|o|o|o|={o|a|a|o|o|a|alalalala

F-S

36

3.2.3. Projection transformation

Projection transformation is mapping 3-D world coordinates into 2-D screen. For computer
graphics two methods are of particular interest: parallel and perspective projection. The

technique of both types of projections is illustrated in Figure 3-6.

/\flewing direction g Centre of projection

Figure 3-6. Parallel and perspective projection schemes.”

The value of angle at which the parallel projection is based defines whether the
projection is orthogonal (right angle, 90°) or oblique (all other values of angle). For vision
system only perspective projection is of interest since it presents a view of an object that
corresponds to how a human eye sees real objects in surrounding 3-D space.

There are two viewing approaches for projected images generation: world-to-screen
method and screen-to-world method, see Figure 3-7. The first method creates an image of an
object of the 3-D space by projecting volume figures onto the screen space. The second
methods defines projected image by tracing the rays form the viewer eye into the space. A ray
is cast through every pixel on the screen and the intersections of the ray with all the object’s
primitives are computed. An intersection closest to the viewer is depicted on the screen. The

resulting images are composed of geometric primitives, polygons.

2 Courtesy to [54]

37

Screen Screen

Viewer, Viewer

World-to-screen projection Screen-to-world projection (ray casting)

Figure 3-7. Two types of projection methods: world-to-screen and screen-to-world.

The advantage of the screen-to-world is that the task of hidden or blocked surfaces or objects is
resolved by itself if this method is used. But it is much more computation intensive than the
world-to-screen method since a ray is cast through every pixel of the screen. The screen with
resolution 640 x 480 pixels will require more than 300,000 rays to be processed. This is why
for our system the world-to-screen method is employed.

The geometry of perspective projection for the world-to-screen method is illustrated in

Figure 3-8.

The x coordinate of the projected point A’ can be calculated by the following formula:
x' = focus-x/z. [3-13]

The same formula applies for the y coordinate in the projection plane:
y' = focus-ylz. [3-14]

X
A
A(x,2)

e /,.

xc

-

\>_ Projection plane

\

focus z

Figure 3-8. Geometry of perspective projection.

38

——————. = cwwrar W n ww -

The Z coordinate can be used for further depth interpretations, for example when one object is
located behind another and thus is not visible or partially visible.

The matrix representation of the perspective transformation can be expressed as:

100 0
010 0
X 1] = -1 / 3-15
=y =]0 0 0 1/ focus =y 2/ focus] B3-15]
00 -1 0

To obtain the resulting point coordinates normalized, i.e. the last entry in the matrix
form to be equal ‘1°, the matrix [3-15] can be multiplied by the value focus/z:
[x vy -1 z/ focus|=|x- focus/z y- focus/z — focus!z 1] [3-16]
If for a certain application the depth information is of no importance, the Z coordinate can be

discarded, thus the perspective transformation matrix becomes:

1 00 0
010 0
[3-17]
0 0 O 1/focus
0 0O 0

For two viewing points (for binocular, or stereo vision) projection onto two planes must
be considered [53]. That is, we must obtain two projected images, one for each viewing point

as depicted in Figure 3-9.

X

focus Projection A(x,2)

< / plane 1
A
1
of M m
A
Ay

Stereo base

Figure 3-9. Geometry of perspective projection for stereo vision.

39

For stereo vision systéms we must perform all necessary calculations for two independent
projected images, i.e. for each viewing point O; and O,. The technique for both images is the
same.

The computational complexity of the perspective projection is presented in Table 3-3.

Table 3-3. Number of arithmetic operations required for perspective projection computation

per vertex.
Perspective projection Number of operations
Operation ADD SUB MUL DIV
Coordinate X computing 0 0 1 1
Coordinate Y computing 0 0 1 1
TOTAL 0 0 2 2

The number of arithmetic operations can be decreased since intermediate results can be used

for different stages of computing.

3.2.4. Line segments representation for projected images

Representation of line segments on a projection plane is a task which may be resolved

straightforward using the line equation y = ax + b, but to minimize computing resources

involved in this kind of operation another approaches must be considered. The methodology is
presented in [7] and [54].

A segment AB on the projection plane and the image bitmap layout are represented on
the left and right sides of Figure 3-10 correspondingly. The image on the projection plane is
characterized by a certain number of elements in both directions, size, and sizey. For example,
for a standard VGA device the number of elements for any image is 640 (in horizontal
direction) by 480 (in vertical direction). It means that a line segment must be represented by a
certain number of pixels, i.e. discrete image elementary elements.

AX and AY values are the dimensions of the segment AB along the axes X and Y:

AX=X_ ,-X

end start [3-18]
AY = Yend - Yslart
ﬁ:.A_X_' y= x-AY [3.19]
y AY AX

40

sizex X

Figure 3-10. A line segment on the projection plane and image bitmap layout.21

Using the last formula we can obtain the values of y for all values of x for a given interval AX.
There is, though, a situation when the resulting result set of pixels representing a line y=ax+b
will not represent a continuous path on the screen, as depicted on the right side of Figure 3-11.
The left side image is a desired situation, when we have a continuous path of pixels on the

screen.

XL

0

Figure 3-11. Line rasterizing for different values of the slope ratio ‘a’.

For the second case the solution is to calculate the x values as a function of y, i.e.
-AX
x=222 [3-20]
AY
This method requires one multiplication and one division per each point. Iterative computation
technique using forward differences is often used for rasterizing polynomial curves. The idea of
forward differences approach is that the value of a function in a point x+ & can be presented as

y(x+9) = y(x)+dy, [3-21]

A Courtesy to [54]

41

That is it is equal to the sum of the function value at point x and the function’s forward
difference on the interval 4. Since our interest is rasterizing of line segments, dy has a constant
value.

The forward difference dy can be expressed from [3-21] and [3-19] as follows:

AY AY AY -x+AY-0—-AY-x AY
d = + —_ = —_— + —_ = = .
y=y(x+0)=y(x) AX(x 2 AXx AX AX

For rasterizing on a graphical display the value of d is ‘1’. That is, the corresponding value of

) [3-22]

the function y for the next discrete x, i.e. for x+1, is

y(x+1)=y(x)+dy [3-23]

Where dy is defined by the previous expression [3-22] as: dy = % 0.

One addition is needed to produce dy. The value of AY/AX is constant for the whole line

segment and has to be computed only once. The computations, though, involve fractional
numbers arithmetic.

J.Bresenham from IBM presented his algorithm (in 1965) which significantly reduces
the computational resources needed. In his approach the firs step is to find the bigger interval,
either AX or AY, and to iterate the coordinate of this (bigger) interval [7, 54]. A signaling
variable is introduced which indicates whether the value of a smaller interval should be
incremented at a given point. For the case when 4AX > AY , Xstart<Xena and Yg54<Yena the

illustration of the technique is presented in Figure 3-12.

H(x+1,y+1)

I(x+1)y(x+1))

L(x+1,y)

Figure 3-12. Bresenham’s algorithm: the line passing through the pixel grid.?

z Courtesy to [54]

42

Pixel P(x,y) was just rendered at coordinates (x,y). The next pixel can be rendered either
H(x+1,y+1), i.e. higher, or L(x+1,y), i.e. lower. I(x+1,y(x+1)) stands for actual (fractional)
imaginary “location” of the pixel, i.e. y(x+I) corresponds to the intersection point value. As a
result of intersection two segments can be distinguished: & and I. By comparing the lengths of
these segments we can decide whether we should advance to the higher or lower pixel, H or L,
to render the next pixel at the coordinate x+1.

The variables & and I can be expressed as follows:

h=(y+1)—y(x+1):h=y+1——A-¥-(x+1) [3-24]
AY

= +D-y=2l=—"((x+1 - 3-25

yx+D)-y AX(x)=y [3-25]

To evaluate whether i > [or I<h the difference I-h can be examined:

AY
I-h=2—(x+1)-2y-1 3-2
% (x+1)-2y [3-26]
If I-h>0, i.e. I>h, the intersection point I is closer to the point H and the corresponding pixel
should be selected for rendering. Correspondingly, L pixel should be plotted when I<h (or I<h
to cover all possible situations). The last expression [3-26] can be rewritten as:
AX(I—h)=2AY - x+2AY —2AX - AX [3-27]
The sign of AX (I —h) is the same as the sign of (I — h)since AX is assumed to be positive.

The values of d = AX (I — h) for two consecutive iterations are:

d, =2AY -x,_ —=2AX -y, +2AY - AX
d,,, =2AY -x,—2AX -y, +2AY - AX
The initial value of d at the point (x=0, y=0) is:

d, =2AY - AX [3-29]
The goal of the Bresenham’s method is to find the value of d;,; assuming that the value d; form

[3-28]

the previous iteration is known. The difference d;,; - d; can be found from the equations [3-28]
as:

d; —d;, =2AY -x;, —2AX -y, —=2AY - x; | +2AX -y, | =2AY (x; —x,,)—2AX (y —y,,) [3-30]
Taking into account that if for the previous iteration the higher pixel, H, was plotted, then

x—x,=1 and y, -y, =1
and d,,, —d;, =2AY -2AX = d,,, =d; +2AY -2AX [3-31]
The second case, when the lower pixel, L, was selected for plotting of the previous pixel, i.e.

x—X,=1 and y -y, =0

43

Therefore . dy-d,=20Y = d,, =d, +2AY [3-32]
Figure 3-13 presents the Bresenham’s algorithm.

{ Initialization

{ Calculation of initial value d,
i and two constants {, and t
5\ Advance flag is set to *

ne
i
es
v Y!

A 4
> AVEQ L Ay E T
Plotting pixel i as Plotting pixel i as
the lower one (L}~ the higher one ()

! N

Figure 3-13. Bresenham’s algorithm.

For each pixel rendering only one addition and comparison operations are needed. For each line

segment the constants ¢, and ¢ as well as the initial value d; are computed only once.

Table 3-4. Number of arithmetic operations required for the Bresenham’s algorithm

implementation.

Bresenham's algorithm Number of operations Note
Operation ADD SUB MUL DIV
AX computing
AY computing
d; computing
thcomputing

t computing
d; computing

Once per line segment

Once per pixel

bl bk (=] [®] [o] [o] []
DIO|IO|t |t |a|
EX (=1 LN (][]
oljo|ojojo|o|o

TOTAL|

Table 3-4 presents the number of arithmetic operations needed for the Bresenham’s
algorithm implementation per pixel. Only d; is computed for each pixel. It requires one addition
operation. But the amount of computation operations completely depends on the complexity of
the object and thus its projected image. The number of pixels to be processed can be hundreds
or even thousands. This is not a problem for the proposed system implementation since, as it
will be illustrated later in the chapter 4, there is a sufficient time slot to process very complex

objects. This time slot is at least of one whole frame duration.

3.2.5. Rasterizing polygons

As soon as the line segments composing the projected image of a 3-D object are plotted,
the rasterizing of polygons outlined by these line segments can be done.
A 3-D body can be presented as a set of conjunct polygons as illustrated in Figure 3-14.

For example, a cube is combined of six squares and a tetrahedron — of 4 triangles.

Tetrahedron

Cube

Projection
plane

Centre of projection

Figure 3-14. Objects in 3-D space and their perspective projection views.

The projected images of 3-D bodies are seen as a set of polygons, in this case of triangles for
the tetrahedron and parallelograms for the cube. 4

In general case the polygons can be of two types: convex and concave, as depicted in Figure
3-15. The first one has a feature that all lines connecting any two points inside a polygon

doesn’t leave its boundaries. This feature doesn’t relate to concave.

45

convex concave

Figure 3-15. Convex and concave polygons.

A concave polygon can always be represented as a set of convex polygons. Furthermore, any
polygon on the projection plane can be represented as a set of triangles, so it’s possible to
consider only triangles as elementary elements of the image. The edges of triangle outline area
of a certain texture which can be rather complex. For a simple case we can consider that the
area inside triangle has a certain color attribute. An example of a rasterized triangle with a color
attribute of the outlined area is presented in Figure 3-16. The pixels are numbered in both
horizontal and vertical directions. The direction of the ¥ axis is from top to bottom since for the
computer screen the upper left point is usually considered as a reference point with coordinates
(0,0). For each scanning line which touches or intersects the triangle we can define two points

characterizing the beginning of the rasterized image and its end, or in other words, start and

end.

Figure 3-16. Rasterized triangle representation.

This triangle is considered as an object which can be defined by an array of the structure

presented in Table 3-5.

46

Table 3-5. Data structure (array) for storing triangle’s pixel lines.

Row number Start End Start End
i k+6 k+6)i i+10
i+l k+5 k+8 K+6 k+6
i+2 k+5 k+9 K+5 k+8
i+3 k+4 k+11 K+5 k+9
i+4 k+4 k+13 K+4 k+11
i+5 k+3 k+14 K+4 k+13
i+6 k+2 k+12 K+3 k+14
i+7 k+2 k+9 K+2 k+12
i+8 k+1 k+7 K+2 k+9
i+9 k+1 k+4 K+1 k+7
i+10 k k+1 K+1 k+4
K k+1

The array contains pairs of numbers, Start and End , for each scanning line from i to
i+11, as shown on the left side of the table. The data structure can be significantly simplified
using the fact that the information about the line number is redundant. We just need to know
the starting and ending line numbers or the number of lines the triangle occupies. This structure
is depicted on the right side of the table.

Implementation of rasterizing method doesn’t require arithmetic operations. It’s

performed using just comparison operations.

3.2.6. Surface visibility

To present a 3-D object on the projection plane the surface visibility aspect should be taken
into account. For example, for the tetrahedron presented in Figure 3-17 the surfaces denoted by

triangles ABD and ADC are invisible on the projection plane, or hidden.

Figure 3-17. Hidden surfaces illustration.

47

There are a number of algorithms for hidden surface determination: Floating Horizon
Algorithm, Roberts Algorithm, Warnock Algorithm, Appel’s Algorithm, The Haloed Line
Algorithm, Weiler-Atherton Algorithm, z-Buffer Algorithm, List Priority Algorithms, Binary
Space Partitioning Algorithms, Scan Line Algorithms [55], Back-Face culling algorithm,
Back-to-Front Sorting [54], and others. This aspect has two issues: hidden surfaces of an object
itself, and surfaces of an object a view of which is blocked by another object(s). The scope of
this thesis is a simpler case when the system synthesizes only one object or several objects
which are not blocked by other objects. Thus, the hidden surfaces as a result of a view of an
object blocked by other objects are not considered in this thesis.

The task of the project is to implement 3-D objects synthesis for a system-on-chip, thus
a straightforward technique called back-face culling is considered since it looks simpler than
other approaches but works very good for hidden surfaces determination for a single 3-D object
or for non-overlapping images. The idea of the method is to evaluate an angle between the
normal to the considered surface and the vector characterizing the viewing direction. The
direction of normal to the surface (triangle) is assumed to go outward of the body of the object.

Thus, it is obvious that when the value of the angle between the viewing vector and the normal
e e T . .
to the surface is within the range [—5-,—] then the surface is face turned to a viewer and thus

visible. Otherwise, the surface is turned outward and is invisible, as depicted on the left side of
Figure 3-18. Generally, this dependence relates to an angle between the normal vector and a

viewing vector directed to any point of the considered triangle.

Viewer @ V(0,0) Ngio Viewer @ V(0,0)

Figure 3-18. Visible and non-visible surfaces: back-face culling determination technique.

48

To formalize this approach we must find out the coordinates of the normal vector and the
viewing vector.

The normal vector can be obtained by the cross product of two vectors connecting the
vertices of the triangle. The order by which the vertices are considered must be unified to
provide that the normal vector always goes outside of the object’s body. Usually an order in
which a look from the outside of the body on a side surface (triangle) is assumed and the
vertices are taken counterclockwise. For the tetrahedron depicted on the figure above the order
is, for example, Ag-A;-A, or A -A3-A; for considered triangles.

The normal vectors to both triangles can be expressed as:

nop = (A —A)X(A; —A) and nyy, =(A;—A)X(4;, - 4) [3-33]

By evaluation the signs of the dot product of the vectors ng,, - vy, and n,s, E the conclusion

about visibility of the given surface can be done.

The formal expression for the cross product is following:

i i k
No, = (A —ADX(A, —A) =X =X, Y=Y Z—% [3-34]

X=X V2= 7%
) [3-35]

The coordinates of the viewing vector v_m;are (x,—0,y, — 0,2, —0),i.e. (xy,¥9,20) Which are

Or the coordinates of the vector n,,, can be presented as
=Y 4% X=X V1= Yo

[)’2—}’1 7% X=X Y2a— N
The same can be written for the second normal vector.

1% 7%

X, =X 2,7

the coordinates of the point A for the viewer located in the reference point V(0,0).

