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ABSTRACT 

 

A NOVEL POSITION DOMAIN CONTROLLER FOR CONTOUR TRACKING 

PERFORMANCE IMPROVEMENT 

 

Truong Dam 

 

A thesis for the degree of 

Master of Applied Science, 2012 

Department of Aerospace Engineering, Ryerson University 

 

 A common problem with modern manufacturing processes that utilize high feed-rate 

machining is how to accurately track a given contour for the tool center point (TCP) of a system.  

Various methods have been developed to increase axial tracking performance and contouring 

performance of computerized numerical control (CNC) machines.  These include: high gain 

feedback controllers, feedforward controllers, zero phase error tracking controllers (ZPETC), 

cross-coupled control (CCC), and iterative learning control to mention a few.  The common 

factor amongst these methods is that they are all based in time domain. This thesis will propose a 

new control law based in position domain applied to contour tracking control of a CNC machine.  

The goal of this developed controller is to improve the overall tracking and contouring 

performance of a CNC system.  The idea behind a position domain control involves transforming 

the dynamics of a system from time domain into position domain through a one-to-one mapping.  
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In the position domain system control, the motion of one of the axis is used as an independent 

reference by sampling equidistantly to control the remaining axes according to the contouring 

requirements.  The overall contour error in a position domain controller should be lower relative 

to an equivalent time domain controller since there will be a zero tracking error from the 

reference motion.  The stability of the proposed position domain control is proven through the 

Lyapunov method.  Simulations with linear and nonlinear TCP contours using the proposed 

position domain controller and an equivalent time domain controller indicate that the proposed 

position domain control can improve tracking and contouring performance.  In addition, a 

position domain controller with cross-coupled control was also proposed to further improve 

contour performance.  
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Chapter 1 :   I NTRODUCTION  

1.1 BACKGROUND  

 Computer numerical control (CNC) machines are a class of automated machine tools first 

developed during the 1950s.  Their purpose was to aid in the machining of components with 

complex geometry at a greater rate and accuracy according to design specifications.  The first 

generation of CNC machines, known at the time as numerical control (NC), was developed by 

John Parsons and the MIT Servomechanism Laboratory in the late 1940s and early 1950s (Suh, 

Kang, Chung, & Stroud, 2008).  At that time, these machines were very large with intricate 

mechanical linkages requiring punch cards to operate.  Therefore, they did not offer much in 

terms feasibility for general manufacturing.  The first significant breakthrough for NC 

development occurred in the 1970s with the incorporation of computers into the control system 

of these machines.  Thus, the technology became known as CNC.  This eventually led to its vast 

acceptance in the manufacturing sector as well as garnering interests from researchers to improve 

the overall performance of systems (Koren Y. , 1983).   

 Prior to the introduction of NC machines, machined parts were manufactured by 

manually operated machines and for the most part, the geometric accuracy of these parts were 

largely determined by the skill and experience of an operator.  The dimensional quality of these 

parts was periodically checked for conformity and the settings on the machines were tweaked to 

compensate for any geometric errors.  This method of manufacturing for mass production has 

long been obsolete with the introduction of CNC machines.  Today, there are a variety of CNC 

machines as shown in Figure 1-1, each with a particular application. 
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Figure 1-1: Various types of CNC machines A) Robot B) Milling machine C) Turning 

machine D) Machining center E) Wire EDM F) FMS line (Suh, Kang, Chung, & Stroud, 

2008) 
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 Generally speaking, there are two basic modes of operation for CNC systems: the first is 

the point-to-point (PTP) type, and the second is the contouring type.  In a PTP system, it is 

satisfactory, in terms of machine accuracy, to have good axial tracking to the final desired 

position.  This can be achieved by a feedback control system with a structure shown in Figure 

1-2.   

 

Figure 1-2: A typical control loop implemented in CNC machining (Suh, Kang, Chung, & 

Stroud, 2008) 

 For a contouring system, implementation of the control system is more complex with a 

number of different control strategies applicable to different types of applications.  The 

complexity of the contouring type control has to do with the fact that the TCP needs to track a 

contour through synchronous motions between all of its axes.  This is difficult to accomplish as 

the dynamics and disturbances of each axis are typically nonlinear and are inevitably coupled.  In 

multiple degree of freedom systems, this becomes increasingly difficult to accurately model and 

therefore controlled.   

 In a conventional CNC machine control system, the motion of each axis is controlled 

independently of each other and each will typically have a control loop shown in Figure 1-3.  

The overall hierarchical level in a typical CNC controller is shown in Figure 1-4. 
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Figure 1-3: A typical control loop of a contouring system (Suh, Kang, Chung, & Stroud, 

2008) 

 

 

Figure 1-4: Hierarchical levels in CNC controllers (Suh, Kang, Chung, & Stroud, 2008) 
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 Regardless of how well it is designed or built, all CNC machines will exhibit some form 

of inaccuracies.  The main factors that affect these inaccuracies are classified as follows (Koren 

Y. , Control of Machine Tools, 1997): 

1. Mechanical hardware deficiencies 

2. Cutting process effects 

3. Controller and drive dynamics 

 Errors contributed to the mechanical deficiencies are the results of backlash as well as 

errors from the geometric inconsistencies during the manufacturing and assembly of the 

machine.  Cutting process errors occur during the machining of the part itself.  During the cutting 

process, force is applied to the cutting tool, which to a certain extent, will lead to tool deflection 

and degradation and result in inaccurate cuts to the final product.  The final factor is related to 

the actuation system of the machine and particularly, the control algorithms used to control the 

motion of the system.  All these factors are important and should be considered in the design and 

operation of CNC machines.   

 The scope of this thesis involves studying the errors derived from the implementation of 

control laws through the use of various control algorithms.  This is currently perhaps the most 

crucial area of research since the resulting errors in the machining process can be directly 

correlated to the speed of the operation.  With an increasing trend towards the utilization of 

higher machining speeds and higher feed rates, a greater emphasis is placed on improving the 

accuracy of the machine from a control perspective. 
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1.2  MOTIVATION AND OBJECTIVE  

 The motivation behind this research is to improve the individual axial tracking of CNC 

machines and to ultimately reduce the contouring error of the manufactured products.  This 

thesis will propose a new control law based in position domain to reduce axial tracking errors of 

a multi-axial CNC system.   As a result of reducing the tracking error, the overall contouring 

performance of the system will be improved.   

 The overall goals of the proposed position domain controller are: 

1. To provide an alternative to time domain controllers 

2. To obtain better contouring performance through improved tracking performance 

3. To reduce the system cost for the master axis actuation 

4. To eliminate the restriction of traditional equally sampling time systems 

5. To simplify the implementation of feedback controllers 

 In this thesis, the proposed position domain control (PDC) and a time domain control 

(TDC) will be simulated for linear and non-linear contours and compared to demonstrate the 

performance improvements of the proposed position domain controller over the conventional 

time domain controllers.  To fulfill these goals, the following objectives will be achieved: 

1. Model the dynamics of a simplified CNC system in position domain 

2. Formulate a position domain controller 

3. Conduct a stability analysis of the proposed controller using the Lyapunov method 

4. Perform a performance comparison between the proposed position domain controller and 

a conventional time domain controller 
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1.3 ORGANIZATION OF CONTENTS 

The remaining contents of this thesis will be organized as follows: 

 

Chapter 2: Literary review 

Chapter 2 is a literary review of various approaches to improve the performance of CNC 

machines.  It will review the early control strategies aimed at improving axial tracking errors and 

continue with the current methods focusing on the overall contouring performance.  The chapter 

will also review some advanced control methods such as iterative learning control, repetitive 

control, and event-driven control. 

 

Chapter 3: Control system design 

Chapter 3 provides a mathematical description of the CNC system dynamics in position domain 

and introduces the proposed position domain control (PDC) scheme.  A stability analysis for the 

proposed position domain control using the Lyapunov method is also provided. 

 

Chapter 4: Simulation results 

Simulation results for TDC and PDC controllers are presented and compared in terms of axial 

tracking and overall contouring performance for linear and nonlinear contours. 

 

Chapter 5: Discussion and conclusion  

A summary of the thesis is given in this chapter.  It will conclude and discuss the findings of the 

simulation results as well as proposals for possible future developments. 
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Chapter 2 :   L ITERATURE REVIEWS  

 Two common problems with high precision and high speed manufacturing processes 

involving CNC machines are the axial tracking and contouring performance of the TCP.  For a 

given controller, these two types of errors, namely tracking error and contouring error, may exist 

within an acceptable range at low axial feed rate and also low system dynamics variations.  

However, for systems utilizing higher feed rates, the range of the error can become significantly 

larger as there is a tendency for the error to be proportional to the feed rate (Koren & Lo, 

Variable-Gain Cross-Coupling Controller for Contouring, 1991).  Therefore, consideration of 

these errors is important to obtain accurate CNC machining.  As stated in Chapter 1, various 

factors can adversely influence the performance of a CNC machine resulting in inaccurately 

machined parts.  Two main types of errors that can be generated are tracking error (�) and 

contouring error (�), which are displayed in Figure 2-1.   

 

Figure 2-1: Tracking error contouring error 
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 Tracking error results from an individual axial tracking performance, or how well the 

controller of each axis can track the respectively desired reference position and/or velocity.  

Mathematically, the tracking error can be expressed as, 

 � = � − � (2.1) 

where � and � are the reference and actual positions, respectively.   

 Contouring error, on the other hand, is the error component orthogonal to the desired 

path.  For a 2D planar contour, the contouring error can be expressed as, 

 � = −�� sin � + �� cos � (2.2) 

where �� and �� are the individual tracking errors of the  -axis and !-axis respectively.  � is the 

angle from the  -axis to the line connecting the origin and the reference position � as shown in 

Figure 2-2.  For linear contours, � is constant.  

 

Figure 2-2: Linear contour 

 Eq. (2.2) applies only for linear contours.  For non-linear contours such as circles, the 

contouring error is given as, 

 � = "#� sin � − ��$% + &−� cos � − ��'% − � 
(2.3) 
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where � is the radius of curvature.  Note that in the circular contour, � is no longer constant and 

it changes depending on the reference position. 

 From the above definitions, it can be seen that the contouring error can be considered as a 

combination of all axial tracking errors in a multi-axis system.  Various researches (Koren Y. , 

Cross-coupled biaxial computer control for manufacturing systems, 1980)(Fang & Chen, 

2002)(Barton & Alleyne, 2008)(Hu, Yao, & Wang, 2009) have indicated that although 

advancements have been made to improve tracking performance, this does not necessarily 

guarantee good contouring performance.  An example of this conclusion is shown in Figure 2-3.  

From this figure, the axial tracking errors (��  and �� ) have been reduced significantly from 

actual positions at point � to point �′′, however, the change in the contouring error from � to �′′ 
remains relatively small.   

 

Figure 2-3: Tracking error and contouring error (Ko ren & Lo, Variable-Gain Cross-

Coupling Controller for Contouring, 1991) 

 Therefore, the overall contouring performance of a CNC system is usually taken as a 

performance index rather than the individual axial tracking performance.  Such is the case, the 
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development to improve overall accuracy of CNC machines over the years have tended to focus 

on two areas of research.  The first area of focus is on tracking control to improve axial tracking 

performance, while the second area of focus is on the overall contouring performance of the 

system (Ramesh, Mannan, & Poo, 2005).  Efforts to improve tracking performance generally 

involve modification to the conventional feedback proportional (P), proportional-integral (PI), or 

proportional-integral-derivative (PID) controllers with the addition of a feedforward loop.  Most 

of the axial control schemes presented in this review are variations of the feedforward control 

principle.  On the other hand, the majority of the control schemes used to improve contouring 

performance are relatively limited in literature.  The attempts that have been made are closely 

related to the concept of cross-coupled control or CCC introduced by Koren (Koren Y. , Cross-

coupled biaxial computer control for manufacturing systems, 1980). 

 

2.1 CONTOUR ERROR ESTIMATION  

  Calculating the contour error of the TCP in real-time for 3D dimensional contour is 

highly difficult.  Therefore it is often sufficient to estimate this error with the available system 

knowledge such as actual and reference TCP positions. The following derivation for contour 

error estimation is taken from (Erkorkmaz, Yeung, & Altintas, 2006).   
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Figure 2-4: Possible cases of contouring error (Erkorkmaz, Yeung, & Altintas, 2006) 

 From Figure 2-4, �	 = # 	 , !	 , )	$ represents the reference position while � = # *, !*, )*$ 
represents the actual position.  This indicates that there are three possible cases in estimating the 

contour error.   

• Case 1: The contour error is estimated using the previous reference path 

segment  ��+,��-------------..   
• Case 2: The contour error is estimated using the next reference path 

segment  ����/,-------------..   
• Case 3: The contour error is estimated using the closest reference point �	.  

 To determine the estimate of the contour error, it is first necessary to define some 

definitions. 

