
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

A Complex-Lamellar Description Of Boundary
Layer Transition
Maureen L. Kolla
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Aerospace Engineering Commons

This Dissertation is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and
dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Kolla, Maureen L., "A Complex-Lamellar Description Of Boundary Layer Transition" (2012). Theses and dissertations. Paper 1548.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1548?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca


A COMPLEX-LAMELLAR DESCRIPTION OF BOUNDARY LAYER

TRANSITION

by

Maureen Louise Kolla

Master of Science in Mechanical Engineering

Ryerson University, October 2006

Bachelor of Science in Mechanical Engineering

University of Alberta, June 2002

A dissertation presented to Ryerson University in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in the Program of Aerospace Engineering.

Toronto, Ontario, Canada, 2012

c©Maureen Louise Kolla 2012



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A DISSERTATION

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

dissertation, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

propose of scholarly research.

I understand that my dissertation may be electronically available to the public.

ii



Abstract

A COMPLEX-LAMELLAR DESCRIPTION OF BOUNDARY LAYER TRANSITION

Doctor of Philosophy, Aerospace Engineering

Ryerson University, 2012

Maureen Louise Kolla

Flow transition is important, in both practical and phenomenological terms. However,

there is currently no method for identifying the spatial locations associated with tran-

sition, such as the start and end of intermittency. The concept of flow stability and

experimental correlations have been used, however, flow stability only identifies the

location where disturbances begin to grow in the laminar flow and experimental corre-

lations can only give approximations as measuring the start and end of intermittency

is difficult. Therefore, the focus of this work is to construct a method to identify the

start and end of intermittency, for a natural boundary layer transition and a separated

flow transition. We obtain these locations by deriving a complex-lamellar description

of the velocity field that exists between a fully laminar and fully turbulent boundary

condition. Mathematically, this complex-lamellar decomposition, which is constructed

from the classical Darwin-Lighthill-Hawthorne drift function and the transport of en-

strophy, describes the flow that exists between the fully laminar Pohlhausen equations

and Prandtl’s fully turbulent one seventh power law. We approximate the difference in

enstrophy density between the boundary conditions using a power series. The slope of

the power series is scaled by using the shape of the universal intermittency distribution

within the intermittency region. We solve the complex-lamellar decomposition of the
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velocity field along with the slope of the difference in enstrophy density function to de-

termine the location of the laminar and turbulent boundary conditions. Then from the

difference in enstrophy density function we calculate the start and end of intermittency.

We perform this calculation on a natural boundary layer transition over a flat plate for

zero pressure gradient flow and for separated shear flow over a separation bubble. We

compare these results to existing experimental results and verify the accuracy of our

transition model.
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∫

(ω2 − ω2
lam) dV

~n . . . . . . . . . . . . . . . . Unit normal vector

R . . . . . . . . . . . . . . . . Transition length ratio of RexB to RexA

RL . . . . . . . . . . . . . . .Transition length ratio of Rext to RexA

Rex . . . . . . . . . . . . . . Reynolds number based on x

xii



Rexcr . . . . . . . . . . . . x Reynolds number at the critical stability location

Rexs . . . . . . . . . . . . . x Reynolds number at separation

Rexr . . . . . . . . . . . . . x Reynolds number at reattachment

Rext . . . . . . . . . . . . . x Reynolds number at the effective leading edge of the turbulent boundary
layer

RexA . . . . . . . . . . . . .x Reynolds number at fully laminar boundary condition

RexB . . . . . . . . . . . . .x Reynolds number at fully turbulent boundary condition

Rex0 . . . . . . . . . . . . . x Reynolds number at the start of intermittency

RexT . . . . . . . . . . . . .x Reynolds number at the end of intermittency

RexTp . . . . . . . . . . . . x Reynolds number at the end of constant pressure region on the pressure
distribution curve

Rex|γ=0.25
. . . . . . . . .x Reynolds number where the intermittency is 0.25

Rex|γ=0.75
. . . . . . . . .x Reynolds number where the intermittency is 0.5

Reθ . . . . . . . . . . . . . . Momentum thickness Reynolds number

Re θ|x . . . . . . . . . . . . Momentum thickness Reynolds number at x

Re θ|s . . . . . . . . . . . . Momentum thickness Reynolds number at separation

Re θ|x1
. . . . . . . . . . . .Momentum thickness Reynolds number at the location where the surface

velocity gradient begins to increase

Re θ|x2
. . . . . . . . . . . .Momentum thickness Reynolds number at the location where the surface

velocity gradient becomes zero

~t . . . . . . . . . . . . . . . . . Unit tangent vector

Tu . . . . . . . . . . . . . . .Free-stream turbulence level

T (t) . . . . . . . . . . . . . Function dependent only in time

U∞ . . . . . . . . . . . . . . Free-stream velocity

xcr . . . . . . . . . . . . . . . Critical stability location

xs . . . . . . . . . . . . . . . .Separation location

xr . . . . . . . . . . . . . . . Reattachment location

xt . . . . . . . . . . . . . . . .Location of the effective leading edge of the turbulent boundary layer

xA . . . . . . . . . . . . . . . Location where the fully laminar boundary condition is imposed

xiii



xB . . . . . . . . . . . . . . . Location where the fully turbulent boundary condition is imposed

x0 . . . . . . . . . . . . . . . Start of intermittency

xT . . . . . . . . . . . . . . . End of intermittency

xTp . . . . . . . . . . . . . . End of constant pressure region on pressure distribution curve

x1 . . . . . . . . . . . . . . . Location where the surface velocity gradient begins to increase

x2 . . . . . . . . . . . . . . . Location where the surface velocity gradient becomes zero

x|γ=0.25 . . . . . . . . . . Location of x at an intermittency of 0.25

x|γ=0.75 . . . . . . . . . . Location of x at an intermittency of 0.75

Greek Symbols

δlam . . . . . . . . . . . . . .Laminar boundary layer thickness

δturb . . . . . . . . . . . . . .Turbulent boundary layer thickness

η . . . . . . . . . . . . . . . . Difference in enstrophy density function

γ . . . . . . . . . . . . . . . . Intermittency

λ . . . . . . . . . . . . . . . . Pohlhausen pressure gradient term

µ . . . . . . . . . . . . . . . . Kinematic viscosity

θlam . . . . . . . . . . . . . .Laminar momentum thickness

θturb . . . . . . . . . . . . . Turbulent momentum thickness

θx . . . . . . . . . . . . . . . .Momentum thickness at x

ωx, ωy, ωz . . . . . . . .Cartesian vorticity components

~ωlam . . . . . . . . . . . . . Vorticity vector of the baseline laminar vorticity

~ωturb . . . . . . . . . . . . . Vorticity vector of the mean turbulent vorticity

ω2 . . . . . . . . . . . . . . . Enstrophy density

ρ . . . . . . . . . . . . . . . . Fluid density

τ . . . . . . . . . . . . . . . . Drift function

Γ . . . . . . . . . . . . . . . . Circulation

Φ . . . . . . . . . . . . . . . . Craig’s circulation-preserving flexion potential

xiv



Ψ . . . . . . . . . . . . . . . . Source term

Syntax

|xB . . . . . . . . . . . . . . .The value preceding this symbol will be evaluated at xB

xv



CHAPTER 1

Introduction

1.1 Motivation

1.1.1 What is Transition?

Transition, as the name implies, is the passage from one state to another. In fluid flows, a

transitional flow occurs between laminar and turbulent flows. Laminar flow is considered the

simplest type of flow and forms orderly, roughly parallel streamlines. Between these stream-

lines, the fluid parameters, such as velocity, pressure and temperature, will vary smoothly

from one streamline to the next. Turbulent flow is more complex. There are many physical

descriptions of turbulent flow however the most widely accepted is that of Hinze [6], who

described it as “an irregular condition of flow in which various quantities show a random

variation with time and space coordinates, so that statistically distinct average values can be

discerned.” Turbulent flows are sensitive to small changes in initial or boundary conditions.
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1.1 Motivation

What is known about turbulence comes from experiments and heuristic modelling, not from

first principle solutions [7]. Turbulent flow has the following characteristics: it is basically

a random, unsteady process; it has a general swirling nature with indistinct lumps of fluid

called eddies; the instantaneous boundary between the turbulent region and the outer invis-

cid flow is distinct; turbulence is always three-dimensional, even when the background flow

is two-dimensional [8].

Transitional flow is not an instantaneous occurrence and cannot be described as a single type

of flow. It is a process that results from a sequence of events that depend on many param-

eters such as Reynolds number, pressure gradients, surface roughness, and environmental

disturbances. This means that each transition process is unique and there are several paths

the flow can take to reach a fully turbulent state [9].

1.1.2 Why is Transition Important?

In nature, most flows will become turbulent and as such will have gone through a transitional

stage. It is at the transitional stage where an increase in losses begins and the performance or

safety is affected. For example, in commercial aircraft design, drag reduction is an important

factor for increasing fuel efficiency. An increase in drag is directly related to an increase in

the skin friction coefficient, which has been experimentally shown to begin near transition

onset. By accurately predicting transition, the possibility of extending the laminar boundary

layer and maintaining a lower skin friction coefficient is plausible. In another example, the

thickness of the thermal protection layer on a reentry spacecraft, is determined by the altitude

at which transition is predicted to begin. Due to the fact that a turbulent boundary layer

has significantly greater heating rates than a laminar boundary layer, an accurate prediction

of the transitional altitude is critical for astronaut safety. In both examples, a designer may

assume fully turbulent conditions to achieve satisfactory, if not optimal, results provided

that the laminar and transitional boundary layer region is significantly smaller than the

2



CHAPTER 1 Introduction

fully turbulent region. An example where predicting transition is essential is in designing

turbomachinery blades. It is crucial to accurately predict where transition occurs and for

how long it will last. Failure to do so results in a significant increase in drag and a reduction

in efficiency.

The need to understand and predict transition is not limited to the aircraft industry. Race

cars need to be aerodynamic in order to reduce drag and to increase speed. Within the

sporting world, road bike companies, cyclists, and alpine ski racing suit designers all use

wind tunnel testing to improve design or alignment to generate the least amount of drag.

Trial and error is often used in this testing because there is no concrete understanding of the

transition process. A final example of where transition is important is in predicting cerebral

vascular accident, otherwise known as a stroke. Researchers at the University of Chicago

[10] hypothesize that certain flow patterns may predispose plaque in arteries to progress

and build up while other flow patterns may predispose the plaque to break down. The flow

through healthy arteries is laminar. As the plaque builds up on the walls, the arteries narrow,

the flow speeds up and transition to turbulent flow begins. With the increase in flow speed,

comes an increase in force and this can cause the plaque to break free and potentially block

a vital artery leading to a stroke. By predicting the flow patterns, doctors can predict which

patients may need blood thinners, surgery or no treatment at all.

Overall, the limiting factor in our ability to accurately predict aerodynamic flows is the

current inability to reliably predict laminar-turbulent transition [11].

1.2 Literature Review

The focus of this review will be on 2D, incompressible boundary layer flow. We will begin

this review by first identifying the different modes of transition, since the location of where

transition begins and the length over which it occurs depend on the manner in which tran-

sition occurs. We will then discuss how the start of transition has been predicted, followed

3



1.2 Literature Review

by highlights of some of the different transition models. Our goal is to generate a transition

model that bounds the region between a laminar flow and a turbulent flow and describe

this region mathematically using a complex-lamellar decomposition of the flow field. It will

become evident within this review that this has not been attempted before and therefore,

we will finish off the literature review with a discussion of types of flow problems that have

made use of complex-lamellar decomposition with the intent of illustrating that this type of

decomposition is well established.

1.2.1 Modes of transition

Natural transition occurs in a boundary layer when the environmental disturbances are

small so that wave-like oscillations develop downstream of a critical point. The transition

process has been described by many researchers [12, 13, 14, 15, 16, 5, 17, 18, 19] and can

be summarized as follows. In two-dimensional flows, these oscillations, called Tollmien-

Schlichting (TS) waves, at first exhibit exponential growth and can be computed using

linear stability theory. Further downstream, the TS waves reach a finite amplitude and

three-dimensional and nonlinear disturbances begin to appear and grow. This is followed

by a ‘breakdown’ zone in which vortices are continuously broken down into smaller vortices

until turbulent spots appear. The turbulent spots develop intermittently until finally fully

developed turbulent flow is reached. This is the benchmark mode of transition that has been

studied extensively.

Bypass transition occurs when large environmental disturbances, caused by high free stream

turbulence or large roughness elements, affect the laminar flow. These disturbances result

in the transitional flow bypassing the TS wave development and are immediately influenced

by three-dimensional and nonlinear disturbances. Like natural transition, the flow will reach

a breakdown zone, followed by turbulent spots and finally fully developed turbulent flow

[17, 1]. For this mode of transition linear stability theory has been shown to be irrelevant
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CHAPTER 1 Introduction

[20].

Separated flow transition can occur behind boundary layer trip wires or when the laminar

boundary layer flow is subjected to a large adverse pressure gradient [1, 21]. In this type

of transition, the laminar boundary layer separates and transition occurs in the free shear

layer flow near the surface. If the flow reattaches downstream a separation bubble is formed.

These bubbles are typically present close to the leading edge of thin airfoils and on gas

turbine blades [22, 1]. The bubble length depends on the transition process within the free

shear layer and this process may involve all the stages associated with natural transition

[1]. Separation bubbles are described as being either short or long. Experiments, with low

free-stream turbulence, have been preformed on long bubbles and TS instabilities have been

detected [4]. As well, studies have been conducted to determine the dynamics of separation

bubbles [22]. Studying this model of transition is important as short separation bubbles are

an effective way to force transition to control performance [1, 22].

There also exists wake-induced transition and reverse transition or relaminarization. These

modes typically apply for flow in gas turbines and are beyond the scope of this research.

Detailed descriptions can be found in Mayle [1], and Langtry et. al. [23].

1.2.2 Start of transition prediction

A method used to predict where transition occurs was developed by Jaffe et. al. [24] as an ex-

tension of the hydrodynamic stability theory. This model is termed the en model. Through

the stability analysis and the solving of the Orr-Sommerfeld equation, a neutral stability

point is determined to be where the two-dimensional disturbances have an amplification rate

of zero. Beyond this point, the amplification rate grows rapidly until three-dimensional dis-

turbances begin to form and then eventually turbulence. This model tracks the amplification

rate from the neutral stability point to the position downstream where the integrated am-

plification rate with respect to surface distance reaches a factor en, indicative of transition.
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The n factor is determined from experimental data and varies for different types of flows.

Typically, it is set between 8-10. A downside to this method is that it only deals with the

linear region of the flow and two-dimensional disturbances and as such is not very rigorous.

However, Arnal [17] determined that for flat plate conditions, the linear region covers up to

approximately 85% of the distance between the leading edge and the beginning of transition.

This explains why most practical transition prediction methods are based on linear stability

only.

The other method for predicting the start of transition is by using experimental correlations.

These correlations are determined from experimental data and typically relate the free-

stream turbulence intensity to the momentum thickness Reynolds number at transition.

The most well know correlation by Abu-Ghannam and Shaw [25] relates both the free-stream

turbulence intensity and the effect of pressure gradients to the momentum thickness Reynolds

number. These correlations are popular because they provide sufficiently accurate results,

however, to determine the momentum thickness Reynolds number and free-stream conditions

involves non-local operations, thus making this method more difficult to implement within

modern computational fluid dynamics (CFD) codes [23].

1.2.3 Transition models

In 1951, Emmons [26] published an article on the formation of turbulent spots that he

discovered while performing a water table experiment. He observed that these turbulent

spots would begin to form within the laminar flow at a point downstream of the leading

edge. These spots would then begin to grow as the flow moved downstream until the flow

became fully turbulent. As the turbulent spots appeared intermittently within the laminar

flow, he termed this region intermittent and defined intermittency as the fraction of time

that the flow is turbulent at a specific location.

In 1955, Schubauer and Klebanoff [2] performed an experimental wind tunnel investigation
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CHAPTER 1 Introduction

of a boundary layer over a flat plate, and using hot-wire probes they measured velocity

fluctuations within the boundary layer from laminar to turbulent flow. When they observed

the output from the hot-wire probes on the oscilloscope, they were able to distinguish between

laminar flow and bursts of turbulent flow. Ultimately they were able to determine the

fraction of time the flow was turbulent at any point. In essence they discovered a way to

obtain a measure of intermittency. They were the first to note that for different conditions

leading to transition, the length of the intermittency region changed. However, the shape

of the distributions were similar. Then, in 1957, Narasimha [27] determined a universal

intermittency distribution from which intermittency transition models have been obtained.

As many different models currently exist, researchers [28, 29, 5] have divided them into three

categories; linear-combination models, algebraic models and differential models.

Linear combination models assume the mean flow during transition can be modelled as a

linear combination of the laminar and turbulent flow. The proportion of laminar to turbulent

flow within the transition region is obtained using the intermittency distribution and is

proportional to (1−γ) : γ for laminar and turbulent flow respectively. These models require

the calculation of the laminar boundary layer, an estimate of the mean flow parameters in

the fully turbulent boundary layer, prediction of the start of transition, and an intermittency

distribution [5]. The most popular linear combination model is the original one developed by

Dhawan and Narasimha [30] who utilize the universal intermittency distribution developed by

Narasimha [27]. Since then, there have been many models developed with the distinguishing

features being the intermittency distribution and the prediction of the start of transition.

Narasimha and Dey [5] have an excellent review of some of the different models.

Algebraic and differential transition models both require solving the Reynolds-averaged equa-

tions of motion. The algebraic intermittency model is implemented by multiplying eddy

viscosity of a turbulence model by the value of intermittency. So like the linear combina-

tion method the eddy viscosity has a proportion of (1 − γ) : γ. When the boundary layer

is laminar the eddy viscosity is zero and then once transition begins, the intermittency is
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slowly ramped up from zero to one until the fully turbulent boundary layer is achieved. This

model also requires the start of transition to be determined from a different model, typically

experimental correlations. Like the linear combination, many algebraic models exist .

Differential models model the intermittency through the use of transport equations that

mimic the behaviour of some of the other algebraic intermittency models. These models do

not require specific definitions of the start and end of transition. However, they do need

some initial disturbance to trigger transition.

As will be shown within this dissertation, our proposed model of transition does not fall

into any of these categories. As stated at the beginning of this review, we are attempting

to model transition by bounding the intermittency region between laminar and turbulent

boundary conditions. We then solve a complex-lamellar decomposition of the velocity field

across these boundary conditions to obtain the location of the start and end of intermittency.

1.2.4 Examples where complex-lamellar decompositions have been used

Complex-lamellar decompositions have been used by Panton [31] for studying turbulent flows,

since this decomposition can be used to separate the flow into an irrotational component

and a rotational component. Yokota [32], has used this decomposition for studying stratified

flow. Finnigan [33] used complex-lamellar decomposition in defining a streamwise coordinate

system for studying turbulence. In Rapid Distortion Theory, this decomposition is used to

calculate the distortion of large scale turbulence [34, 35]. Yokota [36] developed complex-

lamellar decompositions for a variety of flows, including inviscid flows, circulating-preserving

viscous flows, and general viscous flows.

A reason that this decomposition is not readily used is because it does not generate a unique

solution and requires the governing equations to be linked to a particular flow phenomena

of interest. The decomposition is also time-dependent as it is a solution to the transport

equations.
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1.3 Research Objectives

The objectives for this research are

• We will derive a complex-lamellar decomposition of the velocity field across transition

and between a fully laminar and fully turbulent boundary condition.

• We will construct a boundary layer transition model between a fully laminar and fully

turbulent boundary condition to determine the location of the intermittency region.

• We will identify the breakdown region and the start and end of intermittency for

natural transition and separated flow transition over a separation bubble.

• We will identify the separation and reattachment locations for short and long separation

bubbles.

• We will compare the results we obtain for the locations and lengths associated with

transition with various sources of experimental data.
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CHAPTER 2

Complex-lamellar derivation

2.1 Governing Equations

We will consider a viscous, incompressible flow in the Cartesian coordinate system, (x, y, z).

The conservation of mass and linear momentum equations along with the transport of vor-

ticity equation are written as

∇ · ~u = 0 (2.1)

D~u

Dt
= −1

ρ
∇p+

µ

ρ
∇2~u (2.2)

D~ω

Dt
= (~ω · ∇)~u+

µ

ρ
∇2~ω (2.3)

where ~u = (u, v, w) are the Cartesian velocity components, ~ω = (ωx, ωy, ωz) are the Cartesian

vorticity components, ρ is the fluid density, p is the fluid pressure, µ is the kinematic viscosity.
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and the material derivative is written as

D

Dt
=

∂

∂t
+ (~u · ∇) (2.4)

2.2 General complex-lamellar description

Any continuously differentiable vector field, ~c, may be represented locally as a superposition

of an irrotational component and a rotational component,

~c = ∇h+ f∇g (2.5)

where f, g, h are scalar functions. If we take the curl of ~c, using vector calculus we obtain

∇× ~c = ∇×∇h+∇× f∇g (2.6)

= ∇f ×∇g + f∇×∇g (2.7)

= ∇f ×∇g (2.8)

The first term, in Eq.(2.6), ∇ × ∇h = 0 so ∇h is the irrotational component. The second

term, ∇× f∇g does not go to zero and is therefore, the rotational component.

When the vector f∇g is perpendicular to its own curl,

f∇g · (∇× f∇g) = 0 (2.9)

the vector f∇g is complex-lamellar [37, 38, 39].

We want to decompose the velocity vector in order to describe a viscous flow. The nec-

essary and sufficient condition for the existence of a velocity potential, ∇φ, is that the

flow be irrotational, therefore, ∇h = ∇φ. Then we can write the velocity vector, ~u, in

potential/complex-lamellar form
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2.2 General complex-lamellar description

~u = ∇φ+ f∇g (2.10)

We will define the scalar functions, f and g, in Section 2.4 and demonstrate that the complex-

lamellar condition, Eq.(2.9) is satisfied.

The curl of vector is defined as the vorticity, ~ω,

∇× ~u = ~ω = ∇f ×∇g (2.11)

Physically, vorticity can be interpreted in a few different ways. The most common inter-

pretation is that vorticity is a measure of the solid-bodylike rotation of a material point,

P ′ about the neighbouring primary material point, P [39]. Another interpretation connects

circulation and vorticity. Circulation is the integral of the velocity field along a path,

Γ =

∮
C

~t · ~u dl (2.12)

where ~t is a tangent unit vector and dl is the line element along the circuit, C. Physically,

we can interpret circulation as the total ‘push’ the velocity field gives along the path. From

Stokes theorem, we can write

Γ =

∫
S

~n · ~ω dσ (2.13)

where S is any surface having C as its boundary, ~n is the unit normal vector and dσ is

the area element. Then we can interpret vorticity as the circulation per unit area for an

elemental surface perpendicular to the vorticity vector:

~n · ~ω =
dΓ

dS
(2.14)

This interpretation gives the physical meaning of vorticity as the amount of pushing, twisting,

or turning force when the path is shrunk down to a single point, with its direction being
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normal to the surface.

2.3 Transitioning complex-lamellar decomposition

Dhawan and Narasimha [30] showed that transitional flow can be modelled as a flow in

which, at each point, the boundary layer alternates between a laminar and a turbulent layer,

with the laminar layer originating from the leading edge of the plate and the turbulent layer

at a location further downstream. The amount of time that the flow is turbulent, at each

point, is represented by the intermittency distribution, γ. Although this is an unsteady

process, it has been modelled as a linear combination such that the transitional velocity can

be determined as

~u = (1− γ)~ulaminar + γ~uturbulent (2.15)

where ~ulaminar is the laminar velocity and ~uturbulent is the turbulent velocity with γ varying

from 0 to 1. The laminar and turbulent velocity profiles are calculated, each at its appropriate

Reynolds number, from theoretical equations. Therefore, in this model ~ulaminar is the laminar

velocity that begins from the leading edge and ~uturbulent is the turbulent velocity that begins

at a location downstream of the leading edge.

Similarly, we can generate a model that decomposes a transitioning velocity field into a

baseline laminar flow and potential/complex-lamellar components.

~u = ~ulam +∇φ+ f∇g (2.16)

where ~ulam is the baseline laminar velocity that would exist if a laminar boundary layer did

not transition. Note that ~ulam in our model is not necessarily the same as ~ulaminar from

Dhawan and Narasimha’s model. This will be discussed further in Chapter 3.

Then the vorticity becomes

~ω = ~ωlam +∇f ×∇g (2.17)
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2.3 Transitioning complex-lamellar decomposition

This decomposition is governed by the equations of motion and as such, the material deriva-

tive of this velocity field may be written as

D~u

Dt
= ∇

(
Dφ

Dt
− ~u · ~u

2

)
+
Df

Dt
∇g + f∇

(
Dg

Dt

)
(2.18)

with the material derivative of the vorticity being

D~ω

Dt
= (~ω · ∇)~u+∇

(
Df

Dt

)
×∇g +∇f ×∇

(
Dg

Dt

)
(2.19)

Then when we substitute the material derivatives for the velocity and vorticity into the linear

momentum and vorticity transport equations, Eqs. (2.2) and (2.3), respectively, we get the

following transport conditions

∇
(
Dφ

Dt
+
p

ρ
− ~u · ~u

2

)
+
Df

Dt
∇g + f∇

(
Dg

Dt

)
=
µ

ρ
∇2~u (2.20)

and

∇
(
Df

Dt

)
×∇g +∇f ×∇

(
Dg

Dt

)
=
µ

ρ
∇2~ω (2.21)

Since this decomposition is not unique, these transport conditions must be made physically

meaningful by linking the governing equations to a particular flow phenomenon. Yokota [36]

illustrated this for inviscid, circulation preserving and viscous motions using the convection

of vorticity as the flow phenomena of interest. We will make use of the concepts outlined

in Yokota’s [36] paper to determine a solution to the transport conditions, Eqs. (2.20) and

(2.21) with the convection of enstrophy being our flow phenomenon of interest. We will

discuss the boundary conditions associated with Eq.(2.16) in Section 2.5.
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2.4 Transitioning complex-lamellar decomposition based on en-

strophy density

We may write a transitioning velocity field in a complex-lamellar form that depends on the

difference in enstrophy, Ẽ,

~u = ~ulam +∇φ+ Ẽ∇τ (2.22)

where Ẽ = E−Elam, the difference between the enstrophy present in the transitional region,

E, and that present in baseline laminar flow, Elam. φ is a velocity potential that represents

the irrotational component of the velocity field and τ is the classic drift function [40, 41, 42].

