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Biological processes at the cellular level are noisy. The noise arises due to random

molecular collisions, and may be substantial in systems with low molecular counts in

some species. This thesis introduces a variable tau-leaping method for the simulation

of stochastic discrete mathematical models of well-stirred biochemical systems which

is theoretically justified. Numerical tests on several models of biochemical systems

of practical interest illustrate the advantages of the adaptive tau-leap method over

the existing schemes.
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Chapter 1

INTRODUCTION

In recent years, stochastic modeling and simulations of biochemical networks have

been subject of intense research [1, 5, 30, 41]. The current interest in Computational

Cell Biology reflects the need for advanced computer tools to understand the com-

plexity of living cells. One of the objectives of Computational Biology is to generate

computer simulations for studying biological phenomena, data or patterns.

The deterministic rate laws for modeling chemically reacting systems were em-

ployed in biochemistry by Heinrich and Schuster [29] and applied in chemistry by

Epstein and Pojman [17]. This deterministic approach to modelling utilizes a simple

relation between molecular concentrations of different species and the reaction rates.

The law of mass action, introduced by Espenson [18], describes the evolution of the

concentrations of each chemical species for all future times.

Robert Brown, the Scottish botanist, first noticed the presence of fluctuations

when studying living phenomena at microscopic level (1827). The macroscopic

model is considered only for chemical systems with large molecular amounts for

each species. However, random fluctuations are unavoidable at the molecular level

and may have a significant impact when some low molecular numbers exist for

some species in the biochemically reacting system. This happens, for example, in
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modelling DNA binding sites in gene regulatory networks. McAdams and Arkin

[41] showed that the low copy numbers of expressed RNAs are meaningful in the

adjustment downstream pathways. Consequently, stochastic modeling is required

(Morton-Firth and Bray [42] ) as a number of important biological processes have

small number of molecules present in the reaction volume.

The stochastic model of well-stired chemical kinetics, known as the Chemical

Master Equation, was considered by Van Kampen and Gillespie [23]. The rela-

tionship between the stochastic and the deterministic chemical reaction models was

discused by Kurtz [35, 36]. Gillespie [25, 26] proposed a Monte Carlo simulation

algorithm for generating trajectories in exact agreement with the probability given

by the Chemical Master equation.

The Chemical Master Equation has been studied intensely and it was success-

fully applied for understanding many biochemical proceses in the cell, even when

the well- mixed assumption is loosely applicable. Nonetheless, the simulations of

stochastic models are computationally much more intense than their deterministic

counterparts. Since biochemical systems are quite complex and often entail both fast

and slow reactions, Gillespie’s algorithm is also quite expensive for these systems.

These challenges have increased the interest of the numerical analysis community to

design more efficient numerical methods for solving the Chemical Master Equation.

A more efficient exact algorithm was proposed by Gibson and Bruck [19]. A number

of approximate algorithms have also been developed and more efforts are currently
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dedicated to this fast expanding research area [30]. The tau-leaping method was

introduced by Gillespie [21] for reducing the computational cost of the stochastic

simulation of well-stirred biochemical networks. The tau-leaping strategy requires

that some leap condition is satisfied for each time-step. More effective tau-leaping

methods were proposed by Cao, Gillespie and Petzold [13], Tian and Burrage [52],

Anderson [3] and Chatterjee et al. [16]. The theoretical framework for studying

tau-leaping methods, such as consistency and stability, was developed by Rathinam

et al. [47], Anderson et. al [4] higher order methods by Li [39] and post-leap checks

by Anderson [3].

Leap selection techniques for stochastic discrete models of well-stirred biochem-

ical systems that aim to speed -up the simulation were developed by Cao, Gillespie

and Petzold [13, 14]. Moreover, several adaptive strategies were introduced for the

pathwise numerical solution [38, 51] and the mean-square numerical solution [37]

of stochastic continuous models of well-stirred biochemical networks (known as the

Chemical Langevin Equation). A technique to adaptively choose the step size in the

spatial tau-leaping method for the Reaction Diffusion Master Equation was proposed

in [44].

In this thesis, we describe an improved adaptive time-stepping technique for

approximating the exact solution of the Chemical Master Equation using the tau-

leaping method. This technique extends a strategy for variable time-stepping in

the numerical solution of stochastic differential equations developed by Burrage
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and Burrage [10] to efficiently select the steps in the tau-leaping method for the

discrete stochastic model of the Chemical Master Equation. Also, the adaptive

method for the tau-leap strategy for the Chemical Master Equation presented in this

thesis shares similarities with the variable time-stepping technique for the Reaction

Diffusion Master Equation introduced in [44]. However, our proposed adaptive

scheme dynamically partitions the species into slow and fast subsets.

The numerical solution obtained by tau-leaping must obey the leap condition for

some given tolerance [13, 21]. The step is rejected if the leap condition criteria is not

satisfied. When the time-step is rejected, a method is applied for guaranteeing that

the correct stochastic path is followed. In order to ensure the correct statistics of the

sample paths, we apply a technique intoduced by Anderson [3] for the tau-leaping

method upon the rejection of steps.

We consider three different types of constrains for adaptive time-stepping. When

a future constraint does not exist, we consider the Poisson distribution for generating

the amount of reactions in the current time step. But in the presence of a future

constraint, we consider conditioning on the previously created steps. There are two

cases, one is for stepping before the constraint and another is for stepping after

the constraint. Advancing a step before a constraint is performed by generated

values with a binomial distribution (see Anderson [3] ). We calculate the number

of reactions as the sum of new Poisson distributions and the difference between the

existing Poisson distributions and the binomial distributions for the step after the
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constraint. Our method generates paths with different sequences of time steps; on

each path the selection of the leap size is flexible. We implement the leap condition

in a strong sense, therefore we expect that the results obtained with our method are

very accurate.

The outline of the thesis is given below.

We discuss the background of stochastic models of biochemical networks and

stochastic simulation methods of biochemical kinetics in Chapter 2. We introduce

an improved adaptive method for the tau-leaping strategy for the Chemical Master

Equation in Chapter 3. In Chapter 4, the numerical results on three problems

of practical interest illustrate the advantages of the proposed adaptive tau-leap

method. In Chapter 5, we summarize our conclusions and discuss directions of

future research.
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Chapter 2

BACKGROUND

Below, we give an introduction to the stochastic modeling and simulation of discrete

stochastic models of well-stirred biochemical kinetics. In this section, four compu-

tational algorithms will be introduced, the Gillespie algorithm, the First Reaction

Algorithm, the Next Reaction algorithm and the explicit tau-leap algorithm, for the

numerical simulation of stochastic homogeneous biochemical systems.

2.1 Stochastic Models of Biochemical Kinetics

We consider a process of N different types of chemical species, S1, S2, ..., SN that

take part in M types of chemical reactions, R1, R2, ..., RM . The dynamics of the

system may be studied by keeping track of the position and the velocity for each

molecule under the appropriate laws of physics, considering the impact between the

molecules and the result of their interaction. Nonetheless, this Molecular Dynamics

approach is very challenging to solve numerically if the total molecular count is large

or if integration over a long time interval is required. In case the system is well-

stirred or homogeneous, the model may be substantially simplified. By ignoring the

spatial distribution, one can evaluate only the molecular count of each species. We

also assume that the system is in thermal equilibrium and in a constant volume.
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Suppose that at time t = 0, the molecular number of every species is known. It is

then sufficient to consider the evolution in time of the amount of molecules of each

species. In what follows, we are interested in computing the number of molecules

of each species as time increases. Consider therefore the state vector of the system,

X(t) = [X1(t), X2(t), ..., XN (t)]T , where Xi(t) represents the amount of Si molecules

available at time t.

