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Abstract

The field of high dynamic range (HDR) imaging deals with capturing the luminance

of a natural scene, usually varying between 10�3 to 105 cd/m2 and displaying it

on digital devices with much lower dynamic range. Here, we present a novel tone

mapping algorithm that is based on K-means clustering. Our algorithm takes into

account the color information within a frame and using k-means clustering algorithm

it builds clusters on the intensities within an image and shifts the values within each

cluster to a displayable dynamic range. We also implement a scene change detection

to reduce the running time of our algorithm by using the cluster information from

the previous frame for frames within the same scene. To reduce the flicker effect,

we proposed a new method that multiplies a leaky integer to the centroid values of

our clustering results. Our algorithm runs in O( N logK + K logK ) for an image

with N input luminance levels and K output levels. We also show how to extend the

method to handle video input. We display that our algorithm gives comparable results

to state-of-the- art tone mapping algorithms. We test our algorithm on a number of

standard high dynamic range images and video sequences and provide qualitative and

quantitative comparisons to a number of state-of-the-art tone mapping algorithms for

videos.
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Chapter 1

Introduction

1.1 Motivation

The luminance of a natural scene often has a high dynamic range (HDR), varying

between 10�3 to 105 cd/m2, that unlike digital displays can be handled by the

human visual system [1]. In digital imaging, typically 8-bits per color channel are used

resulting in 224 number of distinct colors. Although this seems like a large number,

it is not enough to represent the range of luminances found in the real world. For

instance, from starlight to sunlight the real world contains more than 10 log units

(orders of magnitude) of dynamic range which is defined as the ratio of the maximum

to the minimum luminance. The luminance levels of several typical scenes are given

in Table 1.1 for illustration purposes.

Table 1.1: Ambient luminance for some lighting conditions from [1].

Condition luminance(cd/m2)
Starlight 10�3

Moonlight 10�1

Indoor lighting 102
Sunlight 105

The dynamic range in natural scenes may vary depending on several factors such

as scene content and lighting conditions. However, on average, most real world scenes
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contain at least 4 log units of dynamic range (1:10000) [2]. A standard digital display

has a lower dynamic range (LDR) of about 102 cd/m2. In the absence of displays

that can show the full dynamic range of a scene as captured the need for tone mapping

operators arises. The field of tone mapping in high dynamic range imaging deals with

displaying of images or videos with wide dynamic range on devices that have much

lower dynamic range[2]. Different tone mapping operators (TMOs) emphasize on

preserving different attributes during this process. For instance, while some operators

aim to reproduce all details, others strive to maintain the global contrast instead of

details. More information on these operators will be provided in the next chapter.

Today, many camera devices have built-in functionality for acquiring HDR images,

and this resulted in the growth of HDR field. Particularly regarding video technologies

that keep improving the viewer’s experience by for example going from HD to 4K, or

increasing the frame rates in cinemas.

As modern high-end cameras have the ability to capture high dynamic range

(HDR) videos the research on finding a tone mapping operation as means of visual-

ization and artistic expression has further increased. Precisely, it is expected to reduce

the dynamic range of a captured HDR video in a fashion that its visual content is

maintained and that no artifacts are introduced[3].

Although there have been some efforts in recent years to address the following

shortcomings, still the majority of HDR video tone mapping operators can not achieve

both of the goals mentioned earlier.

1.2 Objective

The objective of this thesis is to develop a new HDR tone-mapping operator that

works on HDR videos. We also take a look into HDR image tone-mapping as a

foundation for video tone-mapping.
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1.2.1 Contribution

We propose a tone mapping operator that can perform local processing based on the

colors present locally and provides an output free from ghosting and flickering. Afore-

mentioned is to achieve sufficient dynamic range compression in all circumstances

while maintaining a right level of detail and contrast. The proposed HDR tone map-

ping operator is also efficient in processing a large amount of data in abbreviated run

time. It also needs no parameter tuning, and there is no need for calibrating the input

data. This work intends to solve tone mapping problem with clustering techniques.

To be precise, we want to cluster input intensity levels from a larger range to a set

with much smaller range. We perform clustering in three dimensions and illustrate

how unlike other methods that only work with luminance channel, we can achieve

more natural looking results.

1.3 Thesis Outline

Following the introductory chapter, the remainder of this thesis is organized as follows;

Chapter 2 reviews several TMOs, for both HDR image and video. It will review some

of the most well-known clustering methods with more emphasis on K-means cluster-

ing that prepare the necessary background knowledge for later chapters. Chapter 3

elaborates on the structure of the algorithm with a focus on the improvements over

the previous frame works. Chapter 4 presents the results obtained using the proposed

algorithm. Chapter 5 concludes the thesis and discusses future work.
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Chapter 2

Background

This chapter starts with a literature review of tone mapping operators (TMO) for

HDR images, followed by (TMO) for HDR video. We finish the chapter by discussing

clustering techniques as means to reduce dynamic range in both images and videos.

2.1 HDR-to-LDR Tone Mapping Operators

High dynamic range (HDR) image1 tone mapping has been studied extensively over

the years, and there is a comprehensive overview of the field by Reinhard et al. [2].

High dynamic range (HDR) images represent greater accuracy of luminance levels

in natural scenes than standard low dynamic range (LDR) images [5]. They can

be directly acquired with HDR imaging devices [2] or created by fusing differently

exposed images of the same real scene, as illustrated in Fig. 2.1. The latter method,

exposure fusion, aims to directly create a detailed LDR image from a set of bracketed

exposures. That is, in this pipeline, the generation of the HDR image is bypassed.

For instance, the HDR mode on iPhone 4 and above models utilizes an exclusive

algorithm of this type[6].

HDR-to-LDR TMOs facilitate display of HDR images on viewing devices with

lower dynamic range. The goal of TMOs is to compress the dynamic range of HDR

1The term "dynamic range" for images is defined as the ratio between the lightest and darkest
pixels [4].

4



Figure 2-1: HDR image (bottom) made out of 4 LDR images (top) with different
exposures. (Image courtesy of Wikipedia)

images while preserving their structural detail and natural appearance. Tone mapping

algorithms can be divided into two categories of global and local operators. It is worth

mentioning that results of global and local TMOs can be considerably different and

some people tend to like one over the other based on their aesthetic preferences.

2.2 Global Tone Mapping Operators

Global TMOs are essentially point-wise luminance transformations like sigmoid func-

tion or histogram based algorithms that apply same mapping function across the

image[7]–[9]. They produce an LDR images that are spatially consistent and are of-

ten not very computationally expensive algorithms. Their downside is that they fail

to provide fine detail in local areas particularly in HDR images that contain both

light and dark areas meaning that they do not cope well with huge contrast ratios.

Examples for sigmoid functions used for tone-mapping purpose Gamma mapping and
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log-normal mapping. Gamma mapping takes the following formula

Y = X
1
�

where X and Y represent HDR and tone mapped LDR images, respectively.Log-

normal mapping utilizes the logarithmic function to boost lower luminance levels and

to compress higher luminance levels. The tone mapped image is computed by

Y =
logX2 � x

min

x
max

� x
min

where again X and Y represent HDR and tone mapped LDR images, respectively.

x
min

and x
max

are the minimum and maximum pixel values of logX2 respectively.

The downside of it is that log-normal mapping often produces blanched images with

blurred detail and strange appearance.