To verify that Ẽ∇τ is complex-lamellar, consider the required condition, Eq.(2.9), an apply

to obtain

Ẽ∇τ · (∇Ẽ ×∇τ) = Ẽ∇τ ·

[(
∂Ẽ

∂y

∂τ

∂z
− ∂Ẽ

∂z

∂τ

∂y

)
î−

(
∂Ẽ

∂x

∂τ

∂z
− ∂Ẽ

∂z

∂τ

∂x

)
ĵ

+

(
∂Ẽ

∂x

∂τ

∂y
− ∂Ẽ

∂y

∂τ

∂x

)
k̂

]

= Ẽ
∂τ

∂x

(
∂Ẽ

∂y

∂τ

∂z
− ∂Ẽ

∂z

∂τ

∂y

)
− Ẽ ∂τ

∂y

(
∂Ẽ

∂x

∂τ

∂z
− ∂Ẽ

∂z

∂τ

∂x

)

+ Ẽ
∂τ

∂z

(
∂Ẽ

∂x

∂τ

∂y
− ∂Ẽ

∂y

∂τ

∂x

)
(2.23)

Then for a 2D flow, Ẽ∇τ · (∇Ẽ ×∇τ) = 0 and therefore, Ẽ∇τ is complex-lamellar.

Enstrophy is the area integral of the magnitude of vorticity squared,

E =

∫
(~ω · ~ω)dσ =

∫
(ω2)dσ (2.24)

where dσ is a surface element and enstrophy density is ω2. We can obtain enstrophy density,
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density

by taking the scalar multiplication of the vorticity transport equation, Eq.(2.3), to obtain

Dωiωi
Dt

= 2ωiωj
∂ui
∂xj

+ ν
∂2ωiωi
∂xj∂xj

− 2ν
∂ωi
∂xj

∂ωi
∂xj

(2.25)

where

ωiωj
∂ui
∂xj

- is the production of vorticity by stretching

ν
∂(ωiωi)

∂xj∂xj
- is the viscous diffusion of ωiωi

ν
∂ωi
∂xj

∂ωi
∂xj

- is the viscous dissipation ωiωi

Physically, we can interpret enstrophy density as a measure of the viscous dissipation of the

kinetic energy component of the flow.

Lighthill [40] defined the drift function, τ , as the time a fluid particle takes to reach any

given point. This particle is moving along a streamline and is measured from some fixed

position. This requires the solution of

dτ =
dx

u
=
dy

v
=
dz

w
(2.26)

If we take the derivative with respect to time we obtain

Dτ

Dt
= 1 (2.27)

Then to satisfy the transport conditions, Eqs. (2.20) and (2.21), we may write the flexion

vector [37], ∇2~u, in potential/complex-lamellar form using Monge potentials

∇2~u = ∇Φ + Ψ∇τ (2.28)

where the first term can represent Craig’s [43] circulation preserving flexion potential and
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the second represents the diffusion of vorticity. Then we can substitute the flexion vector

into the transport conditions to obtain the transport of the velocity potential, φ

Dφ

Dt
= −

(
p− µΦ

ρ

)
+
~u · ~u

2
(2.29)

which defines the irrotational component of the velocity field. Then for dimensional consis-

tency, the transport of the difference in enstrophy is

DẼ

Dt
=
µ

ρ
Ψ (2.30)

where Ψ is a source term that either creates or destroys enstrophy along a particle path.

Given a closed curve c around a material surface s, with surface elements dσ, the transport

of the enstrophy, E, must satisfy the following equation

DE

Dt
=
µ

ρ

∫
V

∇2(~ω · ~ω)dσ (2.31)

which, assuming all variables are single-valued, we can re-cast as

DE

Dt
=
µ

ρ

∫
V

∇2 [∇E ×∇τ ]2 dσ (2.32)

Then from our definition of the difference in enstrophy, the corresponding transport equation

becomes
DẼ

Dt
=
µ

ρ

∫
V

∇2
[
∇Ẽ ×∇τ

]2
dσ (2.33)

which then allows us to identify the source term, Ψ, as

Ψ =

∫
V

∇2
[
∇Ẽ ×∇τ

]2
dσ (2.34)
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2.5 Transitioning complex-lamellar equation boundary conditions

2.5 Transitioning complex-lamellar equation boundary conditions

As the complex-lamellar description of velocity, Eq. (2.22), is only valid locally, we will

define our region of interest around a 2D transitioning boundary layer flow field. We will

use the end of the fully laminar region, xA, and the start of the fully turbulent region, xB,

to define our region of interest.

At the fully laminar boundary condition, xA, we need the complex-lamellar velocity equation,

Eq.(2.22) to match a fully laminar velocity. This means

[
~ulam +∇φ+ Ẽ∇τ

]∣∣∣
xA

= ~ulam|xA (2.35)

To eliminate the potential term and hence any pressure effects, we can satisfy this velocity

condition by satisfying the vorticity.

[
~ωlam +∇Ẽ ×∇τ

]∣∣∣
xA

= ~ωlam|xA (2.36)

We see that for the complex-lamellar vorticity to match the laminar vorticity, then

[
∇Ẽ ×∇τ

]∣∣∣
xA

= 0 (2.37)

We can construct the difference in enstrophy, Ẽ = E − Elam, as

Ẽ =

∫ x

xref

∫ y

yref

(ω2 − ω2
lam) dy dx (2.38)

where ω2 is the enstrophy density found in the transitioning boundary layer, while ω2
lam is

that which would otherwise be found in the baseline laminar flow. Thus at the boundary

condition, x = xA, the difference in enstrophy is Ẽ
∣∣∣
xA

= 0 so the complex-lamellar vorticity

matches the laminar vorticity at this location.
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At the fully turbulent boundary condition, we require that the complex-lamellar velocity

equation, Eq.(2.22), match the turbulent velocity.

[
~ulam +∇φ+ Ẽ∇τ

]∣∣∣
xB

= ~uturb|xB (2.39)

To satisfy this condition, we can again use the vorticity

[
~ωlam +∇Ẽ ×∇τ

]∣∣∣
xB

= ~ωturb|xB (2.40)

which can be rearranged into the following form

[
∇Ẽ ×∇τ

]∣∣∣
xB

= (~ωturb − ~ωlam)|xB (2.41)

To satisfy this velocity condition, we need to know how the enstrophy changes throughout

the transition region and an expression for the drift function, τ .

2.5.1 Drift function

The transport of the drift function, as previously mentioned, is defined as

Dτ

Dt
= 1 (2.42)

and can be expanded using the definition of a material derivative, to obtain

Dτ

Dt
=
∂τ

∂t
+ u(x, y, t)

∂τ

∂x
+ v(x, y, t)

∂τ

∂y
= 1 (2.43)

where we will assume that the unsteady flow can be represented by the separable form

u(x, y, t) = u(x, y)T (t) (2.44)
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where u(x, y) is the velocity dependent only on x and y and T (t) is a function that depends

only on t. We will write the function T (t) as a Fourier series expansion in time so that the

velocity can be written in the form

u(x, y, t) = u(x, y) [1 + k2sin(α1t) + k3cos(α2t)]

= u [1 + k2sin(α1t) + k3cos(α2t)] (2.45)

By using a flow described by Eq.(2.45), we are restricted to pulsed, unsteady flows. However

even with this restriction, we can still obtain some significant insight. Then by adding this

form of the velocity into the expanded transport equation, Eq.(2.43), we obtain

∂τ

∂t
+ u

∂τ

∂x
+ u [k2sin(α1t) + k3cos(α2t)]

∂τ

∂x
+ v(x, y, t)

∂τ

∂y
= 1 (2.46)

We can factor the drift function into the following

u
∂τ

∂x
= 1 (2.47)

∂τ

∂t
= − [k2sin(α1t) + k3cos(α2t)]− v(x, y, t)

∂τ

∂y
(2.48)

and then obtain,

τ =

∫
1

u
dx (2.49)

so that we can determine ∂τ/∂y to be

∂τ

∂y
=

∂

∂y

(∫
1

u
dx

)
(2.50)

Then, by using the 2D boundary layer approximations, u� v and ∂2

∂y2
� ∂2

∂x2
and assuming

that we only consider cross-flow locations sufficiently far from the wall, the following drift
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function approximations can be made

u
∂τ

∂x
= 1 (2.51)

∂τ

∂t
= − [k2sin(α1t) + k3cos(α2t)] (2.52)

∂τ

∂y
= 0 (2.53)

For this drift function approximation to be valid, we are limited to physical locations where

v → 0, ∂τ
∂y
→ 0 and u 6= 0.

2.5.2 Difference in enstrophy across transition

Recall, that we want to match the potential/complex-lamellar velocity equation to the turbu-

lent velocity at xB. We will be considering the mean flow at both the laminar and turbulent

boundary conditions to be steady which means the vorticity at xB, Eq. (2.41), will be

[
∂Ẽ

∂x

∂τ

∂y
− ∂τ

∂x

∂Ẽ

∂y

]∣∣∣∣∣
xB

= (ωturb − ωlam)|xB

−

[
1

u

∂Ẽ

∂y

]∣∣∣∣∣
xB

= (ωturb − ωlam)|xB (2.54)

where u = u(x, y). Then by using the difference in enstrophy, Eq.(2.38), we obtain

−

[
1

u

∫ x

xref

(ω2 − ω2
lam)dx

]∣∣∣∣∣
xB

= (ωturb − ωlam)|xB (2.55)

which implies that in order to satisfy the velocity condition at xB, we need to know the

enstrophy density throughout the region between xA and xB so we can set the limits of

integration to xref = xA and x = xB. As we do not know how the enstrophy density

will change throughout this region, we will approximate it using the following boundary

conditions.
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(ω2 − ω2
lam) =

0 when x = xA

(ω2
turb − ω2

lam)|xB when x = xB

(2.56)

Then using a power series, we can approximate the difference in enstrophy density as

(ω2 − ω2
lam) = (ω2

turb − ω2
lam)

∣∣
xB

(
3∑

n=1

Cn
(x− xA)n

(xB − xA)n

)
(2.57)

where
3∑

n=1

Cn = 1 (2.58)

is needed to satisfy the boundary condition at x = xB. We will only approximate the

difference in enstrophy density using the first three terms of the power series. We chose to

do this because the power series terms will be obtained from geometrical constraints and we

do not want these constraints to be more significant than the physical conditions imposed

by matching the laminar and turbulent velocities at the boundary. Further explanation will

be provided in Chapter 3 when we discuss the geometrical constraints.

Then we can write

∫ xB

xA

(
3∑

n=1

Cn
(x− xA)n

(xB − xA)n

)
dx =

3∑
n=1

Cn
n+ 1

(xB − xA) (2.59)

which is the measure of the total difference in enstrophy density between the end of the fully

laminar region and the start of the fully turbulent region. Finally, when the approximate

difference in enstrophy density, Eq. (2.57), is substituted into the vorticity at xB, Eq. (2.55),

and rearranged, we obtain the following equation

u|xB = −
3∑

n=1

Cn
n+ 1

(ωturb + ωlam)|xB (xB − xA) (2.60)

This equation states that the turbulent velocity at the fully turbulent location is a function
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of the enstrophy growth between the fully laminar and fully turbulent regions, the sum of

the resulting turbulent and otherwise laminar vorticity at the fully turbulent location, and

the length of the fully laminar to fully turbulent region itself.

Finally, by solving the complex-lamellar velocity condition, Eq.(2.60), we will determine the

location, xA where the fully laminar velocity condition is met and the location, xB, where

the fully turbulent velocity condition is met. We will also have an approximation for how

the difference in enstrophy density changes throughout the transition region.
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CHAPTER 3

Boundary layer transition: Region modelling

Something that has been lacking in the study of transition is a clear definition of locations

along the surface associated with transition. To better define these points we begin with

what we know with a high degree of certainty regarding boundary layers. From the leading

edge we can measure the thickness of the fully laminar flow. The boundary layer will remain

in a fully laminar state until the laminar critical stability location, Rexcr is obtained. This

location is obtained from stability analysis and indicates where the disturbances, within the

laminar flow, begin to grow. We know that before this point the laminar flow is stable. Then

at some location much further downstream, the flow can be measured as being fully turbulent

and the thickness of the turbulent boundary layer determined. The location of the effective

leading edge of the turbulent boundary layer, Rext , can be determined by extrapolating back

from the measured data to the surface. We illustrate this pictorially in Figure 3.1, where we

plot the laminar and turbulent boundary layer thickness versus the various x locations. A

solid line means we know definitively the value of the boundary layer thickness and therefore
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Figure 3.1 – Model of the laminar and turbulent laminar boundary layers

the shape of the boundary layer and a dashed line means we are extrapolating from the

known value. The intersection point between the laminar and turbulent boundary layers is

a consequence of the graphical representation and has no physical meaning.

In 1951, Emmons [26] performed a water table experiment and discovered that as the laminar

boundary layer moved downstream patches of turbulent flow occurred intermittently within

the laminar boundary layer. These patches or spots would grow as they moved downstream

until eventually they covered the downstream region continuously. Emmons [26] did not

make quantitative measurements and instead relied on visualization of the flow to determine

the probability function for specifying the fraction of time the flow at each point would be

turbulent. Emmons’ [26] interpretation of transition is that initially a laminar boundary

layer completely covers a given body. This boundary layer is disturbed and these distur-

bances amplify and damp until a critical amplitude is reached. Then at some point further

downstream of this critical point, the boundary-layer disturbances will cause ‘breaks’ in the

laminar boundary layer and turbulent spots will begin to occur. In Figure 3.2 we have inter-
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preted Emmons’ [26] transition model pictorially, with the laminar and turbulent boundary

layer thickness plotted with the corresponding x locations. From Emmons’ [26] description
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Figure 3.2 – Emmons model of a boundary layer that transitions across an intermittency
region

of the boundary layer process we interpret that the start of the turbulent spot region is equal

to the effective leading edge of the turbulent boundary layer, xt. The end of the turbulent

spot region corresponds to where the flow is only turbulent. We can expect this location

to be somewhere downstream of the xt and may or may not be where the fully turbulent

flow is measured. Therefore, we have illustrated xT between the effective leading edge of

the turbulent boundary layer and where the fully turbulent flow is measured. The location

where the disturbances within the laminar boundary layer reach the critical amplitude is

illustrated as xcr and is determined using stability analysis.

To verify Emmons’ [26] model of transition, Schubauer and Klebanoff [2] conducted an ex-

perimental investigation of a boundary layer along a flat plate. They used hot-wire probes to

measure the voltage fluctuations in the x direction and using calibration data, velocity fluc-
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CHAPTER 3 Boundary layer transition: Region modelling

tuations could be calculated. Then by taking photographs of the output on the oscilloscope

screen, they made interpretations regarding laminar and turbulent flow. Regular sinusoidal

oscillations described laminar flow and bursts of high frequency voltage represented turbu-

lent flow. Then from the oscilloscope records they determined the fraction of time the flow

was turbulent. This fraction is defined as an intermittency factor, γ. From the records, it

was difficult to determine an intermittency of 0 and 1 so a Gaussian integral curve was fitted

to the measured data in order to estimate the end points.

Based on these observations, Narasimha [27] introduced his universal intermittency distri-

bution, which he based on the concept of concentrated breakdown. The idea of concentrated

breakdown is that at a single point downstream of the critical stability location, the lam-

inar flow will break down to form turbulent spots. The single location where breakdown

occurred and intermittency began was defined as the location of the effective leading edge of

the turbulent boundary layer. Then in 1985, Narasimha [3] expanded this concept by say-

ing the laminar flow will actually breakdown over some distance across the flow where the

total distance of breakdown would be small compared with what Narasimha [27] termed the

measurable extent of the intermittency region. He defined the extent of the intermittency

region as the length between where the intermittency, γ, is 0.75 and 0.25. This is written

mathematically as Rex|γ=0.75
−Rex|γ=0.25

where γ = 0.75 means the flow at the corresponding

Reynolds number is 75% turbulent and γ = 0.25 means the flow is 25% turbulent. He used

the experimental data within this region to fit the distribution as the intermittency factor

could be accurately determined within this region [3]. He showed a pictorial representa-

tion, in Ref.[5], of where this break down region would occur along a flat plate when the

external disturbances are low which we have reproduced in Figure 3.3. Based on this figure,

we can assume that the laminar flow will begin to breakdown at the effective leading edge

of the turbulent boundary layer and the start of intermittency will begin at some location

slightly downstream of the effective leading edge. We have modelled Narasimha’s [5] concept

of breakdown for a boundary layer transition and have shown it pictorially in Figure 3.4.
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Figure 3.3 – Figure recreated from Narasimha and Dey [5] representing the stages from laminar
to turbulent flow along a flat plate.

Again we plot the laminar and turbulent boundary layer thickness with the x locations. The

x locations highlighted in Figure 3.4 are xcr, the critical location determined from stabil-

ity analysis, xt, the effective leading edge of the turbulent boundary layer, x0, the start of

intermittency and xT , the end of intermittency. The measurable extent of intermittency

is also illustrated as starting at x|γ=0.25 and ending at x|γ=0.75. We have also labelled the

corresponding regions.

In our research, we believe that we can bound the breakdown and intermittency region in

order to determine the location of the start and end of intermittency mathematically. In order

to achieve this, we specify that at the upstream bounding location, xA, a laminar velocity

profile will be imposed and at the downstream location, xB, a turbulent velocity profile will

be imposed. These bounding locations will change in order to satisfy the complex-lamellar
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Figure 3.4 – Narasimha model of a boundary layer transitioning via breakdown and intermit-
tency

velocity condition, Eq.(2.60). In Figure 3.5, we illustrate this transition model where the

laminar and turbulent boundary layer thickness are represented along with the corresponding

x locations. In Figure 3.5, we illustrate xA between the critical stability location, Rexcr and

the effective leading edge of the turbulent boundary layer, xt. However, it should be made

clear that xA will be located where the laminar velocity profile is satisfied, in theory this

could be anywhere from the leading edge up until the effective leading edge of the turbulent

boundary layer. The same applies for xB, where we would expect the turbulent velocity

profile to be satisfied anywhere downstream of the end of intermittency.

The final transition model we will consider is for a separated shear layer transitioning over

a separation bubble. When a laminar boundary layer is subjected to a strong adverse

pressure gradient, it can begin to separate from the surface. The flow within the free-stream

layer near the surface may begin to transition and if this flow reattaches downstream as

turbulent flow, a laminar separation bubble is formed on the surface [1]. Originally, the
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Figure 3.5 – Research model of boundary layer transition where breakdown and intermittency
are bounded between xA and xB.

flow was divided into two main regions, an upstream region of nearly constant pressure

and a downstream region of pressure recovery [4]. Mayle [1] further divided the upstream

region into two regions, an unstable laminar shear region and a transition region, where

the unstable laminar region ends with the formation of turbulent spots. This implies that

the transition region is equivalent to an intermittency region. The start of the constant

pressure region corresponded to the separation point and the start of the unstable laminar

region. The end of the constant pressure region corresponded to the end of the intermittency

region. The start of the intermittency region is determined using experimental intermittency

measurements. Mayle [1] illustrated these regions over a separation bubble in his paper and

it has been reproduced here in Figure 3.6, where xs is the separation point, xt is the start of

the transition region, xTp is the the end of the transition region and xr is the reattachment

point.

To solve for a separation bubble case, we can bound the separation bubble between a laminar
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Figure 3.6 – Flow around a separation bubble recreated from Mayle [1]

and turbulent flow. Then at xA, we will specify a laminar velocity profile that is on the verge

of separation. We can achieve this using a laminar velocity profile equation that includes a

term to account for the effect of a local pressure gradient. This will then allow us to impose

the condition that xA = xs. At xB, we will specify a turbulent velocity profile. Experiments

[4, 44, 45] have shown that the flow at reattachment is turbulent. Therefore, we would expect

that xB ≈ xr. Transition over a separation bubble occurs within a small region and so to

be consistent in our illustration of the various x locations, we show in our transition model,

Figure 3.7, the laminar boundary layer beginning at an upstream location from the leading

edge. We have plotted the laminar and turbulent boundary layer thickness with the various

x locations, where x0 is the start of intermittency and xT is the end of intermittency.
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3.1 Fully laminar boundary condition
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Figure 3.7 – Research model of boundary layer transition over a separation bubble bounded
between xA and xB.

3.1 Fully laminar boundary condition

Within our first transition model, Figure 3.5, all we require is that the velocity profile at RexA

must satisfy a laminar boundary layer. However, for the second transition model, Figure

3.7, the velocity profile must satisfy a laminar boundary layer on the verge of separation.

Therefore, to meet both of these requirements we need a laminar velocity profile that takes

into account different pressure gradients. This can be achieved using the Pohlhausen velocity

profile as different pressure gradients are included through the Pohlhausen parameter

λ = − δ2

µU∞

∂p

∂x
(3.1)

where an adverse pressure gradient, ∂p
∂x
> 0, is represented by λ < 0 and a favourable pressure

gradient, ∂p
∂x
< 0, is represented by λ > 0. Furthermore, the presence of flow separation exists

when λ = −12 [14].
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CHAPTER 3 Boundary layer transition: Region modelling

Pohlhausen’s [46] velocity profile is

u

U∞
=

(
2 +

λ

6

)(y
δ

)
− λ

2

(y
δ

)2
−
(

2− λ

2

)(y
δ

)3
+

(
1− λ

6

)(y
δ

)4
(3.2)

where U∞ is the free-stream velocity and δ is the boundary layer thickness. Typically, the

momentum thickness is determined by solving the momentum integral equation using the

velocity profile for different values of λ. Then δ is determined through it’s relationship to

the momentum thickness. We have chosen instead to keep δ fixed and to calculate it using

the exact Blasius solution,

δlam = 5xRe−1/2x (3.3)

where Rex is the Reynolds number based on the x location measured from the leading edge

of the flat plate. The reason we chose not to change δ is that the location of the laminar

boundary condition is not fixed and is determined from the solution of the complex-lamellar

decomposition, Eq.(2.60). Therefore, xA will correspond to the location where a boundary

layer thickness represented by the Blasius solution is obtained.

The following expression for the laminar momentum thickness is determined by using the

Pohlhausen velocity profile and Holstein and Bohlen’s [14] analysis to solve the momentum

integral equation.

θ2lam = A2µ

ρ

∫
1

U
dx (3.4)

where

A2 = 2

(
37

315
− λ

945
+

λ2

9072

)(
2− 116λ

315
+

{
2

945
+

1

120

}
λ2 +

2λ3

9072

)
(3.5)

As A contains the Pohlhausen parameter, λ, this definition of the momentum thickness also

allows for changes within the pressure gradient to be taken into account. Then we can model

the mean flow as

U = U∞ + u′ (3.6)
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3.2 Fully turbulent boundary condition

and the momentum thickness equation becomes

θ2lam = A2

(
µ

ρ

)
1

U∞

∫
1

1 + u′/U∞
dx (3.7)

Assuming that the presence of transition creates disturbances of the order

u′

U∞
� 1 (3.8)

allows us to construct the series approximation

1

1 + u′/U∞
= 1−

(
u′

U∞

)2

+

(
u′

U∞

)3

−
(
u′

U∞

)4

+O

{(
u′

U∞

)5
}

(3.9)

and the resulting first order approximation for the laminar momentum thickness is

θlam = Ax1/2
(
ρU∞
µ

)−1/2
(3.10)

3.2 Fully turbulent boundary condition

We will use Prandtl-von Karman power law velocity profile for a flat plate [14] to describe

the mean turbulent velocity, uturb

uturb
U∞

=

(
y

δturb

)1/7

(3.11)

This profile is valid for zero-pressure gradient flows however we will also use it for the

separated flow transition over a separation bubble test case. For this test case, we expect

the local pressure gradient at the location of the turbulent boundary condition to be minimal

thereby making this choice of profile reasonable.
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The boundary layer thickness is defined as

δturb = 0.375x′Re
−1/5
x′ (3.12)

the Reynolds number based on x′ is written as

Rex′ =
ρU∞x

′

µ
(3.13)

and the momentum thickness can be calculated from

θturb =
7

72
δturb (3.14)

The turbulent boundary layer is coupled to the laminar one through the transformation

x = x′+xt, where the effective leading edge of the turbulent boundary layer is located at xt.

It should be noted that no attempt is made to model either the viscous sublayer or the

discontinuous nature of the log law since our approximate drift function, Eq.(2.51), restricts

us from these regions.