The dot product of the vectors ng, and v, can be computed as
Moi2 * Voiz
So, to define whether the considered surface is visible or non-visible we must perform 12

=n, v, tn, v, +n v, [3-36]

subtractions, 9 multiplications, 5 additions and check the sign of the resulting value.
The number of arithmetic operations per each object’s surface is summarized in

Table 3-6. These operations are performed only once for a given location of a body in space.

49 PROPERTY OF
RYERSON UNIVERSITY LIBRARY

Table 3-6. Number of arithmetic operations required for the back-face culling algorithm

implementation, per each surface of an object.

Back-face culling algorithm Number of operations
Operation ADD SUB MUL DIV
normal X coordinate computing
normal Y coordinate computing
normal Z coordinate computing
dot product computing

Nivo|lolo
(Gl [=2[51[;]{4)]
OlwinINdIND
oljo|o|o|o

TOTAL

The summary of the presented methodology for virtual 3-D objects synthesis is the
following:

1) Denote the vertices and the sides of the 3-D objects, define the sides as objects with a

certain order of vertices (define triangles);

2) Perform necessary transformation of a virtual object, compute the coordinates of all

vertices in a chosen space;

3) Define visible and hidden sides of the object for a given view on the object (for each

camera view), define color for visible surfaces;

4) Compute the coordinates of the projected vertices of the 3-D object for both views of

two (stereo) cameras;

5) Generate the arrays defining the projected line segments;

6) Rasterize the line segments connecting the projected vertices, i.e. draw the triangles

with a certain color attribute;

7) Repeat steps 4-5 for each of visible surfaces of the object for each camera view.

The presented method of the virtual 3-D objects synthesis doesn’t consider all aspects of a
solid body image presentation. There are other techniques which help to represent objects as
realistic as possible. Among these techniques are the following: structure deforming
transformations (scaling or shearing), rendering textured polygons and interpolatively shaded
polygons, anti-aliasing, clipping, modeling.

We limited the approach because the goal of the thesis is to illustrate that a real-time stereo
vision system with synthesis of 3-D virtual elements can be implemented in a system-on-chip.
It means that a system which takes into account other aspects of 3-D virtual graphical objects
synthesis can also be implemented. Though, the task seems rather complex and requires a

thorough development of the methodology. The thesis presents an element of that common

methodology which might be developed afterwards into a common approach for synthesis of

virtual 3-D objects of practically any complexity.

3.3. System architecture synthesis and analysis

Any computational system has a certain architecture (A) which can be presented as
combination of three components: Components (C), Links (L) and Procedures (P), i.e. A={C,
L, P}. In its turn each component can be implemented either in hardware, or in software. That
is, C={Cu, Cs}, L={Ly, Ls}, P={Py, Ps}. So, in general case, a digital system consists of a set
of general purpose processors, memory and application specific hardware circuits, hardwired
and virtual links, and hardwired and programmed procedures. The target functionality of a
system is defined by the specification of a system which is a set of loosely defined
functionalities and certain constraints. The constraints can be any set of the performance
constraints (latency, cycle time, data rate, etc.), area constraints (on-chip, on-board, on-system),
power consumption constraints, reliability constraints (life time, repairability, testability), and
cost (cost of system, of modification, of maintenance, etc.). The methodology for the optimal

digital system architecture synthesis is presented in [58].

3.3.1. Design-oriented approach

There are two possible approaches to the design implementation. First is a design-oriented
approach. The decision of mapping functionalities into dedicated hardware or implementing
them as programs on a General Purpose Processor (GPP) usually depends on estimates of
achievable performance and the implementation cost, see Figure 3-19.

This division impacts every stage of the design and is based on the designer’s experience
and performed on the initial stages of the design process [56, 57]. As a result some portions of
the design are often not optimized, i.e. either over-designed or under-designed with respect to

the required performance.

51

Set of tasks based on
specifications of a system

interface_k

Figure 3-19. A design-oriented approach to system implementation.23

3.3.2. Synthesis-oriented approach and design space

The second approach is a synthesis-oriented solution which starts with behavioral
description of circuit functionality. It means, that all tasks and processes of the system are
described by an appropriate specification language. In the recent years, hardware description
languages (HDLs) are used for this purpose. Figure 3-20 illustrates the stages of a design

process for a system [58].

Specification }————] High-level Synthesis

l

Hardware/Software
Partitioning

AN

Hardware Architecture Software Architecture
AF{Cy Ly P} As={Cs, Ls, Ps}

Figure 3-20. System architecture design process stages.

All possible solutions belong to a certain design space. One end of the design space is a
purely hardware implementation of the design. A software implementation is on the other end
of the space [59]. The left side of Figure 3-21 illustrates the initial layout for the synthesis-

oriented approach.

3 Courtesy to [56]

52

Behavioral specification
and constraints

Hardware
implementation .
Constraints
® /o/
Software

: SwW
implementation Cost . Cost

[Behavioral specification]

e s

T Mied TN
HW

Performance
~N
[Performance
. '\,
=)
b2
@
%l
3
2
-
o
3
e

Figure 3-21. A synthesis-oriented approach to system implememtation.24

A design must satisfy a set of constraints which are performance characteristics like timing,
power consumption, or/and others, and cost characteristics like involved parts cost, area on the
board, or/and others. Thus, generally speaking, we have a multidimensional design space. The
right side of Figure 3-21 illustrates two-dimensional design space since it considers possible
solutions based on cost-to-performance trade-offs. Obviously, the architectural solution for the
system is limited by the area which is within the shadowed area. The line connecting HW and
SW implementations illustrates the set of possible solutions. So, a segment of the line inside the
shadowed portion of the design space depicts the sub-space of possible solutions. The next step
is to find the optimized variant of all possible architectural solutions for a given behavioral

system description which satisfy the set of constraints.

3.3.3. Sequencing graph (or Data Flow Graph)
For synthesis purposes a digital system must be defined in a formal way. It can be specified
[58] by
a) asequencing graph (or Data Flow Graph),
b) a set of functional resources, and

c) aset of constraints.
DFG is a polar and acyclic graph Gs(V,E) where V={V;: i=1,2, ... n} is a vertex set, and
E={E(v;v)): i,j=0,1, ... n} is a set of dependencies, which for a particular case can be presented

as illustrated in Figure 3-22.

2 Courtesy to [56]

53

Figure 3-22. Sequencing Graph (or Data Flow Graph) presentation.

In relation to a digital system design, for example, for a system the functionality of which is

described by the expression Y = (x, +x,)/(px; +gx,) + rx,, the corresponding DFG looks as

presented in Figure 3-23.

Figure 3-23. DFG for the example task.

Vertices represent functional resources which can be primitive resources (e.g. adder,
multiplier, comparator, etc.), application specific resources (e.g. FIR, FFT. etc.), memory
resources, and interface resources.

Architectural synthesis and optimization task includes the following stages:

a) Placing the operations in time and in space, i.e. determining the time interval for
execution and binding the resources; these tasks are denoted as scheduling and
binding.

b) Determining interconnections of the data-path and the logic-level specification of the

control unit.

54

3.3.4. Scheduling

The vertices of the DFG have the following attributes: execution delays, i.e. D={d;: i=0,1,
.. n} and start times, i.e. T={t;: i = 0,1, ... n}.
The goal of the scheduling task is to determine start times which depend on the precedence
constraints specified by the DFG. For example, for the DFG presented in Figure 3-23 the
scheduled DFG is depicted in Figure 3-24.

}

X X2 Xl.\

\
/
&)

Time 4

Time 0

&)
6/
3

Time 1

O
N\

Y

pa—

Figure 3-24. Scheduled DFG.

At the moment “T1” three multiplication operations are performed. It’s possible to provide the

same functionality with other variants of scheduling, as depicted in Figure 3-25.

X
T0 Z

NG|

RO O
.

Figure 3-25. Possible variants of scheduling.

3.3.5. Binding

The variants presented in Figure 3-25 produce the same result as the initial one but
might differ by other features (e.g. latency), or by the set of resources used for the
implementation. It means that the same resource can be used in different time slots. Resource
selection is denoted as binding. It assumes that there may be more than one resource
applicable to an operation.

Binding is selection of relations between operations on a DFG (V;) and resources (R;)
[58]. If there is a limitation as to the number of resources used for the implementation then the
situation is referred to as constrained scheduling. For example, the task is to find an optimal
architectural solution for the considered system with certain constraints, namely latency and
area. Figure 3-26 presents possible variants of constrained scheduling and binding for the

example.

Varlant

1
Xof Xz X3 “a "Xs
e\ N\ T0

oI

Varlant 2

Variant 3

T2

Varlant 4

Figure 3-26. Variants of constrained scheduling and binding.

56

The first variant corresponds to a straightforward solution, i.e. using just one ALU
(Arithmetic Logic Unit) or microprocessor which executes one operation (command) at a time.

Variants 2 through 5 use different schemes of resources binding.

3.3.6. Architecture optimization

Assume that the resources which can be used to provide the functionality of the design
and their area and latency specifications are the following:
R1 — Adder, execution delay, d; = 10 t.u. (time units), area — a;=20 sq.u. (square units);
R2 — Divider, d; = 20 t.u., area — a,=80 sq.u.;
R3 - Multiplier, d; = 20 t.u., area — a3=60 sq.u.;
R4 — Multiplier/Divider, d, = 20 t.u., area — a,=100 sq.u.;
R5 — ALU/pP, d; = 20 t.u., area — a,=200 sq.u.
For the first variant we have latency Ty = 140 t.u., A; = 160 sq.u., and for the rest of variants:
ToL =60 t.u., A, = 280 sq.u.;
TaL =70 t.u., Az = 220 sq.u.;
T4 =60 t.u., Ay = 220 sq.u.;
TsL =170 t.u., As = 180 sq.u.
The considered design space and the layout of the variants in the area-latency factors space is

presented in Figure 3-27.

- Latency B Area Latency
y .
\4
140 ——\ . 140
120 \ /\ 280 120
100 — 240 100
80 A\ 200 80 V3
) Vbe e V2
60 160 60 —oy4 .
| I | |
Variant #1 2 3 4 5 160 200 240 280 Area

Figure 3-27. Design space for the system.

If, for example, the constraints are set to the values Timax = 90t.u. and A q-240sq.u., then only
architecture variants V3, V4, and V5 are within the acceptable portion of the design space
(shadowed area). The variants V3 or V4 are the closest to the optimal variant in the latency-

area factors (constraints) design space. A similar analysis can be done for other pairs of factors

(constraints), for example, cycle-time — latency.

57

3.3.7. Design space and Architecture Configuration Graph (ACG)

In general case, there are a big number of possible architectures for a targeted task since
there are multiple variants of each resource. For example, ripple-carry adder or look-ahead
adder, 8-bit or 16-bit adder or multiplier, multiplier with Booth’s algorithm or with shifted
product, etc. The variants of each resource can be represented graphically as illustrated in
Figure 3-28.

@ O
R0O1 R02 RO3 R11 R12

Figure 3-28. Variants of the resources.

The design space then can be represented as an Architecture Configuration Graph (ACG) [43],
as depicted in Figure 3-29.

Figure 3-29. Design space as an Architecture Configuration Graph (ACG).

The terminals 1 through 12 in the figure correspond to possible variants of processing
architectures.

Depending on the particular task, the performance model should be created. It can
represent, for example, the processing time for a block of data, power consumption model, or
others.

The design space, or ACG, should be hierarchically arranged [44]. It means that all types of
resources represented by ACG must be allocated in optimal order. The optimal order is the one
which provides the most monotonic increase or decrease of the performance parameter from
left to right terminals. It can be done using “Minimax” method by which the performance value
(P) is calculated for both minimal and maximal values for all resources of RO, R1 and R2 (RO1

58

and RO3) for the same (fixed) other resources. It is illustrated in Figure 3-30 for two resources,

RO and R1.

Figure 3-30. “Minimax” method for hierarchical arrangement of ACG.

Then, a coefficient Ky, = (Pg;mu — Primin)/(n —1) is calculated for all resources of R;. The

resources are then arranged in an ACG so that of the top of the ACG is the resource with the
maximum value of the coefficient Kg;. The resource with the next lower value of the coefficient
is to be placed on the second row and so forth.

If n is the number of types of resources and m is the number of possible variants of i
resource, then the total number of variants is N = 1'[l m; . To arrange the ACG, (n+1) variants
=

must be evaluated.

The total number of variants to be evaluated can be expressed as

M = (n+1)+log, [T m,). [3-37]

59

3.4. Conclusion

The analysis of formal representation of 3-D bodies in three-dimensional space and
two-dimensional projection plane on which translation and rotation transformations are
applied is presented in this chapter. The methodology for computing object vertices
coordinates as well as rasterizing of line segments and visibility of an object surfaces is also
presented. These approaches can be used both for hardware and sequential microprocessor
based system architectures.

The methodology for synthesis of system architecture is analyzed. Task scheduling,
resources binding and optimal architecture selection are considered and a practical example
is presented.

The considered approaches both for formal representation of 3-D objects and synthesis
of system architecture will be used for the stereo vision system architecture development as

it is presented in the next chapter.

60

4. DEVELOPMENT OF ARCHITECTURE AND
IMPLEMENTATION OF THE SYSTEM

4 1. Introduction

This chapter presents the architectural synthesis of the real-time stereo vision system.
The system incorporates a number of tasks each of which requires different level of
performance. There are computation intensive time tasks which have very strict timing
constraints (e.g. stream data capture, output to VGA), and, from another hand, there are
algorithm intensive tasks which require complex computational resources but doesn’t have very
strict timing requirements.

The architectural solution for the system can be built by design-oriented approach, as it
was shown in the chapter 3 when hardware-software (HW-SW) partitioning is done based on
the experience of the designer. But for the complex systems the selection of the optimal
architecture is not a trivial task and a formal approach, or synthesis-oriented approach, should
be employed.

The main tasks of the system are: image capture, output to VGA, color decoding, 3-D
synthesis, edge detection, and data read/write to and from memory. Synthesis-oriented

approach will be applied to obtain the optimal architecture for the system.

4.2. Architecture synthesis for the real-time stereo vision system

Real-time stereo vision system with elements of 3-D interactive objects synthesis must
include three major parts: image capture subsystem, video processing subsystem, and

visualization output subsystem, as presented in Figure 4-1.

Image. _ Video -
 Capture __:> Processing :> Visualization

Figure 4-1. Real-time stereo vision system block diagram.

61

The basic specifications of the system are as follows:
Image resolution: 640 (horizontally) x 480 (vertically) pixels (standard VGA resolution);
2 input channels;
2 output channels;
Frame rate for capture: 30 fps per each channel;
Data resolution: 8 bit, color;
Frame rate for visualization: 60 fps per each channel.
The fastest processes which must be provided by the system:
1. Cycle-time for the Image Capture Subsystem is:
1/1.22 x (640 x 480 x 30(fps) x 2(channels)) = 44.5nS per pixel.
Here 1.22 is the active line coefficient for the image sensor used in the system (780 clock
cycles per line / 640 active pixels per line; the numbers are from the datasheet). The
corresponding data rate is 22.5 Mbytes/sec.
2. Cycle-time for the Visualization Subsystem is:
1/1.26 x (640 x 480 x 60(fps) x 2(channels))= 21.4nS per pixel.
Again, 1.26 is the active line coefficient according to the standard VGA specification (31.77uS
/ 25.17uS). The corresponding data rate is 46.7 x 3(RGB) Mbytes/sec.

4.2.1. Architecture selection for the Image Capture Subsystem (ICS)

The cycle time the system must provide for capturing data from each of the CMOS
Image Sensors is 44.5nS. It means that the system must process each unit data within the
specified time. The processing for the ICS includes data capture from the video camera and at
the same time passing data in a pre-defined format to the VPS for further processing. From
another hand, image sensor chips provide valid pixel data after a certain set-up time, thus
making the timing requirements for the capturing device stricter (at least by one order). A RISC
microprocessor operating at the clock frequency of 50MHz and performing one command per
2c.c. will require 40nS per command execution. So, it needs to perform two different
operations during its one command execution time. Another point is that the microprocessor
can’t perform only data read/write commands. There is always a set of other commands which

must be executed to provide the correct functionality, e.g. loop commands, or strobe detection.

62

It means that microprocessor can’t be employed for the capture subsystem, and thus it should

be implemented in hardware (logic).

4.2.2. Architecture selection for the Visualization Output Subsystem
(VOS)
The similar explanation relates to the visualization subsystem. The cycle-time the
system must provide for this task is 21.4nS. It can’t be done with the RISC microprocessors’
execution time of 40nS per command. It means that the task of data output to VGA devices

must be also implemented in hardware (logic).