The state vector X(t) will be changed when one of the M reactions takes place.

Since we do not consider spatial information in this case, we wish to evaluate the

probability of a reaction taking place, given the current state of the system. For

well-stirred systems, each reaction Rj can be characterized by the following:

i) a propensity function aj(x) is defined as: aj(x)dt , probability that a single

Rj event happens between [t, t+ dt), if X(t) = x.

ii) a state change vector νj : given that X(t) = x, one reaction Rj changes the

state vector to x+ νj .

Examples:

For any biochemical system:

S1
cj→ S2;

the propensity function is aj(x)dt = cjx1 and its state change vector is

νj = (−1, 1, 0, ..., 0)T .

The entry νij represents the change in the population of species Si caused by a

reaction Rj . The propensity functions are computed according to the following
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rules justified by the principles of kinetic theory:

For Second Order Reactions: When m 6= n, if the reaction is

Sm + Sn
cj→ products,

then the propensity is

aj(X(t)) = cjXm(t)Xn(t).

Here ‘products’ represents the summation of molecules of certain species.

Dimerization: For m = n, if the reaction is

Sm + Sm
cj→ products,

its propensity is then

aj(X(t)) = cj
1

2
Xm(t)(Xm(t)− 1).

The propensity of a dimerization, 1
2Xm(t)(Xm(t)− 1) is evaluated as the number of

ways in which an unordered pair of molecules can be chosen from a total Xm(t) of

Sm molecules.

For First Order Reactions: When a reaction of the following type occurs

Sm
cj→ products,

its propensity takes the form of

aj(X(t)) = cjXm(t).
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Consider now the probability of the system to be in a state x at time t. It is of

interest to describe the evolution of these probabilities if the initial system state is

known.

2.1.1 Chemical Master Equation (CME)

Let us define P (x, t), to be the probability that the state vector at time t is X(t) = x,

if X(0) = x0. We wish to find the probability of being in state x at time t+dt where

the step dt is so small that no more than one reaction event happens during [t, t+dt).

The system is in state x at time t+ dt if (i) the system was in state x at time t and

there was no reaction during [t, t+ dt), or (ii) for 1 ≤ j ≤ M the system state was

x− νj at time t is and one reaction Rj happened during [t, t+ dt), therefore after a

step dt the system state becomes x. In what follows, we employ a result from the

probability theory, namely the law of total probability. If B is the event of interest

and the events H0, H1, H2, ..,HM , HM+1 obey the following conditions:

(a) exhaustive (one such event occurs) and (b) are disjoint (at most one event

occurs), then, according to the law of total probability, we obtain

P (B) =
M∑
j=0

P (B | Hj)P (Hj).

We denoted the conditional probability of B occurring, if Hj occurred, by P (B|Hj).

Let us take B to be the event that the system state is x at time t+ dt. We consider

H0 to be the event that the system state at time t was x. Also assume that Hj for

1 ≤ j ≤ M is the event that the system state at time t was x− νj and that HM+1
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is the event that the system state is anything else at time t. We remark that the

conditional probability P (B | Hj) with 1 ≤ j ≤M is, in fact, the probability of one

reaction Rj happening during [t, t + dt). This probability may be computed using

the propensity function of this reaction as

P (B | Hj) = aj(x− νj)dt, for 1 ≤ j ≤M .

With this observation, we can show that P (B | H0) is the probability that no

reactive event occurred in [t, t+ dt). Thus

P (B | H0) = 1−
M∑
j=1

aj(x)dt

We also observe that,

P (B | HM+1) = 0,

as HM+1 consists of all the possible states that differ by two or more reactions from

the given system state x.

Now, from the definition of P (x, t), we have

P (x, t+ dt) = (1−
M∑
j=1

aj(x)dt)P (x, t) +

M∑
j=1

aj(x− νj)dtP (x− νj , t)

which may be rewritten in the form

P (x, t+ dt)− P (x, t)

dt
=

M∑
j=1

(aj(x− νj)P (x− νj , t)− aj(x)P (x, t)). (2.1)

We take dt→ 0 and obtain

dP (x, t)

dt
=

M∑
j=1

(aj(x− νj)P (x− νj , t)− aj(x)P (x, t)).
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This is a system of linear ordinary differential equations in P (x, t), known as the

Chemical Master Equation (CME) (see Gillespie [23] ). The dimension of this system

is equal to the number of all possible system states. This depends on the total

number of molecules present and the specific form of the reactions. Often, the CME

is of very high dimension and therefore it is computationally very challenging.

2.1.2 Chemical Langevin Equation (CLE)

Under certain conditions, the Chemical Master Equation model may be reduced to

the Chemical Langevin Equation which is easier to solve numerically than the CME.

Following Gillespie [21], we assume that the leap condition is satisfied, that is τ is

small enough such that each propensity aj(x) ≈ constant during the time interval

[t, t + τ). Then the number of Rj reactions in [t, t + τ) may be approximated by

a Poisson random variable Pj(aj(x), τ) with mean and variance aj(X(t))τ . Then

when X(t) = x, we obtain:

X(t+ τ) = X(t) +
M∑
j=1

νjPj(aj(X(t)), τ) (2.2)

which is known as the explicit tau-leaping method. Moreover, if the leap τ is also

chosen such that aj(X(t))τ � 1 for all 1 ≤ j ≤ M , then we can approximate the

Poisson random variable Pj(aj(x), τ) with a normal random variable

Nj(aj(x)τ, aj(x)τ) ∼ aj(x)τ +
√
aj(x)τ Zj
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with the same mean and variance aj(x(t))τ . Here Zj is normally distributed with

mean 0 and variance 1.

Thus:

Pj(aj(X(t), τ) ' aj(X(t))τ +
√
aj(X(t))τ Zj ,

Substituting the above in equation (2.2 ), we obtain

X(t+ τ) = X(t) + τ

M∑
j=1

νjaj(X(t)) +
√
τ

M∑
j=1

νj

√
aj(X(t)) Zj

Recall the following definition of a Wiener process.

Definition: A scalar standard Wiener process, over [0, T ] is a random variable W (t)

that depends continuously on t ∈ [0, T ] and satisfies the following three conditions.

(1) W (0) = 0 (with probability 1).

(2) For 0 6 s < t 6 T the random variable given by the increment W (t)−W (s) is

normally distributed with mean zero and variance t− s; equivalently, W (t)−

W (s) ∼
√
t− sN(0, 1), where N(0, 1) denotes a normally distributed random

variable with zero mean and unit variance.

(3) For 0 6 s < t < u < v 6 T the increments W (t) −W (s) and W (v) −W (u)

are independent.

If we take the limit τ → dt in the previous equation then we derive

dX =
M∑
j=1

νjaj(X(t))dt+
M∑
j=1

νj

√
aj(X(t)) dWj(t) (2.3)
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Here Wj(t) are the independent scalar Wiener processes, for 1 ≤ j ≤ M . The

stochastic differential equation (2.3) is called the Chemical Langevin equation. The

dimension of the Chemical Langevin equation is N , the number of species in the

system. The state vector X(t) in the Chemical Langevin Equation is a Markov

process continuous in space and in time.

2.1.3 Reaction Rate Equation (RRE)

The deterministic model of well-stirred biochemical kinetics can be obtained when

very large numbers of every species exist in the system. Assume that the system is in

thermodynamic limit. Thermodynamic limit is achieved when the species densities

Xi/Ω stay bounded for all i = 1, 2, ..., N , as the populations of species Si and the

model volume Ω approach infinity. In this case, the deterministic part of CLE (2.3)

has a similar size as that of the system but the fluctuation part has size similar to

the square root of the model size. Consequently, the diffusion term in the Chemical

Langevin Equation (2.3) is comparatively much smaller than the drift term (first

term) of the CLE. Thus the diffusion term can be ignored, thus we can reduce

the CLE to the reaction rate equation model. So, by neglecting the stochastic or

fluctuation part from the CLE (2.3), we get the following system of the ordinary

differential equations (ODEs):

dX(t)

dt
=

M∑
j=1

νjaj(X(t)),
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which is known as the classical reaction rate equation (RRE).

