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Abstract

Analysis of Electrocardiograms During Human Ventricular Arrhythmias for Optimizing
Treatment Options,

Masters of Applied Science, 2012,
Krishnanand Balasundaram,

Department of Electrical and Computer Engineering, Ryerson University.

Cardiovascular diseases are diseases that arise from abnormal medical conditions of the heart
and the circulation system. Ventricular arrhythmias are a subset that originates from rhythm disor-
ders of the lower chambers (ventricles) of the heart. In spite of research and technology advance-
ments, annually 350,000 sudden cardiac deaths are reported in North America (45,000 in Canada)
most of which are ventricular fibrillation (VF) related. This serves as a strong motivation to im-
prove upon or optimize the choice of current treatment options from an engineering perspective
which could eventually help reduce the number of SCDs. The choice of the treatment vary in gen-
eral based on the following two categories of affected population and the type of arrhythmia: (1)
symptomatic patients who are prone to or have had arrhythmia occurrences and are currently under
medical care and (2) people who suffer ventricular arrhythmias in an out-of-the-hospital environ-
ment. This thesis, by employing advanced signal analysis, attempts to improve the characterization
of the ventricular arrhythmias, thereby providing better discriminatory clues in assisting clinicians
and emergency medical staff (EMS) to arrive at optimal treatments options for both the categories
of affected population.

In the study of symptomatic patients, the organizational structure of the arrhythmia was quan-
tified using wavelet-singular value decomposition analysis, which lead to a novel sub-classification
of the ventricular arrhythmia. Classification accuracies of 93.7% for ventricular tachycardia (VT)/non-
VT classification and 80% for organized-VF/disorganized-VF classification were achieved.

In the study of out-of-the-hospital arrhythmia instances, focal structural variations were ana-
lyzed using wavelets, which led to identifying a signal pattern that could serve as an important clue
for the EMS personnel to improve the resuscitation outcomes. Using a database of 25 out-of-the-
hospital arrhythmia segments, the proposed analysis yielded a classification accuracy of 80%.
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Chapter 1

Introduction

T
HE function of the heart, and the cardiovascular system in general, is important in regulating

the functions of all other vital organs and systems in the body. The transportation of blood

across the body allows for the exchange of oxygen and carbon dioxide, as well as the exchange

of other nutrients to occur. While the rate at which the blood circulates through the body varies

depending on the activity being performed, the heart is responsible for providing the necessary

pressure to provide the appropriate circulation, which essentially makes the heart an electrome-

chanical pump. The electromechanical function of the heart is controlled by a set of rhythmic

impulses that travels through the cardiac muscles causing it to contract and expand.

The study of cardiovascular diseases focuses on understanding the problems that causes the

variations or changes in the rhythmic heart activity as a result of pathophysiological conditions.

The issue that exists with this is that not all the pathophysiological conditions or their effect on the

functionality of the heart are known or fully understood. This is especially the case for ventricular

arrhythmias, which is a subset of the cardiovascular diseases. Ventricular arrhythmias could be

lethal and immediate medical attention is required to avoid sudden cardiac death.

The objective of ventricular arrhythmia signal analysis can be broadly classified into two cate-

gories. The first is to offer some type of electrocardiogram (ECG) quantification in order to predict

a particular event or provide automated detection of particular cases of the arrhythmic activity to

arrive at an appropriate therapy. The second category of analysis focuses on the development of

tools that can be used to better understand the mechanisms that drive and sustain ventricular ar-
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rhythmias. The important factor in the analysis is the use of appropriate biomedical engineering

approaches in order to capture the relevant signal variations of a particular abnormality.

1.1 The Cardiac System

1.1.1 Cardiac System Physiology

To better understand ventricular arrhythmias, we will first explore the the cardiac system and the

mechanisms that are responsible for the regular functions of the heart. The information provided

in this section is a brief summary extract from ”‘Textbook of Medical Physiology”’ [2]. For more

detailed information on the physiology of the human heart, the readers are referred to the above

book.

The heart itself consists of four large chambers that are responsible for transporting blood

across the body. The four chambers are the left and right atria and ventricle. The right chambers

(atria and ventricle) of the heart brings in de-oxygenated blood from the body and pumps it to

the lungs. The left chambers (atria and ventricle) receive oxygenated blood from the lungs that

needs to be sent to the body. The atria and the ventricles perform specific tasks to achieve the

goals set for the left and right chambers. The function of the atria is to receive blood into the

heart and pump it into the ventricles. This provides the ventricles with a higher volume of blood,

which the ventricles will pump out of the heart. Therefore the heart essentially acts as a pump

to transport blood across the body. The blood transports oxygen and other nutrients to vital cells,

organs (including the heart itself) and systems, so that the body can continue with its normal

functions. Without proper circulation, the brain does not have enough oxygen, as well as diffusion

of nutrients and waste cease, and the neuron will degrade. Permanent neural damage will occur

without immediate restitution of the blood circulation [3].

The ECG recorded from the surface of the human body depicts the integrated electrical activity

that occur on the surface of the heart. For the typical normal sinus ECG [also referred to as sinus

rhythm (SR)] shown in Figure 1.1, the P wave of the ECG captures the electrical impulse travel-

ing from the sinoatrial node to the atrioventricular node, which also causes the atria to contract.

The QRS complex captures the depolarization of the ventricles and the T wave is caused by the

2



(a) Ideal Sinus Rhythm
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(b) Real Sinus Rhythm ECG

Figure 1.1: Typical Sinus Rhythm ECG recorded from surface leads

repolarization of the ventricles. The average regular heart rate while at rest is 72 beats per minute

(bpm) [2].

The hearts function is based on the initiation of the electric impulse (action potential) from

the sinoatrial node. Once the impulse is activated, it transverses through the muscle fibers of

the atrium, which cause the muscles to contract and force the blood into the ventricles. The im-

pulse continues by conducting through the atrioventricular node that slowly conducts the impulse

through the purkinje fiber. The impulse finally travels from the purkinje fibers through the ventri-

cle muscle fibers causing the muscles of the ventricles to contract. The process of the atrial and

ventricular muscle contraction is known as depolarization. This conduction pathway is depicted

in Figure 1.2. The relaxation of the muscle fibers (both atrium and ventricle) is known as repolar-

ization. The atrium and ventricles do not contract at the same time. The ventricles have a delayed

contraction because after the atria contracts, time is required for the blood to accumulate within

the ventricles. The delayed contraction is caused by the slow conducting purkinje fibers that delay

the action potential from entering the ventricle muscles. The electrical signals can also be mapped

3



Figure 1.2: Electrical conduction path of the heart

on the outer surface of the heart (Epicardial mapping) or in the inner ventricle wall (Endocardial

mapping). The integration of the electrical impulses on the surface of the heart is what is observed

as the surface ECG depicted in Figure 1.1.

1.1.2 Ventricular Arrhythmias

Ventricular arrhythmias originate from abnormal contractions of the lower chambers of the heart

(ventricles) that could lead to sudden cardiac death (SCD). Deaths caused by ventricular arrhyth-

mias has existed through out the history of mankind. Of the ventricular arrhythmias, ventricular

tachycardia (VT) and ventricular fibrillation (VF) are the most prominent types that affects the

quality of life. VT is a condition that causes the ventricles to beat (contract and expand) abnor-

mally fast (heart rate around 150 bpm [2]). VF on the other hand, with a heart rate which exceeds
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that of VT, is a lethal condition because there is no coordinated contractions of the ventricles and

would lead to sudden cardiac death if not treated withing minutes of its occurrence. Cases dat-

ing back to 1500 BC had indicated the existence of VF in humans resulting in death [4]. With

the advances in medical technology and treatment, most other types of diseases have been either

eradicated or inhibited with respect to the general health of the public. However, cardiac arrest

(mainly due to VF) claims a large percentage of fatalities in the developed world. The deaths

caused by these arrhythmias have been estimated to be 350,000 deaths in North America alone on

an annual basis [5]. One reason of the large number of fatalities is related to the change in the

modern lifestyle. The commercial use of technologies to improve our lifestyle is a common theme

in today’s society, but it also increases risk factors to cardiac arrest, such as physical inactivity

and obesity. This coupled with rise in other factors, for instance smoking, alcohol consumption

and in general poor diet choices, has increased the risk of cardiac arrest [6]. Therefore ventricular

arrhythmias has been an area of interest for which newer technologies, analysis tools and treatment

options are being developed for.

As previously mentioned, the most common arrhythmias, and the ones that are relevant to

this thesis, are VT and VF, where VT is usually a precursor to VF. An example of each type of

ventricular arrhythmia is provided in Figure 1.3. The medical definition of VT is the abnormally

fast rhythmical beating of the ventricles. This does not include the increase in heart rate during

physical exercise, but rather related to the physiological conditions/factors of the person and/or

the heart. Factors such as increased body temperature, stimulation of the heart by nerves from the

central nervous system and toxic conditions have been known to cause VT [2]. Patients suffering

from VT will have limited circulation because the increase in heart rate hinders the accumulation of

blood in the ventricles, therefore reducing the blood traveling through the cardiac system. Patients

with VT tend to have shortness of breath, dizziness and even faint. VT has been sub-classified

in the medical community as monomorphic VT (MVT) and polymorphic VT (PVT). MVT has a

strong organized structure, which indicates that only one or a few stationary sources of electrical

activation is sustaining the arrhythmia in the ventricles. PVT however does contain a certain degree

of organized activity, but also contains periods of ECG structural variations.

5



VF on the other hand is far more lethal because when a person has VF, the electrical impulses in

the ventricles are not rhythmic, which does not allow for a coordinated contraction of the ventricles.

Without the coordinated contraction, blood is not being pumped through the ventricles, therefore

depriving all organs of oxygen and other vital nutrients. The heart, being a muscle, will also further

degrade with the lack of blood flow, which will eventually lead to death, unless resuscitation could

take place within a short period of time. Some factors that are known to cause sudden VF are

electrical shocks, ischemia (restriction of blood supply) of the heart muscle, ischemia of the heart’s

specialized conduction system and possibly both [2]. It is also easier to understand why a person

suffering from VT is likely to develop VF because with the drop in blood pressure during VT, the

heart muscle will degrade due to the lack of sufficient blood flow. Eventually the ventricle muscles

will scar (dead muscle tissue) that leads to uncoordinated contractions.

When comparing the ECG in Figure 1.3 to the normal sinus rhythm ECG in Figure 1.1, we

see some obvious differences. The VT example can be seen to have some regular contractions,

but without the rest period between contractions (as depicted by the RR interval in Figure 1.1), the

blood pressure is reduced. The ECG of a patient suffering from VF can be seen as unorganized

and non-rhythmic. This is because as the heart muscles become deprived of oxygen and other

nutrients, the muscle fibers will attempt to create its own electrical activation source in order to

contract and pump the blood. When multiple muscle fibers contract (at different instances in time)

in an attempt restore blood circulation, it creates an unorganized ECG. The multiple contractions

in the ventricular muscle fiber does not effectively produce enough pressure to pump blood through

out the body. Also as the muscles of the heart degrade over time (due to lack of blood flow), they

will begin to die, therefore creating conduction blocks within the ventricular muscles [2], which

inhibit the ability for the electrical impulse to transverse through the ventricles. These conduction

blocks further complicate the electrical activations of the heart, as seen in Figure 1.4.

The VT and VF arrhythmia examples provided in Figure 1.3 depicts the issue in distinguishing

between the ventricular arrhythmia groups. The immediate treatment for a patient with VT is to

provide electrical pacing in order to slow the heart rate, where as the only short term (immediate)

solution for someone in VF is to provide a defibrillation shocks in an attempt to reset the heart’s
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Figure 1.3: Example of patients with VT (part a) and VF (part b) ECG
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Figure 1.4: Conduction blocks during VF
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function [7]. The long term established solutions for VT are anti-arrhythmic medications, ablation

and placement of an implantable cardioverter defibrillator (ICD). The ICD placement for patients

with a known history of developing VT is done for two reasons. The first is that if a patient

develops VT, the ICD can attempt to pace the heart in order to reduce the heart rate back to a

normal rhythm. The other reason is that prolonged VT has the possibility to lead to VF, for which

the ICD can apply the appropriate defibrillation shock therapy. For VF, the long term solution

is to install an ICD, which is used to monitor and provide defibrillation shocks when necessary.

Also, the current ablation strategies cannot be applied for VF treatment since SCD occurs within

minutes of VF onset. These treatments are unique to both arrhythmias and will be further discussed

in chapter 3.

1.2 Motivation

With a better understanding of ventricular arrhythmias and its effect on patient survival, it is evi-

dent that further research is needed to improve the current treatment options such that the annual

number of SCDs may be reduced. Despite the amount of research in understanding VF, the mortal-

ity rate remains high. This serves as a strong motivation to further optimize the choice (i.e. choose

the appropriate) of current treatment options from an engineering perspective to improve survival

rate. The current treatment options for ventricular arrhythmias include anti-arrhythmic drugs, con-

trolled pacing of the heart, defibrillation shock, and ablation of the underlying tissue substrate. The

choice of the treatment vary in general based on the affected population and the type of arrhyth-

mia. This thesis by employing advanced signal analysis, attempts to improve the characterization

of the ventricular arrhythmias, thereby providing better discriminatory clues in assisting clinicians

and emergency medical staff (EMS) to choose optimal treatment options. A major bottle neck

for progress in this area is the availability of limited data due to ethical constraints and practical

difficulties involved in collecting human VF data. Although analysis using animal data is common

to this field, the study of human ventricular arrhythmias is more relevant as findings of animal

studies cannot be accurately extrapolated due to species differences. In addition, clinical expertise

in the area of ventricular arrhythmias is a key factor without which developing methodologies to
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assist treatments cannot be validated. These limitations however do not affect the proposed work

due to the collaborative research effort with Toronto General Hospital and St. Michael’s Hospi-

tal, Toronto, Canada, and the availability and access to clinical expertise and unique arrhythmia

databases. This further strengthens the motivation and provides us with an unique resourceful

environment to undertake the study.

1.2.1 Relevance of Engineering Approaches

Biomedical Engineering has helped create a variety of solutions in the medical field because

many of the signals within the human body are bio-electric. The end of the 20th century cre-

ated many technological advancements in bio-instrumentation and signal processing in particular,

which helped pave the way for engineers into the field. Tools such as efficient signal acquisition

systems and better digital signal processing algorithms allowed engineers to analyze signals in

domains familiar to them. Therefore, a collaborative study that incorporates the signal processing

expertise from bio-medical engineers and background information from the medical community

has created a new field of study for ventricular arrhythmias. VF in particular is a disorganized sig-

nal with many temporal and spectral fluctuations. This requires an analysis tool that is well suited

to capturing time varying signal structures.

Existing signal analysis approaches focus on two main avenues of research in ventricular ar-

rhythmias. The first avenue focuses on developing methodologies that perform automated detec-

tion and/or characterization of the arrhythmia using intra cardiac electrograms and ECGs. These

tools that have been applied to this field of research have had the primary goal of assisting clini-

cians in choosing the appropriate treatment options for ventricular arrhythmias. There are two sub

groups in the affected population that are of significance to clinicians. The first group refers to

patients where arrhythmia symptoms have been identified. These symptomatic patients have either

had a previous arrhythmia occurrence or have identified physiological markers that indicates that

they are prone to future arrhythmic episodes and are under medical attention. In this group, both

short and long term treatments depends on the characteristics of the arrhythmia. Hence, detection

and characterization of arrhythmias using signal analysis is of importance. The second group refers
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to subjects who suffer from arrhythmia occurrences in an out-of-the-hospital environment. For this

group of patients, it is important to determine ECG features or characteristics of the arrhythmia in

near real time to assist (EMS) personnel to improve the resuscitation success.