3.3 Modelling the slope of the difference in enstrophy density

function

Now that we have descriptions for the velocity profiles at RexA and RexB , we need to de-

termine additional equations to solve for the power series coefficients within the difference

in enstrophy density approximation. We can construct these equations using geometric con-

ditions related to intermittency. To begin, let us define the difference in enstrophy density

function, η

η =

(
3∑

n=1

Cn
(x− xA)n

(xB − xA)n

)
=

(ω2 − ω2
lam)

(ω2
turb − ω2

lam)|xB
(3.15)
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3.3 Modelling the slope of the difference in enstrophy density function

which can then be rewritten as

ω2 = (1− η)ω2
lam + η ω2

turb

+ η
[(
ω2
turb

∣∣
xB
− ω2

turb

)
−
(
ω2
lam

∣∣
xB
− ω2

lam

)]
(3.16)

which tells us that the enstrophy density will change throughout the region from RexA

to RexB as a linear combination of the laminar and turbulent enstrophy density plus an

additional term involving the laminar and turbulent enstrophy density at RexB .

Recall from Chapter 2, that Dhawan and Narasimha [30] used the following model to deter-

mine the velocity through the intermittency region

~u = (1− γ)~ulaminar + γ~uturbulent (3.17)

where ~ulaminar is the laminar velocity and ~uturbulent is the turbulent velocity with γ varying

from 0 to 1. We can see that the enstrophy density equation, Eq.(3.16), looks similar to

this model. We would expect that at the end points, ulam used to calculate ω2
lam would

be equivalent to ulaminar and uturb used to calculate ω2
turb would be equivalent to uturbulent.

However, between the end points these values may or may not be the same. As well, we

don’t know if η is equal to γ, however, as γ is the universal distribution it seems reasonable

to match a couple of points and then rely on the complex-lamellar condition to determine

where these points should be located.

Narasimha’s universal intermittency distribution [27] is

γ = 1− exp

(
−0.412

(x− xt)2

(x|γ=0.75 − x|γ=0.25)
2

)
(3.18)

where, as previously mentioned, x|γ=0.25 and x|γ=0.75 correspond to the locations where

γ = 0.25 and 0.75, respectively. xt is the effective leading edge of the turbulent boundary
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layer and also corresponds to the start of intermittency as this distribution is based on

concentrated breakdown. The shape of the intermittency distribution was based on matching

the experimental data between γ = 0.25 and γ = 0.75 so the shape at the end points is a

result of the curve fit and not the experimental data. As well, this distribution does not

cross the x axis and will never reach 1 since this function goes to infinity. Therefore, we

chose to obtain our geometrical conditions by matching η to the slope of the intermittency

distribution between γ = 0.25 and γ = 0.75 and not impose any conditions on the shape at

the start and end of intermittency.

These conditions will not specify the physical location of where the slope of η is placed along

the flat plate so by themselves these conditions just generate a shape. However, it is when

we couple the geometrical conditions with the physical conditions, imposed by the complex-

lamellar decomposition, that the slope will have a physical location within the region RexA

to RexB .

The geometrical constraints we will use to determine the slope of η are two points and a slope.

For the first equation, we chose a value of 0.5, as this is the midpoint. This is represented

mathematically as

0.5 =
3∑

n=1

Cn
(Rex|γ=0.5

−RexA)n

(RexB −RexA)n
(3.19)

We can determine Rex|γ=0.5
by utilizing Narasimha’s [27] universal intermittency distribution,

Eq.(3.18) and rearranging to obtain

Rex|γ=0.5
= Rext + 1.2971

(
Rex|γ=0.75

−Rex|γ=0.25

)
(3.20)

where
(
Rex|γ=0.75

−Rex|γ=0.25

)
is the extent of the intermittency region [27], and Rext , as

previously stated, is the effective leading edge of the turbulent boundary layer. The extent of
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3.3 Modelling the slope of the difference in enstrophy density function

the intermittency region is not universal for all types of transitioning boundary layers so this

length will be obtained from experimental correlations related to the specific transitioning

boundary layer.

The first equation to determine the slope of η is written as

0.5 =
3∑

n=1

Cn
(Rext + 1.2971

(
Rex|γ=0.75

−Rex|γ=0.25

)
−RexA)n

(RexB −RexA)n
(3.21)

It should be noted that in using Eq.(3.20) within the enstrophy growth function we are only

specifying a length and not forcing η to be 0.5 at a specific x location.

For the second equation, we chose a value 0.25 as this value is the mid point between γ = 0.5

and the effective leading edge of the turbulent boundary layer, Rext . This equation is written

as

0.25 =
3∑

n=1

Cn
(Rext + 0.8356

(
Rex|γ=0.75

−Rex|γ=0.25

)
−RexA)n

(RexB −RexA)n
(3.22)

For the third equation, we chose the slope of the intermittency distribution, Eq.(3.18), at

γ = 0.5 to scale with the slope the difference in enstrophy density function, η.

dγ

dx

∣∣∣∣
xγ=0.5

=
d

dx

[
3∑

n=1

Cn
(Rex −RexA)n

(RexB −RexA)n

]∣∣∣∣∣
xγ=0.5

(3.23)

which when expanded produces

0.0983(
Rex|γ=0.75

−Rex|γ=0.25

) =
3∑

n=1

Cn
n (Rext + 1.2971

(
Rex|γ=0.75

−Rex|γ=0.25

)
−RexA)n−1

(RexB −RexA)n

(3.24)
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Additional geometrical conditions could have been chosen at γ = 0.75. However, since η

spans the whole length between RexA to RexB and the measurable intermittency region is

only a small portion of that length, we believe it is sufficient to use 3 geometrical conditions

to determine the slope of η within this measurable region.

3.4 Expanded complex-lamellar velocity condition

We will expand the complex-lamellar velocity condition, Eq.(2.60), by substituting in the

Prandtl turbulent velocity profile, Eqs. (3.11,3.12), and the Pohlhausen laminar velocity

profile, Eqs. (3.2,3.3) to obtain

[
1

7

(
1

0.375

(
ρU∞
µ

) 1
5

(xB − xt)−
4
5

) 1
7

y−
6
7 +

(2 + λ/6)

5(xB)
1
2

(
ρU∞
µ

) 1
2

− λy

(5)2(xB)

(
ρU∞
µ

)

− 3(2− λ/2)y2

(5)3(xB)
3
2

(
ρU∞
µ

) 3
2

+
4(1− λ/6)y3

(5)4(xB)2

(
ρU∞
µ

)2
]

(xB − xA)
3∑

n=1

Cn
n+ 1

=

(
y

0.375

(
ρU∞
µ

) 1
5

(xB − xt)−
4
5

) 1
7

(3.25)

Since the length of the region between xA and xB will be significantly larger than the height

of the boundary layer, we can assume that changes to the cross-flow location will not sig-

nificantly affect the location of xA and xB. Therefore, we will evaluate Eq.(3.25) at a single

cross-flow location with the expectation that the resulting Reynolds number based on x will

be accurate.

We will choose a cross-flow location that is equal to the momentum thickness at a specific x

location,
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3.5 Boundary layer transition model equations

y = θ|x (3.26)

since the momentum thickness has been measured experimentally for various transition cases.

When we substitute this cross-flow location into Eq.(3.25) and non-dimensionalize the equa-

tion, we obtain

[
1

7

(
1

Re θ|x

) 6
7

(
1

0.375 (RexA (R−RL))
4
5

) 1
7

+
(2 + λ/6)

5 (RexA ∗R)
1
2

−
λRe θ|x

(5)2 (RexA ∗R)

−
3(2− λ/2)Re2θ|x

(5)3 (RexA ∗R)
3
2

+
4(1− λ/6)Re3θ|x
(5)4 (RexA ∗R)2

][
RexA(R− 1)

3∑
n=0

Cn
n+ 1

]

=

(
Re θ|x

0.375 (RexA (R−RL))
4
5

) 1
7

(3.27)

where, for convenience, we chose to define two ratios across transition as

R =
RexB
RexA

RL =
Rext
RexA

(3.28)

3.5 Boundary layer transition model equations

We will solve the expanded complex-lamellar equation, Eq.(3.27), along with the equations

for determining the slope of η, Eqs.(3.21 - 3.24) and the boundary condition for the series

coefficients, Eq. (2.58) to calculate location of RexA and RexB . We will term this set of

non-linear, algebraic equations the boundary layer transition equations.
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[
1

7

(
1

Re θ|x

) 6
7

(
1

0.375 (RexA (R−RL))
4
5

) 1
7

+
(2 + λ/6)

5 (RexA ∗R)
1
2

−
λRe θ|x

(5)2 (RexA ∗R)

−
3(2− λ/2)Re2θ|x

(5)3 (RexA ∗R)
3
2

+
4(1− λ/6)Re3θ|x
(5)4 (RexA ∗R)2

][
RexA(R− 1)

3∑
n=1

Cn
n+ 1

]

=

(
Re θ|x

0.375 (RexA (R−RL))
4
5

) 1
7

1 =
3∑

n=1

Cn

0.5 =
3∑

n=1

Cn
(Rext + 1.2971

(
Rex|γ=0.75

−Rex|γ=0.25

)
−RexA)n

(RexB −RexA)n
(3.29)

0.25 =
3∑

n=1

Cn
(Rext + 0.8356

(
Rex|γ=0.75

−Rex|γ=0.25

)
−RexA)n

(RexB −RexA)n

0.0983(
Rex|γ=0.75

−Rex|γ=0.25

) =
3∑

n=1

Cn
n(Rext + 1.2971

(
Rex|γ=0.75

−Rex|γ=0.25

)
−RexA)n−1

(RexB −RexA)n

The first and second equation are the physical conditions that are imposed through the

complex-lamellar decomposition. The first equation ensures that the complex-lamellar ve-

locity equation matches the turbulent velocity at xB. By solving this equation, we obtain

the locations of where the flow is fully laminar and fully turbulent. The second equation

ensures that the power series coefficients add up to 1, thereby, satisfying the physical re-

quirement that the difference in enstrophy density at xB will be the difference between the

turbulent enstrophy density and the laminar enstrophy density. The last three equations are

the geometrical conditions related to intermittency. We determine the slope of the difference

in enstrophy density function, η by matching the slope of intermittency at γ = 0.5, and two

points at γ = 0.25 and γ = 0.5.
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3.5 Boundary layer transition model equations

3.5.1 Numerical method

We solved the set of 5 non-linear algebraic equations using the numeric solver in Matlab and

specified a termination tolerance on the function value to be 10−12. The default algorithm,

trust-region dogleg, was used to find the root of the system of equations. The advantage to

using this algorithm is that each step is determined from a combination of a step along the

steepest descent direction and a Newton step. This way if the Newton step is undefined, for

instance when the Jacobian is singular, the next step is solely determined from the step in

the steepest descent direction.

We solved the set of equations, using Matlab, to determine solutions for both a natural

boundary layer transition and a separated flow transition over a separation bubble. For

both cases, multiple solutions were obtained with some solutions being complex and some

real. We interpreted the real solutions and their possible physical meaning by analyzing the

locations of RexA and RexB compared to the effective leading edge of the turbulent boundary

layer, Rext , and by analyzing how the difference in enstrophy density function, η, changed

between RexA and RexB . The solutions that are presented in Chapter 5 and 7 each have

a physical interpretation in which experimental data exists for comparison. The other real

solutions could be interpreted to have physical meanings such as relaminarization, however,

we did not have experimental data for comparison.

When we solved the system of equations, Eq.(3.29), convergence occurred quickly. When

we changed the configuration and used the point, γ = 0.75 instead of γ = 0.25 within the

geometrical conditions, the algorithm had very slow convergence. A possible explanation

for this is that if the Jacobian, for this set of equations, is nearly singular, the algorithm

will only use a step in the steepest descent direction. A common characteristic of steepest

descent methods is slow convergence and this is consistent with what we observe for this set

of equations.
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CHAPTER 4

Natural boundary layer transition

The first case we solved is that of a naturally transitioning boundary layer over a flat plate

with zero pressure gradient flow. This test case has been studied extensively [26, 47, 2, 25, 29]

and is the benchmark for all transition cases. Even so, there is still some ambiguity in terms

of where transition begins and so by solving the boundary layer transition model equations,

Eq.(3.29), we will be able to give a more concrete answer as to where the start and end of

intermittency is located.

In order to solve the boundary layer transition model equations, Eq.(3.29), we need to

know two things beforehand, 1) the location of the effective leading edge of the turbulent

boundary layer, xt, and 2) the length of the extent of the intermittency region. We will

obtain this location and length for a natural boundary layer transition using the experimental

correlations described below.
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4.1 Effective leading edge of turbulent boundary layer

4.1 Determination of the effective leading edge of the turbulent

boundary layer

The well established correlations developed by Abu-Ghannam and Shaw [25] were determined

experimentally by placing boundary layer pitot tubes close to the surface at a fixed location

and then determining the surface velocity for a range of wind tunnel speeds. They used a

change in the surface velocity gradient to determine the start and end of transition. The

location where this gradient began to increase, x1, was the start of transition. The location

where the velocity gradient became zero, x2, was the end of transition. Then at these two

locations they measured the momentum thickness by traversing the boundary layer with the

pitot tube. They plotted the momentum thickness measurements at several different free-

stream turbulence levels and compared them to the measurements of other researchers [25].

From this comparison, they determined the following correlation for the start of transition

based on the momentum thickness Reynolds number and how it changes due to the free-

stream turbulence level.

Re θ|x1
= 163 + e6.91−Tu (4.1)

where the subscript x1 is the location where the gradient of the surface velocity begins

to increase and Tu is the the free-stream turbulence level. Abu-Ghannam and Shaw also

determined a correlation relating the momentum thickness Reynolds number at the end of

transition with the Reynolds number at the start of transition,

Re θ|x2
= 2.667Re θ|x1

(4.2)

where the subscript x2 is the location where the gradient of the surface velocity becomes

zero. Abu-Ghannam and Shaw [25] determined that consistent results were obtained when

the theoretical laminar relationship between the Reynolds number based on the momentum
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CHAPTER 4 Natural boundary layer transition

thickness and x was used with Eq.(4.1) to determine Rex|x1
compared with Rex|x1

being de-

termined from pitot-tube measurements. Therefore, we will determine Rex|x1
using Eq.(3.10)

to obtain

Rex|x1
=

(
Re θ|x1
A

)2

(4.3)

Similarly we will use Eq. (3.14), the turbulent relationship and Eq.(4.2) to determine Rex|x2

Rex|x2
=

[
72

7

(
1

0.375

)
Re θ|x2

] 5
4

+Rext (4.4)

It was noted [3, 48] that the start of transition determined by using surface measurements

from pitot tubes did not correspond to the location of the effective leading edge of the

turbulent boundary layer, xt, or to the start of intermittency, x0. Narasimha and Dey [3]

determined a conversion factor to relate the transition start and end, determined using sur-

face measurements, to the effective leading edge of the turbulent boundary layer determined

using intermittency measurements.

xt ' x|x1 − 0.26
(
x|x2 − x|x1

)
(4.5)

This relation is valid for surface pitot measurements taken at low-speed flows. However it

may become invalid for high speed flows since surface pitot measurements are less accurate

in high speed flow [3].

We can non-dimenionalize this conversion factor and make use of Abu-Ghannam and Shaw

[25] experimental correlations, Eqs.(4.1) and (4.2) to determine the Reynolds number at the

effective leading edge of the turbulent boundary layer.

Rext =

(
Re θ|x1
A

)2

− 12.95
(
Re θ|x2

) 5
4

(4.6)
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4.2 Length of intermittency correlation

4.2 Length of intermittency correlation

For natural transition over a flat plate, Dhawan and Narasimha [30] initially specified the

measurable extent of intermittency as

Rex|γ=0.75
−Rex|γ=0.25

.
= 5Re0.8xt (4.7)

The coefficients where later updated by Narasimha [3], to obtain the following correlation.

Rex|γ=0.75
−Rex|γ=0.25

.
= 9Re0.75xt (4.8)

We will use this correlation in the equations to determine the slope of the difference in

enstrophy density function, η, and can therefore, update Eqs.(3.21-3.24) to be

0.5 =
3∑

n=1

Cn
(Rext + 11.6736Re0.75xt −RexA)n

(RexB −RexA)n
(4.9)

0.25 =
3∑

n=1

Cn
(Rext + 7.5206Re0.75xt −RexA)n

(RexB −RexA)n
(4.10)

0.0109

Re0.75xt

=
3∑

n=1

Cn
n(Rext + 11.6736Re0.75xt −RexA)n−1

(RexB −RexA)n
(4.11)
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Natural boundary layer transition results

We will solve the following set of 5 non-linear, algebraic equations for a naturally occurring

boundary layer transition over a flat plate with a zero pressure gradient flow.
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1

7

(
1

Re θ|x

) 6
7

 1

0.375
(
Rext
RL

(R−RL)
) 4

5


1
7

+
(2 + λ/6)

5
(
Rext
RL
∗R
) 1

2

−
λRe θ|x

(5)2
(
Rext
RL
∗R
)

−
3(2− λ/2)Re2θ|x

(5)3
(
Rext
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∗R
) 3

2

+
4(1− λ/6)Re3θ|x

(5)4
(
Rext
RL
∗R
)2
][

Rext
RL

(R− 1)
3∑

n=1

Cn
n+ 1

]

=

 Re θ|x

0.375
(
Rext
RL

(R−RL)
) 4

5


1
7

1 =
3∑

n=1

Cn

0.5 =
3∑

n=1

Cn

(
Rext + 11.6736Re0.75xt −

Rext
RL

)n
(
Rext
RL

(R− 1)
)n (5.1)

0.25 =
3∑

n=1

Cn

(
Rext + 7.5206Re0.75xt −

Rext
RL

)n
(
Rext
RL

(R− 1)
)n

0.0109

Re0.75xt

=
3∑

n=1

Cn
n
(
Rext + 11.6736Re0.75xt −

Rext
RL

)n−1
(
Rext
RL

(R− 1)
)n

We will use the numerical solver in Matlab, with the convergence criteria outlined in Chap-

ter 3, to obtain the solution for the transition length ratios, R = RexB/RexA and RL =

Rext/RexA and the series coefficients, C1, C2 and C3. For the real solutions, R was always

greater than 1. For this ratio to be less than 1 would imply that the fully turbulent flow

occurs upstream of the fully laminar flow and this is not physically possible. However, there

is no such physical restriction on RL.

We will use the experimental correlations of Abu-Ghannam and Shaw [25], Eqs.(4.1 and

4.2), and Dey and Narasimha [49], Eq.(4.6), to calculate the effective leading edge of the
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CHAPTER 5 Natural boundary layer transition results

turbulent boundary layer, Rext . We will consider two cases, the first in Section 5.1 evaluates

this set of equations at a cross-flow location corresponding to Abu-Ghannam and Shaw’s [25]

experimental correlations for the momentum thickness Reynolds number, Re θ|x1
. The second

case, in Section 5.2, will evaluate this set of equations at a cross-flow location corresponding to

Abu-Ghannam and Shaw’s [25] maximum Reynolds number based on momentum thickness,

Re θ|x2
.

5.1 Boundary layer transition equations evaluated at Reθ|x1

We begin by solving the set of equations, Eq.(5.1) at Re θ|x = Re θ|x1
. We use the assumptions

that at RexA the velocity is modelled with the Pohlhausen velocity profile, Eq.(3.2) and at

RexB the velocity is modelled with the Prandtl velocity profile, Eq.(3.11). We specify the

Pohlhausen pressure parameter to be λ = 0. Then to calculate Rext using Eq.(4.6), we

need to specify a free-stream turbulence level, Tu. In a natural transition case, the free-

stream disturbances are small so as to have as minimal effect as possible on where transition

occurs. Experimentally [47] free-stream disturbances can not be eliminated completely and

so the smallest value of Tu is 0.03%. Therefore, with Tu = 0.03%, we can calculate Rext =

2.45× 106. Upon solving this configuration, we produce the following results

C1 = −4.1996 C2 = 9.6084 C3 = −4.4088

RL = 2.6303 R = 4.0518 (5.2)

where we obtain the fully laminar location, RexA = 9.33 × 105, and the fully turbulent

location, RexB = 3.78× 106.

The difference in enstrophy density function, η, Eq.(3.15) is plotted against the Reynolds

number based on x from RexA to RexB and is shown in Figure 5.1. From this plot, we

obtain the start of the intermittency, Rex0 = 2.65× 106, as the location where the function
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Figure 5.1 – Difference in enstrophy density versus Reynolds number based on x for natural
boundary layer transition

is equal to zero downstream of RexA and the end of intermittency, RexT = 3.78 × 106, as

the location where the function is to equal 1. For this test case, RexB is the same as RexT ,

which implies that at the end of intermittency the flow is fully turbulent. This is consistent

with experimental data [2, 30] for a natural boundary layer transition.

There may be some concern as to why η goes negative between RexA and Rex0 , especially

since we related η to intermittency and intermittency only varies from 0 to 1. Recall from

Chapter 3, that we only determined the shape of η by using 2 points and a slope of the

intermittency. We did this because we did not expect the shape of η to be identical to

γ. This was a fair assumption considering that η varies from RexA to RexB and not just

within the intermittency region. As well, the intermittency values below γ = 0.25 and above

γ = 0.75 are only estimates based on the distribution that was fitted to the experimental

data.
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CHAPTER 5 Natural boundary layer transition results

Next, recall that the difference in enstrophy density function can be rewritten as

ω2 = (1− η)ω2
lam + η ω2

turb

+ η
[(
ω2
turb

∣∣
xB
− ω2

turb

)
−
(
ω2
lam

∣∣
xB
− ω2

lam

)]
(5.3)

Now we can recognize that the third term on the RHS is a difference of a difference and we

would expect this term to be at least an order of magnitude less than the other two terms.

Therefore, we can than say that

ω2 ≈ (1− η)ω2
lam + η ω2

turb (5.4)

Furthermore, within the region, RexA to Rex0 , there will be no turbulent flow so Eq.(5.4)

becomes

ω2 ≈ (1− η)ω2
lam (5.5)

Then in order for the RHS to be positive, (1− η) > 0 or η < 1. However, between 0 and 1

turbulent flow is present so therefore when there is no turbulent flow, i.e. within the region

RexA to Rex0 , η < 0.

For a possible physical reason why η would be less than zero, recall that

η =
ω2 − ω2

lam

(ω2
turb − ω2

lam)|xB
(5.6)

then for η to go negative, means that ω2 < ω2
lam or that the local enstrophy density is less

than the baseline laminar enstrophy density at the fixed perpendicular location y = Reθx1 .

Since the enstrophy density is equal to (∂u/∂y)2, a possible scenario for the local enstrophy

density to less than the baseline would be if the boundary layer through this region was

thinner than the baseline laminar boundary layer. Downstream of Rex0 , where η > 0,
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5.1 Boundary layer transition equations evaluated at Re θ|x1

implies ω2 > ω2
lam which could possibly result from a thickening of the boundary layer which

would be consistent with the calculated and measured velocity profiles obtained by Dhawan

and Narasimha [30] within the intermittency region.

In Figure 5.2 we illustrate a pictorial representation of the transition model where the bound-

ary layer thickness for laminar and turbulent boundary layers are plotted against the x loca-

tions. In this figure, we include the critical stability location, Rexcr . For a Blasius boundary
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Figure 5.2 – A model of natural boundary layer transition along a flat plate with zero pressure
gradient flow

layer, it is calculated from the stability equations to be Reδ∗ = 520, where Reδ∗ is the

Reynolds number based on displacement thickness [39]. We determined the corresponding

value for the Reynolds number based on x using the relationship Reδ∗ = 1.721
√
Rex [47]

and obtained Rexcr = 9.14× 104. As illustrated, this value is upstream of the fully laminar

location, RexA . From this we could infer that between Rexcr and RexA 2D disturbances

have begun to grow, however, are still minimal enough that the fully laminar flow is not yet

affected.
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CHAPTER 5 Natural boundary layer transition results

Our solution provides a prediction of the start and end of intermittency so we can compare

these locations with the experimental locations determined by Schubauer and Klebanoff [2].

This comparison is shown in Section 5.1.1. We can also use the difference in enstrophy

density function, η, to calculate the Reynolds number location where η = 0.25 and η = 0.75

to determine the length of Rex|η=0.75
− Rex|η=0.75

. We can then compare this length with

Dhawan and Narasimha’s [30] experimental correlation. This comparison is shown in Section

5.1.2. Finally, we can calculate the length of breakdown, Rex0−Rext and compare this length

with Narasimha’s [3] estimate. This comparison is shown in Section 5.1.3.

5.1.1 Comparison of Reynolds numbers based on x with experimental data

In Table 5.1, we compare our results to the experimental data obtained by Schubauer and

Klebanoff [2], for flat plate zero pressure gradient flow.

Table 5.1 – Start and end of intermittency location comparison between calculated results and
the experimental data of Schubauer and Klebanoff [2] for natural boundary layer transition.

Rex location Schubauer and Klebanoff [2] Calculated % Difference
Experimental data

Rex0 2.56× 106 2.66× 106 4
RexT 3.90× 106 3.79× 106 3

The location of the start of intermittency, Rex0 , that we calculated using the difference

in enstrophy density function, η, is 4% further downstream than the experimental data of

Schubauer and Klebanoff [2]. The location of the end of intermittency, RexT , also calculated

using η, is 3% upstream of the experimental data.

Schubauer and Klebanoff [47] used the same experimental set up as Schubauer and Skramstad

[47], who determined that velocity fluctuations obtained from the hot-wire probes would have

an accuracy of 1% if they were properly calibrated. If the measure of intermittency could

be calculated directly from the hot-wire data, then it might be feasible for intermittency
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5.1 Boundary layer transition equations evaluated at Re θ|x1

measurements to have a similar level of accuracy. However, the measure of intermittency

is interpreted from the velocity fluctuation records of the oscilloscope. Therefore, this adds

an additional level of inaccuracy and is probably a reason why Narasimha [3] has noted

that measuring intermittency at very high and low values does not produce accurate results.

This implies that although the start and end of intermittency that we calculated is different

from the experimental locations, this difference is not significant, thereby, permitting us to

conclude that the difference in enstrophy density function predicts accurate locations of the

start and end of intermittency.