2.2.1 Histogram Equalization for Tone Mapping Operator

One global TMO is the technique developed by Larson et al [7] which is a histogram

adjustment method to perform tone mapping by accounting human visual sensitivity,

color sensitivity, and visual acuity. In image processing Histogram Equalization (HE)

is a popular technique utilized to increase the global contrast of an image. Histogram

Equalization (HE) is a process that spreads the pixel intensities over the available

range and hence increasing the global contrast of the image. Figure 2-2allustrates

the application of an HE. To accomplish this cumulative distribution function is

used. This function is used to expand bins associated with many pixels and shrink

bins with smaller pixel density (see Figure 2-2). Larsen et al.[7] build the histogram

of luminance values in log domain since the human visual system (HVS) is almost

log linear when photoreceptors are fully responsive [10]. Next using Cumulative

distribution function they redistribute logarithmic HDR luminance values. Later

they transfer the values back to the luminance domain and normalize them to the

range [0, 1] which are then gamma encoded using the BT.1886 and quantized on
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the targeted bit-depth. This TMO struggles in tone reproduction of relatively large

areas with small luminance range like sky or night scene since must of the available

dynamic range gets assigned to a large bin when using HE. As a result, applying

histogram equalization will usually lead to not efficiently utilizing the colorspace, due

to discretization effects.

(a) (b)

Figure 2-2: Before (left) and after (right) the application of HE on an image

2.2.2 Gradient Domain based Tone Mapping Operator

Another global TMO is the technique by Fattal et al. [11] which uses the gradient

domain2 to reduce the dynamic range of the image. They use the fact that in gradient

domain large values indicate a great change in the pixel values of the image. And small

values correspond to fine details. Their algorithm reduced large gradients without

changing their direction and kept the smaller gradients the same. This way they were

able to reconstruct a reduced dynamic range image.

2.2.3 Photographic Tone Reproduction

Another well-known global TMO is Reinhard’s method [5] which is considered to be

among the best TMOs on several independent subjective tests [12], [13]. In [5] Rein-
2Gradient domain image processing is a type of digital image processing that operates on the

differences between neighboring pixels, rather than on the pixel values directly.
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hard et al. stimulated dodging and burning technique used in traditional photography

allowing different exposures across the image to be printed. They first approximated

the key 3 of a scene as the log average of luminance and scaled the luminance based

on the key value. They assign high key values to lower luminance values, and vice

versa to convey detail. They further compressed high luminance by the function f(x)

= x/(1 + x). Finally, they adjust the resulting tone mapped LDR image locally to

improve the detail further.

2.2.4 Adaptive Logarithmic Mapping

In [14], Drago et al. recommended a global tone mapping function based on adaptive

logarithmic compression of luminance. To preserve detail, they used logarithmic

functions with varying bases ranging from log2 to log10. The log10 is utilized for

the brightest image pixels, for the rest, the logarithm base is changed between the

base of 2-10 as the function of their luminance. Perlin bias power function is used

for interpolation between the logarithm bases to provide better steepness control of

the resulting tone mapping curve. The following formula was used to map the pixel

values

L
d

=
L
dmax

· 0.01
log10(Lwmax

+ 1)
· log(L

w

+ 1)

log

 
2 +

 ⇣
L

w

L

wmax

⌘ log(b)
log(0.5)

!
· 8
!

L
d

is the displaying value of each pixel. L
dmax

is the maximum luminance capability

of the displaying medium. L
w

is the luminance value of pixel and L
wmax

is the

maximum luminance value of image. The parameter of bias function denoted by b is

caculated using Perlin bias power function.

Figure 2-3, illustrates the results produced by these methods. As depicted Rein-

hard’s method[2] and Drago’s method[14]generate results with less noticeable arti-

facts.

3A scene’s key is an indicator of how light or dark the overall impression of a scene is [2].
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(a) (b)

(c)

Figure 2-3: Durand’s method [15] (shown on the top right) and Reinhard’s method [2]
(shown on the top left) and Fattal’s method [11] (shown on the bottom left) faithfully
reproduce the visual appearance. (Image courtesy of ESPL-LIVE HDR Image Quality
Database[16], [17])

2.3 Local Tone Mapping Operators

To increase local contrast, local tone mapping algorithms usually apply local filtering.

Local TMOs are designed based on the way the human visual system (HVS) responds

to local scene luminance and contrast.

2.3.1 Globally Optimized Linear Windowed Tone Mapping

In [18], Shan et al. proposed a method that performs local tone mapping on over-

lapping windows in an image to reconstruct the image radiance. They categorized

the transition of the scene as smooth or sharp and based on that they use a local

approach that preserves the local properties of the image. In this method, they di-

rectly process the image radiance instead of decomposing the image to different layers

or segmenting it. As a result, the algorithm does not cause problems such as halo
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effects that are caused by layer decomposition. They compress the strong edges by

preserving the small details and impose an optimization problem which combines a

set of local-based constraints. The algorithm is defined as a linear mapping of HDR

radiance map to LDR within small radiance groups on the image called windows.

The mapping is formulated with the following primary linear function:

I l(j) = p
i

Ih(j) + q
i

, j 2 w
i

where p and q are linear function parameters, Il is the compressed pixel value, Ih is

the original pixel value, and w
i

is the window i. The problem is essentially defined

as an objective function minimization:

f =
X

i

 
X

j

2w
�
I l(j)� p

i

Ih(j)� q
i

)
�2

+ ✏c�2
i

(p
i

� c
i

)2
!

The term c�2
i

(p
i

� c
i

)2 is squared relative error of guidance map c
i

which is

contributed to the objective function in order to avoid trivial solution to p
i

and q
i

:

1 and 0. ✏ is weight of guidance error term. The problem is solved by first setting

the partial derivatives of p
i

and q
i

to zero and calculating the optimal Il
i

by solving

the resulting linear system. The window size is set to 3⇥3 by default.

2.3.2 Display Adaptive Tone-mapping

One other well known local tone mapping algorithms is the display adaptive TMO

by Mantiuk et al. [19]. This operator also takes into account the visual properties of

the display device and the human visual system.

This operator tries to solve an optimization problem that essentially updates the

tone mapping parameters to minimize the difference between the HVS model response

of the original image and the displayed image. They also take into account the display

properties and viewing conditions. They model the display device with the following

formula:

L
d

(L0) = (L0)� · (L
max

� L
black

) + L
black

+ L
refl
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where L
d

is displayed luminance, L0 is the pixel value in range 0 - 1, � is gamma

value of the display (default 2.2), L
max

and L
min

are the maximum and minimum

luminance value of the display and L
refl

is the ambient light reflected from the display

surface which affects the minimum luminance value of the display. L
refl

is calculated

with the following formula:

L
refl

=
k

⇡
E

amb

where E
amb

is the ambient luminance value in lux and k is the reflectivity of the

display panel.

2.3.3 Tone-mapping using Bilateral Filtering

In [15] Durand et al., first extracted the edges of an HDR image using a bilateral filter

[20]. Then using linear scaling in the logarithmic domain, they reduce the dynamic

range. Finally, they obtain LDR image by adding back the extracted edges. To put

it simply they decompose the base layer from the detail layer and then add back the

tone mapped base layer to the detail layer. In principle, our method is also based on

break down of base and detail layer by utilizing edge-aware filters. Hence we review

edge-aware filtering in the subsequent section from a tone mapping aspect.

2.3.4 Tone mapping using K-means clustering

In [21] they addressed the tone mapping problem by using K-means to cluster the im-

age into regions and applying proper gamma correction4 to each segment, according

to the mean value of each region. In the proposed algorithm, the luminance com-

ponent of the HDR radiance map is first filtered by a bilateral filter. Then using a

logarithmic function the filtered radiance map is as globally assigned for global con-

trast enhancement.Then using K-means algorithm, they divide the bilateral filtered

luminance into regions. Next, they set the display gamma value automatically ac-

cording to the mean value of each region. Then, the tone of HDR image is reproduced

4Gamma correction, or often simply gamma, is the name of a nonlinear operation used to encode
and decode luminance or tristimulus values in video or still image systems.
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by a local TM method with adaptive gamma value.