The second avenue of signal analysis approaches is to develop tools to analyze the varying

spatio-temporal electrical patterns in the ventricular arrhythmia in order to attain a better mecha-

nistic understanding. The significance of this research avenue is mainly due to the limited knowl-

edge on the mechanisms that initiate or sustain ventricular arrhythmias. With the identification of

mechanisms within ventricular arrhythmias, clinicians can develop treatment options to counter or

modulate these mechanisms. The analysis of mechanisms in ventricular arrhythmias can also be

used to create models that can be used to develop proactive strategies at the micro or macro organ

level.

1.2.2 Objective

The primary objective of this thesis is to arrive at methodologies to assist clinicians in choos-

ing optimal treatment options for symptomatic patients as well as out-of-the-hospital arrhythmia

occurrences.

• For symptomatic patients, this thesis will study the underlying organizational structure of the

arrhythmia in order to improve upon the classification of VT and VF, especially the overlap

zone between them. Identifying patients predominantly in the overlap zone is critical as the

choice of long and short term treatment options depends on the affinity of the arrhythmia

towards VT or VF.

• In analyzing out-of-the-hospital arrhythmia occurrences, this thesis will aim to improve upon

the prediction of resuscitation outcomes using pattern analysis. This will aid the EMS per-

sonnel to choose the right time to defibrillate (and/or appropriate therapy) that may result in

successful resuscitation.

Though the primary goal of these methods is to guide the choice of treatment options, they will

also be explored for mechanistic insights. The detailed block diagram of the proposed approaches
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Figure 1.5: Block diagram outlining the work presented in this thesis

in achieving the above objectives is shown in Figure 1.5, and will be referred to in the thesis

contributions given in chapter 3 and 4.

1.3 Thesis Outline

The thesis is outlined as follows:

• Chapter 2: This chapter will provide information on the background of signal processing

concepts used in this thesis as well as background information on existing methods. It en-

lightens the reader by providing literature survey that is related to the study of ventricular

arrhythmias and discussing signal analysis methods.This chapter will also discuss a classifi-

cation scheme that will be used in this thesis.

• Chapter 3: This chapter will present the proposed method that quantifies the organization

index of ventricular arrhythmias to aid in optimizing the short and long term solutions for

symptomatic patients found in the overlap zone between VT and VF. The wavelet method-

ology is discussed in detail followed by feature extraction and pattern classification. The
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results are reviewed at the end of the chapter with the discussion on comparison with related

works.

• Chapter 4: This chapter will present methodologies to identify focal signal patterns to aid

EMS in providing optimal therapy for the out-of-the-hospital arrhythmia incidents. Details

on the physiological connection to a few of frequently occurring ventricular arrhythmia sig-

nal patterns are discussed followed by pattern detection using wavelets. A computationally

efficient correlation analysis is also provided on the dominant pattern identified for the appli-

cation. The results are reviewed at the end of the chapter with the discussion on comparison

with related works.

• Chapter 5: This chapter will summarize the thesis with conclusions and directions for future

work. Potential applications of the proposed work is also identified.
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Chapter 2

Background

THIS chapter introduces and discusses the necessary signal analysis concepts that will be used

in this thesis to better understand ventricular arrhythmias. The previous works on ventricu-

lar arrhythmias using signal analysis have also been explored. These tools exist in a variety of the

signal processing domains, such as time domain, frequency domain and time-frequency domain.

Hence, this chapter will address the signal processing tools according to these three categories

and discuss the significance of using time-frequency/time-scale analysis for ventricular arrhyth-

mias. This chapter will also briefly present a classification scheme commonly used to analyze the

discrimination between groups.

2.1 Time Domain Analysis of Ventricular Arrhythmias

There are many time domain methods that have been used and implemented in order to analyze cer-

tain ventricular arrhythmias characteristics. Although these methods have not been implemented in

this thesis and hence not explained in detail, they offer background knowledge as well as compara-

ble methods to the ones set out in this thesis. The time domain analysis of ventricular arrhythmias

were some of the first methods that were implemented to better analyze the arrhythmia.

Some of the early time domain analysis of VF includes sequential hypothesis testing and com-

plexity measure [8,9]. These methods were used to detect either SR, VT or VF. In 2005, Amann et

al. had published a review paper which summarized many of the common analysis techniques used

to help distinguish VT from VF for automated external defibrillators. Some of these analysis tech-
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niques include threshold crossing interval, autocorrelation algorithm, standard exponential algo-

rithm, modified exponential algorithm, signal comparison algorithm and Tompkins algorithm [10].

All these methods analyze particular time domain characteristics of the ECG to determine the

classification accuracy (through sensitivity and specificity) between VT and VF.

Phase space plot was used by Rocha et al. to create a two dimensional phase space coordinates

using the current signal and time delayed signal to classify SR, VT and VF [11]. Roberts et al. had

also used the phase space to classify MVT, PVT and VF [12]. Arafat et al. had proposed a variation

of the existing threshold crossing interval to characterize SR, VT and VF using a binary classifier

to first differentiate SR and non-SR and then differentiate VF from non-VF [13]. Some other

common methods which analyzed VF in the time domain include dynamic sample entropy [14],

empirical mode decomposition [15] and ECG amplitude measure [16].

Two other important features that is currently used are the heart rate (or also heart rate variabil-

ity) analysis and the phase extracted from Hilbert transform of an ECG. The heart rate, typically

obtained using the RR interval (the interval between successive R waves as seen in Figure 1.1)

in an ECG, and heart rate variability is commonly used in cardiology and arrhythmia classifica-

tion [17–20]. The heart rate plays a key role in the medical community as it can be easily used to

determine various defects in the heart. Although the RR interval is the most prominent analysis,

the QT interval has also been used to medically diagnose the condition of a patient [21]. Therefore

this has warranted numerous signal processing analysis techniques to accurately capture the RR

interval.

The Hilbert transform has also been used such that the phase of the signal may be analyzed.

Amann et al. had proposed an algorithm to classify VT and VF by taking the Hilbert transform

of the ECG and then differentiating the arrhythmias using the phase space plots [22]. Some of

the biggest contributions that were made in the field of cardiology was the phase analysis of the

electrical activity recorded on the surface of the heart. Using the Hilbert transform, phase maps

created from the surface of the heart had illustrated the degree of spatial organization in a human

heart during an arrhythmic episode [23–30]. Although phase maps are computationally expensive

(because of the multichannel electrograms on the surface of the heart), these had given indication
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to organization centers, known as rotors, which gave rise to the notion that there is some form of

organization during VF.

The methods mentioned in this section are only some of the many time domain techniques

that could be used to analyze VF and ventricular arrhythmias in general. Although these methods

provide an analysis tool for distinguishing VT and VF, they would suffer when attempting to

capture particular structural changes in VF over time.

2.2 Frequency Domain Analysis of Ventricular Arrhythmias

Frequency domain analysis have also been widely used in analyzing ventricular arrhythmias. Fre-

quency domain has its advantages over the time domain as in some cases useful information about

the signal is more obvious in the frequency domain than directly from the time domain [31]. A

signal is transformed into the frequency domain by decomposing a signal into a combination of

sine and cosine functions with different frequencies. The Fourier transform is used to perform this

transformation given by Equation 2.1 [1].

F (k) =
∑N−1

n=0
f(n)e

−i2πkn
N (2.1)

Equation 2.1 represents the discrete Fourier transform F (k) for the discrete signal f(n) with

N sample points, where k represents the discrete frequency. The energy captured at frequency k is

|F (k)|2.
The Fourier Transform has been widely used in the study of ventricular arrhythmias. Stewart

et al. [32] and Strohmenger et al. [33] had used parameters, such as the median, dominant and

edge frequency as well as amplitude of the dominant frequency, in order to predict the success of

the resuscitation of a person in cardiac arrest. Median and dominant frequency, spectral flatness

measure and band limited energy was used by Eftestol et al. to also predict successful resuscitation

[34]. The VF filter leakage method was developed and used to identify if the ECG episode was VF

or non-VF [8, 9]. The review article published by Amann et al. had also incorporated the VF filter

leakage and spectral band method in their analysis of VF detection algorithms [10]. Perez et al. had

studied the dominant frequency and dominant frequency harmonics to evaluate the organizational
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level of VF [35]. Ropella et al. had used a spectral coherence analysis to classify MVT, PVT and

VF [36].

Fourier Transform was not only limited to surface lead analysis, but also expanded on the

multichannel intracardiac electrograms recorded from the surface of the heart. Dominant frequency

(DF) maps were created and analyzed from the electrical activations. The DF maps were used by

our research group to calculate the DF ratio and indicate the regional differences in the heart during

VF [37]. Ciaccio et al. had also used DF maps to find a region on the surface of the heart which

can be used to classify VF from MVT and PVT [38].

Using the Fourier transform as given in Equation 2.1 significantly limits its application to

non-stationary signals. Since the Fourier transform is calculated over the entire time duration

(N samples points) of the signal f(n), the occurrence (time localization) of a particular frequency

cannot be determined. In other words, the underlying assumption is that a signal is stationary for

its duration. Arrhythmias in general are non-stationary in nature due to the dynamical changes of

their activation patterns, and therefore requiring a time-frequency analysis approach.

2.3 Time-Frequency Domain Analysis of Ventricular Arrhyth-
mias

In time-frequency/time-scale analysis, unlike the time and frequency only approaches, joint time

and frequency properties of the signal is analyzed, which is the most suitable way to analyze

signals with time varying spectral content. In general, there are two approaches to consider when

using the time-frequency analysis of a signal. The first approach is an adaptive time-frequency

decomposition based approach, where the signal is approximated from a variety of time-frequency

basis functions that are translated, modulated and scaled. Each basis function has a definite time

and frequency localization. The purpose of this approach is to enhance characteristics of a signal

in fewer dimensions, which is ideal for classification applications [39–41].

The second approach is the time-frequency energy distribution approach, which is typically

used for visualization with high time-frequency resolution. Complex feature extraction and pattern

recognition tools will be required in order to extract features directly from the time-frequency
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distribution [39,42]. Since the proposed work focuses on feature extraction and classification tasks

and the nature of the work demands computationally efficient time-frequency/time-scale methods,

the following section will only discuss the relevant time-frequency/time-scale techniques for this

thesis.

2.3.1 Short Time Fourier Transform

As mentioned in the previous section, the fundamental assumption when performing the Fourier

transform is that the signal is stationary for the length of the signal. The STFT was developed

in order to analyze frequency varying signals over time. STFT essentially computes the Fourier

transform on a small portion (or a window) of the signal by shifting the window. This is then

repeated for the remainder of the signal. The similarities between the STFT and Fourier transform

can be seen in Equation 2.2 [1].

Sf(l,m) =
∑N−1

n=0
f(n)g(n−m)e

−i2πln
N (2.2)

For the discrete STFT Equation 2.2, the window g(n − m) (with discrete time shifts m) is

applied to the discrete signal f(n) to determine the energy (|Sf(l,m)|2) at frequency l and time

instance m. The spectrogram measures the energy of signal f in a time-frequency neighbourhood

of (l,m) and is represented by |Sf(l,m)|2 [1]. Another powerful aspect of the windowed Fourier

transform is that the user can determine what specific type of windowing to use (e.g. Hanning,

Butterworth, etc.).

The STFT has been used in order to predict the heart rate and heart rate variability using

different window functions [43]. Choi et al. had used the STFT to map out the spatiotemporal

organization by analyzing the regions of frequency distribution [44]. Evan et al. had used the

STFT on the activation potential of the heart to find regions of conduction blocks [45].

Although STFT has been used to analyze ventricular arrhythmias, there are issues that limit its

potential. The first issue is similar to that of the regular Fourier analysis, which is the assumption

that the ECG is stationary (or quasi stationary) within the window g. Since VF is non-stationary,

it is crucial to localize the occurrence in time of a particular frequency. This can only be done by
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Figure 2.1: Heisenberg uncertainty in Fourier transform [1]

shrinking the window g such that we obtain a more localized time for the frequencies occurring

in the window. The fundamental issue with this is the further you decrease the window’s length,

the worse the frequency resolution becomes (or the harder it becomes to determine the energy

of the frequency accurately). In the regular Fourier transform, theoretically we had an infinite

time window, which would give an accurate frequency resolution, but poor time localization. A

smaller window gives better time localization at the expense of frequency resolution. This issue

is known as the Heisenberg uncertainty principle as shown in Figure 2.1 [1]. A VF signal and the

corresponding spectrogram with short and long time window is shown in Figure 2.2.

We would be able to modify the STFT such that there is a varying window length that is

dependent on the frequency. This would allow us to optimize the frequency and time localization.

The issue of not being able to determine the location of the frequency component within the given

window however still remains. The cause of this problem lies with the basis function used to

analyze the signal for its frequency spectrum. The term e
−i2πln

N has an unlimited time support (or

a time support that spans the full length of the window). Therefore for a particular frequency, the

time spanned by the window length g(n−m) will be analyzed by the sine and cosine to determine
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Figure 2.2: Sample VF signal and corresponding spectrograms with short and long time windows
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Figure 2.3: Sample VF signal with corresponding scalogram (y-axis is in normalized frequency)
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the energy of that frequency, as seen in Figure 2.1. From this figure, we can see that the window

selected provides the same resolution for all frequencies, which is not ideal. This particularly

creates an issue with non-stationary signals such as VF, which has varying frequency components

present at different times. With these issues, it is logical to look towards joint time-frequency/time-

scale techniques.

2.3.2 Wavelet Transform

In wavelet analysis, a signal f(n) is modeled using all possible variations of a mother wavelet ψ.

Mother wavelets (small waves) are mathematical functions that satisfy certain properties and have

specific time-frequency localization. Due to the flexibility in generating many variations (scale and

translation of the mother wavelet), wavelet decomposition is highly adaptive to the signal struc-

tures. In addition, the flexibility in the choice of the mother wavelet determines the characteristics

of the decomposition and helps in performing signal adaptive and application specific analysis.

The discrete implementation of wavelet transform is given by Equation 2.3 [46],

Wf(s,m) =
1√
s

∑N

n=1
f(n)ψ∗(

n−m

s
) (2.3)

where m and s represent the discretized time and scale parameter and Wf(s,m) represents the

wavelet coefficients for the discrete time signal f(n). The wavelet coefficients Wf(s,m) are ob-

tained as a result of scaling (parameter s) and translating (parameter m) the mother wavelet ψ. The

scaling factor s represents the parameter that varies the frequency of the wavelet by shrinking or

expanding the time window, thus causing the mother wavelet to vary its frequency characteristics.

The translation parameter m centers the wavelet window to encompass a part of the signal. The

coefficients are therefore representative of the correlation of the wavelet (with a particular s and m

parameter) to the signal f(n) localized around the time parameter m and frequency characteristics

that are inversely related to s. The scalogram defines the time-scale energy localization and is

given as |Wf(s,m)|2. The sample VF, that was used to demonstrate the spectrogram, was used

with its corresponding scalogram (shown in Figure 2.3). The y-axis has been shown in normalized

frequency for the scalogram example for easy comparison with the spectrogram in Figure 2.2.

21



The discretization or the sample steps used for the parameters m and s distinguish between

discrete continuous wavelet transform (CWT) and the commonly and widely used discrete wavelet

transform (DWT). Theoretically, the parameters m and s should be continuous to qualify as true

CWT. However, the software implementation of the CWT limits these choices based on the dis-

cretization constraints. The DWT is dyadic in nature, although it can completely represent a signal,

it may not be suitable for feature extraction applications due to issues with invariance properties.

In particular, the DWT is shift variant, which causes a time shift in the signal to provide different

wavelet coefficients [31]. The CWT is preferred in this case because although it provides redun-

dant information, it satisfies the shift invariance properties and can be utilized for feature extraction

applications.

The CWT has advantages over the STFT in its accuracy in localizing the time-scale energy of

the signal. The purpose of this is of direct consequence of the basis wavelets selected to analyze

the signal. The basis functions (also known as mother wavelets) used in the wavelet transform

have a finite time support, which allows for the time localization of the energy in a particular

scale (inversely proportional to frequency). Due to the wavelets having a limited time support,

the window length can vary based on the scale being analyzed by the wavelet, thus giving it an

adaptive window. This can be visually seen in Figure 2.4. However, in order for the wavelets to

accomplish the time localization, there are several properties, as outlined in ”A Wavelet Tour of

Signal Processing” [1], that must first be satisfied.