For this test case, the location of the end of intermittency, RexT is the same as the location

of the fully turbulent flow, RexB . This matches the experimental measurements made by

Schubauer and Klebanoff [2], who measured the velocity profile at γ = 1 and determined a

velocity profile consistent with a fully turbulent profile. Therefore, using Prandtl’s velocity

profile, Eq.(3.11), to model the fully turbulent flow at RexB produced accurate results.

Our calculations predict the location for the fully laminar velocity to occur at RexA =

9.33 × 105. This location is between the critical stability location, Rexcr and the start of

intermittency Rex0 . Based on experimental measurements of mean velocity profiles [2, 18],

the velocity remains laminar up until the start of intermittency so we could infer from our

calculations that between RexA and Rex0 the velocity profile is laminar however is no longer

fully laminar as described by Pohlhausen’s profile. Further experimental measurements

would be needed to confirm this idea.

5.1.2 Comparison of the length of the intermittency region with experimental

correlation

From the difference in enstrophy density function, η, we can determineRex|η=0.75
andRex|η=0.25

and compare this length with the approximate length obtained from Narasimha’s [3] exper-
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CHAPTER 5 Natural boundary layer transition results

imental correlation.

Rex|γ=0.75
−Rex|γ=0.25

.
= 9Re0.75xt (5.7)

This comparison is shown in Table 5.2.

Table 5.2 – Comparison of the length of the intermittency region between the experimental
correlation of Narasimha [3] and our analysis for a natural boundary layer transition.

Intermittency Narasimha [3] Experimental Calculated from % Difference
Region Length Correlation, Eq.(4.8) Figure 5.1

Rex|γ=0.75
−Rex|γ=0.25

5.57× 105 5.34× 105 4

Our calculation of the measurable length of the intermittency region is 4% shorter than

obtained by Narasimha’s [3] correlation. This difference is acceptable and considering the

experimental data used by Narasimha [3] had significant scatter, he could only determine an

approximate correlation, these values may be within the same accuracy and therefore, for

all intents and purposes, the same. Since this difference is within an acceptable accuracy

range, our calculations of the length, Rex|η=0.75
−Rex|η=0.25

verifies Dhawan and Narasimha’s

[30] idea that a correlation between Rex|γ=0.75
−Rex|γ=0.25

and Rext exists.

5.1.3 Comparison of the length of breakdown with experimental observation

For the length of breakdown, Rex0 −Rext , Narasimha [27] estimated that

Rex0 −Rext ∼
Rex|γ=0.75

−Rex|γ=0.25

3
(5.8)

Based on the Reynolds numbers we achieved from the difference in enstrophy density func-

tion, η, we can calculate the length of breakdown to be

Rex0 −Rext
Rex|η=0.75

−Rex|η=0.25

= 0.38 (5.9)
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5.1 Boundary layer transition equations evaluated at Re θ|x1

The length of breakdown within our analysis is 38% of the extent of intermittency, which

compares well with Narasimha’s [3] estimate of 1/3. Therefore, from this analysis we can

infer that using experimental correlations and intermittency equations that are based on the

assumption that Rext is the Rex0 will result in some discrepancy within the location of the

start of intermittency. For this particular case, Rex0 differs from Rext by about 8%.

5.1.4 Conclusions

We solved a set of 5 non-linear equations for natural boundary layer transition flow over a flat

plate. Two equations were obtained from the physical constraints imposed by the complex-

lamellar decomposition of the flow and three from geometrical constraints. The geometrical

constraints imposed that the slope of the difference in enstrophy density function, η, matches

the slope of the intermittency, γ. The location of where this slope is placed along the flat plate

is determined from the physical constraints imposed on the flow. This results in multiple

solutions. We interpreted a possible physical meaning for the solutions and presented the

solution in which experimental data exists for comparison.

From the solution of this set of equations, we determined the locations of the start of

intermittency, Rex0 , and the end of intermittency, RexT . These locations compared well

with the experimental data of Schubauer and Klebanoff [2]. From the difference in enstro-

phy density function, η, we calculated the length of measurable extent of intermittency,

Rexη=0.75 − Rexη=0.25 , and this length compared well with the experimental correlation of

Dhawan and Narasimha [30]. Finally, we calculated the length of breakdown, Rex0 − Rext ,

and this length compared well with the experimental estimate of Narasimha [3].

Overall, along the flat plate, our analysis produced both locations and lengths associated

with intermittency. We verified the locations and lengths using the experimental data of

Schubauer and Klebanoff [2], Dhawan and Narasimha [30], and Narasimha [3]. From these

comparisons, we can conclude that our model of a natural boundary layer transition, that
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bounds the intermittency region between a fully laminar and fully turbulent flow is valid.

We illustrated that the derived complex-lamellar condition, Eq. (3.27), when evaluated at

a cross-flow location of Re θ|x1
produces correct results. Finally, the assumption that the

difference in enstrophy density function could be modelled using the slope and two points of

the universal intermittency function was correct.

5.2 Boundary layer transition equations evaluated at Reθ|x2

For this test case, we solved the same set of non-linear equations, Eq.(5.1), however, in

this test case, we used a different cross-flow location, specified as Re θ|x = Re θ|x2
. We used

the assumptions that at RexA the velocity is modelled with the Pohlhausen velocity profile,

Eq.(3.2), and at RexB the velocity is modelled with the Prandtl velocity profile, Eq.(3.11)

We specified the Pohlhausen pressure parameter to be λ = 0, the free-stream turbulence

level to be Tu = 0.03, and calculated Rext = 2.45 × 106. Upon solving this configuration,

we produced the following results

C1 = −4.1957 C2 = 9.6029 C3 = −4.4072

RL = 2.6252 R = 4.0444 (5.10)

which corresponds to RexA = 9.35 × 106 and RexB = 3.78 × 106. In Table 5.3, we compare

the results obtained using the cross-flow location at Re θ|x1
and Re θ|x2

.

Table 5.3 – Comparison of the results obtained at a cross-flow location Re θ|x1
and Re θ|x2

Reynolds number Results obtained Results obtained % Difference
with Re θ|x1

with Re θ|x2
RexA 9.3290× 105 9.3290× 105 0.2
RexB 3.7799× 106 3.7801× 106 0.01
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5.2 Boundary layer transition equations evaluated at Re θ|x2

We see that the difference in RexA between the two cases is 0.2% and the difference in RexB is

0.01%. Since these values correspond to locations where the fully laminar and fully turbulent

velocity profiles are achieved, they could be measured experimentally. If these values were

obtained experimentally using pitot tubes the best possible accuracy would effectively be

1%, therefore, since these values are less than 1%, we can say that RexA and RexB are the

same for both cases.

From the difference in enstrophy density function, Eq.(3.15), we can calculate the start of

intermittency to be Rex0 = 2.66× 106 and the end of intermittency to be Rex0 = 3.78× 106.

In Table 5.4, we compare these results with those obtained using the cross-flow location at

Re θ|x1
.

Table 5.4 – Comparison of start and end of intermittency locations obtained at a cross-flow
location Re θ|x1

and Re θ|x2

Reynolds number Results obtained Results obtained % Difference
with Re θ|x1

with Re θ|x2
Rex0 2.65553× 106 2.65551× 105 0.001
RexT 3.7799× 106 3.7801× 106 0.01

The difference in Rex0 is 0.001% and the difference in RexT is 0.01%. These values are well

within any accuracy range that could be achieved experimentally and therefore indicate that

the start and end of intermittency are the same for both cases.

We see that the difference in the results between the two test cases is insignificant. With

that said, it is interesting to note that the largest difference within the results occurs for

the fully laminar location, RexA . As an initial interpretation, this could imply that the fully

laminar location is the most sensitive to external factors. This would definitely be consistent

with experimental observations and data that have shown how free-stream turbulence, pres-

sure gradients, surface roughness, etc, affects the laminar boundary layer thickness causing

transition to be hastened or delayed.
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CHAPTER 5 Natural boundary layer transition results

In conclusion, we evaluated the derived complex-lamellar velocity condition at two different

cross-flow locations and obtained the same results for the fully laminar location, the start of

intermittency, the end of intermittency and the fully turbulent location. This verifies that

our assumption of using a single cross-flow location to solve the complex-lamellar condition

is correct. It also verifies that solving the complex-lamellar condition at a cross-flow location

above the flat plate achieves the correct surface locations.
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CHAPTER 6

Separated flow transition over a separation

bubble

Since we achieved consistent results for the natural boundary layer transition case, we decided

to try solving our boundary layer transition equations for a more difficult case, separated flow

transition over a separation bubble. Utilizing separated flow transition through separation

bubbles is crucial in compressor and low-pressure turbine design, since controlling where

transition occurs can increase the performance of compressors and the efficiencies of low-

pressure turbines [1]. The difficulty in using separation bubbles to control performance by

forcing transition is that bubbles can exist in either a short form or long form. A short bubble

will have only a local displacement on the pressure distribution, where as a long bubble will

interact with the exterior flow causing significant changes in the overall pressure distribution

[4, 1]. So for a short bubble, the pressure distribution before and after separation will be

similar to a pressure distribution obtained without the presence of a separation bubble. On

60



CHAPTER 6 Separated flow transition over a separation bubble

the other hand, the long bubble effects the exterior flow so significantly that the extent

of the pressure distribution over the whole surface is completely different from a pressure

distribution obtained without the bubble. Therefore, since small changes in Reynolds number

can cause a short bubble to ‘burst’ and become long and cause dramatic losses in lift, it is

important to be able to predict where short and long bubbles will occur.

To solve this type of transition using the transition model outlined in Chapter 3, requires that,

at RexA , the velocity profile must be on the verge of separation. To satisfy this condition, we

will use the Pohlhausen velocity profile, Eq.(3.2) with the Pohlhausen pressure parameter,

λ = −12 as this term models the effect of the local adverse pressure gradient. For the

turbulent flow, we will again make use of Prandtl’s velocity profile, Eq.(3.11). By analyzing

the pressure distributions Gaster [4] obtained for his short and long bubble experiments, we

can justify this choice. For a short separation bubble, the pressure recovery region happens

over a short distance. Since the Prandtl velocity profile does not account for local pressure

gradients, we would expect the velocity profile to be satisfied near the end of the constant

pressure region. This would mean that the location of the turbulent velocity condition,

xB, will be located upstream of xr, however, since the distance between xr and the end of

the constant pressure region is short, we would expect the location of xB to still provide

acceptable results.

For a long separation bubble, the pressure recovery happens over a longer distance. As

well, the pressure peak is decreased resulting in the slope of the pressure distribution at the

reattachment point being more shallow. Therefore, since the slope at the reattachment point

is near zero, the pressure gradient would be minimal and we would expect Prandlt’s velocity

profile to provide an acceptable estimate of the turbulent velocity at this location.

To solve the separated flow test case, we will also use experimental correlations to determine

the effective leading edge of the turbulent boundary layer, Rext and Narasimha’s [27] extent

of the intermittency region, Rex|γ=0.75
−Rex|γ=0.25

.
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6.1 Effective leading edge of turbulent boundary layer

6.1 Determination of the effective leading edge of the turbulent

boundary layer

For a separated shear layer transitioning over a separation bubble, the pressure distribution

measured along the surface is used to determine the locations associated with separation,

the end of transition and reattachment [4, 1, 21]. The location where the constant pressure

region begins is the separation point and the location where the constant region ends is the

end of transition, and according to Mayle [1] the end of transition corresponds to the end of

intermittency. He determined the onset of transition to be located where the formation of

turbulent spots begin. To determine this location, he used the turbulence measurements of

Gaster [4] and Bellows [50] to determine a corresponding measure of the intermittency, γ(x).

With these intermittency measurements, he could use Narasimha [27] universal intermittency

distribution,

γ = 1− exp

(
−0.412

(x− xt)2

(x|γ=0.75 − x|γ=0.25)
2

)
(6.1)

to determine a function based on γ, F (γ),

F (γ) =
√
−ln(1− γ(x)) (6.2)

which can be calculated within the measurable region, 0.25 < γ < 0.75. Then by plotting

F (γ) versus x, a straight line is achieved. When this function is extrapolated to zero,

the corresponding x location is the onset of transition. This method was first introduced

by Narasimha [27], who stated that this is the most accurate definition of the onset of

transition as it happens to also be the effective leading edge of the fully turbulent boundary

layer. Therefore, Mayle [1] based his correlations on the concept of concentrated breakdown,

where the effective leading edge is at the same location as the start of intermittency, we can

use his correlation and experimental data from Gaster [4] to determine the effective leading

edge of the turbulent boundary layer, Rext .
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Mayle’s [1] experimental correlation for the length of the effective leading edge of the turbu-

lent boundary layer to the end of the constant pressure region, xTp is

RexTp −Rext = 400Re0.7θs (6.3)

Using the pressure distribution curve provided by Gaster [4] that corresponds to a measured

momentum thickness at separation, θs, we can locate the end of the constant pressure region

and calculate RexTp . By rearranging Eq.(6.3), we will determine the effective leading edge

of the turbulent boundary layer,

Rext = RexTp − 400Re0.7θs (6.4)

6.2 Length of the intermittency region with laminar separation

bubble present

In order to use Eqs.(3.21-3.24) to determine the slope of the difference in enstrophy density

function, η, we need to relate Mayle’s [1] transition region length, RexTp−Rext to Narasimha’s

[3] extent of the intermittency region, Rex|γ=0.75
− Rex|γ=0.25

.This is achieved by using the

relation [25]

Rex|γ=0.75
−Rex|γ=0.25

=

(
RexTp −Rext

)
3.36

(6.5)

= 119.05Re0.7θs (6.6)

Then the equations to determine the slope of the difference in enstrophy density function
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6.2 Length of intermittency region

become

0.5 =
3∑

n=1

Cn
(Rext + 154.42Re0.7θs −RexA)n

(RexB −RexA)n
(6.7)

0.25 =
3∑

n=1

Cn
(Rext + 99.476Re0.7θs −RexA)n

(RexB −RexA)n
(6.8)

8.257× 10−4

Re0.7θs
=

3∑
n=1

Cn
n(Rext + 154.42Re0.7θs −RexA)n−1

(RexB −RexA)n
(6.9)

We now have enough information to solve for RexA and RexB and then determine the lo-

cations of the start and end of intermittency, Rex0 and RexT , for a separated shear layer

transitioning over a separation bubble.
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CHAPTER 7

Separation flow transition over a separation

bubble: Results

We will solve the following set of 5 non-linear algebraic equations for separated flow over a

separation bubble.
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1

7

(
1

Re θ|x

) 6
7

 1

0.375
(
Rext
RL

(R−RL)
) 4

5


1
7

+
(2 + λ/6)

5
(
Rext
RL
∗R
) 1

2

−
λRe θ|x

(5)2
(
Rext
RL
∗R
)

−
3(2− λ/2)Re2θ|x

(5)3
(
Rext
RL
∗R
) 3

2

+
4(1− λ/6)Re3θ|x

(5)4
(
Rext
RL
∗R
)2
][

Rext
RL

(R− 1)
3∑

n=1

Cn
n+ 1

]

=

 Re θ|x

0.375
(
Rext
RL

(R−RL)
) 4

5


1
7

1 =
3∑

n=1

Cn

0.5 =
3∑

n=1

Cn
(Rext + 154.42Re0.7θs −

Rext
RL

)n(
Rext
RL

(R− 1)
)n (7.1)

0.25 =
3∑

n=1

Cn
(Rext + 99.476Re0.7θs −

Rext
RL

)n(
Rext
RL

(R− 1)
)n

8.257× 10−4

Re0.7θs
=

3∑
n=1

Cn
n(Rext + 154.42Re0.7θs −

Rext
RL

)n−1(
Rext
RL

(R− 1)
)n

Just like in the natural boundary layer transition case, we will use the numerical solver in

Matlab, with the convergence criteria outlined in Chapter 3, to obtain the solution for the

transition length ratios, R = RexB/RexA and RL = Rext/RexA and the series coefficients,

C1, C2 and C3.

For the cross-flow location, we chose a momentum thickness Reynolds number at separation

of Re θ|s = 394 as Gaster [4] has experimental data for a short separation bubble occurring at

this momentum thickness. To calculate the effective leading edge of the turbulent boundary

layer, Rext , we used the experimental correlation of Mayle [1], Eq.(6.4) along with the

location of the end of the constant pressure region from Gaster’s [4] experimental data. We
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CHAPTER 7 Separated flow transition: Results

will evaluate the complex-lamellar velocity condition, the first equation in the set, at a cross-

flow location corresponding to the momentum thickness at separation, Re θ|x = Re θ|s = 394.

As previously discussed in Chapter 3, multiple solutions were obtained when the set of 5

equations, Eq.(7.1) was solved. We determined that two of these solutions could represent

transition over a separation bubble. Both of these solutions had the same location for the

start and end of intermittency, however, they differed in locations of RexA and RexB . In the

one solution, the location of RexA was further upstream and the location of RexB was further

downstream. These observations are characteristics of a long separation bubble compared

to a short separation bubble. Therefore, it appeared that we obtained a short bubble and

long bubble solution at a single momentum thickness Reynolds number at separation. In

Gaster’s experimental data, he only obtained a single solution at the specified Reynolds

number however Mayle’s correlations can be used to obtain both a short and long bubble

solution at a single Reynolds number. Therefore, in Section 7.1 we compare the locations

and lengths associated with the short bubble solution to the experimental data of Gaster [4],

Mayle [1] and Narasimha [3]. Then in Section 7.2, we will compare only lengths associated

with the long bubble solution to the experimental correlations of Mayle [1] and Narasimha

[3].

7.1 Short separation bubble

We begin by solving the set of equations, Eq.(7.1), at Re θ|x = Re θ|s = 394. We will use

the assumptions that at RexA , the velocity is modelled with the Pohlhausen velocity profile

corresponding to separation, Eq.(3.2), at RexB , the velocity is modelled with the Prandtl

velocity profile, Eq.(3.11). We will specify λ = −12. From Gaster’s [4] experimental data,

the end of the constant pressure region occurs at RexTp = 5.49 × 105, then using this and

Mayle’s [1] correlation, Eq.(6.4) we can calculate the effective leading edge of the turbulent

boundary layer, Rext = 5.22× 105. We do not specify a value for the free-stream turbulence
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7.1 Short separation bubble

for this test case as it is not required within the equations to determine Rext . However,

this test case is for a flow with low free-stream turbulence levels since Mayle’s correlations

are only valid at low levels. Upon solving this configuration, we obtain the following short

bubble solution

C1 = −3.7525 C2 = 9.0025 C3 = −4.2500

RB = 1.0368 R = 1.0741 (7.2)

which corresponds to the fully laminar location at separation, RexA = 5.04 × 105 and the

fully turbulent location, RexB = 5.41× 105.

The difference in enstrophy density function, Eq.(3.15), is plotted against the Reynolds

number based on x between RexA and RexB . This is shown in Figure 7.1. From this
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Figure 7.1 – Difference in enstrophy density between RexA and RexB for short separation
bubble
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function, we obtain the start of intermittency to be at Rex0 = 5.25 × 105 and the end of

intermittency at RexT = 5.41 × 105. For this test case, the end of intermittency is at the

same location as the fully turbulent boundary condition.

In Figure 7.2, we illustrate a pictorial representation of the separated flow transition over a

short separation, where the laminar and turbulent boundary layer thickness is shown with the

corresponding x locations. This figure illustrations that we impose a fully laminar velocity
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Figure 7.2 – Pictorial representation of the locations of the Reynolds number based on x
associated with the short separation bubble results

profile at separation, however, nothing is imposed at the reattachment location. The flow at

reattachment is assumed to be fully turbulent based on experimental results [4]. Therefore

we can infer from our results, that the end of intermittency, the location of Prandtl’s fully

turbulent flow and reattachment, will occur at approximately the same location and the

pressure recovery from the end of intermittency to reattachment will occur very rapidly.
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7.1 Short separation bubble

7.1.1 Comparison of Reynolds number based on x with experimental data

In Table 7.1, we compare our results with the experimental data taken from Gaster [4].

Table 7.1 – Comparison between calculated results and Gaster’s [4] experimental data for a
short separation bubble at Re θ|s = 394

Reynolds number Gaster [4] Calculated % Difference
Experimental data

Rexs 4.99× 105 5.04× 105 1
RexTp 5.49× 105 5.41× 105 1
Rexr 5.59× 105 5.41× 105 3

The location of separation, RexA , that we obtained from the solution of the set of equations,

is 1% further downstream than the value corresponding to the start of the constant pressure

region in Gaster’s [4] experimental data. The location of the end of intermittency, RexT ,

that we obtained from the difference in enstrophy density function, η, is 1% upstream of the

value corresponding to the end of the constant pressure region in Gaster’s [4]experimental

data. The location of the reattachment point, RexB , that we obtained from the solution of

the set of equations, is 3% upstream from the measured reattachment point in Gaster’s [4]

experimental data.

Unfortunately, Gaster [4] does not mention the accuracy range for the pressure measure-

ments. However, he did use inclined manometers for the measurements which would have

required an approximation of the reading. As such, we could interpret the results we obtained

for separation and the end of the intermittency region to be the same as those obtained by

Gaster [4] for the start and end of the constant pressure region, respectively. It is not surpris-

ing that there is a slightly larger difference in the reattachment locations, since, Gaster [4]

was unable to measure the mean velocity due to the reverse flow region just above the reat-

tachment point. There was no instrument at the time that could determine the true mean

velocity in this region, therefore, Gaster [4] approximated the reattachment point using con-
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tour plots of constant velocity. Other experimentalists [21, 1] approximate the reattachment

point by measuring the pressure distribution with the separation bubble present and without

the separation bubble. When these two pressure distributions are plotted, the point where

the pressure distribution with the separation bubble matches the pressure distribution with-

out the bubble is the reattachment point. For short separation bubbles, the pressure recovery

from the end of the constant pressure region to the reattachment point is very rapid. We

also determined that the flow would also be fully turbulent at the end of intermittency as

RexB ≈ RexT and so can conclude that the flow reattaches at the same streamwise location

as the end of intermittency. This is consistent with the experimental data for short bubbles

that shows a sharp pressure recovery [4].

To illustrate that the local pressure gradient for the short bubble is minimal at xB we

reproduced Gaster’s [4] pressure distribution for the short bubble test case, which is shown

in Figure 7.3. Since xB is located within the constant pressure region, using Prandtl’s velocity

profile at xB is acceptable. As well, since the pressure recovery between xTp and xr occurs

over a minimal distance, using Prandtl’s velocity profile at xB still provided an accurate

measure of where reattachment would occur.

7.1.2 Comparison of the start of intermittency with experimental observation

From the previous analysis, we determined that the calculated locations of separation, the

end of intermittency and reattachment, were all the same as those measured experimentally.

The only location that could not be determined from the experimental data is the start

of intermittency. Mayle [1] determined correlations for the length of the constant pressure

region, the unstable laminar flow region, and the intermittency region. However, these

correlations are based on concentrated breakdown and therefore are most accurately applied

from the effective leading edge of the turbulent boundary layer. Therefore, since we are in

a nearly constant pressure region and experimental data for attached boundary layers has
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Figure 7.3 – Pressure distribution for short bubble reproduced from Gaster’s [4] experimental
data.

been used [1], we will make use of Narasimha’s estimate for the length of breakdown to verify

that the location of the start of intermittency is valid.

From the difference in enstrophy density function, η, we can determine the extent of the

intermittency region, Rexη=0.75 − Rexη=0.75 = 7.44 × 104 and the location of the start of

intermittency, Rex0 = 5.25× 105.

Then we can determine the length of breakdown, Rex0 − Rext as a percent of the extent of

intermittency
Rex0 −Rext

Rexη=0.75 −Rexη=0.75

= 0.37 (7.3)

The length of breakdown, Rex0−Rext , that we obtain from the difference in enstrophy density

function, η, is 37% of the extent of intermittency. This is consistent with Narasimha’s

[3] estimate of 1/3. Therefore, we can infer that the location we obtain for the start of
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intermittency would be the same as expected from experimental observation.

7.1.3 Mayle [1] correlations for short separation bubbles

Since we will be using Mayle’s [1] experimental correlations in determining the accuracy of

the long separation bubble results, we will determine how well the correlations predict the

lengths associated with the short bubble.

Mayle [1] has three length correlations for the different Reynolds numbers based on x of the

various regions. These lengths are all correlated with the momentum thickness Reynolds

number at separation. The correlation length of the entire constant pressure region for a

short separation bubble is,

RexTp −Rexs = 700Re0.7θs (7.4)

the length of the unstable laminar region is,

Rext −Rexs = 300Re0.7θs (7.5)

and the length of the transition region is

RexTp −Rext = 400Re0.7θs (7.6)

In Table 7.2 we compare Mayle’s correlations with the results we obtained.

The length from separation to the end of intermittency that we calculated from our results

is 19% shorter than estimated from Mayle’s correlation, Eq.(7.4). In determining this corre-

lation, Mayle [1] stated that ‘most of the data’ fell along the line corresponding to Eq.(7.4).

The length from separation to the effective leading edge of the turbulent boundary layer that

we calculated is 6% shorter than estimated from Mayle’s correlation, Eq.(7.5). The length
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7.1 Short separation bubble

Table 7.2 – Short bubble length comparison between calculated lengths and Mayle’s [1] ex-
perimental correlations

Region length Mayle [1] Calculated % Difference
Experimental Correlation

RexTp −Rexs 4.59× 104 3.73× 104 19
Rext −Rexs 1.97× 104 1.85× 104 6
RexTp −Rext 2.63× 104 1.88× 104 29

from the effective leading edge to the end of the intermittency region that we calculated is

29% shorter than estimated from Mayle’s correlation, Eq.(7.6). For this correlation, Mayle

[1] stated there was ‘considerable scatter’ in the data that was used to determine Eq.(7.6).