 The normalized path segment vectors are given as, 
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 01� = ��+,��-------------.2��+,��-------------.2 = # 	 −  	+,$3 + #!	 − !	+,$4 + #)	 − )	+,$56# 	 −  	+,$% + #!	 − !	+,$% + #)	 − )	+,$%
= ��,	 ∙ 3 + ��,	 ∙ 4 + �8,	 ∙ 5 

(2.4) 

 And, 

 01�/9 = ����/,-------------.2����/,-------------.2 = # 	/, −  	$3 + #!	/, − !	$4 + #)	/, − )	$56# 	/, −  	$% + #!	/, − !	$% + #)	/, − )	$%
= ��,	/, ∙ 3 + ��,	/, ∙ 4 + �8,	/, ∙ 5 

(2.5) 

 The position vector is defined as, 

 � = ���------. = & * −  	'3 + &!* − !	'4 + &)* − )	'5
= :� ∙ 3 + :� ∙ 4 + :8 ∙ 5 

(2.6) 

 The normal surfaces, ;	 and ;	/,, which are perpendicular to the path segment vectors 

are given as, 

 ;	 = ��,	 ∙ # −  	$ + ��,	 ∙ #! − !	$ + �8,	 ∙ #) − )	$ = 0 (2.7) 

 And, 

 ;	/, = ��,	/, ∙ # −  	$ + ��,	/, ∙ #! − !	$ + �8,	/, ∙ #) − )	$ = 0 (2.8) 

 The bi-normal surface =	 for the angle ∠�	+,�	�	/, is defined as, 

 =	 = &��,	 + ��,	/,' ∙ # −  	$ + &��,	 + ��,	/,' × #! − !	$
+ &�8,	 + �8,	/,' ∙ #) − )	$ = 0 

(2.9) 

 With the definitions above, it is now possible to determine the appropriate case with 

which to estimate the contour error.   

 If the angle ∠�	+,�	�	/, ≠ 180° then, 
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 D E�F�	1 → IJ	=	& *, !*, )*' < 0	�LM	;	& *, !* , )*' ≤ 0E�F�	2 → IJ	=	& *, !* , )*' ≥ 0	�LM	;	/,& *, !*, )*' ≥ 0E�F�	3 → IJ	;	& *, !* , )*' > 0	�LM	;	/,& *, !* , )*' < 0S 
(2.10) 

 Otherwise if ∠�	+,�	�	/, = 180° then, 

 TE�F�	3 → IJ	;	& *, !* , )*' > 0	�LM	;	/,& *, !*, )*' < 0E�F�	3 → UVℎ��XIF� S (2.11) 

 For Case 1 and Case 2, the  projection vector �′ of the position vector �, shown in Figure 

2-5, is defined as, 

 �� = &��Y:� + ��Y:� + �8Y:8'&��Y ∙ 3 + ��Y ∙ 4 + �8Y ∙ 5' (2.12) 

Where ��Y , ��Y , and �8Y  are the components of the vector 0Z .  Vector is defined as 0Z = �	  or 

0Z = �	/, for Case 1 and Case 2 respectively.   

 

 

Figure 2-5: Contour error for Case 1 and Case 2 (Erkorkmaz, Yeung, & Altintas, 2006) 

 Therefore, the estimation of the contour error is given as, 

 [ = � − �� = �� ∙ 3 + �� ∙ 4 + �8 ∙ 5 (2.13) 

 

 The magnitude of the contour error is given as, 
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 ‖[‖ = "��% + ��% + �8% (2.14) 

 For Case 3, the contour error vector is estimated by the vector  ���------., 
 [ = �� ∙ 3 + �� ∙ 4 + �8 ∙ 5 ≈ ���------. = :� ∙ 3 + :� ∙ 4 + :8 ∙ 5 (2.15) 

 The magnitude of the contour error is given as, 

 ‖[‖ = ":�% + :�% + :8% (2.16) 

2.2 TRACKING ERROR CONTROL  

 The use of a standard PID feedback controller, also P or PI feedback controllers, to 

control each axis of a multi-axis system independently is highly common with traditional 

machine tooling control.  However, there are some drawbacks when utilizing feedback 

controllers for high speed machining.  With high speed machining there will be poor tracking of 

sharp edges as well as nonlinear contours.  In addition, with the use of high control gains, there 

will be overshoot in the system.  For the feedback controllers to be effective, it must also be 

finely tuned according to the dynamics of a particular system.  These dynamics are not constant, 

particularly over time and will vary depending on working conditions such as, the mass of the 

work piece and the maintenance condition of the machine.  To obtain a higher tracking accuracy 

from the controller, it is therefore necessary to develop more sophisticated axial control 

algorithms to overcome these limitations of the conventional feedback controllers.  A common 

modification to the traditional feedback controller scheme is the addition of a feedforward 

controller to the control loop shown in Figure 2-6.   
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Figure 2-6: A conventional feedforward controller inverse to plant dynamics 

 One of the early efforts to improve axial tracking performance by adding a feedforward 

controller is called Perfect Tracking Controller (PTC).  In PTC, the modeling of the plant 

dynamics is assumed to be highly accurate and also the information regarding the future 

reference trajectories is available to the controller.  Due to the assumption of the highly accurate 

dynamics model of the drive system, the dynamics of this feedforward controller would 

essentially be the inverse of the closed-loop plant or close-loop system dynamics.  The advantage 

of this process is an overall unity transfer function meaning the actual position would be equal to 

the required position. The PTC scheme would exhibit the following closed transfer function in 

discrete time as, 

 ^#)+,$ = )+_=Y#)+,$`Y#)+,$  
(2.17) 

where )+_  represents a M -step delay caused by the delay in the plant and =Y#)+,$ = aYb +
aY,)+, +⋯+ aYd)+d, aYb ≠ 0 and ̀ Y#)+,$ = 1 + �Y,)+, +⋯+ �Ye)+e .  The output of the 

closed loop transfer function of the system are given as 

 !#�$ = ^#)+,$�#�$ (2.18) 

 And the reference input from the feedforward tracking controller is, 
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 �#�$ = `Y#)+,$=Y#)+,$ !_#� + M$ (2.19) 

where !_#� + M$ is the desired output M-step ahead and its purpose is to compensate for the M-

step delay in the closed-loop transfer function.  From Eq. (2.18) and Eq. (2.19), it can be seen 

that the controller will exhibit perfect tracking where !#�$ = !_#�$, which assumes that the 

given initial conditions are zeros. The main disadvantage with the PTC approach is that it 

requires a minimum-phase system where the poles and zeroes are stable.  When there is the 

presence of uncancellable zeroes in the system, there is tendency for the system output to be 

unbounded or oscillatory.  These uncancellable zeros may exist outside of the unit circle or very 

close to it.  Regardless, their existence will cause the overall response of the system to be 

unstable or oscillatory in nature (Astrom, Hagander, & Sternby, Zeroes of Sampled Systems, 

1984).  Furthermore, even if there are no unstable zeroes in the system, they may still be 

generated when a continuous time system is transformed into a discrete time system for purposes 

of digital implementation (Suh, Kang, Chung, & Stroud, 2008). 

 To deal with the uncancellable zeros in the PTC approach, Tomizuka (Tomizuka, 1987) 

proposed Zero Phase Error Tracking Controller (ZPETC) which is an approach based on 

pole/zero cancellation and phase cancellation.  The general concept of ZPETC is that the existing 

feedback controller is utilized to provide the overall controller with the ability to regulate the 

process while the feedforward controller is used to provide the tracking control to the system.  

An example of this setup is shown in Figure 2-7.   
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Figure 2-7: Zero phase error tracking system (Tomizuka, 1987) 

 With ZPETC, the output and input of the transfer function in PTC is modified to, 

 !#�$�#�$ = )+_=Y+#)+,$=Y/#)+,$`Y#)+,$  
(2.20) 

 Here, the uncancellable zeroes present in =Y#)+,$ of the PTC approach are factorized out.  

That is =/#)+,$ contains all the acceptable zeroes and =+#)+,$ contain all the unacceptable 

zeroes of the closed-loop system.  This implies that the acceptable zeroes are within the unit 

circle in the )-plane while the unacceptable zeroes are outside or very close to the unit circle.  To 

deal with the uncancellable zeros, Tomizuka proposed the following feedforward controller, 

 �#�$!d#� + M$ = `Y#)+,$=+#)$=/#)+,$f=+#1$g% 
(2.21) 

 And the overall transfer of the system is, 

 !#�$!d#� + M$ = =+#)$=+#)+,$f=+#1$g%  
(2.22) 

 The transfer function above expressed in the frequency domain as, 

 !#�$!d#� + M$ = =+&�+hi'=+#1$ =+&�hi'=+#1$  
(2.23) 

 From the above equation, it is assumed that =+&�+hi' = �� + jk� where �� and k� are 

the real and imaginary components respectively.  Therefore, Eq. (2.21) can be rewritten as, 
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 !#�$!d#� + M$ = Re% + Im%f=+#1$g% = p=+&�hi'=+#1$ p% 
(2.24) 

 From the above frequency transfer function equation (Eq. (2.24)), it is evident that the 

phase angle of the transfer function is zero, thus it will yield zero tracking error.  Experiments 

have verified that the frequency response of this transfer function has a zero phase shift for all 

frequencies and a unity gain at zero frequency.  Experiments with ZPETC controllers were able 

to track highly complex contours with good tracking error and smooth velocity profiles.  

However, performance degradation was observed for systems with large disturbances.  Since 

ZPETC is based on pole/zero cancellation and phase cancellation, its performance is highly 

sensitive to modeling errors and system parametric variations particularly for system with large 

disturbances. 

 To account for the unknown variations in modeling and system parameters, an adaptive 

ZPETC was introduced by Tsao and Tomizuka (Tsao & Tomizuka, 1987).  This method 

introduces a parameter adaptation algorithm (PAA) which is based on a normalized least squares 

method to adjust the unknown dynamic parameters in the feedforward controller.  The output 

and input of the adaptive ZPETC is given as follows, 

 !#�$�#�$ = )+_=#)+,$=b+#)+,$=b/#)+,$`#)+,$`b#)+,$  
(2.25) 

 Both the numerator and denominator are divided into known and unknown parts (the 

known parts have a zero subscript).  This separation is normally applied since the feedback 

controller dynamics are generally known while the dynamics of the plant are only partially 

known.  The advantage of this adaptation algorithm is the feedback controller loop is 

unperturbed since the additional feedforward controller is made as a module which can be 

switched on and off.  With the feedback controller is untouched, the system can remain relatively 
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stable.  Simulation results with the adaptive ZPETC controller indicate improved performance 

over the a non-adaptive ZPETC controller. 

 The original ZPETC controller was further modified by Haack and Tomizuka (Haack & 

Tomizuka, 1991) who proposed adding zeros to the zero phase error tracking controller.  This 

had the effect of reducing the tracking error generated from the feedback loop that contains 

uncancellable zeroes.  Experiments indicate improvements in tracking performance for low and 

mid-range frequency trajectories.  However, the performance did not improve in the high 

frequency range. 

 Another method that utilizes the feedforward controller principle is the Inverse 

Compensation Filter (IKF) developed by Weck and Ye (Weck & Ye, 1990).  This method 

introduces a low pass filter to the feedforward controller to filter out the high frequency signals.  

The structure of this setup is shown in Figure 2-8.  IKF was found to be effective at filtering out 

discontinuities in the signal.  Therefore, the controller can track, with a greater precision, 

dynamically high-frequency paths. 

 

Figure 2-8: A feedforward and feedback control loop with IKF (Weck & Ye, 1990) 

 Another control strategy that utilizes the feedforward principle is Van Den Braembussche 

et al. (Van Den Braembussche, Swevers, Van Brussel, & Vanherck, 1996) who proposed a 

control scheme that consists of a state feedback, feedforward, and motor ripple compensation.  

As with the previous feedforward methods, the feedforward loop is used to archive zero tracking 
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error, but with an added inverse model pre-filtering similar to the IKF strategy.  This model also 

compensates for the cogging or motor rippling effect caused by magnetic disturbances of electric 

motors.  These compensation models are derived through experimentation and are added as an 

addition feedforward loop shown Figure 2-9.   

 

Figure 2-9: The control scheme proposed by Van Den Braembussche (Van Den 

Braembussche, Swevers, Van Brussel, & Vanherck, 1996) 

 Most of the control strategies presented as well as the one found in literature are based on 

the principle of feedforward control.  Some of others not mention are predictive control and 

optimal control.  These methods along with the ones mentioned above, have their own 

advantages and disadvantages as well as particular application (low versus high speed machining 

and low versus high variation is system dynamic parameters).  Although feedforward controllers 

provided relative improvement in tracking performance, one major disadvantage of feedforward 

controllers, as mentioned, is that it requires precise knowledge of the dynamic behaviour of the 
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system.  Even with an adaptive control scheme, the dynamics is difficult to model with sufficient 

accuracy as the behaviour of the real system is predominantly nonlinear and varying with time.  

There are also sensitivity issues that can arise from adaptive control with large system 

disturbances. 