This mathematical model is often given in terms of concentrations rather than in

terms of population numbers. The concentrations vector, y(t), has components

yi(t) = Xi(t)/(V NA) for 1 ≤ i ≤ N with NA = 6.023×1023mol−1 being Avogadro’s

constant and V the volume.

The RRE obeys the law of mass action that has an empirical rule of thumb. We

refer to D. J. Highman [30] for constructing the propensity functions depending on

concentrations as below:

Case 1: First order reactions: If the reaction is

Sm
kj→ products,

the expression of the propensity function becomes

aj(y(t)) = kjym(t).

Case 2: Second order reactions: If the reaction is

Sm + Sn
kj→ products,

with condition m 6= n, the propensity function takes the form of

aj(y(t)) = kjym(t)yn(t).

Case 3: Dimerization: for the reactions

Sm + Sn
kj→ products,

14



with m = n, the propensity function turns into the form of

aj(y(t)) = kjym(t)2.

This form of the propensity functions in terms of concentrations is based on mass

action kinetics principles. In conclusion, the reaction rate equation model is valid

when large number of molecules of each species are present in the system.

2.2 Simulation Methods of Stochastic Biochemical Kinetics

2.2.1 Exact Methods

Instead of solving directly the Chemical Master Equation (CME) to find the prob-

ability to be in each possible state at any time t, one could generate an evolution of

the system state, one trajectory at a time. This is the Monte Carlo approach and it

is widely used for solving numerically the CME. Gillespie [25] described two exact

simulation algorithms for solving the Chemical Master Equation. These methods

are known as the Direct Method and the First Reaction Method. Gibson-Bruck

[19] gave another such exact strategy, known as the Next Reaction Method. These

techniques are describe below.

2.2.1.1 Gillespie Algorithm (or SSA)

The Chemical Master Equation is an accurate model of well-stirred stochastic bio-

chemical kinetics. To derive the stochastic simulation algorithm (SSA), we first

define P0(τ |x, t) to be the probability, given X(t) = x, that no reaction of any type
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happened in the time interval [t, t+ τ). When using the definition of the propensity

and the laws of probability, we derive

P0(τ + dτ |x, t) = P0(τ | x, t)×

1−
M∑
j=1

aj(x)dτ

 (2.4)

Indeed,

P0(τ + dτ |x, t) = Probability no reaction in [t, t+ τ)

×Probability no reaction in [t+ τ, t+ τ + dτ)

= P0(τ |x, t)(1−
M∑
j=1

Prob. of reaction Rj in[t+ τ, t+ τ + dτ))

= P0(τ |x, t)(1−
M∑
j=1

aj(x)dτ).

By re-grouping the terms in equation (2.4) and taking to the limit dτ → 0, we arrive

to the following ordinary differential equation

dP0

dt
(τ |x, t) = −a0(x)P0(τ |x, t).

The solution to this scalar ordinary differential equation, with the initial condition

P0(0|x, t) = 1, is

P0(τ | x, t) = exp(−a0(x)τ),

where

a0(x) =
M∑
j=1

aj(x). (2.5)

In what follows, we wish to study P (τ, j|x, t)dτ , which is the probability that the

next reaction is the j-th reaction and this reaction happens during [t+τ, t+τ +dτ),
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given that X(t) = x.

P (τ, j|x, t) = Prob. no reaction in [t, t+ τ)

×Prob. of reaction Rj in [t+ τ, t+ τ + dτ)

= P0(τ | x, t)aj(x)dτ.

Thus, we obtain

P (τ, j|x, t) = aj(x) exp(−a0(x)τ). (2.6)

We can re-write this as

P (τ, j|x, t) =
aj(x)

a0(x)

[
a0(x)e−a0(x)τ

]
. (2.7)

The expression (2.7) suggests that the time τ to the next occurring reaction is an

exponentially distributed random variable with mean 1/a0(x) and the index j of this

reaction is the integer random variable with point probability aj(x)/a0(x). Recall

below some theoretical results ( see also Wilkinson [53]).

Proposition 1: If τj ∼ Exp(aj) where j = 1, 2, ....,m are independent exponential

random variables, then

τ0 ≡ min
j
τj ∼ Exp(a0),

with a0 =
m∑
j=1

aj .

Proof:

P (τ0 > x) = P (min
j
τj > x)

= P ([τ1 > x] ∩ P ([τ2 > x]) ∩ ..... ∩ P ([τm > x])

17



= P (τ1 > x).P (τ2 > x).........P (τm > x)

= e−τ1x.e−τ2x......e−τmx

= e−x
∑m

j=1 τj

= e−a0x.

Hence, P (τ0 ≤ x) = 1− e−τ0x and then also τ0 ∼ Exp(X0).

Lemma: If U ∼ Exp(a) and V ∼ Exp(b) are independent exponential random

variables, then

P (U < V ) =
a

a+ b
.

Proof:

P (U < V ) =
∫∞
0 P (U < V | V = v)f(v)dv

=
∫∞
0 P (U < v)f(v)dv

=
∫∞
0 (1− e−av)be−bvdv

=
a

a+ b

Proposition 2: If τj ∼ Exp(aj) where i = 1, 2, ....,m are independent expo-

nential random variables and if j is the smallest index of the τj , then j is a discrete

random variable with probability mass function

ωj = aj/a0, j = 1, 2, ..., n, where a0 =

m∑
j=1

aj

Proof:

ωi = P (τi < min
j 6=i

τj)

= P (τi < Y ), where Y = min
j 6=i

τj

=
ai

ai + a−i
(from the lemma)
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=
ai
a0

By Gillespie’s inversion method from the Monte Carlo theory, we can generate ran-

dom samples of the two joint density functions of τ and j as follows: take two

random numbers r1 and r2 uniformly distributed in the unit-interval and τ and j

can be select according to

τ =
1

a0(x)
ln(

1

r1
) (2.8)

and

j = the lowest integer satisfying

j∑
j′=1

aj′(x) > r2a0(x). (2.9)

Now if X(t) = x, the state vector is upgraded to X(t+ τ) = x+νj to show that one

reaction Rj fired, given that X(t) = x0. This process is repeated until the solution

is advanced to the final time Tfinal. The steps for the implementation of Gillespie’s

Direct Method [1976] can be summarized as follows:

19



Gillespie Algorithm

While t < Tfinal do

Calculate aj(x) for 1 ≤ j ≤M and calculate a0(x) =
M∑
j=1

aj(x).

Generate r1, r2 v U(0, 1)

Compute τ =
1

a0(x)
ln(

1

r1
) and

j = the lowest integer satisfying

j∑
j′=1

aj′(x) > r2a0(x),

Update t = t+ τ , X(t+ τ) = x+ νj

end while

The SSA is exact for the CME, since it is generates a distribution in exact

agreement with the distribution obtained when solving directly the CME. But SSA

has a disadvantage, for the strategy of simulating every reaction event, one at a

time, is too time consuming when applied to many real systems.