Since Mayle’s correlations were developed as approximations to scattered data and since

other researchers [51] found that these correlations provide a rough estimate of the region

lengths, the percent differences we obtained are not unexpected. For a rough estimate, we

could expect values to vary by 30%. This means that within the long separation bubble

results, we can expect similar differences.

7.1.4 Conclusions for short separation bubble

We determined the location of the fully laminar velocity at separation, RexA , and the fully

turbulent velocity, RexB , by solving the set of 5 non-linear equations, Eq.(7.1). These values

were the same as the experimental locations for separation and reattachment determined by

Gaster [4]. We determined the location of the end of intermittency, RexT , from the difference

in enstrophy difference function, η, and this value corresponded to the end of the constant

pressure region from the experimental data of Gaster [4].

From the difference in enstrophy density function, η, we were able to determine the start

of the intermittency, Rex0 . Since the start of intermittency can not be identified from the

pressure distribution, we calculated the length of breakdown, Rex0 − Rext , and verified

that the location we achieved for the start of intermittency is consistent with experimental
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observation of Narasimha [3].

Using RexA , determined from the solution of the set of non-linear equations, Eq.(7.1), RexT ,

determined from the difference in enstrophy density function, η, and Rext specified from

experimental data, we were able to compare lengths of the various regions to the experimental

correlations of Mayle [1]. The length of the unstable laminar region, Rext −RexA compared

well with the experimental correlation. The length of the upstream region, RexT − RexA ,

and the length of the transition region, RexT −Rext , did vary by 19% and 29%, respectively.

However, due to the scatter in the experimental data, Mayle’s correlations are only estimates

so we would expect higher percent differences.

Overall, we solved for the x locations and lengths associated with transition over a separation

bubble. By comparing these with the experimental data and correlations by Gaster [4], Mayle

[1] and Narasimha [3], we can conclude that solving the set of equations, Eq.(7.1), produces

consistent results for a short separation bubble.

7.2 Long separation bubble

Using the same set up, as outlined in Section 7.1, we obtained a long bubble solution by

solving the set of non-linear equations, Eq.(7.1),

C1 = −16.9806 C2 = 48.0815 C3 = −30.1009

RB = 1.1333 R = 1.2652 (7.7)

This result corresponds to the location of the fully laminar boundary condition at RexA =

4.61× 105 and the location of the fully turbulent boundary condition at RexB = 5.83× 105.

We can plot the difference in enstrophy density function, η, against the Reynolds number

based on x between RexA and RexB . This is shown in Figure 7.4. From this plot, we
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Figure 7.4 – Difference in enstrophy density between RexA and RexB for long separation
bubble

obtain the start of the intermittency, Rex0 = 5.25 × 105 and the end of intermittency,

RexT = 5.40 × 105. Between RexT and RexB , η goes above 1, this means that at the

perpendicular location, y = Reθs ,

ω2 >
[
ω2
lam + (ω2

turb − ω2
lam)

∣∣
xB

]
(7.8)

This means that the local enstrophy density is greater than baseline laminar enstrophy

density plus a scaling term. Since the enstrophy density is calculated as (∂u/∂y)2, a possible

explanation for why the local enstrophy density is be greater is that the boundary layer

becomes thicker through the region between RexT and RexB . This thickening could be the

result of the long separation bubble becoming thinner as it reattaches. A similar possibility

exists for why η is a larger negative between RexA and Rex0 . Through this region it could

be possible that the presence of the bubble cause the boundary layer to become thinner.
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When we compare the locations obtained for the long separation bubble with those obtained

for the short bubble, we see that the location of start of intermittency is the same, as is the

location of the end of intermittency. This is consistent with the experimental observation

made by Mayle [1], who noted that the length of the intermittency region depended on the

momentum thickness Reynolds number at separation and not whether the bubble length was

short or long.

Figure 7.4 also indicates that the fully turbulent boundary condition location, RexB is up-

stream of the end of intermittency. This implies that the turbulent flow at the end of

intermittency takes longer to develop into a fully turbulent state. This is consistent with the

experimental observations [1, 4] regarding long separation bubbles.

In Figure 7.5, we illustrate a pictorial representation of the separated flow transition over

a long separation, where the laminar and turbulent boundary layer thickness is shown with

the corresponding x locations. This figure illustrates that similar to the short separation
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Figure 7.5 – Pictorial representation of the x locations associated with the long separation
bubble results
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bubble, we impose a fully laminar velocity profile at separation, however, nothing is im-

posed at the reattachment location. For the short separation bubble, we determined that

the fully turbulent location was approximately the same as the experimental reattachment

location. Therefore, we could infer that for the long separation bubble, RexB ≈ Rexr and

that the pressure recovery will occur over a greater distance compared to the short bubble.

In Gaster’s [4] long bubble test cases the reattachment point was located where the local

pressure gradient was minimal, therefore, it seems reasonable to have used Prandtl’s velocity

profile at RexB .

7.2.1 Comparison with Mayle [1] experimental correlations for long separation

bubble

For long separation bubbles, Mayle [1] determined the experimental correlation for the length

of the constant pressure region to be

RexTp −Rexs = 1300Re0.7θs (7.9)

the length of the unstable laminar region to be

Rext −Rexs = 1000Re0.7θs (7.10)

and the length of the transition region to be

RexTp −Rext = 400Re0.7θs (7.11)

Since we do not know the Reynolds number based on the momentum thickness at the long

bubble separation location, RexA , we will still use the value, Reθs = 394 from the experi-

mental data of Gaster [4]. We expect this to still provide us with an accurate comparison,
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since, the momentum thickness Reynolds number between separation and transition varies

only slightly [1] so Reθt ≈ Reθs . Therefore, since the long bubble is transitioning at the same

location as the short bubble, we can use the same momentum thickness Reynolds number

to obtain consistent results.

In Table 7.3 we compare Mayle’s [1] correlations with the results we obtained.

Table 7.3 – Long bubble lengths calculated from our results comparison with Mayle’s [1]
experimental correlations

Region length Mayle [1] Calculated % Difference
Experimental Correlation

RexTp −Rexs 8.53× 104 7.93× 104 7
Rext −Rexs 6.56× 104 6.15× 104 6
RexTp −Rext 2.63× 104 1.78× 104 32

The length of the upstream region that we calculated from our results is 7% shorter than

estimated from Mayle’s correlation, Eq.(7.4). The length from separation to the effective

leading edge of the turbulent boundary layer that we calculated is 6% shorter than estimated

from Mayle’s correlation, Eq.(7.5). Finally, the length from the effective leading edge to the

end of the intermittency region that we calculated is 32% shorter than estimated from Mayle’s

correlation, Eq.(7.6).

Similar to the short bubble test case in Section 7.1.3, the length of the transition region,

RexT − Rext , that we obtain is much shorter than predicted from Mayle’s [1] correlation.

The interesting factor is that there is only a 3% difference between our calculated length

for the short bubble and the long bubble. Mayle [1] noted that even though there was

considerable scatter in the data for determining the correlation for the length of transition,

he was convinced that the length of transition was independent of whether the bubble was

short or long. With the results we obtained from the derived complex-lamellar decomposition

and the difference in enstrophy density function, we can also infer that the length of transition
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is independent of the bubble length.

Obtaining consistent results for the various lengths associated with transition over a sepa-

ration bubble, only tells us that the lengths are correct not that the x locations are correct.

It is the fact that the location of the start and end of intermittency, Rex0 and RexT , are

the same for the short and long bubble results that implies that because the lengths are

consistent, then the x locations obtained from the long bubble results are also correct.

7.2.2 Conclusions regarding the long separation bubble

By solving the set of non-linear equations, Eq.(7.1), we obtained a solution that corresponded

to a long separation bubble. We determined the separation point, RexA and the reattachment

point, RexB from the solution of these equations, and the start of intermittency, Rex0 , and

the end of intermittency, RexT , from the difference in enstrophy density function,η. Since

Gaster only has a single solution at the specified momentum thickness Reynolds number at

separation, we could not compare the location obtained for the long bubble. However, we

were able to compare the region lengths we obtained with the experimental correlations of

Mayle [1] for long separation bubbles. All of the region lengths were consistent with the

experiment correlations which implied that this second solution was indeed a long bubble

solution.

7.2.3 Conclusions regarding the comparison of short and long bubbles

When we compare the results we obtained for the short bubble with those for the long

bubble, we see that our results are consistent with several experimental observations. We

determined that the separation point, RexA , for the long bubble was further upstream than

the separation point for the short bubble. We determined the reattachment point, RexB , for

the long bubble was further downstream from the reattachment point of the short bubble.

The location of the end of intermittency, RexT , for a long bubble occurred upstream of the
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reattachment point, RexB , where as for a short bubble the end of intermittency coincides

with the reattachment point. This implies that the pressure recovery for a long bubble

occurs over a longer distance than for a short bubble. All of these results are consistent with

experimental data and observation by many researchers, such as Gaster [4], Mayle [1] and

Roberts [52]. Finally, our results imply that the length of the transition region, RexT −Rext ,

is independent of whether the separation bubble was short or long, just as Mayle [1] observed.

Overall, our analysis provided the locations of separation, the start of intermittency, the end

of intermittency and reattachment. From these locations, we could determine the lengths of

the different regions associated with separation bubble transition. To verify these locations

and lengths, we compared our results with the experimental data of Gaster [4], experimental

correlations of Mayle [1] and experimental observations of Narasimha [3].

Therefore, we can conclude that solving the set of equations, Eq.(7.1), produces consistent

results for both short and long separation bubbles. This implies that at a fixed location

for the effective leading edge of the turbulent boundary layer, the complex-lamellar velocity

condition provides the Reynolds number locations of where the short and long bubbles will

separate. This is something experimentalists [4, 1] have tried to predict in order to use

short bubbles to force transition and control gas turbine performance. The assumed slope of

the difference in enstrophy density function can be accurately determined using equations,

Eqs.(6.7 - 6.8). Finally, we obtain consistent locations for the start and end of intermittency

by bounding the intermittency region between a fully laminar velocity profile on the verge

of separation and a fully turbulent velocity profile, thereby indicating that our transition

model for separated flow in the presence of a separation bubble is correct.
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CHAPTER 8

Conclusions and Future work

8.1 Conclusions

From the results presented in the preceding chapters, we can make some conclusions regard-

ing the objectives outlined in Chapter 1. By deriving the complex-lamellar decomposition

of the velocity field across transition, we obtained a complex-lamellar velocity condition at

the fully turbulent boundary condition. This condition provided us with an equation that

identifies the locations of the fully laminar and fully turbulent boundary conditions. Fur-

thermore, it provided us with a method for identifying the start and end of intermittency. In

order to use this model, the location of the effective leading edge of the turbulent boundary

layer needs to be known beforehand.

For the natural boundary layer transition we identified the location of the start and end

of intermittency and these locations compared well with experimental data of Schubauer
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and Klebanoff [2]. We were also able to identify the breakdown region between the effective

leading edge of the turbulent boundary layer and the start of intermittency. This length

compared well with the experimental observation of Narasimha [3]. Finally, we obtained

the same results at two different cross-flow locations, thereby, indicating that evaluating the

complex-lamellar velocity condition above the flat plate achieves the correct surface locations.

For separated flow transition over a separation bubble, we obtained solutions for both a

short and long bubble. We identified the start and end of intermittency and these locations

remained the same for both the short and long bubble. The end of intermittency corre-

sponded with the end of the constant pressure region from Gaster’s [4] experimental data.

There was no experimental data for the start of intermittency, however, we compared the

length of breakdown with Narasimha’s [3] experimental estimate and it compared well. We

also identified the location of separation and reattachment for the short and long bubble. The

location of separation for the short bubble corresponded to the start of the constant pressure

region from Gaster’s [4] experimental data. Using Prandtl’s turbulent velocity profile at the

fully turbulent boundary condition produced consistent results for the short bubble reattach-

ment location as compared with Gaster’s [4] experimental data. There was no experimental

data to compare with the locations for the long bubble solution, however, we compared the

lengths of the unstable laminar region, transition region and constant pressure region, with

Mayle’s [1] experimental correlations. The length of regions were all within an acceptable

accuracy range. Therefore, with the lengths of the regions being consistent with experimen-

tal correlations and since the start and end of intermittency were the same for both the short

and long bubble, we could infer that the locations of separation and reattachment for the

long bubble were correct. For a long separation bubble, we illustrated that using Prandtl’s

velocity profile at the fully turbulent boundary condition was justified and would provide a

good estimate of the reattachment location.

Overall, the results illustrated that our boundary layer transition model that bounds the

intermittency region between a fully laminar and fully turbulent boundary condition provides
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consistent results for the start and end of intermittency for natural boundary layer transition

and separated flow transition over a separation bubble.

8.2 Future work

Currently, by describing the laminar velocity with the Pohlhausen velocity profile we are

able to take into account changes in pressure gradient of the laminar flow. Ideally it would

also be useful to have another parameter that could model the effects of surface roughness

and upstream disturbances. The commonality between these effects is a thinning of the

laminar boundary layer. Therefore, the first attempt to model these effects would be to

add a scaling parameter to the laminar boundary layer thickness and determine how the

transition locations are affected.

Both the natural boundary layer transition and separated flow transition over a separation

bubble cases were along a flat plate. The next step would be to implement a transition model

for an airfoil and turbine blade. A first attempt would be to determine the effective leading

edge of the turbulent boundary layer from experimental or CFD data. The Pohlhausen

pressure parameter could then be obtained from the pressure distribution and the laminar

velocity profile to be satisfied at RexA could be determined. Based on the results from the

current research, we can conclude that the turbulent velocity profile that is satisfied at RexB

has little influence on the location of the start and end of intermittency. Therefore, we would

still describe the turbulent velocity profile on an airfoil or turbine blade using the Prandtl

turbulent profile.

We would also like to consider implementing this model within a RANS solver. As our model

requires knowing the location of the effective leading of the turbulent boundary layer this

might have to be an iterative process. In theory we may be able to use the height of the wake

to determine possible locations for the effective leading edge. Once we have this location,

we could then determine the location of the start of intermittency and the η function from
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our model and use this within an algebraic transition model.
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APPENDIX A

Matlab code

% This program us ing part o f CsandRsol2 .m and runnested2 .m to experiment

% with d i f f e r n t Cn va lues . The purposes i s to f i n d d i f f e r e n t xL va lue s .

% ∗∗∗ For d i s s e r a t i o n , only Type 3 i s used , other types are incomplete ! ! ∗∗

%−−−−−−−−−−−−−−−− CsandRsol2 .m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% This program i s s e t up to s o l v e f o r 3 d i f f e r e n t s i t u a t i o n s .

% ∗∗∗∗∗∗∗∗∗ Type 1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Here we assume that RexL i s the AGS c o r r e l a t i o n f o r the s t a r t o f

% t r a n s i t i o n . We s o l v e the program f o r R0 and RexT .

%

% ∗∗∗∗∗∗∗∗∗ Type 2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Here we assume that R0 i s the AGS c o r r e l a t i o n f o r the s t a r t o f

% t r a n s i t i o n . We s o l v e the program f o r RexL and RexT .

%

% ∗∗∗∗∗∗∗∗∗ Type 3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This ve r s i on i s the most complex and i n c l u d e s some d i f f e r e n t parameters .
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% We l e t RagsS be the AGS s t a r t o f t r a n s i t i o n . We c a l c u l a t e R0 us ing

% Narasimha ’ s c o r r e l a t i o n f o r in t e rmi t t ency and p i l o t tube measurements :

% R0 = RagsS − 0 . 26∗ ( RagsE − RagsS ) where :

% RagsE − AGS end o f t r a n s i t i o n = ( (72/7 )∗ ( 1/0 . 375 )∗RethetaE )ˆ5/4 + R0t

% R0t − turbu l ent boundary l a y e r e f f e c t i v e l e ad ing edge = R0

% Then s o l v e f o r RexL and RexT

%

% There i s a l s o the opt ion to use the two d i f f e r e n t y va lue s .

% yvalue = 1 : y = the ta tu rb = k∗ theta lam

% yvalue = 2 : y = theta lam = theta tu rb /k

% ( t h i s i s not f u l l y coded up yet ! ! ! )

% ∗∗∗∗∗∗∗ Eqn 5 has been adjusted f o r yvalue= 1 but not 2 ! ! ! ! !

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ %

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ OUTPUT ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ %

% Rexl − end o f the f u l l y laminar r eg i on

% Rex0 mj − the s t a r t o f the in t e rmi t t ency reg i on determined by where our

% entrophy func t i on c r o s s e s the y a x i s

% Rext mj − s t a r t o f turbu l ent r eg i on determined by where our enstrophy

% func t i on goes above 1

% Rexft − s t a r t o f f u l l y turbu l ent r eg i on

%

%

c l f ;

c l e a r a l l ;

% ∗∗∗∗∗∗∗∗∗∗∗ Type − 1 : RexL = Res ; 2 : R0 = Res ; 3 : Reags = Res ∗∗∗∗∗∗∗∗∗ %

type = 3 ;

% ∗∗∗∗∗∗∗∗∗∗∗∗ yvalue − 1 : y=theta T , 2 : y=theta L ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ %

yvalue = 1 ;

% ∗∗∗∗∗∗∗∗∗∗∗∗ i n t e rmi t t ency − 1 : Cn(x−xL )/(xT−xL) = gamma, ∗∗∗∗∗∗∗∗∗∗∗∗∗ %
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% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2 : Cn(x−xL )/(xT−xL) = gamma dw/ dw f ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ %

inte rmi t t ency = 1 ;

% ∗∗∗∗∗∗∗∗ cntype − 1 : s o l v i n g f o r Cn, cntype − 2 : p r e s e t Cn values , ∗∗∗∗ %

% ∗∗∗∗∗∗∗∗ cntype − 3 : us ing s o l v e ∗∗∗∗∗ %

Cntype = 1 ;

% ∗∗∗∗∗ pres − 0 , f i g u r e s p r i n t out f o r d i s s e r t a t i o n , pres − 1 , f i g u r e s ∗ %

% ∗∗∗∗∗ pr in t out f o r p r e s en t a t i on

pres = 0 ;

% ∗∗∗∗ sep − 0 : ze ro p r e s su r e g rad i en t f low , 1 : separated f low ∗∗∗∗ %

sep = 0 ;

t e s t a = 1 ;

% ∗∗∗∗ Parameters f o r zero p r e s su r e and separated bubble ca s e s ∗∗∗∗∗∗∗∗∗∗ %

f o r t e s t a = 1

i f sep == 0 % Zero p r e s su r e

L=0;

Ks=1;

t =0.03;

L2=0;

% Case 1 For y=theta min and y=theta max

x0 = [2 ,4 ,−4 ,9 ,−4]

%x0 = [ 2 . 6 , 4 . 0 , −4 . 1 , 9 . 6 , −4 . 4 ]

%x0 = [2 . 62 , 4 . 04 , −4 . 19 , 9 . 60 , −4 . 40 ]

% Case 2 at both y va lues

%x0 = [ 0 . 1 , 1 . 0 1 , −1 . 6 , 2 , 0 . 6 ]

% Case 3

%x0 = [0 .1 , 5 , 20 , −65 ,46 ]

%x0 = [170 ,300 ,−17 ,48 ,−30]

%x0 = [0 .89 ,15 ,12 , −40 ,29 ]

%x0 = [2 ,4 ,−3 ,9 ,−5]

%x0 = [2 .637409 ,4 .304669 , −6 .139714 ,15 .428341 , −8 .288729 ]
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%x0 =[3 .4874 ,5 .8623 , −6 .2676 ,15 .8109 , −8 .5432 ]

e l s e i f sep == 1 % Separatat ion bubble

L=−12;

% Separat ion case 1

% ∗ NOTE: i f you use the i n i t i a l va lue below , you w i l l obta in ∗∗∗ %

% ∗ a d i f f e r e n t enstrophy func t i on shape ! Proving that the re ∗∗∗∗ %

% ∗ are d i f f e r e n t s o l u t i o n s from our equat ions . ∗∗∗ %

% ∗ I f you use the i n i t i a l va lues , x0 , s p e c i f i e d below ∗∗∗ %

% ∗ along with a Ks=1, then our r e s u l t s match Mayle ’ s ∗∗ %

% ∗ c o r r e l a t i o n f o r the l ength o f the in t e rmi t t ency reg i on and ∗∗ %

% ∗ f o r the l ength o f the laminar r eg i on f o r a shor t bubble . ∗∗∗ %

% shor t bubble y = t h e t a s =394 , 268 , 232

x0 = [1 .04 ,1 .1 , −4 ,10 , −5 ] ;

Ks = 2 . 2 9 8 ;

% long bubble y=t h e t a s =394 , 268 , 232

% x0 = [1 .2 ,1 .5 , −17 ,48 , −30 ] ;

% Ks = 1 ;

% Separat ion case 2

% Re theta s = 268 , 232

% x0 = [ 0 . 4 , 1 . 2 , − 1 . 6 , 1 . 9 3 , 0 . 6 7 ]

% Ks = 1

% Separat ion case 3

% ∗ NOTE 2 : i f you use the i n i t i a l va lue s g iven below and a ∗∗ %

% ∗ Ks = 1 , you get the s o l u t i o n o f xL = x0 ! This i s 3 d i f f e r e n t %

% ∗ s o l u t i o n s .

% y = the ta tu rb

% x0 = [ 0 . 8 , 1 . 1 , 1 . 2 , −0 . 9 , 0 . 6 ]
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% Ks = 1 . 1 ;

% Case 3

% t h e t a s = 268

% x0 = [ 0 . 9 9 , 3 . 7 0 , 5 9 . 7 , −1 8 2 . 2 , 1 2 3 . 5 ]

% Ks = 1 . 0 ;

% Separat ion case 4

% Re theta s = 232

% x0 = [ 0 . 4 , 1 . 2 , − 1 . 6 , 1 . 9 3 , 0 . 6 7 ]

% Ks = 1 .0

end

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ %

i f sep==0

Flam=6.91+12.75∗L2+63.64∗L2 ˆ2 ;

Retheta lam=(163+exp (Flam−Flam /6.91∗ t ) ) ;

e l s e i f sep==1

% shor t bubble

% Rethetax =268;

% Rexmax=12 .6∗458 .4/0 .023 ;

% long bubble

% Rethetax =232;

% Rexmax=12∗516/0.023;

% s h o r t e s t bubble

Rethetax =394;

Rexmax=11∗1147.2/0 .023 ;

% l o n g e s t bubble

% Rethetax =136;

% Rexmax=14 .5∗211 .2/0 .023 ;

end

90



CHAPTER A Matlab code

A=(2∗(37/315−L/945−Lˆ2/9072)∗(2−(116∗L)/315 . . .

+(2/945+1/120)∗Lˆ2+(2∗Lˆ 3 ) / 9 0 7 2 ) ) ˆ 0 . 5 ;

k =2.667;

Cs=30.2 ;

b = 3 . 3 6 ;

G25 = ( log (1−0.25)/(−0.412∗b ˆ 2 ) ) ˆ 0 . 5 ;

G50 = ( log (1−0.5)/(−0.412∗b ˆ 2 ) ) ˆ 0 . 5 ;

G75 = ( log (1−0.75)/(−0.412∗b ˆ 2 ) ) ˆ 0 . 5 ;

G40 = ( log (1−0.7)/(−0.412∗b ˆ 2 ) ) ˆ 0 . 5 ;

A/(37/315−L/945−Lˆ2/9072)

i f sep == 0

Res=(Retheta lam /A) ˆ 2 ; %Rexmin

Rethetae=k∗Retheta lam ;

RexagsEp = (72/7∗ (1/0 .375)∗ Rethetae ) ˆ ( 5 / 4 ) ;

i f t e s t a == 1

Rethetax=Retheta lam ;

e l s e i f t e s t a == 2

Rethetax=Rethetae ;

end

i f type == 1

Rexl = Res ;

e l s e i f type == 2

R0 = Res ;

e l s e i f type == 3

RagsS = Res ;

R0 = (1 .26∗RagsS − 0 .26∗RexagsEp ) / 1 . 2 6 ;

end

ReLT = Cs∗R0ˆ 0 . 7 5 ;

e l s e i f sep == 1

ReLT = 400∗ ( ( Rethetax ) ) ˆ 0 . 7 ;
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R0 = Rexmax − ReLT;

Res = R0 ;

RexagsEp= ReLT;

end

% This can be ignored f o r now . However , i f changing ’ type ’ changes %

% than t h i s w i l l need to be uncommented . %

% %E s t a b l i s h i n g type

% i f Cntype == 1

% i f type == 1

% x0 =[1.11 ,2 .5 ,−3 ,7 ,−3]

% %x0 =[1 .17 ,1 .8 , −0 .0004 , −0 .7 ,3 .4 , −1 .6 ]

% e l s e i f type == 2

% x0 =[1.11 ,1 .5 ,−3 ,7 ,−3] %works with eqn 1 ,3 ,5 ,6 ,7

% %x0 =[1 .17 ,1 .8 , −0 .0004 , −0 .7 ,3 .4 , −1 .6 ]

% e l s e i f ( type == 3)

% x0 = [2 ,3 ,−4 ,10 ,−5] % s o l v e s zero p r e s su r e g rad i en t case

% %x0 = [2 ,5 ,−16 ,49 ,−32] % s o l v e s s epa ra t i on bubble case

% %x0 = [42 ,85 ,−16 ,46 ,−29]

% %x0 = [ 0 . 8 , 1 . 5 , 1 . 4 , 0 . 6 , 0 . 9 , − 1 . 9 ]

% e l s e i f ( type == 4)

% x0 = [1∗10ˆ6 ,3 .9∗10ˆ6 ,−15 ,20 ,2 ,−6]

% end

% e l s e i f ( Cntype == 2)

% i f type == 3

% x0 = [ 1 . 0 6 , 1 . 5 ]

% e l s e i f type ==4

% x0 = [ 2 . 6∗1 0 ˆ 6 , 3 . 9∗1 0 ˆ 6 ]

% end

% end

opt ions=opt imset ( ’ Algorithm ’ , ’ t rus t−reg ion−r e f l e c t i v e ’ , ’ Display ’ . . .
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, ’ i t e r ’ , ’ MaxFunEvals ’ , 100000 , ’ MaxIter ’ , 1 0 0 0 0 0 ) ;

i f ( Cntype == 2)

[ x C0 C1 C2 C4 C6 f v a l ] = . . .

runnestedRLRT ( type , yvalue , in te rmit tency , L , Ks , . . .

k ,A, Rethetax , RexagsEp , Res , Cs , x0 )

e l s e i f ( Cntype == 1)

[ x C0 C1 C2 C3 C4 f v a l e x i t f l a g ] = . . .

runnested2 ( type , yvalue , in te rmit tency , . . .