In [22] they also address the tone-mapping problem with the use of K-means

clustering. They use dynamic programming to solve the K-means clustering and find

the global optimum. They claim that their algorithm runs in O(N2K) for an image

with N input luminance levels and K output levels.

In this paper they use K = 256 for their K-means clustering, corresponding to

8-bit output, and they claim that this value can be set to any output quantization

level desired, but 256 performs the best. They first start by estimating the intensity

channel which is the maximum of the of the three channels and claim that maximum

of three channels generates the best result with their method. Next, they cluster the

intensity channel into K desired levels. Based on the clusters they then calculate a

transform function for each intensity value. Following is the steps of their algorithm.

1: Given a high bit color input image: I
in

2: Calculate the intensity channel I
gr

of I
in

.

3: Take the log to get I
log

= logI
gr

4: Calculate the histogram h(s) of I
log

.

5: Find centers c
l

using their suggested K-means algorithm.

6: Estimate F(s) : u
i

! c
l

using nearest neighbours.

7: Ich
out

= F
�
Ich
out

�
or Ich

out

= I

ch

I

gr

· F (I
gr

) .

They claim that the performance of their algorithm is comparable to the state-

of-the-art tone mapping algorithms and with the significant benefit of the minimal

need for parameter setting. In their case, user is not able to automatically choose

some parameters to achieve a better effect in local color and contrast; factor above is

desirable in some HDR imaging applications.
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2.4 Edge-Aware Filtering

Based on the study by Mi-lanfar [2013] on the use cases of edge aware filters HDR

image tone mapping is one of the common utilization of these types of filters since

the establishment of edge-aware filtering based tone mapping [Durand and Dorsey

2002]. Nevertheless, the use case of edge-aware filters in HDR image tone-mapping

is often brief since the primary focus of these works is reducing the dynamic range;

consequently, it is not straightforward to conclude how properly an edge-aware filter

is performing on HDR tone mapping. Some of the most well-known edge aware filters

used for the tone mapping application is as follows

2.4.1 Bilateral filter

The bilateral filter [20] is famous to create halo5 and ringing6 artifacts in the resulting

image. It replaces each pixel with a weighted average of its neighbours. It works based

on the difference in the value of neighbouring pixels with the fundamental idea that

for a pixel to influence another pixel, it should have not only a nearby location but

also a similar value. Therefore, each neighbouring pixel gets weighted based on two

components of distance and intensity. The combination of these two elements assures

that only nearby similar pixels contribute to the final result. The bilateral filter,

denoted by BF[ ů ], is defined by:

BF [I]
p

=
1

W
p

X

q

G
�

s

(k p� q k)G
�

r

(| I
p

� I
q

|)I
q

where normalization factor W
p

ensures pixel weights sum to 1.0:

W
p

=
X

q

G
�

s

(k p� q k)G
�

r

(| I
p

� I
q

|)I
q

5In digital image processing halo refers to a light line around the edges of image.
6In digital image processing ringing refers to artifacts that appear as oscillation at a fading rate

around a sharp transition in the input.
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Parameters �
r

nd �
s

will specify the amount of filtering for the image I. Equation

(3) is a normalized weighted average where G
�

r

is a spatial Gaussian weighting that

decreases the influence of distant pixels, G
�

r

is a range Gaussian that decreases the

influence of pixels q when their intensity values differ from I
p

.

Figure 2-4: Bilateral Filter. illustrates how the weights are computed for one pixel
near an edge. adapted from Paris et. al [23]

2.4.2 Weighted Least Squares (WLS) filter

This filter was originally used to reduce ringing artifacts while de-blurring images in

the presence of noise [24]. By minimizing the function whose, data term penalizes the

distance between the original and filtered image it can prevent halo artifacts. The

disadvantage of this filter is that it has to solve large numerically-challenging linear

systems [25] that involve conjugate gradients [26]. That makes it a computationally

expensive, but it still is one of the go-to methods for generating high-quality results

[25], [27]. WLS smoothing is uniquely defined as the solution of the following linear
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system

I
p

= J
p

+
X

q2N4(p)

a
pq

(J
p

� J
q

)

where I
p

and J
p

are pixel values of the input image and the smoothed output

image, respectively, N4(p) is the 4-neighborhood around pixel p, and a
pq

are the

smoothness weights as defined in [28].

a
pq

:=
�

| I
p

� I
q

|↵ +✏

The authors solve the equation system using a multi-resolution preconditioned con-

jugate gradient solver.

2.4.3 Local Laplacian Filter

Introduced by Paris et al. [26], these filters produce high-quality results with detail

enhancement with no halo effects. However, this filter suffers from long running time,

on the order of a minute per megapixel with a single thread. Hence, it requires

a parallel implementation.While recently a faster implementation became available

[29], the temporal stability aspect is still an open question, and it is not clear how to

extend the method to the temporal domain.

Local Laplacian filters define the output image O by constructing its Laplacian

pyramid L[O] coefficient by coefficient. The computation of each coefficient is

independent of the others. To estimate L[O](x, y) , the Laplacian coefficient at level

łand position (x, y), they first apply a simple pixel-wise filter to the input image then

compute a Laplacian pyramid of this transformed image, and finally use the (, x, y)

coefficient in that pyramid as the value of the output coefficient L[O](x, y) . First,

they process input image I with a point-wise nonlinearity r(ů) that depends on g

= G[I](x, y) , the coefficient of the Gaussian pyramid at level łand position (x, y).

Intuitively, r(I) is an image that looks like the desired result where the intensity I is

close to g. For instance, to increase the amount of detail, we apply a local S-shaped
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Figure 2-5: Effect of a detail enhancement ( 0  ↵ < 1 ) remapping function r with
several reference values g near an edge. Details are enhanced for values similar to the
reference value, but not for values far from it. adapted from [29].

tone curve 7 centered on g which makes I values close to g farther away from it, and

leaves more distant values unchanged. By combining the results from various g values,

they obtain the final output. Then, given r(I) for a particular g value corresponding to

the position (x, y) and scale ł they build the Laplacian pyramid of that transformed

image, that is L[r(I)] .

2.5 HDR Video Tone Mapping

Tone mapping is also necessary for HDR video. This field has received rising interest

over the last years, considerably as HDR video content is gaining popularity [31]–[34].

The reason for the absence of much work in the field of HDR video tone mapping was

the insufficient HDR video data content available to research community. However,

by the advent of high-end cameras capable of capturing HDR videos, this matter has

7The Tone Curve represents all the tones of your image. The bottom axis of the Tone Curve is
the Tone axis: the line starts with Shadows at the left-most end and ends with Highlights at the
rightmost end. The middle is the Mid-tones. The Y axis represents lightness of the tones. Darker
tones are at the bottom of the Y axis; tones become brighter as you move up the axis.
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Figure 2-6: A comparison between edge aware filters. Top left image is the input
image before any filters, image on (top right) is Bilateral filtered version, image on
(bottom left) is weighted least squares filtered version, image on (bottom right) is
local laplacian filtered version[30].

been addressed[35].