2.2.1.2 The First Reaction Method

The First Reaction Method [25, 26] produces a possible reaction time τj for the

reaction Rj in accordance to the following expression:

τj = (1/aj(x)) ln(1/rj), (2.10)
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where r1, r2, ..., rM are uniform random numbers in (0, 1). Then the next firing

reaction is that which happens first, i.e,

τ = min
16j6M

τj (2.11)

The index of this reaction is,

j = index of reaction for the smallest τj (2.12)

The steps of the First Reaction Method [25, 26] are as follows:

First Reaction Algorithm

Set M reactions, N species , at time t = t0 initial state X(t0) = x0

and final time Tfinal.

While t < Tfinal do

Calculate aj(x) for 1 ≤ j ≤M and a0(x) =
M∑
j=1

aj(x),

Generate r1, r2, .., rM uniform random numbers in (0, 1).

Compute τj =
1

aj(x)
ln(1/rj)

calculate τ and j by using the formulas:

τ = min
16j6M

τj and

j = index of reaction for the smallest τj

update t = t+ τ , X(t+ τ) = x+ νj

end while
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The simulation using First Reaction Method (FRM) is more time-consuming

than that of the Direct Method (DM) because the FRM utilizes M random numbers

for each step while the DM only computes two random numbers per step. By

applying a few changes to the First Reaction Method, it can be turned into a more

efficient algorithm, namely the Next Reaction Method.

2.2.1.3 Next Reaction Method

The Next Reaction Method is also known as the Gibson-Bruck algorithm [19]. It

is more efficient than the First Reaction Method or the Direct Method. It utilizes

an ordered binary tree P to find the next reaction and its possible time, and a

Dependency Graph G to recalculate the propensities. The updating is done only

to the propensities effectively changed after the firing of the chosen event. The

Gibson-Brock [19] algorithm is given below:

Next Reaction Algorithm

Choose t = t0 for X(t0) = t0 for 1 ≤ j ≤M

While t < Tfinal do

Calculate aj(x) and calculate a0(x) =
M∑
j=1

aj(x).

Use τ = min
16j6M

τj and j = index of reaction for the smallest τj .

Also store the value of (j, τj) into P.
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Update t = t+ τ , X(t+ τ) = x+ νj

if (j, j′) ∈ G

Update a
′
j

Consider the case (i) for j′ 6= j thus τj′ = (aj′ , old/aj′ , new)(τj′ − t) + t.

else (ii) if j′ = j, then generates τj by using τj = (1/aj(x)) ln(1/rj)

update τj′ in P by setting t = t+ τ .

end while

Several things can be noted about this algorithm. This method advances the

time from the current to the next time an event occurs, that is ‘relative’ times to

‘absolute’ times. This algorithm keeps track of the propensities affected by each

reaction in an efficient way.
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2.2.2 Approximate Methods

Any exact strategy computes a sequence of all reactions that happen in the sys-

tem, thus becoming computationally quite intense on applications with some fast

reactions. Another approach, which speeds-up the simulation, is to step with a

predefined time-step over many reactions. In this case, the numerical solution is

required to satisfy some accuracy criteria. We describe some of these approximate

methods below.

2.2.2.1 Tau-leaping method

Gillespie introduced in 2001 [21] the tau-leap method for speeding-up the stochastic

simulation of well-stirred biochemical system, by firing many reactions of the same

type in a given time step τ . This method is applicable when a leap condition is

obeyed. The Leap Condition requires that:

τ > 0 is small enough such that each aj(x) function remains almost constant in the

interval [t, t+ τ). Then the number of Rj firings over the time interval [t, t+ τ) can

be estimated by a Poisson random variable, denoted by Pj(aj(x), τ), with mean and

variance aj(x)τ . Indeed,

X(t+ τ) = x+
M∑
j=1

νjPj

(∫ t+τ

t
(aj(s))ds

)

when X(t) = x

Note that ∫ t+τ

t
(aj(s))ds w aj(t)τ
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if the leap condition is satisfied. So, instead of updating the time from each reaction

to the next, the technique advances the system with the largest suitable τ for the

tau-leaping condition, and draws the number of firings for every reaction Rj from a

Poisson random variable Pj(aj(x), τ). Then the system is updated according to the

following rule:

X(t+ τ) = x+
M∑
j=1

νjPj(aj(x), τ). (2.13)

This approximation is the τ -leaping method.

In order to implement the tau-leaping technique effectively, a method is needed to

efficiently estimate the largest value of τ satisfying the Leap Condition. The Leap

Condition proposed by Gillespie [21] is satisfied in a weak sense if the expected

change in each propensity function aj(x) during the leap is bounded by εa0(x),

where ε is an error controlling parameter with 0 < ε � 1. In their paper, Gillespie

and Petzold [22] proposed that the largest estimation of τ satisfying the above

requirement can be considered as follows.

Firstly, calculate the auxiliary quantities M2 + 2M

fjj′(x) ≡
N∑
i=1

δaj(x)

δx(i)
νij′ , j, j

′ = 1, ..,M, (2.14)

µj(x) ≡
M∑
j′=1

fij′(x)aj′(x), j = 1, ...,M, (2.15)

σ2j (x) ≡
M∑
j′=1

f2jj′(x)aj′(x), j = 1, ...,M, (2.16)

then calculate τ as:

τ = min
j∈[1,M ]

{ εa0(x)

| µj(x) |
(εa0(x))2

σ2j (x)
}. (2.17)
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Here, µj(x)τ estimates the expected mean change in aj(x) during a time interval of

length τ ,
√
σ2j (x)τ estimates the expected standard deviation of aj(x), and equation

(2.17) is bounded by εa0(x) for all 1 ≤ j ≤M . Recently, an improved tau selection

formula was proposed by Cao et al [13], which is:

τ = min
i∈Irs
{max{εxi/gi, 1}

| µj(x) |
,
max{εxi/gi, 1}2

σ2j (x)
} (2.18)

where µi and σ2i are defined by

µj(x) ,
∑
j∈Jncr

νijaj(x), for all i ∈ Irs (2.19)

σ2j (x) ≡
M∑
j=1

ν2ijaj(x), for all i ∈ Irs (2.20)

and gi is the order of the highest reaction of species Si and εi =
ε

gi
where ε is the

user-specified tolerance. Also Irs represents the set of all reactant species indeces

and Jncr is the set of all non-critical reactions indeces. A reaction is called critical

if it is within nc firings of eliminating one of its reactants (nc < 10). Otherwise, a

reaction is called non-critical. We note that the above tau-selection strategies, while

computationally effective, are not very accurate. Their drawback is that the leap

condition is satisfied only in weak sense ( in mean and in variance).

(i) Explicit Tau-leaping:

This method gives an explicit formulation to update the system state X at time

t + τ , given that X(t) = x. The tau-leaping algorithm for (2.2) was proposed by

Gillespie [21] and can be briefed as follows:
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Explicit Tau-leaping Algorithm

Initialize X(t0) = x0 at time t0

while t < tfinal

Generate aj(x), the propensity function for j = 1, 2, ...,M and also step size τ that satisfies

the leap condition according to the leap selection strategy.

Draw samples (pj)
M
j=1 from independent Poisson variables Pj(aj(X(t))) for all 1 ≤ j ≤M .

Set X(t+ τ) = x+

M∑
j=1

νjPj(aj(x), τ) and set t = t+ τ .

end while

Stiffness arises when well-separated fast and slow scales are present in the sys-

tem, with the fast dynamics being stable. This is often encountered in models of

biochemical systems arising in applications, some reactions being fast and others

being slow. The explicit tau-leaping method exhibits instability for stiff systems

when large step sizes are employed. The method is essentially an extension of the

explicit Euler method for ODEs to discrete stochastic systems, and as such it is

conditionally stable.