Research into the wavelet transform has shown that the same order of computational complex-

ity as the fast Fourier transform can be achieved for the over complete wavelet transform [47]. The

computational complexity for the fast Fourier transform is given as Nlog2(N) [1]. Therefore the

wavelet transform is efficient in terms of complexity with the ability to provide better time-scale

(or time-frequency) localization. The other advantage of the wavelet transform over the STFT is

the variations of basis functions that are available to analyze the non-stationary signal. Unlike the

Fourier transform that analyzes the signal with a combinations of sines and cosines, the wavelet

transform has the ability to analyze the signal with any number of mother wavelets ψ in order to

determine the frequency components found in the signal.
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Figure 2.4: Heisenberg uncertainty in wavelet transform [1]

For this thesis, the CWT will be used over other adaptive time-frequency decomposition ap-

proaches for a couple of reasons. In the application of optimizing treatment options, it is necessary

that the computational complexity be limited in order to provide a quick analysis of the arrhythmia.

The localization of time-frequency components is also necessary for the analysis of non-stationary

signals such as VF. The wavelet analysis is best suited in both these regards because it has an

adaptive window which is continuously scaled, depending on the wavelet basis, and it could also

be implemented in near real time.

The criterion for selecting an appropriate wavelet is one that is highly dependent on the appli-

cation it is being used for. The first decision to be made is based on the type of wavelet to be used

(real wavelet or an analytic wavelet). These are used for two different types of applications. Real

wavelets are used under the condition that the user is trying to capture sharp signal transitions or

fractals. This is especially useful in analyzing borders in images. Analytic wavelets on the other

hand are used to study the temporal evolution of frequency tones present in the signal and has

advantages of retaining the phase information of the signal [1].

In optimally selecting the best wavelet, there are approaches that could be followed. The first
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approach is to optimally select a wavelet that compactly represents signal with the fewest number

of scales. The second approach uses discriminatory kernels to identify the optimal wavelet for

the purpose of classification. The following methods are only a few methods used to discuss the

optimal wavelet selection through compact representation. Shannon Entropy provides a measure

of the information in any distribution [48] where the lowest entropy would describe a signal with

a wavelet representation that is compact in the scale range and therefore gives a measure on how

well a wavelet represents the signal. A different method provided by Cui et al. shows that the

phase spectrum can be used to obtain the best wavelet to represent the signal [49] where a wavelet

can be optimally selected to complement the signal under analysis by creating a phase spectrum

that almost represents a constant.

The discriminatory kernels aim to optimize the wavelet selection for the purposes of classifica-

tion. Jones et al. had proposed a classification based cost function that optimizes common features

of the wavelet analysis to determine the appropriate wavelet [50]. Daamouche et al. proposed the

optimization of the wavelet selection in practical implementation of filter banks by optimizing the

filter coefficients and selecting the wavelet that provides the best support vector machine classifi-

cation. A technique that selected the highest correlation for a specified scale of the mother wavelet

was used to optimally select the wavelet with the highest correlation for the given application [51].

In this thesis, the wavelets were selected based on the relative similarity of them to the signal

structure present in ventricular arrhythmia, since the priority is to discriminate between groups

and detection of patterns. From the literature it was observed that the Morlet wavelet [29, 52–55]

and the Gaussian wavelet [55, 56] were widely used for ECG analysis. In addition, an analytical

wavelet is also required as it provides information on frequency evolution and the phase informa-

tion can be used for pattern detection applications. The complex Morlet and the complex Gaussian

wavelets are provided in Figures 2.5 and 2.6 respectively, and will be used in this thesis because

they closely represent the ventricular arrhythmia structure. The complex Morlet wavelet and the

complex Gaussian wavelet are mathematically represented by Equations 2.4 [57] and 2.5 [1] re-

spectively, where c0 is the center frequency.
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Figure 2.5: Complex Morlet wavelet

ψMorl(n) = π− 1
4 (e−jc0n − e−

c20
2 )e−

n2

2 (2.4)

ψGaus(n) = [
1

(σ2π)(1/4)
e

−n2

2,σ2 ]e−jc0n (2.5)

The Morlet wavelet is representative of the organizational signal structure found in arrhythmias

and hence the Morlet wavelet will be used in quantifying the organization in the arrhythmia. This

will be further expanded upon in chapter 3. The Gaussian wavelet closely represents a QRS depo-

larization, found in Figure 1.1. This wavelet is also similar to the depolarization of the ventricles.

This wavelet is better suited to analyzing the patterns that will be discussed in chapter 4.

Similar to the Fourier analysis of VF, the wavelet analysis of VF has been widely used in

literature due to its ability to decompose non-stationary signals in the time-frequency domain. In

the review paper by Amann et al. [10], a method consisting of obtaining the Fourier transform of the

wavelet coefficients in order to capture the maximum absolute value to determine if a defibrillation

should be given in the case of VF. In this same review paper, the Li method had used the DWT to

decompose the VF, and a particular scale band was used to distinguish VF from non-VF. Watson

et al. had revealed that it is possible to detect cardio pulmonary resuscitation (CPR) occurrence
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Figure 2.6: Complex Gaussian 2 wavelet

and atrial activity in the ECG during VF by using the wavelet transform [58,59]. Kahdra et al. had

used the wavelet transform to capture bands of energy such that SR, atrial fibrillation, VT and VT

could be classified [29]. The wavelet transform was also used to obtain a feature (scale distribution

width) in order to better predict the success of defibrillation [54, 56].

The wavelet transform has also been applied in the spatial analysis of VF ECG. Sierra et al.

had used the wavelet analysis of each electrode on the surface of the heart to calculate the cycle

length variability. This information was used to discriminate between MVT and PVT. The methods

discussed here are only few of the relevant wavelet transform methods used in order to characterize

ventricular arrhythmias.

2.4 Classification Scheme

A pattern classification system is typically used to discriminate between groups using a common

set of features. The objective of a pattern classifier is to provide the best discrimination between

multiple groups. As discussed during the literature analysis of the different methods in the study of

ventricular arrhythmias, they usually consisted of identifying a feature or feature space such that

a distinction can be made between two or multiple groups (VT, VF, sinus rhythm, etc.). Pattern
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classification is especially important in the field of ventricular arrhythmia because of the unique

treatment options. Therefore, the goal is to improve upon the classification of the arrhythmias in

order to choose the correct treatment option. Classification accuracies are also important when

comparing a variety of different features that aim to perform the same task. There are several

methods used in order to calculate the classification boundary and accuracy of a given method.

This section will explore one of the well established methods, which is the Fisher’s linear dis-

criminant analysis. The information outlined in this section is a summary extract from ”‘Pattern

Classification”’ [60]. The readers are referred to this book for more detailed information.

2.4.1 Fisher’s Linear Discriminant Analysis

The Fisher’s linear discriminant analysis (LDA) is a supervised machine learning approach. This

means that the classifier is built using a set of training samples that are pre-classified by experts.

A supervised classifier is important in the medical community because the clinicians provide the

gold standard in categorizing the samples. Therefore, when training the classifier, features must

be selected to highlight the information that is validated by the clinicians, which would require a

supervised learning in order to build the classifier.

The linear discriminant function will only create linear boundaries, and will therefore perform

poorly if the features do not exhibit strong discrimination. Therefore, if a good classification is

obtained using an LDA method, then it indicates that either the classification task is simple or the

extracted features demonstrate strong discrimination.

In a linear classification system with multiple groups c, the number of linear discriminant func-

tions required would be c − 1 functions. Each function would classify a class from the remainder

of classes. Therefore a combination of the discriminant functions would eventually lead to regions,

where one class would occupy a region. However, not all regions will be assigned to a class. The

Fisher’s discriminant function can be seen as projecting the d dimensional samples x onto a cor-

responding set of samples y using the weight vector matrix w. The matrix W can be seen as a

generalized matrix equation that incorporates all the class’s weight vector wi with a dimension of

d× c− 1. The projection of x onto y is given in Equation 2.6 [60].
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y = Wtx (2.6)

In order to obtain the weight vectors W, a criterion function J(W) was used to determine

the optimal weight vectors. This criterion function is given in Equation 2.7. The terms SB and

SW indicate the between class and within class scatter matrix respectively. The equation for SB

is given in Equation 2.8 and the equation for SW is given in Equation 2.9. The scatter matrices

provide information on the distribution of the classes themselves and the distribution of samples

within each class respectively. For Equation 2.8, the term ni is the number of samples in class

i, mi is the mean for each class and m is the total group mean from the mean mi of each class.

The within class scatter matrix SW is the summation of the variance from each class. The optimal

weight vectors is calculated by maximizing J(W). By maximizing the criterion function, the

class separation increases and/or the variance of each group is decreased. The weight vectors are

calculated to provide the best projection of x onto y and therefore form the basis of the linear

boundaries.

J(W) =
|WtSBW|
|WtSWW| (2.7)

SB =
c∑

i=1

ni(mi −m)(mi −m)t (2.8)

SB =
c∑

i=1

Si =
c∑

i=1

(
∑
x∈Di

(x−mi)(x−mi)
t) (2.9)

In obtaining the weight vectors W , the classifier is trained with a pre-classified set of training

samples. These training samples create the optimal boundary for the given training set. The

downfall is that since this boundary was optimized for this training set, it does not guarantee that

it will provide a good classification for the testing set. In order to remove the dependency on the

training and testing sets, cross validation is required.

28



2.4.2 Cross Validation

Cross validation is done by dividing the total number of samples n into m equally sized sets of

data. The training is done on all but one of the sets and the remaining set is tested on the classifier.

this process is repeated m times until all m sets have been used as a training set. Cross validation is

heuristic in terms of selecting the number of sets and the number of samples per set. The validation

error provided by the cross validation does provide an estimate of the accuracy using an unknown

number of sets [60].

A subset of the cross validation method is the Leave-One-Out (LOO) method. If there were

n sample points available, the LOO method will train the classifier with n − 1 samples and then

test the classifier with the remaining sample. The LOO method will execute n times to test each

sample. The classification accuracy is then provided based on the testing results of each sample.

In re-sampling theory, the sample average of the data set, where the ith point is removed, can

be calculated as the following [60].

μ(i) =
1

n− 1

n∑
j �=i

xj (2.10)

Equation 2.10 is known as the leave-one-out mean. The Jackknife estimate of the means is the

mean of the leave-one-out mean. This is given in Equation 2.11.

μ(.) =
1

n

n∑
i=1

μ(i) (2.11)

The Jackknife estimate of the variance can be obtained as follows.

V ar =
n− 1

n

n∑
i=1

μ(i) − μ(.) (2.12)

The benefit of the Jackknife variance (given in Equation 2.12) is that this can now be general-

ized for any other estimator. For example, instead of using the mean estimator, a different estimator

can be applied where the leave-one-out iteration is calculated for the estimator.
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2.4.3 Classification Accuracies

Classification accuracy is used to quantify the performance of a classifier built using a set of fea-

tures. This is given in Equation 2.13 [61].

Acc =
TP + TN

TP + FP + TN + FN
(2.13)

The four terms usually used are TP (True Positive), FP (False Positive), TN (True Negative)

and FN (False Negative). For example, in a binary classification with sick and normal subjects,

the term TP is the identification of a sick person as a sick person. In contrast, the term TN was

identification that a normal person as a normal person. The FN determines the number of actual

sick subjects that were classified as normal subjects and FP determines the number of normal

subjects that are classified as sick subjects. Using the four categories, the sensitivity and specificity

of technique are given in Equations 2.14 and 2.15 [61].

Sensitivity =
TP

TP + FN
(2.14)

Specificity =
TN

TN + FP
(2.15)

The sensitivity and specificity of each group will have to be calculated in order to obtain the

overall classification accuracy. This type of analysis is useful when it is more important to detect

one class over the others.

2.4.4 Receiver Operating Characteristics

The Receiver Operating Characteristics (ROC) analyzes the change in sensitivity and 1-specificity

with the change in the decision boundary between the groups in a binary classifier. That is the

decision boundary is varied and the sensitivity and specificity are calculated and plotted onto a

two dimensional plane. The first dimension represents the 1-specificity and the second dimension

represents sensitivity. These values are plotted with each change in the decision boundary. This

is useful in classifiers that may have a varying loss function associated to the groups [60]. The
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loss function could change depending on the application at hand. The area under the ROC curve

provides an indication of the robustness of the feature in discriminating the classes of groups. The

larger the area under the curve, the more robust it is at discriminating the class. This is because

varying the boundary between the groups should keep the sensitivity high and 1-specificity low,

giving a larger area under the ROC curve.

The ROC analysis is also generally used to compare the strength of multiple features. The

comparison is done by usually analyzing the area underneath the ROC curve to determine which

feature is robust for a binary classification problem.

2.5 Background Summary

This chapter had presented background information on relevant signal processing tools such as

the Fourier Transform, Short Time Fourier Transform and Continuous Wavelet Transform. The

justification as to the use of time-frequency/time-scale methods (especially the CWT) was provided

in this chapter. Highlights on existing methods in the time, frequency and time-frequency domain

that were developed to aid in the analysis of ventricular arrhythmias was discussed. Finally, general

classification approach (Fisher‘s LDA), cross validation technique (LOO) and ROC curves were

discussed as these will be used in presenting the results in subsequent chapters.
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Chapter 3

Ventricular Arrhythmia Analysis for
Symptomatic Patients

T
HE short and long term treatments for VT and VF are different. Patients can be identified

(sometimes at an early stage) based on other symptoms that indicate that they are prone

to an arrhythmia episode. The automated detection of these arrhythmias is crucial because of the

differences in the therapy options available. The literature review has shown that a lot of work has

been performed in the field of classifying VT from VF. The issue, and therefore the difficulty, lies in

the detection of the transition of the arrhythmia due to the degradation of the heart leading from VT

to VF. The ability to detect the overlap zone between VT and VF will provide a useful clinical tool

that can quantify the degree of organization and accordingly assist clinicians in optimizing short

and long term therapy options for patients diagnosed to be in this overlap zone. The proposed

methodology will look to identify signal structures that are representative of either VT, VF or

the overlap zone between VT to VF. This chapter will highlight the analysis on organizational

structure of arrhythmias for symptomatic patients. The proposed work presented in this chapter is

highlighted in Figure 3.1.

3.1 Significance of Organizational Structure

Most of the literature analysis has shown that classification is possible between VT and VF [9–

11, 17, 29, 35, 36], but what was not emphasized was that those methods had mainly focused in

differentiating MVT and VF. Unlike the existing techniques, this chapter focuses on furthering this
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Figure 3.1: Thesis contributions presented in Chapter 3 are highlighted

analysis by identifying the overlap zone between VT and VF. The purpose for this is because the

clinician who is analyzing symptomatic patients suffering from an arrhythmia in the overlap zone

of VT and VF could choose the appropriate therapy in treating them. There are very few studies

that differentiate MVT from PVT and PVT from VF using surface ECGs.

The temporal organization of signal structures of an arrhythmia intuitively relates to the degree

of stationarity found in the ECG signal. The VT example provided in chapter 1 (Figure 1.3a)

exhibits strong organization. This arises from the regular rhythmic depolarizations of the ventricles

found in the VT sample. The VF example in chapter 1 (Figure 1.3b) does not have repetitive signal

structures as it is non-stationary in nature. If the temporal organization of signal structures can

be quantified, it could be used to depict the transition from VT to VF and therefore identify the

overlap zone between VT and VF.

It is known that there is well established treatments for VT and VF, which raises the question as

to what the purpose is of detecting the overlap zone between VT and VF. As mentioned above, the

ventricular arrhythmia state will degrade as the response time is delayed. By the ability to detect

the overlap zone between VT and VF, the treatment option most appropriate could be selected.
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For example, if a PVT was detected (which is closer to VT), then pacing could first be provided.

