AN ARITHMETIC APPROACH TO THE ANALYSIS

OF MULTIPLE FAULTS VERIFICATION AND

TS 1.9

SYNTHESIS AT SWITCH-LEVEL 0 i‘*S
ok
By

Mohammad Reza Samadpour Javaheri
Bachelor of Computer Engineering
Azad University of Tehran,

Tehran, Iran, 1997

A thesis
presented to Ryerson University
in partial fulfillment of the
requirements for the degree of
Master of Applied .Science
in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2006

© Mohammad Reza Samadpour Javaheri 2006

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

UMI Number: EC53515

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53515
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpose of scholarly research.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Signature °

ii

ABSTRACT

Thesis Title:
An Arithmetic Approach to the Analysis of Multiple Faults

Verification and Synthesis at Switch-Level

Thesis submitted by:
Mohammad Reza Samadpour Javaheri
Optimization Problems Research and Applications Laboratory (OPR-AL)
ELCE, Master of Applied Science, Ryerson University 2006

Thesis Directed by:
Dr. Reza Sedaghat
Electrical and Computer Engineering Department

Ryerson University

Switch-level modeling and simulation has become an important method for predicting the
behaviour of CMOS circuits under the presence of faults. Many important phenomena in CMOS
circuits, such as bi-directional signal propagation, charge sharing and variations in driving
strength can be reliably modeled using this technique. This paper presents an algorithm for
modeling directional and bi-directional CMOS circuits with an arithmetic solution for circuit
verification and fault synthesis. This new approach is capable of simulating multiple fault
injection into the circuit and speeds up switch-level simulation. Other advantages of this
algorithm are its application in the mapping of single and multiple faults from switch level to
gate level and the ability to function as a multi-level model. Multiple faults can be of the same or
different types. Experimental results using Cadence tools show that the algorithm is successful

.and reliable for CMOS technology.

iv

ACKNOWLEDGEMENT

- Iam deeply indebted to my advisor, Dr. Reza Sedaghat, for his constant support. Without his
help, this work would not be possible. I would also like to thank the members of our OPR-AL

lab who braved the storm of the century to help me.

I would like to thank my family for their support. Above all, I cannot express my full gratitude to

my parents, who patiently advised me throughout my whole life.

I dedicate this thesis to my mother and father.

TABLE OF CONTENTS

iv

ABSTRACT
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES X
NOMENCLATURE xii
CHAPTER 1 INTRODUCTION 1
1.1 Overview 1
1.2 Bi-directional behaviour of this algorithm 2
1.3 Summary of Contributions 3
1.4 Organization of Thesis. 4
CHAPTER 2 FUNDAMENTAL DEFINITIONS 5
2.1 Fault models S
2.2 Function Conversion 6
2.3 General Method 6
2.4 Logical values 7
2.5 Connection node 10
CHAPTER 3 CIRCUIT GRAPH MODEL 12
3.1 Bi-directional graph model 12
3.2 Directional graph model .13
CHAPTER 4 ARITHMETIC MODEL AND EQUATION 15
4.1 Function definitions 15

4.2

4.3

CHAPTERSS
5.1
5.2
53
5.4
55
5.6

CHAPTER 6

Function definitions for directed signals

Gate equations

4.3.1
4.3.2
4.3.3
4.34
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.3.17
4.3.18

SINGLE FAULT SIMULATION
Bridging fault
Open circuit fault
Stuck-at Fault
Bridging between A and 1
Short between A and Y
Short between 1 and 2

MULTIPLE FAULT SIMULATION

NOT

NAND2

NAND3

NAND4

NANDS

NOR2

NOR3

NOR4

NORS

AND2

AND3

AND4

ANDS
OR2

OR3

OR4

ORS

D-Latch

vii

17

19
20
20
21
22
23
24
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
40
43
45
46
48

CHAPTER 7 EXPERIMENTAL RESULTS

7.1 Cadence Spectra results for a CMOS circuit
7.2 Multiple Fault Simulation (MFS) software
CHAPTER 8 CONCLUSION
CHAPTER 9 FUTURE WORK
PUBLICATIONS
REFERENCES

viii

51
51
57
60
62
64

65

| Table 1-
Table 2-
Table 3-
Table 4-
Table 5-

. Table 6-
Table 7-
Table 8-

Table 9-

Table 10-

Table 11-

‘Table 12-

Table 13-

Table 14-

Table 15-

LIST OF TABLES

Bi-directional behaviour lookup table for CMOS

Connection node equivalent value lookup table

NOT truth table

Directional behaviour lookup table for CMOS

Truth table with bridging fault

Truth table for open circuit fault

Stuck-at fault lookup table, O = Oﬁtput, I =Input and G = Gate

Truth table for OR circuit equation

Truth table for OR gate circuit with bridging fault between points ‘A’ and ‘1’
Truth table for OR gate circuit with bridging fault between two points ‘A’ and ‘Y’
Truth table for OR gaté with bridging fault between points '1' and 2

Truth table for OR gate with multiple faults

Percentage of Single Fault Coverage for Benchmark Circuits

Percentage of Multiple Fault Coverage for Benchmark Circuits

Benchmarks Synthesis CPU Time

Figure 1-
Figure 2-
Figure 3-
Figure 4-
Figure 5-
Figure 6-
Figure 7-
Figure 8-
Figure 9-
Figure 10-
Figure 11-
Figure 12-
Figure 13-
Figure 14-
Figure 15-
Figure 16-
Figure 17-
Figure 18-
Figure 19-
Figure 20-