2.3 CONTOURING ERROR CONTROL  

 One of the most important contributions to CNC contouring performance in terms of 

control implementation advancement was made by Koren (Koren Y. , Cross-coupled biaxial 

computer control for manufacturing systems, 1980) who proposed cross-coupled control (CCC) 

for biaxial systems.  The concept of CCC was designed for a sampled-data type CNC control 

system where each axis in a multi-axis system is controlled independently.  Each axis will 

consist of its own closed-loop control algorithm strictly capable of detecting and correcting for 

its own disturbances.  Disturbances from the other axes go undetected and will inevitably result 

in inconsistent or poor overall synchronization of all axes.  With CCC, the errors that occur in 

one axis will affect the control loops of both axes.  This means that the controller is capable of 

monitoring the motions of all axes relative to each other and cross-couples the error in the 

controller dynamics.  The structure of CCC is shown in Figure 2-10.  Therefore, the main 

objective of CCC is to eliminate the overall contour error rather than focusing on the individual 

axial tracking error.  This is achieved by constructing a model of the contour error � in real time 

and then using this information to implement a control law to minimize the contouring error.  

The contour error model � is derived from the tracking errors �� and �� in a biaxial system.  The 

result is then multiplied by a proportional gain (q*) and fed back into the system.  In theory, it 

would be possible to achieve zero contour error even with the existence of large axial tracking 

errors from all the axes. 
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Figure 2-10: Biaxial cross-coupled control structure (Koren & Lo, Variable-Gain Cross-

Coupling Controller for Contouring, 1991) 

 Experiments conducted by Koren (Koren Y. , Cross-coupled biaxial computer control for 

manufacturing systems, 1980) with the proposed biaxial CCC system indicate contouring 

performance improvement over conventional feedback controllers (i.e. P-controller and PID-

controller) without CCC.  This performance improvement was not observed for the individual 

axes of the system (i.e. tracking performance improvement for one axis), but rather for the 

system as a whole.   One advantage of the CCC strategy is the ease of implementation where it 

requires no addition hardware for an existing CNC-based system.  For NC-based systems, 

additional hardware would be required.  A significant disadvantage to CCC presented above is 

its low effectiveness in dealing with non-linear contours (i.e. circles and parabolas) due to the 
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difficulty of analytically determining the contour error in real time.  Even for linear contours, 

where the contour error is relatively simple to determine, there is a tendency for the contour error 

to oscillate as the steady-state tracking error goes to zero.  

To improve upon the original concept of CCC proposed by Koren, Koren and Lo (Koren 

& Lo, Variable-Gain Cross-Coupling Controller for Contouring, 1991) introduced a revised 

version of CCC called variable-gain cross-coupled control.  In variable-gain CCC, the cross-

coupled control gains are adjusted in real-time depending on the shape of the contour.  This 

implies that CCC can be utilized for nonlinear contours such as circles and parabolas.  Figure 

2-11 below shows the addition of variable gains E� and E� to the original CCC scheme. 

 

Figure 2-11: Variable-gain cross coupled control (Koren & Lo, Variable-Gain Cross-

Coupling Controller for Contouring, 1991) 



 
 

25 
 

 Here, E�  and E�  are defined by the instantaneous shape of the contour.  For linear 

contours, these gains are constant and are defined as, 

 TE� = sin �E� = cos �S (2.26) 

where � is defined in Figure 2-2.  For circular contours, E� and E� are functions of both � and �, 

where � is defined as the radius of the circle.  The variable CCC gains are then given as,   

 DE� = sin � − ��2�E� = cos � + ��2�S 
(2.27) 

where �� and �� are the tracking error in the  -axis and !-axis respectively.  For other nonlinear 

contours, the values E� and E� are estimated by approximating the local portion of the contour as 

circular.  Therefore, the gains are still functions of � and �, where � now is the instantaneous 

radius of the curvature.  Simulations of linear, circular, and parabolic type contours with variable 

CCC gains by Koren and Lo (Koren & Lo, Variable-Gain Cross-Coupling Controller for 

Contouring, 1991)  indicate significant reduction in contouring errors by as much as a 10:1 ratio 

with the lowest ratio achieved of  3:1. 

 Different control structures have also been proposed base on the Koren and Lo's variable-

gain cross-coupling.  Kulkarni and Srinivasan (Srinivasan & Kulkarni, 1990) introduced optimal 

coupled control with the structure shown in Figure 2-12.  Results from experiments found that 

the proposed coupled optimal controller was effective at reducing contouring error for linear, 

corners, and circular contours for low machine feed rates ranging from 2.25 to 5.63m/min for 

linear and 7.2m/min for circular contours with a radius of 30mm.  Furthermore, it was found that 

in order to obtain comparable contouring errors in the uncoupled controller, significantly higher 

control gains had to be utilized. 



 
 

26 
 

 

Figure 2-12: Optimal coupled control(Srinivasan & Kulkarni, 1990) 

 Although highly successful at reducing the contouring error, the principle of CCC could 

only be applied to biaxial systems since the contouring error can be determined analytically.  For 

systems with three or more axes, calculating the contouring error in real time based on all axial 

tracking errors becomes very difficult.  The best solution to is provide an estimation of the 

contour error in real-time with an estimation method outlined a later section. 

 

2.4 ADVANCED CONTROL METHODS  

 Sections 2.2 and 2.3 discussed some of the developed control techniques relevant to 

current CNC control systems.  This section will review some of the advanced techniques, namely 

iterative learning control (ILC), repetitive control (RC), and event-driven control (EDC). 

 The concept of ILC is based on the fact that when a machine performs a task that is 

repeated many time, such is the case for many CNC applications, it can analyze and store the 
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errors that were made and make appropriate corrections.  Through this method, the errors in the 

system outputs can be made progressively smaller with each successive iteration.  This forms a 

category of learning-type control strategies, which also includes adaptive and repetitive control.  

ILC is different from these control strategies since it only modifies the control input to a system.  

With adaptive control, the controller itself is modified (Bristow, Tharayil, & Alleyne, 2006).  

One important consequence of ILC and other learning-type control strategies is that it is only 

capable of correcting for repetitive errors.  The general structure of the ILC can be seen in Figure 

2-13. 

 

Figure 2-13: Iterative learning control structure (Barton & Alleyne, 2008) 

 

 

 One of the first publications to introduce ILC to CNC control was proposed by Kim et al. 

(Kim & S., 1996).  This involved incorporating a learning function into a conventional PID 

controller.  The input of the controller is given as, 

 rs/,#I$ = rs#I$ + tu�s#I + 1$ + tv w�s#L$	/,
ex, + tyf�s#I + 1$

− �s#I$ 
(2.28) 
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where � is the iteration step and I is the discrete time.  �s#I$ is the system output error.  The 

overall system is expressed as, 

  s#I + 1$ = `#I$ s#I$ + =#I$rs#I$ = z#I$Xs#I$  s#0$ =  { 

!s#I$ = E#I$ s#I$ 
rs#I$ = rs+,#I$ + tu�s+,#I + 1$ + tv w�s+,#L$	/,

ex,+ tyf�s+,#I + 1$ − �s+,#I$g �s+,#I$ = !_#I$ − !s+,#I$ 

(2.29) 

The structure of this system is displayed in Figure 2-14.  Experiment with this controller yielded 

improved performance after only 4 iterations with a 58% increase in the machining accuracy for 

circular type contours. 

 Barton and Allyene (Barton & Alleyne, 2008) proposed a control strategy that can 

improve both tracking and contouring errors by incorporating both ILC and CCC called cross-

coupled iterative learning control (CCILC).  CCILC uses a more common ILC learning 

algorithm as shown below, 

 rs/,#I$ = |#�+,$frs#I$ + }#�	$�s#I + 1$g (2.30) 
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Figure 2-14: Structure of a learning-type PID controller (Kim & S., 1996) 

where ~ is the iteration step, �h is the tracking error which is calculated one time step ahead to 

compensate for the delay in the plant dynamics.  � is the forward time-shift operator where for a 

given system, � #I$ =  #I + 1$.  |  and }  are functions defined as the Q-filter and learning 

function respectively.  The | function is designed to give the system stability when there are 

uncertainties in the plant dynamics.  The } function is designed in such a way to achieve good 

tracking performances by modifying the previous controller input rs#I$.  The control structure of 

ILC is displayed in Figure 2-15 and Figure 2-16.  At the end of each iteration, the error is filtered 

through the learning function } and then added to the control input.  This is then filtered through 

the | function to form a new controller input for the next iteration.   
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Figure 2-15: ILC controller scheme with a feedback loop (Barton & Alleyne, 2008) 

 

Figure 2-16: An overall structure of and ILC system (Bristow, Tharayil, & Alleyne, 2006) 

 With the addition of the CCC, the CCILC control law is, 

 rYY���#I$ = |#�+,$�rYY�#I$ + }#�	$�h#I + 1$� (2.31) 
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In the CCILC control law, the contouring error � is use in place of the tracking error with the 

overall control diagram display in Figure 2-17.  Here, the contouring error is calculated using the 

same method described in (Koren & Lo, Variable-Gain Cross-Coupling Controller for 

Contouring, 1991).  Both experimentation and simulation of CCILC yielded improvement over 

conventional feedback CCC controllers without the learning controller.  Results indicate a 

reduction in axial tracking error range from 35% to 76%.   

 

 

Figure 2-17: Iterative learning control with cross-coupled control(Barton & Alleyne, 2008) 

 In general, ILC is a highly active area of research spanning the past three decades with 

developed theories in stability, robustness, and system limitations.  It will only continue develop, 

particularly in the area of micro and nano-manufacturing, where the small scale is considered.  

Further review on ILC can be found in (Bristow, Tharayil, & Alleyne, 2006) and (Longman, 

2000). 
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 Another learning-type controller is called repetitive control (RC), which was first 

introduced by (Inoue, Nakano, Kubo, Matsumoto, & Baba, 1981).  The RC update law, which is 

every similar to ILC, is given as, 

 rs/,#I$ = rs#I$ + ��s#I + 1$ (2.32) 

where � is the iteration step and I is the discrete time.  �s is the tracking error and � is called the 

learning gain satisfying 0 < � < 1.  From this RC update law, it can be easily seen to resemble 

the ILC learning algorithm from Eq. (2.30) with one exception that the RC law lacks the | filter 

functions found in ILC.  Again, the addition of the | function is designed to give the system 

stability when there are uncertainties in the plant dynamics.  One of the major differences 

between ILC and RC is that in ILC, the initial conditions are the same for every iteration where 

as in RC, the initial conditions are set to the final values from the previous iterations.  This is the 

case since RC was intended to be used on continuous operation (Bristow, Tharayil, & Alleyne, 

2006).  The general block diagram of RC is shown in Figure 2-18. 

 

Figure 2-18: Repetitive control diagram (Tan, Chua, Zhao, Yang, & M.T, 2009) 

 Another advanced control method, called event-driven control or periodic control.  This 

control method differs from traditional control methods in that it requires the occurrence of an 

event to trigger a new control action.  Traditional control methods have fixed time-triggered 

sampling, which means that although nothing is happening in the system, the controller will still 
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perform a new control action at the prescribed time interval.  This can lead to unnecessary 

utilization of system resources (Arzen, 1999). 

 Experiments conducted with a simple event-driven PID controller by Årzén (Arzen, 

1999) indicate significant reduction in CPU utilization by the event-driven controllers with only 

minor control performance degradation.   

 

2.5 REMARKS  

 Most of the above control strategies typically proposed a method or algorithm to improve 

one aspect of the CNC system for the improvement of overall performance of the system.  Cheng 

and Chin (Cheng & Chin, 2003) proposed merging all these aspects in an effort to analyze and 

reduce both tracking and contouring error.  This research suggests that by only considering only 

one aspect and inevitably ignoring others, any improvements made to the system can be nullified 

as a result.  To make a significant improvement,  the system as a whole must be considered.  

With the increase in computing power and general knowledge of CNC systems, it is conceivable 

that future research will be geared towards this direction of thinking.  

 Existing control systems are constructed in time domain with limitations as discussed 

above.  To advance the control system, in the next chapter, a new control law based in position 

domain will be proposed as an alternative to the traditional control systems.  The main 

motivation of this research is to take advantage CCC and event-driven control systems to form a 

new control method that can improve both the tracking and contour tracking performance of the 

system. 
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Chapter 3 :   POSITION DOMAIN CONTROL SYSTEM DESIGN  

3.1 DYNAMICS MODEL  

 PDC is a novel control scheme whereby a multi-axis system is viewed as a master-slave 

system.  The motion of the master axis is equidistantly sampled and used as an independent 

reference.  The motion of each of the slave axis is defined as a function of the reference motion 

based on the contouring requirements of the system.  To formulate this function, the dynamic 

model of the multi-axis system is developed in position domain through a one-to-one mapping 

from time domain.  One major advantage to the PDC strategy is that there is no tracking error in 

the reference motion, thus the reference motion does not affect or contribute to the overall 

contouring error.  Therefore, in order to get an accurate contouring performance, a high precision 

measurement is required from the reference motion in order for a PDC system to be effectively 

utilized. 