If however the arrhythmia is determined to be closer to VF, then defibrillation could be provided

without any delays. Since the short term therapy option cannot be delayed, a developed smart

algorithm must also be quick in its analysis so that the therapy can be delivered as soon as possible.

This is especially the case in ICDs where an accurate analysis of the arrhythmia must be quickly

provided in order to either pace the heart or provide a defibrillation. It has been shown in the litera-

ture that an unnecessary ICD shock may increase the mortality [62], which makes the detection of

VT and VF and the identification of patients in the overlap zone crucial. This detection of patients

in the overlap zone could be used to reduce the number of ICD discharges caused by inaccurate

diagnosis of the electrogram, thus preventing further damage to the heart. Therefore the short term

implications of detecting the overlap zone is significant for resuscitation and improving the patients

survivability.

The detection of the border zone is also important for long term treatment options. Unnec-

essary ICD shocks are known to increase the mortality of the patient [62]. Although ICDs have

helped patients for a few decades, if amenable, long-term solutions via ablation strategies are al-

ways preferred. This makes the determination of the overlap zone crucial as patients diagnosed

could have an ablation therapy attempted first before considering the placement of an ICD. The

classification of previous arrhythmic episodes, during regular patient visits, might assist the clini-

cians in deciding on future anti-arrhythmic drugs, multiple level shock threshold programming and

ablation therapies.

The other factor that had influenced this study is the rotor dynamics [63], which had shown

that rotors became complex in nature over time. Rotors are thought to be centers of high frequency

periodic excitations sources within the heart [64]. Studies had also shown that there is a relation to

the temporal complexity in the ECG organization and to the rotor mechanisms behind ventricular

arrhythmias [63]. The study of the overlap zone between VT and VF will enable the clinician to

relate the temporal complexity of the arrhythmia, using a single channel ECG, in terms of the rotor

mechanisms, that are believed to be the cause for VF. With these reasons, the goal of this chapter

was to arrive at discriminatory clues related to the organizational index of the arrhythmia that could
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better classify the overlap zone between VT and VF.

3.2 Related Work

As highlighted in chapter 2, there have been many studies that identified the classification between

VT and VF [9–11, 17, 29, 35]. There have only been a few studies conducted on identifying the

overlap zone. These studies had also limited the analysis to MVT, PVT and VF.

Ropella et al. had proposed a spectral coherence analysis as a basis on which to differentiate

MVT, PVT and VF [36]. This is done by using the bipolar electrograms to obtain a similarity

measure of the two signals. The phase reconstruction approach proposed by Roberts et al. [12]

had proposed to use the phase space of the signal to identify regions in the phase space to dis-

criminate between the above mentioned arrhythmias and sinus rhythm. The dominant frequency

obtained using multichannel electrogram from the surface of the heart was used by Ciaccio et al.

to discriminate MVT, PVT and VF [25].

In [65] a wavelet-SVD approach on the SR ECG prior to the occurrence of an arrhythmia

was used to predict the type of cardiac arrhythmia. The SVD matrix obtained, by capturing the

scalogram of a normal sinus ECG, had used the Eigendecomposition of the scales to predict the

arrhythmia. The Eigendecomposition matrix was placed in a neural network in order to determine

the type of arrhythmia that would occur. Although this method does not classify the ECG into

MVT, PVT and VF, the wavelet-SVD is similar to the proposed approach, and will be discussed

later. There are also studies conducted on spatial organization by analyzing the activation on the

surface of the heart [23, 24, 28], but these studies primarily focused on identifying mechanisms

within the heart.

3.3 Ventricular Arrhythmia Organization Analysis

This section highlights the contribution to the analysis of the ventricular arrhythmia in order to

determine if a patient belongs in the overlap zone. The database and the arrhythmia groups are first

introduced. This is followed by the analysis of the organizational signal structure in the frequency
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domain and the wavelet domain. The methodology and features required to capture these signal

structures are discussed with regards to each domain.

3.3.1 Database and Preprocessing

The database used in this study was obtained from the MIT-BIH ventricular arrhythmia database

(public database available through PhysioNet [66]). This database consisted of 30 patient ECG

recordings (sampled at 250 Hz) of real patients and each patient had a varying type of ventricular

arrhythmia episode with different time durations. These arrhythmia episodes recorded from these

patients had occurred in an hospital setting. The signals were filtered between 0.5 and 30 HZ using

an FIR filter to remove movement artifacts and high frequency noise [33]. Although the dominant

ventricular arrhythmia components exist in the frequency range of 2 to 12 Hz, literature survey has

also shown that there are components that reside in the 1-2 Hz as well the 12 to 20 Hz range [33,

34,67], which justifies the 0.5-30 Hz filtering. These pre-processed signals were analyzed and with

the help of electrophysiologists from Toronto General Hospital, and only relevant segments for this

thesis were extracted. A novel categorization of the ventricular arrhythmias was introduced as VT

(consisted mostly of MVT and PVT), organized VF (OVF) and disorganized VF (DVF) in order to

account for the overlap zone between VT and VF. OVF consists of organized/early VF and DVF

is the disorganized ECG arrhythmia. This classification was necessary to capture the transition

from MVT to DVF such that short or long term treatments can be optimized. In particular, patients

exhibiting OVF could benefit from ablation possibilities. In total, 63 four second signals were

selected (approximately two non-overlapping segments selected randomly from each of the 30

patients) and labeled into three categories as VT, OVF and DVF by the electrophysiologists, which

served as the ground truth. Of the 63 signals, 21 were categorized into VT, 20 into OVF, and 22 as

DVF.

3.3.2 Frequency Domain

The most obvious feature that stands out is the temporal organization between the groups, where

VT is highly organized and VF is not. The Fourier transform is well established in capturing the

36



0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

A
m

p
li
t
u
d
e
 
(
a
r
b
it
r
a
r
y
 
u
n
it
s
)

Sample VT Signal

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

Frequency (Hz)

P
o
w

e
r
/
F

r
e
q
u
e
n
c
y
 
(
W

a
t
t
s
/
H

z
)

Power Spectral Density of VT Signal

(a) VT

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

−0.05

0

0.05

0.1

Time (s)

A
m

p
li
t
u
d
e
 
(
a
r
b
it
r
a
r
y
 
u
n
it
s
)

Sample OVF Signal

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Frequency (Hz)

P
o
w

e
r
/
F

r
e
q
u
e
n
c
y
 
(
W

a
t
t
s
/
H

z
)

Power Spectral Density of OVF Signal

(b) OVF

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.15

−0.1

−0.05

0

0.05

0.1

Time (s)

A
m

p
li
t
u
d
e
 
(
a
r
b
it
r
a
r
y
 
u
n
it
s
)

Sample DVF Signal

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Frequency (Hz)

P
o
w

e
r
/
F

r
e
q
u
e
n
c
y
 
(
W

a
t
t
s
/
H

z
)

Power Spectral Density of DVF Signal

(c) DVF

Figure 3.2: Example of patients with VT (part a) and DVF (part b) ECG and the corresponding
Welch periodogram

frequency content of a stationary signal. Even though in chapter 2 we had identified the need for

time-frequency analysis, the existing literature has evidence that Fourier features perform well in

discriminating VT and VF [35]. This is also evident from the current ICD technologies which

are rate dependent in differentiating VT and VF. The spectral features could differentiate VT and

VF, however they may not be accurate in capturing the overlap zone. In order to validate this and

justify the need for time-scale analysis, we extracted similar frequency domain features that were

used in existing literature [34,35], to classify the three types of arrhythmias. This can be identified

in the spectrum of the VT, OVF and DVF examples provided in Figure 3.2. Therefore frequency

features were used to attempt to capture the overlap zone between VT and VF.

Method

Similar to many of the published methods, the Fourier transform was used in order to capture

the frequency parameters of the ECG. The power spectral density was obtained using a Welch

periodogram method for all the 63 signals of the database. The Welch periodogram P (l) is given

in Equation 3.1 [68]. The Sf can be found from Equation 2.2 of chapter 2. The term w represents

the length of the window, U is the normalization factor to account for the power in the window w,
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M represents the number of samples of window w and l is the frequency.

Pi(l) =
1

M×U

N−1∑
n=0

|fi(n)w(n)e−j2πln|2 (3.1)

where i varies from 0, 1, ...L − 1 and L is the total number of data segments. To obtain the

power spectral estimate the average of Pi(l) over all L data segments was obtained as given in

Equation 3.2 [68].

P (l) =
1

L

L−1∑
i=0

Pi(l) (3.2)

Feature Extraction

The PSD analysis of a sample VT,OVF and DVF ECGs using the Welch periodogram is shown in

Figure 3.2. The normalized spectrum was used to calculate several features. There were several

features that were initially attempted due to their use in literature. These features were the dominant

frequency, percentage of power captured by the dominant frequency, harmonic power percentage

and bandwidth. The features that were retained to analyze the ECGs were the percentage of power

captured by the dominant frequency and the bandwidth because these features provided the best

classification of OVF and DVF. The percentage of power captured by the dominant frequency

was obtained using Equation 3.3. The term lDF is the dominant frequency and Pwr(lDF ) is the

percentage of power for the dominant frequency. The bandwidth was obtained using Equation 3.4.

The terms lL and lH represent the lower and higher frequencies at which the power is half of the

dominant frequency power (3 dB drop), which is the value commonly used.

Pwr(lDF ) =
P (lDF )∑

k P (l)
(3.3)

BW = lH − lL (3.4)
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Results

The classification was performed in two levels to classify VT, OVF and DVF. The first level classi-

fied VT from non-VT (OVF and DVF), then the second level classified non-VT into OVF and DVF.

The purpose of this was to be able to comparatively study the classification accuracy between VT

and non-VT. The main contribution of this chapter, the analysis of VF into OVF and DVF, could

then be assessed independently.

The results for Level 1 (VT and non-VT) obtained using the dominant frequency energy per-

centage and bandwidth can be found from Table 3.1. An LDA classifier was used in conjunction

with the LOO method. The classification between VT and non-VT had achieved an accuracy of

88.90%.

Table 3.1: Level 1 Fourier Domain Classification: VT and non-VT

Method Groups VT Non-VT Total
Cross-validated VT 18 3 21

Non-VT 4 38 42
% VT 85.7 14.3 100

Non-VT 9.5 90.5 100

The same features were used for the Level 2 classification of OVF and DVF arrhythmias and a

classification accuracy of 63.15%. The results are presented in Table 3.2.

Table 3.2: Level 2 Fourier Domain Classification: OVF and DVF

Method Groups OVF DVF Total
Cross-validated OVF 8 8 16

DVF 6 16 22
% OVF 50 50 100

DVF 27.3 72.7 100

A direct three group classification was also preformed to classify VT, OVF and DVF and the

overall classification accuracy was found to be 68.3% , where OVF had a classification accuracy

of 45%. The feature space of the percentage of power captured by the dominant frequency and

bandwidth is provided in Figure 3.3 for all the three features. The scatter plot in Figure 3.3 shows
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Figure 3.3: Arrhythmia scatter plot with frequency domain features

the VT samples occupy the top left corner and the DVF on the bottom right corner. This means

that the Dominant frequency power is higher for VT and lower for DVF where as the bandwidth

is higher for DVF and lower for VT. OVF can be seen to be a transistion from VT to DVF with

samples closer to both sets of group.

It should be noted that the accuracy between VT and non-VT obtained from Table 3.1 was

88.90%, which is obvious and expected as shown in literature [35,36] that spectral features perform

well in distinguishing VT from VF. The mis-classified samples from the non-VT group (from table

3.1) were all from the OVF subgroup. This can be noticed in Table 3.2, where the number of OVF

samples had decreased from 20 (the original number of samples) to 16. This is an indication that

there is a natural transistion from VT to DVF by the way of MVT → PVT → OVF → DVF.

The classification between OVF and DVF was not favorable as expected. The overlap between

OVF and DVF can also be appreciated in the scatter plot shown in Figure 3.3. This indicates that

only spectral features may not be able to classify the overlap zone between VT and DVF (OVF).
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Figure 3.4: Example of patients with VT (part a), OVF (part b) and DVF (part c) ECG with
corresponding scalograms

3.3.3 Wavelet Transform and Image Processing

The goal of using the wavelet transform is to better capture the organization in terms of time-scale

structures present in the arrhythmia. As discussed in section 2.3.2, the complex Morlet and com-

plex Gaussian wavelet have been widely used in the analysis of ventricular arrhythmias and are

suitable for this thesis and hence this point forwards, these wavelets will be used for further analy-

sis. For this chapter, the complex Morlet wavelet is used to capture the organizational structure of

the arrhythmia. As a preliminary analysis, the scalograms for the three groups of arrhythmia were

studied, and an example of each of these groups is provided in Figure 3.4. The scalograms were

normalized to be represented in percentage of total energy, and is given by Equation 3.5. Each

node in the Wf(s,m) matrix was represented as a percentage of the total energy captured by the

wavelet transform.

W̃f(s,m) =
100× (|Wf(s,m)|2)∑

s

∑
m(|Wf(s,m)|2) (3.5)

These three signals, shown in Figure 3.4, are real arrhythmia samples from the MIT database,

which were analyzed using the wavelet transform to give a sample time-scale representation of the
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groups. Figure 3.4a, Figure 3.4b, and Figure 3.4c show three sample surface ECGs pre-classified

by the electrophysiologist as VT, OVF, and DVF ECG episode. Observing the three ECG signals

in the figures, a smooth transition in the organization signal structure is evident from VT to DVF.

From Figure 3.4a, it can be observed visually (from part A of Figure 3.4a) and in the scalogram

(from part B of Figure 3.4a) that VT has a strong organized structure and the signal energy is

confined to a narrow bandwidth but spread uniformly over time and this is indicative of a mono-

component. The VF example in Figure 3.4c does not have an observable organizational structure

(from part A of Figure 3.4c) and the energy is distributed over the time-scale plane (disorganized)

which is reflected in the scalogram (from part B of Figure 3.4c). This is indicative that DVF

has more non-coherent signal components with varying time-scale structures. Visually inspecting

the OVF ECG and its corresponding coefficients found in Figure 3.4b shows a higher degree of

organization than the DVF example found in Figure 3.4c. This is indicative that OVF has a mixture

of coherent and non-coherent signal components that manifest as different time-scale structures

compared to DVF. However, it is not as organized as the VT example in Figure 3.4a, which is also

reflected in the scalogram. Based on the above initial observation, a preliminary image processing

approach was explored to validate if the time-scale structures from the scalogram could be used to

discriminate between the three groups.

The frequency components of OVF appears to be confined to a small range of scales similar

to the VT example, which would be a limitation for Fourier analysis to distinguish VT from OVF

(as seen in the mis-classification between VT and OVF in Table 3.1). The wavelet transform of the

OVF differs from the VT because the scale energy is not uniformly distributed through time. A time

domain method can detect this difference, but it would then fail at classifying OVF from DVF. Also

as seen in Table 3.2, the OVF and DVF signals have similarities in the frequency domain. Wavelet

is better suited over STFT because of its improved time-scale (time-frequency) localization. As

seen from the scalogram of the OVF and DVF samples, the energy in the time-scale structures

have a longer time duration and confined in the scale dimension than that of the DVF sample. The

significant part of this initial observation highlighted the ability of CWT to capture the difference

between DVF and OVF in two dimensional time-scale structures.
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Method

A subset of the original database was used for the validation that the different time-scale structures

could be used to classify the three groups of arrhythmias. A total of 24 signals, with 8 signals

in each group, was used for this study. All the 24 signals were decomposed using CWT and the

coefficients were used to construct normalized scalograms.

The initial step in processing the scalogram was to only retain the most significant energy co-

efficients. This was done by applying a threshold to the normalized coefficients to capture the

top 25% of the coefficient energy. A threshold of 25% was used such that the retained significant

energy coefficients captured only the spread of the time scale energy of importance to the organiza-

tion. This would also help denoise the scalogram in the analysis of the organization. The threshold

δ was obtained in such a way the coefficients that sum to the top 25% of the scalogram energy

were retained.