4.2.3. Architecture selection for the Video Processing Subsystem
(VPS)
VPS performs all data processing: writing and reading data to and from memory, edge
detection, output data generating, color decoding, and virtual 3-D interactive objects (controls)
synthesis. Each of these tasks is analyzed regarding the optimal architecture for its

implementation.

Architectural synthesis for the Edge Detection task
One of the modes in which the system operates is real-time edge detection visualization

using Sobel algorithm [60]. The formal expression of this algorithm is presented in Figure 4-2.

(4 0 1
lvx = 2 0 2 Z= |P13—F_’11|+|2'P23-2*P21|+|P33—P31|+
-1 0 1 P11] P12 P13 + [P11-P31] + [2°P12-2*P32| + [P13-P33]|
(1 2 1] P21 | P22 | P23
1] = {00 o \ v = {11Z> Threshold
' 12 P31 P3}\ P33 0 if Z < Threshold
Y
va +|Vyl > Treshold ?

Figure 4-2. Sobel edge detection algorithm specification.

Here P11, P12, ..., P33 are the adjacent pixels on the screen forming 3x3 matrix. For
the Sobel algorithm the pixel data from three scanning lines is needed. The output data for the
square matrix indicated in Figure 4-2 corresponds to the central pixel P22. To get a result for a

given pixel (Y) the calculation is performed using values of 8 adjacent pixels.

63

The resources needed for the implementation are: modulus subtractor, adder and
comparator (these modules can be generated in the Xilinx’ Integrated Software Environment,

ISE):

- Modulus Subtractor R1 - delaydi=2c.c.

- Adder (16-bit) R2 - dy=1c.c.

- Comparator R3 - ds=1c.c.

- ALU (microprocessor) R4 — d4; = 6¢.c. (modulus subtraction),

d4, = 2c.c.(addition),
d43 = 4c.c. (comparison)

Threshold

Figure 4-3. Two versions of the DFG for Sobel algorithm implementation (hardware and GPP
based).

Two versions of the Sequencing Graph (or DFG) of the process is presented in Figure 4-3.
The first DFG relates to logic (hardware) implementation, the second is based on using
sequential microprocessor.

Three variants of scheduled Sequencing Graph are considered, see Figure 4-4. For variant 2
two R1 resources are moved to the time slot T2 thus providing sharing of modulus subtractors.
Variant 3 corresponds to the microprocessor based design.

Variant 1: Latency Tr = 6¢.c. (120nS at 5SOMHz clock);

64

1 output per 2 cycles (data based on Cycle scheduling performed for this variant).
Variant 2: Latency Ty, = 7c.c. (140nS at SOMHz clock)

1 output per 2.5 cycles (data based on Cycle scheduling performed for this variant).
Variant 3: Latency T = 50c.c.

1 output per 50c.c. (ImS at S0MHz clock)

AR
EN
5{ ?5 oA
NG/

Varlant2)
P12@ P11| P13| P31 P33 P21} P23 / g T10

: B, RO
T

@@@ [rowos f—©)

HEEE.

- Modulus Subtractor :

@
@ = Adder
©

“- Comparator *

T4

o]

0@2

vV
Figure 4-4. Three variants of DFG for Sobel algorithm architecture.

The first conclusion is that the variant #3 is not acceptable since it can’t provide

necessary timing.

65

The design vﬁll be implemented in FPGA. So, there are no special resource constraints
for this design (at least at this design stage). The main concern is the speed of process. Thus,
the variant #1 is selected for implementation of the Sobel edge detection algorithm.

For the architectural synthesis the following set of possible resources which can be

implemented as modules in the ISE is considered:

- Operational frequency - Modulus Subtractor

R0.0: 25 MHz (t.c. = 40nS) R1.1: gy = 1 c.c. 2Mux + Comp.)
RO.1: 50 MHz (T, = 20nS) R1.2: g1z =2c.c.

RO0.2: 100 MHz (1., = 10nS)

- Adder -Comparator

R2.1: tro1 = 2 c.c. (8-bit) R3:1r3=1c.c.

R2.2: tro2 = 1 c.c. (16-bit)
The performance model for the best variant selection is Fame Computational Time:
Tr=[TL+ (N-1) * Teyele * 0] * Tec. [4-1]
Where
Ty — latency (in c.c.) for the considered architecture variant,
N = 640 * 480 = 307,200 — number of pixels per frame),
n = 2 — number of clock cycles per one data output for the considered architecture variant,
Tc.c.- duration of a clock cycle.
So,
Tr=[6 + (307,200-1) * max{ Tr1, Tr2, Tr3} ¥ 2] * Tce. [4-2]
or
Tr = 6.14%10° * max{ w1, Tre, Tra} * Tee. [43]
The target value of Tris 33.3mS (for 30fpS) since the output for Sobel edge detection
technique is performed just for the data flow from one video data source (one camera).
The Design Space is represented by the following Architecture Configuration Graph
(hierarchy arrangement is performed but not reflected in this thesis), see Figure 4-5.
Using a technique for the best variant of architecture selection the variant with TF = 30.7 is

selected. It corresponds to the resources R0.3, R1.1, and R2.1.

66

Architecture Configuration Graph

000 @ 010
RO.1 N RO.3

25 MHz 100MHz
40nS RO.2 | 001 10nS
50MHz
20nS

3 (c.c)
Tep= 122.8 98.2 982 7368 614 49.1 49.1 368 30.7 246 246 184 (mS)

Figure 4-5. Architecture Configuration Graph for Sobel algorithm implementation.

Architecture selection for write to memory and read from memory task

Today’s RISC microprocessors can be used in systems with the data rate up to around
20 Mbytes/sec (50nS) but only if a very simple set of operations must be applied on data. For
example, the task of capturing and writing pixel data in SRAM chip can be represented by the
algorithm presented in Figure 4-6.

If, for example, a command of a RISC microprocessor requires 2c.c. for execution (as it
is for the embedded soft-core PicoBlaze microprocessor of Xilinx Virtex FPGAs), then the task
needs 24c.c., see Figure 4-6. If the system’s clock is 100MHz, the task needs 10nS x 24 =
240nS.

It means that for the VPM the procedure of writing/reading to memory (SRAM) can be
only implemented in logic. It can’t be implemented with a sequential microprocessor which
can’t operate as fast as it is needed. Writing/reading to memory procedure is a very
straightforward operation which doesn’t require any computational resources (with the
exception of address calculation which is actually just one increment operation per write or

read cycle is employed). This is the task for a state machine (SM).

67

<
“ Pix.stioba?
—
Yoz »
¥ ¥
Gt data from the - Setdataonthe
- inputbus: - i date bug:
B T sawﬂmmble
l@qm!aw T adve
Setaddress on - Setwrita ansbla
- the address bus passlw B
¢__ I

Figure 4-6. Data flow for the capture system.

Colors decoding procedure can also be implemented only in hardware. It is a part of the
visualization subsystem task. The system must provide all three color components for each

system at the rate of a pixel output, i.e. each 21.4nS.

Architecture selection for 3-D virtual objects synthesis task

As it was illustrated in the chapter 3, the task of 3-D synthesis includes several procedures:
computation of the transformed vertices coordinates, computation of projection coordinates,
computation of a surface visibility parameter, and computation of rasterizing coordinates.

For computation of the transformed vertices coordinates the DFG can be presented in a
number of ways. There are though two main approaches: using hardware and sequential
microcontroller. Figure 4-7 illustrates the hardware approach, and Figure 4-8 represents the

approach employing sequential GPP. Both illustrated DFGs are scheduled.

68

I==cerZail M e —
ey (@] -
=R /l //PQ)// s
e
sin(u)@)ﬂ sin(p) cos(mﬂ sm(v)(Ca/—\“‘(v) :

sin(a) cos(a)

sin(a) cos(y) cos(a) cos(B)&(Fh@
S0 (0ot -

Y
- sin(g) sin(a) cos(p) \\@
, (lj }@)ﬁ@y ﬂ@y o
: \ @ ,cos{p)~/ @ , sl

my1J ¥Ymx3 my2- Ymz2

e trorrom
' /®/ (e ma v H0eme 202 T12
®/ /®/x AXpema v 4@6"“0 wmza T3
GD/ | /®/ T14
®/ T15

’Xul _ L Y'"» \l, Zun

N]
<

>

Figure 4-7. DFG for 3-D synthesis task (transformation computation), hardware approach.

Here t, ty, t;, a, B and vy are the values of translation and rotation along each of the coordinate
axis, as it follows form the equation [3-1] and Figure 3-5.

The logic resources of FPGA needed to implement this task are the following:

Adder-Subtractor (16-bit) —delay d; = lc.c.

Multiplier (16-bit) - delay d; = 2c.c.

Divider (16-bit) - delay d; = 16c.c.

Sign-inverter - delay d4 = 2c.c.

ALU-JP (Adder, subtractor, sign inverter) - delay ds = 8c.c.

ALU-UP (multiplier) — delay dg = 64c.c.

ALU-WP (divider) — delay d7 = 128c.c.

69

""tv;rz; :a tﬁ‘ Y 10 16 31

T46
<X.—tx » v——>®<——v R (_:':ig)_raz o
@:Y'_-w T2 v—;@) T18 @ S ya3 (] g@xX"'——T“
() NZ' 13 ">> fl)é\mm T34 / mi2 > ¥ e
£ 148
i — / [<—D\""‘z T35 myz?!@— v 50
T

“_()Q) 15 Y-_)C-bs/siﬂ(v) [/s i"m—)@Hi"W 136 mzzmz 51

!) 6 ' A’@\ { @Hosm 137 (Ffj -

z\ o Sn@ —>®<— sin(y) -, "L___)é\mﬂ T8 (_b\i o5
a sin@) T8 cos(a) — eﬁc:‘;(zp)__n s coS(Y)->®—:os(u)T39 mx3 @(—x' -
a cost_19 sin(a) - e:«:ﬁ) C)'besin(p)"o 3 / @__Y. .
p_)®(_— o 0> 6—:.:.'1(;”_”6 @ T41 '"23\,®}Z' T56
P— rg_ HOAX)E costn ~_—9G>\%zz T42 @ 157

2) T12 roste) -é@}e smMTZE/ L mX1-)&X' T43) Q\\ Zm 158

Tz ol "’@ costV) g mﬂ_’@”' T4
p Sn®) 1y X)e sin(p) . mz1—>®eiy_

my3——

cos(f) T15
Y

Figure 4-8. DFG for 3-D synthesis task (transformation computation), GPP approach.

For the first variant the latency Ty; = 52c.c., and it generates 1 output per 16¢.c.

For the second variant the latency is Ty, = 2,784c.c., and it generates 1 output per 2,784c.c.

For a single tetrahedron we must process 4 vertices, that is, for the variant #1 the execution
time at the clock rate of 5S0MHz is 2uS (or 1S at 100MHz); for the variant #2 it is 2228 at 50
MHz clock and 111JS at 100Mhz clock.

The target processing time for this task corresponds to the frame rate. It is 33.33mS for
30fps. The conclusion is that a sequential microcontroller should be used for this task
implementation. Even though the corresponding DFG looks more complicated it can be easily
implemented by writing a corresponding software code. The computational time for the task is

only 0.67% of the target time.

70

The same approach with the same results was applied to the tasks of computation of
projection coordinates, computation of a surface visibility parameter, and computation of
rasterizing coordinates. This analysis is not illustrated in this thesis because it is just a repetition
of what is shown above.

The only comment is that for the task of computation of rasterizing coordinates the
hardware approach can be used if the number of objects or their complexity becomes larger: for
tetrahedrons this number is around 30. But for a few objects, as it is realized in the project,
using the embedded microcontroller for computations is the best solution.

In general case, the task of 3-D synthesis is not trivial since the volume of computations
depends on the object complexity and the number of objects to be synthesized. The target
performance time is equal to one frame slot. It is 16.67mS for 60Hz frame rate, or 33.33mS for
30fps. For the proposed technique all the computations for a frame must be done before
visualization of the frame starts since the architecture of the system is based on the memory
switching scheme. It means that while the whole frame is being captured the incoming data is
written to one memory bank and the data for visualization is read from another memory bank.
The memory banks are switched when the next frame (form the capture subsystem) starts.

The amount of necessary computations for a 3-D tetrahedron image synthesis and the time
which is needed to perform these computations using PicoBlaze embedded microcontroller
resources are presented in Table 4-1.

The execution times (in clock cycles) for operations of addition (ADD), subtraction (SUB),
multiplication (MUL) and division (DIV) are given for the soft core embedded 8-bit
microprocessor PicoBlaze for Xilinx FPGAs. The operations are performed both for integer
and fixed point numbers. For each operation the number of PicoBlaze elementary commands is
evaluated. The overhead is also taken into account. This evaluation shows that for a tetrahedron
synthesis only 0.44mS is needed for all necessary computations. For the output of 60 fps the
time slot for a frame is 16.67mS. Thus, it’s possible to process up to 37 tetrahedrons just using
one embedded PicoBlaze microprocessor, or 18 tetrahedrons for a stereo system. This number
increases if to implement a system with multiple PicoBlaze microprocessors. In general, it’s

possible to implement as many soft core microprocessors as the resources of FPGA allow.

71

Table 4-1. Estimation of computational time for a tetrahedron image synthesis using PicoBlaze

computational resources.

Tet'rahe'dron . computational time a) PicoBlaze resources " b) HW adders and multipliers -
estimation using:
Number of operations Number of operations

Fixed point operations ADD suB MUL DIV ADD suB MUL DIV
Transformation (rotation) 28 36 120 2411 28 36 120 24
Projection 8 8 8 8
Total . 28 36 128 32 28 36 128 32
Plus overhead 20% 34 43 1683 38 34 43 154] . 38
Number of c.c. per operation 8 8 64 128 1 1 16 - 24
Total c.c. per operation 269 346 9830 4915 34 43 2458 922
Total c.c. ' 15360 : - 3456
Integer operations
Transformation (translation) 12 0 0 12| 0 0
Visibility 8 60 36 -8 60| - 36
Total 20 60 36 20 60 36
Plus overhead 50% 30 90 54 30 90 54
Number of c.c. per operation 8 8 b4 1 1 16
Total c.c. per operation 240 720 3456 8] 30 90 864 0
Total c.c. 4416 - - 984
Rasterization (Bresenham'’s Algorithm) :
Initial data computing per line segment 4 4 4 a4
Total for 4 line segments of tetrahedron 16 16 16 16
Plus overhead 50% - 24 24 24 24
Number of c.c. per operation 8 b4 1 16
Total c.c. per operation 192 1536 24 - 384 :
Total c.c. 1728 - 408
Average number of points per line segment 200 200
Number of c.c. per algorithm implementation 28 4
Total c.c. per segment rasterization 5600 800
Number of edges (segments) 4 : 4
Total c.c. per tetrahedrin rasterization 22400 3200
Total c.c. for all computations for tetrahedron: 43904 8048

] Execution time at 100MHZ clock, mS| 0.439 - 0.080

On the other hand, the time frame for 3-D objects synthesis can be expanded to 33.33mS (i.e.

twice) since there is no any particular need to re-compute a virtual object at the rate of 60Hz.

The rate of 30Hz is acceptable for generating moving objects for visualization purposes.

Another approach is to use the embedded microcontroller for the algorithmic portion of the data

processing and HW resources (internal multipliers and adders) for speeding up the operations

of addition and multiplication. [61, 62] The results of this estimation are presented in the right

part of Table 4-1. It gives significantly better results even though the hardware portioﬁ of the

design becomes more complex in this case.

72

The embedded microprocessor can be of any type. For example, by using a 16-bit

MicroBlaze the computational time decreases due to its more sophisticated arithmetic

commands set (including fixed point arithmetic commands) and that it operates on a wider data.

As aresult of the architecture analysis and synthesis the real-time stereo video system

platforms.

4.2.4. Architecture of the system

The proposed system includes 3 subsystems, as illustrated in Figure 4-9 [64]:

- Image Capture Subsystem (ICS),
- Video Processing Subsystem (VPS), and
- Visualization Output Subsystem (VOS).

H =

R,G,B

{analog)
channel #2

will employ logic for the tasks of image capture, visualization, color decoding, data storing,
edge detection, and an embedded microprocessor for the tasks of necessary computations for 3-
D virtual objects synthesis. It confirms that although hardware/software co-design is important

for board-level design, it is essential for VLSI implementation [63], as well as for FPGA-based

horiz. § vertic. synch.

channel #1

R,G,B {(analog) " ||

HSYNC
VIDEO VISUALIZATION
PROCESSING VSTNC OUTPUT
SUBSYSTEM 16-bit SUBSYSTEM
Data and
* ‘Datea Strobe
AN AA 5 v
. P - B -—
g o L om 1
o 13
HIHEE g0 (lgs 8 flzs
o . ol 2 " Lg v o B
w wi D .. n w0~
IR sgll [1ssgs JE3E
all 2 § --* 0e S84 R
aikdBa EH I BT KRR
SU0D
IMAGE
CAPTURE
SUBSYSTEM
I = Shutter
SVGA glasses
B e FRY o s st | monitor

Figure 4-9. Block diagram of the stereo vision system.