L , Ks , k ,A, Rethetax , RexagsEp , Res , Cs , x0 , G25 , G50 , G75 , ReLT, G40 , R0)

e l s e i f ( Cntype == 3)

syms RB R C1 C2 C3

[RB R C0 C1 C2 C3 C4 ] = runnested3 ( type , yvalue , in te rmi t tency , L , . . .

Ks , k ,A, Rethetax , RexagsEp , Res , Cs , G25 , G50 , G75 , ReLT, G40)

end

x ( 1 ) ;

x ( 2 ) ;

R = x ( 2 ) ;

RB = x ( 1 ) ;

i f type == 1

R0 = x (1)∗Rexl ;

e l s e i f type == 2

Rexl = R0/x (1)

C6=0;

e l s e i f type == 3

Rexl = R0/x (1)

RexagsE = RexagsEp + R0 ;

e l s e i f type == 4

end

Rexft=x (2)∗Rexl

syms a
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Gamma 0 = s o l v e ( ( a − Rexl )/ ( Rexft−Rexl )∗C1 . . .

+(a − Rexl )ˆ2/( Rexft−Rexl )ˆ2∗C2 + ( a − Rexl )ˆ3/( Rexft−Rexl )ˆ3∗C3 . . .

+(a − Rexl )ˆ4/( Rexft−Rexl )ˆ4∗C4 − 0 ) ;

Rex0 mj = Gamma 0(2)

Gamma 1 = s o l v e ( ( a − Rexl )/ ( Rexft−Rexl )∗C1 . . .

+(a − Rexl )ˆ2/( Rexft−Rexl )ˆ2∗C2 + ( a − Rexl )ˆ3/( Rexft−Rexl )ˆ3∗C3 . . .

+(a − Rexl )ˆ4/( Rexft−Rexl )ˆ4∗C4 − 1 ) ;

Rext mj = Gamma 1(2)

Gamma 25 = s o l v e ( ( a − Rexl )/ ( Rexft−Rexl )∗C1 . . .

+(a − Rexl )ˆ2/( Rexft−Rexl )ˆ2∗C2 + ( a − Rexl )ˆ3/( Rexft−Rexl )ˆ3∗C3 . . .

+(a − Rexl )ˆ4/( Rexft−Rexl )ˆ4∗C4 − 0 . 2 5 ) ;

Rexg25 mj = Gamma 25(2)

Gamma 75 = s o l v e ( ( a − Rexl )/ ( Rexft−Rexl )∗C1 . . .

+(a − Rexl )ˆ2/( Rexft−Rexl )ˆ2∗C2 + ( a − Rexl )ˆ3/( Rexft−Rexl )ˆ3∗C3 . . .

+(a − Rexl )ˆ4/( Rexft−Rexl )ˆ4∗C4 − 0 . 7 5 ) ;

Rexg75 mj = Gamma 75(2)

Relen = Rexft − Rexl ;

% Rlen0T = Rext − R0

i =1;

f o r Rex = Rexl : Relen /1000 : Rexft

Gamma dmj( i ) = C0 + (Rex − Rexl )/ ( Rexft−Rexl )∗C1 . . .

+ (Rex − Rexl )ˆ2/( Rexft−Rexl )ˆ2∗C2 . . .

+ (Rex − Rexl )ˆ3/( Rexft−Rexl )ˆ3∗C3 . . .

+ (Rex − Rexl )ˆ4/( Rexft−Rexl )ˆ4∗C4 ;

Rex plot ( i ) = Rex ;

i f sep==0

i f type ==3

i f yvalue == 1

yd ivde l t a ( i ) = ( k∗A∗RagsS ˆ(1/2) )/ (5∗Ks∗Rex ˆ ( 1 / 2 ) ) ;

y d i v d e l t a t ( i ) = (0 .375∗ (7/72)∗RexagsEp ˆ ( 4 / 5 ) ) / . . .
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( 0 . 375∗ ( Rex−R0)∗ ( Rex−R0)ˆ(−1/5)) ;

% enstrophy / v o r t i c i t y through out r eg i on

dw f = (1/(7∗k∗A) ) ˆ 2 ∗ ( 7 / 7 2 ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp/Rexl )/ (R−RB) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS/Rexl ) ) / ( ( 5∗Ks)ˆ2∗R ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗ . . .

( RagsS/Rexl ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ (R)ˆ (3 /2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS/Rexl )ˆ2/( (5∗Ks)ˆ4∗ (R) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS/Rexl ) ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS/Rexl )ˆ3/( (5∗Ks)ˆ6∗ (R) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS/Rexl ) ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ (R) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ 6 ∗ . . .

( RagsS/Rexl )ˆ4/( (5∗Ks)ˆ8∗ (R) ˆ 4 ) ;

dw f2 = (1/(7∗k∗A) ∗ ( 7 / ( 7 2 ) ) ˆ ( 1 / 7 ) ∗ . . .

( ( RexagsEp/Rexl )/ (R−RB))ˆ (4/35 ) )ˆ2 . . .

−(((2+L/6)∗ ( RagsS/Rexl ) ˆ 0 . 5 ) / ( 5∗Ks∗Rˆ 0 . 5 ) . . .

−(L∗k∗A∗( RagsS/Rexl ) ) / ( ( 5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS/Rexl ) ˆ 1 . 5 ) / ( ( 5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS/Rexl )ˆ2 )/ ( (5∗Ks)ˆ4∗Rˆ 2 ) ) ˆ 2 ;

i f yd ivde l t a ( i ) > 1

w2 lam ( i ) = 0 ;

e l s e

w2 lam ( i )=−(−((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ ( Rex ) ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗ . . .

( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ ( Rex ) ˆ (3/ 2 ) ) . . .
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+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ ( Rex ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ ( Rex ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ ( Rex ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ ( Rex ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ 6 ∗ . . .

( RagsS )ˆ4/( (5∗Ks)ˆ8∗ ( Rex ) ˆ 4 ) ) ;

w2 lam2 ( i ) = (((2+L / 6 ) ∗ . . .

( RagsS ) ˆ 0 . 5 ) / ( 5∗Ks∗Rex ˆ 0 . 5 ) . . .

−(L∗k∗A∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗Rex) . . .

− (3∗(2−L/2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS ) ˆ 1 . 5 ) / ( ( 5∗Ks)ˆ3∗Rex ˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ2 )/ ( (5∗Ks)ˆ4∗Rex ˆ 2 ) ) ˆ 2 ;

end

i f ( ( Rex > R0) & ( y d i v d e l t a t ( i ) < 1) )

w2 turb ( i ) = (1/(7∗k∗A) ) ˆ 2 ∗ ( 7 / 7 2 ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp )/( Rex−R0 ) ) ˆ ( 8 / 3 5 ) ;

e l s e

w2 turb ( i ) = 0 ;

end

e l s e i f yvalue == 2

yd ivde l t a ( i ) = (A∗RagsS ˆ(1/2) )/ (5∗Ks∗Rexˆ(−1/2)∗Rex ) ;

y d i v d e l t a t ( i ) = (0 .375∗ (7/ (72∗ k ) ) ∗ . . .

RexagsEp ˆ ( 4 / 5 ) ) / ( 0 . 3 7 5∗ ( Rex−R0)∗ ( Rex−R0)ˆ(−1/5)) ;

dw f = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp/Rexl )/ (R−RB) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS/Rexl ) ) / ( ( 5∗Ks)ˆ2∗R ) . . .

+ (2∗L∗(2+L/6)∗A∗ . . .
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( RagsS/Rexl ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ (R)ˆ (3 /2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ 2 ∗ . . .

( RagsS/Rexl )ˆ2/( (5∗Ks)ˆ4∗ (R) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS/Rexl ) ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ 4 ∗ . . .

( RagsS/Rexl )ˆ3/( (5∗Ks)ˆ6∗ (R) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ 5 ∗ . . .

( RagsS/Rexl ) ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ (R) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS/Rexl )ˆ4/( (5∗Ks)ˆ8∗ (R) ˆ 4 ) ;

i f yd ivde l t a ( i ) > 1

w2 lam ( i ) = 0 ;

e l s e

w2 lam ( i ) = −(−((2+L / 6 ) ˆ 2 ∗ . . .

( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ ( Rex ) ) . . .

+ (2∗L∗(2+L/6)∗A∗ . . .

( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ ( Rex ) ˆ (3/ 2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ ( Rex ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ ( Rex ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ ( Rex ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ ( Rex ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ 6 ∗ . . .

( RagsS )ˆ4/( (5∗Ks)ˆ8∗ ( Rex ) ˆ 4 ) ) ;

end

i f ( ( Rex > R0) & ( y d i v d e l t a t ( i ) < 1) )

w2 turb ( i ) = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp )/( Rex−R0 ) ) ˆ ( 8 / 3 5 ) ;

e l s e

w2 turb ( i ) = 0 ;
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end

end

% enst and vort are without U/nu and xagsS terms

i f i n t e rmi t t ency == 1

enst ( i ) = Gamma dmj( i ) +w2 lam ( i )/ dw f ;

e n s t l i n ( i ) =(1− Gamma dmj( i ) )∗w2 lam ( i ) . . .

+ Gamma dmj( i )∗w2 turb ( i ) ;

e n s t n o n l i n ( i ) = Gamma dmj( i )∗ ( dw f −(w2 turb ( i ) . . .

− w2 lam ( i ) ) ) ;

e l s e i f i n t e rmi t t ency == 2

enst ( i ) = Gamma dmj( i )∗ dw f +w2 lam ( i ) ;

end

vort ( i ) = s q r t ( enst ( i ) ) ;

vort2 ( i ) = −vort ( i ) ;

enst lam ( i ) = w2 lam ( i ) ;

end

end

i=i +1;

end

j =1;

f o r Rexn = R0 : ( Rext mj−R0)/1000 : Rext mj

i f i n t e rmi t t ency == 1

Gamma dnr( j ) = 1−exp (−(0 .412∗3.36ˆ2∗(Rexn−R0)ˆ2)/ (ReLT) ˆ 2 ) ;

Rexn plot ( j ) = Rexn ;

j=j +1;

e l s e i f i n t e rmi t t ency == 2

i f ( type == 3 && yvalue == 1)

dw f = (1/(7∗k∗A) ) ˆ 2 ∗ ( 7 / 7 2 ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp/Rexl )/ (R−RB) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS/Rexl ) ) / ( ( 5∗Ks)ˆ2∗R ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗ . . .
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( RagsS/Rexl ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ (R)ˆ (3 /2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS/Rexl )ˆ2/( (5∗Ks)ˆ4∗ (R) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS/Rexl ) ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS/Rexl )ˆ3/( (5∗Ks)ˆ6∗ (R) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS/Rexl ) ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ (R) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ6∗( RagsS/Rexl )ˆ4/( (5∗Ks)ˆ8∗ (R) ˆ 4 ) ;

en s t tu rb ( j ) = (1/(7∗k∗A) ) ˆ 2 ∗ ( 7 / 7 2 ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp )/( Rexn − R0 ) ) ˆ ( 8 / 3 5 ) ;

i f Rexn == R0

dw( j ) = − ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ ( Rexn ) ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗ . . .

( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ ( Rexn )ˆ ( 3/2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ ( Rexn ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ ( Rexn ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ ( Rexn ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ ( Rexn ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ 6 ∗ . . .

( RagsS )ˆ4/( (5∗Ks)ˆ8∗ ( Rexn ) ˆ 4 ) ;

e l s e

dw( j ) = (1/(7∗k∗A) ) ˆ 2 ∗ ( 7 / 7 2 ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp )/( Rexn − R0 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ ( Rexn ) ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗ . . .

( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ ( Rexn )ˆ ( 3/2 ) ) . . .
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+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ ( Rexn ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ ( Rexn ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ ( Rexn ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ ( Rexn ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ 6 ∗ . . .

( RagsS )ˆ4/( (5∗Ks)ˆ8∗ ( Rexn ) ˆ 4 ) ;

end

e l s e i f ( type == 3 && yvalue == 2)

dw f = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp/Rexl )/ (R−RB) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS/Rexl ) ) / ( ( 5∗Ks)ˆ2∗R ) . . .

+ (2∗L∗(2+L/6)∗A∗ . . .

( RagsS/Rexl ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ (R)ˆ (3 /2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ 2 ∗ . . .

( RagsS/Rexl )ˆ2/( (5∗Ks)ˆ4∗ (R) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS/Rexl ) ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ 4 ∗ . . .

( RagsS/Rexl )ˆ3/( (5∗Ks)ˆ6∗ (R) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ 5 ∗ . . .

( RagsS/Rexl ) ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ (R) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS/Rexl )ˆ4/( (5∗Ks)ˆ8∗ (R) ˆ 4 ) ;

i f Rexn == R0

dw( j ) = − ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ ( Rexn ) ) . . .

+ (2∗L∗(2+L/6)∗A∗ . . .

( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ ( Rexn )ˆ ( 3/2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ ( Rexn ) ˆ 2 ) . . .
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− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ ( Rexn ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ ( Rexn ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ ( Rexn ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks)ˆ8∗ ( Rexn ) ˆ 4 ) ;

e l s e

dw( j ) = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp )/( Rexn − R0 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ ( Rexn ) ) . . .

+ (2∗L∗(2+L/6)∗A∗ . . .

( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks)ˆ3∗ ( Rexn )ˆ ( 3/2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ ( Rexn ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ ( Rexn ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ ( Rexn ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ ( Rexn ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks)ˆ8∗ ( Rexn ) ˆ 4 ) ;

end

ens t tu rb ( j ) = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 ) ∗ . . .

( ( RexagsEp )/( Rexn − R0 ) ) ˆ ( 8 / 3 5 ) ;

end

Gamma dnr( j ) = (1−exp (−(0 .412∗3.36ˆ2∗(Rexn−R0 ) ˆ 2 ) / . . .

(Cs∗R0ˆ0 . 75 )ˆ2 ) )∗dw( j )/ dw f ;

Rexn plot ( j ) = Rexn ;

j=j +1;

end

end
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i f sep == 1

Retheta s t = Rethetax ;

Rex0T Mayle = 400∗Retheta s t ˆ0 .7 % Mayle ’ s i n t e rm i t t ency l ength

RextT mj = Rext mj − R0 % Our in t e rmi t t ency l ength

Rex0T mj = Rext mj − Rex0 mj

RexL0 Mayle sb = 300∗Retheta s t ˆ0 .7 % Mayle ’ s sb lam length

RexL0 Mayle lb = 1000∗Retheta s t ˆ0 .7 % Mayle ’ s lb lam length

RexLt mj = R0 − Rexl % Our laminar r eg i on l ength

RexL0 mj = Rex0 mj − Rexl

RexST Mayle sb = 700∗Retheta s t ˆ0 .7

ResST Mayle lb = 1300∗Retheta s t ˆ0 .7

RexST mj = Rext mj − Rexl

end

% Plot s f o r the proposa l / d i s s e r t a t i o n

i f pres == 1

i f (R0 < Rexl )

f i g u r e (3 )

p l o t ( Rexn plot , Gamma dnr , ’ r−− ’ , ’LineWidth ’ , 1 . 5 )

%semi logx ( Rex plot , Gamma dmj , Rexn plot , Gamma dnr)

legend ( ’ D i f f e r e n c e in enstrophy dens i ty ’ , . . .

’ Narasimha Inte rmi t t ency Di s t r ibu t i on ’ ) ; . . .

% , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

%x l a b e l ( ’ Reynolds Number ’ , ’ fontname ’ , ’ Times New Roman ’ , . . .

% ’ f o n t s i z e ’ , 1 2 )

y l a b e l ( ’ Enstropy dens i ty funct ion ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

%a x i s ( [ 10ˆ0 4∗10ˆ6 −0.7 1 . 2 ] )

a x i s ( [ R0 Rexft 0 2 ] )

% s e t ( gca , ’ XTick ’ , [ R0 Rexl Rexft ] )

% s e t ( gca , ’ XTickLabel ’ , { ’ Re x0p ’ , ’ Re xFL ’ , ’ Re xFT ’ } )
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g r id on

f i g u r e (4 )

p l o t ( Rex plot , Gamma dmj, ’− r ’ , ’ LineWidth ’ , 1 . 5 )

x l a b e l ( ’ Re x ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

y l a b e l ( ’ D i f f e r e n c e in enstrophy dens i ty ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

%a x i s ( [ 9∗10ˆ5 3.9∗10ˆ6 −0.7 1 ] )

a x i s ( [ Rexl Rexft min (Gamma dmj)−0.1 max(Gamma dmj)+0 .1 ] )

% s e t ( gca , ’ XTick ’ , [ Rexl Rexft ] )

% s e t ( gca , ’ XTickLabel ’ , { ’ Re xL ’ , ’ Re xFT ’ } )

% s e t ( gca , ’ Gr idLineStyle ’ , ’ − ’ )

e l s e

i f sep == 0

f i g u r e (3 )

p l o t ( Rexn plot ( 3 5 2 : 7 7 2 ) , Gamma dnr ( 3 5 2 : 7 7 2 ) , . . .

’ k− ’ , ’ LineWidth ’ , 1 . 5 )

%semi logx ( Rex plot , Gamma dmj , Rexn plot , Gamma dnr)

%legend ( ’ D i f f e r e n c e in enstrophy dens i ty ’ , . . .

% ’ Narashima Inte rmi t t ency Di s t r ibu t i on ’ ) ; . . .

% %, ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

%x l a b e l ( ’ Reynolds Number ’ , ’ fontname ’ , ’ Times New Roman ’ , . . .

% ’ f o n t s i z e ’ , 1 2 )

y l a b e l ( ’ Intermittency , \gamma’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 )

a x i s ( [ 2 . 6555∗10ˆ6 Rexft 0 1 ] )

% i f sep == 0

% a x i s ( [ Rex0 mj Rexft 0 1 ] )

% e l s e i f sep == 1

% a x i s ( [ Rex0 mj Rexft 0 2 ] )

% end

s e t ( gca , ’ XTick ’ , [ 2 . 6 5 5 5∗1 0 ˆ 6 Rexn plot ( 3 5 2 ) . . .

Rexn plot (772) Rexft ] )

s e t ( gca , ’ XTickLabel ’ , { ’ ’ , ’ ’ , ’ ’ , ’ ’ } )
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t ex t (2 .6555∗10ˆ6 , −0 .06 , ’ x 0 ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 ) ;

t ex t ( Rexn plot (352) , −0 .06 , ’ x | {\gamma= 0 . 2 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 ) ;

t ex t ( Rexn plot (772) , −0 .06 , ’ x | {\gamma= 0 . 7 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 ) ;

t ex t ( Rexft , −0 .06 , ’ x T ’ , ’ fontname ’ , ’ Times New Roman ’ , . . .

’ f o n t s i z e ’ , 1 6 ) ;

g r i d on

f i g u r e (6 )

p l o t ( Rex plot , Gamma dmj , ’ r −− ’ , . . .

Rexn plot (352) , Gamma dnr (352 ) , ’∗k ’ , . . .

Rexn plot (546) , Gamma dnr (546 ) , ’∗k ’ , . . .

Rexn plot ( 5 1 0 : 5 8 0 ) , Gamma dnr ( 5 1 0 : 5 8 0 ) , . . .

’ k− ’ , ’ LineWidth ’ , 1 . 5 )

%semi logx ( Rex plot , Gamma dmj , Rexn plot , Gamma dnr)

legend ( ’\ eta ’ , ’ \gamma’ , ’ l o ca t i on ’ , ’ NorthWest ’ )

%x l a b e l ( ’ Reynolds Number ’ , ’ fontname ’ , ’ Times New Roman ’ , . . .

% ’ f o n t s i z e ’ , 1 2 )

y l a b e l ( ’\ eta ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 )

a x i s ( [ Rexl Rexft min (Gamma dmj)−0.05 max(Gamma dmj)+0 .05 ] )

% i f sep == 0

% a x i s ( [ Rex0 mj Rexft 0 1 ] )

% e l s e i f sep == 1

% a x i s ( [ Rex0 mj Rexft 0 2 ] )

% end

s e t ( gca , ’ XTick ’ , [ Rexl 2 .6555∗10ˆ6 Rexn plot ( 3 5 2 ) . . .

Rexn plot (772) Rexft ] )

s e t ( gca , ’ XTickLabel ’ , { ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ } )

t ex t ( Rexl , −0 .65 , ’ x A ’ , ’ fontname ’ , ’ Times New Roman ’ , . . .

’ f o n t s i z e ’ , 1 6 )

t ex t (2.6555∗10ˆ6−5∗10ˆ4 ,−0.65 , ’ x 0 ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 ) ;
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t ex t ( Rexn plot (352)−6∗10ˆ4 ,−0.65 , ’ x | {\gamma= 0 . 2 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 ) ;

t ex t ( Rexn plot (772)−2∗10ˆ5 ,−0.65 , ’ x | {\gamma= 0 . 7 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 ) ;

t ex t ( Rexft −7∗10ˆ4 ,−0.65 , ’ x T \approx x B ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 6 ) ;

annotat ion ( ’ l i n e ’ , [ 0 . 1 3 5 0 . 9 ] , [ 0 . 3 9 7 0 . 3 9 7 ] , ’ L ineSty le ’ , . . .

’− ’ , ’ LineWidth ’ , 1 . 0 ) ;

annotat ion ( ’ l i n e ’ , [ 0 . 5 9 9 0 . 5 9 9 ] , [ 0 . 1 2 0 . 3 9 ] , ’ L ineSty le ’ , . . .

’−− ’ , ’LineWidth ’ , 1 . 0 ) ;

annotat ion ( ’ l i n e ’ , [ 0 . 6 7 0 . 6 7 ] , [ 0 . 1 2 0 . 5 1 ] , ’ L ineSty le ’ , . . .

’−− ’ , ’LineWidth ’ , 1 . 0 ) ;

annotat ion ( ’ l i n e ’ , [ 0 . 8 2 3 0 . 8 2 3 ] , [ 0 . 1 2 0 . 7 8 ] , ’ L ineSty le ’ . . .

, ’−− ’ , ’ LineWidth ’ , 1 . 0 ) ;

g r i d on

end

f i g u r e (4 )

p l o t ( Rex plot , Gamma dmj,’−−k ’ , ’ LineWidth ’ , 1 . 5 )

g r id on

i f sep == 0

x l a b e l ( ’ Re x ’ , ’ fontname ’ , ’ Times New Roman’ , ’ FontSize ’ , . . .

12 , ’ FontWeight ’ , ’BOLD’ )

y l a b e l ( ’ D i f f e r e n c e in enstrophy dens i ty funct ion , \ eta ’ , . . .

’ fontname ’ , ’ Times New Roman ’ , . . .

’ f o n t s i z e ’ , 1 2 , ’ FontWeight ’ , ’BOLD’ )

a x i s ( [ Rexl Rexft min (Gamma dmj)−0.05 max(Gamma dmj)+0 .05 ] )

annotat ion ( ’ arrow ’ , [ 0 . 1 7 5 , 0 . 1 3 5 ] , [ 0 . 4 9 5 , 0 . 4 0 7 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , ’ HeadWidth ’ , 7 , . . .

’ L ineSty le ’ , ’−− ’)

t ex t ( Rexl +6∗10ˆ4 ,0 .23 , ’ Re {x A } ’ , ’ FontSize ’ , 1 6 )

t ex t (R0−3 .5∗10ˆ4 ,0 .23 , ’ Re { x t } ’ , ’ FontSize ’ , 1 6 )

t ex t (R0−2 .5∗10ˆ4 ,0 .0 , ’\mid ’ ) ; . . .

t ex t (R0−2 .5∗10ˆ4 ,0 .1 , ’\mid ’ ) ; . . .
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t ex t (R0−2 .5∗10ˆ4 ,0 .2 , ’\mid ’ )

t ex t (2.66∗10ˆ6−5∗10ˆ4 ,−0.35 , ’ Re {x 0 } ’ , ’ FontSize ’ , 1 6 )

t ex t (2 .66∗10ˆ6 −2 .5∗10ˆ4 ,0 .05 , ’\mid ’ ) ; . . .

t ex t (2.66∗10ˆ6−2.5∗10ˆ4 ,−0.05 , ’\mid ’ )

t ex t (2.66∗10ˆ6−2.5∗10ˆ4 ,−0.15 , ’\mid ’ )

t ex t ( Rexft −7∗10ˆ5 ,−0.35 , ’ Re {x T}\approx Re {x B } ’ , . . .

’ FontSize ’ , 1 6 )

annotat ion ( ’ arrow ’ , [ 0 . 7 9 , 0 . 9 0 ] , [ 0 . 2 9 , 0 . 3 9 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , ’ HeadWidth ’ , 7 , . . .