Components of energy were now retained (using Equation 3.6) as a result of capturing only

the coefficients that represented the top 25% of the scalogram energy and setting the remaining

coefficients to zero. The results in a filtered version of the scalogram FW̃f (s,m) that retains the

dominant time-scale components. This notation will be used to represent filtered versions of the

scalograms that selectively retains time-scale structures.

FW̃f (s,m) > δ (3.6)

The retained components FW̃f (s,m) represents multiple time-scale structures of interest and

these components were extracted using the Moore-Neighbour tracing algorithm proposed by [69].

Feature Extraction

From the retained time-scale structures in FW̃f (s,m), the width of the component was calculated

with respect to time. The width signifies the duration of the jth time-scale component found from

the filtered scalogram FW̃f (s,m) and is given in Equation 3.7. The time width TWj for time-

scale component j is obtained by finding the difference between the minimum time mL,j and the

maximum time mH,j for the identified component using Moore-neighbour algorithm [69]. It would
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be expected that VT signals would have a much larger time width, due to the monotonic nature

of the signal, OVF would have multi-component, yet relatively larger time width when compared

to a DVF signal. Once the feature was extracted, a weighted mean as given in Equation 3.8 is

computed, where the weights aj are given in Equation 3.9 and A represents the sum of the weights

aj .

TWj = mH,j −mL,j (3.7)

TW =
1

A

∑
ajTWj (3.8)

aj =
TWj∑
j TWj

(3.9)

ROC

The ROC curves obtained for the time width feature are given in Figure 3.5. The ROC curve gives

us an indication that the preliminary wavelet analysis of the organizational structure using time

scale structures has provided a robust feature. As seen in Figure 3.5a, this feature is strong in

separating VT from non-VT ECGs because the area under the ROC curve is large (0.961). The

ROC curve for the classification between DVF and OVF is also strong, with an area of 0.930,

which indicates the robustness of this feature for the classification of VF into OVF and DVF.

Results

The boxplot for the average time-width feature, is shown in Figure 3.6, and it is evident that there

is a progressive increase in the average time from DVF to VT. The average time-width feature

was used to perform an automated pattern classification. An overall three group classification

accuracy of 75% was achieved using the LOO method. This initial results was encouraging for a

smaller database and was published in a conference preceeding [70]. Also a binary classification

for VT/Non-VT (Level 1) and OVF/DVF (Level 2) was performed on the smaller database and

classification accuracies of 91.7% and 75% were achieved respectively.
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(a) ROC for VT versus non-VT

(b) ROC for DVF versus OVF

Figure 3.5: ROC curves for the time width feature
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Figure 3.6: Average time width boxplot

The interesting information that we gathered from this preliminary analysis is that there is a

natural transition from VT to DVF, which is defined as OVF. This can be seen from Figure 3.6,

with no overlap between VT and DVF and OVF found between the groups. Also with the improved

time localization of frequency components, a feature (the time width) that can represent the ECG

organizational structure was identified. The identification of discriminative localized time-scale

components suggests the existence of specific patterns in the ventricular arrhythmia. Encouraged

by the above initial results and expanding on the above analysis, the scalogram can be treated as

a matrix, and matrix decomposition methods can be applied to extract features for an efficient and

robust approach for classifying the three arrhythmia groups.

3.3.4 Wavelet Transform and Singular Value Decomposition

The initial analysis demonstrated the classification of ventricular arrhythmias using the organiza-

tion structure by using the wavelet transform and image processing. The image processing how-

ever was taking advantage of specific patterns found in the scalogram matrix (as observed in Figure

4.13) and then provided a hard thresholding method to capture the organizational structure of the

arrhythmia. This hard thresholding that was used may not be universal for a larger or different
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database. Therefore, if it were possible to capture the same patterns using some form of matrix

decomposition, the classification can be performed more efficiently in a closed form and robust

method.

Method

All the 63 signals, comprising of 21 VT, 20 OVF and 22 DVF samples, from the database were used

in this study, as opposed to 24 samples used in section 3.3.3 for the preliminary wavelet analysis.

The signal were decomposed using CWT and the normalized scalogram was constructed. The

scalogram can be treated as a matrix with s×m dimension. Since we are interested in retaining the

dominant time-scale components, a technique that performs a matrix eigendecomposition would

be appropriate. There are several matrix decomposition methods that use eigendecomposition.

Of these methods, the principal component analysis [71–73] and singular value decomposition

(SVD) [65, 74, 75] are commonly used in literature. Based on existing literature, SVD is one of

the widely used decomposition methods on the wavelet scalogram and there is also evidence that

it has been applied to bio-medical signal analysis [65, 74, 75]. This is because the SVD creates

eigenvectors for combinations of scale and time, which is better for the identification of time-scale

structures. Hence SVD decomposition of the wavelet scalogram will be used in the proposed study.

SVD decomposes the information spread over the scalogram by treating the matrix as a sum of

separable components [76]. The concept behind SVD is to decompose the normalized scalogram

matrix W̃f(s,m) (Equation 3.5) into a canonical form. The canonical form decomposes the matrix

into the format given in Equation 3.10 [77].

W̃f(s,m) = USV H (3.10)

The matrices U and V are unitary matrices and H denotes the complex conjugate transpose of

the matrix. The singular values are represented by matrix S. Therefore the matrix W̃f(s,m) is

factorized by creating two unitary matrices, U and V , and a singular value diagonal matrix S [78].

The matrices U and V H represent components that describe the energy distribution pattern found

in the scalogram matrix W̃f(s,m). The singular values in the matrix S represents the amount

47



of energy captured by the components U and V H from the matrix Ŵf(s,m). The matrices U

and V H have an unique representation when applied to the wavelet scalogram. If the scalogram

is oriented such that the rows contain the scale aspect and the column contains the time aspect

of the scalogram, then the U matrix contains components that capture the frequency information

(in terms of scales) of the scalogram and the V H matrix captures the temporal information of the

scalogram. Equations 3.11 and 3.12 indicate how U and V H capture the specific frequency and

temporal information respectively.

W̃f(s,m)×W̃f(s,m)T = U×S ′×UT (3.11)

W̃f(s,m)T×W̃f(s,m) = V×S ′′×V T (3.12)

Both theU and V matrices perform the Eigendecomposition on matrices W̃f(s,m)×W̃f(s,m)T

and W̃f(s,m)T×W̃f(s,m) respectively [79]. U and V obtain the Eigen vectors for their re-

spective matrices. The Eigen values S ′ and S ′′ contain the same non-zero diagonal entries of

matrix S, but may be placed in a different order. The matrices W̃f(s,m)×W̃f(s,m)T and

W̃f(s,m)T×W̃f(s,m) identify dominant time-scale energy structures from the scale and time

respectively. Therefore performing the Eigendecomposition on these matrices allows for the iden-

tification of prominent time-scale signal structures, which is represented in the Eigen vectors that

are retained in U and V H . The singular values are an indication of the dominance of the com-

ponents within the scalogram. This enables efficient dimensionality reduction by retaining only

application specific dominant components.

Each U and V H component capture specific energy variation from the matrix W̃f(s,m).

Therefore for a particular component i, the combination of the U and V H with the correspond-

ing singular value can create the scalogram matrix that captures only a particular set of energy

variations from W̃f(s,m). This can be seen in Equation 3.13, where the ith column of matrix U

(y = 1,2,...,m) multiplied by ith row of matrix V H (z = 1,2,...,s) multiplied by the corresponding

singular value Si creates the filtered component FW̃f,i(s,m) scalogram.
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FW̃f,i(s,m) = Uy,i×Si,i×V H
i,z (3.13)

The number of FW̃f,i(s,m) matrices that will be created will be dependent on the minimum

between m or s (if m is less than s then there will be m number of FW̃f,i(s,m) matrices created,

and vice versa), which is also known as the rank r of the matrix. Each component i that is created is

a subset of the original W̃f(s,m) and therefore can be used to reconstruct the original scalogram.

This is well demonstrated by Hassanpour for the use of noise reduction [80].

To demonstrate the power of SVD decomposition on the scalogram, two synthetic signals were

created. The first signal simulates a monomorphic VT signal, and the second signal simulates the

DVF signal. Part A of Figure 3.7a and Figure 3.7b shows the scalogram of the simulated VT and

DVF signal respectively. The first five components from both the U and V H matrix and the line

plot of the first dominant component for each matrix (shown above the rows of V H matrix and to

the left of the U matrix) in part B and C respectively. Only the line plot of the first component

in the U and V H matrix is given because it demonstrates that the SVD had correctly identified

the dominant organizational structure, which has effectively reduced the dimension to two vectors

(one from U and V H) instead of analyzing a matrix with all the coefficients. The original signal is

also given in part D of the figures.

The first component, consisting of the first column of the U matrix (Part B of Figure 3.7a and

Figure 3.7b) and the first row of the V H matrix (part C of Figure 3.7a and Figure 3.7b), which

is the dominant time-scale component of the scalogram, can be observed to capture specific in-

formation with regards to the synthetic signal’s wavelet scalogram. In particular, it captures the

most dominant time-scale energy variation within the scalogram. For example, in Figure 3.7a, the

energy distribution in the dominant time-scale component of the U matrix (line plot in part B of

Figure 3.7a) is centered between the scales of 40 and 60, where as the dominant time-scale com-

ponent in the V H matrix (line plot in part C of Figure 3.7a) has its energy distributed throughout

the time window. In Figure 3.7b, it is seen that the energy in the dominant time-scale component

of the U matrix is spread through the scales and the dominant time-scale component of the V H

matrix has its energy sparsely distributed through time. SVD has accurately captured the dominant
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time-scale component found in the synthesized VT signal. The singular values gives an indication

of the amount of energy retained by each component [81]. SVD reorganizes the components such

that they are sorted in descending order of the singular values. Analyzing the dominant time-scale

component captured by the U and V H matrix as well as the dominant component’s singular value

allows us to obtain discriminant features to classify the groups of arrhythmias.

Feature Extraction

The dominant time-scale components (first U and V H vector as well as the singular value S) are

retained because they capture the profound time-scale structures in the scalogram of the ECG. The

dominant time-scale component is also preferred because it performs a dimensionality reduction

of the original scalogram.

An observable difference between the VT and non-VT groups from the SVD of the scalogram

was the energy distribution in the dominant time-scale component of the V H matrix of a VT signal,

which is expected to be equally distributed for most of the time (which could be observed in part

C of the simulated VT and DVF signal in Figure 3.7a and 3.7b). Since VT can also be modeled

using fewer components, it makes the initial singular value for these components to be much larger

than the subsequent components. In the case of a non-VT signal, the energy distribution in the

dominant time-scale component of the V H matrix will be non-uniform and relatively larger number

of components will be required to represent the scalogram, which in turn makes the singular values

more spread over subsequent components, unlike VT. The features that can be used to classify VT

from non-VT ECGs would be the percentage of energy captured by the first component (refer to F1

in Equation 3.14, which is generic for the ith component) and the variance of the first component

(i.e. first row) of the V H matrix (F2 in Equation 3.15). The variance is used to capture the energy

spread of the component (spread through time in the case of the V H matrix). If the component is

uniformly spread, then the variance is expected to be smaller when compared to a component that

has a single or multiple peaks.

F1 = Ŝi =
Si∑r

j=1 S(j)
(3.14)
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F2 = σ2
V H ,i =

1

m− 1

m∑
k=1

(V H(k, i)− V̂ H)2 (3.15)

For Equation 3.14, Ŝ represents the singular value for component i expressed as a percentage

and r represents the minimum of s and m (min[s,m]) or the rank of the matrix. The percentage

of the singular value is used instead of the actual value because the value produced by taking

the SVD of a matrix only gives specific information about the component. In order to use this

value as a feature, the singular value must be placed into context in terms of the scalogram matrix.

Therefore, the percentage is indicative of how much energy is captured by the particular U and

V H component. From Equation 3.15, σ2 represents the variance of vector V H and V̂ H is the mean

of the V H vector for component i. Equations 3.15 and 3.16 are given in a generalized for for any

component i, but only the dominant component (i = 1) is retained, which captures the dominant

time-scale structures in the filtered scalogram.

The most distinguishing feature between the OVF and DVF was observed in their composition

of organized signal structures which is reflected in the energy distribution of the dominant compo-

nent of the U matrix. After the non-VT ECGs are segregated using features F1 and F2 (percentage

of energy captured by dominant component and variance of the first component in the V H matrix),

the first component of the U matrix was retained as a feature to discriminate between OVF and

DVF in the non-VT group. As DVF is dis-organized with multiple frequency components, it has a

highly varying energy distribution over its scales, which compared to OVF has fewer and narrower

peaks. This can be noted from the time-scale structures found in figure 3.4. Therefore, the variance

of the dominant component of U will be a suitable feature in classifying the organization range of

VF. The feature F3 using Equation 3.16 was extracted for this purpose.

F3 = σ2
U,i =

1

s− 1

s∑
j=1

(U(i, j)− Û)2 (3.16)

Although the feature F3 resembles a bandwidth feature, it should be noted that this feature

is extracted on the decomposed selective time-scale structures represented by the dominant SVD

component. This dominant component helps to identify the underlying difference in the scale
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dimension of OVF and DVF, which is also dependent on the choice of mother wavelet. This infor-

mation may not be readily available from the spectral analysis, where the information is extracted

from the entire signal using sine and cosine functions.

ROC

The ROC curve given in Figures 3.8a and 3.8b indicate that the F1 and F2 features selected for the

VT and non-VT classification are robust. This is indicated by the area under the ROC curve, which

is 0.947 and 0.958 respectively. The ROC curve provided for the DVF and OVF classification

as shown in Figure 3.8c also demonstrate good discrimination with area under the ROC curve of

0.811. Therefore, this is an indication that the matrix decomposition approach is a robust method

by which we could capture the organizational index.

Results

A two level classification was performed to evaluate the extracted features. The level 1 classifica-

tion classified VT from non-VT and the level 2 classified the non-VT group into OVF and DVF.

An LDA classifier with the LOO method was used to analyze the features extracted from 63 pre-

classified ECGs. The scatter plot, given in Figure 3.9, shows the feature space separation between

VT and non-VT groups using Features F1 and F2.

The linear boundary separating VT and the non-VT is obtained from the classification and

shown in Figure 3.9. VT scalogram typically have an uniform energy distribution across time, thus

making the F2 (X-axis from Figure 3.9) lower when compared to the non-VT signals. Further-

more, since VT requires fewer number of components to model, the F1 (Y-axis from Figure 3.9)

shows that all VT samples have a relatively higher singular value when compared to the non-VT

group. Hence VT signals occupy the top left corner of the scatter plot.

The feature used to distinguish between OVF and DVF was the variance of the energy distribu-

tion of the first U component (F3). Since this classification uses a single feature, a box plot shows

the distribution of the feature for the two groups. Figure 3.10 demonstrates the classification of

OVF and DVF using F3 (variance of the first dominant scale component). It is observed that OVF

tends to have a higher variance than DVF due to OVF dominant component typically having fewer
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(a) ROC for VT versus non-VT (F1)

(b) ROC for VT versus non-VT (F2)

(c) ROC for OVF versus DVF (F3)

Figure 3.8: ROC curves for SVD features
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Figure 3.10: OVF and DVF boxplot for the variance of the dominant U component

but narrower spectral peaks and DVF having a evenly spread spectral energy distribution.

LOO cross validation was performed in estimating the classification accuracy. For the Level

1 of the binary classification, an accuracy of 93.7% was obtained. The confusion matrix for the

classification is presented in Table 3.3. Out of the 21 VT signals, 19 were correctly classified

with an accuracy of 90.5% and out of the 42 non-VT signals, 40 were correctly classified with an

accuracy of 95.2%.