(ii) Implicit Tau-leaping: In numerous applications, issues of stiffness may

arise. Rathinam et al. [47], investigated the effective simulation of stiff mod-

els of stochastic discrete biochemical systems. Note that an implicit equation

may be written in the deterministic term aj(X(t + τ))τ , while the stochastic term

(Pj(aj(x), τ)− aj(x)τ), that has zero mean, is computed at the current time t. The
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implicit τ - leaping formula can be derived from the explicit method (2.2) as follows:

X(t+ τ) = x+
M∑
j=1

νj [τaj(X(t+ τ)) + Pj(aj(x), τ)− τaj(x)] (2.21)

This equation is solved by, for example, Newton’s method for estimating X(t+ τ).

This is similar to the deterministic case. The implicit tau-leaping method was pro-

posed for overcoming the limitation on the step-size due to stiffness. The implicit

tau-leaping algorithm shares similarities with the explicit tau-leaping method, ex-

cept that the system state update is (2.21) instead of (2.13). Also, an extra implicit

solver is applied, e.g. Newton’s method.

2.2.2.2 Hybrid Methods

Hybrid models and techniques aim to speed-up the simulation by representing the

species with large molecular amounts by more efficient models (e.g. CLE or RRE),

while species with low population numbers are modeled with the CME. These tools

are combining the continuous and deterministic, or continuous and stochastic mod-

elling, as well as the discrete and stochastic methodologies to study the behaviour

of homogeneous biochemical systems [2, 8, 28, 46]. This approach may be useful for

stochastic biochemical networks with large amounts of molecules, still such methods

may neglect some stochastic variations which occur when a few molecules of certain

species are available. By contrast, stochastic simulation techniques represent these

random fluctuations accurately.

These strategies pick a division criterion that permits to arrange the reactions into
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fast, moderate and slow subsystems. The dynamics of the fast subsystem is ex-

pected to advance independently of the moderate/slow subsystems in a given step

of the latter ones. However, the dynamics of the moderate subsystem is in general

considered dependent of the fast system. This variation in approach is due to the

fact that the moderate subsystem can not develop independently of the first one as

the molecules of species that react in moderate reactions are, usually, species whose

amounts are changed by fast reactions. In addition, fast reactions occur more often

than moderate reactions and the adjustment induced by the event of the moderate

reactions may be reduced, compared to the change induced by the event of the fast

reactions. Also, the synchronization of the time-stepping for the various simulation

subsystems is needed (e.g. sum of molecules and concentrations).

Some hybrid algorithms, due to Neogi [43], Alfonsi et. al. [2], Salis [48], are used

in a stochastic algorithm, considering time-varying propensities, for partitioning of

the fast reaction subsystem and the slow subsystem simulation. Also, a number of

these methods [28, 45, 31] are used as a combination of stochastic simulation and

numerical integration for ODEs/SDEs without considering time-varying propensi-

ties in the simulation of the slow subsystem. Puchalka et.al. [46] proposed a hybrid

strategy based on a combination of the Next Reaction Method and the tau-leaping

scheme.

It may happen that reactions in the fast subsystem can evolve in a way, such that to

recompute them dynamically one must embed them into the moderate sub-system,
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and viceversa. Hybrid strategies have a dynamical partitioning in reactions or

species. Characterization of these methods is based on which set of techniques

are used (SSA,ODE’s, tau - leaping, SDE), regardless of whether it utilizes dy-

namic/automatic or user characterized partitioning, or it is considering the time

dependent or constant propensities [45]. Pahle [45] gave a comprehensive survey of

the state-of-the-art hybrid techniques for stochastic biochemical networks.

2.2.2.3 Euler-Maruyama Method for CLE

A differential equation of the form:

dX(t) = f(X(t))dt+ g(X(t))dW (t) (2.22)

is known as a stochastic differential equation, shortly SDE, where W (t) is an in-

dependent Wiener process. The initial condition is X(0) = X0. By considering

X0 =constant and if g ≡ 0, we can obtain an ordinary differential equation, namely

dX(t)

dt
= f(X(t)), for t = 0,

with X(t0) = X0.

Now, we present a numerical method for SDE. When integrating on a time interval

[0, T ], we choose a time step 4t = T/L where L is a positive integer and set,

tj = j4 t, j = 0, 1, 2, , ..., L. Denote by Xj ' X(tj). The Euler-Maruyama method

for the SDE (2.22) can be formulated as:

Xj = Xj−1 + f(Xj−1)4 t+ g(Xj−1)(W (τj)−W (τj−1))

30



where j = 1, 2, ..., L.

The strong convergence of the Euler-Maruyama method requires a bound for the

expected value of the difference between the exact solution X(tj) and the numerical

approximation Xj , E|Xj − X(tj)|, where E represents the expected value. The

convergence of a numerical method for solving (2.22) is said to be of strong order of

convergence γ if:

E|Xj −X(tj)| ≤ C 4 tγ

for any tj = j 4 t, 0 ≤ tj ≤ T .

Here C is a constant independent of the step 4t, for 4t sufficiently small.

The Euler-Maruyama method has strong order of convergence for γ = 1
2 if f and g

satisfy appropriate conditions [33]. Euler-Maruyama for CLE becomes

X(t+ τ) = X(t) +
M∑
j=1

νjaj(X(t))4 t+
M∑
j=1

νj

√
aj(X(t))4 t4Wj(t),

where 4Wj(t) = Wj(t+ τ)−Wj(t).

2.2.2.4 Stiff/non-stiff solvers for RRE with non-negative option for pop-

ulation numbers

Stiffness is exhibited for a system of ODEs, which has both fast and slow dynamics.

The fast dynamics is such that the trajectory approaches the stable manifold. After

a short transient, the slow modes determine the dynamics of the system.

The evolution of such a system displays a rapid change for a short time interval,

known as the transient (of time-scale given by the fast modes). After the transient,
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the system is advanced slowly, according to the time scales of the slow modes. On

the transient, the model is non-stiff, while after it the model becomes stiff. Explicit

methods use time steps that are similar to the fastest time scale. The explicit

methods advance the solution from one time to the next by approximating the slope

of the solution curve at or near the beginning of the time interval. Larger time steps

for explicit methods lead to numerical instability. This is a significant disadvantage

of explicit methods when applied to stiff models.

On the other hand, an implicit method does not approximate the slope of the

trajectory near the beginning of the interval of a time step. Instead, it gives more

weight to the slope at the unknown point at the end of the current time step. This

tends to avoid the above-described instability, but at the cost of having to solve

a nonlinear system of equations for the future point, at each time step. The gain

in speed-up of implicit over explicit methods on stiff problems may be significant.

Among the siff solvers in MATLAB that can be used to solve stiff RREs, we mention,

‘ode15s’, ‘ode23s’ or ‘ode23tb’. For non-stiff RRE, one can use ‘ode45’, ‘ode25’ or

‘ode113’. The option ‘NonNegative’ will prevent negative population numbers in

each molecular species.
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Chapter 3

ADAPTIVE METHOD FOR TAU-LEAPING STRATEGY FOR CME

We propose below an adaptive method for the tau-leaping strategy to solve numeri-

cally the Chemical Master Equation. When the numerical solution does not satisfy

the leap condition, the step is rejected. The method requires that the leap condition

is satisfied on every step, on every trajectory, therefore we predict that it gives a very

accurate solution. To ensure that the rejection does not result in a biased numerical

solution, we condition the random variables for the step chosen after rejection on

the random variables of the step that was rejected. The theoretical framework on

which this method is based was provided by Anderson [3] in the context of post-leap

checks.