’ L ineSty le ’ , ’−− ’)

annotat ion ( ’ l i n e ’ , [ 0 . 1 3 0 . 9 ] , [ 0 . 3 9 7 5 0 . 3 9 7 5 ] , . . .

’ L ineSty le ’ , ’ − ’ )

e l s e i f ( sep == 1 && Rexft <5.8∗10ˆ5)

legend ( ’ shor t bubble ’ )

a x i s ( [ 4 . 6118∗10ˆ5 5.8341∗10ˆ5 −1.7794 1 . 8 7 1 7 ] )

s e t ( gca , ’ XTicklabelMode ’ , ’ manual ’ , ’ XTickLabel ’ , [ ] )

s e t ( gca , ’ YTicklabelMode ’ , ’ manual ’ , ’ YTickLabel ’ , [ ] )

g r i d o f f

annotat ion ( ’ arrow ’ , [ 0 . 4 , 0 . 4 ] , [ 0 . 5 7 , 0 . 5 2 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , ’ HeadWidth ’ , 7 , . . .

’ L ineSty le ’ , ’−− ’)

t ex t ( Rexl −5∗10ˆ3 ,0 .21 , ’ Re {x A } ’ , ’ FontSize ’ , 1 6 )

e l s e i f ( sep == 1 && Rex0 mj == Rexl )

%a x i s ( [ Rexl Rexft 0 1 ] )

% s e t ( gca , ’ XTick ’ , [ Rexl Rexft ] )

% s e t ( gca , ’ XTickLabel ’ , { ’ Re xFL ’ , ’ Re xFT ’ } )

% s e t ( gca , ’ Gr idLineStyle ’ , ’ − ’ )

e l s e i f ( sep == 1 && Rexft>Rext mj )

legend ( ’ long bubble ’ )

min (Gamma dmj)−0.05

max(Gamma dmj)+0.05
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x l a b e l ( ’ Re x ’ , ’ fontname ’ , ’ Times New Roman’ , ’ FontSize ’ , . . .

12 , ’ FontWeight ’ , ’BOLD’ )

y l a b e l ( ’ D i f f e r e n c e in enstrophy dens i ty funct ion , \ eta ’ , . . .

’ fontname ’ , ’ Times New Roman ’ , . . .

’ f o n t s i z e ’ , 1 2 , ’ FontWeight ’ , ’BOLD’ )

a x i s ( [ Rexl Rexft min (Gamma dmj)−0.05 max(Gamma dmj)+0 .05 ] )

annotat ion ( ’ arrow ’ , [ 0 . 1 7 , 0 . 1 4 ] , [ 0 . 5 9 5 , 0 . 5 1 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , . . .

’ HeadWidth ’ , 7 , ’ L ineSty le ’ , ’−− ’)

%arrow ( [ 0 0 ] , [ 0 . 1 0 . 1 ] )

t ex t ( Rexl +1∗10ˆ3 ,0 .45 , ’ Re {x A } ’ , ’ FontSize ’ , 1 6 , ’ co lo r ’ , ’ r ’ )

t ex t (R0−4∗10ˆ3 ,0 .45 , ’ Re { x t } ’ , ’ FontSize ’ , 1 6 )

t ex t (R0−8∗10ˆ2 ,0 .0 , ’\mid ’ ) ; t ex t (R0−8∗10ˆ2 ,0 .2 , ’\mid ’ ) ;

t ex t (R0−8∗10ˆ2 ,0 .4 , ’\mid ’ ) ;% text (R0 , 0 . 2 9 , ’ \mid ’ ) ;

t ex t (5.25398∗10ˆ5−2∗10ˆ3 ,−0.83 , ’ Re {x 0 } ’ , ’ FontSize ’ , 1 6 )

t ex t (5 .25398∗10ˆ5−1∗10ˆ3 ,0 .05 , ’\mid ’ ) ; . . .

t ex t (5.25398∗10ˆ5−1∗10ˆ3 ,−0.15 , ’\mid ’ ) ;

t ex t (5.25398∗10ˆ5−1∗10ˆ3 ,−0.35 , ’\mid ’ ) ;

t ex t (5.40246∗10ˆ5−2∗10ˆ3 ,−0.83 , ’ Re {x T } ’ , ’ FontSize ’ , 1 6 )

t ex t (5 .40246∗10ˆ5−1∗10ˆ3 ,0 .05 , ’\mid ’ ) ; . . .

t ex t (5.40246∗10ˆ5−1∗10ˆ3 ,−0.15 , ’\mid ’ ) ;

t ex t (5.40246∗10ˆ5−1∗10ˆ3 ,−0.35 , ’\mid ’ ) ;

t ex t (5 .40246∗10ˆ5−1∗10ˆ3 ,0 .25 , ’\mid ’ ) ; . . .

t ex t (5 .40246∗10ˆ5−1∗10ˆ3 ,0 .45 , ’\mid ’ ) ;

t ex t (5 .40246∗10ˆ5−1∗10ˆ3 ,0 .65 , ’\mid ’ ) ; . . .

t ex t (5 .40246∗10ˆ5−1∗10ˆ3 ,0 .85 , ’\mid ’ ) ;

t ex t (5 .40246∗10ˆ5−1∗10ˆ3 ,1 .05 , ’\mid ’ ) ;

annotat ion ( ’ arrow ’ , [ 0 . 8 6 , 0 . 9 0 ] , [ 0 . 3 9 , 0 . 5 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , . . .

’ HeadWidth ’ , 7 , ’ L ineSty le ’ , ’−− ’)

t ex t ( Rexft −1.5∗10ˆ4 ,−0.83 , ’ Re {x B } ’ , ’ FontSize ’ , . . .
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16 , ’ co lo r ’ , ’ r ’ )

annotat ion ( ’ l i n e ’ , [ 0 . 1 3 5 0 . 9 ] , [ 0 . 5 0 5 0 . 5 0 5 ] , . . .

’ L ineSty le ’ , ’ − ’ )

end

%hold on

end

e l s e i f pres == 0

i f sep == 0

f i g u r e (1 )

i=1

f o r x = 0 : 0 . 0 1 : 3 . 5

i n t ( i ) = 1−exp (−0.412∗x ˆ 2 ) ;

p l o t i n t ( i ) = x ;

i=i +1;

end

p lo t ( p l o t i n t , int , ’ k− ’ , ’ LineWidth ’ , 1 . 5 )

y l a b e l ( ’ Intermittency , \gamma’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

x l a b e l ( ’\ xi ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

%x l a b e l ( ’{ ( x−x t )}/{ ( x | {\gamma=0.75} − x | {\gamma=0.25})} ’ )

g r i d on

f i g u r e (3 )

p l o t ( Rexn plot ( 3 5 2 : 7 7 2 ) , Gamma dnr ( 3 5 2 : 7 7 2 ) , ’ k− ’ , ’ LineWidth ’ , 1 . 5 )

y l a b e l ( ’ Intermittency , \gamma’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

a x i s ( [ 2 . 6555∗10ˆ6 Rexft 0 1 ] )

% i f sep == 0

% a x i s ( [ Rex0 mj Rexft 0 1 ] )

% e l s e i f sep == 1

% a x i s ( [ Rex0 mj Rexft 0 2 ] )

% end

s e t ( gca , ’ XTick ’ , [ 2 . 6 5 5 5∗1 0 ˆ 6 Rexn plot (352) Rexn plot (772) Rexft ] )

s e t ( gca , ’ XTickLabel ’ , { ’ ’ , ’ ’ , ’ ’ , ’ ’ } )
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t ex t (2 .6555∗10ˆ6 , −0 .06 , ’ x 0 ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 ) ;

t ex t ( Rexn plot (352) , −0 .06 , ’ x | {\gamma= 0 . 2 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 ) ;

t ex t ( Rexn plot (772) , −0 .06 , ’ x | {\gamma= 0 . 7 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 ) ;

t ex t ( Rexft , −0 .06 , ’ x T ’ , ’ fontname ’ , ’ Times New Roman ’ , . . .

’ f o n t s i z e ’ , 1 2 ) ;

g r i d on

f i g u r e (6 )

p l o t ( Rex plot , Gamma dmj , ’ r− ’ , Rexn plot ( 3 5 2 : 7 7 2 ) , . . .

Gamma dnr ( 3 5 2 : 7 7 2 ) , ’ k−− ’ , ’LineWidth ’ , 1 . 5 )

%semi logx ( Rex plot , Gamma dmj , Rexn plot , Gamma dnr)

legend ( ’\ eta ’ , ’ \gamma ’ ) ;

y l a b e l ( ’\ eta ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

a x i s ( [ Rexl Rexft min (Gamma dmj)−0.05 max(Gamma dmj)+0 .05 ] )

% i f sep == 0

% a x i s ( [ Rex0 mj Rexft 0 1 ] )

% e l s e i f sep == 1

% a x i s ( [ Rex0 mj Rexft 0 2 ] )

% end

s e t ( gca , ’ XTick ’ , [ Rexl 2 .6555∗10ˆ6 Rexn plot (352) Rexn plot (772) Rexft ] )

s e t ( gca , ’ XTickLabel ’ , { ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ } )

t ex t ( Rexl , −0 .65 , ’ x A ’ , ’ fontname ’ , ’ Times New Roman ’ , . . .

’ f o n t s i z e ’ , 1 2 )

t ex t (2.6555∗10ˆ6−5∗10ˆ4 ,−0.65 , ’ x 0 ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 ) ;

t ex t ( Rexn plot (352)−5∗10ˆ4 ,−0.65 , ’ x | {\gamma= 0 . 2 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 ) ;

t ex t ( Rexn plot (772)−2∗10ˆ5 ,−0.65 , ’ x | {\gamma= 0 . 7 5 } ’ , . . .

’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 ) ;

t ex t ( Rexft −5∗10ˆ4 ,−0.65 , ’ x T \approx x B ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 ) ;
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g r id on

end

f i g u r e (4 )

p l o t ( Rex plot , Gamma dmj, ’−k ’ , ’ LineWidth ’ , 1 . 5 )

x l a b e l ( ’ Re x ’ , ’ fontname ’ , ’ Times New Roman’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

y l a b e l ( ’ D i f f e r e n c e in enstrophy dens i ty funct ion , \ eta ’ , . . .

’ fontname ’ , ’ Times New Roman ’ , . . .

’ f o n t s i z e ’ , 1 2 , ’ FontWeight ’ , ’BOLD’ )

%legend ( ’ y=Re {\ theta | {min }} ’ , ’ y=Re {\ theta | {max}} ’ )

%gr id o f f

a x i s ( [ Rexl Rexft min (Gamma dmj)−0.05 max(Gamma dmj)+0 .05 ] )

i f sep == 0

annotat ion ( ’ arrow ’ , [ 0 . 1 7 5 , 0 . 1 3 5 ] , [ 0 . 4 9 5 , 0 . 4 0 7 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , ’ HeadWidth ’ , 7 , . . .

’ L ineSty le ’ , ’−− ’)

t ex t ( Rexl +6∗10ˆ4 ,0 .23 , ’ Re {x A } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext (R0−3 .5∗10ˆ4 ,0 .23 , ’ Re { x t } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext (R0 , 0 . 0 , ’ \mid ’ ) ; t ex t (R0 , 0 . 1 , ’ \mid ’ ) ; . . .

t ex t (R0 , 0 . 2 , ’ \mid ’ )

t ex t (2.66∗10ˆ6−5∗10ˆ4 ,−0.3 , ’ Re {x 0 } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext ( 2 . 66∗10ˆ6 , 0 . 05 , ’\mid ’ ) ; . . .

t ex t (2 .66∗10ˆ6 , −0 .05 , ’\mid ’ )

t ex t (2 .66∗10ˆ6 , −0 .15 , ’\mid ’ )

t ex t ( Rexft −5.7∗10ˆ5 ,−0.3 , ’ Re {x T}\approx Re {x B } ’ , . . .

’ FontSize ’ , 1 2 , ’ FontWeight ’ , ’BOLD’ )

annotat ion ( ’ arrow ’ , [ 0 . 7 9 , 0 . 9 0 ] , [ 0 . 2 9 , 0 . 3 9 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , ’ HeadWidth ’ , 7 , . . .

’ L ineSty le ’ , ’−− ’)
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annotat ion ( ’ l i n e ’ , [ 0 . 1 3 0 . 9 ] , [ 0 . 3 9 7 5 0 . 3 9 7 5 ] , ’ L ineSty le ’ , ’ − ’ )

e l s e i f ( sep == 1 & Rexft <5.83∗10ˆ5)

annotat ion ( ’ arrow ’ , [ 0 . 1 7 5 , 0 . 1 3 5 ] , [ 0 . 4 9 , 0 . 3 8 5 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , ’ HeadWidth ’ , 7 , . . .

’ L ineSty le ’ , ’−− ’)

%arrow ( [ 0 0 ] , [ 0 . 1 0 . 1 ] )

t ex t ( Rexl +5∗10ˆ2 ,0 .21 , ’ Re {x A } ’ , ’ FontSize ’ , 1 2 , ’ FontWeight ’ , . . .

’BOLD’ )

t ext (R0−6∗10ˆ2 ,0 .21 , ’ Re { x t } ’ , ’ FontSize ’ , 1 2 , ’ FontWeight ’ , . . .

’BOLD’ )

t ext (R0 , 0 . 0 , ’ \mid ’ ) ; t ex t (R0 , 0 . 1 , ’ \mid ’ ) ; . . .

t ex t (R0 , 0 . 2 , ’ \mid ’ )

t ex t (5.25213∗10ˆ5−4.5∗10ˆ2 ,−0.3 , ’ Re {x 0 } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext (5 . 25213∗10ˆ5 ,0 . 05 , ’\mid ’ ) ; . . .

t ex t (5 .25213∗10ˆ5 ,−0.05 , ’\mid ’ )

t ex t (5 .25213∗10ˆ5 ,−0.15 , ’\mid ’ )

t ex t ( Rexft −0.71∗10ˆ4 ,−0.3 , ’ Re {x T}\approx Re {x B } ’ , . . .

’ FontSize ’ , 1 2 , ’ FontWeight ’ , ’BOLD’ )

annotat ion ( ’ arrow ’ , [ 0 . 7 9 , 0 . 9 0 ] , [ 0 . 2 8 , 0 . 3 6 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , ’ HeadWidth ’ , 7 , . . .

’ L ineSty le ’ , ’−− ’)

annotat ion ( ’ l i n e ’ , [ 0 . 1 3 0 . 9 ] , [ 0 . 3 7 0 . 3 7 ] , ’ L ineSty le ’ , ’ − ’ )

e l s e i f ( sep == 1 & Rex0 mj == Rexl )

%a x i s ( [ Rexl Rexft 0 1 ] )

% s e t ( gca , ’ XTick ’ , [ Rexl Rexft ] )

% s e t ( gca , ’ XTickLabel ’ , { ’ Re xFL ’ , ’ Re xFT ’ } )

% s e t ( gca , ’ Gr idLineStyle ’ , ’ − ’ )

e l s e i f ( sep == 1 & Rexft>Rext mj )

annotat ion ( ’ arrow ’ , [ 0 . 1 7 , 0 . 1 4 ] , [ 0 . 5 9 5 , 0 . 5 1 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , . . .

’ HeadWidth ’ , 7 , ’ L ineSty le ’ , ’−− ’)
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%arrow ( [ 0 0 ] , [ 0 . 1 0 . 1 ] )

t ex t ( Rexl +1∗10ˆ3 ,0 .45 , ’ Re {x A } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext (R0−1 .5∗10ˆ3 ,0 .45 , ’ Re { x t } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext (R0 , 0 . 0 , ’ \mid ’ ) ; t ex t (R0 , 0 . 2 , ’ \mid ’ ) ;

t ex t (R0 , 0 . 4 , ’ \mid ’ ) ;% text (R0 , 0 . 2 9 , ’ \mid ’ ) ;

t ex t (5.25398∗10ˆ5−2∗10ˆ3 ,−0.75 , ’ Re {x 0 } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext (5 . 25398∗10ˆ5 ,0 . 05 , ’\mid ’ ) ; . . .

t ex t (5 .25398∗10ˆ5 ,−0.15 , ’\mid ’ ) ;

t ex t (5 .25398∗10ˆ5 ,−0.35 , ’\mid ’ ) ;

t ex t (5.40246∗10ˆ5−2∗10ˆ3 ,−0.75 , ’ Re {x T } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

t ext (5 . 40246∗10ˆ5 ,0 . 05 , ’\mid ’ ) ; . . .

t ex t (5 .40246∗10ˆ5 ,−0.15 , ’\mid ’ ) ;

t ex t (5 .40246∗10ˆ5 ,−0.35 , ’\mid ’ ) ;

t ex t (5 . 40246∗10ˆ5 ,0 . 25 , ’\mid ’ ) ; . . .

t ex t (5 . 40246∗10ˆ5 ,0 . 45 , ’\mid ’ ) ;

t ex t (5 . 40246∗10ˆ5 ,0 . 65 , ’\mid ’ ) ; . . .

t ex t (5 . 40246∗10ˆ5 ,0 . 85 , ’\mid ’ ) ;

t ex t (5 . 40246∗10ˆ5 ,1 . 05 , ’\mid ’ ) ;

annotat ion ( ’ arrow ’ , [ 0 . 8 6 , 0 . 9 0 ] , [ 0 . 3 9 , 0 . 5 ] , . . .

’ HeadStyle ’ , ’ vback3 ’ , ’ HeadLength ’ , 3 , . . .

’ HeadWidth ’ , 7 , ’ L ineSty le ’ , ’−− ’)

t ex t ( Rexft −1.1∗10ˆ4 ,−0.75 , ’ Re {x B } ’ , ’ FontSize ’ , 1 2 , . . .

’ FontWeight ’ , ’BOLD’ )

annotat ion ( ’ l i n e ’ , [ 0 . 1 3 5 0 . 9 ] , [ 0 . 5 0 5 0 . 5 0 5 ] , ’ L ineSty le ’ , ’ − ’ )

end

end
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t e s t a= t e s t a +1;

end

i f sep == 0

f i g u r e (5 )

p l o t ( Rex plot , enst , ’−k ’ , ’ LineWidth ’ , 1 . 5 )

a x i s ( [ Rexl Rexft −5 3 ] )

x l a b e l ( ’ Re x ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

y l a b e l ( ’ enstrophy ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

g r id on

end

f i g u r e (7 )

t = [ 0 −0.6 −1.18 −1.2 −1.18 −0.98 −0.97 −0.57 −0.25 −0 .15 ] ;

s = [ 7 8 9 9 .2 9 .5 10 11 11 .2 12 .5 1 4 ] ;

%t =[0 , 1 . 38 , 2 . 72 , 2 . 77 , 2 . 72 , 2 . 26 , 2 . 26 , 1 . 85 , 1 . 32 , 0 . 3 5 ] ’

%s =[0.44 0 .88 1 .33 1 .42 1 .56 1 .78 2 .22 2 .22 2 .31 3 . 5 5 ] ’

p l o t ( s , t ,’−−ks ’ , ’ LineWidth ’ , 1 . 5 , ’ marker faceco lor ’ , ’ k ’ , ’ markers ize ’ , 5 )

s e t ( gca , ’ YDir ’ , ’ r eve r s e ’ )

y l a b e l ( ’ C P ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

x l a b e l ( ’ Distance from l ead ing edge , x ( in ) ’ , ’ fontname ’ , . . .

’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

t ex t (10 ,−1.025 , ’ x s ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

t ex t (11 ,−1.025 , ’ x {Tp} ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

t ex t (11 .25 , −0 .605 , ’ x { r } ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 2 )

annotat ion ( ’ l i n e ’ , [ 0 . 5 6 0 . 5 6 ] , [ 0 . 6 5 0 . 7 5 ] , ’ l i n e s t y l e ’ , ’ − ’ )

t ex t (10 .8 , −1 .13 , ’ x B ’ , ’ fontname ’ , ’ Times New Roman’ , ’ f o n t s i z e ’ , 1 4 , . . .

’ fontweight ’ , ’BOLD’ )

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ check v e l o c i t y p r o f i l e f o r separated f low ∗∗∗∗∗∗∗∗∗ %

U = 80 ;
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nu = 1.61∗10ˆ(−4) ;

xagsS = Res∗nu/U;

j =1;

d e l t a l = 5∗Ks∗Resˆ(−1/2)∗ xagsS ;

f o r y l = 0 : d e l t a l /50 : d e l t a l

ulamp ( j ) = (2+L/6)∗ y l /( d e l t a l ) − L/2∗( y l /( d e l t a l ) )ˆ2 . . .

− (2−L/2)∗ ( y l /( d e l t a l ) )ˆ3 + (1−L/6)∗ ( y l /( d e l t a l ) ) ˆ 4 ;

y l p l o t ( j ) = y l / d e l t a l ;

j=j +1;

end

f i g u r e (8 )

p l o t ( ulamp , y l p l o t )

legend ( ’ laminar v e l o c i t y p r o f i l e ’ )

%func t i on to s o l v e system o f equat ions

func t i on [ x C0 C1 C2 C3 C4 f v a l e x i t f l a g ] = runnested2 ( type , yvalue , . . .

in te rmi t tency , L , Ks , k ,A, Rethetax , RagsEp , Res , Cs , x0 , G25 , . . .

G50 , G75 , ReLT, G40 , R0)

opt ions=opt imset ( ’ MaxFunEvals ’ , 5 0 0 , ’ MaxIter ’ , 5 0 0 , ’ Tolfun ’ , 1 0 ˆ ( −1 2 ) , . . .

’TolX ’ ,10ˆ( −10) , ’ Display ’ , ’ i t e r ’ ) ; % , . . .

% , ’ Algorithm ’ , ’ t rus t−reg ion−r e f l e c t i v e ’ ) ;% ’ levenberg−marquardt ’ ) ;

[ x , f va l , e x i t f l a g ] = f s o l v e ( @nestedfun , x0 , opt ions ) ; % Nested func t i on

func t i on F = nestedfun ( x )

C0 = 0 ;

C1 = x ( 3 ) ;

C2 = x ( 4 ) ;

C3 = x ( 5 ) ;

C4 = 0 ;

b=3.36;

R = x ( 2 ) ;

RB = x ( 1 ) ;
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i f i n t e rmi t t ency == 1

i f type == 1

Rex = Res ;

R0 = RB∗Rex ;

i f yvalue == 1

eqn5 = (1/(7∗k∗A)∗ ( 7 / 7 2 ) ˆ ( 1 / 7 ) + . . .

(2+L/6)/(5∗Ks∗Rˆ0.5)−(L∗k∗A)/( (5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗kˆ2∗Aˆ2)/( (5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗kˆ3∗Aˆ3)/( (5∗Ks)ˆ4∗Rˆ 2 ) ) ∗ . . .

(C0+C1/2+C2/3+C3/4+C4/5) . . .

− (7/72)ˆ(1/7)∗A∗ ( (R−1)∗Rethetax )ˆ(−1);

e l s e i f yvalue == 2

eqn5 = (1/(7∗A)∗ (7/(72∗ k ) ) ˆ ( 1 / 7 ) . . .

+(2+L/6)/(5∗Ks∗Rˆ0.5)−(L∗A)/( (5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗Aˆ2)/( (5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗Aˆ3)/( (5∗Ks)ˆ4∗Rˆ 2 ) ) ∗ . . .

(C0+C1/2+C2/3+C3/4+C4/5) . . .

− (7/(72∗k ) )ˆ (1/7 )∗A∗ ( (R−1)∗Rethetax )ˆ(−1);

end

e l s e i f type == 2

%R0 = Res ;

Rex = R0/RB;

eqn5 = (1/(7∗k∗A)∗ ( 7 / 7 2 ) ˆ ( 1 / 7 ) + . . .

((2+L/6)∗RBˆ0 .5 )/ (5∗Ks∗Rˆ 0 . 5 ) . . .

−(L∗k∗A∗RB)/( (5∗Ks)ˆ2∗R ) . . .

− (3∗(2−L/2)∗kˆ2∗Aˆ2∗RBˆ 1 . 5 ) / ( ( 5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗kˆ3∗Aˆ3∗RBˆ2)/( (5∗Ks)ˆ4∗Rˆ 2 ) ) ∗ . . .

(C0+C1/2+C2/3+C3/4+C4/5) . . .

− (7/72)ˆ(1/7)∗A∗ ( (1/RB)∗ (R−1)∗Rethetax )ˆ(−1);

e l s e i f type == 3

Rex = R0/RB;

eqn5 = ( ( 1 / 7 )∗ ( 1 / ( 0 . 3 7 5∗ ( Rex∗(R−RB) ) ˆ ( 4 / 5 ) ) ) ˆ ( 1 / 7 ) ∗ . . .

(1/ Rethetax ) ˆ ( 6 / 7 ) . . .
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+ ((2+L/6))/(5∗Ks∗(Rex∗R) ˆ 0 . 5 ) . . .

−(L∗Rethetax )/ ( (5∗Ks)ˆ2∗Rex∗R) . . .

− (3∗(2−L/2)∗ ( Rethetax )ˆ2 )/ ( (5∗Ks)ˆ3∗ ( Rex∗R) ˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗ ( Rethetax )ˆ3 )/ ( (5∗Ks)ˆ4∗ ( Rex∗R) ˆ 2 ) ) ∗ . . .

Rex∗(R−1)∗(C0/1+C1/2+C2/3+C3/4+C4/5) . . .