 

 

Figure 3-1: Schematic of a CNC machine 
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 From the CNC system represented in Figure 3-1, a simplified dynamic model of this 

system in time domain is given as, 

 ������ + 
���� + ���� = ��#V$����� + 
���� + ���� = ��#V$�8��8 + 
8��8 + �8�8 = �8#V$ S 
(3.1) 

where 
	 and �	 are the damping and stiffness coefficient of the system respectively.  ��	, ��	, and 

�	 are the acceleration, velocity, and position of the I�� axis, and �	 is its control input. 

 The state space representation of the system is, 

 T�� = `� + =�! = E� S (3.2) 

where, � =
��
��
��
�����������8��8 ��

��
��

, ` =
��
��
��
�� 0 1 0 0 0 0− s�d� − Y�d� 0 0 0 00 0 0 1 0 00 0 − s�d� − Y�d� 0 00 0 0 0 0 10 0 0 0 − s�d� − Y�d���

��
��
��

, = =
��
��
��
�� 0 0 0,d� 0 00 0 00 ,d� 00 0 00 0 ,d���

��
��
��

, 

� = ������8
�, and E = �1 0 0 0 0 00 0 1 0 0 00 0 0 0 1 0�. 

 Other dynamic factors such as backlash and friction are excluded from the model to 

simplify simulation and the comparative analysis between different control laws.  

 

3.2     T IME DOMAIN CONTROL  

 The dynamic model in Eq. (3.1) assumes that dynamics of each axis is decoupled.  

Therefore, a conventional PID controller in time domain can be applied to control each axis.  The 

controller is given as, 
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 �	#V$ = tu	�	#V$ + tv	 � �	#�$M��
b + ty	 ��	#V$ (3.3) 

where tu	 , tv	, and ty	 are the PID controller gains.  �	 and ���  are the error and derivative of 

the error. 

3.3 TIME DOMAIN CONTROL WITH CROSS -COUPLED CONTROL  

 The CCC control laws used in this research is derived from (Koren & Lo, Variable-Gain 

Cross-Coupling Controller for Contouring, 1991).  For linear contour tracking, the contour error 

and its derivative are derived from the tracking error of the ~ and � axes as, 

 �Y = −Eh�h + Es�s��Y = −Eh��� + Es�s�  (3.4) 

 

where Eh = sin � and Es = cos � refers to the variable-gains in the cross-coupled control.  For a 

linear motion, both Eh and Es are constant since � is constant.   

 The corresponding circular motion contour errors are defined as, 

 �Y = −Eh�h + Es�s�Y� = −Eh��� + Es�s� − E�� �h + Es� �s 
(3.5) 

 

where Eh = sin � − ��%� , Es = cos � + ��%� , E�� = �� cos � − ���%� , and Es� = −�� sin � + ���%� .  From 

these relationships, it is possible to develop the PID control law that includes cross-coupling 

control.  The TDC controller with CCC for the ~ and � axes are given as, 

 �h#V$ = tuh�h#V$ + tvh � �h#�$M��
b + tyh��� #V$ − Eh&tuh�Y + tyh�Y� ' (3.6) 

And 
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 �s#V$ = tus�s#V$ + tvs � �s#�$M��
b + tys�s� #V$ + Es&tus�Y + tys�Y� ' (3.7) 

 

3.4 POSITION DOMAIN CONTROL  

 In order to utilize a PDC controller, the dynamics of the CNC system presented in Eq. 

(3.1) must be converted from time domain into position domain.  In TDC, the position of each 

axis is time dependent.  This relationship given in time domain is, 

 �h = Jh#V$ (3.8) 

 The objective of PDC is to replace the time-dependency of the system with a dependency 

on one of its axis referred to as the reference or master axis. The motions of other axes, called 

slave axes, can be represented as functions of the motion of the master axis.  Assuming that  -

axis in Eq. (3.1) is the reference axis, then the position for the ~�� axis in position domain is 

given as,  

 �h = �h#��$ (3.9) 

 To formulate a control law based on the position domain, it is necessary to define the 

relative velocity and relative acceleration of the ~�� axis in the position domain from Eq. (3.9)  

as, 

 �h′ = M�hM�� (3.10) 

And 

 �h′′ = M%�hM��%  
(3.11) 
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 The I��  axis velocity and acceleration can be represented as functions of the relative 

velocity and relative acceleration as follows, 

 ��h = M�hMV = M�hM�� M��MV = �h���� (3.12) 

And 

 ��h = M��hMV = M&�h′ ���'MV = ��� M�h ′MV + M���MV �h ′ (3.13) 

 Substituting Eq. (3.12)  and Eq. (3.13) into Eq. (3.1) yields, 

 �h���%�h ′′ +�h����h ′+ 
h����h ′ + �h�h = �h#��$ (3.14) 

 Therefore, the dynamics of I�� axis in position domain can be expressed as, 

 �h���%�h ′′ + &�h��� + 
h���'�h ′ + �h�h = �h#��$ (3.15) 

 

Remark 1: Eq. (3.15) above represents the dynamic relationship between two axes (  and I) in 

position domain by transforming the dynamic model from time domain to position domain.  

From this, it can be concluded that to obtain accurate contour performance, a high precision 

measurement is required in the master ( -axis) motion direction.  

 

Remark 2: Since the  -axis position is used as a reference, a high tracking accuracy of the  -axis 

(master motion) is not a necessary requirement in the position domain control.  This implies that 

a low cost driving system with low accuracy can be applied for the actuation of the  -axis. 

Remark 3: By comparing Eq. (3.1) and Eq. (3.15), it can be concluded that by the transformation 

from time domain to position domain, the dynamic model of the system in the position domain is 

nonlinear in compared to the original linear system in time domain.  
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 From the transformation to the position domain dynamics model, the proposed control 

law in the position domain is given as 

 �h# $ = tu	�h# $ + tvh � �h#�$M��
b + tyh�h ′# $ (3.16) 

 With the errors and the derivative of the error are given as 

 � �h# $ = �h # $ − �h# $�h ′# $ = �h_ ′# $ − �h ′# $S (3.17) 

 

Remark 4: The PDC law of Eq. (3.16) is similar to the TDC law of Eq. (3.3) with some 

fundamental differences.  The first is the domain that each uses is different; and secondly, the 

derivative gains have different physical meanings due to the differences between the derivative 

of the errors (��	#V$ and �	�# $) in TDC and PDC respectively.  

 

Remark 5: The tracking error from Eq. (3.17) forms the contour error in the position domain 

where the  -axis is the reference axis with zero bias. That is �Y# $ = �# $ for a planar contour. 

 

 Substituting Eq. (3.17) into Eq. (3.16) gives the control law in position domain where the 

 -axis is the reference axis.  The PDC control law is, 

 �		# $ = tu	 ¡�	 # $ − �	# $¢ + tv	∑¡�	 # $ − �	# $¢
+ ty	 ¡�	 ′ # $ − �	′# $¢ 

(3.18) 

 Substituting in the definition of the relative velocity and relative acceleration define in 

Eq. (3.10) and Eq. (3.11) into Eq. (3.18) we have the following, 
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 �	 = tu	 ¡�	 # $ − �	# $¢ + tv	∑¡�	 # $ − �	# $¢
+ ty	��� ¡��	 # $ − ��	# $¢ 

(3.19) 

which represents the PDC controller.  The stability of this controller is demonstrated in the 

proceeding sections. 

 

Remark 6: It is clearly shown that the position domain linear PID controller is equivalent to a 

nonlinear PID controller in the time domain when the speed of the x-axis is not constant. 

Dynamic model in the position domain (Eq. (3.15)) is equivalent to the dynamic model in the 

time domain (Eq. (3.1)). Therefore, it can be concluded the proposed PID control in the position 

domain has the same stability property as the PID control developed in the time domain.   

 

Remark 7: If the motion of x-axis is constant, the dynamic model of Eq. (3.15) in the position 

domain will become a linear differential equation, and the PID control law in the position 

domain can be transferred to a linear PID control law in the time domain as shown in Eq. (3.18).  

 

Remark 8: The proposed position domain PID control law in Eq. (3.19) can be viewed as a 

varying sampling rate PID control in the time domain (Schinkel, Chen, & Rantzer, 2002).  Also, 

the position domain PID control law can be viewed as a nonlinear PID control in the time 

domain (Ouyang, Zhang, & Wu, 2002) when the speed of X-axis is not constant.  

3.5  STABILITY ANALYSIS  

3.5.1 PREPARATION AND L EMMA  

 Consider a dynamic system described in the position domain by, 
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 !�# $ = J& , !# $' (3.20) 

where  ∈ � is the “position” of the master motion or the independent variable, and !# $ ∈ �∗  
is the state.  

Lemma 1: Let z ⊂ �∗	 be a domain that contains the origin and §: f0,∞$ × z → �  be 

continuously differentiable function such that, 

 ª,#‖!‖$ ≤ §#!$ ≤ ª%#‖!‖$ (3.21) 

 And, 

 §�#!$ ≤ −q#!$, ∀‖!‖ ≥ ¬ > 0 (3.22) 

with ∀ ≥ 0  and ∀! ∈ z , where ª,  and ª%  are class t  functions and q#!$  is a continuous 

positive definite function. Take � > 0 such that = ⊂ z and suppose that, 

 ¬ < ª%+,&ª,#�$' (3.23) 

 Then, there exists a class t}  function ­  and for every initial state !# b$, satisfying 

‖!# b$‖ ≤ ª%+,&ª,#�$', there is � ≥ 0  such that the solution of the dynamic equation satisfies, 

 ‖!# $‖ ≤ ­#‖!# b$‖,  −  b$, ∀ b ≤  ≤  b + � (3.24) 

 

 ‖!# $‖ ≤ ª,+,&ª%#¬$', ∀	 ≥  b + � (3.25) 

 Moreover, if z = �e and ª, belongs to class t®, then Eq. (3.24) and Eq. (3.25) hold for 

any initial state !# b$, with no restriction on how large ¬ is. 

 Proof: See reference (Khalil, 2002) 

 This Lemma means that the dynamic system is globally uniformly exponentially 

convergent to a closed ball for any initial conditions, if one can find a positive definite function 

§#!$ so that Eq. (3.21) to Eq. (3.25) are satisfied. 

3.5.2 NOTATIONS AND THEOREM  
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 To facilitate the discussion, we have the following assumptions: 

A1. The desired contour of !_# $ is of the third-order continuity for  ∈ f 	e	,  ¯	eg. 
A2.  The real tracking path in the  -axis  #V$ is of the third-order continuity for the contour. 

A3.  The disturbance J�# $ is bounded in the full contour tracking process. 

 For the briefness of the stability analysis, some notations are introduced and used in the 

following sections. 

• ‖)‖ = max,²	²e |)| 
• ´ = �� � %!_��# $ + &�� � + 
% �'!_� # $ + �%!_# $ + J� S|dµ�	 
• |´|dµ� = ¶�� � %!_��# $ + &�� � + 
% �'!_� # $ + �%!_# $ + J�¶dµ� ≤

��‖ � %‖‖!_��# $‖ + &��‖ �‖ + 
%‖ �‖'‖!_� # $‖ + �%‖!_# $‖ + 2J�2 

• ´� = tu� + �� + ·%¸ − d���/Y���/¹º�% − ¹»�̧ 

• ´�¼ = ¡1 − %̧¢ &�� � + 
� � + ty�' − ½�� � % + ·% , where ¾ and ½  are positive constant 

with 0 < ½ < 1 

 

 According to the assumptions (A1-A3), one can prove that the parameter |´|dµ�  is 

bounded.  Parameter ´�¼ is related to ty� while ́ � is related to all three control gains.  For the 

developed position domain PID controller Eq. (3.19), we have the following theorem. 

 

 Theorem:  A system represented in position domain by Eq. (3.15), where the desired 

contour shape satisfies assumptions A1 and A2, is controlled by the proposed position domain 
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PID control law in Eq. (3.19).  The contour tracking error and its relative derivative are bounded, 

and the boundedness are given by, 

 

¿À
Á
ÀÂ2��2 ≤ 2Ã 1́

�% + 1½´�´�¼ |´|dµ�

2��� 2 ≤ 2Ã ½´�´�¼ + 1́
�¼% |´|dµ�

S 
(3.26) 

 Provided that the control gains and the positive constant parameters are selected properly 

such that, 

 

¿ÀÀ
Á
ÀÀÂ

ty� > ¾½ + ��‖ � ‖ + 
�‖ �‖tv� < ¾½
tu� > tv�½ + 12 &��‖ �‖ + 
�‖ � ‖ + ty�'¾½ > 2½1 − ½ ��‖ �‖%	

S 
(3.27) 

 It is noticed that Eq. (3.27) provides some guidelines about the choices of control gains 

for the developed position domain PID control. 