73

LCD
projeccor
#1

LCD
projector
#2

Polarizationgis

filcers

Projection Screen

The HW-SW partitioning of the tasks the system must perform is presented in Table 4-2:

Table 4-2. HW-SW partitioning of the tasks.

Hardware Software

Image capture 3-D synthesis

Output to VGA

Color decoding

Edge detection

Data write/read to/from memory

Video data is captured by the ICS which then passes data to VPS. VPS, first, separates data
related to each video channel and stores it into the dedicated memory space. Second, VPS
performs all data processing and generates color data and synchronization signals for VOS.
VOS, in its turn, generates analog RGB signals in VGA standard and control signals for shutter
glasses thus making possible real-time stereo images visualization.

VOS receives RGB data for each output channel from VPS. The system has two output
channels for stereo visualization. It drives standard VGA analog inputs. Besides, it generates
control signals for shutter glasses. The system incorporates also a circuitry providing analog
signals which drive shutter glasses so that a stereo image can be perceived.

The PC is used also for changing the settings of the ICS by means of a GUI module
communicating with the ICS via USB port.

The data stored in memory can be used for any kind of image processing tasks. At any
instant the data corresponding to two images, one from the video channel one (“left eye”) and
another from the channel two (“right eye”) is accessible for any task that can be integrated into

the system.

4.3. Functional description of the system

This section provides the description and the timing diagrams of all implemented hardware
modules of the stereo video acquisition and visualization system: Image Capture Module,
Video Processing Module, and Visualization Output Module. It also provides functional
description of the IP cores of the programmable logic device (FPGA).

74

4.3.1. Image Capture Module (ICM)

The block diagram of the ICM is presented in Figure 4-10.

1 3 2
O o -
MCLK MCLK
s CPLD >
cMoS vs::g HSYNCG | oMog
Sensor 1] VSYNC | sensor 2
; N
12C¢ CLK
12¢c spa
To VPM:
> PIXSYNC
> CAM_HSYNC
— CAM_VSYNC
Control Q CDATA
Buttons
4 5
(@[] s N . usBDM
O icro- SB USB
%:) controller T controller | —1SERE_Connectox
RX
[@fefe :

Figure 4-10. Image Capture Module block diagram.

ICM incorporates the following major components: two CMOS sensors (Kodak KAC-
9628), CPLD (Xilinx XC95144XL-TQ100), microcontroller (PIC18LF452) and USB controller
(FTDI FT232BM).

CPLD provides data capture and packs data in the pre-defined format for sending data
to VPM for further processing. It provides CMOS sensors with Master Clock (MCLK) of
12MHz. Thus, a complete scanning line includes 780 full cycles of MCLK. Of these 780 cycles
the actual data takes 640 cycles starting from the cycle 136. The starting point for a line or
frame is defined by horizontal and vertical synchronization signals (HSYNC and VSYNC).

Upon powering on, the microcontroller initializes both CMOS sensors to operate in
SLAVE mode since they need to operate synchronously. In SLAVE mode master clock,
horizontal and vertical synchronization signals generated by CPLD feed CMOS sensors. The
CPLD operates at 96 MHz clock provided by the on-board oscillator. Master clock frequency
for the image sensors is 12 MHz. Each line of data coming from CMOS sensor includes 780
clock pulses (at master clock frequency) 640 of which present actual active pixels values. Lines

are separated by horizontal synchro-signals, HSYNC. Each frame includes 504 lines and is

75

separated one from another by vertical synchro-signals, VSYNC. The number of active lines.
i.e. the lines presenting actual image data, is 480. The frame rate is 30 fps.

The format of the data which ICM passes to the VPM is depicted in Figure 4-11.

Ons 50ns 100ns 180ns 200ns 250ns
| I | | | |
} 1 |} } I 1 1] I I I } 1 I } 1 1 1] } } I

PXSYNC T\ 1\ /_—__\—f——l

CDATA[7:0] { DCAM1 Y DCAM2 Y DCAM1 J DCAM2 } DCAM1 Y DCAM2 | DCAM!I

Left Eye lRight Eye | LeftEye | Right Eye | LeREye | RightEye | LeftEye

Pixel (i-1) Pixel (i) Pixel (i+1)

Figure 4-11. ICM output data format.

When PIXSYNC is high the 8-bit data from the CMOS Sensor 1 is on the data lines,
and when PIXSYNC is low — the data from the CMOS Sensor 2 is on the data lines.

HSYNC and VSYNC signals are positive pulses of approximately 170nS width. The
repetition rate of HSYNC pulses is 15,385HZ (period is 65uS), that of VSYNC pulses is 30Hz
(period is 33.33mS).

The resolution of the generated image is 640 x 480 pixels. The color pixel data
generated by CMOS sensors is presented in Bayer pattern, i.e. each pixel data keeps only one
color component. The layout of the colors is depicted in Figure 4-12.

Since all three color components of the pixel brightness are needed for image
processing tasks two missing colors should be taken from the adjacent pixels (from the current
and previous line).

There is only one color data value for each pixel. To get all three color data values for

each pixel two other colors should be taken from the adjacent pixels.

~J

>

| 640 pixels

I@— 480 pixels —%]

Figure 4-12. Bayer color pattern for the active CMOS sensor area.

76

Using specially designed software the CMOS sensors can be programmed to operate in
different modes. The program provides a convenient GUI for changing the values of CMOS
sensors registers. The communication between the ICM board and PC is realized through USB
port. The micro-controller sets the CMOS sensors to operate in SLAVE mode at MCLOCK
(and thus PIXSYNC) frequency of 12 MHz. There are five groups of buttons on the ICM
board: one button is the ICM board reset. Four pairs of buttons perform increase or decrease of
Common Video Gain by changing the value of the corresponding register, and separate gain
levels for Red, Green and Blue colors in the same way. The description of all control registers

of CMOS sensors which can be adjusted can be found in the corresponding datasheet.

4.3.2. Video Processing Module (VPM)

VPM comprises three main components, WRITE CONTROLLER, READ
CONTROLLER, and SRAM CONTROLLER, as depicted in Figure 4-13.

oLXN CLOCK Clock Clock | SRAM
CLKP BUFFER | yommz CONTROLLER B1_DATA
716 SRAM 1
B1_ADDR (BANK 1)
Clock N -
READ DATA_RD1 T 5
CONTROLLER |, DATA RD2 >
RED
controls
, GREEN
N
, BLUE START_RD
N
¢ HSYNC ADDR_RD
¢ VSYNC e
' B2 DATA
Clock < 5| SRaM 2
B E WRITE START WR 16 ’ (BANK 2)
PIXSYNC - __,| CONTROLLER B2_ADDR —
CAM. HSYNC ADDR WR s >
— 18 7
CAM_VSYNC DATA WR1
4 7
16 controls
DATA_WR2
CDATA 5
L -— 116
78
l CEFRAME_FLAG

Figui’é 4-13. Video Processing Subsystem block diagram.

77

Data capture and writing is performed by the WRITE CONTROLLER. It prepares 16-

bit data of each of two incoming data streams to be written to the dedicated space in memory.

READ CONTROLLER fetches data from memory and performs all data processing on

the data stored in memory. This is an application specific part of the design in the sense that it

can be modified to implement different video systems operating in different modes.

SRAM CONTROLLER provides physical access to the SRAM chips which are located

on the board. It writes and reads data to and from two memory banks (two pairs of chips)

providing necessary timing for the particular SRAM chips. The external memory architecture is

presented in Figure 4-14.

Addrl BANK 1

Ddtal = N 1% [, B0
OEll OE.
Csl11 cs
WEI WE
S fage BR
16, | Daa
OE12 OE.
CS12 CS
WE
SRAM B12 SRAM B11
Channel 2. Channel 1
data data
AdGESS® Bytel Byteo Bytel Byte0
00000 NE X
3c200
3FFFF

) ' BANK 2
Datal = em—— L_IL Addr. B2l
I\ 16’/ Data
OE21 OE.
csa1 cs
WE2 WE
A S adie B2
18- Daa
OE22 OE.
Cs22 cs
WE
 SRAM 22 SRAM B21
Channel 2. Channel 1
) data i g dat,a.. i
Ad(cll(rnt;gs Bytel Byte0 B_yf.el Byte0
00000
3Cc200 |
3FFFF

Figure 4-14. External memory architecture and utilization.

The operational phases (reading or writing) for each SRAM chip (or memory bank) are
defined by the value of the signal CFRAME_FLAG, generated by WRITE CONTROLLER. It

is illustrated in Figure 4-15.

78

i - T
CFRAME_FLAG=1 i CFRAME_FLAG=0
FRAME: H FRAME i+1 H
i :
: BANK1 b BANK1
H
n
BL1 ; BU | Chaoneth)>
Lo : le i
1 E :‘ 5)
g - : 3
BL2 : B2 |[Chamd#>|
b ;
] n
"
[[
BANK? h BANK2 !
: : :
n
2l (Gl | o § of G| B
S 12
a 1 E !
: g 2 :
= | = i 7| o=
Camera#.
B2 [Channel® i B12
" H
- - : ;
CFRAME_I-LAG(" \ (
READING: SRAM BANK 2 READING: SRAM BANK 1
WRITING: SRAM BANK 1 WRITING: SRAM BANK 2

Figure 4-15. Memory banks operational phases definition.

The signal CFRAME_FLAG itself is defined as follows from Figure 4-16. It changes its value
with each VSTROBE coming. It means that CFRAME_FLAG signal keeps its value while the
data from one frame of the ICM is coming. When the ICM starts to pass the data related to the
next frame, the CFRAME_FLAG value inverts. Since VSTROBE rate is 30Hz,
CFRAME_FLAG signal changes every 33.33mS.

|<_.—-—33.33 mS —— |

VSTROBE A N A
CFRAME_FLAG f \ |

Figure 4-16. CFRAME_FLAG signal definition.

The specification of the data address in the memory is illustrated in Figure 4-17. The

location of a pixel on the screen is determined by 19-bit address. Of these 19 bits the bits from

79

0 to 9 (10 bits) represent the column number of a current pixel in the active window of 640

columns x 480 lines resolution. The bits 10 through 18 (9 bits) represent the row number.

a) PIXEL ADDRESS ON THE SCREEN

¢ 19-bit pixel address 5|

18 17|16’15|14|13,12|11|10 9|8|7|6|5 |4 |3 |2|1 lﬂ_

|
3 9-bit row number 3¢ 10-bit column number

b) UNIT DATA ADDRESS IN MEMORY

18-bit address
~ of the unit data in memory \L J
N

¢

g

17|16|15|14|13|12|11|10|9IBI'IIGIS |4|3|2|1|0

c) DATA LOCATION IN MEMORY

B12(B22) ' B11(B21)

{————Channel 2 —— |¢~—~—————Channel 1 —mm—~ 8w—> .
byte 1 byte © byte 1 hyte o Address:
Unit data—> byte 1 byte O byte 1 hyte 0 00000
byte 3 . hyte 2 byte 3 byte 2 oooo1
[byte (i+1) [Dbyte (i) | |__byte (i+1) [byte (i) | (if2)

Figure 4-17. Pixel address on the screen and location in memory.

The address of the data in memory (SRAM) corresponds to the pixel address on the
screen but the LSB is omitted. This is because the data is written to the memory in pairs, i.e.
two adjacent pixels data is written to the SRAM by one write cycle.

The schematics of the internal architecture of FPGA is depicted in Figure 4-18. VPM
captures data coming from ICM, stores data in the on-board SRAM and outputs processed data
to standard VGA devices for control purposes. The VPM is implemented on the Reconfigurable
platform based on the Xilinx FPAGA XC2VP100. It includes the following IP cores which are
designed in VHDL [65] using the Xilinx’ ISE.

- STROBE GENERATOR (STROBE_GEN);

- CAMERA DATA CAPTURE (CDATA_CAPTURE);
- WRITE CONTROL (WR_CONTR);

- VGA CONTROL (VGA_CONTROL);

- READ CONTROL (RD_CONTR);

- RAMBLOCK CONTROL (RAMB16_CONTR);

80

- 3D SYNTHESIS (SYNTH_3D);
- VGA DATA OUTPUT (VGA_DATA);
- SRAM CONTROL (MEMCHIP_CONTR).

A 4 .
OBJ CONTROLS
CLkN = |
) CLOCK CONTROL
CLKP : BUFFER
‘ -
o
9 1 3 READ
§ ;. CONTROL
SRAM
E CONTROL
n
x
Clock
PIXSYNC STROBE | CAMERA INIT_WR WRITE
GENERATOR | ySTROBE DATA : START WR
CAM_HSYNC CAPTURE | cPIX ADDR CONTROL A
HSTROBE —
CAM_VSYNC peE——— 19 ADDR WR]
> PIXSTROBE DatA 1 —
8 DATA_WR1
DRI DATA_C2 716
(] DATA_WR2 |
8. i 71%
CFRAME_FLAG
WRITE CONTROLLER

Figure 4-18. Video Processing Module block diagram.

All the IP cores are the components of three main functional subsystems: READ,
WRITE and SRAM controllers.

READ controller consists of four IP cores which work as follows.

VGA CONTROL IP core generates vertical and horizontal synchronization signals for a
standard VGA device (VGA_VSYNC and VGA_HSYNC) and the address of the current pixel
according to the geometric location of the current scanning pixel. Since the actual pixel data is
written in the memory in pairs (as was explained above) the system can read data in pairs too.
The READ CONTROL IP core generates START_READ signal and ADDR_RD, which is the
location of the unit data in memory, to initiate reading process by the SRAM CONTROLLER
and to get the needed data after four clock cycles. The data then goes to the VGA DATA

81

OUTPUT IP core for generating actual RGB signals for the current pixel on the VGA screen.
At the same time, the RAM BLOCK CONTROL IP core provides the data of the pixels
brightness for the corresponding pixels of the previous line. It’s needed for proper color data
assignment, i.e. to get all three color components for a given pixel.

WRITE CONTROLLER catches the incoming data from the ICM, generates strobes for
calculation of the location of the current pixel on the screen and correspondingly in memory,
calculates the address of the pixel and of the unit data and initiates the writing process. It also
generates the CFRAME_FLAG signal which is a reference signal for the memory banks
selection for different operational phases of the SRAM CONTROLLER.

STROBE GENERATOR IP core

STROBE GENERATOR IP core transforms incoming CAM_HSYNC, CAM_VSYNC
and PIX_SYNC signals into positive strobes HSTROBE, VSTROBE and PIXSTROBE one
clock cycle wide each. The corresponding timing diagrams are presented in Figure 4-19, Figure
4-20, and Figure 4-21. There are two internal counters COUNT_HS and COUNT_VS which
count the number of clock pulses when CAM_HSYNC and CAM_VSYNC strobes are high
correspondingly. When the value of these counters equals to 10, the strobes HSYNC and

VSYNC are generated.
]Ons |50ns |100ns |150ns |2
! | | 1 | 1 | [! I ! ! | | | |
CLOCK

CAMHSYNC | o 1 v 4 v [v v T T L
COUNT_Hs[7:0) ' | | o | | [1]2]3]4]5]6]7 I8 o] 1of11]121314]15] |0 |

T 1 i T T 1 1 T 1 1 1 T T T T 1 T T 1
HSTROBE!!!!!!!!!!!!!!!!{n!!!!!!

0nsI |50ns \ |109ns \ |150ns :
CLOCK
CAMVSYNG | 1 i+ v i i 7 111 i L
CounT_vs[z:o] | I T 0, | | [1]2]3]4]s]6f7{8{o]10[11]12]1d14]15] 0 |
VSTROBE : N : : : | : : : : : oo H A
R : 7 : ——
CFRAME_FLAG ' ' t 1 1 1 & 01 & 1 4 b & 4 F_;_:_:_uh:'
+ PO TS SO M N |

Figure 4-20. STROBE_GEN IP core: VSTROBE and CFRAME_FLAG signals generation.

82

R T

Each CAM_VSYNC strobe inverts CFRAME_FLAG signal value. This signal is used
for selection of the memory banks (SRAM chips) operational phases: reading or writing. For
details see the descriptions of the MEMCHIP_CONTR IP core.