For the tau-leaping strategy, a step is rejected when the Leap Condition is not

fulfilled or at the point when some population numbers become negative. Rejec-

tions should be done such that the approximation is not biased. When the solution

violates the accuracy criteria, the step is rejected, but the samples of the Poisson

random variables already created are stored for future use. When a smaller step is

attempted, the new random quantities for this step should be conditioned on the

samples of the Poisson variables already created for the larger step τ , to guaran-

tee that the numerical solution is computed on the correct trajectory is followed.
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For this conditioning, we applied a method proposed by Anderson [3] for post-leap

checks.

For predicting a step τ , one generates the number of reactions Rj fired between

[t, t + τ ] by sampling from a Poisson random variable Pj(aj(x(t)), τ). We denote

this random number by pτ,j . If the error criteria corresponding to the predicted

step τ is not satisfied, then τ is rejected. However, the number of reactions Rj , pτ,j

is recorded for future use. A new step, τ ′, is tried such that 0 < τ ′ < τ. Given the

future constraint, the number of Rj firings in [t, t + τ ′] denoted by qj depends on

how many reactions happened between [t, t + τ ]. In fact, the number of times Rj

happens in [t, t + τ ′] should be conditioned on the number of times Rj occurs in

[t, t+ τ ]. According to Anderson [3], the correct way of conditioning is to choose qj ,

a sample from a binomial distribution Bj(pτ,j , τ
′/τ). If there are pτ,j reactions Rj

in [t, t+ τ ] and only qj in [t, t+ τ ′], then clearly they are pτ,j − qj such reactions in

[t + τ ′, t + τ ]. This strategy ensures that the right sample path is maintained (see

also Anderson (3)).

Theorem:

If Y (t) is a Poisson process with intensity a, and 0 ≤ s < µ < t, then, the in-

crement Y (µ) − Y (s) conditioned on Y (s) and Y (t), has a binomial distribution,

B(Y (t)− Y (0),
µ− s
t− s

).

Proof: We may assume, without loss of generality, that s = 0 and Y (0) = 0. Con-

sider Y (t) = p and 0 < µ < t.
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From the definition of the conditional probability, we get

P (Y (µ)) = j | Y (t) = p) =
P (Y (µ) = j) ∩ (Y (t) = p))

P (Y (t) = p)
(i)

The fraction is equal to

P (Y (µ) = j) ∩ (Y (t) = p))

(P (Y (t) = p))
=
P (Y (t)− Y (µ) = p− j)P (Y (µ) = j)

P (Y (t) = p)
(ii)

From the properties of a Poisson distribution, we can write that

P (Y (t)− Y (µ) = p− j)P (Y (µ) = j)

P (Y (t) = p)
=
e−a(t−µ)(a(t− µ))p−j)(aµ)je−aµp!

j!e−at(at)p(p− j)!
(iii)

From (i), (ii) and (iii), we get, after simplifying the expression

P (Y (µ) = j | Y (t) = p) =

(
p

j

)
(1− µ

t
)p−j(

µ

t
)j

i. Leap Condition

We remark that numerically imposing the leap condition in terms of molecular

population numbers is preferred to imposing the condition in the terms of propensity

functions (see Cao et al [13] ). The former gives a more accurate numerical solution.

The version of the leap condition imposed on the molecular amount is

|Xi(t+ τ)−Xi(t)| ≤ max{εiXi(t), 1} (3.1)

with i ∈ Irs where Irs is the set of indices of all reactant species (so i ∈ Irs if and

only if at least one propensity function depends on Xi). The equation (3.1) requires

that the relative change in every species Xi is less than some small parameter εi,

or the absolute change in the population number is by at least one molecule. The

value of εi depends on the user specific tolerance according to:

εi =
ε

gi
, (3.2)
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for each i ∈ Irs. Here the tolerance ε is bounded by 0 < ε < 1.

The function gi = gi(x) depends on the highest order of reaction in which the species

Si occurs in a reaction.

(i) If highest order of reaction is 1, we have to choose gi = 1.

(ii) If highest order of reaction is 2, take gi = 2, but in the event that any

second-order reaction requires two Si molecules, take

gi =

(
2 +

1

xi − 1

)
.

(iii) If highest order of reaction is 3, choose gi = 3, but in the event that some

third-order reaction requires two Si molecules, take

gi =
3

2

(
2 +

1

xi − 1

)
.

The exception is if some third-order reaction requires three Si molecules, then choose

gi =

(
3 +

1

xi − 1
+

2

xi − 2

)
.

According to Cao et. al. [13], the leap condition (3.1) produces a more accurate

numerical solution than the version of the leap condition based on propensities:

| aj(X(t+ τ))− aj(X) |≤ max{εaj(x), cj}, 1 ≤ j ≤M .

ii. Variable time-stepping strategy for the tau-leaping method

Before we propose a reliable variable time-stepping strategy, we first discuss our

error criteria. The error criteria we use requires that the leap condition is satisfied.

Thus, for each step, each molecular population Xi must obey the condition (3.1).
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Denote by Xi(tn) the approximation of the number of Si molecules at time tn. Let

us split the set of reactants in two distinct subsets: Xlow is the subset of the species

in low molecular amounts and Xlarge is the subset of the species in large molecular

amounts, for the interval [tn, tn+1], with

tn+1 = tn + τn.

For the user-specific tolerance ε, the species Si belong to the subset of low number

species when

max{εiXi(tn), 1} = 1 (3.3)

Otherwise the species Si belongs to the large subset, that is

max{εiXi(tn), 1} = εiXi(tn). (3.4)

Note that, for any Xi(tn) with a large population the leap condition (3.1) means

that, the relative change number of molecules is such that

ri(tn) =
|Xi(tn+1)−Xi(tn)|

εi|Xi(tn)|
≤ 1 (3.5)

The leap condition (3.1) applied to any Xi(tn) with a low population implies that

the absolute change in its number of molecules is bounded by:

Ai(tn) = |Xi(tn+1)−Xi(tn)| ≤ 1. (3.6)

We can now define the error for the species with large population numbers as:

rlarge(X
n, Xn+1, τn) = max

{i: Xi(tn) large}
{ri(tn)} (3.7)
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while for the species with low population the error criteria is defined as:

Alow(Xn, Xn+1, τn) = max
{i: Xi(tn) low}

{Ai(tn)} (3.8)

over the time interval [tn, tn+1].

Let us now discuss step-size adaptivity for the tau-leaping strategy.

The idea behind the variable time-stepping technique we wish to propose extends

the standard technique for predicting the future step in the numerical ODE solving

[27], [49] and numerical SDE solving [10, 9]. For ODEs and SDEs, the future step

τn+1 is predicted as:

τn+1 = τn
(

θ

e(Xn, τn)

)
(3.9)

where e(Xn, τn) is the previous error measurement and τn is the previous step when

the scaled error is required to obey:

e(Xn, τn) ≤ 1,

The parameter of θ in (3.9) is a safety factor. It is introduced to minimize the

occurrences of step rejections and it is restricted by 0 < θ < 1. To avoid the number

of step rejections the step should not be too large or too small compared to the

previous step. Thus, instead of (3.9) the following strategy to predict the future

step is used in implementation [10]

τn+1 = τn min

(
α,max

(
β,

(
θ

e(Xn, τn)

)))
(3.10)

where the maximal step increment factor α > 1 and the minimal step decrease factor

β < 1 are chosen to decrease the chances to reject a step.
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In the case of stochastic discrete models of biochemical kinetics simulated by the

tau-leaping method, the scaled relative change in amount,

|Xi(tn+1)−Xi(tn)|
εi|Xi(tn)|

,

for the large population species should satisfy:

rlarge(X
n, Xn+1, τn) ≤ 1. (3.11)

Applying a predictor similar to (3.10)

τn+1
1 = τn min

(
α, max

(
β,

(
θ

rlarge(Xn, Xn+1, τn)

)))

Since the scaled absolute change in quantity for the small population species |Xi(tn+1)−

Xi(tn)| should be such that:

Alow(Xn, Xn+1, τn) ≤ 1 (3.12)

then, similarly, the next step for these species may be chosen as:

τn+1
2 = τn min

(
α, max

(
β,

(
θ

Alow(Xn, Xn+1, τn)

)))

We require that the error criteria (3.11) and (3.12) are satisfied, so we can choose

τn+1 = min(τn+1
1 , τn+1

2 ). (3.13)

We have the following cases in our variable step size method.