3.5.3 PROOF OF STABILITY  

 A stability analysis for the proposed position domain PID control is conducted based on 

the Lyapunov function method.  First define, 

 �Ä�# $ = � ��#F$MF�
bÄ�� # $ = ��# $ S (3.28) 

 Using Eq. (3.28), the dynamics model with position domain PID controller in Eq. (3.15) 

can be re-described in an error function format as follows, 
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 �� � %����# $ + &�� � + 
� � + ty�'��� # $ + tv�Ä�# $
+ &tu� + ��'��# $ = ´ 

(3.29) 

 For the dynamic system described in position domain, we define the following Lyapunov 

functions,  

 

¿ÀÁ
ÀÂ§, ¡��# $, ��� # $¢ = 12 f�� ��� g Åtu� + �� ½�� � %½�� � % �� �^2	Ç È����� É§% ¡��# $, Ä�# $¢ = 12 f�� Ä�g È ¾ tv�tv� ½tv�É Ê��Ä�Ë

S (3.30) 

 

 § ¡��# $, ��� # $, Ä�# $¢ = §, ¡��# $, ��� # $¢ + §% ¡��# $, Ä�# $¢ (3.31) 

 If the control gains are properly chosen according to Eq. (3.27), as 0 < ½ < 1, the 

following inequality holds, 

 tu� ≥ ½��‖ �‖% > ½%�� � % − �� (3.32) 

 According to Eq. (3.32), we can prove that §, ¡��# $, ��� # $¢  is a positive definite 

function.  From Eq. (3.27), it is easy to prove that §% ¡��# $, Ä�# $¢ is also a positive definite 

function.  Therefore, the Lyapunov function § ¡��# $, ��� # $, Ä�# $¢  is a positive definite 

function. 

 It is easy to demonstrate that, 

 D�a ≥ −12 #�% + a%$	
�a ≤ 12 #�% + a%$ S (3.33) 

 Applying Eq. (3.33) to Eq. (3.31) - Eq. (3.32), the following inequalities can be obtained, 
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 12 &tu� + �� − ½�� � %'��% + 12 #1 − ½$�� �%��� %
+ §% ¡��# $, Ä�# $¢ ≤ § ¡��# $, ��� # $, Ä�# $¢
≤ 12 &tu� + �� + ½�� �%'��% + 12 #1 + ½$�� � %��� % 

(3.34) 

 

 From Eq. (3.34), we can see that the defined Lyapunov function satisfies Eq. (3.21). 

 In the position domain control, the reference position   of the  -axis motion is an 

independent variable that has a similar meaning of V in time domain.  �� and ���  are functions of 

the independent variable  .  Therefore, the derivative of the Lyapunov function § is related to 

the variable   in this stability analysis. 

 Rewriting Eq. (3.29), we have, 

 �� �%����# $ = ´ − &�� � + 
� � + ty�'��� # $ − tv�Ä�# $
− &tu� + ��'��# $ 

(3.35) 

 Differentiating Eq. (3.31) with respect to the variable   and using Eq. (3.35), we have, 
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 §� = f��� ����g Åtu� + �� ½�� � %½�� � % �� �^2	Ç È����� É
+ f�� Ä�g È ¾ tv�tv� ½tv�É Ê��Ä�Ë
= &tu� + ��'����� + &��� + ½��'�� � %����
+ ½�� � %��� % + ¾����� + tv���� Ä� + ½tv���Ä�
+ tv���%
= &tu� + �� + ¾'����� + ½�� � %��� %
+ &��� + ½��'tv�Ä� + tv���%
+ &��� + ½��'&´ − &�� � + 
� � + ty�'���
− &tu� + ��'�� − tv�Ä�'
= −&�� � + 
� � + ty� − ½�� � %'��� %
− &½&tu� + ��' − tv�'��%
− &½&�� � + 
� � + ty�' − ¾'�����
+ &��� + ½��'´ 

(3.36) 

 

 According to Eq. (3.27), if we choose ty� > ·̧ +��‖ �‖ + 
�‖ �‖, we can prove that, 

 ½&�� � + 
� � + ty�' − ¾ > ½Ì��# � + ‖ �‖$ + 
�# � + ‖ �‖$Í
≥ 0 

(3.37) 

 Using the following inequality, −����� ≤ ,% &��% + ��� %', Eq. (3.36) can be rewritten as, 
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 §� ≤ −ÎÏ1 − ½2Ð &�� � + 
� � + ty�' − ½�� � %Ñ��� %
− ½ Ïtu� + �� − tv�½ − �� � + 
� � + ty�2
+ ¾2½Ð ��% + &��� + ½��'´	 

(3.38) 

 From Eq. (3.27), if we choose tu� > ¹»�̧ + ,% &��‖ �‖ + 
�‖ �‖ + ty�', one can prove 

that, 

 ´� = tu� + �� + ¾2½ −	�� � + 
� � + ty�2 − tv�½
≥ �� + ¾2½ + 12 Ì��#‖ �‖ −  � $ + 
�#‖ �‖ −  �$Í > 0 

(3.39) 

 Similarly, from Eq. (3.27), if we choose ty� > ·̧ +��‖ �‖ + 
�‖ �‖  and 
·̧ >

%¸,+¸��‖ �‖%, then we have, 

 ´�¼ = Ï1 − ½2Ð &�� � + 
� � + ty�' − ½�� �% + ¾2 > 0 (3.40) 

 Applying Eq. (3.39) and Eq. (3.40) to Eq. (3.38), we obtain, 

 §� ≤ −½´���% − ´�¼��� % + &½�� + ��� '´
≤ −½´���% + ½��|´|dµ� − ´�¼��� % + ��� |´|dµ� 

(3.41) 

 Applying another inequality, 

 �) − a)% ≤ �%a − 14 a)% 
(3.42) 

 For � > 0 and a > 0, we have, 
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¿ÀÁ
ÀÂ½|´|dµ��� − ½´���% ≤ − ½´�4 ��% + ½|´|dµ�%´�|´|dµ���� − ´�¼��� % ≤ ´�¼4 ��� % + |´|dµ�%´�¼

S 
(3.43) 

 Applying Eq. (3.43) to Eq.(3.41), we get, 

 §� ≤ − ½´�4 ��% − ´�¼4 ��� % + Ï ½́
� + 1́

�¼Ð |´|dµ�%  (3.44) 

 Therefore, according to Lemma 1, we can demonstrate that both the contour tracking 

error and the derivative of the contour tracking error are bounded as follows, 

 

¿À
Á
ÀÂ2��2 ≤ 2Ã 1́

�% + 1½´�´�¼ |´|dµ�

2��� 2 ≤ 2Ã ½´�´�¼ + 1́
�¼% |´|dµ�

S 
(3.45) 

 According to Eq. (3.45), one can see that the contour error and its derivative are bounded.  

From Eq. (3.45), it is also shown that the maximum errors can be reduced to very small values 

by increasing control gain tu� (related to ́�) and ty� (related to ́�¼).  From Eq. (3.39) and Eq. 

(3.40), one can see that a large constant ¾ will also increase parameters ´� and ́ �¼.  Therefore, 

the tracking errors will be reduced according to Eq. (3.45).  Control gain tv� has an indirect 

contribution for the control of final tracking error by increasing the constant parameter ¾ from 

Eq. (3.27). 

3.6 POSITION DOMAIN CONTROL WITH CROSS -COUPLED CONTROL  

 The CCC control laws use in this research is derived from (Koren & Lo, Variable-Gain 

Cross-Coupling Controller for Contouring, 1991).  For linear contour tracking, the contour error 

and its derivative are derived from the tracking error of the ~ and � axes as 
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 �Y = −Eh�h + Es�s�Y′ = −Eh�h ′ + Es�s′ (3.46) 

 

Where Eh = sin � and Es = cos � refers to the variable-gains in the cross-coupled control.  For a 

linear motion, both Eh  and Es  are constant since �  is constant.  The corresponding circular 

motion contour errors are defined as: 

 �Y = −Eh�h + Es�s�Y′ = −Eh�h ′ + Es�s′ − Eh′�h + Es′�s 
(3.47) 

 Where Eh = sin � − ��%� , Es = cos � + ��%� , Eh′ = �� cos � − ���%� , and Es′ = −�� sin � + ���%� .  

Here, � is the radius of the contour.  From these relationships, it is possible to develop the 

control law in position domain to include cross-coupling control.  The PDC controller law with 

CCC is given as 

 �h# $ = tuh�	# $ + tvh � �h#F$MF�
b + tyh�h ′# $ − Eh&tuh�Y + tyh�Y′' (3.48) 

And 

 �s# $ = tus�s# $ + tvs � �s#F$MF�
b + tys�s ′# $ + Es&tus�Y + tys�Y′' (3.49) 

Where axes ~ and � are the slaves axes in the position domain with the  -axis as the reference 

axis.  Both Eq. (3.48) and Eq. (3.49) are equivalent to the PDC control law of Eq. (3.19) except 

with the addition of the cross-couple elements.  
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Chapter 4 :   SIMULATION RESULTS 

4.1  SIMULATION SETUP  

 A virtual CNC system that will be utilized for the simulation is a 3 DOF system as shown 

in Figure 3-1.  The dynamic parameters for each axis of the system are listed in Table 1.   These 

parameters are non-mismatching to simplify the initial comparative analysis between each 

control laws.  The sampling rate of the TDC and the equidistant sampling of the reference axis 

for the PDC are listed in Table 2.  Note that the PDC sampling for the linear and circular contour 

are different to account for the effects of the nonlinear contour.  The total number of simulations 

is outlined in Figure 4-1. 

Table 1: Non-mismatching System dynamic parameters 

Axis X Y Z 

Mass (Ó�	fÔÕg) 1 1 1 

Damping (Z�	fÖ×/Óg) 7 7 7 

Spring constant (Ô�	fÖ/Óg) 50 50 50 

 

Table 2: TDC sampling rate and PDC equidistant sampling 

TDC sampling rate 9ÙÙÙ	ÚÛ 

PDC sampling (linear contour) 0.005	� 

PDC sampling (circular contour) 0.002	� 
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Figure 4-1: Simulation outline 

 As indicated in Figure 4-1, both linear and nonlinear contour types will be simulated.  For 

the linear contour type, the simulation will consist of a zigzag and a diamond contour.  For the 

nonlinear contour type, the simulation will consist of a circular contour.  For all types of 

contours, a position domain PID controller (referred to as a PDC) as well as a time domain PID 

(referred to as a TDC) will be used to control the motion.  Furthermore, a CCC component will 

also be added to both TDC and PDC controllers to compare their performance without CCC. 

 

4.2 TRAJECTORY PLANNING  

 To ensure a smooth trajectory in all axes, a high-order polynomial is used to define their 

position, velocity, and acceleration with respect to time (Craig & J, 1989). The high-ordered 

polynomial is given as, 

 �#V$ = 10 ÏV�ÐÞ − 15 ÏV�Ðß + 6ÏV�Ðá 
(4.1) 

 With the first and second derivative being, 

TDC

PID PID CCC

PDC

PID PID CCC

TDC

PID PID CCC

PDC

PID PID CCC

TDC

PID PID CCC

PDC

PID PID CCC
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¿ÀÁ
ÀÂ ��#V$ = 1� �30 ÏV�Ð% − 60 ÏV�ÐÞ + 30 ÏV�Ðßâ
��#V$ = 1�% �60 ÏV�Ð − 180 ÏV�Ð% + 120 ÏV�ÐÞâ

S (4.2) 

where V represents the time while � is the total time of the motion from an initial to a final 

position.  Therefore, the axial position of the I�� axis is defined as, 

 �	#V$ = &:¯ − :	'�#V$ (4.3) 

where :¯ and :	 are the final and initial position respectively. 

 The initial and final axial positions for each type of motion in the simulation are listed in 

Table 3.  Here, the linear contours (zigzag and diamond) are divided into four linear segments, 

while the circular contour has two semi-circle segments.  The total motion time for each segment 

are displayed in Table 4.  The transition between each segment is a stop-and-go motion rather 

than continuous.  Although both types of transitions are applicable in modern CNC machines, the 

latter is preferred as it reduces the overall processing time.  This thesis will utilize the stop-and-

go transition for simplicity.  The plots for the desired axial trajectories for position and velocity 

for zigzag, diamond, and circular motions in time domain are shown in Figure 4-2, Figure 4-3, 

and Figure 4-4 respectively.  
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Table 3: Initial and final axial positions for linear and circular contour simulations (��  and 

�� denote initial and final position respectively.) 

 Segment 1 Segment 2 Segment 3 Segment 4 

 :	(m) :¯(m) :	(m) :¯(m) :	(m) :¯(m) :	(m) :¯(m) 

Zigzag contour 

x-axis -4 -2 -2 0 0 2 2 4 

y-axis -4 -2 -2 0 0 2 2 4 

z-axis 0 2 2 0 0 2 2 0 

Diamond contour 

x-axis -2 0 0 2 2 0 0 -2 

y-axis -2 0 0 2 2 0 0 -2 

z-axis 0 2 2 0 0 -2 -2 0 

Circular contour 

x-axis -0.5 0.5 0.5 -0.5     

y-axis 0 0 0 0     

z-axis 0 0 0 0     

 

Table 4: Segment and total motion time 

 Zigzag Diamond Circular  

Segment motion time (s) 10 10 10 

Total motion time (s) 40 40 20 
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Figure 4-2: Desired trajectories for zigzag contour axial positions and velocities 
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Figure 4-3: Desired trajectories for diamond contour axial positions and velocities 
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Figure 4-4: Desired trajectories for circular contour axial positions and velocities 
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 From the above figures, the maximum axial velocity for each contour is listed in Table 5.  