− ( ( Rethetax ) / ( 0 . 3 7 5∗ ( Rex∗(R−RB) ) ˆ ( 4 / 5 ) ) ) ˆ ( 1 / 7 ) ;

e l s e i f type == 4

RT = x ( 2 ) ;

Rex = x ( 1 ) ;

R = RT/Rex ;

R0 = Rex ;

eqn5 = (1/(7∗A)∗ (7/(72∗ k))ˆ(1/7)+(2+L/6)/(5∗Ks∗Rˆ 0 . 5 ) . . .

−(L∗A)/( (5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗Aˆ2)/( (5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗Aˆ3)/( (5∗Ks)ˆ4∗Rˆ 2 ) ) ∗ . . .

(C0+C1/2+C2/3+C3/4+C4/5) . . .

− (7/(72∗k ) ) ˆ ( 1 / 7 )∗ ( (R−1)∗Rex ˆ0 .5)ˆ( −1) ;

end

eqn1 = C0+C1+C2+C3+C4−1;

eqn2 = C0+C1∗ ( (R0+G75∗ReLT−Rex )/( Rex∗(R− 1 ) ) ) . . .

+ C2∗ ( (R0+G75∗ReLT−Rex )/( Rex∗(R−1)))ˆ2 . . .

+ C3∗ ( (R0+G75∗ReLT−Rex )/( Rex∗(R−1)))ˆ3 . . .

+ C4∗ ( (R0+G75∗ReLT−Rex )/( Rex∗(R−1)))ˆ4−0.75;

eqn2b = C0+C1∗ ( (R0+G40∗ReLT−Rex )/( Rex∗(R− 1 ) ) ) . . .

+ C2∗ ( (R0+G40∗ReLT−Rex )/( Rex∗(R−1)))ˆ2 . . .

+ C3∗ ( (R0+G40∗ReLT−Rex )/( Rex∗(R−1)))ˆ3 . . .

+ C4∗ ( (R0+G40∗ReLT−Rex )/( Rex∗(R−1)))ˆ4−0.7;

eqn3 = C0+C1∗ ( (R0+G25∗ReLT−Rex )/( Rex∗(R−1))) . . .

+ C2∗ ( (R0+G25∗ReLT−Rex )/( Rex∗(R−1)))ˆ2 . . .

+ C3∗ ( (R0+G25∗ReLT−Rex )/( Rex∗(R−1)))ˆ3 . . .
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+ C4∗ ( (R0+G25∗ReLT−Rex )/( Rex∗(R−1)))ˆ4−0.25;

eqn4 = C0∗(R0+G75∗ReLT−Rex ) . . .

+ (C1∗(R0+G75∗ReLT−Rex )ˆ2)/(2∗Rex∗(R− 1 ) ) . . .

+ (C2∗(R0+G75∗ReLT−Rex )ˆ3)/(3∗Rexˆ2∗(R−1)ˆ2) . . .

+ (C3∗(R0+G75∗ReLT−Rex )ˆ4)/(4∗Rexˆ3∗(R−1)ˆ3) . . .

+ (C4∗(R0+G75∗ReLT−Rex )ˆ5)/(5∗Rexˆ4∗(R−1)ˆ4) . . .

− C0∗(R0+G25∗ReLT−Rex ) . . .

− (C1∗(R0+G25∗ReLT−Rex )ˆ2)/(2∗Rex∗(R−1)) . . .

− (C2∗(R0+G25∗ReLT−Rex )ˆ3)/(3∗Rexˆ2∗(R−1)ˆ2) . . .

− (C3∗(R0+G25∗ReLT−Rex )ˆ4)/(4∗Rexˆ3∗(R−1)ˆ3) . . .

− (C4∗(R0+G25∗ReLT−Rex )ˆ5)/(5∗Rexˆ4∗(R−1)ˆ4) . . .

−((G75−G25)∗ReLT − 1 .381∗ReLT/b∗ e r f ( 0 . 642∗ ( G75∗b ) ) . . .

+ 1.381∗ReLT/b∗ e r f ( 0 . 642∗ ( G25∗b ) ) ) ;

eqn4c = C0∗(R0+G40∗ReLT−Rex ) . . .

+ (C1∗(R0+G40∗ReLT−Rex )ˆ2)/(2∗Rex∗(R− 1 ) ) . . .

+ (C2∗(R0+G40∗ReLT−Rex )ˆ3)/(3∗Rexˆ2∗(R−1)ˆ2) . . .

+ (C3∗(R0+G40∗ReLT−Rex )ˆ4)/(4∗Rexˆ3∗(R−1)ˆ3) . . .

+ (C4∗(R0+G40∗ReLT−Rex )ˆ5)/(5∗Rexˆ4∗(R−1)ˆ4) . . .

− C0∗(R0+G25∗ReLT−Rex ) . . .

− (C1∗(R0+G25∗ReLT−Rex )ˆ2)/(2∗Rex∗(R−1)) . . .

− (C2∗(R0+G25∗ReLT−Rex )ˆ3)/(3∗Rexˆ2∗(R−1)ˆ2) . . .

− (C3∗(R0+G25∗ReLT−Rex )ˆ4)/(4∗Rexˆ3∗(R−1)ˆ3) . . .

− (C4∗(R0+G25∗ReLT−Rex )ˆ5)/(5∗Rexˆ4∗(R−1)ˆ4) . . .

−((G40−G25)∗ReLT − 1 .381∗ReLT/b∗ e r f ( 0 . 642∗ ( G40∗b ) ) . . .

+ 1.381∗ReLT/b∗ e r f ( 0 . 642∗ ( G25∗b ) ) ) ;

eqn4b = (C1∗(R0+0.546∗Cs∗R0ˆ0.75−Rex )ˆ2)/(2∗Rex∗(R− 1 ) ) . . .

+ (C2∗(R0+0.546∗Cs∗R0ˆ0.75−Rex )ˆ3)/(3∗Rexˆ2∗(R−1)ˆ2) . . .

+ (C3∗(R0+0.546∗Cs∗R0ˆ0.75−Rex )ˆ4)/(4∗Rexˆ3∗(R−1)ˆ3) . . .

+ (C4∗(R0+0.546∗Cs∗R0ˆ0.75−Rex )ˆ5)/(5∗Rexˆ4∗(R−1)ˆ4) . . .

− (C1∗(R0+0.249∗Cs∗R0ˆ0.75−Rex )ˆ2)/(2∗Rex∗(R−1)) . . .

− (C2∗(R0+0.249∗Cs∗R0ˆ0.75−Rex )ˆ3)/(3∗Rexˆ2∗(R−1)ˆ2) . . .

− (C3∗(R0+0.249∗Cs∗R0ˆ0.75−Rex )ˆ4)/(4∗Rexˆ3∗(R−1)ˆ3) . . .

− (C4∗(R0+0.249∗Cs∗R0ˆ0.75−Rex )ˆ5)/(5∗Rexˆ4∗(R−1)ˆ4) . . .
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−(0.297∗Cs∗R0ˆ0.75 − 1 .381∗Cs/b∗(R0 ˆ 1 . 5 ) ˆ 0 . 5 ∗ . . .

e r f (0 . 642∗b/Cs∗ ( (1/R0ˆ 1 . 5 ) ˆ 0 . 5∗ (R0+0.546∗Cs∗R0ˆ0 .75 ) . . .

−(R0ˆ0 .5 )ˆ0 .5 ) )+ 1.381∗Cs/b∗(R0 ˆ 1 . 5 ) ˆ 0 . 5 ∗ . . .

e r f (0 . 642∗b/Cs∗ ( (1/R0ˆ 1 . 5 ) ˆ 0 . 5∗ (R0+0.249∗Cs∗R0ˆ0 .75 ) . . .

−(R0 ˆ 0 . 5 ) ˆ 0 . 5 ) ) ) ;

eqn6 = C0+C1∗ ( (R0+G50∗ReLT−Rex )/( Rex∗(R−1))) . . .

+ C2∗ ( (R0+G50∗ReLT−Rex )/( Rex∗(R−1)))ˆ2 . . .

+ C3∗ ( (R0+G50∗ReLT−Rex )/( Rex∗(R−1)))ˆ3 . . .

+ C4∗ ( (R0+G50∗ReLT−Rex )/( Rex∗(R−1)))ˆ4−0.5;

eqn7 = C1/( (R−1)∗Rex) . . .

+ (2∗C2∗(R0+G50∗ReLT−Rex ) ) / ( Rexˆ2∗(R−1)ˆ2) . . .

+ (3∗C3∗(R0+G50∗ReLT−Rex )ˆ2 )/ ( Rexˆ3∗(R−1)ˆ3) . . .

+ (4∗C4∗(R0+G50∗ReLT−Rex )ˆ3 )/ ( Rexˆ4∗(R−1)ˆ4) . . .

− 2∗ ( 0 . 4 1 2∗ ( 3 . 3 6 ) ˆ 2 )∗ ( G50)/ (ReLT)∗ exp (−0.412∗3.36ˆ2∗G50 ˆ 2 ) ;

F=[eqn1 ;

eqn3 ;

eqn5 ;

eqn6 ;

eqn7 ] ;

e l s e i f i n t e rmi t t ency == 2

i f type == 1

Rex = Res ;

R0 = RB∗Rex ;

i f yvalue == 1

eqn5 = 1/(7∗k∗A)∗(7/72)ˆ(1/7)+(2+L/6)/(5∗Ks∗Rˆ 0 . 5 ) . . .

−(L∗k∗A)/( (5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗kˆ2∗Aˆ2)/( (5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗kˆ3∗Aˆ3)/( (5∗Ks)ˆ4∗Rˆ2) . . .

− (7/72)ˆ(1/7)∗A∗ ( (R−1)∗Rethetax ∗ . . .

(C1/2+C2/3+C3/4+C4/5))ˆ(−1) ;

e l s e i f yvalue == 2

eqn5 = 1/(7∗A)∗ (7/(72∗ k))ˆ(1/7)+(2+L/6)/(5∗Ks∗Rˆ 0 . 5 ) . . .

−(L∗A)/( (5∗Ks)ˆ2∗R) . . .
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− (3∗(2−L/2)∗Aˆ2)/( (5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗Aˆ3)/( (5∗Ks)ˆ4∗Rˆ2) . . .

− (7/(72∗k ) )ˆ (1/7 )∗A∗ ( (R−1)∗Rethetax ∗ . . .

(C1/2+C2/3+C3/4+C4/5))ˆ(−1) ;

end

e l s e i f type == 2

R0 = Res ;

Rex = R0/RB;

eqn5 = 1/(7∗k∗A)∗ ( 7 / 7 2 ) ˆ ( 1 / 7 ) + . . .

((2+L/6)∗RBˆ0 .5 )/ (5∗Ks∗Rˆ0.5)−(L∗k∗A∗RB)/( (5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗kˆ2∗Aˆ2∗RBˆ 1 . 5 ) / ( ( 5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗kˆ3∗Aˆ3∗RBˆ2)/( (5∗Ks)ˆ4∗Rˆ2) . . .

− (7/72)ˆ(1/7)∗A∗ ( (1/RB)∗ (R−1)∗Rethetax ∗ . . .

(C1/2+C2/3+C3/4+C4/5))ˆ(−1) ;

e l s e i f type == 3

RagsS = Res ;

R0 = (1 .26∗RagsS − 0 .26∗RagsEp ) / 1 . 2 6 ;

Rex = R0/RB;

i f yvalue == 1

dw f = (1/(7∗k∗A) ) ˆ 2 ∗ ( 7 / 7 2 ) ˆ ( 2 / 7 ) ∗ . . .

( ( RagsEp/Rex )/(R−RB) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS/Rex ) ) / ( ( 5∗Ks)ˆ2∗R ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗( RagsS/Rex ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks ) ˆ 3 ∗ . . .

(R)ˆ ( 3/2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS/Rex )ˆ2/( (5∗Ks)ˆ4∗ (R) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS/Rex )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS/Rex )ˆ3/( (5∗Ks)ˆ6∗ (R) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS/Rex )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ (R) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ 6 ∗ . . .
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( RagsS/Rex )ˆ4/( (5∗Ks)ˆ8∗ (R) ˆ 4 ) ;

dw 25 = (1/(7∗k∗A) ) ˆ 2 ∗ ( 7 / 7 2 ) ˆ ( 2 / 7 ) ∗ . . .

( ( RagsEp )/ (0 . 249∗Cs∗R0 ˆ 0 . 7 5 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks ) ˆ 2 ∗ . . .

(R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks ) ˆ 3 ∗ . . .

(R0+0.249∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 3 / 2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ (R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks ) ˆ 5 ∗ . . .

(R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ (R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks ) ˆ 7 ∗ . . .

(R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks ) ˆ 8 ∗ . . .

(R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) ;

dw 50 = (1/(7∗k∗A))ˆ2∗ ( 7/72 )ˆ (2/7 )∗ ( ( RagsEp ) / . . .

( 0 . 386∗Cs∗R0 ˆ 0 . 7 5 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks ) ˆ 2 ∗ . . .

(R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks ) ˆ 3 ∗ . . .

(R0+0.386∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 3 / 2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ2∗( RagsS ) ˆ 2 / . . .

( (5∗Ks)ˆ4∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks ) ˆ 5 ∗ . . .

(R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ5∗( RagsS ) ˆ ( 7 / 2 ) / . . .
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( (5∗Ks)ˆ7∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks ) ˆ 8 ∗ . . .

(R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) ;

dw 75 = (1/(7∗k∗A))ˆ2∗ ( 7/72 )ˆ (2/7 )∗ ( ( RagsEp ) / . . .

( 0 . 546∗Cs∗R0 ˆ 0 . 7 5 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks ) ˆ 2 ∗ . . .

(R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ) . . .

+ (2∗L∗(2+L/6)∗k∗A∗( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks ) ˆ 3 ∗ . . .

(R0+0.546∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 3 / 2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ (R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks ) ˆ 5 ∗ . . .

(R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ4∗( RagsS ) ˆ 3 / . . .

( (5∗Ks)ˆ6∗ (R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ5∗( RagsS ) ˆ ( 7 / 2 ) / . . .

( (5∗Ks)ˆ7∗ (R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗kˆ6∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks ) ˆ 8 ∗ . . .

(R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) ;

ddw 50 = (1/(7∗k∗A))ˆ2∗ ( 7/72 )ˆ (2/7 )∗ ( −8/35 )∗ . . .

( ( RagsEp )ˆ (8/35 )/ (0 . 386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 4 3 / 3 5 ) ) . . .

+ ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks ) ˆ 2 ∗ . . .

(R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (3/2)∗ (2∗L∗(2+L/6))∗k∗A∗( RagsS ) ˆ ( 3 / 2 ) / . . .

( (5∗Ks)ˆ3∗ (R0+0.386∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

− 2∗(6∗(2+L/6)∗(2−L/2)−Lˆ2)∗kˆ2∗Aˆ2∗( RagsS ) ˆ 2 / . . .

( (5∗Ks)ˆ4∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ (5/2)∗(8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R0+ 0 . 3 8 6∗ . . .

Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 3∗(8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗kˆ4∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) . . .
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− (7/2)∗24∗(2−L/2)∗(1−L/6)∗kˆ5∗Aˆ 5 ∗ . . .

( RagsS )ˆ (7/2 )/ ( (5∗Ks)ˆ7∗ (R0+ 0 . 3 8 6∗ . . .

Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 9 / 2 ) ) . . .

+ 4∗16∗(1−L/6)ˆ2∗kˆ6∗Aˆ6∗( RagsS ) ˆ 4 / . . .

( (5∗Ks)ˆ8∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 5 ) ;

eqn5 = (1/(7∗k∗A) ∗ ( 7 / 7 2 ) ˆ ( 1 / 7 ) ∗ . . .

( ( RagsEp/Rex )/(R−RB))ˆ (4/35 ) . . .

+((2+L/6)∗ ( RagsS/Rex ) ˆ 0 . 5 ) / ( 5∗Ks∗Rˆ 0 . 5 ) . . .

−(L∗k∗A∗( RagsS/Rex ) ) / ( ( 5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗kˆ2∗Aˆ2∗( RagsS/Rex ) ˆ 1 . 5 ) / . . .

( (5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗kˆ3∗Aˆ 3 ∗ . . .

( RagsS/Rex )ˆ2 )/ ( (5∗Ks)ˆ4∗Rˆ 2 ) ) ∗ . . .

(C1/2+C2/3+C3/4+C4/5) . . .

− (7/72)ˆ(1/7)∗A∗ ( ( RagsEp/Rex ) / . . .

(R−RB))ˆ (4/35 ) . . .

∗ ( ( 1/ ( RagsS/Rex ) )∗ (R−1)∗Rethetax )ˆ(−1);

e l s e i f yvalue == 2

dw f = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 ) ∗ . . .

( ( RagsEp/Rex )/(R−RB) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS/Rex ) ) / ( ( 5∗Ks)ˆ2∗R ) . . .

+ (2∗L∗(2+L/6)∗A∗( RagsS/Rex ) ˆ ( 3 / 2 ) ) / . . .

( (5∗Ks)ˆ3∗ (R)ˆ (3 /2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ2∗( RagsS/Rex ) ˆ 2 / . . .

( (5∗Ks)ˆ4∗ (R) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS/Rex )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ4∗( RagsS/Rex ) ˆ 3 / . . .

( (5∗Ks)ˆ6∗ (R) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ5∗( RagsS/Rex ) ˆ ( 7 / 2 ) / . . .

( (5∗Ks)ˆ7∗ (R) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS/Rex )ˆ4/( (5∗Ks)ˆ8∗ (R) ˆ 4 ) ;
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dw 25 = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 ) ∗ . . .

( ( RagsEp )/ (0 . 249∗Cs∗R0 ˆ 0 . 7 5 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks ) ˆ 2 ∗ . . .

(R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ) . . .

+ (2∗L∗(2+L/6)∗A∗( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks ) ˆ 3 ∗ . . .

(R0+0.249∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 3 / 2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ2∗( RagsS ) ˆ 2 / . . .

( (5∗Ks)ˆ4∗ (R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R0+0.249∗Cs ∗ . . .

R0 ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ4∗( RagsS ) ˆ 3 / . . .

( (5∗Ks)ˆ6∗ (R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ5∗( RagsS ) ˆ ( 7 / 2 ) / . . .

( (5∗Ks)ˆ7∗ (R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks ) ˆ 8 ∗ . . .

(R0+0.249∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) ;

dw 50 = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 )∗ ( ( RagsEp ) / . . .

( 0 . 386∗Cs∗R0 ˆ 0 . 7 5 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks ) ˆ 2 ∗ . . .

(R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ) . . .

+ (2∗L∗(2+L/6)∗A∗( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks ) ˆ 3 ∗ . . .

(R0+0.386∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 3 / 2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ 2 ∗ . . .

( RagsS )ˆ2/( (5∗Ks)ˆ4∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R0+0.386∗Cs ∗ . . .

R0 ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ 4 ∗ . . .

( RagsS )ˆ3/( (5∗Ks)ˆ6∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ5∗( RagsS ) ˆ ( 7 / 2 ) / . . .

( (5∗Ks)ˆ7∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks ) ˆ 8 ∗ . . .
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(R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) ;

dw 75 = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2 / 7 )∗ ( ( RagsEp ) / . . .

( 0 . 546∗Cs∗R0 ˆ 0 . 7 5 ) ) ˆ ( 8 / 3 5 ) . . .

− ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ (R0+ 0 . 5 4 6∗ . . .

Cs∗R0 ˆ 0 . 7 5 ) ) . . .

+ (2∗L∗(2+L/6)∗A∗( RagsS ) ˆ ( 3 / 2 ) ) / ( ( 5∗Ks ) ˆ 3 ∗ . . .

(R0+0.546∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 3 / 2 ) ) . . .

+ (6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ2∗( RagsS ) ˆ 2 / . . .

( (5∗Ks)ˆ4∗ (R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R0+0.546∗Cs ∗ . . .

R0 ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

+ (8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ4∗( RagsS ) ˆ 3 / . . .

( (5∗Ks)ˆ6∗ (R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ 24∗(2−L/2)∗(1−L/6)∗Aˆ5∗( RagsS ) ˆ ( 7 / 2 ) / . . .

( (5∗Ks)ˆ7∗ (R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks ) ˆ 8 ∗ . . .

(R0+0.546∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) ;

ddw 50 = (1/(7∗A))ˆ2∗ (7/(72∗ k ) ) ˆ ( 2/ 7 )∗ ( −8 / 3 5 )∗ . . .

( ( RagsEp )ˆ (8/35 )/ (0 . 386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 4 3 / 3 5 ) ) . . .

+ ((2+L/6)ˆ2∗( RagsS ) ) / ( ( 5∗Ks)ˆ2∗ (R0+ 0 . 3 8 6∗ . . .

Cs∗R0 ˆ 0 . 7 5 ) ˆ 2 ) . . .

− (3/2)∗ (2∗L∗(2+L/6))∗A∗( RagsS ) ˆ ( 3 / 2 ) / . . .

( (5∗Ks)ˆ3∗ (R0+0.386∗Cs∗R0ˆ 0 . 7 5 ) ˆ ( 5 / 2 ) ) . . .

− 2∗(6∗(2+L/6)∗(2−L/2)−Lˆ2)∗Aˆ2∗( RagsS ) ˆ 2 / . . .

( (5∗Ks)ˆ4∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 3 ) . . .

+ (5/2)∗(8∗(2+L/6)∗(1−L/6)+6∗L∗(2−L/2))∗Aˆ 3 ∗ . . .

( RagsS )ˆ (5/2 )/ ( (5∗Ks)ˆ5∗ (R0+0.386∗Cs ∗ . . .

R0 ˆ 0 . 7 5 ) ˆ ( 7 / 2 ) ) . . .

− 3∗(8∗L∗(1−L/6)−9∗(2−L/2)ˆ2)∗Aˆ4∗( RagsS ) ˆ 3 / . . .

( (5∗Ks)ˆ6∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 4 ) . . .

− (7/2)∗24∗(2−L/2)∗(1−L/6)∗Aˆ5∗( RagsS ) ˆ ( 7 / 2 ) / . . .

( (5∗Ks)ˆ7∗ (R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ ( 9 / 2 ) ) . . .
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+ 4∗16∗(1−L/6)ˆ2∗Aˆ6∗( RagsS )ˆ4/( (5∗Ks ) ˆ 8 ∗ . . .

(R0+0.386∗Cs∗R0 ˆ 0 . 7 5 ) ˆ 5 ) ;

eqn5 = 1/(7∗A)∗ (7/(72∗ k ) ) ˆ ( 1 / 7 )∗ ( ( RagsEp/Rex ) / . . .

(R−RB))ˆ (4/35 ) . . .

+((2+L/6)∗ ( RagsS/Rex ) ˆ 0 . 5 ) / ( 5∗Ks∗Rˆ 0 . 5 ) . . .

−(L∗A∗( RagsS/Rex ) ) / ( ( 5∗Ks)ˆ2∗R) . . .

− (3∗(2−L/2)∗Aˆ2∗( RagsS/Rex ) ˆ 1 . 5 ) / . . .

( (5∗Ks)ˆ3∗Rˆ 1 . 5 ) . . .

+ (4∗(1−L/6)∗Aˆ3∗( RagsS/Rex )ˆ2 )/ ( (5∗Ks)ˆ4∗Rˆ2) . . .

− (7/(72∗k ) )ˆ (1/7 )∗A∗ . . .

( ( RagsEp/Rex )/(R−RB))ˆ (4/35 ) . . .

∗ ( ( 1/ ( RagsS/Rex ) )∗ (R−1)∗Rethetax ∗ . . .

(C1/2+C2/3+C3/4+C4/5))ˆ(−1) ;

end

end

eqn1 = C1+C2+C3+C4−1;

eqn2 = C1∗ ( (R0+0.546∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R− 1 ) ) ) . . .

+ C2∗ ( (R0+0.546∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ2 . . .

+ C3∗ ( (R0+0.546∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ3 . . .

+ C4∗ ( (R0+0.546∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ4 . . .

−0.75∗( dw 75/ dw f ) ;

eqn3 = C1∗ ( (R0+0.249∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1))) . . .

+ C2∗ ( (R0+0.249∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ2 . . .

+ C3∗ ( (R0+0.249∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ3 . . .

+ C4∗ ( (R0+0.249∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ4 . . .

−0.25∗( dw 25/ dw f ) ;

eqn6 = C1∗ ( (R0+0.386∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1))) . . .

+ C2∗ ( (R0+0.386∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ2 . . .

+ C3∗ ( (R0+0.386∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ3 . . .

+ C4∗ ( (R0+0.386∗Cs∗R0ˆ0.75−Rex )/( Rex∗(R−1)))ˆ4 . . .

−0.5∗( dw 50/ dw f ) ;

eqn7 = C1/( (R−1)∗Rex) + . . .
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(2∗C2∗(R0+0.386∗Cs∗R0ˆ0.75−Rex ) ) / ( Rexˆ2∗(R−1)ˆ2) . . .

+ (3∗C3∗(R0+0.386∗Cs∗R0ˆ0.75−Rex )ˆ2 )/ ( Rexˆ3∗(R−1)ˆ3) . . .

+ (4∗C4∗(R0+0.386∗Cs∗R0ˆ0.75−Rex )ˆ3 )/ ( Rexˆ4∗(R−1)ˆ4) . . .

− ( 2∗ ( 0 . 4 1 2∗ ( 3 . 3 6 ) ˆ 2 )∗ ( 0 . 3 8 6 ) / ( Cs∗R0 ˆ 0 . 7 5 ) ∗ . . .

exp (−0.412∗3.36ˆ2∗0.386ˆ2)∗ dw 50/ dw f . . .

+ (1−exp ( −0 .412∗3 .36ˆ2∗0 .386ˆ2))∗ ddw 50/ dw f ) ;

F=[eqn1 ;

eqn2 ;

eqn5 ;

eqn3 ;

eqn7 ] ;

end

end

end
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