Case 1: No future condition When no future step was created on the current

path, then the number of reactions of type Rj on the time interval [t, t + τ ′] are
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computed by sampling a Poisson distribution Pj(aj(X(t)), τ ′) where X(t) = x. If

we denote this sample by pτ ′,j , then the tau-leaping method applied on the current

step is:

X(t+ τ ′) = X(t) +

M∑
j=1

νjpτ ′,j .

The error criteria (3.11) and (3.12) will be then verified and, if the step is accepted,

the solution is advanced to t+τ ′. Otherwise a step in the future was created (t+τ ′),

along with the samples of Poisson distributions, pτ ′,j , which will be used for future

conditioning.

Case 2: Future condition and step before the condition Assume that a

step was created in the future ( on the time interval [t, t+ τ ]) and the corresponding

leap, τ , was rejected as either (3.11) or (3.12) was violated. Associated to the future

step, the samples pτ,j were sampled from Poisson random variables.

A new, smaller step τ ′ is then chosen (0 < τ ′ < τ). The number of reactions of

type Rj on the smaller interval [t, t + τ ′), qj , are computed by conditioning on the

number of reactions of the same type in [t, t + τ ], namely pτ,j . According to the

Theorem above we obtain that qj is a sample from Bj(pτ,j , τ
′/τ), where Bj are

binomial random variables.

The tau-leaping strategy applied to the time interval [t, t+ τ ′] may be written as:

X(t+ τ ′) = X(t) +
M∑
j=1

qjνj (3.14)
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where X(t) = x. If the solution (3.14) satisfies (3.11) and (3.12), then the step τ ′ is

accepted and the numerical solution is advanced at time t+ τ ′.

Case 3: Future condition and step after the condition If on the time

interval [t, t + τ ] the step τ was rejected (and pτ,j were created and stored) and

a step 0 < τ ′ < τ was accepted ( and qj were created), then on the current time

interval [t+ τ ′, t+ τ) there are

pτ,j − qj

reactions of type Rj .

A new step is predicted using formula (3.13). Denote this step by τ ′′ > τ . The

number of reactions of type Rj between [t + τ ′, t + τ ′′] equal to the number of Rj

firings in [t+τ ′, t+τ ] to which we add the number of Rj occurrences in [t+τ, t+τ ′′].

Since there is no future condition in [t+ τ, t+ τ ′′], the latter is rj , a sample from a

Poisson random variable Pj(aj(X), (τ ′′ − τ)).

The total number of firings of the j-th reaction channels in [t+ τ ′, t+ τ ′′] is

(pτ,j − qj) + rj .

Thus the tau-leaping estimation of the system state at X(t+ τ ′′) is

X(t+ τ ′′) = X(t) +
M∑
j=1

[(pτ,j − qj) + rj ]νj . (3.15)

If the new step is accepted, then the solution is advanced to t+ τ ′′ and no condition

exists in the future, for the current path.
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Note that the split in the subsets of low population species and of large population

species is done dynamically in our algorithm.

Below we present our new adaptive tau-leaping strategy for simulating well-stirred

biochemical networks.
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Algorithm

Set tolerance ε, the control factor θ,

the minimal factor α, the maximal factor β,

the initial step τ0 and the number of trajectories. Step 0: Initializing

For every trajectory do 2-6. Step 1: Loop for trajectories

Set X ← x0 for t← 0,

the elementary step τ ← τ0, τ
′ ← τ

2 Step 2: Initializing a trajectory

While (t < Tfinal) do 4-6. Step 3: loop for one trajectory

Set Xlow and Xlarge Step 4: Low and large subsets

Repeat 6-7 until a step is accepted. Step 5: Steps

If constraint:

(A) Sample Poisson distributions:

pτ ′,j ← Pj(aj(X), τ ′)

(B) Find X ′ using (2.13).

(C) c1: If (e(X,X ′, τ ′) ≤ 1), then accept step.

Update, t← t+ τ ′ and X ← X ′.

c2: Else, reject step. Future constraint exists and is recorded.

τ ← τ ′,

pτ,j ← pτ ′,j .

(D) Update τ ′ using (3.13). Step 6: No future condition.
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Algorithm

If (τ ′ ≤ τ), then

(A) Sample binomial distribution:

qj ← Bj(pτ,j , τ
′/τ)

(B) Find X ′ using(3.14).

(C) c1: If (e(X,X ′, τ ′) ≤ 1), then accept step.

Update t← t+ τ ′ and X ← X ′.

(c2:) Else, reject step.

(D) Update τ ′ using (3.13). Step 7 (7.1): Step before constrain.

Else ( τ ′ > τ):

(A) Sample Poisson distribution and set:

pτ ′,j ← Pj(aj(X), τ ′ − τ) + pτ,j − bj

(B) Find X ′ using (3.15)

(C) c1: If (e(X,X ′, τ ′) ≤ 1), then accept step.

Update, t← t+ τ ′ and X ← X ′.

Future constraint removed.

c2: Else, reject step.

Store the new future constraint. τ ← τ ′,

pτ,j ← pτ ′,j .

(D) Update τ ′ using (3.13). Step 7 (7.2): Step after constraint.
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The high accuracy of the proposed variable time-stepping method is due to

the application of the exact leap condition (3.1) for each accepted step. The leap

condition is not applied approximately, as in the existing strategies in the literature

for the numerical solution of the CME.

We wish to emphasize that our algorithm employs a dynamic partitioning of the

subset of low and large molecular species. More precisely, we do not assume that the

subset of low and large biochemical species are fixed during the integration. This

flexibility, while increasing slightly the computational cost of the simulation, makes

our method applicable to a wide variety of well-stirred biochemical networks.
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Chapter 4

NUMERICAL RESULTS

In this section, we illustrate the advantages of the proposed adaptive scheme for

the tau-leaping method compared to the exact stochastic simulation algorithm of

Gillespie. The numerical tests are performed on a numbers of biochemical networks

arising in practice. In each case, the accuracy of the adaptive scheme is studied,

more precisely we compare the numerical results generated with our method, with

those obtained with Gillespie’s algorithms.

Simulations were done for all three models for 10,000 trajectories. We chose

α = 2, β = 0.5, the given tolerance ε = 0.5 and the value of the safety parameter

θ = 0.8. Also, we calculated the efficiency gain of the variable step-size tau-leap

technique by the ratio of the CPU-time of the SSA and that of our model,

speed-up = CPU (SSA)/ CPU (adaptive tau-leaping).

4.1 Simple Reaction Model

In order to study the accuracy and efficiency of the proposed strategy, we initially

apply this technique on a simple reaction model [15]. The model consists of three

species S1 ,S2 , and S3 and three reaction channels. We choose the parameter values

c1 = 1, c2 = 1000 and c3 = 0.0005 with initial conditions X1(0) = 5× 103, X2(0) =
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Case Reaction Propensity

1 S1 + S2 → S3 c1X1X2

2 S3 → S1 + S2 c2X3

3 S1 + S4 → S5 + S1 c3X4X1

Table 4.1: Simple Reaction Model

5 × 103, X3(0) = 102 and X4(0) = 102. The integration is performed on the time

interval [0,0.01]. We remark that the problem is stiff, since the propensities can

be partitioned into the fast and slow groups. Numerical results are given based on

simulation of 10,000 sample paths.