Since all three axes in the linear motions travel the same distance throughout the entire motion, 

the absolute maximum axial velocity in all axes are the same.  In circular motion, the  -axis 

travels the greatest distance within the same time period relative to the other axes, therefore its 

performance is the limiting factor.  For linear motion, the maximum feed rate is 0.375 �/F, 

while for circular motion, the maximum feed rate is 0.295 �/F.  These values are within modern 

CNC machine performance specifications.   

Table 5: Maximum absolute axial velocities 

 x-axis (Ó/×) y-axis (Ó/×) z-axis (Ó/×) 

Zigzag 0.375 0.375 0.375 

Diamond 0.375 0.375 0.375 

Circular 0.295 0.184 0.184 

 

 Figure 4-5 and Figure 4-6 below are the plots of the desired linear and circular contours 

in 2D and 3D respectively. 
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Figure 4-5: Desired (A) Zigzag, (B) Diamond and (C) Circular contours in planar views 
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Figure 4-6: Desired (A) Zigzag, (B) Diamond and (C) Circular contours in 3D views 
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4.3  GAIN SELECTION  

 The selection of control gains for any system is highly important to its overall 

performance.  For this simulation, the gains were selected based on a trial and error method with 

the main objective being selecting the combination of control gains that resulted in the lowest 

axial tracking error without overshoot.  The controllers gains used for the simulation are listed 

Table 6.  Results for Case 4 will be presented in this section as it provided the sufficient 

performance in terms of relatively low tracking errors and contouring errors (on the order of 

10+Þ� or lower) for all three simulated contours.  The same control gains will be utilized in both 

time and position domain controllers for all contours.  From Figure 4-7 to Figure 4-9, it is 

evident that as the controller gains increases (from Case 1 to Case 4), improvement in the axial 

tracking is observed for both the linear and circular contours with the TDC and PDC.  This 

means that both controllers are stable within the specified range of the controller gains. 

Table 6: Linear contour controller gains for TDC, PDC, and CCC 

 P I D Pccc  Dccc 

Case 1 10000 6225 8750 10000  8750 

Case 2 20000 12500 17500 20000  17500 

Case 3 40000 25000 35000 40000  35000 

Case 4 (baseline) 80000 50000 70000 80000  70000 
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Figure 4-7: Zigzag contour tracking error variations with increasing controller gains 
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Figure 4-8: Diamond contour tracking error variations with increasing controller gains 
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Figure 4-9: Circular contour tracking error variati ons with increasing controller gains 
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4.4 L INEAR CONTOUR TRACKING RESULTS  

4.4.1  ZIGZAG CONTOUR  

 Using the baseline (Case 4) PID controller gains listed in Table 6, good axial tracking 

performance was achieved for all four controllers; TDC, TDC with CCC, PDC, and PDC with 

CCC in the simulation of the zigzag contour. The plots of the axial tracking errors for all 

controllers are displayed in Figure 4-10.  Note that in the TDC plots in Figure 4-10, the  -axis 

represents time while in the PDC plots, the  -axis represents the  -axis position.  Comparison 

between the performance of the TDC and the PDC indicate that the PDC provided better axial 

tracking in terms of lower or comparable values of mean tracking error and lower standard of 

deviation in the ! and ) slave axes.  The  -axis in the PDC controller is the reference axis, thus it 

yields zero tracking error as indicated in Figure 4-10.  The best overall performance was 

observed with the PDC controller with CCC as the standard of deviation for the tracking error 

was lower (ranging from 0.0003m to 0.0006m) in comparison to the TDC, TDC with CCC, as 

well as the PDC controller without CCC.  The results for all axial mean tracking errors and 

standard of deviations for the zigzag contour are listed in Table 7.   

Table 7: Mean and standard deviation (S.D) for zigzag motion axial tracking error1 

 X-axis Y-axis Z-axis 

 Mean(m) S.D(m) Mean(m) S.D(m) Mean(m) S.D(m) 

TDC -0.000121 0.001376 -0.000121 0.001376 0.000604 0.000474 

TDC with CCC -0.000128 0.000786 -0.000190 0.001883 0.000527 0.000626 

PDC N/A N/A -0.000184 0.001077 0.000578 0.000258 

PDC with CCC N/A N/A -0.000140 0.000707 0.000238 0.000297 

                                                 
1 X-axis tracking for both PDC controllers is not applicable since the x-axis is the reference axis therefore it yields 
zero tracking error. 
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Figure 4-10: Zigzag contour tracking error for TDC, TDC with CCC, PDC, and PDC with 

CCC 
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 In terms of the contouring accuracy performance, the PDC controller provided the 

highest contouring accuracy with lower values of mean contour error and standard of deviation 

over the equivalent TDC controller.  The final value of the contour error for the PDC is 

approximately 50% lower in comparison to both TDC controllers.  Furthermore, the addition of 

CCC to the PDC controller resulted in further improvement in the contouring performance over 

the other controllers.  The plots of the contouring errors for all controllers are in Figure 4-11 

while plot of the desired and actual contours are in Figure 4-12.  Note that all errors in Figure 

4-12 have been magnified by a factor of 100.  From these figures, it is evident that the PDC with 

CCC provided the best contour performance with the least deviation from the desired contour. 

 

Figure 4-11: Zigzag motion contour error magnitude for TDC, TDC with CCC, PDC, and 

PDC with CCC 
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Figure 4-12: Zigzag contour tracking of TDC, TDC with CCC, PDC, and PDC with CCC2 

                                                 
2 The plots of all actual contours include an error magnification by a factor of 100 
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 Table 8 lists the result for the contour performance of all controllers.  Here, the mean 

contour error of the PDC with CCC is the lowest in comparison to all the other controllers.  The 

improvement in the mean contour error ranged from 0.0004m to 0.0011m, with the highest 

improvement observed against both TDC controllers.  A similar conclusion can be said for the 

standard of deviation of the contour error.  Therefore, it can be concluded that the PDC with 

CCC provided the best tracking throughout the entire contour. 

Table 8: Magnitude of contour error mean, standard of deviation, and maximum 

 Mean(m) S.D(m) Max(m) 

TDC   0.001840 0.001009 0.003401 

TDC with CCC  0.001935 0.001068 0.003800 

PDC   0.001168 0.000480 0.001976 

PDC with CCC  0.000765 0.000283 0.001447 

  

 

4.4.2  DIAMOND CONTOUR 

As with the zigzag motion, good tracking performance was achieved by all four 

controllers for the diamond contour type using Case 4 controller gains with all axial tracking 

errors on the order of 10+ß�.  The plots of the axial tracking errors for each controller are shown 

in Figure 4-13.  In the diamond motion simulation, both PDC controllers (with and without 

CCC) provided improved axial tracking performance for both the ! and ) slave axes with lower 

values of mean and standard of deviation of the tracking error over both TDC controllers.  With 

the addition of CCC to the PDC controller, the performance of the original PDC controller is 

further improved with approximately a 30% reduction in the tracking error mean and standard of 
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deviation for the !-axis.  However for the )-axis, a slight increased in the tracking error mean 

was observed with the addition of CCC.  This does not necessarily mean that improvement in the 

)-axis tracking was not achieved as a 50% reduction in the standard of deviation of the tracking 

error was observed as indicated in Table 9. 

Table 9: Axial tracking error mean and standard deviation (S.D) for diamond motion3 

 X-axis  Y-axis  Z-axis  

 Mean(m) S.D(m) Mean(m) S.D(m) Mean(m) S.D(m) 

TDC   0.001080 0.001402 0.001080 0.001402 -0.000002 0.000759 

TDC with CCC  0.000625 0.000830 0.001506 0.001928 0.000182 0.000658 

PDC   N/A N/A 0.000902 0.001185 0.000008 0.000631 

PDC with CCC N/A N/A 0.000660 0.000816 0.000053 0.000352 

                                                 
3 X-axis tracking for both PDC controllers is not applicable since the x-axis is the reference axis therefore it yields 
zero tracking error. 
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Figure 4-13: Diamond contour tracking error for TDC, TDC with CCC, PDC, and PDC 

with CCC 
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 In terms of contouring accuracy, Figure 4-14 displays the contour errors for all four 

controllers.  Here, the PDC with CCC resulted in a lowest contouring error throughout the entire 

contour.  The final value of the contour error for the PDC was reduced by approximately 40% 

when compared to both TDC controllers.   With the addition of the CCC, the error reduces 

further to 60%.  Plots of the desired and actual contours in Figure 4-15 indicate that the PDC 

with CCC provided the best tracking over all the other controllers. 

 

Figure 4-14: Diamond motion contour error magnitude for TDC, TDC with CCC, PDC, 

and PDC with CCC 
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Figure 4-15: Diamond contour tracking of TDC, TDC with CCC, PDC, and PDC with CCC 4 

                                                 
4 The plots of all actual contours include an error magnification by a factor of 100 
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 Table 10 lists the results for the contouring error of all controllers.  As with the zigzag 

contour, the PDC with CCC provided the lowest mean contouring error over all other controllers 

including the PDC without CCC in the diamond contour simulation.  This represents 

approximately a 60% reduction in the mean contour error for the PDC with CCC controller over 

the both TDC controllers.  A similar result can be concluded for the stand of deviation for 

contouring error. 

Table 10: Magnitude of contour error mean, standard of deviation, and maximum 

 Mean(m) S.D(m) Max(m) 

TDC   0.002271 0.001296 0.004937 

TDC with CCC  0.002385 0.001358 0.004874 

PDC   0.001372 0.000856 0.003191 

PDC with CCC  0.000908 0.000635 0.002016 
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4.5   CIRCULAR CONTOUR RESULTS  

 For the circular contour simulation, good axial tracking performance was also achieved 

by all four controllers using the control gains specified in Case 4.   The plot of the tracking errors 

for all controllers is shown in Figure 4-16.  It can be seen that the final value of the tracking 

errors from all controllers are comparably low on the order of 10+ß�.   From Table 11, the 

standard of deviation in tracking error for the slave axes ! and ) are lower (by approximately 

70%) when comparing the PDC with CCC over both TDC controllers while the mean of the 

tracking errors is approximately 30% lower.  It can be concluded that the PDC with CCC 

provided the best tracking over the entire motion. 

Table 11: Axial tracking error mean and standard deviation (S.D) for circular motion5 

 X-axis  Y-axis  Z-axis  

 Mean(m) S.D(m) Mean(m) S.D(m) Mean(m) S.D(m) 

TDC   0.000212 0.000390 0.000135 0.000144 0.000135 0.000144 

TDC with CCC  0.000326 0.000384 0.000123 0.000162 0.000123 0.000162 

PDC   N/A N/A 0.000158 0.000076 0.000147 0.000070 

PDC with CCC  N/A N/A 0.000081 0.000044 0.000081 0.000044 

 

 

   

                                                 
5 X-axis tracking for both PDC controllers is not applicable since the x-axis is the reference axis therefore it yields 
zero tracking error. 
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Figure 4-16: Circular contour tracking error for TD C, PDC, and PDC with CCC 
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 Figure 4-17 displays the contouring error for all four controllers.  The contouring error of 

both PDC controllers is lower than that of the TDC controllers.  The final value of the contouring 

error is approximately 60% lower in the PDC controllers compared to the TDC controllers.  The 

variation in the mean contour errors of both PDC controllers are also lower throughout the entire 

motion.  Similarly to the linear motion simulation results, the PDC with CCC in circular motion 

simulation provided appreciable improvement in the contour tracking performance over the other 

control laws. 

 

Figure 4-17: Circular motion contour error for TDC,  PDC, and PDC with CCC 
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Figure 4-18: Circular contour tracking of TDC, TDC with CCC, PDC, and PDC with CCC6 

 

                                                 
6 The plots of all actual contours include an error magnification by a factor of 100 
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 From the desired contour and actual contour plot in Figure 4-18, it can be seen that both 

PDC controllers provided a smoother contour tracking over the entire motion, with the PDC with 

CCC performing better than the PDC without CCC in terms of smoothness in the motion 

tracking.  

 Table 12 lists the contour results obtained for the circular contour simulation.  It can be 

concluded that the PDC with CCC provided an improvement in the mean contour error by as 

much as 0.0003m over both the TDC controllers and approximately 0.0001m over the PDC 

without CCC.  In terms of standard of deviation of the contour error, the PDC with CCC 

provided an improvement of nearly 70% over the TDC controllers. 