The PIXSTROBE signal is defined by the values of two internal signals mclk_int and
mclk_int2 by the following expression: PIXSTROBE = (mclk_int) AND (NOT mclk_int2).
Here the signal mclk_int is set to the value of the PIX_SYNC strobe on the falling clock edge,
and mclk_int2 sets its value equal to mclk_int on the falling edge of mclk_int signal.

lOns |50ns |100ns l150ns |200ns]25(

LI I | [I I I | | B T | LI I [R I | |

CLOCK(125MHz)

PIX_SYNC(12MHz) R EEEE R R R R
mekcint | T T T L
woicme TP L

T T I : : : : T T I : : : T 1T 11 l : : : T
PIXSTROBE RN ﬂ BN ﬂl [R | H [|

Figure 4-21. STROBE_GEN IP core: PIXSTROBE signal generation

CAMERA DATA CAPTURE IP core

CAMERA DATA CAPTURE IP core counts the coming pixel strobes (PIXSTROBE)
and lines (number of HSROBE pulses), generates the address of the current pixel and
INIT_WR signal which confirms that the data is captured and ready for storing in memory.
The number of pixels is incremented with each PIXSTROBE as it is indicated in Figure 4-22.

IUns a [50ns [100ns |150ns |200ns
A]] 1 11 t i 1 1 1 1 [| 1 1 !

CLGCK(]éSMHz) .
pPxsTRoBE _f Vi P AL

pocount L4 fiini i it el ittt

Figure 4-22. CDATA_CAPTURE IP core: pixels counting.

With each HSTROBE coming the pixel counter (pix_count) is initiated (zeroed) and the

number of lines in a frame is incremented, see Figure 4-23 when HSTROBE is detected.

g vtpik__:_:nun“tv { o1 F 1719[[{ 1 4. HJ'}')Q!() I - { 1

‘|in8;_l‘20Uhtigllili. NEEEECEEEE T

........

Figure 4-23. CDATA_CAPTURE IP core: lines counting.

83

Lines counter (line_count) is initiated when VSTROBE is detected, as depicted in Figure 4-24.

crock(i2smz) TN - ﬂﬂﬂﬂﬂm Lﬂﬂﬂ]mﬂﬂ J v
veTRoBe | il - PEEEEE . PG .:ﬁ
ine_count 1+ {5 {3 - t:xsoarq,hr isosIOIiH T

Figure 4-24. CDATA_CAPTURE IP core: lines counter reset.

Pixels and lines counters are concatenated to form the address of a pixel on the screen.
The address is 19 bit wide of which 10 lower bits present the column number and 9 most
significant bits present the line number. It is illustrated in Figure 4-17.

When the data is captured from both CMOS sensors, the CDATA_CAPTURE module
generates signal INIT_WR, as shown in Figure 4-25. Internal signal clk_count counts the clock
pulses and initiates its value by each PIXSTROBE signal. Te content of the clk_count defines
when the data from one and another channel can be captured. When clk_count signal’s value is
‘0’, the data from the channel ‘1’ is latched into the register reg_caml, when clk_count = ‘4,
the data from the channel ‘2’ is latched into the register reg_cam2. When clk_count = ‘5, the
content of the registers reg_cam_1 and reg_cam?2 is connected to the output data lines

DATA_C1 and DATA_C2 correspondingly and on the next clock cycle the INIT_WR signal is

asserted.
|0ns ‘SOns |100ns ‘150ns l200ns
| | | | | I | | | | 1 | | | | | 1 |
CLOCK(125MHz)
PXSYNG ¢ [ttt il s L
CAM_DATA[7:0] ' [channei 1 data] [channel2 data. [ehannel 1 datg] channe! 1 data | channel 1 data « | |
PIXSTROBE :f:\:EI!;IEII:[T\:I:!;!:;:[T\;I;;I

[| thanriel 1 data | | | | | channdl fydata) | | | : | |
channel 2idata 1 |

reg_cami[7:0]

olk countﬂghq [1]2]3]4'5'6[7]8]9[1010’ 112]3[4]5 s{7]8[9[o[2'[3'14I5
! i channel2data « 1 | | | channel2data: . |

reg_cam2[7:0]
DATA_C1[7:0] !
DATA_C2[7:0] ' ¢hanrjel 2 data '

INTWR | 0 L0

channel 1 data ' channeld data ' ! ' channel 1 data
| _Phannel2data | |
R
II_I‘ 1 ! 1 1 ! ! 1 U

Figure 4-25. CDATA_CAPTURE IP core: timing diagram.

! '
L !
I

1 |
[} |

:1
[

'chanhel 2 pata :

EEREEEE

84

o s wee o 2 & L e

WRITE CONTROL IP core
Upon detection of INIT_WR signal, the WRITE CONTROL IP core combines tﬁe

values of two consecutive pixels in one 16-bit wide word and when the word is filled with data
it generates START_WR signal and at the same time it asserts the data to be written to SRAM
on the data lines DATA_WRI1 and DATA_WR2 which are 16-bit wide each. It also asserts the
address of the data unit to be written to SRAM. This address is an 18-bit number which is
actually the CPIX_ADDR value without its LSB (i.e. bit 0). Thus, the VPM writes pixel data to
memory in pairs.

The timing diagram of the WR_CONTROL IP core is depicted in Figure 4-26. On
detecting the INIT_WR signal the 8-bit values are latched to the upper or lower bits of the
registers data_c1_int and data_c2_int depending on the value of the CPIX_ADDR lowest bit.
Thus, the pairs of consecutive bytes are recorded into the 16-bit internal registers. Each second
INIT_WR strobe the value of the CPIX_ADDR signal’s LSB becomes ‘0’. It indicates that the
pair of bytes filled the internal registers and the system can initiate writing process, i.e. storing
data in memory. The one clock cycle wide strobe START_WR initiates memory controller to
write data in memory.

IOn? Do |50rlls Lo |10(|)nsI O |15(I)nsI D [20(l)nsI

CLOCK(125MHz)
DATA_C1[7:0]
DATA_C2[7:0]

CPIX_ADDR[18:0] '
INIT_WR

- -H

channel 1'data’ ' || ' channel T'dgta’ | '] | | chaniel 1 data

channel2ozia;]} | | channel2data, [1| ¢hanriel p data

|||||||||||||||||||

: XXXXQ

--HI=

]
|
data_c1_int[15:0] |
data_c2_int[15:0] |
'

-
L
]

DATA_WR1[15:0]
DATA_WR2[15:0] 1 1

START_WR | | 1

nnnnnnn

Figure 4-26. WR_CONTR IP core: timing diagram.

SRAM on the reconfigurable platform comprises two pairs of independently controlled

IDT71V416 chips. Each chip provides storage space for 256K of 16-bit data.

85

VGA CONTROL IP core
VGA CONTROL IP core generates vertical and horizontal synchronization signals in

accordance with the timing requirements for the standard VGA output device depicted in
Figure 4-27. It calculates the coordinates of the current pixel which is to be output to a VGA
monitor and the corresponding pixel address (PLX_ADDR). The structure of the pixel address
is identical to that presented in Figure 4-17. It also generates BLOCK_RD signal which is
passive low when the scanning point is within the active window (active portion of the
scanning line which corresponds to the timing slot D in Figure 4-27).

VGA_CONTROL IP core uses clock pulses to calculate all necessary timing parameters
to generate HSYNC and VSYNC signals.

It generates also the ROW signal which is “zero” for even rows and “one” for odd rows.
This signal is used for color decoding algorithm which is implemented in RAM BLOCK
CONTROL (RMB16 _CONTR) module

D

LINE (640 pixels)) HORIZONTAL
RGB data
|—__ —-| A=3177pS
c -
S b Eun
Horizomtal Sync. ‘| =_1leap
HSYN D=25.17 pS
(HSYWO) B . A E= 0.94pS
|
VERTICAL
! 0 =16.67 mS
FRAME (480 lines) < P 64puS
B Q= 1.02msS
Vertical Sync.)—I R=1525 mS
(VSYNC) ?(o S= 035mS
\I ya >

Figure 4-27. VGA timing requirements.

READ CONTROL IP core

READ CONTROL IP core generates START_RD signal for each even value of the
PIX_ADDR which comes from the VGA CONTROL module. It means, that the data should be
read from SRAM in pairs, in the same manner as it is written. START_RD signal generation is
conditioned by the signal BLOCK_RD which is passive low (i.e. it doesn’t affect reading)

when the current pixel is located in the active window area, see Figure 4-28.

86

Ionsl 1 1 | |50nIS | | | |100|ns | 1 ! I150|ns 1 | 1 lzoolr

cvooscaswn NN LA UUAA AT

eLANK::::::::::::"::"::":':
CPIX_ADDR[18:0] 'XXX9(1"

STARTRD::::.H.||\«-r—\:::::‘ﬂ:
Figure 4-28. RD_CONTROL IP core: timing diagram.

SRAM CONTROL IP core

SRAM CONTROL IP core distributes control signals for both SRAM chips (both
memory banks). The operational phases of the SRAM chips are writing or reading. At the same
moment of time only one operational phase can be active for a particular SRAM chip. These
phases are defined by the value of the CFRAME_FLAG signal. When CFRAME_FLAG
signal’s value is high, then the VPM writes to the bank 1 (namely chip number 1) and reads
from the bank 2 (chip number 2). These phases are depicted in Figure 4-15.

When data is being written to the SRAM, the correspondent SRAM bank can’t be used for
other purposes when writing is in progress.

The reading data phase purpose is to extract data for the following output to a VGA
device. The output to VGA is implemented in the system just for demonstration purposes to
make sure that the system is working properly. The corresponding process (designed using the
VHDL code) can be changed as needed to perform any task. For each frame there is a timing
slot of 33.33mS when any data can be extracted and processed as needed. The timing for the
write and read operations to and from SRAM is shown in Figure 4-29 and Figure 4-30
correspondingly.

On the rising edge of the clock following the falling edge when START_RD is asserted
the value of the ADDR_BUS is latched into the address register of the SRAM chip. Then, after
two clock cycles, the data can be read from the bidirectional data ports of the chip. SRAM
CONTROLLER (MEMCHIP_CONTR IP core) reads data after three clock cycles after it
detects active (high) START_RD strobe.

87

B
E
o

ADDR_RD[17:0] |

START_RD
SRAM_OEN1

SRAM_CS1
SRAM_OEN2 "\

I
f’

|
!

SRAM_CS2 "\

ADDR_BUS

—

I~

15:0

_—

I~

I~

— e e e e

data_rd1_int

DATA_RD1

data_rd2_int|

DATA_RD2

g diagram, READ operation.

-29. MEMCHIP_CONTR IP core: timin

Figure 4

For the visualization system the MEMCHIP_CONTR IP core outputs the data from the

ports on the next clock cycle after

TA_RDI and DATA_RD2

previous reading cycle to the DA
START_RD is asserted. The n

ew data is latched into the internal registers dat

a_rdl_int and

ycles following the detection of the START_RD signal as

data_rd2_int after four clock c

(output enable) should be active (low) during reading

RAM_OEN

explained above. Signal S

data from the chips’ data ports.

|250ns
|

|200ns
| |

|1 50ns
|

0Ons
|

|10

|50ns
[

CLOCK(125MHz)

ADDR_WRI17:0] + + v v o [v oo v v Lo

DATA_WR1[15:0]

DATA_WR2[15:0]

START_WR
SRAM_CS1
SRAM_WET1

L

SRAM_CS2

1
l

1
!

I
1

1
1

1
1

L

i

EERYERE

SRAM_WE2 |
ADDR_BUS[18:0]

DATA_WRI1[15:0]

'
1

DATA_WRZ2[15:0]

H

H

SRAM_OEN1,2

ming diagram, WRITE operation.

4-30. MEMCHIP_CONTR IP core: ti

Figure

38

Writing operation is initiated by the START_WR signal. The writing procedure first
writes 16-bit data to the first SRAM chip of the memory bank and then to the second one. The
address lines (19-bit) of each SRAM chip are connected to the FPGA output ports on which the
address value is set. The data lines (16-bit) of each SRM chip are connected to bidirectional
FPGA’s ports DATA1 and DATA2.

The control signals for each SRAM chips are the following:
OEl, OE2 - output enablel, 2 (active low);

CS1, CS2 - chip select 1, 2 (active low);

WEI, WE2 — write enable (active low);

RAM BLOCK CONTROL IP core

RAM BLOCK CONTROL IP core (RAMB16_CONTR) gets the data which is just read form
SRAM from the MEMCHIP_CONTR IP core, stores it in the FPGA’s internal Block RAM and
outputs the pixel values data corresponding to the previous line. This data is used for the color
decoding procedure. The process of reading and writing to the internal Block RAM is initiated
by the START_RD signal. The address of the data in the Block RAM is the lowest 9 bit of the
ADDR_RD. It is actually the column number for the current pixel (actually for a pair of pixels).
The timing diagram for the RAMB16_CONTR IP core is presented in Figure 4-31.

_ . Lo .|5[Jr:s' |100ns D '15[]ns . |20['!ns
cLock(iasmrz) N U\ NN R ALY
pooRROMZO_ it i i i
DATARD1[150]§§§i];5355555L353§5§§§I§555§
DATARD?[15U]5§E5155535555135555533155555
swero L LU g
a_addr[Q,El] i Inon_mnr9:01]AnoR) m! RDDR nn[s-ollzumn e) ADDR_RD[9:01) |
b_addr(8: U] Inmm RD[9:01]ADDR_VR] AUDR_RD[9:01ADDR VR ADDR _RBLS: o]i '
a5 s BEEEEEECCREE oaTatol] |
bd|[150]: : :] ;ﬂlnrizt_n;)z: : ‘,): = l:)]\'lsh fmz: :
DATA M[I&0] S+ & & & & ¢ 1 T adol | a do {
CDATAMEG T i i i 1§ iwae i i |t 4 imao i {
e T LT T
s.ve EESNERERRESURERERE Y

Figure 4-31. RAMB16_CONTR IP core: timing diagram.

89

The writing to the internal RAM blocks is initiated by the asserted START_RD signal. When
START_RD is high, 10 bits of the ADDR_RD are connected to the RAM blocks’ address lined
a_addr and b_addr. Two RAM blocks are used for storing previous line data for two video
channels. On the fourth clock after START_RD is detected the current data which is set on the
output ports of the MEMORY CONTROLLER is connected to the data lines of the RAM
blocks. On the fifth clock, fhe data is read from the RAM blocks. Now, the preﬂrious line data
for the current pixel address is locked into DATA_I1 and DATA_I2 output ports. On the sixth
clock pulse the current data is written to the RAM block to be used for the next scanning line.
The writing address is derived from the reading address by the following formula:
ADDR_WR[9:0] = NOT ADDR_RD[9] & ADDR_RD[8:0].

Here the sign ‘&’ stands for concatenation (as it is used in VHDL).

Thus, for reading and writing procedures two switching areas of RAM blocks are used.

3D SYNTHESIS IP core
3D SYNTHESIS IP core generates images for virtual interactive 3-D objects. Its

schematics is presented in Figure 4-32.

RESET_REQ
INTERRUPT_REQ

3D Synthesis —-I
C m

LPIcoBlazo pC | WR.STROBE :
5| Memory

{KCPSM3) RD_STROBE ' WE1 N Bank 1. -
‘ . ENY ank #1 .
INTERRUPT_ACK S —>| (RAMB16_S18)
PORTID g - ADOR1 >
IN_PORT .| our_port § DATA1 WR 0
: £ " 18
. |, mmum/
1 : 18
2 |18 A
8 &
& § . -
2 Program . WE2 | Memory
memory) EN2 Bank#2 .
{RAMB16_S18) | (RAMB16_S18)
ADD"z AN
DATAZ_WR 10
—
DATA2_RD
718
s, - '8, OBJL_FLAG
8 7
PX_ADDR 9, i e L 8, - - OBJR_ALAG
7 4)
0BJ_CONTROLS 8, : e OBOB-I-R.DATA >
7 : 16 , _DATA
. 7

Figure 4-32. 3D Synthesis IP core schematics.

90

3D SYNTHESIS IP core includes the following core sub-modules: 3D Synthesis

controller, PicoBlaze embedded microcontroller with its program memory RAM block and two

other RAM Blocks as memory banks. 3D Synthesis controller performs all data processing for

3-D objects images generation. It delegates arithmetic computations to the PicoBlaze embedded

microcontroller. The information on objects and data for rasterizing images is stored into two

RAM Blocks. One memory bank contains the information on 3-D objects in the format

presented in Table 4-3. The second RAM Block contains the rasterizing data for the elementary

triangles composing 3-D virtual objects.

which two are visible on the projection plane.

For example, object 1 in the table is a tetrahedron with 4 vertices and 4 surfaces of

Table 4-3. Structure of data in memory for a 3-D object.