The efficiency gain achieved by our variable time-stepping technique over the SSA,

for the increased levels of stiffness for the biochemical system in Table 4.1, are shown

in Table 4.2.

- ξ = 1 ξ = 50 ξ = 100

Speed-up of adaptive tau over SSA 4.99 9.80 11.82

Table 4.2: Simple reaction model: speed-up of the new tau-leaping time-stepping

over the SSA, for the model reaction rate parameters [ξc1, ξc2, c3].

This shows that our adaptive tau-leaping method between 5 to 12 times faster

than the SSA, for the sets of parameters considered.
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Figure 4.1: Simple reaction model: Comparison of the histograms of species X1, X2

and X3 computed at T=0.01 using the SSA and the adaptive tau-leaping scheme.
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Figure 4.2: The evolution in time t of all species in the simple reaction model, for

one sample path.

Figure 4.1 displays the histogram for the species S1, S2 and S3 obtained using

the adaptive tau-leaping methods and the exact method SSA, respectively, for time

t = 0.01.

From Figure 4.1, it is clear that our proposed adaptive method has very similar

accuracy compared to the exact stochastic simulation algorithm (or Gillespie’s Direct

Method), thus our variable time-stepping tau-leaping strategy is very accurate, while

being more efficient than the SSA.
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4.2 Cycle Model

Consider now a system consisting of five species S1, S2, S3, S4 and S5 and five re-

actions [38]. The biochemically reacting system, representing a cycle model is pre-

sented in Table 4.2.

Case Reaction Propensity

1 S1 → S2 c1X1

2 S2 → S3 c2X2

3 S3 → S1 c3X3

4 S1 + S4 → S5 c4X1X4

5 S5 → S1 + S4 c5X5

Table 4.3: Cycle Model

This system has reaction rate constants as follows,

c1 = 1.5 × 103, c2 = 5 × 103, c3 = 103, c4 = 1.66 × 10−4 and c5 = 8 × 10−2, while

the initial conditions are X1(0) = 1000, X2(0) = 800, X3(0) = 400, X4(0) = 40 and

X5(0) = 50.

The state-change vectors of the system reactions are the corresponding columns
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appearing in the system’s stoichiometric matrix below:

ν =



−1 0 1 −1 1

1 −1 0 0 0

0 1 −1 0 0

0 0 0 −1 1

0 0 0 1 −1


,

The cycle model is integrated on the time interval [0, 0.01].

Figure 4.3 gives the histograms at time T = 0.01 of the species S1, S2, S3 and

obtained with the SSA and the improved variable tau-leaping method. This figure

shows that the proposed variable time-stepping strategy has excellent accuracy,

when compared to the exact SSA, for this model. The histograms for species S4

and S5, which have similar accuracy, were omitted. The speed-up of the adaptive

tau-leaping scheme over the SSA is

speed-up = 8.61.

In conclusion, our method is almost an order of magnitude faster than the SSA,

while maintaining similar accuracy.

Figure 4.4 shows a sample path with the evolution of the state vector X as a

function of time.
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Figure 4.3: Cycle model: The histograms of species X1, X2 and X3 at time T=0.01

computed with the SSA and the adaptive tau-leaping scheme.
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Figure 4.4: The evolution in time t of all species in the Cycle model, for one sample

path.

4.3 Complex Model

Finally, we study, a complex model representing a genetic network, [40] . This model

is composed of twelve reactions and ten species (A,B, SA, SB, SAB,SAB2, SBA,SBA2, PA

and PB respectively). The initial values of the molecular amounts are A(0) =

800, B(0) = 800, SA(0) = 500, SB(0) = 500, SAB(0) = 400, SAB2(0) = 500, SBA(0) =

400, SBA2(0) = 500, PA(0) = 0 and PB(0) = 0. The simulation is performed on the

time interval [0, 0.01]. The reactions, their propensities and the reaction rate con-

stants are shown in Table 4.3.
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Case Reaction Propensity Reaction rates

1 SA → SA +A c1SA c1 = 0.16

2 SB → SB +B c2SB c2 = 0.16

3 SA +B → SAB c3(SA)B c3 = 40

4 SAB → SA +B c4(SA)B c4 = 2000

5 SAB +B → SAB2 c5(SAB)B c5 = 2.5

6 SAB2 → SAB +B c6(SA)B2 c6 = 1600

7 A→ PA c7A c7 = 0.1

8 SB +A→ SBA c8(SB)A c8 = 2

9 SBA→ SB +A c9(SB)A c9 = 2000

10 SBA+A→ SBA2 c10(SBA)A c10 = 2.5

11 SBA2 → SBA+A c11(SB)A2 c11 = 1600

12 B → PB c12B c12 = 0.1

Table 4.4: Complex Model

We see in Figure 4.5 that for the complex reaction network, the proposed adap-

tive tau-leaping technique gives very good accuracy. Indeed, we remark that the

histograms for species X2, X5 and X7 generated with our method and with the (ex-

act) SSA match very well (The histograms for the other species, of similar accuracy,

were omitted for brevity). Moreover, our adaptive tau-leaping technique is more

efficient than the SSA.
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Figure 4.5: Complex model: the histograms of species X2, X5 and X7 at time

T=0.01 computed with the SSA and the adaptive tau-leaping scheme.
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Figure 4.6: The evolution in time t of all species in the Complex model, for one

sample path.

Figure 4.6 presents the dependence on time of all molecular species.

Numerical simulations with the given set of parameters show that the efficiency gain

is

speed-up = 3.53,
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thus our method is almost 4 times more efficient than the SSA, while being very

accurate. The diagram of this biochemical reaction network is represented in Figure

4.7, for reference.

We see that the adaptive time-stepping strategy for the tau-leaping scheme scales

well with the dimension of the system. In our future work we shall consider how to

reduce further the computational complexity of the adaptive algorithm depending

on the dimension of the system.

Figure 4.7: The diagram of the reaction network of the complex model
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Chapter 5

CONCLUSION

One of the important research areas in Computational Biology focuses on stochas-

tic modelling and simulation of complex networks of biochemical reactions. There

are a wide range of interesting problems concerning the development of effective

and reliable simulation tools for these stochastic models as well as for formulating

the theoretical framework for studying these tools. We discussed some of the key

stochastic models of well-stirred biochemical models as well as described the state-

of the art simulation strategies for them. In particular, we presented the widely

used stochastic model of well-stirred biochemical networks, the Chemical Master

Equation.

In this thesis, we propose an improved adaptive time-stepping scheme for the tau-

leaping strategy for approximating the solution of the Chemical Master Equation.

The tau-leaping method has been effectively utilized to simulate numerous reaction

systems emerging in applications. Our technique guarantees that the leap condition

is satisfied over each step, on each trajectory, making it a very accurate strategy.

Being an extension of variable time-stepping methodologies based on the integral

controllers used for solving SDEs or ODEs, such methods are shown to be very

efficient computationally.
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Our method may sometimes prompt step rejections, when the accuracy criteria

is not satisfied, still, the strategy guarantees that the statistics of the numerical

solution is not biased. The variable tau-leaping strategy was shown to be more

efficient than the stochastic simulation algorithm which is often employed for solving

the Chemical Master Equation model for models which are moderately stiff. Our

technique is quite flexible in chosing the step size in the tau-leaping method, being

particularly effective on systems with multiple scales in time. It uses a dynamic

splitting of the set of all reacting species into low and large molecular species. Our

future work will focus on efficient and reliable strategies to adapt the time-step for

higher order tau-leaping methods.
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