Some of the first extensions to video apply TMOs image wise, and including a

temporal component enabling them to process HDR video and avoid flickering [19],

[31], [36]. Among some global HDR video operators are [19], [37]–[41] that produce

results with good temporal coherence but low spatial contrast. There are also local

operators like benoit2009spatio; reinhard2012calibrated, [42], [43] that keep a

high contrast but produce more temporal artifacts. One can refer to Eilertsen et

al.[44] for comprehensive information on these operators.
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Some other works [31], [35], [36] focus on extending the TMO’s tone curve [5] with

temporal filtering to estimate a temporally coherent key value. In these TMOs the

temporal coherence can easily be improved by ensuring the temporal smoothness in

the TMO parameter space [45]. But similar other global TMOs, these methods are

essentially limited to local contrast reproduction.

In work by Boitard et al. [46], they segment each video frame to two-four parts and

apply a global tone curve to each segment separately. By doing this, they achieve local

adaptation at the cost of more complicated processing on video. They claim to have

achieved local brightness coherency based on their study that measures subjective

preference rather than evaluating temporal artifacts and local contrast generation.

2.5.1 Local HDR Video Tone Mapping

While using HDR tone mapping, there is unavoidably some scene contrast loss as the

dynamic range of input gets decreased significantly. As a result, there is always a

compromise between having a superior or inferior contrast in the scene. If one opts

out for a coarse scale contrast; as a result, the luminance difference between large

image regions, as well as highlights and shadows become more obvious at the cost

of the visibility of the fine scale details. On the other hand having a better contrast

result in "flattening" effect.

There is also the trade-off between spatial and temporal contrast. The former

is when we use the dynamic range of each frame separately, such that each frame

has sufficient brightness to generate most of the scene details. It may come with the

cost of losing the perception of a scene change from a brighter space to a darker one.

The latter will result in a certain amount of the temporal contrast at the cost of less

visible spatial details during such transitions from brighter to darker scenes. Figure

2-6 shows these two visual trade-offs when using either of these methods.

The trade-offs mentioned above are context dependent and ultimately artistic de-

cisions, and no tone mapping approach is inherently better than others in all possible

situations. As a result, it is more desirable if the tone-mapping operator enables the

user to choose spatial contrast as well as temporal contrast. But the most impor-
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Figure 2-7: The visual trade-off between emphasizing spatial contrast (a, b) and
temporal contrast (a, c). While in both settings frame 38 remains the same (a),
frame 265 can be adjusted to either maintain spatial (b) or temporal contrast (c).
Figure adapted from[3]
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tant factor is that the method should keep some level of quality that avoids visually

noticeable artifacts. Therefore, video tone mapping is especially challenging because

the temporal dimension emerges as a new source of artifacts. In fact, high temporal

frequency artifacts such as brightness flickering, camera noise, as well as any temporal

inconsistencies of the TMOs are immediately noticeable because of the human visual

system’s properties. Even minimal amounts of ghosting and flickering in the tone

mapped HDR videos are unacceptable in practice [44].

2.6 Clustering

Color clustering is an important process of representing true colors of an image using

a smaller palette of colors that could be displayed on the screen. This idea was

prevalent during the 1980s and 1990s when the displays had low dynamic range and

colors could not be represented by higher bits. As a result, they had to map a 24-bit

depth per pixel, meaning 256 discrete intensity levels for each color channel of the

image to a smaller number of colors in a color map.

Color clustering usually consists of four stages. The first step is sampling the orig-

inal image and computing the image histogram for obtaining color statistics meaning

the number of distinct colors and their frequencies. The second phase is designing the

colormap, which is choosing the best possible set of colors to represent the color statis-

tics. The third step maps each color in the original image to a representative color

in the colormap. The fourth phase replaces the original color with a representative

color.

Natural images are composed of a vast number of distinct colors. Hence, the

quantizers could choose a set of K representative colors (8- 256) from input images

in such a way that a difference between reproduced K-color images and original N-

color images are as little as possible. Mean square error (MSE) is normally used to

represent the difference.

The clustering-based algorithms perform clustering the color space into K-desired

clusters. The methods involve an initial selection of colormap followed by repeatedly
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Figure 2-8: Classifications of Clustering Methods

updating cluster representatives.

2.6.1 The C-Means clustering Algorithm (CMA)

A classical approach to cluster input pixels is the (K-means) clustering algorithm

(CMA) [47]–[50]. The KM algorithm is inarguably one of the most widely used

methods for data clustering [48]. Given a dataset X = {x1, x2, x3, ..., xN

} 2 RD , the

objective of KM is to partition X into K exhaustive and mutually exclusive clusters

S = {S1, S2, S3, ..., SN

} ,
S

K

k=1 Sk

= X S
i

\S
j

= for 1 i 6= j  k by minimizing

the sum of squared error (SSE):

SSE =
KX

k=1

X

x

i

2S
k

kx
i

� c
k

k22

where k·k2 denotes the Euclidean (L2) norm and c
k

is the center of cluster S
k

calculated as the mean of the points that belong to this cluster. This problem is

known to be NP-hard even for K = 2 [51] or D = 2 [52], but a heuristic method
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developed by Lloyd [53] offers a simple solution. Lloyd’s algorithm starts with K

arbitrary centers, typically chosen uniformly at random from the data points [54].

Each point is then assigned to the nearest center, and each center is recalculated as

the mean of all points assigned to it. These two steps are repeated until a predefined

termination criterion is met. The pseudocode for this procedure is given in Algo. (1)

(bold symbols denote vectors). Here, m[i] denotes the membership of point x
i

, i.e.

index of the cluster center that is nearest to x
i

.

Convetional K-means Algorithm.

input: X = {x1, x2, ..., xN

} ✏ RD (N ⇥D input data set)

output: C = {c1, c2, ..., cN} ✏ RD (K cluster centers)

Select a random subset of C of X as the initial set of cluster centers;

While: termination criterion is not met do

for (i = 1; i N ; i = i+ 1) do

Assign x

i

to the nearest cluster;

m [i] = argmin
k2{1,2,...,K} kxi

� c
k

k2

end

Recalculate cluster centers;

for (k = 1; k K; k = k + 1) do

Cluster S

k

contains the set of points x

i

that are nearest to the center c

k

:

S

k

= {x
i

|m [i] = k}

Calculate the new center c

k

as the mean of the points that belong to S

k

c
k

= 1
|S

k

|
P

x

i

2S
k

x
i

;

end

end

The complexity of KM is O(NK) per iteration for a fixed D value. For example, in

color quantization applications D = 3 since the clustering procedure is often performed in

three dimensional color spaces such as RGB or CIEL*a*b* [52]. The KM algorithm has

the advantage of having a linear time complexity. It is also guaranteed to terminate with a
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Figure 2-9: K-means Example. Adapted from wikipedia.
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quadratic convergence rate [55]. The main disadvantages of KM are that it often stops at a

local minimum[59] and that its results dependent on the initial choice of the cluster centers.

2.6.2 Hierarchical Clustering Algorithms

Hierarchical clustering techniques are the second most important clustering methods. Just

like K-means clustering, these methods are relatively old compared to many clustering al-

gorithms but are still used widely. There are two essential approached to create hierarchical

clustering:

Agglomaritive: Starts with each point as individual clusters and merges the closest pair

of clusters at each step. This requires of defining the notion of cluster proximity. following

is the basic steps for an agglomaritive clustering algorithm.

Basic agglomerative hierarchical clustering algorithm.

1: Compute the proximity matrix, if necessary.

2: repeat

3: Merge the closest two clusters

4: Update the proximity matrix to reflect the proximity between

the new cluster and the original clusters.