ADDR Note ADDR ADDR Note |
0 Number of objects=2 34 Number of surfaces=4 64[Code of layout {001
1 Object 1 offset=3 35 Num.of visible surfaces=2 65 52 (Vix)
2 Object 2 offset=80 36 Surface 1 color = Color1 66 55 (V2x)
3|Object 1 Number of vertices = 4 37 Surface 2 color = Color2 67 58 (V3x)
4|0riginal V1: x 38 Surface 2 color= 10’ 68 010
S|coordinates |Vi:y 39 Surface 2 color= "9’ 69 52 (Vix)
6|of vertices [V1:2 40 22 (V1i:xt) 70 58 (V3x)
7 V2: x 41 28 (V3:xt) 71 61 (Vdx)
8 V2:y 42 25 (V2:xt) 72 fooo
9 V2: 2 43 25 (V2:xt) 73 -
10| - V3: x 4 28 (V3:xt) 74 R
- 11 V3:y 45 31 (V4:xt) 75 .
12 V3:z 46 22 (V1:xt} 76 0
13 V4: x 47 25 (V2:xt} 77 .
14 Vi:y 48 31 (Va:xt) 78 .
15 V4: z 49 22 (V1:xt} 79 .
16|Translation [tx 50 31 (V4:xt) 80|0bject2 Number of vertices = 4
17|Translation |ty 51 28 (V3:xty 81 Vi: x
18| Translation |tz 52 Vix 82 Vi:y
19{Rotation @ 53 Viy 83 Vi:z
20]Rotation B 54|on projection |V1z 84 V2: x
21|Rotation y 55 V2x 85 V2:y
22|Transformed [V1: xt 56 V2y 86 V2: z
23|coordinates {V1: yt 57 V2z 87 V3: x
24|of vertices |V1: zt 58 V3x 88 V3:y
25 V2: xt 59 iy 89 V3: z
26 (V2 gt 60 V3z 90 V4: x
27 V2: 2t 61 Vix 91 V4:y
28 V3: xt 62 Viy 92 V4: z
29 V3: yt 63 Viz . cee
30 V3: 2t
-3 V4: xt
32 V4: yt
33 V4: zt

For a triangle which is considered as an elementary surface (elementary polygon) for

rasterizing, seven possible variants of vertices layout are possible, as depicted in Figure 4-33.

91

x1<{x2,x3) x1=x3<x2 xi=xz=x3

¥1> (2,43} V3 yy1>y2 V2
A
v3
Layout =001 Layout= 100

{ Layout=111
V2 vi Vi

v

N

V3 x1<{x2,x3) va x1=x3<x2

y2<yi<y3 V2 ypiepeys
7]
V2 Layout=010 Vi Layout= 101
v x1<{x2,x3} v3 B
Q yi<t2y3) 2>yt
Vi szayout= 011 vi V2 Layout=110

Figure 4-33. Possible layouts of elementary triangle on the projection plane.

The 3D SYNTHESIS IP core operates as follows, see Figure 4-34.

{ Synthesls
Oomroliar
Symhesls
1 Controller
Wiiing vaues of £ ty, 1z, . {" Synthesis
TaB andytomatmty ‘L_Cocﬁroler
“1 Comptation of <5
nsformed coordinates, -4 PicoBlaze
pmgecﬂoncoordmam v
{- visibla surfaces, and -

Figure 4-34. 3D SYNTHESIS module functionality algorithm.

First, the structure of the objects is written to the corresponding RAM Block (in this project the
corresponding Block RAM is initialized by the data in the VHDL code). Then, the state of
OBJ_CONTROLS is checked and the updated values of translation parameters (ty, ty, tz, a, B

and) are written to memory. After that, the Synthesis Controller passes the data to the

92

PicoBlaze for computing new (transformed) coordinates of vertices and the coordinates of the
projected vertices. PicoBlaze also computes layout codes for visible surfaces and sets their
colors. The resulting data is then written to the memory through the Synthesis Controller. After
that, the Synthesis Controller performs rasterizing of the line segments and writes the data to
the second RAM Block.

The presentation of the rasterized line segments and surfaces in memory is shown in

Table 4-4.

Table 4-4. Data format of the rasterized line segments and surfaces in memory.

Address Byte 1 | Byte 0
0] Y coordinate (heginning of the ohject)
1 Yend coordinate
2 Xstart Xend
3 Xstart Xend
4 Xstart Xend
5 Xstart Xend
8
n Xstart Xend

When the current value of the PIX_ADDR signal corresponds to the beginning of the rasterized
image coordinate, the OBJL_FLAG and/or OBGR_FLAG signals are generated and the value
corresponding to the surface color is set on the OBJ_LDATA and/or OBJR_DATA. The VGA
DATA OUTPUT module substitutes the real-time video data with the data for the synthesized
objects when OBJL_FLAG or OBJR_FLAG are set.

For the current version of the design, the objects location is limited by a cube of
approximately 11 x 11 x 11 m’, as illustrated by Figure 4-35. The viewing points (or cameras

focus) are placed in the middle of the front side. The shift between cameras is 0.16m.

93

|
l I\Y
'32767
| Zﬂ
' I,
| 65536 .~ zZ N
| 2 /
|
I 32767 ' :
32768 T ﬂd 5 Viewing Viewing
I S~ X Point 1 960 Paint 2
I
, S e e — - - o F — - - —_—
P
, .
L7 A‘
32768

Figure 4-35. Virtual object space configuration.

The actual distances are represented in 16-bit integers, thus 11m corresponds to 65536
distance units. Using this approach the focus distance is calculated as 780 units. All
multiplications and divisions are performed on integer numbers. To provide an acceptable
accuracy of calculations, which corresponds to 1 pixel on the projection plane (which is 1 unit),
the value of focus is multiplied by 2' so that for the calculation of focus/z in
x'=x- focus/ z equation the dividend is a 24-bit number and the divisor (z) is a 16-bit number
in the range 0...65536. The values of x and y coordinates are in the range -32768...32768.

They are represented as signed integers.

VGA DATA OUTPUT IP core

VGA DATA output IP core extracts all three colors data for each output pixel coming
to the VGA device. It uses the data just read from the SRAM and the corresponding data from
the previous line provided by RAMB16_CONTR IP core. It operates as follows.

The 16-bit value corresponding to the brightness of a pair of adjacent pixels is read
from the external SRAM (Bankl and Bank2). The corresponding data from the previous line is
read from the internal RAM Blocks. Six internal registers are used to latch the data: rc0 gets
bits (0...7) and rcl gets bits (8:15) from the 16-bit value corresponding to the current line; in
its turn rp0 ge'ts bits (0...7) and rp! gets bits (8...15) from the 16-bit value corresponding to

the previous line. Registers rpp and rcp get the values of rpl and rcl form the previous reading

94

step. These six registers allow assigning values for all three colors of each pixel. The registers

assignment scheme is shown in Figure 4-36.

~ line (1) | \ rop | rpo | rpd | previous line
linei N rcp | re0 | ret / v current line
]
for the next color decoding step current reading from intemnal
rc0 becomes rep ("current previous"),——f memory (RAMBlock)
rp0 becomes rpp ("previous previous") —| (pair rp0 and rp1 - previous line)
linei = N \'rpp rp0 | rp1 | previous line
e (e v |
line (i+1) . - rep (rcO rel current line
- current reading from external
memory

~ (pairrcOandrc1 - current line)
Figure 4-36. Data reading and internal registers assignment scheme.

Two cases for color assignment are possible depending on the starting point for the lines
calculation, i.e. which line is considered even or odd. For each case the table of color matching
can be determined and used for all three colors assignment for each pixel. Figure 4-37
illustrates this scheme.

Left side of Figure 4-37 corresponds to the case when the line O (and all other even
lines) begins with Green pixel, its right side corresponds to the case when the line 0 (and all
other even lines) begins with Red pixel. On the right side of these figures the tables of colors

assignment are presented. One of the tables must be used for both channels in the design.

95

Even lines begin with Red pixel Evenlines begih with Green pixel
column column (bzo'lyurr;n
e e,
1 010 1
B
FOR EVEN G
LINES
]
current pixel
column column
———
1 0 1 0 1 0 10
1 K¢ G B 1 (B8 .6 B 6 1
e | 20 KHEEY =i iy o= (e - BECLY
1| G B 1 e s[B o 1
current pixel current pixel current pixel current pixel
row column |R | G | B | vrow column | R IG | B
0 0 rep | re0| rp0 0 0 rc0 | rep | rpp
0 1 rcl | re0 | rp0 0 1 rc0 | rct | rpt
1 0 rop | rep | re0 1 1] rp0 | rcO | rep
1 1 rpt | rcl | rcO 1 1 -1 0 | rcO | rct

Figure 4-37. Color assignment scheme

Figure 4-38 illustrates the multiplexer-based implementation of the presented colors

assignment algorithm.

| .) : current pixel
—\ ﬂUX / :

\ mux / | P1|P2.
¥ .
\ MUX P3| P4
RW¥ Gv. B n - the LSB bit of column number (N)

m - the LSB bit of the row number (M)

Figure 4-38. Implementation of the multiplexer-based color assignment algorithm.

96

Figure 4-39 represents the timing diagrams for the VGA_DATA IP core.

| s, , , [Pns, | oos | [Bns, , [8ns [1900s, , (120 | 140
CLOCK(125MH1) NAAANARAARARARANNRNY
 DATARDI[IS0] __{ i I A R

|

Romse L L
DATAMSD L+ 1t T
SN R A R R A U A R O
‘datatbc_1[150) | IDATARDE 1 | | | OATARDI | | IDATARDI!
datalBp_1[15:0] ¢ § ¢+ ! DATAIT ¢ ¢ T i DATA_H:
STARTRD ~ © i i @i F‘\ P

rc0_1[7:0] " datalfc_1{70]:

T dafalbi 1L7 0]
data16c 1[15 8]5

p—

[|
rel1_1[7:0] | dathc 1[15 af T
ep 00 G { : rc‘l 1 : I C _1: :
pOIfo] Tt 1617, l]] T daiamp 1[:7-013
N i
1

p1_1[7:0] " datalbp_1[15:8F | dath160_1[15:0}
'l'pp 1[7:0] fpa 1t o L el 1
red_0_1{7:0] P b ot Y o0t Glrowi="17) brrcoid (ffow 50 | wo_t dewow=tr or it grioe =03

green 0_1[7:0) . & | i ? ircﬂ1(ﬂrow-‘1')brrcp._1(l}ow4'0’) 01 {0 vow=1 1) of it (b =T

blue_0_1[7:0] : : irco1(trow'=1'lorrpp..1("row-"0') w_-é---*nm.ix_-a&.vi

red 11700 ¢+ & S irpu_ﬁuown')oncmmrow-"u-) _|(lu-l')ou¢0|(lt-‘ﬂx

— x T

green_1_1[7:0] R i rcp_1 (l[row;-‘1')prrc1;_1 Glfow-;‘D')) loru- |')ou;l I(I(w 'nx

blue 1_1[7:0] - : 5 E 2 1 rc§_1 (li: rowi-='1')érrp1§_1 (H}ow%‘o‘) ol I(nr-- r)uum mrp- "’l
DATA VGA[23:0] . i {6118R1}1881 1 § GO_1sR0}12B0 1 | G1.1ar1i18B{ 1 |0 jaroj1sed 1 |

Figure 4-39. VGA_DATA IP core: timing diagram.

4.3.3. Visualization Output Module (VOM)

The block diagram of the VOM is presented in Figure 4-40. The VOM is built on the base
of the Xilinx XC95144XL CPLD. It extracts each channel digital RGB data coming from the
VPM through the LVDS buffer. It also distributes RGB data to two TI THS8134B DAC chips
which drive two VGA outputs.

97

Channel 1
R 8 y2 __—>
HSYNg S g > DAC 1 ‘ 2
B 8, \] THS8134B 3
/
L4
From
Analog
VEM ~ outputs
H ® Channel 2 \
> § E > CPLD g 8, > DAC 2 — R
m> 8 L
] XC95144XL ; —> G
i B 8 s|] THS8134B B
ao —
>Z
awm
L > Horiz. Sync.
3 Vertic. Sync.
g'L-; 5| Shutter GL1 CONTROL
> Glasses 7
GL s| Control GL2 CONTROL

Figure 4-40. Block diagram of the Visualization Output Module.

The VOM generates control signals for shutter glasses switching. The schematics of the

analog part of the Shutter Glasses Control module is illustrated in Figure 4-41.

R17
33

gl1_control

o1
gi>; NPNBEC

N NPN BEC
~

Figure 4-41. Shutter Glasses Control subsystem schematics.

This subsystem includes two identical channels, one for the left and the other for the right
liquid crystal filter of the shutter glasses. The timing diagram of the gl, g/ and gl2 digital
control signals generated by CPLD signals is illustrated in Figure 4-42.

98

|l]ms |20ms |4lJms |60ms IBUms 100ms |12|J
[T T T e R T T S A e TR T TR Rt T SO TR T M B i T T T B

vsyne | | | |
ol (TTATARARAN - MATARARARAAMAMLALA -~ MANAARARATARAAULLALL- [AR AR ALY

gl2 |

gi1] | l i

Figure 4-42. Control signals for shutter glasses generated by CPLD.

The frequency of the gl signal is approximately 2KHz. The rising edge of the VSYNC signal
initiates change of the gl2 signal which actually selects which eye of the shutter glasses is open
and which one is closed.

The signals gl and gi2 feed the circuitry of the DACM board, which generates actual analog
signals for the shutter glasses control. The timing for these signals, gl/_contr and gl2_contr is

presented in Figure 4-43.

333mS 0.5 mS

30Hz ’| | | 2KHz
mﬂﬂ‘]ﬂ 5_ .V_______
GND

FEE.

Figure 4-43. Shutter Glasses analog control signals: timing diagram.

12v

=

gl2_contr

99

4.4. Conclusion

This chapter presents the implementation of the system on Run-Time Reconfigurable FPGA
Platform providing Interactive 3-D Video Environment which includes the following:

1. Development of architecture of three hardware modules comprising the system: Image
Capture Module (ICM), Video Processing Module (VPM), and Visualization Output
Module (VOM). VPM is built using the hybrid architecture implementing logic for
processing of two incoming data streams and generating output data for stereo
visualization, and embedded PicoBlaze microcontroller for algorithmic and
computation intensive part of the system which deals with 3-D virtual objects synthesis.
The architecture of ICM and VOM employs straightforward logic since these modules
must provide the data rate of 25MBytes/Sec and 60Mbytes/Sec per channel
correspondingly.

2. Design of the ICM, VPM, and VOM. The PCBs for the ICM and VOM are designed.
The VPM design is based on the Reconfigurable Platform which employs Xilinx
Virtex-2 XC2V1000 FPGA, two independently accessible SRAM banks and two LVDS
buffers. ICM includes CPLD, two CMOS Sensors providing data for real-time stereo
video system. The settings of the CMOS can be changed either through pressing the
buttons on the ICM board (Reset, General Video Gain, Red, Green and Blue channels
Video Gain adjustment), or via the provided GUI module which accesses the ICM
board via the USB interface. The VOM includes the CPLD, two DAC chips and the
schematics for providing control of the liquid crystal shutter glasses. All the IP cores
are designed in VHDL in Xilinx’ development environment ISE, version 7.1, service
pack 2. The sub-module for the shutter glasses control deals with analog signals.

3. Implementation of the design: the ICM and VOM are manufactured, assembled and
debugged. The IP cores of the ICM, VPM, and VOM are debugged. External logic
analyzer HP54620C and the Xilinx” ChipScope Pro tool were used for debugging.

4. Simulation and verification of the design: the functionality of the IP cores and the
whole system is simulated and verified. Testbench modules were used for simulation.
The timing diagrams presented in this chapter represent the actual timing of the IP cores

comprising the system based on the real images obtained using ChipScope Pro tool.

100

5. EXPERIMENTS AND RESULTS

5.1. Experimental Set-Up

The experimental set-up for the real-time stereo visualization is shown in Figure 5-1.

VIDEO
RECONFIGURABLE PROCESSING

PLATFORM - HODULE

CMOS SENSORS

 VISUALIZATION
OUTPUT MODULE

@ O
1

m : I—I Bl DAC
| X Boacil 2

- —) L[]
N

IHRGE Data and

CAPTURE - synchro b
MODULE gignals L
e H_z 4 ‘

=

G
oppcy | IS SHUTTER
CONTROLS GLASSES

Figure 5-1. Experimental set-up for real-time stereo visualization.