Table 3.3: Level 1 CWT and SVD Classification: VT and Non-VT

Method Groups VT Non-VT Total
Cross-validated VT 19 2 21

Non-VT 2 40 42
% VT 90.5 9.5 100

Non-VT 4.8 95.2 100

For the Level 2 of the binary classification, an overall classification accuracy of 80.0% was

achieved, as presented in Table 3.4. Out of the 18 OVF signals, 14 were correctly classified with

an accuracy of 77.8% and out of the 22 DVF signals, 18 were correctly classified with an accuracy

56



of 81.8%. As it is challenging to draw a boundary between subgroups of VF into OVF and DVF,

the obtained results are encouraging. A direct three group classification was also preformed to

classify VT, OVF and DVF and the overall classification accuracy was found to be 79.4% .

Table 3.4: Level 2 CWT and SVD Classification: OVF and DVF

Method Groups OVF DVF Total
Cross-validated OVF 14 4 18

DVF 4 18 22
% OVF 77.8 22.2 100

DVF 18.2 81.8 100

An analysis on the misclassified ECGs had indicated that the misclassification had occurred

between either VT and OVF or OVF and DVF. There were no instances where a VT or DVF was

misclassified into the DVF or VT group respectively. This is encouraging and considering that it

would be difficult to account for all natural variations and subtle changes in the signal characteris-

tics that are captured by a trained electrophysiologist in pre-classifying the three groups. However,

using the proposed approach, the clinicians now have a scale to discriminate the organization levels

between the three types of arrhythmias which could aid them in assessing the nature of the arrhyth-

mias and decide on optimal therapeutic solutions. Therefore, the identification of the overlap zone

for the benefit of patients suffering from OVF was provided through the use of CWT.

3.3.5 Endo and Epicardial data

There has been a large number of articles in the field of VF dedicated to the analysis of the Endo

and Epicardial electrical activation (multichannel activations on the outer and inner surfaces of

the heart) during VF [23–25, 27–30, 82–84]. This is especially true in the study of Rotors, where

the dynamics of these organization centers were closely analyzed [23, 24, 28]. Since many of

the recent mechanistic insights were related to the analysis of the activation on the surface of

the heart, a by-product of the developed method in section 3.3.3, the time width, was applied

on the endo and epicardial activation on the surface of the heart to better understand the spatial

distribution of temporal organization (SDTO). The fundamental reason to performing research on
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the surface of the heart is because there is still very limited knowledge as to the mechanisms behind

the initiation and maintenance of VF. It was also discussed previously that there is a link between

the organization found in the surface ECG and the organization within the heart. Therefore, the

study of the SDTO may give us a better insight into the organization occurring in the surface of the

heart. The information provided in this section is an auxiliary finding compared to the previously

established method which focused on optimizing short and long term treatment options.

The electrical activity is typically analyzed using a Lagendorff setup (described by Nanthaku-

mar et al. [85]) to preserve the hearts functionality as long as possible after it has been explanted

from the human body. This is a unique database that is obtained because of the collaborative study

on VF. The electrical signal obtained from the Lagendorff setup is an 112 electrode system to

capture the epicardial activation (consisting of 14 columns and 8 rows across the ventricles of the

heart) and another 112 electrode system to capture the endocardial activation. Each electrode is

sampled at 1000 Hz. Therefore prior to beginning the signal analysis, the signals have to be down-

sampled, filtered and normalized. The electrode signals can be obtained through two formats:

unipolar or bipolar. The unipolar activation is obtained by measuring the electrical activation with

respect to a ground that is far enough from the activation point. Bipolar activation is the recording

of the electrical activation with respect to two adjacent electrodes. This thesis will only analyze the

unipolar activations for the analysis. This study is a byproduct of the method developed from sec-

tion 3.3.3 in order to attain a better understanding of the temporal organization across the surface

of the ventricles.

The method described in section 3.3.3 was applied to each electrode on the surface of the

ventricles. Therefore for each electrode, the average time width was obtained for a given window

of the signal. The window was shifted and again the time width was obtained. This was repeated

until the length of the electrode recordings were analyzed. For this analysis, a two second window

with 1.5 second overlap was used to obtain the time width feature. Figure 3.11 shows an example

of a SDTO map. The darker portions of the SDTO map indicate more organization (higher average

time width) where as the lighter portions indicate regions of disorganized activity (lower average

time width).
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Figure 3.11: Sample spatial distribution of temporal organization map of the LV endocardium (A)
and epicardium(B)

Unfortunately, the correlation of the organization on the surface ECG and the organization of

the activation on the surfaces of the heart could be conducted because the hearts were explanted.

The result of the analysis did show that both endocardium and epicardium exhibited similar or-

ganization structures. This result was also very similar to that previously obtained by the phase

maps. Since the results were correlated to the phase maps, a second study was undertaken to de-

termine if the organization is correlated to the rotors found from the phase map. The phase map

would show a point where the phase could not be determined and each of the nodes adjacent to
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Figure 3.12: Phase map and SDTO map comparison

the point is different. In addition to these adjacent nodes having different phases, all the adjacent

nodes would form a full 360 degree phase shift. On the SDTO map, this was seen as a localization

of highly unorganized signal, with organized structures around the node. The initial results of the

comparison between the phase map and spatial-temporal organization map can be seen in Figure

3.12. It can be seen that at points where there appear to be rotors, there also appear to be a high

degree of unorganized activity with surrounding organized electrograms, which is promising.

The correlation of this work to existing rotor work indicates that the temporal organization on

the surface of the heart is regionally organized. This can be seen by the unorganized activity in

the region of the rotor with organized activity surrounding the area of the rotor. This technique

identified similarities to the phase maps and could be potentially used to for future activation

studies on the surface of the heart.

3.4 Results Review and Discussion

3.4.1 Review of Results

In this chapter, the organization of the signal structures were analyzed to detect the overlap zone

between VT and VF. The spectral features from existing works were evaluated for the three group
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arrhythmia classification. The percentage of power of the dominant frequency and the band-

width performed well in separating VT from non-VT (88.90%) using an LDA classifier with LOO

method. However, they performed poorly in classifying OVf from DVF (63.15%). The direct three

group classification accuracy obtained using these features was 68.3% with an OVF classification

of 45%.

A preliminary wavelet study was undertaken to extract dominant time-scale structures from

the scalogram for classifying VT, OVF, and DVF groups. The average of each time width for the

time-scale components were used in a LDA classifier with the LOO method. A classification accu-

racy of 75% was obtained for three group classification and 91.7% and 75% were achieved for two

level binary classification into VT/Non-VT and OVF/DVF respectively. The results obtained from

this preliminary study encouraged a matrix decomposition approach on the scalogram for perform-

ing efficient classification of the arrhythmias in a closed form and universal method. A universal

method is also preferred because the hard thresholding used to attain the initial classification accu-

racies may not always be applicable for a different or larger database of arrhythmias. Therefore,

the time width was limited to the smaller database to indicate that the time-scale structures can be

related to the organizational structure of the signal.

Based on existing literature, SVD was chosen as the scalogram matrix decomposition technique

to extract the dominant time-scale structures representative of the three arrhythmias. Features

were extracted from the dominant SVD component (both U and V H component) as well as the

singular value. The process reduced the dimensionality of the feature space drastically. A binary

classifier was used to first classify VT from Non-VT arrhythmias and then classify OVF and DVF.

The classification accuracies obtained were 93.7% and 80.0% respectively. This method had also

achieved its goal of providing an index for organization of signal structures for VT, OVF, and DVF.

The proposed method performed well in classifying OVF and DVF, where the spectral featuers had

failed.

The analysis of the electrical activation on the surface of the heart using multichannel electrode

and the time-width feature was a by-product of this method. The aim was to analyze the temporal

organization over the regions of the ventricles. This analysis had indicated a correlation between
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phase maps and the identification of rotors. This also provided a new analysis tool to study the

electrical activations on the surface of the heart.

3.4.2 Discussion

There has been little work done in analyzing the transition between VT and VF. It should be

noted that the related methods mentioned previously [12,25,36] had aimed upon classifying MVT,

PVT and VF. This chapter had however looked to analyze the underlying organizational structure,

which classified the arrhythmias as VT (MVT and PVT), OVF and DVF. This is different because

PVT is a sub-classification of VT, and therefore would require the VT therapy options. The OVF

cases discussed in this chapter however could be analyzed to determine which therapy option is

better suited in aiding these patients. In short term treatment options, this method can be used

to better select between pacing and defibrillation shock. For long term options, the patients with

predominantly OVF can be first subjected to ablation therapy before installing an ICD. To the best

of our knowledge, no other proposed works has attempted to perform this type of classification.

Ropella et al. had developed a spectral coherence analysis by which to differentiate MVT, PVT

and VF using a two channel bi-polar intracardiac electrograms [36]. The proposed work in this

chapter focuses on the sub-classification on VF into OVF and DVF using wavelet analysis and only

uses a single lead ECG. Moreover the proposed work uses a time-scale technique to extract features

which is a major advantage and is superior to spectral based methods such as spectral coherence

analysis. Due to different groupings of the arrhythmia, databases, and number of channels used for

the analysis and the presentation styles of the results, we were unable to perform a fair and direct

comparison with the above work. In comparison to the phase reconstruction approach proposed

by Roberts et al. [12], the proposed method is much simpler computationally, yet powerful due

to the application of wavelet-SVD analysis. The identification of phase points within a region of

the phase space plot requires a longer duration of the signal, which is not suitable for real time

analysis. Ciaccio et al. had proposed a method to analyze the dominant frequency on the surface

of canine hearts (using multichannel electrogram) to distinguish MVT, PVT and VF [25]. The

method proposed in this chapter studies the temporal organizational of the signal structures using
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a single channel human surface ECG during an arrhythmia episode, which is more relevant for

real world treatment of ventricular arrhythmias. In [65] a wavelet-SVD analysis, similar to the

proposed work was applied, however on ECGs during normal sinus rhythm with support vector

machine based classifier to predict cardiac arrhythmias (VT and VF). This work had focused on

only the scale dimension of the SVD matrix to predict the occurrence of the type of arrhythmia.

This differs from the current method proposed in this chapter, where in the current method the

characterization of the arrhythmias is performed after the initiation of the arrhythmia with different

focus applications. The signal characteristics are quite different between SR and an ECG during

arrhythmia, as can be inferred from Figure 1.1 and 1.3 from chapter 1.

The potential of this work lies in the distinction of patients found in the overlap zone between

VT and DVF, in particular OVF and DVF. The organization index provided in this study analyzes

the organization of the ECG through time. Existing research [23–25, 27–30, 82–84] has shown

many works that have studied the temporal evolution of the spatial organization of VF. Further-

more, a study [63] have also shown the degradation of VF surface ECG through time is linked

to the temporal evolution of the spatial disorganization. The impact of the proposed work can be

further increased by performing a study that links the mechanistic study of the spatial organization

to the temporal organization found at the surface of the heart.

3.5 Chapter 3 Summary

This chapter has introduced wavelet methods that analyzed the underlying organization of signal

structures in the arrhythmia. The proposed methods could aid clinicians in diagnosing those pa-

tients who suffer from arrhythmias in the overlap zone with characteristics that resemble OVF and

suitably provide them with optimal therapeutic solutions and inspire newer treatment strategies.

The proposed methods will also aid ICDs in choosing appropriate therapies based on an organiza-

tional index (compared to the current rate dependent technologies) and also motivate newer pacing

and shock strategy. Finally, this chapter had provided a an auxiliary finding where the time-width

organization analysis feature could applied to the endo and epicardium electrical activation to an-

alyze the spatial distribution of temporal organization (SDTO), which may have implications on
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mechanistic insights of arrhythmias.

Based on the analysis performed and the results obtained from this chapter, it is evident that

arrhythmias are characterized by different composition of time-scale structures. This motivates

the quest for identifying specific signal morphologies in the arrhythmias that could be related

to physiological phenomena. The identification of these patterns may also lead to identifying

application specific discriminatory clues. Chapter 4 will explore at identifying and developing a

method to accurately detect the structural patterns.
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Chapter 4

Ventricular Arrhythmia Analysis for
Out-of-the-Hospital Arrhythmia Incidents

U
NLIKE symptomatic patients, arrhythmia may occur to people with no prior history or iden-

tification of cardiac related problems. There are also instances where arrhythmias could be

initiated in normal people due to external factors, such as electric shock and physically demand-

ing tasks that require short bursts of elevated physical activities (sports like football, rugby, etc.).

When these arrhythmia occurrence happens out-of-the-hospital, these are referred to as out-of-the-

hospital arrhythmia incidents. The survival rate of the out-of-the-hospital arrhythmia incidents is

highly dependent on the immediate treatment provided by the EMS personnel within minutes of

its occurrence.

During an out-of-the-hospital arrhythmia occurrence, the most important goal for EMS person-

nel is to choose the appropriate therapy (CPR, anti-arrhythmic drugs and defibrillation shocks) to

successfully resuscitate the patient. Depending on the state of the heart suffering an arrhythmia,

when the EMS staff arrive a combination of the therapies could be administered. There are exist-

ing methods that could analyze the ECG during arrhythmia in this out-of-the-hospital arrhythmia

occurrences and predict if a subsequent shock would restore normal rhythm [86–92]. For the pur-

pose of this thesis, we will focus on analyzing the pre-shock ECG during arrhythmia and relate it

to signal patterns that could lead to the accurate prediction of the shock outcome.

The previous analysis presented in chapter (chapter 3) had provided clues for the existence of

focal signal structures and components in arrhythmia. This chapter will introduce methods that will
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Figure 4.1: Thesis contributions presented in Chapter 4 are highlighted

analyze local and global signal patterns with the motivation of predicting the defibrillation shock

outcomes of the out-of-the-hospital arrhythmia incidents using the pre-shock ECG waveforms.

The outline of this chapter is highlighted in Figure 4.1.

4.1 Significance of Patterns in Ventricular Arrhythmias

The organization analysis had indicated the existence of time-scale patterns in the arrhythmia, but it

did not focus on detecting specific time-scale patterns occurring during the arrhythmia. It might be

possible to use the organizational analysis to predict shock outcomes in the out-of-the-hospital ar-

rhythmia incidents. However, arriving at signal patterns that can be visually identified by the EMS

in assessing the choice of therapies in a short window of time could benefit resuscitation outcomes.

Hence, in this chapter the ECG will be analyzed to determine specific patterns with physiological

connections that can be used to gain a better understanding of the ventricular arrhythmias and used

for predicting the shock outcomes.

In order to accomplish this, the ECG must be analyzed more ”‘locally”’, as opposed to the
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organizational analysis performed on the arrhythmia. This analysis is especially useful for patients

who experience an arrhythmia in the out-of-the-hospital setting, where an optimal resuscitation of

the patient can be provided within a short period of time. The timing of the resuscitation is crucial

because the blood circulation must be restored immediately, otherwise serious damage can occur

to the vital organs and possibly even death.

The detection of local patterns can also be beneficial to the research community. Until recently,

VF has always been regarded as chaotic and random in terms of electrical activation. The study

into rotor dynamics has shown that there is some form of organization that can provide mechanistic

insights for the arrhythmia [23,24,28]. Therefore the organization centers that dynamically change

in the heart would produce particular patterns, both on the intracardiac electrograms and surface

electrograms. If these patterns could be captured, then they could be associated with physiological

occurrences and could determine the condition of the arrhythmia. This has medical significance

because the identification of physiological markers can potentially inspire new therapy options to

provide effective anti-arrhythmia treatments specific to the distribution of patterns. It can also be

used to determine the effective use of current anti-arrhythmia drugs, which is currently not well

established [93].

4.2 Related Work

The prediction of successful defibrillation is vital to EMS personnel because it allows to optimally

resuscitate patients with limited number of defibrillation shocks. As discussed in section 3.1, the

increase in the number of defibrillation shocks that are applied to the heart will damage the muscle

fibers [62]. The study of successful defibrillation has been an area of intense research, both from

a medical and engineering perspective. As Olshansky et al. had summarized, the effect of drug

therapy on resuscitation success is continuously being conducted [93]. From an engineering point,

the analysis of defibrillation success is the primary goal. Since not all defibrillations are successful,

the goal is to find signal characteristics that would aid the paramedics in determining the most

appropriate time to provide the defibrillation. There are a wide range of signal characteristics

that have been used [86–92] to analyze the defibrillation success. Time domain features, such as

67



non-linear measure of randomness [87] and a phase space method [88], was used to predict the

shock outcome. Frequency domain characteristics are also employed in the prediction of shock

outcome [90, 91]. The scale distribution width, obtained from the scalogram, is also a strong

predictor of the defibrillation outcome [89, 92]. This chapter introduces techniques to capture

reoccurring patterns during arrhythmia and investigation of their relation in determining the shock

outcomes.