5: until Only one cluster remains

There are three different ways to complete step 3, by using single-linkage, complete-

linkage or average-linkage proximity matrix. In single-linkage clustering (also called the

connectedness or minimum method), the distance between clusters is equal to the shortest

distance between any of their members. If there exists a similarity between distances, the

similarity between clusters is considered to be the greatest similarity from any members of

one cluster to any member of the other cluster. In complete-linkage clustering (also called

the diameter or maximum method), the distance between two clusters is considered to be the

greatest distance between any of their members. In average-linkage clustering, the distance

between clusters is equal to the average distance between members of clusters.

Divisive: Starts with one all-inclusive cluster, and at each step splits a cluster until
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only singleton clusters of individual points remain. At each point, we need to decide which

cluster to split and how to split it. Divisive methods are not available and rarely have been

applied.

The main weaknesses of agglomerative clustering methods are that they do not scale

well: time complexity of at least O(n2) , where n is the number of total objects. They also

can never undo what was done previously.

2.6.3 Fuzzy C-Means Clustering

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to

two or more clusters. This method was first developed by Dunn in 1973 [56] and improved

by Bezdek in 1981 [57] is frequently used in pattern recognition. It is based on minimization

of the following objective function:

J
m

=
NX

i=1

CX

j=1

um
ij

kx
i

� c
j

k2 , 1  m < 1

where m is any real number greater than 1, u
ij

is the degree of membership of x
i

in the

cluster j, x
i

is the ith of d-dimensional measured data, c
j

is the d-dimension center of the

cluster, and ||*|| is any norm expressing the similarity between any measured data and the

center.

2.7 Chapter Summary

This chapter carried out a comprehensive literature review on various tone-mapping oper-

ators on HDR image and video. Some of the most well-known edge aware filters used for

HDR tone-mapping were also reviewed. We also examined the Bilateral filter in depth which

is used in our proposed method. This chapter, also, provides the required knowledge needed

about clustering methods including K-means clustering. As a result, this chapter provides

highly relevant information to our study in later chapters. From the next chapter, we will

focus on constructing our new tone mapping operator using K-means clustering.
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Figure 2-10: Top image shows data before using Fuzzy C-means clustering, top right
shows clustered data after 8 iterations, bottom left image shows clustered after 37
iterations.
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Chapter 3

Proposed Algorithm

3.1 Introduction

The proposed tone mapping algorithm constructs the tone mapped frames using their HDR

versions as input. The proposed local TM algorithm segments an image into a number of

local regions according to the luminance of initial global mapping.Our algorithm consists of

the following steps:

1- Finding the number of clusters used in K- means.

2- Calculating the intensity channel.

3- Taking the logarithm of intensity channel.

4- Performing K-means algorithm.

5- Adjusting the color based on K-means results.

6- Applying a Gaussian kernel for smoother local factors.

3.1.1 Finding the number of clusters used in K-means

One of the difficulties of using k-means is choosing the number of clusters, K. The basic

K-means is an incredibly straightforward and efficient algorithm. However, to determine

the proper number of K one has to have prior knowledge of data. The correct choice is

usually vague, and the solutions depend on shape and distribution of data and the cluster-

ing resolution needed based on the application. The number of K should strike a balance

between maximum accuracy (i.e., assigning each data point to its own cluster) or maximum
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Figure 3-1: Flow chart of our proposed method
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compression (i.e., using a single cluster for all data points). It is best to choose the appropri-

ate value of K based on prior knowledge of data. Otherwise, there are several categories of

methods for making this decision. One way of selecting K is by examining gap statistic[58].

The Gap statistic is a standard method for determining the number of clusters in a set

of data. The idea is to compare the within cluster dispersion to its expectation under an

appropriate null reference distribution [58], i.e., a distribution with no apparent clustering.

It standardizes the graph of l log(W
k

) , where Wk is the within-cluster dispersion and is

defined as

W
k

=
KX

k=1

1
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k
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k
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0 is the distance between samples i and i’ within cluster C
r

. This distance in our case

is measured by squared Euclidean distance that is d
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)2 . W
k

decreases

monotonically as the number of clusters k increases. For the calculation of the Gap function,

Tibshirani et al. (2001) proposed to use the difference of the expected value of log(W⇤
k

) of

an appropriate null reference and the log(W
k

) of the data set,

Gap
n

(k) = E⇤
n

{log W
k

}� log W
k

Then, the proper number of clusters for the given data set is the smallest k such that

Gap
n

(k) � Gap
n

(k + 1)� s
k+1

where s
k

is the simulation error calculated from the standard deviation sd(k) of B Monte

Carlo replicates log(W⇤
k

) according to the equation s
k

=
p
1 + 1/Bsd(k) .

The data set we used in Gap statistic is the probability density estimate of ’a*b*’ channels

of the frame in the CIELAB color space1. We use ’a*b*’ channels since the color information

exists in the ’a*b*’ space. Therefore, we convert the frame from RGB color space to CIELAB

color space. We use the recommended number by Gap statistic as as the number of clusters

used in K-means algorithm. Since CIELAB color space is a very close representation of

1The Lab color space describes mathematically all perceivable colors in the three dimensions L
for lightness and a and b for the color opponents green-red and blue-yellow[wikipedia].
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human perception, thus the information in ’a’ and ’b’ components can be used to make

accurate color predictions.

The reason behind choosing Gap statistic rather than opting out for a k-means imple-

mentation that automatically detects the number of Ks is that the data that we are clustering

is the intensity channel of an image. Whereas, we determine the number of clusters by the

information obtained from the ’a*b*’ space. As a result, we see fit to use methods such as

gap statistic to find the number of clusters before using K-means. Any other method that

determines the number of clusters in a data set can also be utilized in the following context.

For the implementation of Gap statistic, we used Matlab build in function "eval clusters."

This function creates a clustering evaluation object containing data used to evaluate the

optimal number of data clusters. This function takes in the list of the number of clusters to

evaluate. Since Gap statistics is a relatively slow algorithm, we limit our list to the numbers

{8,16, 32, 64, 128, 256, 512}. The reason behind it being slow is that it generates N samples

from a uniform distribution over the same range as the original data, B times. In each b =

{1, 2, . . . , B} iteration, it then runs the same clustering algorithm with your candidate k

values. This means that on top of clustering original data K times you have to cluster KB

data sets, each of sample size N. When p and N are not significant, it’s pretty tractable.

However, it can grow out of control rather quickly.

3.1.2 Calculating the intensity channel (Dimensionality Re-

duction)

The frames of videos that we are working with are all in RGB color space. Other color spaces

can be used here as well. There are various ways to approach working with color images,

including working with different color spaces. Our goal is to estimate the image contrast,

there are many ways to quantify the contrast of an image. One way is to use the root mean

square (RMS) of the image. This approach has been found to match with human perception

of image contrast. RMS contrast is defined as the standard deviation of the image pixel

intensities,

RMS =

vuut 1

MN

NX

i=1

MX

j=1

I2
ij(R) + I2

ij(G) + I2
ij(B)
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where I
ij

is intensity at (i,j) pixel of the image with size M by N, and the subscripts

represent the Red, Green and Blue channel. We then use the RMS contrast as input to

K-means clustering algorithm. The intensity channel can also be represented by maximum

of the three channels or as their weighted sum. Since in our approach we are trying to adjust

the image contrast we found that our final result using RMS estimation of image are better.