ICM provides stereo video data to the VPM through the cable. Differential buffers on both
transmitting and receiving ends are used for data transmission with the purpose to minimize
cross-talks and interference. Differential buffers are also used for sending data from VPM to
VOM.

CPLDs (XC95144XL) of the ICM and VOM are preprogrammed via JTAG ports using the
Parallel Cable IV and the iIMPACT utility of the Xilinx’ ISE. CMOS Sensors of the ICM
settings can be done either through the buttons on-board of the ICM module or via GUI
communication with the ICM through USB port. VPM has to be programmed once after it is
powered on.

Object Controls switches are connected to the FPGA’s 10s. The controls are used for

changing the state of the 3-D interactive controls (stereo graphic images) generated by the

101

system. One switch is used to switch output modes from visualization or the one channel image
to visualization of the edge detection image on one of the output channels.

Shutter glasses are connected to the subsystem of the VOM which generates analog control
signals switching liquid crystal glasses from dark to transparent state and vice versa.

All the system is designed using VHDL and Xilinx’ ISE version 7.1.04i, see Figure 5-2.

C3ximme Project Nevigatar - | WsersiSerge \Xitinx_projects\WPMWPM_XC2Y1000.59_edpel¥PM XC2Y1000_Sdedge fse [top.sch]
(mummma—s—o—uy&%m

Figure 5-2. Designing system with Xilinx’ ISE ver.7.1.04i.

The debugging of the system was done using the HP54620C logic analyzer, see Figure 5-3.

*l n Mumam.m N
r" B

Figure 5-3. Debugging system with HP54620C logic analyzer.25

3 All pictures courtesy of ERSL.

102

The Xilinx’ tool ChipScope Pro, version 7.1i was also used for debugging of the system as

illustrated in Figure 5-4.

Wl N A LAY B e S S S e e o o L P A R IS T
o 1880100 2407%28 408 430 368 €40 720 803 880 968 1040 1120 1200 1260 {368 1440 1570 1900 9680 1760 10)

‘o ole $ir 8w 6k Lo 8o

s

wpiced 08 .- .
INFO- Device 8 Unit 0: Waing for core 1o be armed

i Uplosd T

Figure 5-4. Debugging of the system with the Xilinx’ ChipScope Pro tool.

The detailed photographic views of the ICM are presented in Figure 5-5. Two CMOS
image sensors chips are located at a distance (stereo base) of 160mm which is wider than an
average distance between human eyes. The wider stereo base provides better stereo effect. The
captured data is passed to the VPM via differential buffers which eliminate interference on the
data link from ICM to VPM. Using LVDS buffers also allows to place the ICM further from
the processing module (VPM) as it may be needed for other possible applications (e.g. for robot
vision systems). The buttons on the ICM allow changing the settings of the CMOS sensors’
internal registers. By pressing the buttons the overall video gain can be incremented or
decremented as well as video gain for each color component can be changed by pressing other
groups of buttons. One button activates RESET for the PIC microcontroller. The
microcontroller programs the CMOS sensors via i’c interface. It also provides communication
with the PC through the USB interface which employs USB UART controller (FTDI chip
FT232BM). Using specially designed GUI module it’s possible to change the value of any of
the internal registers of the CMOS Image Sensor chips.

103

Left CMOS sensor LVDS CPLD USB controller 'Right CMOS sensor
with lenses (Differential buffer) - withlenses

—en Steres Video Cesture Makule - vae 1o

N\

CMOS Sensors PIC - JTAG Oscillator 96MHz
Settings Controls Microcontroller

Figure 5-5. Photographic picture of the ICM (front and back sides).?

The photographic image of the FPGA-based reconfigurable platform is presented in Figure 5-6.
It incorporates the Virtex-2 XC2V1000 FPGA with 10,000 logic cells (equivalent to 1,000,000
system gates). The on-board clock frequency is 106.25MHz which is the operational frequency
of the system. The module includes two banks of external memory; each comprises two
IDT71V416 SRAM chips. The incoming data from the ICM is received by the differential
buffers LVDS 2 and then passed to the FPGA’s IOs. The output color data is passed to the
Visualization Output Module (VOM) through the differential buffers LVDS 1. The 3-D objects
controls and modes selection switch are connected to the VPM through the J2 header. The

programming of the FPGA chip is performed via JTAG and Parallel Cable IV.

% All pictures courtesy of ERSL.

104

Osclllator

LVDS1 LVDS2 Memory Bank1 JTAG FPGA Memory Bank2 4o5 25MHz

Figure 5-6. Photographic picture of the Reconfigurable FPGA-based platform.?’

Virtex-2 chip doesn’t incorporate hardwired microprocessor PowerPC as does Virtex-2 Pro
chip. Soft wired microprocessor cores can be integrated into the system though. The presented
system uses the simplest 8-bit PicoBlaze microprocessor core. For simulation free pBlazeIDE
from Mediatronix was used [66].

Visualization Output Module is shown in Figure 5-7. It’s built on the base of the Xilinx’
XC95144XL CPLD which extracts each channel digital RGB data coming from the VPM
through the LVDS buffer and distributes RGB data to two TI THS8134B DAC chips which
drive two VGA outputs.

Oscillator JTAG VGA1 VGA2

LVDS CPLD DAC 1 DAC 2

Figure 5-7. Photographic picture of the Visualization Output Module.

21 All pictures courtesy of ERSL.

105

The last sub-module serves for driving the shutter glasses. It’s built on the base of the Xilinx’
XC9536XL CPLD which generates digital control signals which then transformed by

transistor-based circuit to analog controls feeding the shutter glasses.

connector

JTAG CPLD Oscillator -Shutter Glasses

Figure 5-8. Photographic picture of the Shutter Glasses control sub-module.

The general layout of the experiment with real-time stereo vision is presented in Figure 5-9.
The output devices are two standard CRT VGA monitors. The system was designed to operate
in two configurations: using shutter glasses or using a pair of LCD projectors with polarization
filters. This version of the setup needs a special non-depolarizing projection screen. The
experiments were limited with CRT monitors as output devices option and shutter glasses as

illustrated in Figure 5-10.

Figure 5-9. General layout of the stereo vision system: photographic image.”®

% All pictures courtesy of ERSL.

106

5.2. Experimental results

The timing diagrams presented in the section 4.3.2 present the results of systems
simulation. They are obtained by ChipScope Pro or Testbench tools.
Upon powering on the system and programming the VPM through Parallel Cable IV, two

concurrent processes provide two real-time images on CRT monitors as shown in Figure 5-10.

Figure 5-10. Real-time images visualization: both virtual buttons released.”

On the left CRT monitor the one-channel output is presented. It corresponds to the left eye
view. In the lower part of the screen the images of two released cubic buttons are seen. The
rasterizing data (coordinates of the line segments) are computed and stored into the internal
Block RAM. Each side has its own texture attribute which is color for the present
implementation of the system.

On the right side CRT monitor the generated video output is for real-time stereo visualization
of the same background and images of the buttons with both eyes through the shutter glasses.
We can see two shifted images of the background and the buttons if to look at the screen

without shutter glasses. If to look at the screen through the shutter glasses, each eye perceives

» All pictures courtesy of ERSL.

107

only image form the corresponding channel, i.e. video camera. As a result, the real-time stereo
video is perceived by a viewer.

Figure 5-11 illustrate the photographic picture of the same screens but for the case when
on of the buttons is pressed. In this case the rasterizing data for the pressed button is different
from the original image and the system generates two images of the pressed button which is the

left one on the picture.

Figure 5-11. Real-time images visualization: one button pressed.*

A similar picture can be obtained if to press the right button.

The system provides proper colors assignment for each pixel as it is seen from the color
pictures on the screens.

Another mode of operation of the system is to visualize the real-time edge detection image of
the same scene. Figure 5-12 illustrates the second mode of operation. The system was tested
with two edge detection algorithms: Robert Cross and Sobel. Robert Cross algorithm is a
simpler approach which uses data only from two adjacent lines. Sobel algorithm, as it was
shown in Chapter 3, is based on the data of three neighbouring scanning lines. It provides better

results [59].

3 Al pictures courtesy of ERSL.

108

Figure 5-12. Real-time edge detection image visualization.

For stereo visualization the images from left and right cameras should be aligned as much as
possible. The purpose of the experiments was to obtain a realistic stereo vision. The acceptable
alignment was easily reached by mechanical adjustment of tilt of the lens holders for both

image sensors.

5.3. Analysis of results

The presented system proves that high performance multi-channel multi mode systems for
operating on data streams can be built on the FPGA-based SoC with hybrid architecture. The
system based on Virtex-2 FPGA chip with 1 million system gates can easily process two
independent video data streams as it is for stereo vision, it has also enough resources to process
more data streams (e.g. 4 or 6) as it may be needed for panoramic vision. The number of
streams and the complexity of the processing algorithms are limited only by the resources of
the FPGA. The current version of the presented system utilizes only approximately 15% of
FPGA slices, as it is seen from Table 5-1 which illustrates the design overview generated by

the Xilinx’ ISE.

109

‘Table 5-1. Des1gn overview for the stereo vision system generated by ISE.

“1 e:\users\sergeixiling_projects\vpm\vpm_xc2v1000_55_edg

-} xc2v1000

£|Monday 08/28/06 at 14:10

top_summary. html

f" Logic Utilization Used] Available| Utilization)
¢ {Number of Slice Flip Flops: 891 10,240 8%
*INGmber of 4 input LUT 28555 7251 10,240 7%
& Logic Distribution:]
«|Number of occupied Sices:? 773 5.120 C15%
,% Number of Slices containing only related log(:' 773 - 773 100%
:;; Number of Slices containing Unrelated logic::™ 0 773 0%
:E, Total Number 4 input LUTs: 813 - 10,240 1%
“INumber used as logic: 55 x| 725

‘{Numbet used as a route-thiu: =] a8

.| Number of bonded |0Bs: 2] 131 172 76%
:|Number of Block BAMs: 7 40 17%
* [Number of GCLKs:: 16

Final Timing Score. e 07| 28621
Number of Unrolted S|gnals All signals are completely routed.
:{Number of Failing Constraints:| 0

Ry

As it was estimated in the section 4.2 the ﬁme needed for all computations and rasterizing
of one tetrahedron for a system based on the computational resources of one PicoBlaze
microcontroller is approximately 0.5mS at the clock rate of 100MHz. It means that at a frame
rate of 30fps the system can process at least 60 tetrahedrons, or 30 pairs of synthesized images
for stereo vision. For the system which incorporates FPGA’s internal resources for
multiplication and addition, this computational time is approximately 0.1mS. It gives at least
five times greater performance, i.e. 150 pairs of tetrahedrons can be processed. At the
operational frequency of 400MHz we can get 600 pairs of tetrahedrons. It’s also possible to
operate on more data in parallel since only 15% of the chip resources are used in the presented
design. It means that estimated value of processed tetrahedrons reaches approximately 4,000
tetrahedrons, or in terms of elementary triangles it gives 16,000 triangles per frame.

Using the same straightforward approach for estimation of the number of triangles which
can be processed per frame by the Virtex-5 FPGA XC5VLX330 gives the value of at least

480,000. The presented estimation doesn’t take into configuration deep pipe-lined architecture

110

which will improve the performance by several orders. So, the value of 1 million of elementary

triangles processed per frame can be reached.

Besides, the system can perform a number of parallel tasks and can operate in different

modes: one mode is real-time stereo or panoramic image visualization, the other mode is edge

detection visualization.

The system utilizes only 15% of the resources of the Virtex-2 XC2V1000 FPGA chip. The

data which is processed by the system and which is stored in the memory can be used for

multiple other tasks for which some resources of the system can be dedicated, for example for

disparity map computation, object recognition, image compression and other tasks.

Table 5-2. Modern FPGA resources: overview.

XILINX
Virtex-2 Vitex-2Pro
. XC2V1000 XC2Vv8000 XC2VPA0 XC2VP100
System gates 1M 8M
Slices 5120 - 46592 |Logic cells 53,136 99 216
Block Ram, 18Kbit each 40 168| |Block RAM, 18 Kbit each 232 444
Total Block RAM, Kbit 720 3,024| |Total Block RAM, Kbit 7.992 4,320
Multipliers 40 168| |Multipliers 232 444
DCM 8 12| |DCM 8 12
Internal Clock, MHz 420 420| |Internal Clock 400 400
Virtex-4 Virtex-5
S XCE4ALX1000 = |XCE4LX200 XCE5VLX220 |XC5VL330
Logic cells 110,692 200,448] |Logic cells 221,184 331,776
L . Block Ram, 18Kbit each 3684 576
[Block Ram, 1BKbit each 240 3%| IBiock Ram. 36Kbit each 192 268
Total Block RAM, Kbit 4320 6,048| |Total Block RAM, Kbit 6,912 10,368
Xtreme DSP slices 96 96| |DSP48 slices 128 192
DCM 12 12| [CMT 6 6
Internal Clock, MHz 500 500]| [Intemal Clock, MHz 550 550
ALTERA
. Stratix-GX
' EP1SGX40D(G)
LE (logic elements) 41,250
RAM Blocks:
M512 (32x18bits) 384
|M4K (128x36bits) 183
M-RAM Blocks (4Kx144bits) 4
Multipliers : 112
DSP Blocks 14

Modern FPGAs have significantly more logic and computational resources than the Virtex-2

XC2V1000 chip used in the presented design.

111

Table 5-2 shows the resources overview of some FPGAs which can be used for design of a
specific multi-stream multi-mode video processing system. The table presents latest FPGAs
from Xilinx Inc. and Altera Corp. [67]. Other vendors of FPGAs are Actel Corp., Atmel Corp.,
Lattice Semiconductor Corp., and QuickLogic Corp. [68]. FPGA from different vendors have
different architecture of logic blocks, embedded Ram blocks, embedded computational units,
different DSP modules, different embedded etc. Some other differences are the following:
Actel and Lattice Semiconductors offer FPGA chips with non volatile configuration memory,
QuickLogic offers chips with the lowest power consumption while Xilinx and Atmel provide
partial reconfigurability feature. Partial reconfigurable architecture allows changing portions of
the system’s architecture on the fly, thus it becomes possible to design a complex system on a
smaller chip.

The presented system doesn’t employ partial reconfigurability feature since it utilizes only
15% of logic resources. Besides, the platform must be specially designed to be partially
reconfigurable. This is what should be done for the future development of the project.

The diagrams presented in Figure 5-13 illustrate the Performance versus Cost analysis for
the given task, i.e. for the real-time stereo vision system with synthesis of interactive 3-D
virtual controls.

Straightforward approximation of the performance for the existing Virtex-4 FPGA chips
and Virtex-2 chip on which the system is implemented is illustrated by the first plot. Actual
dependence is not so straight because of, for example, limitations of routing resources of FPGA
chips for dense designs. But for this analysis, even simple straightforward approximation
produces important final plot, Performance versus Cost diagram. It shows that there is an
optimal FPGA chip size for the implemented system (for the performance/cost criteria).
Furthermore, it emphasizes effectiveness of RTR FPGA-based platform which allows to design
and implement a complex system on a smaller chip than in case of ASIC design approach when

the complete set of IP cores for the whole set of tasks sits in a bigger chip.

112

smo,om'

Performance vs Resources

? 5,000,000 P
s
3 : /
‘ .3, 4,000,000 rod
=
<
E 3000000 ’,/
[]
L]
, g 2,000,000 /. /
£ 100000 .
o *
0 20,000 - 40,000 60,000 60,000 = 100,000
Number of Logic Blocks
Logic
: Price Blocks
XC2V1000 $240 10,240
XC4VLX25 $347 24,192
XC4VLX40 $480 41,472
XC4VLX60 $915 59,904
XC4VLX80 $1,138 80,640
XC4VLX100 $1.839| 110592

120,000

Figure 5-13. Performance vs. Cost analysis.

113

Resources vs Cost

$2000
$1,800 -
$1,600 £

© $1400
. $1,200
2 $1,000
% gm0
$600

$400
$200

'/
0/

0 20,000 40000 60,000 60000 100,000

Number of Logic Blocks

120,000

Performance vs Cost

/ 7
#3000 f— - .
£ 2,500 /

4,500
4,000
3,500

E 2000

/

Perf

o
1,500
1,000
500

0 20,000 40,000 60,000 80,000 100,000 120,000
Number of Logic Blocks

6. CONCLUSIONS AND FUTURE WORK

The major purpose of this work was to research and develop the methodology for optimal
implementation of a real-time stereo-vision system with interactive run-time virtual 3-D objects
synthesis on the basis of a RTR FPGA with hybrid architecture and practically implement and
verify the developed methodology. The following tasks were distinguished: developing the
architecture of a multi-mode system-on-chip for real-time stereo visualization, research and
developing a technique for simple 3-D virtual objects synthesis, developing and
implementation of the application specific stereo image capture system which provides output
data of the standard VGA resolution, implementation of the real-time stereo vision system in
hardware, and verification of implemented algorithms for 3-D virtual object synthesis, edge
detection, and color decoding.