4.3 Ventricular Arrhythmia Patterns

This section highlights the detection of commonly reoccurring patterns and its application to our-

of-hospital arrhythmia occurrences. First, the database used for identifying the commonly occur-

ring patterns and then testing the occurrence of these patterns on out-of-the-hospital arrhythmic

occurrences are defined. This is followed by the wavelet and correlation analysis of the patterns in

predicting shock outcomes.

4.3.1 Database and Preprocessing

Pattern Identification Database

The identification of specific patterns in the arrhythmia was the first step in representing the signal

morphology. In order to identify specific patterns in the ECG, recordings must be analyzed to

determine the most reoccurring patterns during ventricular arrhythmia. There were 30 complete

surface ECG recordings obtained from the MIT-BIH database [66], specifically from the Creighton

database and the MIT Malignant database, which were sampled at 250 Hz. The ECGs were ar-

rhythmia occurrences from different patients with varying medical conditions. These ECGs were

analyzed to find the commonly occurring patterns, so that the ECG could be represented into a

combination of these patterns. The goal was to capture as large a percentage of the signal energy

using the identified patterns. These 30 ECG waveforms were filtered between the frequency range

of 0.5 to 30 Hz to remove any movement and noise artifacts (similar to that of section 3.3.1). The

filtered waveforms were then used to identify reoccurring patterns.
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Out-of-the-Hospital Arrhythmia Incident Database

In order to validate the patterns identified from the MIT-BIH database for the application of predict-

ing shock outcomes of in the out-of-the-hospital arrhythmia incidents, a special database was used

which contained 25 out-of-the-hospital arrhythmia occurrences. This database is unique because it

was obtained through our collaborators from Toronto General Hospital and St. Michael’s Hospital.

These were the field data collected by the EMS personnels using the Zoll Inc. (Model AED Pro)

external defibrillator. The ECG waveform obtained are the surface ECG during the period of time

that the EMS personnel attempted to resuscitate the person. The waveforms were down sampled to

250 Hz and then applied through a bandpass filter, with a pass band of 0.5 to 30 Hz. A maximum

of 10s of pre-shock ECGs were used for the analysis. A successful shock outcome was defined the

restoration of normal sinus rhythm for at least five beats and unsuccessful otherwise [56]. Three

experienced electrophysiologists of Toronto General Hospital and St. Michael’s Hospital had vali-

dated and classified the 25 ECG tracings into 14 successful and 11 unsuccessful outcomes. Sample

signals for a successful and unsuccessful case is shown in Figure 4.2, with the pre-shock signal,

post-shock signal and defibrillation shock, for better clarity.

4.3.2 Analysis for Pattern Identification

From the analysis of ECGs, using the MIT-BIH database described in section 4.3.1, there were five

patterns that were found to commonly occur in any stage of the arrhythmia. These patterns were

identified manually through visual inspection and correlation within the database. This search for

patterns was unbiased without any known previous physiological conditions. This was done to

ensure that all types of patterns are collected as a representation of the signal. The five patterns

were segmented into two groups of patterns. The first group of patterns consists of 4 local pat-

terns. These patterns exist in each ventricle depolarization, and were identified as such. The other

consisted of a global pattern. The patterns are shown in Figure 4.3.

These patterns that were identified may not be the only patterns, but were found to be the

most commonly occurring patterns in the given database. Each local pattern was chosen such that

they do not coexist with other patterns of the same group. Patterns from the normal sinus rhythm
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were not considered in this detection. The patterns were strictly limited to after the onset of the

ventricular arrhythmia.

Physiological Relevance to Identified Patterns

Most of the patterns that were independently identified have an electro-physiological connection.

The local patterns 1, 2, 3 and 4 all have known physiological occurrences. Pattern 1 is widely

known as indicative of a conduction block in the heart, and has been previously referred in medical

settings [94]. Pattern 2 and 3 can be seen as a variation of Pattern 1. Pattern 4 is seen as a re-

entry electrical pattern where by the electrical activation that originally depolarized the heart will

continuously depolarize the heart in a circular motion without termination [2]. The global pattern

resembles a medical pattern known as Torsade de pointes [95]. The global patterns also resembles

an AM modulated sinusoid as illustrated in Figure 4.3e.

4.3.3 Wavelet Analysis

The detection of the patterns can be more effectively performed on the time-scale domain, where

time-scale properties of each pattern can be identified and used for the detection. The time-scale

domain is preferred over the time domain analysis of the patterns (such as the one dimensional

correlation) because it allows for the natural scaling of the mother wavelet, which is useful in

capturing the variations or scaling of each pattern.

Template matching is a well established method for detecting locations where the two dimen-

sional pattern matches [96–98]. This method relies on the normalized correlation to determine

whether the template has a higher degree of match to the pattern found on the scalogram. The

scalogram templates for each pattern is identified in Figures 4.4, 4.5, 4.6, 4.7 and 4.8. There are

a couple of limitations to this type of template matching method. The first limitation is that VF

is known to exist in a wide range of frequencies [33, 34, 67], which requires multiple variations

of templates for each pattern. The other limitation to template matching is it is ineffective when

the templates are similar to each other. This is especially the case for the local pattern templates

given in Figures 4.4, 4.5, 4.6 and 4.7, which have many similarities. Therefore, the properties of
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the wavelet scalogram can be used to detect the occurrence of each pattern.

The advantage of using the CWT to detect the occurrences of these patterns is based on the con-

tinuous (or nearly continuous) scaling of the mother wavelet to decompose the signal. This allows

for an adaptive technique to be used to capture the variations of each pattern so that an accurate

representation of the arrhythmia can be accomplished. In order to avoid the short comings of the

template matching method using fixed templates with varying scales, the scalogram characteristics

of each pattern can be used to better detect the occurrence of the patterns. Furthermore, since these

patterns are both time and frequency dependent, it is important that the time spread is detected

(which was also indicated by the time-width analysis from section 3.3.3). The use of the scalo-

gram in the detection of the patterns is also important for creating a knowledge base that can be

used for future morphological time-scale pattern analysis in studying ventricular arrhythmias. The

methodology for the automated detection of the patterns was first developed and validated using

the MIT-BIH database. This method was later applied to the resuscitation database to determine if

specific patterns could be used to predict the defibrillation shock outcome.

Method

The time-scale planes were constructed for the arrhythmia segments from the 30 ECG tracing of

the MIT-BIH database and the local and global patterns are shown on the time-scale planes in

Figures 4.4 to 4.8. Analyzing these time-scale structures had revealed that the separation of the

local and global patterns required an analysis on the energy captured by the time-scale structures.

A methodology for automating the detection of the patterns on the time-scale plane was developed

as described below.

Detection of Local and Global Patterns

The wavelet selected in the task of identifying the local patterns is the complex Gaussian wavelet

(given in Figure 2.6 of chapter 2). The Gaussian wavelet has a time-scale structure that resembles

the time-scale structure local patterns. The complex wavelet is employed because the phase of the

ECG will be used to help determine the type of pattern that is detected.

Prior to obtaining the wavelet scalogram, the signal, in the given window, was normalized.
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Figure 4.6: Time-scale plane depiction of local pattern 3
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From the wavelet coefficients, the real, scalogram and phase planes were obtained for the patterns.

For the global pattern, the ECG waveform was full wave rectified before constructing the scalogram

in order to capture the envelope energy. These 2D time-scale planes were obtained using Equations

4.1, 4.2 and 4.3 respectively.

Wfr(s,m) = |real(Wf(s,m))| (4.1)

W̃f(s,m) =
100× (|Wf(s,m)|2)∑

s

∑
m(|Wf(s,m)|2) (4.2)

Wfp(s,m) = � (Wf(s,m)) (4.3)

All the time-scale plane depiction of the patterns only in this chapter are Wfr(s,m). In the

detection of depolarizations and envelopes (in the case of the global pattern), the Wfr(s,m) in

combination with the Wfp(s,m) is used to detect the maximas and their polarity, which is related

to the depolarization. The eight-connected neighbourhood approach was used to identify the max-

imas. Scalogram from all the 30 ECG tracings comprising of the local and global patterns were

re-analyzed for arriving at the following descriptions in order to automate the detection process of

these patterns using image processing.

• Local Pattern 1 contains two sub-peaks in addition to the depolarization maxima as illus-

trated in Figure 4.4.

• Local Pattern 2 contains one dominant sub-peak in addition to the depolarization maxima.

• Local Pattern 3 contains three sub-peaks in addition to the depolarization maxima.

• Local Pattern 4 contains no sub-peak within the depolarization maxima.

• Global Pattern contains distinct information in its envelope over many depolarizations as

illustrated in Figure 4.8.
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In order to perform the automated detection using the above constraints, additional conditions

on range of energy thresholding and scale parameter were experimentally obtained and are pro-

vided in Appendix A. Using the above constraints and the conditions provided in the appendix,

a sliding window of 10 seconds (in order to accommodate the variations of the patterns) and an

overlap of 1 second for the local pattern and 5 second for the global pattern were used to auto-

matically identify the patterns. To validate the above automated process, three randomly chosen

ECG recording (10% of the database) from the MIT-BIH database were used. The number of au-

tomatically detected patterns were verified against manually identified patterns and the following

detection accuracy was obtained. The detection accuracies were 81.5%, 75.3%, 83.3%, 78.4%

and 73.1% for local pattern 1 to 4 and the global pattern respectively.

With the identification and validation of the patterns detected using automated process, we

tested these patterns on the out-of-the-hospital arrhythmia incident database with the motivation of

associating the signal patterns to the prediction of shock waveforms.

Feature Extraction

The proposed automated process for detecting the local and global pattern was applied to the 25

pre-shock ECG tracings of the out-of-the-hospital arrhythmia incidents. The goal was to identify

the distribution of these patterns in the successful and unsuccessful shock outcome categories.

This was accomplished by computing the percentage of energy PEneri captured by each of the

pattern relative to the total signal energy. Since the energy of each pattern occurrence within the

arrhythmia was retained, the total energy captured by each pattern EPatterni
[where i is the pattern

type (local pattern 1 to 4 and global pattern)] with respect to the total signal energy ESignal could be

used as a feature. The percentage of energy PEneri captured by each pattern is given in Equation

4.4.

PEneri =
EPatterni

ESignal

(4.4)

Figure 4.9 illustrate the boxplot for the five patterns and their energy contribution to the success

and unsuccessful groups. A higher percentage contribution from a pattern indicates the prominence
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of that pattern in that group.

It can be seen from Figure 4.9 that global pattern discriminates the successful and unsuccessful

cases. It is also highlighted in Figure 4.10a where the frequent occurrence of the global pattern

can be observed in the successful defibrillation case. Therefore, only the global pattern was used

to perform pattern classification.

ROC

The ROC curve obtained for evaluating the feature is shown in Figure 4.11. The global pattern

exhibits strong discrimination as illustrated by the area under the curve (0.841).

Results

The feature extracted using the global pattern was fed to the LDA classifier and the classification

accuracy was computed using the LOO method. The results are provided in Table 4.1.

Table 4.1: Classification: successful and unsuccessful shock outcomes

Method Groups Succ Unsucc Total
Cross-validated Succ 10 4 14

Unsucc 1 10 11
% Succ 71.4 28.6 100

Unsucc 9.1 90.9 100

From the table, we could observe that 10 out of 14 successful cases and 10 out of 11 unsuc-

cessful cases were correctly classified with an overall classification accuracy of 80%. The main

objective of this study was to determine whether a characteristic pattern of the pre-shock waveform

could predict the shock outcome. Based on the above pattern detection method using wavelet anal-

ysis, the global pattern was identified to perform well with good classification accuracy. This result

encourages that the EMS personnel could use the frequency of occurrence of the global pattern in

the ECG during the arrhythmia as a visual feedback in predicting the shock outcome.

While the wavelet analysis method provided an accurate method for detecting the pattern, a

more computationally efficient method is desirable for near real time applications in predicting
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Figure 4.9: Pre-shock analysis using local and global patterns
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(a) Successful Defibrillation Case

(b) Unsuccessful Defibrillation Case

Figure 4.10: Successful and unsuccessful pre-shock sample
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Figure 4.11: ROC curve for feature extracted from global pattern

the shock outcomes. Although a 1D correlation of the patterns will be computationally efficient,

it suffers from the limitations of accommodating the scaled variations of the pattern. However,

having narrowed down the global pattern to be optimal for the application in hand, the following

section attempts to generate a synthetic global pattern with specific parameters that is optimized in

classifying the given database.

4.3.4 Correlation Analysis

The one dimensional (1D) correlation is a simple analysis that identifies the occurrence of a given

template (global pattern in this case) within a signal. In order to apply the correlation analysis for

the global, a pattern template must be generated. Although the limitation of the 1D correlation is

known, a synthetic single variation of the global pattern (with fixed parameters) can be identified to

approximate the occurrence of this pattern in order to predict the outcome of the defibrillation. The

choice of parameters for the synthetic pattern are limited by the global pattern variations present

in the database under study.

The creation of the global pattern template can be accomplished because the global pattern

is similar to an AM modulated signal. The synthetic pattern y can be constructed as shown in

Equation 4.5.
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Figure 4.12: Synthetic global pattern

y = sin(ω1)×sin(ω2) (4.5)

The amplitude modulation (denoted by the sinusoid with frequency ω1) is applied to a sinusoid,

with frequency ω2, to construct synthetic global pattern. The correlation of the synthetic pattern

was performed using multiple variations by changing the frequencies ω1 and ω2. Since VF is non-

stationary in nature, multiple variations of global pattern was synthetically created to best capture

the occurrence of global pattern of the waveforms. An example of the synthetic global pattern is

given in Figure 4.12.

The normalized correlation analysis Rf,y of the signal is given in Equation 4.6 for two signals

f and y [99]. The terms f and y represent the mean of the vector f and y respectively.

Rf,y(m) =

∑
[(fn − fn)(yn+m − yn+m)]√∑
[fn − fn]

2
√∑

[yn+m − yn+m]
2

(4.6)

The arrhythmia signal (given as f ) and the pattern template (given as y) will provide a normal-

ized correlation coefficient (Rf,y(m)). This correlation analysis was then applied to the resuscita-

tion database. The average correlation of the signal was calculated, using Equation 4.7, to provide

a single feature. The term N represents the length of the correlation vector Rf,y.

85



AveRf,y =
1

N

N∑
m=1

Rf,y(m) (4.7)

The average correlation AveRf,y is used as an indicator as to the average occurrence of a

particular synthetic global pattern y. If the average correlation is high for a particular variation

of global pattern, then the occurrence of this variation of the global pattern is high in the given

pre-shock waveform. Upon obtaining the average correlation AveRf,y for different variations of

synthetic global pattern, it was found that one variation better discriminated the two groups. The

frequency parameters for this variation of the synthetic global pattern were found to be 1 Hz and 5

Hz for ω1 and ω2 respectively.

The boxplot using the average correlation for the identified variation is shown in Figure 4.13.

As seen in this figure, successful cases tend to have a higher correlation to the particular variation

of synthetic global pattern than unsuccessful cases. An overall classification accuracy of 80% was

obtained in using the feature in an LDA classifier with the LOO method. Although the result is

comparable to the wavelet based automated detection method, it should be noted that the para-

menters (ω1 and ω2) for the synthetic GP were optimally chosen to maximize the discrimination

using the same resuscitation database. On the other hand, the wavelet based detection was devel-

oped and validated using the MIT-BIH database and was applied to the resuscitation database, and

hence maintains independence of datasets.