3.1.3 Taking the log of intensity channel

Typically, image processing operations are performed using real based algebra, which proves

its limitations under particular circumstances, like upper range overflow. For avoiding such

situations, nonlinear techniques have been developed. Such examples are the LIP (logarith-

mic image processing) models. LIP models are commonly used in many image processing

applications due to their rigorous mathematical properties and similarities with the human

visual system. As a result, we take the logarithm of intensity channel to reduce the dynamic

range of intensity channel. Since logarithm is not defined at 0, we add a epsilon to the inten-

sity channel and then take the logarithm. The epsilon added depends on the brightness of

the frame being processed. Since we do not want too much contrast, for each frame, we add

a fraction of the mean pixel value of the context to the logarithm. We choose a tiny fracture

that varies based on the brightness of the frame. This additive value will allow the user to

have visual feedback at interactive rates while the additive parameter is being changed.

3.1.4 Performing K-means algorithm

By performing K-means algorithm we want to solve the following problem.

min
c1,c2,...,ck

NX

i=0

MX

j=0

x
ij

k p
i

� c
j

k

c
j

is the centroid of clusterj

x
ij

2 {0, 1} 8
i,j

The binary variable x
ij

indicates whether or not point i is assigned to cluster j. Symbols

p
i

and c
j

denote the coordinates of ith point and centroid of jth cluster, respectively. They

are both located in RT , where d is the dimensionality of data points. The initial centroid
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values are chosen randomly from the intensity values of the frame. To cluster, intensity

values get mapped to one of the K initial centroid depending on their Euclidean distance

from them. This way each intensity value gets assigned to a group. After all values to a

group, the center value of each cluster gets updated with the mean of that cluster. This step

gets repeated depending on the number of iterations of K- means. Through each iteration,

the intensity values assigned to the center of each cluster gets updated as follows:

c{1,2,...,k} =

P
n

i=1 xijpijP
n

i=1 xij

3.1.5 Adjusting the color based on K-means results

Now that we have labeled the image pixels using the results of K-means algorithm, we try

to adjust the intensity of each group consistently. We divide the intensity spectrum [0,1]

into K section: 
0,

1

k

� 
1

k
,
2

k

�
, ...,


k � 1

k
, 1

�

Then we map each cluster into one of the sections, by sorting them based on their centroids

we calculated using K-means algorithm. We assign the first section of intensity spectrum

(i.e. [0,1/K]) to the centroid with the smallest value, the second section to centroid with

second lowest value and so on until all centroids get assigned to an intensity section based

on their value. Now we have K clusters and K sections of intensity spectrum. Since we want

to keep the shape of intensity spectrum for each cluster and as centroids represent the mean

of each cluster we need to calculate a scaling factor for pixels of every cluster so that the

centroid of that cluster gets mapped to the center of the corresponding spectrum section.

For example, for the first cluster, let’s assume the centroid is c1, and the corresponding

spectrum section is [0,1/K]. The center of this spectrum section is 1/ (2 ⇥K) . Therefore,

we multiply all pixels in this cluster to 1/ (2 ⇥K⇥c1) factor. Figure 1 illustrates the steps

explained in previous sections for a frame with the value of K = 15.

As it is shown in Figure 3-2 each color cluster shifts based on the adjustment coefficient

we calculate for it. This adjustment results in a tone mapped frame.
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(a)
(b)

(c)
(d)

(e) (f)

(g)
(h)

Figure 3-2: (a,b) a frame of a video before tone mapping with its histogram (c,d)
intensity channel of frame and its histogram (e,f) frame color regions based on K-
means (g,h) Tone mapped frame and its histogram.
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3.1.6 Applying Gaussian filter for smoother local factors

We apply a Gaussian filter on the calculated adjustment coefficients to smooth out the

transition between image region boundaries. This step reduces the artifacts caused by

localizing areas with different colors. The sigma used in this process is based on the frame

size. We use 1/1200 of the larger side of the frame as our sigma value. To reduce the

artifacts that can result from this process, we choose a small sigma value for Gaussian kernel.

Otherwise, bigger sigma value will result in halo artifacts around boundaries of different

regions of the frame. Figure 3-3 Shows the difference between not using a Gaussian filter

and using it with two different sigma value. As depicted in Fig 1. (a) not using a smoothing

filter causes lines separating various color regions to appear in the image. Additionally, as

shown in Figure 3-3 using a larger sigma results in the bright boundaries in some areas of

the picture. Therefore, as discussed, we need to lessen the sigma value to achieve a smoother

looking image. The bilateral filter can also be used for this purpose. We chose Gaussian

since it is much faster than Bilateral filter and results are essentially the same.

3.2 Video Processing

For video processing, our algorithm goes through the following steps in addition to the one

explained earlier:

1- Determining the first frame of each scene.

2- Video Flicker removal.

Our algorithm would go through all the steps explained in section 3.1 if the frame

processed is the first frame of a new scene. Otherwise, in order to reduce the running time

of our algorithm for the frames following the first in each scene, we use the number of Ks

computed in the first frame as the number of clusters used for the next frames. Also for

finding the pixels attributed to each cluster, we will not go through the same number of

iterations in K-means algorithm as the first frame. As in the frames following the first for

each scene, the clusters will not change drastically. As a result, by feeding the centroid values

of the previous frame as the seeds to K-means for the next frame we reduce the number of

iterations used for frames afterwards.
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(a) (b)

(c)

(d)

Figure 3-3: (Top left) Original HDR image (Top right) Tone mapped version without
smoothing local factors (Bottom left) Tone mapped version with Gaussian filter with
sigma equal to 1/1200 of the bigger side of the frame (i.e. 713 pixels) (Bottom right)
Tone mapped version with Gaussian filter with sigma equal to 1/300 of the bigger
side of the frame (i.e. 713 pixels)
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3.2.1 Determining the first frame of a scene

The first frame is chosen by its grey value distribution. We monitor this value for all the

frames in the video sequence, and a significant change indicates a scene change. We used

Earth Mover’s Distance (EMD) to measure this change. The EMD distance d is calculated

using cumulative histogram distribution of two consecutive frames. Considering H1 and

H2 . as the cumulative histogram distribution, then

d =
NX

1

|H1 (i)�H2 (i) |

where N is the number of bins in the histograms. To quantify the difference between two

distributions, we can measure how far the grains of sand have to be moved so that the two

distributions coincide exactly. EMD is the minimal total ground distance traveled weighted

by the amount of sand moved (called flow).EMD makes sure that shifts in sample values

are not penalized excessively. Studies report improved performance when comparing various

histogram descriptors with EMD over the �2 statistic and the L2 norm.

To decide on a threshold of which if it is passed the scene is considered to have changed,

we ought to have the information of cumulative histogram distribution of all the frames. As

a result, this scheme can be used in an offline setting, so that we can find out the EMD

distance between all the frames, then based on the mean value of EMD distance we set a

threshold for d to represent scene change.Figure 3-4 shows EMD distance between every

two frames of a video with 189 frames. Here we set the limit for d to be 1.3 which is the

mean value of EMD distance between the frames.

3.2.2 Video Flicker Removal

Our tone mapping system seeks to reduce flicker2 in tone mapped HDR video by using a

leaky integrator applied to the value of seeds used in K- means algorithm after the first frame

of each scene. As mentioned before to reduce the running time we pass in the centroid value

of clusters of the previous frame as the seed values to K-means for the subsequent frames.

2Flicker is a visible fading between cycles displayed on video displays.
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Figure 3-4: EMD distance between frames of a video with 189 frames. The red eclipse
shows the maximum value of EMD which is 1.853 at the frame 114.

The update equation for centroids is as follow:

centroids = newcentroids⇥ ↵+ centroids⇥ (1� ↵)

The parameter ↵ is 2 [0, 1] and is set based on the speed of changes occurring in video

frames. This method reduces the rapid frame to frame changes in the parameters of the

TMO thus giving the TMO algorithm temporary memory.