Table 12: Magnitude of contour error mean, standard of deviation, and maximum 

 Mean(m) S.D(m) Max(m) 

TDC   0.000470 0.000232 0.000887 

TDC with CCC  0.000524 0.000248 0.000928 

PDC   0.000216 0.000103 0.000329 

PDC with CCC 0.000115 0.000061 0.000202 

 

 Comparison between the linear and circular contouring results indicates that the PDC 

with CCC significantly reduces the mean of the contouring error of the linear contours by as 

much as 60% over the TDC controllers.  For the circular contour, the result achieved was higher 

at 75%.  In all cases, both of the PDC controllers outperformed the equivalent TDC controllers 

with improved axial tracking and overall contour tracking performance.  In cases where the 

tracking errors or contour errors of the PDC was comparable to the TDC controllers, the standard 

of deviation for these errors with the PDC controllers was significantly lower, therefore the PDC 

still provided better overall contour tracking. 
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4.6 OTHER SIMULATIONS  

 In order to further demonstrate the performance and robustness of the proposed position 

domain controller, various other simulations were conducted.  These simulations varied from the 

initial by simulation by incorporating higher controller gains, higher CCC gains, and variation in 

the equidistant sampling of the PDC controller. 

4.6.1 HIGH CONTROLLER GAINS  

 The higher controller gains used for additional simulations are listed in Table 13.  These 

gains are based of controller gains from Case 4, which have been successively increased by a 

factor of 2 in Case 5 and Case 6 respectively.  The axial tracking results for all contours are 

displayed from Figure 4-19 to Figure 4-21.  From these plots, it is observed that the performance 

of all controllers is stable at the higher level of controller gains.  Furthermore, both PDC 

controllers provided superior tracking performance over both the TDC controllers with the best 

overall performance from the PDC with CCC.  The contouring results for all contours with 

higher gains are shown in Figure 4-22 and listed in Table 14.  It is evident that for both linear 

contours, the utilization of higher controller gains resulted in improved contour tracking with the 

PDC with CCC controller providing the best contouring performance in all cases.  For the 

circular contour, a similar improvement in the contour tracking was also observed.  By doubling 

the controller gains, the contour errors for all controllers were reduced by approximately half. 

Table 13: Higher control gains 

 P I D Pccc Dccc 

Case 5 160000 100000 140000 160000 140000 

Case 6 320000 200000 280000 320000 280000 
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Figure 4-19: Zigzag contour axial tracking errors with increased controller gains 
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Figure 4-20: Diamond contour axial tracking errors with increased controller gains 
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Figure 4-21: Circular contour axial tracking errors with increased controller gains 
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Figure 4-22: Mean contouring error with increasing controller gains 
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Table 14: Contour errors with increased controller gains 

 Case 4 Case 5 Case 6 
 Contour error(m) Contour error(m) Contour error (m) 
Zigzag 
TDC 0.00184 0.00095 0.00049 
TDC (CCC) 0.00194 0.00101 0.00053 
PDC 0.00117 0.00058 0.00029 
PDC (CCC) 0.00077 0.00038 0.00019 
Diamond 
TDC 0.00227 0.00111 0.00054 
TDC (CCC) 0.00239 0.00117 0.00059 
PDC 0.00137 0.00069 0.00034 
PDC (CCC) 0.00091 0.00045 0.00023 
Circular 
TDC 0.00047 0.00025 0.00016 
TDC (CCC) 0.00052 0.00028 0.00018 
PDC 0.00022 0.00011 0.00006 
PDC (CCC) 0.00012 0.00006 0.00003 

 

 Simulations of higher CCC controller gains were also conducted which were based of 

Case 6 controller gains.  The only difference is that the CCC gains were increased proportional 

to the PID controller gains (by factors indicated in Figure 4-23 below).  From this figure, the 

increased in the CCC gains resulted in improvements in the mean contour error of all three 

contours.  The results show that there is a linear relationship between the increased in the CCC 

gains and the reduction in the mean contour error.  Theoretically if the CCC gains were increased 

even to a higher value, the contour error achieved by the PDC with CCC would be even smaller. 
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Figure 4-23: Contouring performance of PDC with increasing CCC gains 
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4.6.2 PDC EQUIDISTANT SAMPLING  

 One of the important factors that influence the overall performance of the PDC controller 

is the equidistant sampling of the reference axis.  In the initial simulations, equidistant sampling 

of 0.005m and 0.002m were utilized for the linear and circular contours respectively.  This 

section will demonstrate how the performance of the PDC controllers is influenced by the 

variation in the PDC sampling distance.  The results of this simulation are shown in Figure 4-24, 

where the initial PDC sampling distance have decreased by 80% and increased by 100%.   

 

 

Figure 4-24: Contouring performance of PDC with varying sampling distance 
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 It is evident that varying the PDC sampling distance has no significant influence for the 

linear contours as the mean contouring errors of both the PDC and PDC with CCC remains 

relatively unchanged with both the decreased and increased in the PDC sampling distance.  For 

the circular contour, there is a significant increase in the mean contour error (by a factor of 

approximately 2) when the sampling distance is increased by 100%. The opposite is observed 

when the sampling distance is decreased by 80% resulting in a slightly lower mean contour error.  

This is intuitive since the circular contour is nonlinear and the result of decreasing the resolution 

of the controller (by increasing the sampling distance) degraded its performance, while 

increasing the resolution (by decreasing the sampling distance) resulted in a slightly improved 

performance in terms of lower mean contour error.  This means that equidistant sampling is an 

important factor for PDC, particularly with nonlinear contours, where there are higher variations 

in the position and velocity as well as acceleration of the axial trajectories. 
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4.7 M ISMATCHING DYNAMICS  

 To further demonstrate the effectiveness of the PDC controller, the dynamics of the CNC 

system shown in Figure 3-1were altered so that the axial dynamics are no longer matching.  The 

purpose of this would be to enhance the simulation by creating a more realistic scenario.   The 

new mismatching axial dynamics are listed in Table 15 below.  Using Case 4 controller gains 

from the previous simulations, simulations with mismatching axial dynamics for all contour 

types indicate improved performance of the PDC over the TDC controller.  With the addition of 

CCC, the improved performance of the PDC ranged from 50% to 70% lower tracking and 

contouring errors over the TDC controller.  The results for the contouring performance for all 

contour types are listed in  

Table 16.  The plots for the axial tracking errors are shown in Figure 4-25to Figure 4-27.  With 

mismatching axial dynamics, the PDC was able to provide better results over the TDC 

comparable with the non-mismatching case. 

Table 15: Mismatching system dynamic parameters 

Axis X Y Z 

Mass (Ó�	fÔÕg) 30 20 10 

Damping (Z�	fÖ×/Óg) 20 40 20 

Spring constant (Ô�	fÖ/Óg) 70 70 70 

 

Table 16: Mean contour error with mismatching dynamics 

 Mean contour error (m)  
 zigzag diamond circular 
TDC 0.00257 0.00321 0.00065 
TDC (CCC) 0.00271 0.00338 0.00073 
PDC 0.00162 0.00197 0.00031 
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PDC (CCC) 0.00120 0.00147 0.00016 

 

Figure 4-25: Zigzag contour tracking error for TDC, TDC with CCC, PDC, and PDC with 

CCC 
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Figure 4-26: Diamond contour tracking error for TDC, TDC with CCC, PDC, and PDC 

with CCC 
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Figure 4-27: Circular contour tracking error for TD C, TDC with CCC, PDC, and PDC 

with CCC 

0 10 20
-5

0

5

10

x 10
-4

Time (Sec.)

X
-a

xi
s 

er
ro

r(
m

)

0 10 20

0

2

4

x 10
-4 TDC

Time (Sec.)

Y
-a

xi
s 

er
ro

r(
m

)

0 10 20

0

1

2

3

4

x 10
-4

Time (Sec.)

Z
-a

xi
s 

er
ro

r(
m

)

0 10 20
-5

0

5

10

x 10
-4

Time (Sec.)

X
-a

xi
s 

er
ro

r(
m

)

0 10 20

0

2

4

6

x 10
-4 TDC(CCC)

Time (Sec.)

Y
-a

xi
s 

er
ro

r(
m

)

0 10 20

0

2

4

6

x 10
-4

Time (Sec.)

Z
-a

xi
s 

er
ro

r(
m

)

-0.5 0 0.5
-1

0

1
x 10

-4

X-axis position (m)

X
-a

xi
s 

er
ro

r(
m

)

-0.5 0 0.5
0

1

2

3

x 10
-4 PDC

X-axis position (m)

Y
-a

xi
s 

er
ro

r(
m

)

-0.5 0 0.5
0

1

2

x 10
-4

X-axis position (m)

Z
-a

xi
s 

er
ro

r(
m

)

-0.5 0 0.5
-1

0

1
x 10

-4

X-axis position (m)

X
-a

xi
s 

er
ro

r(
m

)

-0.5 0 0.5
0

0.5

1

1.5

x 10
-4 PDC(CCC)

X-axis position (m)

Y
-a

xi
s 

er
ro

r(
m

)

-0.5 0 0.5
0

0.5

1

1.5

x 10
-4

X-axis position (m)

Z
-a

xi
s 

er
ro

r(
m

)



 
 

92 
 

 The contouring performance results for all three contours are displayed in Figure 4-28.  It 

is clear that with mismatching axial dynamics, the PDC controller provided improved contouring 

performance over the TDC controllers for both linear and circular contours similarly to the non-

mismatching case. 
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(c) 

Figure 4-28: Contouring error for (a) zigzag (b) diamond (c) circular contours with 

mismatching dynamics 
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4.8 REMARKS  

 Simulation results indicate overall improvement in the tracking and contouring 

performances of the proposed PDC controller.  For the linear contours, the PDC provided 

improvement in the mean contour error ranging from 35% to 40% over the TDC controllers.  

Improvement in the standard of deviation of the contour error was also observed to be in the 

range of 30% to 50% lower.  With the addition of CCC to the PDC controller, further 

improvement in the mean contour error was achieved by approximately 60% over the TDC, 

while the standard of deviation of the contour error improved by as much as 70%.  Similar 

results were also achieved for the circular contour simulation.  An improvement of 55% in the 

mean contour error was observed for the PDC over the TDC in the circular contour, while the 

PDC with CCC achieved an improvement of 75% over the TDC.  In terms of standard of 

deviation for the contour error, a 55% improvement was observed for the PDC and a 75% 

improvement was observed for the PDC with CCC over the TDC controller. 

 Simulation with higher control gains provided improved results for all controllers with 

the PDC with CCC providing the best tracking and contouring performance.  It is observed that 

the reduction in the tracking errors and contouring errors for all controllers is approximately 

proportional to the increased in the controller gains.  Simulation of higher CCC resulted in a 

similar observation.  With the higher CCC gains, the PDC with CCC provided reduction in 

tracking and contouring errors proportional to the increased of the CCC gains. 

 Simulation with varying PDC sampling distance shows that there is no appreciable 

change in the tracking or contouring performance of the linear contour when the PDC sampling 

distance is increased by 100% or decreased by 80%.  For the same change in the PDC sampling 

distance, there is a significant change in the performance of the controller with the circular 
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contour.  This is the case since the circular contour is nonlinear and there is a high variation in 

the dynamics, particularly in the position of the contour.  Therefore when the PDC sampling 

distance is increased, the resolution of the controller decreases, thus degrading the performance.  

The opposite is applied when the PDC sampling is decreased. 
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Chapter 5 :  CONCLUSION AND DISCUSSION 

5.1 GENERAL REVIEW  

 In this thesis, a position domain controller was proposed and compared with an 

equivalent time domain controller for a 3DOF CNC machine.  This was done by transforming 

the dynamics of the CNC system from time domain to position domain through a one-to-one 

mapping.  In position domain, one of the axes in the system is taken as the reference and sampled 

equidistantly; therefore the reference axis yields zero tracking error.  Only the tracking errors of 

the slave axes will contribute to the overall contouring error of the motion.  The stability of the 

proposed position domain controller was demonstrated with the Lyapunov method.  In addition 

to comparing time and position domain controllers, a cross-coupled control component was 

added to each of the controllers and comparative analysis conducted for all the controllers. 

 Linear and nonlinear contour type simulations were conducted for this system.  The 

results indicate improved performance was achieved by the PDC controller over the equivalent 

TDC controller.  This translate to lower tracking errors for the slave axes of ! and).  In cases 

where the mean value of the tracking errors were comparable between the TDC and PDC 

controllers, the performance was still improved as the values of the tracking error standard 

deviation was lower with the PDC controller.  In terms of contouring error performance, the 

PDC provided improved contour tracking over the TDC controller with lower mean contour 

error and standard of deviation.  With the addition of CCC to the PDC controller, further 

improvement was achieved for both tracking and contouring performance for both types of 

contour. 
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5.2 MAIN CONTRIBUTIONS  

 The main contribution of this work is the development a of position domain controller for 

simple linear and nonlinear contours in CNC control.   The research work results several 

published papers which includes: 

• T. Dam and P. R. Ouyang, Position Domain Contour Tracking with Cross-coupled 

Control, Accepted by the 21st International Symposium on Industrial Electronics, Feb. 

2012. 

• P. R. Ouyang, V. Pano, and T. Dam, PID Contour Tracking Control in Position Domain, 

Accepted by the 21st International Symposium on Industrial Electronics, Feb. 2012. 

• P. R. Ouyang, T. Dam, J. Huang, and W.J. Zhang, Contour Tracking Control in Position 

Domain, Accepted by Mechatronics, Dec., 2011. 