The research of existing real-time hardware-based video systems is done. The existing
systems mostly perform a particular task or a set of tasks for easier interfacing of capturing
devices and the main processing device which is typically a GPP, workstation or DSP. Le.,
these systems are mostly an intermediate device between image capture device and the host
Processor.

The analysis of formal representation of 3-D bodies in three-dimensional space and in two-
dimensional projection plane is performed. The methodology for computing necessary for
object presentation is done and the presented approaches can be used both for hardware and
sequential microprocessor based system architectures.

The methodology for synthesis of system architecture is considered. Based on this
methodology the architecture of all components of the system is developed.

The fully functional prototype of the real-time stereo vision system based on the developed
architecture is designed and implemented. The system is built on the base of the Run-Time
Reconfigurable platform which utilizes the Xilinx Virtex-2 FPGA. All data processing is
performed by the single FPGA chip, i.e. this is the implementation of a SoC.

The PCBs for the capture and visualization subsystems are designed, manufactured and

debugged.

114

The functionality of the IP cores and the whole system is simulated and verified. The
system generates two independent output video channels which can present different real-time
images in different modes (one eye view, interlacing frames for stereo visualization using
shutter glasses, and edge detection image). The 3-D stereo image of two interactive controls
presented as cubic buttons changing their state from “released” to “pressed” is generated.

The following limitations of the presented system can be distinguished:

1) it presents the synthesized images only of simple interactive controls; the state of

controls is simulated by pressing the actual buttons;

ii) for storing the data of virtual objects it uses only internal Blocks RAM which might be

not big enough to keep the data of more complex objects;

iii) the number of incoming data streams is limited by two — it’s enough for a stereo vision

system, but not enough for a panoramic vision.

These limitations reflect only the fact that the system is just an illustration of the proposed
approach. The future work on the project can be directed to increasing of the number of 3-D
virtual controls and other more complex virtual objects. The algorithms for objects surface
shading and texturing can be also implemented. Another direction for the future work is to
implement moving objects which can shade one another.

Infra-red sensors for hands tracking for manipulating virtual controls can be added to the
system, thus the effect of immersing into a virtual reality with real scenes and virtual controls
can be reached. The number of incoming video data streams can be more than two. The current
number is limited by 2 only because of the limited number of pins of the corresponding
connectors. A new reconfigurable platform designed specially for the tasks of panoramic vision
system would resolve all these limitations.

The system is easily upgradable and reconfigurable. It can be also built as dynamically
reconfigurable system and as partially reconfigurable system when a library of computational
specific soft IP cores can be stored in on-board non-volatile memory and be loaded into the
FPGA chip when necessary. This approach allows using smaller chips for very complex tasks.

So, the future work on the project of the present thesis should be focused on the increasing
of the synthesized 3-D virtual objects complexity. Embedded microprocessor soft cores other
than PicoBlaze (e.g. MicroBlaze) and hard wired PowerPC (for Xilinx FPGAs) should be

considered for implementation in the system for increasing the performance of the 3-D virtual

115

objects synthesis part of the design. Dual processor or n-processor architecture is another way

to increase the performance of the system. Another aspect to improve the quality of the system

is to utilize image sensors with higher resolution (the current resolution is 640 x 480 pixels).
Finally, a panoramic vision system which operates on four or six input video data streams

would be a natural evolution of the system.

116

7. BIBLIOGRAPHY

1. http://www.ati.com

il

The New Encyclopedia Britannica, 15" edition, vol.24, 2003.
T. Okoshi, Three-dimensional imaging techniques, Academic Press Inc., 1972.

R.M. Hayes, 3D-movies: a history and filmography of stereoscopic cinema, McFarland
& Company, Inc., Publishers, 1989.

5. Television History - The First 75 Years, web: http://www.tvhistory.tv

6. Bruce R. Dewey, Computer Graphics for Engineers, Harper and Row, Publishers, 1988.

7. Edward Angel, Interactive Computer Graphics: A Top-Down Approach using

10.

11.

12.

13.

14.

15.

16.

OpenGL®, Pearson Education, Inc., 2006.

A.Sartori, “A smart camera”, In W.L.Will Moore, editor, FPGAs, Abingdon EE and CS
Books, Abingdon, England, chapter 6.6, pp. 353-362, 1991.

S.Scalera, M.Falco, and B.Nelson, “A reconfigurable computing architecture for
microsensors”, In FCCM 2000 (Field-Programmable Custom Computing Machines)
Preliminary Proceedings, Napa, CA, April 2000, pp. 59-67.

G.Lienhart, R.Lay, and K.H.Noffz, R.Manner, “An FPGA-based video compressor for
h.263 compatible bit streams”, In Proceedings of the International Conference on
Consumer electronics, 2000, ICCE,,13-15 June 2000, pp. 320-321.

John Woodfill and Brian Von Herzen, “Real-Time Stereo Vision on the PARTS
Reconfigurable Computer”, In Proceedings of the 5™ Annual IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 201-210, 1997.

Miriam Leeser, Shawn Miller and Haigian Yu, “Smart Camera Based on
Reconfigurable Hardware Enables Diverse Real-time Applications”, Proceedings of the
12™ Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’04), pp. 147-155, 2004.

Giancarlo Genta, Marcello Chiaberge, Nicola Amati, Mauro Padovani, Claudio Sansoe,
and Paolo Rolando, “A simple embedded stereoscopic vision system for an autonomous
rover”, In Proceedings of the 8™ ESA Workshop on Advanced Space Technologies for
Robotics and Automation ‘ASTRA 2004’ ESTEC, Noordwijk, The Netherlands,
November 2-4, 2004, pp. 1-5.

Enrico Grosso and Massimo Tistarelli, “Active/Dynamic Stereo Vision”, In IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.17, No. 9, September
1995, pp. 868-879.

Heiko Hirschmiiller, “Improvements in Real-Time Correlation-Based Stereo Vision”, In
Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV’01), 9-
10 December 2001, pp. 141-148.

Michael Kuhn, Stephan Moser, Oliver Isler, Frank K.Giirkaynak, Andreas Burg,
Norbert Felber, Hubert Kaeslin, and Wolfgang Fichtner, “Efficient ASIC

117

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Implementation of a Real-Time Depth Mapping Stereo Vision System”, In Proceedings
of the 46th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS
‘03, Volume 3, 27-30 December, pp.1478 — 1481, 2003.

K Miura, M.Hariyama, and M.Kameyama, “Stereo Vision VLSI Processor Based on a
Recursive Computation Algorithm”, SICE 2003 Annual Conference, Volume 2, 4-6
Aug. 2003, pp.1564-1567.

Kazuhiro Yoshida and Shiego Hirose, “Real-Time Stereo Vision with Multiple Arrayed
Camera”, In Proceedings of the 1992 IEEE International Conference on Robotics and
Automation, Nice, France, May 1992, pp. 1765-1770.

Boon Kiat Quek, Javier Ibafiez-Guzmadn, and Khiang Wee Lim, “Feature Detection for
Stereo-Vision-Based Unmanned Navigation”, In Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems, 1-3 December 2004, pp. 141-146.

Nicolas Ayache and Francis Lustman, “Trinocular Vision for Robotics”, In IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.13, No.1, January
1991, pp. 73-85.

Damien Maupu, Mark H. Van Horn, Susan Weeks, and Elizabeth Bullit, “3D Stereo
Interactive Medical Visualization”, In IEEE Computer Graphics and Applications,
September/October 2005, pp. 67-71.

Kofi Appiah and Andrew Hunter, “A Single-Chip FPGA Implementation of Real-time
Adaptive Background Model”, In Proceedings of IEEE International Conference on
Field-Programmable Technology, pp. 95-102, 2005.

Don Murray and James J.Little, “Environment modeling with stereo vision”, In
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004), September 28 — October 2, 2004, Sendai, Japan, vol.3, pp. 3116-
3122, 2004.

John Iselin Woodfill, Gaile Gordon, and Ron Buck, “Tyzx DeepSea High speed Stereo
Vision System”, In Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW’04), pp. 41-41, 2004.

J.S. Chahl and M. V. Srinivasan, “A complete panoramic vision system, incorporating
imaging, ranging, and three dimensional navigation", In Proceedings of IEEE Workshop
on Omnidirectional Vision, June 2000, pp.104 — 111.

S. Derrien and K. Konolige, “Approximating a single viewpoint in panoramic imaging
devices”, In Proceedings. IEEE Workshop on Omnidirectional Vision, 12 June 2000,
pp-85 — 90, 2000.

T.Nakao and A. Kashitani, “Panoramic camera using a mirror rotation mechanism and a
fast image mosaicing”, In Proceedings of 2001 International Conference on Image
Processing, Volume 2, Oct. 2001 pp.1045 — 1048, 2001.

Hong Hua and Narendra Ahuja, “A High-Resolution Panoramic Camera”, In
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2001, CVPR 2001, Volume 1, pp.960-967, 2001.

118

29. M. Barth and C. Barrows, “A fast panoramic imaging system and intelligent imaging
technique for mobile robots”, In Proceedings of the 1996 IEEE/RSJ International
Conference on Intelligent Robots and Systems '96, IROS 96, Volume 2, 4-8 Nov. 1996,
pp.626 — 633.

30. Wai-Kwan Tang, Tien-Tsin Wong, and Pheng-Ann Heng, “A System for Real-Time
Panorama Generation and Display in Tele-Immersive Applications”, In Proceedings of
IEEE Transactions on Multimedia, Vol.7, No.2, April 2005, p.p.280-292.

31. Stavros Tzavidas and Aggelos K. Katsaggelos, “A multicamera setup for generating
stereo panoramic video”, IEEE Transactions on Multimedia, Volume 7, Issue 5, Oct.
2005, pp-880 — 890.

32. Shmuel Peleg, Yael Pritch, and Moshe Ben-Ezra, “Cameras for stereo panoramic
imaging”, In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2000, Volume 1, 13-15 June 2000, pp.208 — 214.

33. Sing Bing Kang and Richard Weiss, “Characterization of errors in compositing
panoramic images”, In Proceedings of 1997 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 17-19 June 1997 pp.103 — 109, 1997.

34. Gui Yun Tian, Duke Gledhill, and Dave Taylor, “Color correction for panoramic
imaging”, In Proceedings of Sixth International Conference on Information
Visualization, July 2002, pp.483 — 488, 2002.

35. A. Simon, R.C. Smith, and R.R. Pawlicki, “Omnistereo for panoramic virtual
environment display systems”, In Proceedings of IEEE on Virtual Reality, 27-31 March
2004, pp.67-279, 2004.

36. Steve Bryson, “Direct Manipulation in Virtual Reality”, In The Visualization
Handbook, Editors Charles D. Hansen and Chris R. Johnson, Elsevier Inc., 2005.

37. Yongmin Zhong, Wolfgang Mueller-Wittig, and Ma Weiyin, “A model representation
for solid modeling in a virtual reality environment”, In Proceedings of Shape Modeling
International, 17-22 May 2002, pp.183-190, 2002.

38. Linda M. Stone, Thomas Erickson, Benjamin B. Bederson, Peter Rothman, and
Raymond Muzzy, “Visualizing data: is virtual reality the key?”, In Proceedings of IEEE
Conference on Visualization, Visualization '94, 17-21 Oct. 1994, pp.410-413.

39. Carl Machover and Steve E. Tice. Virtual reality, “Computer Graphics and
Applications”, In IEEE, Volume 14, Issue 1, Jan. 1994, pp.15-16.

40. Ozdogan Karagali, “Towards user oriented object modeling in virtual reality”, In
Proceedings of IEEE Southeastcon '95. “Visualize the Future”, 26-29 March 1995,
pp-454-460.

41. JM. Zheng, K.W. Chan, and I. Gibson, “Virtual reality. Potentials”, In JEEE, Volume
17, Issue 2, Apr-May 1998, pp.20-23.

42. Soft core microcontrollers PicoBlaze and MicroBlaze, web: http://www.xilinx.com.

119

43. Lev Kirischian, “The method of selection of architecture configuration for executable
tasks”, In International Conference PACT’98 Workshop on Reconfigurable Computing,
Paris, France, 1998, pp.125-129.

44. Lev Kirischian, “Optimization of Parallel Task Execution on the Adaptive
Reconfigurable Group Organized Computing System”, In Proceedings of PARELEC
2000 International Conference on Parallel Computing in Electrical Engineering, 2000,
pp-100-105.

45. Lev Kirischian, Irina Terterian, Pil Woo Chun, and Vadim Geurkov, “Re-Configurable
Parallel Stream Processor with Self-Assembling and Self-Restorable Micro-
architecture”, In Proceedings of the International Conference on Parallel Computing in
Electrical Engineering (PARELEC’04), 7-10 September, 2004, pp. 165-170.

46. Valeri Kirischian, Sergiy Zhelnakov, Peter Chun, Lev Kirischian, Vadim Geurkov,
“Uniform Reconfigurable Processing Module for Design and Manufacturing
Integration”, Proceedings of Advanced Manufacturing Technologies 2005, London,
Canada, pp. 77-82, May 2005.

47. Peter Chun, Valeri Kirischian, Sergiy Zhelnakov, and Lev Kirischian, “Reconfigurable
Multiprocessor with Self-optimizing Self-assembling and Self-restoring Micro-
architecture”, Presentation on Workshop on Architecture Research using FPGA
Platforms, pp. 52, San Francisco, February, 2005.

48. Pil Woo (Peter) Chun, Dynamically reconfigurable parallel stream processor, Thesis
(M.A.Sc.), Ryerson University, 2004.

49. Valeri Kirischian, FPGA based computing platform with temporal partitioning
mechanism, Thesis (M.A.Sc.), Ryerson University, 2005.

50. Irina Terterian, Self-restoration mechanism for run-time reconfigurable data-stream
processors, Thesis (M.A.Sc.), Ryerson University, 2004.

51. Richard Hartley and Andrew Zisserman, Multiple View Geometry in computer vision,
Second Edition, Cambridge University Press, 2003.

52. James D. Foley and Andries van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Company, 1982.

53. Rafael C. Gonzales and Paul Wintz, Digital Image Processing, Addison-Wesley
Publishing Company, Inc., Second Edition, 1987.

54. Sergei Savchenko, 3D Graphics Programming: Games and Beyond, Sams Publishing,
2000.

55. David F. Rogers, Procedural elements for computer graphics, McGraw-Hill Inc.,
Second Edition, 1998.

56. Rajesh K. Gupta, and Giovanni De Micheli, “Hardware-Software Cosynthesis for
Digital Systems”, In Readings in Hardware/Software Co-Design, Morgan Kaufmann
Publishers, 2002, pp.29-41.

120

57. Jgrgen Staunstrup, “Design Specification and Verification”, In Jgrgen Staunstrup and
Wayne Wolf, Hardware/Software Co-Design, Principles and Practice, Kluwer
Academic Publishers, 1997.

58. Giovanni De Micheli, Synthesis and optimization of digital circuits, McGraw-Hill, Inc.,
1994, :

59. Wayne Wolf, Computers as Components: Principles of Embedded Computing System
Design, Morgan Kaufmann Publishers, 2001.

60. Rafael C. Gonzalez and Richard E;Woods, Digital Image Processing, Prentice Hall,
Second Edition, 2002.

61. John L. Hennessy and David A. Patterson, Computer Organization and Design: The
Hardware/Software Interface, Second Edition, Morgan Kaufman Publishers, Inc., San
Francisco, California, 1998.

62. John L. Hennessy and David A. Patterson, Computer Organization and Design: The
Quantitative Approach, Morgan Kaufman Publishers, Inc., San Francisco, California,
2003.

63. Giovanni de Micheli, R. Ernst and Wayne Wolf, Readings in Hardware/Software Co-
Design, Morgan Kaufmann Publishers, 2002.

64. Sergiy Zhelnakov, Valeri Kirischian, Peter Chun, Lev Kirischian, and Vadim Geurkov,
“FPGA-based Computing Platform for Stereo-Panoramic Vision”, Presentation at
Space Vision and Advanced Robotics Workshop, MDA Space Missions, SVAR 2005,
May 19, 2005.

65. Stephen Brown, Zvonko Vranesic, Fundamentals of Digital Logic with VHDL design,
McGraw Hill, 2000.

66. Web: http://www.mediatronix.com/pBlazeIDE.htm

67. Web: http://www.altera.com
68. Clive Maxfield, The Design Warrior’s Guide to FPGAs, Elsevier, 2004.

121

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134