3.3 Chapter Summary

This chapter detailed the steps taken in the proposed algorithm. It first covers the steps

required for tone-mapping a single frame or image and next it covers additional steps required

for processing video sequences. For better representation of details taken we also provide

images describing each step. The algorithm was developed with MATLAB2017a. In the

next chapter, we will present the results obtained using our method, and we will compare

these results with the other TMO operators.
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Chapter 4

Results and Analyses

This chapter presents the results obtained by the proposed method in the previous chapter.

The results in this chapter were generated using the default parameters presented in chapter

3. We divide this chapter into two sections. The first section presents the results obtained

for HDR images and compares them with the results of other well-known methods. The

second section presents the results for HDR videos.

4.1 Results on HDR Images

We have tested our method on some HDR input images and compared the results with a

number of standard tone-mapping algorithms. The images were taken from R. Mantiuk[59]

and P. Debevec [60]. The Debevec’s database comprises of HDR images that were used in

most of the well-known HDR tone-mapping methods.

We used the HDR image tool Luminance HDR [61] to do the processing for generating

other methods results. [61] is an open source graphical user interface application that aims

to provide a workflow for HDR imaging. The supported HDR format images that can be

used in this HDR image tool are OpenEXR (extension: exr), Radiance RGBE (extension:

hdr), Tiff formats: 16bit, 32bit (float) and LogLuv (extension: tiff), Raw image formats

(extension: various), PFS native format (extension: pfs). The HDR images we used in this

process were all in the format of Radiance RGBE. This tool contains implementations of

a number of tone mapping algorithms most of which were mentioned in chapter 2. when

producing results we used the default parameter settings provided by Luminance HDR. It is
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(a) (b)

(c) (d)

Figure 4-1: (a) image tone mapped with Drago method[14],(b) image tone mapped
with Mantiuk et al. [19], (c) image tone mapped with Reinhard et al. [5], (d) image
tone mapped with our proposed method. One can see that the compared methods
suffer from over-saturation, color artifacts and loss of detail.

possible that in some instances better results can be obtained by tweaking the parameters

manually. This fact also holds for our method; as a result, we used the default parameters

mentioned in the previous chapter. We compared our method to the methods of [5], [14],

[15], [19]. Of these, we found that [19] and [5] and [14] gave significantly better results over

the set of test images. Our results were very much comparable to Drago and [5]. In Figure

4-1, and Figure 4-2, we show some examples of the results obtained by other methods and

our suggested method. We can see that the compared methods display problems with over

saturation, loss of detail resolution and color artifacts. In Figure 4-3, the output of our

algorithm is shown for a number of different input HDR images.
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(a) (b)

(c) (d)

Figure 4-2: (a) image tone mapped with Drago method [14],(b) image tone mapped
with Mantiuk et al. [19], (c) image tone mapped with Reinhard et al. [5], (d) image
tone mapped with our proposed method. One can see that the compared methods
suffer from over-saturation, color artifacts and loss of detail.
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(a) (b)

(c) (d)

(e)

Figure 4-3: The result of running our Algorithm on a number of HDR images. HDR
radiance maps courtesy of Debevec [60] and Mantiuk [59]
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4.2 Results on HDR Video

4.2.1 Comparison With Other Methods

We tested our algorithm on a several test HDR videos obtained from[32], [33], [62]. These

test videos were also used in other frameworks like in the evaluation in of tone mapped HDR

video by [44]. An overview of the sequences can be found Table 4.1. The table shows the

processing time for the tone mapping. As mentioned earlier our algorithm time complexity

is O( N logK + K logK ) . In the remainder of this section, we qualitatively compare our

method’s results on the publicly available HDR video data provided by [44]. Figure 4-4,

displays the results obtained by our method on some frames of these HDR video sequences.

Table 4.1: The tested HDR sequences from[62].

Sequence Resolution Frames time(s)
Window 720p 236 657
Hallway 720p 331 2289

Hallway 2 720p 351 1130
Students 720p 251 3242

Exhibition 720p 189 928

Figure 4-5, represents a comparison of the result of different methods for processing

HDR videos. The result of all the mentioned methods are from the publicly available videos

in [32], [44], [62]. The image is taken from [3] and the method (e) referred to as "Our

method" represents their proposed method. Figure 4-5, also includes a plot of the mean

brightness of HDR and tone mapped sequence for each method. For each method, only two

frames of each sequence is presented since providing all frames is impossible. These frames

display each method’s ability of creating local contrast.

Local methods such as Retina Model [63] (a), Color Appearance [64] (b) and Virtual

Exposures [43] (c) exhibit flickering brightness. This can be detected from their mean

intensity plot. The Local Adaptation [42] (d) operator exhibits ghosting artifacts (See the

wall at the bottom image in Figure 4-5,-d) since this method does not utilize motion paths.

Like with the local image TMOs that create temporal artifacts [44], Bilateral TMO [15] mean

intensity plot shows fluctuations over time. The average brightness plots of the remaining

operators Temporal Coherence [41], Display Adaptive [19] and Camera TMO [44] display
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-4: The figure shows two frames (left and right, respectively) of the output
from our method, (from top to bottom) the exhibition sequence, the hallway2 se-
quence, the students sequence, the window sequence. The results are best viewed on
screen
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Figure 4-5: Comparison different current TMO methods capable of processing videos.
For each method, two representative frames and plot of mean pixel values (tone
mapped) and log-mean luminance (HDR) over time. Note that the HDR plots are
shifted and compressed by an exponent for presentation. The image is taken from [3]
the method (e) referred to as ’Our method’ represents their proposed method.
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less temporal artifacts. Their disadvantage is that they don’t exhibit much local contrast as

a result of their spatially-invariant processing.

On the other hand, we configured our TMO represented in Figure 4-6b to improve local

spatial contrast meanwhile that it also maintains the temporal contrast between the begin-

ning and the end of the sequence. Our tone mapping result remains temporally coherent.

Also as shown in Figure 4-6c our method does not exhibit flickering.Moreover, due to local

filtering of some of the compared methods, they exhibit stronger local contrast than our

method. Aforementioned at times can lead to artificial detail and cartoonish effects.

Figure 4-7, compares our results with the Boitard et al. [46] segmentation based tem-

poral coherency method applied to Ramsey et al. [36] and the recursive domain transform

filter [Gastal and Oliveira 2011] [27]. Also Aydin et al. [3] coherent temporal tone-mapping

for HDR videos . As depicted Boitard et al.’s [2014b] method tends to underutilize the avail-

able display dynamic range and generates dark frames. The mean pixel value plots show

fluctuations (notably between frames 100 and 130) even for the Ramsey et al. [36] version

which is a global TMO. Our method also shows some fluctuations. Our result preserves the

change from the bright exterior to the darker hallway by modulating the mean luminance

accordingly, whereas this transition is diminished or reversed in Boitard et al.’s [2014b] [46]

results. Aydin et al. [3] give in some areas slightly higher local contrast which in some cases

results in the animated effect.

4.2.2 Subjective Study

While the qualitative comparison in the previous section is used as an overview and helps to

put the many TMOs into perspective, it certainly does not capture all the aspects relevant

to the evaluation of video tone mapping. For example, most operators tend to show camera

noise in their results. As a result, we performed a subjective rating study to compare our

method with others regarding their seeming quality.