• P.R. Ouyang and T. Dam, Position Domain PD Control: Stability and Comparison, The 

2011 IEEE International Conference on Information and Automation (ICIA 2011), 8-13, 

2011. 

• T. Dam and P.R. Ouyang, Contour Control in Position Domain for CNC Machines, The 

2011 IEEE International Conference on Information and Automation (ICIA 2011), 14-19, 

2011. The Best Paper Award. 

• P.R. Ouyang and T. Dam, Position domain PD control for contour tracking, Proceedings 

of the ASME 2010 International Mechanical Engineering Congress & Exposition 

(IMECE 2010). 
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5.3 FUTURE DEVELOPMENT  

 The work presented shows a position domain controller to be more effective at reducing 

tracking and contouring error for linear and circular contour type over an equivalent time domain 

controller.  Further work is required to show the effectiveness of the position domain controller 

on arbitrary contours such as splines and for other geometric features like corners.  The goal 

would be to demonstrate the potential of the position domain control to be used as an alternative 

to the time domain control. 
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APPENDIX A: 

A.1  PRIMARY PROGRAM  

%GLOBAL PARAMETERS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global  kpx kpy kpz kix kiy kiz kdx kdy kdz kpc kdc kx ky kz cx cy cz ...   
    f_pox f_poy f_poz xpos xi xf bz dt t tnum error  errorx errory errorz ...  
    xd dxd yd dyd zd dzd case1 motion 
%GENERAL PARAMETERS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%plot parameters  
f_size=10; 
m_size=4.5; 
l_size=1.5; 
  
%total motion time  
T=10;Tx=T;Ty=T;Tz=T; 
  
%sampling time  
dt=0.001;t=0:dt:T;tnum=length(t); 
t1=t; 
  
%sampling position  
delta_x=0.005; 
  
%ode tolerance  
tol=1e-5; 
tol1=1e-6; 
delta1=1e-15; 
  
%true/desired position, velocity, and acceleration  
[r dr ddr]=f_getr(tnum,t,T); 
 
%CCC gains factor  
cccf=1; 
  
%SYSTEM DYNAMICS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%dynamic parameters  
m=1;k=50;c=7; 
mx=m;my=m;mz=m; 
kx=k;ky=k;kz=k; 
cx=c;cy=c;cz=c; 
  
%control gains  
% kp=80000;ki=50000;kd=70000;case1=4;  
 
kpx=kp;kpy=kp;kpz=kp; 
kix=ki;kiy=ki;kiz=ki; 
kdx=kd;kdy=kd;kdz=kd; 
kpc=cccf*kp;kdc=cccf*kd; 
  
%SECTOR 1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%initial and final position  
xi=[-4 -4 0]; 
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xf=[-2 -2 2]; 
[f_pox f_poy f_poz f_po]=f_getf_po(xi,xf); 
bz=xf(3)-(f_poz/f_pox)*xf(1); 
  
%initial state  
x0=[xi(1);0;xi(2);0;xi(3);0];                   
  
[xd dxd yd dyd zd dzd]=f_get_xyzr_linear(xi,f_po,r, dr); 
  
errorx=zeros(tnum,1); 
errory=zeros(tnum,1); 
errorz=zeros(tnum,1); 
options=odeset( 'RelTol' ,tol, 'AbsTol' ,[tol tol tol tol tol tol]); 
[tt,x]=ode23tb( 'xyz_t_control' ,t,x0,options); 
  
errorx=zeros(tnum,1); 
errory=zeros(tnum,1); 
errorz=zeros(tnum,1); 
options=odeset( 'RelTol' ,tol, 'AbsTol' ,[tol tol tol tol tol tol]); 
[tt,xc]=ode23tb( 'xyz_tc_control' ,t,x0,options); 
  
%find the real velocity and acceleration of the x-a xis  
nj=abs(f_pox/delta_x+1); 
xpos=zeros(3,1,nj); 
xpos(:,:,1)=[xi(1);0;0]; 
  
for  j=2:nj 
    xpos(1,1,j)=xi(1)+(j-1)*delta_x; 
    for  i=1:tnum 
        if  x(i,1)>=xpos(1,1,j); break  
        end  
    end  
    xpos(2,1,j)=x(i,2); 
    if  i>1 
        xpos(3,1,j)=(x(i,2)-x(i-1,2))/dt; 
    end  
end  
xpos0=xpos(:,:,nj); 
  
tt=squeeze(xpos(1,1,:)); 
tt(1)=tt(1)+ delta1; 
tt(nj)=tt(nj)- delta1; 
nt=size(xpos(1,1,:),3); 
y0=[xi(2);0]; 
z0=[xi(3);0]; 
yz0=[y0;z0]; 
  
[yx zx yzx]=f_get_PDC_linear(nt,tt,y0,z0,yz0,tol1);  
  
%TDC reference  
[xr1 xdr1 yr1 ydr1 zr1 zdr1]=f_get_xyzr_linear(xi,f _po,r,dr); 
%TDC actual  
[xa1 xda1 ya1 yda1 za1 zda1]=f_get_xyza(x); 
%TDC w/ CCC actual  
[xac1 xdac1 yac1 ydac1 zac1 zdac1]=f_get_xyza(xc); 
%PDC reference  
[xrp1 yrp1 zrp1]=f_get_xyzrp_linear(xpos,f_po,bz); 
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%PDC actual  
[xap1 yap1 zap1]=f_get_xyzap(xpos,yx,zx); 
%PDC w/ CCC actual  
[xapc1 yapc1 zapc1]=f_get_xyzapc(xpos,yzx);  
%calculate tracking error  
e_t1=f_te(xr1,yr1,zr1,xa1,ya1,za1); 
e_tc1=f_te(xr1,yr1,zr1,xac1,yac1,zac1); 
e_p1=f_te(xrp1,yrp1,zrp1,xap1,yap1,zap1); 
e_pc1=f_te(xrp1,yrp1,zrp1,xapc1,yapc1,zapc1); 
  
%SECTOR 2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A.2  SECONDARY FUNCTIONS  

function  dx=xyz_t_control(tt,x) 
global  kpx kpy kpz kix kiy kiz kdx kdy kdz kx ky kz cx cy  cz dt t tnum 
global  xd dxd yd dyd zd dzd 
  
dx=zeros(6,1); 
  
for  i=1:tnum 
    if  t(i)>=tt break  
    end  
end 
 
errorx(i)=xd(i)-x(1); 
errory(i)=yd(i)-x(3); 
errorz(i)=zd(i)-x(5); 
  
dx(1)=x(2); 
dx(2)=-cx*x(2)-kx*x(1)+kpx*(xd(i)-x(1))+kdx*(dxd(i) -x(2))+kix*sum(errorx)*dt; 
  
dx(3)=x(4); 
dx(4)=-cy*x(4)-ky*x(3)+kpy*(yd(i)-x(3))+kdy*(dyd(i) -x(4))+kiy*sum(errory)*dt; 
  
dx(5)=x(6); 
dx(6)=-cz*x(6)-kz*x(5)+kpz*(zd(i)-x(5))+kdz*(dzd(i) -x(6))+kiz*sum(errorz)*dt; 
 

function  dx=xyz_tc_control(tt,x) 
global  kpx kpy kpz kix kiy kiz kdx kdy kdz kx ky kz cx cy  cz dt t tnum 
global  xd dxd yd dyd zd dzd f_pox f_poy f_poz kpc kdc 
  
dx=zeros(6,1); 
  
for  i=1:tnum 
    if  t(i)>=tt  
        break ; 
    end  
end  
errorx(i)=xd(i)-x(1); 
errory(i)=yd(i)-x(3); 
errorz(i)=zd(i)-x(5); 
  
angley=atan(f_poy/f_pox)*180/pi; 
anglez=atan(f_poz/f_pox)*180/pi; 
  
ex=errorx(i); 
dex=dxd(i)-x(2); 
ey=errory(i); 
dey=dyd(i)-x(4); 
  
ccx=sin(angley); 
dcx=cos(angley); 
ccy=cos(angley); 
dcy=-sin(angley); 
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ecy=-ccx*ex+ccx*ex; 
decy=-ccx*dex+ccy*dey-dcx*ex+dcy*ey; 
  
ez=errorz(i); 
dez=dzd(i)-x(6); 
  
ccx2=sin(anglez); 
dcx2=cos(anglez); 
ccz=cos(anglez); 
dcz=-sin(anglez); 
  
ecz=-ccx2*ex+ccx2*ex; 
decz=-ccx2*dex+ccz*dez-dcx2*ex+dcz*ez; 
  
dx(1)=x(2); 
dx(2)=(-cx*x(2)-kx*x(1)+kpx*(xd(i)-x(1))+kdx*(dxd(i )-
x(2))+kix*sum(errorx)*dt)-ccx*(kpc*ecy+kdc*decy)-cc x2*(kpc*ecz+kdc*decz); 
  
dx(3)=x(4); 
dx(4)=(-cy*x(4)-ky*x(3)+kpy*(yd(i)-x(3))+kdy*(dyd(i )-
x(4))+kiy*sum(errory)*dt)+ccy*(kpc*ecy+kdc*decy); 
  
dx(5)=x(6); 
dx(6)=(-cz*x(6)-kz*x(5)+kpz*(zd(i)-x(5))+kdz*(dzd(i )-
x(6))+kiz*sum(errorz)*dt)+ccz*(kpc*ecz+kdc*decz); 
 

function  dyx=y_axis_p_control(t,y) 
global  kpy kiy kdy ky cy f_pox f_poy xpos dt error 
  
dyx=zeros(2,1); 
  
ydx=f_poy/f_pox*t; 
dydx=f_poy/f_pox; 
  
nt=size(xpos(1,1,:),3); 
for  i=1:nt 
    if  xpos(1,1,i)>=t 
        break ; 
    end  
end  
error(i)=ydx-y(1); 
  
vx=xpos(2,1,i); 
p=(-(xpos(3,1,i)+cy*xpos(2,1,i)+kdy)*y(2)-
(ky+kpy)*y(1)+kpy*ydx+kdy*dydx+kiy*sum(error)*dt); 
  
if  vx~=0 
    dyx(2)=p/vx^2; 
end  
dyx(1)=y(2); 
 
 
function  dzx=z_axis_p_control(t,z) 
global  kpz kiz kdz kz cz f_pox f_poz xpos dt error bz 
dzx=zeros(2,1); 
  



 
 

104 
 

zdx=f_poz/f_pox*t+bz; 
dzdx=f_poz/f_pox; 
  
nt=size(xpos(1,1,:),3); 
for  i=1:nt 
    if  xpos(1,1,i)>=t 
        break ; 
    end  
end  
error(i)=zdx-z(1); 
  
vx=xpos(2,1,i); 
p=(-(xpos(3,1,i)+cz*xpos(2,1,i)+kdz)*z(2)-
(kz+kpz)*z(1)+kpz*zdx+kdz*dzdx+kiz*sum(error)*dt); 
  
if  vx~=0 
    dzx(2)=p/vx^2; 
end  
dzx(1)=z(2); 
 

function  dyzx=yz_axis_p_control(t,yz) 
global  kpy kiy kdy ky cy f_pox f_poy xpos dt errory error z 
global  kpz kiz kdz kz cz f_poz angle kpc kdc bz  
  
dyzx=zeros(4,1); 
  
ydx=f_poy/f_pox*t; 
dydx=f_poy/f_pox; 
zdx=f_poz/f_pox*t+bz; 
dzdx=f_poz/f_pox; 
  
angle=atan(f_poz/f_poy)*180/pi; 
  
nt=size(xpos(1,1,:),3); 
for  i=1:nt 
    if  xpos(1,1,i)>=t 
        break ; 
    end  
end  
errory(i)=ydx-yz(1); 
errorz(i)=zdx-yz(3); 
  
ey=errory(i); 
dey=dydx-yz(2); 
ez=errorz(i); 
dez=dzdx-yz(4); 
  
ccy=sin(angle); 
dcy=cos(angle); 
ccz=cos(angle); 
dcz=-sin(angle); 
  
ec=-ccy*ey+ccz*ez; 
dec=-ccy*dey+ccz*dez-dcy*ey+dcz*ez; 
  
vx=xpos(2,1,i); 
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py=(-(xpos(3,1,i)+cy*xpos(2,1,i)+kdy)*yz(2)-
(ky+kpy)*yz(1)+kpy*ydx+kdy*dydx+kiy*sum(errory)*dt) -ccy*(kpc*ec+kdc*dec); 
  
if  vx~=0 
    dyzx(2)=py/vx^2; 
end  
dyzx(1)=yz(2); 
  
pz=(-(xpos(3,1,i)+cz*xpos(2,1,i)+kdz)*yz(4)-
(kz+kpz)*yz(3)+kpz*zdx+kdz*dzdx+kiz*sum(errorz)*dt) +ccz*(kpc*ec+kdc*dec); 
  
if  vx~=0 
    dyzx(4)=pz/vx^2; 
end  
dyzx(3)=yz(4); 
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