The automated detection, using a 1D correlation analysis with a single variation of GP, could

be used in ICDs to improve the accuracy of predicting the shock outcome. However, for arriving at

the optimal parameters, a large dataset are to be used to accommodate a wider range of variations.

4.4 Results Review and Discussion

4.4.1 Review of Results

The goal of the pattern analysis in this chapter was to help aid arrhythmia diagnosis in out-of-

hospital incidences by providing a characteristic pattern that can be used to predict the shock

outcomes. In order to accomplish this, five most occurring patterns were identified using the given
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Figure 4.13: Boxplot for average correlation analysis

database. An automated detection process was developed by searching for this patterns on the

scalogram based on certain constraints arrived at experimentally. The automated detection process

was validated against manual inspection and identification of these patterns. These patters were

then tested on the resuscitation database to evaluate if any of the most frequently occurring patterns

could be a pre-cursor for the shock outcomes. The percentage of energy captured by each of the

pattern was extracted as a feature to quantify the prominence of the pattern in the successful and

unsuccessful categories of the shock outcomes. Using an LDA based classifier an overall classifi-

cation accuracy as high as 80% was achieved using only the global pattern. This analysis revealed

that the global pattern seems to have a strong correlation with the shock outcomes and can be used

by the EMS personnel as quick visual feedback in preciting the shock outcomes and accordingly

choose the appropriate therapy. Encouraged by the results achieved by the global pattern, a simple

1D correlation approach was tested by generating a synthetic template for the pattern. Using this

approach, a classification accuracy of 80%. Allthough the parameters used for the synthetic tem-

plate limit this analysis to the given database, its simplicity and gain in computational complexity

make this an attractive alternative.
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4.4.2 Discussion

The proposed pattern analysis methods are different from existing methods used for the prediction

of shock outcomes. Existing methods capture particular characteristics of the signal in either time,

frequency or time-frequency domains. Phase space method [88] is an example of the time domain

feature used to predict the shock outcome. Frequency sub-band energies was used as a feature

to predict the shock outcome [90, 91]. Foomany et al. had provided a wavelet based feature to

determine whether the shock would be successful or unsuccessful [56]. The proposed method in

this chapter provides the EMS with a visually identifiable morphological structure, that could be

used to predict the shock outcomes. Furthermore, these morphological structures can be better

analyzed for their physiological relevance, when compared to other techniques that use features

from the time, frequency and wavelet domain. It is also encouraging that a result of 80% was

obtained in the classification of the preshock waveforms, which is comparable to the results of

existing literature, although with a small database.

The analysis of the resuscitation cases is only one immediate application of the out-of-the-

hospital pattern analysis, yet its contribution could have an significant impact as EMS personnel

can now be trained to visually identify the pattern occurrence and optimally choose the therapy,

which can result in saving more lives.

4.5 Chapter 4 Summary

This chapter introduced two methods that could analyze the pre-shock waveform in order to predict

shock outcomes using signal patterns. This was achieved by identifying a set of local and global

patterns that were found to be commonly reoccurring. The wavelet analysis introduced a scalo-

gram based pattern analysis method that could accurately detect the occurrence of all five patterns.

This method was tested with the out-of-the-hospital resuscitation cases to show that global pattern

was dominant in discriminating the two categories of shock outcomes. An average correlation

analysis technique was also developed as simple and computationally efficient alternative. The

representation of the arrhythmias, in terms of signal morphologies, could eventually lead to a bet-
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ter mechanistic understanding as it allows us to determine the physiological state of the arrhythmia

based on past and present occurrences of these patterns. It could lead to the development of more

effective drugs, by which the progress can be directly monitored. This will however require much

further analysis and greater collaboration between engineers and cardiologists.
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Chapter 5

Conclusions and Future Works

VENTRICULAR arrhythmias are a subset of cardiovascular diseases that could lead to seri-

ous medical conditions and/or death. Annually around 350,000 (45,000 in Canada) SCDs

are reported in North America, most of which are VF related. Over the years, information ex-

tracted from electrocardiograms and electrograms during arrhythmia have been used to optimize

the choice of treatment options and implantable medical devices for these lethal arrhythmias, de-

spite this the mortality rate remains high. This thesis presented methodologies that using advanced

signal analysis techniques attempts to improve upon the current strategies in choosing appropri-

ate therapy for the affected population. For the symptomatic group of patients, a novel subgroup

of ventricular arrhythmia was introduced with a motivation to quantify the overlap zone between

the two important ventricular arrhythmias (VT and VF) which may lead to optimizing the therapy

for patients in this overlap zone. For the out-of-the-hospital arrhythmia occurrences, the pro-

posed method introduced a pattern detection approach with the motivation to identify discriminant

electrocardiogram morphologies with physiological relevance that could provide a quick visual

feedback to the EMS personnel as the choice of therapy has to be decided within minutes for this

subgroup of affected population. The proposed approaches performed well in achieving the set

goals of this thesis as validated by the results obtained.
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5.1 Summary of Results and Impact

The first major contribution of this thesis was the study of the organizational signal structures found

in the arrhythmias. A wavelet singular value decomposition (SVD) based technique was used to

accurately classify the transition of the arrhythmia from VT to DVF, and a set of features were

extracted to elucidate this transition. A databases consisting of 63 arrhythmia segments from the

publicly available MIT-BIH databases was used to perform a 3 group classification as VT, OVF

and DVF. The samples were originally classified by trained and experienced electrophysiologists

which served as the ground truth. Using a LDA based classifier a two level binary classification

of these groups were performed. The first level classified VT from Non-VT with a classification

accuracy of 93.7% and the second level performed the classification of OVF and DVF with a

classification of 80% accuracy was obtained. A direct 3 group classification was also performed

and a classification accuracy of 79.4% was obtained. These results are significant in the sense

that the clinicans can now grade the affinity of the ventricular arrhythmias which will help them to

explore long-term ablation solutions for the patients in the overlap zone. This will also influence

the ICD by improving their intelligence in choosing between pacing and delivering shocks and

thereby reduce the ill-effects of unneccessary shocks. The proposed method was also used to

generate a spatial distribution of temporal organization map to study the temporal organization on

the surface of the heart’s ventricles and a correlation was made with existing rotor maps. This tool

provides avenues for regional chracterization of temporal organization of the arrhythmia on the

surface of the heart which could be of significance in arriving at mechanistic insights.

The second major contribution of this thesis was the prediction of shock outcomes for the out-

of-the-hospital arrhythmia occurrences using a pattern analysis approach. Commonly occurring

signal patterns were identified in the arrhythmia, which is especially useful when diagnosing out-

of-hospital arrhythmia incidents. The reason for this is that when the EMS arrive to assist a patient

suffering from ventricular arrhythmia, there is a short window of time in which they must diagnose

and provide appropriate therapy. The wavelet scalogram based pattern detection approach was used

to identify the five reoccurring signal patterns. Of these patterns, one of the pattern demonstrated

strong discrimination between the successful and unsuccessful outcome groups and was used to
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perform classification of database with 25 resuscitation cases. Using a LDA based classifier a

classification accuracy of 80% was achieved in seggregating the two groups. A 1D correlation

approach was also introduced as a computationally efficient alternative, specialized for the given

database, which yielded a classification accuracy of 80%. Considering that the time critical nature

of the resuscitation process for the out-of-the-hospital arrhtyhmia occurences, the proposed method

has identified a discriminatory signal pattern that could provide a visual feedback to the EMS

personnel in near real-time for monitoring and assiting in choosing the appropriate therapies.

5.2 Potential Applications

The following are few of the potential applications of this thesis work:

• An organizational index based arrhythmia classifier for implantable devices and retrospective

analysis of symptomatic patients.

• A electrocardiogram morphology based technique for assisting EMS personnel in optimizing

resuscitation outcomes.

• A novel spatial distribution of temporal organization (SDTO) map which could be of use in

mechanistic study of ventricular arrhythmias.

• Characterization of ventricular arrhythmias using local and global signal morphologies for

diagnostic and mechanistic insights.

5.3 Directions for Future Works

The methods that were discussed in this thesis had the main goal of furthering our understand-

ing of ventricular arrhythmias (specifically VT and VF) and to aid clinicians and EMS in treating

patients with ventricular arrhythmias. The organizational analysis had shown the existence of the

arrhythmia in the transition state between VT and VF. This could be further explored from the

ICD perspective to arrive at better algorithms. The identification of the organization index can
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also inspire future anti-arrhythmic drugs, multiple level shock threshold programming and abla-

tion therapies best suited for patients with OVF. The characterization of the arrhythmia using the

five reoccurring patterns indicate that the arrhythmia is not completely random. This has also been

indicated in the literature by analyzing the rotors within the heart during VF. This characteriza-

tion approach has a lot of potential in terms of associating pathophysiological relevance to varying

distribution of these reoccurring patterns. The identification of physiologically relevant signal pat-

terns can also be used to determine if these markers are caused by specific mechanisms within the

heart during an arrhythmia. These patterns could also serve as precursor to predict the possibility

of future arrhythmic events. The author does hope that this information will be used one day to

help provide better treatment options that can reduce the number of SCDs.
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Appendix A

Experimental Results of Pattern
Characterization

A.1 Experimentally Arrived Average Parameter and Thresh-
old Ranges for Each Pattern

A.1.1 Average Parameter and Threshold Ranges for Local Pattern 1

To capture the pattern, the higher frequency (lower scale) sub-band is analyzed to capture the

sub-peak energy. An average range of scale factors (parameter) was experimentally obtained by

analyzing 30 ECG recordings to capture the scale of the sub-peak with respect to the depolarization

scale and is given in Table A.1.

Table A.1: Average scale factors for pattern 1

Scale Range Scale factor
10-30 2.75
30-45 3
45-75 3.25

The sub-peaks were identified by using the Wfp(s,m). The following average threshold ranges

were experimentally identified for Pattern 1.

• The ratio 5 ≤ W̃fsub−peak

W̃fdepol
×100 ≤ 100 must be satisfied.

• The ratio 0.25 ≤ W̃fsub−peaki

W̃fsub−peakj

≤ 4 where i �= j.
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The first threshold states that the energy of the sub-peaks must be greater than 5% of the

depolarization maxima, but cannot be greater than the energy captured by the depolarization itself.

This is to ensure that this is a valid sub-peak. The second threshold checks that the energy ratio

between each sub-peak is not larger than a factor of 4. If the ratio is too large, then it will resemble

pattern 2.

A.1.2 Average Parameter and Threshold Ranges for Local Pattern 2

Similar to pattern 1, the average scale factor was experimentally obtained for pattern 2 and is

provided in Table A.2.

Table A.2: Average scale factors for pattern 2

Scale Range Scale factor
10-30 2.75
30-45 3
45-75 3.25

The sub-peaks were identified using the Wfp(s,m). The following average threshold ranges

were experimentally identified for Pattern 2.

• The ratio 5 ≤ W̃fsub−peakMax

W̃fdepol
×100 ≤ 100 must be satisfied. There may only be one sub-peak

that satisfies this.

• The ratio
W̃fsub−peakOther

W̃fsub−peakMax

≤ 0.25 must apply.

The first threshold states that the sub-peak with the maximum energy must at least have an

energy of 5% of the depolarization energy and without exceeding it. The second threshold checks

that the ratio between the other sub-peaks and the maximum sub-peak cannot exceed 0.25. If this

does, then it would resemble pattern 1 or pattern 3.

A.1.3 Average Parameter and Threshold Ranges for Local Pattern 3

Similar to pattern 1, the average scale factor was experimentally obtained for pattern 3 and is

provided in Table A.3.
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Table A.3: Average scale factors for pattern 3

Scale Range Scale factor
10-30 3.25
30-45 3.5
45-75 3.75

The sub-peaks were identified using the Wfp(s,m). The following average threshold ranges

were experimentally identified for Pattern 3.

• The ratio 5 ≤ W̃fsub−peak

W̃fdepol
×100 ≤ 100 must be satisfied.

• The ratio 0.25 ≤ W̃fsub−peaki

W̃fsub−peakj

≤ 4 where i �= j.

The first threshold states that the energy of the sub-peaks must be greater than 5% of the

depolarization maxima, but cannot be greater than the energy captured by the depolarization itself.

The second threshold checks that the energy ratio between each sub-peak is not larger than a factor

of 4. If the ratio is too large, then it will resemble pattern 2.

A.1.4 Average Parameter and Threshold Ranges for Local Pattern 4

Since pattern is expected to have no sub-peaks (or if there are sub-peaks, then the energy captured

by them is negligible), the average scale factors developed for pattern 1 were used to capture any

sub-peak energy and is provided in Table A.4.

Table A.4: Average scale factors for pattern 4

Scale Range Scale factor
10-30 2.75
30-45 3
45-75 3.25

The following average threshold is imposed on the depolarization to capture pattern 4.

• The ratio
W̃fsub−peak

W̃fdepol
×100 ≤ 5 must be satisfied.
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The threshold states that all the sub-peaks must be below 5% of the energy of the depolariza-

tion.

A.1.5 Average Parameter and Threshold Ranges for Global Pattern

The envelope maximas are in the higher scales (lower frequencies) of the time-scale plane and the

depolarization maximas are in the lower scales of the time-scale plane. The average scale range

(and corresponding frequency range) for the type of maxima is provided in Table A.5

Table A.5: Average scale ranges for global pattern

Type of Maxima Scale Range (scale) Frequency Range (Hz)
Depolarization 10-50 2-10

Envelope 50-400 0.25-2

Since the envelope energy spans over many depolarizations, an average of each ratio between

N depolarizations and the envelope maxima was experimentally obtained. The following average

threshold ranges are imposed on the average ratio of the envelope to the depolarizations.

• The ratio 10 ≤
∑ W̃fdepol

W̃fenvelope
×100

N
≤ 50 must be satisfied.

• The
W̃fdepolmin

W̃fdepolmax

×100 ≥ 25 must also be satisfied.

The first threshold checks that the average of the envelope maxima energy to the depolarization

maxima energies is within the given ratio. This ensures that the envelope does belong to the global

pattern. The second threshold ensure that the depolarizations are actual depolarizations and not

noise. Each of the AM envelope structure in the pattern was detected individually.
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Appendix B

Publications

List of publications arised/arising from this thesis work

B.1 Journals

1. K. Balasundaram, S. Masse, K. Nair, and K. Umapathy. A Classification Scheme for Ventricular

Arrhythmias Using Wavelets Analysis. Medical & Biological Engineering & Computing., Under

2nd revision, July 2012.

2. K. Balasundaram, S. Masse, K. Nair, and K. Umapathy. Analysis of Electrocardiogram Mor-

phologies During Human Ventricular Fibrillation to Optimize Resuscitation Outcomes. IEEE

Transactions on Biomedical Engineering Letters. to be submitted, July 2012.

B.2 Conferences

1. K. Balasundaram, S. Masse, K. Nair, T. Farid, K. Nanthakumar, and K. Umapathy. Wavelet-

based features for characterizing ventricular arrhythmias in optimizing treatment options, in Proc.

IEEE Engineering in Medicine and Biology Society 2011 conference (EMBC 2011), pp. 969-972,

Boston, USA.
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Appendix C

Glossary

Glossary

AED Automatic External Defibrillator
CPR Cardio Pulmonary Resuscitation
CWT Continuous Wavelet Transform
DVF Disorganized Ventricular Fibrillation
DWT Discrete Wavelet Transform
ECG Electrocardiogram
EMS Emergency Medical Staff
ICD Implantable Cardioverter Defibrillator
LDA Linear Discriminant Analysis
LOO Leave-One-Out Method
MVT Monomorphic Ventricular Tachycardia
OVF Organized Ventricular Fibrillation
PVT Polymorphic Ventricular Tachycardia
PQRST Segments of ECG waveform
ROC Receiver Operating Characteristics
SCD Sudden Cardiac Death
SDTO Spatial Distribution of Temporal Organization
SR Sinus Rhythm
STFT Short-time Fourier Transform
SVD Singular Value Decomposition
VT Ventricular Tachycardia
VF Ventricular Fibrillation
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