The study was conducted through Amazon Mechanical Turk. For the study, we used

5 HDR videos sequences each tone-mapped with twelve different tone-mapping operators.

The tone mapping operators utilized for this study are listed in Table 4.2. We asked our

subjects to rate each video on a scale of 0 to 10. With 0 representing worst quality and 10

representing the best quality. They were told to rate by how closely the displayed video clip
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(a) (b)

(c)

Figure 4-6: Frame 80 (top left) and frame 265 (top right) from Hallway video sequence.
(bottom left) Mean intensity value of each frame in Hallway video sequence before
and after being tone-mapped by our method.

(a) (b)

Figure 4-7: Comparison of our method (a) with Ramseyetal.[2004] [36] (gray) and
Gastal et al. [2011] (recursive filtering version) [27] (blue) combined with Boitard
et al.’s [2014] [46]segmentation based temporal coherency method (both provided by
Ronan Boitard). Also Aydin et al. (red)[3]coherent temporal tone-mapping for HDR
videos is shown. This Images represent the mean intensity value of frames in Hallway
video sequence after being tone-mapped by the following methods.
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Figure 4-8: Average ratings based on the subjective study

matches the appearance of an actual scene they would expect to see in the real world and not

look for a single feature, but to make each judgment based on overall impression. They were

allowed to watch each video as many times as they wished and they were allowed to change

their previous ratings. They were also asked to watch all the videos once before starting to

rate them. The subjects were allowed a maximum time of 2 hours to complete each survey.

The average length of completion for each survey was 12 minutes. For each video sequence,

we collected data from 30 people. Table 4.2, represents the list of tone-mapping operators,

excluding our method, used in the subjective study.

Figure 4-8, shows the average ratings obtained by our subjective study. To conclude,

the findings of the subjective study as well as the qualitative comparison in previous section

shows that our method is capable of producing results with reasonable local contrast and

temporal coherence that are appealing to audience.

4.3 Chapter Summary

In this chapter, we presented the results obtained by our algorithm and compared them

with results of other methods for both HDR images and videos. We also showed the advan-

tage of our method over other existing methods for both image and video tone mapping.

Furthermore, we conducted a subjective study to compare our results with results of other

methods and showed that our method gives better or comparable results to other existing

videos tone-mapping operators.
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Operator Processing Description
Visual adaptation TMO[37] Global Use of data from psychophysical ex-

periments to simulate adaptation over
time, and effects such as color appear-
ance and visual acuity.

Time-adaptation TMO[38] Global Based on published psychophysical
measurements. Static responses are
modelled separately for cones and rods,
and complemented with exponential
smoothing filters to simulate adapta-
tion in the temporal domain. A simple
appearance model is also included

Local adaptation TMO[42] Local Temporal adaptation model based on
experimental data operating on a local
level using bilateral filtering.

Mal-adaptation TMO[39] Global Based on the work by Ward et al.
[65] for tone mapping and Pattanaik et
al.[38] for adaptation over time. Also
extends the threshold visibility con-
cepts to include maladaptation.

Virtual exposures TMO[43] Local Bilateral filter applied both spatially
for local processing, and separately in
time domain for temporal coherence.

Cone model TMO [40] Global Dynamic system modelling the cones in
the human visual system over time. A
quantitative model of primate cones is
utilized, based on actual retina mea-
surements.

Display adaptiveTMO [19] Global Display adaptive tone mapping, where
the goal is to preserve the contrasts
within the input (HDR) as close as pos-
sible given the characteristic of an out-
put display. Temporal variations are
handled through a filtering procedure

Retina model TMO [66] Local Biological retina model where the time
domain is used in a spatiotemporal fil-
tering for local adaptation levels. The
spatiotemporal filtering, simulating the
cellular interactions, yields an output
with whitened spectra and temporally
smoothed for improved temporal sta-
bility and for noise reduction
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Operator Processing Description
Color appearance TMO [64] Local Display and environment adapted im-

age appearance calibration, with local-
ized calculations through the median
cut algorithm.

Temporal coherence TMO [41] Local Post-processing algorithm to ensure
temporal stability for static TMOs ap-
plied to video sequences. The authors
use mainly Reinhard’s photographic
tone reproduction, for which the algo-
rithm is most developed. Therefore,
the version used in this survey is also
utilizing this static operator.

Camera TMO Global Represents the S-shaped tone curve
which is used by most consumer-grade
cameras to map the sensor-captured
values to the color gamut of a storage
format. The curves applied were mea-
sured for a Canon 500D DSLR camera,
with measurements conducted for each
channel separately. To achieve tem-
poral coherence, the exposure settings
are anchored to the mean luminance
filtered over time with an exponential
filter

Table 4.2: : List of tone mapping operators included in our survey. Processing refers
to either global processing that is identical for all the pixels within a frame or local
processing that may vary spatially. This table is adapted from [44]
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Chapter 5

Conclusions and Recommendations

We have presented a local HDR video and image tone mapping algorithm that can signifi-

cantly reduce the input dynamic range while preserving local contrast. Our key difference

is the use of K-means clustering with color information of image available in the ’a’ and

’b’ channel of each frame in CIELAB color space. In all the K-means clustering algorithms

presented previously for the tone-mapping purpose, they quantize colors and assign each

pixel to the value of the mean of their clusters. Contrary our method shifts the pixel values

based on the mean value of their cluster, and as a result, our method’s output has more

color variety.

Our algorithm gives a comparable result to state-of-the-art tone mapping algorithms

with the large benefit of a minimal need for parameter setting. In most instances in HDR

imaging, it is beneficial being able to tune the parameters manually to reach the most

desirable results by the user. Our method allows the user to as mentioned earlier be able to

adjust the output manually and get the desired effect in local color and contrast.

We also presented qualitative comparisons to the state-of-the-art and demonstrated that

our results are comparable to them and in some cases are even better. The comparisons

were made on challenging HDR sequences. In most cases the existing TMOs introduce a

variety of distortions such as color saturation, blanched appearances and artificial edges

in case of images; and would create ghosting and flickering artifacts in videos. While our

method shows minimal sign of the following artifacts.
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5.1 Recommendations for Future Work

The work on HDR video tone-mapping can be extended by introducing an objective qual-

ity assessment algorithm for video tone mapping operators. There have been a couple of

subjective studies over the past few years for video tone-mapping operators, but still, no

objective video quality assessments exist. This goal can also be achieved by extending the

works on objective quality assessment of tone-mapped HDR images like the work by [13]

known as TMQI.

This work can also be optimized regarding its speed. At the moment our algorithm takes

quite a while to render a sequence of HDR video as mentioned in Table 4.1. We proposed

a few techniques ourselves to reduce its running time. We suggest for further enhancing

the rendering time one a look into optimizing K-means for tone mapping purpose. There

has been some efforts by [22] in optimizing K-means for this purpose by using dynamic

programming. One can refer to this work fro further enhancing this area.

One other approach for enhancing our method is to use Fuzzy-C Means Clustering

instead of K-means. As discussed in chapter 2 their main difference is that, in Fuzzy-C

Means clustering, each point has a weighting associated with a particular cluster, so a point

doesn’t sit "in a cluster" and it has a weak or strong association to the cluster, which is

determined by the inverse distance to the center of the cluster. Fuzzy C-means will tend

to run slower than K-means since it’s doing more work. Each point is evaluated with each

cluster, and more operations are involved in each evaluation. K-Means just needs to do a

distance calculation, whereas fuzzy C-means needs to do a full inverse-distance weighting.

But the use of fuzzy C-means may be more helpful in our case by bringing more accuracy to

the intensity association to a particular cluster and therefore producing better adjustment

coefficients for re-adjusting pixel values.
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