Figure 21-

LIST OF FIGURES

(a) Normal behaviour (b) Switching behaviour or bi-directional
CMOS Circuit

(a) NOT gate, (b) NOT gate bi-directional graph
(a) NOT gate, (b) NOT gate directional graph
Not Gate

NAND?2 Gate

NAND3 Gate

NAND4 Gate

NANDS Gate

NOR2 Gate

NOR3 Gate

NOR4 Gate

NORS Gate

AND?2 Gate

AND3 Gate

AND4 Gate

ANDS Gate

OR2 Gate

OR3 Gate

OR4 Gate

ORS5 Gate

Figure 22-

Figure 23-

Figure 24-
Figure 25-
Figure 26-
Figure 27-
Figure 28-
Figure 29-
Figure 30-
Figure 31-
Figure 32-
Figure 33-
Figure 34-
Figure 35-
Figure 36-
Figure 37-
Figure 38-
Figure 39-

Figure 40-

D-Latch

(a) NOT gate circuit with bridging fault (b) Circuit pre-graph with bridging (c)
Fault implementation in graph

P-type transistor is stuck-at-z

P-type transistor is stuck-at-1

Transistor model of OR gate

Graph model for OR circuit

OR circuit pre-graph with bridging fault

OR graph with bridging fault

Pre-graph for OR circuit with bridging fault

OR circuit graph with bridging fault

CMOS circuit with stuck-at-on for P3 and bridging between points 'A' and '1'
Circuit pre-graph with stuck-at-on for P3 and bridging between points 'A' and '1'
Circuit graph with stuck-at-on for 'P3' and bridging between points 'A' and '1'
CMOS OR gate circuit

Fault free and faulty output timing diagram for circuit in Figure 35

NOT gate schematic with bridging fault in Cadence Spectra

In/out timing diagram for circuit in Figure 37

OR gate circuit with multiple fault injection in Cadence Spectra

In/out timing diagram for circuit in Figure 39

xi

FO

F1

Q zZ =

w2

MFS

NOMENCLATURE

Logic zero
Logic one

High impedance
Unknown
Forcing zero
Forcing one

Connection node symbol

P-channel transistor function

N-channel transistor function

CMOS Gate

CMOS Source

CMOS Drain

Input value for bi-directional functions
Output value for bi-directional functions
Circuit’s output

Multiple fault simulation software

xii

CHAPTER 1
INTRODUCTION

1.1 Overview

Testing is an integral componenf of thg VLSI design process[1][4][8][10][19][20] . In VLSI
circuits, the set of possible faults is very large. Thus, the need for cost effective fault simulation
techniques increases with the size of the circuit under test. Traditional fault simulation has been
>carried out at the logic gate description level, where classical node stuck-at-0, stuck-at-1 and
stuck-at-open [1][22] fault models are considered. However, it has been observed that the
classical stuck-at-0 and stuck-at-1 fault models may not be sufficient to represent the effect of
physical defects on the behaviour of the transistor circuit design. It should be Amentioned,
however, that switch-level fault injection simulation is more time consuming than gate level fault
injection [1][2][9]. Thisb report introduces an experimental arithmetic switch-level fault synthesis
algorithm for both combinational and sequential circuits capable of simulating extremely large
designs that is more accurate than at gate level [3] and can be used both for design verification
[2][9] and fault simulation [7][12][13]. Single and multiple fault models are supported since it is

possible to incorporate any fault model with logical effects. It is possible to model the entire

circuit at the switch level. The functionality of this algorithm has been verified with the Cadence
Spectra éimulator. The algorithm is based on the behaviour of CMOS transistors in digital
circuits [24]. An equation is assigned for a whole path in a circuit to describe circuit behaviour in.
detail based on all input combinations. To generate the equation, the algorithm represents the
circuit as a graph. For bigger circuits it is possible to use partitioning methods to reduce

complexity.

The unique aspect of this method is that multiple physical faults [1][5][6] are simply injected
into the circuit and consequently the results can be seen in the equation. This algorithm can
detect all types of faults, including stuck-at -1, stuck-at-0, stuck-at-on, stuck-at-off, bridging [25]
and open circuit faults. A unique aspect of the algorithm is its handling of multiple fault
injection into the circuit with similar or different types of faults. Furthermore, it can easily map
transistor level faults to gate level [11][14][18][23] using a truth table to demonstrate all the
intermediate values in the circuit. All values are generated by the equation. In most caées, the
library based approach to fault simulation is used to map switch level faults to gate level while

covering only single fault injection and limited fault models.

1.2 Bi-directional behaviour of this algorithm

To improve the diagnostability and testing [1][4][8][10] of deep sub-micron high
performance VLSI circuits, the need to incorporate more accurate defect models in traditional
test generation schemes has become accentuated. Faults such as bridging and transistor stuck-on

[1] are known to be representative of a sizeable class of physical failures occurring in CMOS

circuits. Whereas some of these faults can be modeled by stuck at behaviour, electrical-level
analysis is necessary to handle the majority of these faults. Since a CMOS device is bi-
directional in nature, information is considered to flow through it in both directions. This usually
requires two separate steps (one for each direction) to express the interaction across a single
transistor, with its source and drain switching roles between steps. In this approach we simply

connect VDD to drain and GND to source.

1.3 Summary of Contributions

The objective of the thesis report is to emulate many important features of switch-level
models, such as bi-directional signal propagation and variations in driving strength and multiple
fault injection and test synthesis for unidirectional and bi-directional CMOS VLSI design. The

overall research contributions of this thesis are summarised as follows:

e Development of an arithmetic algorithm capable of addressing all possible physical problems
in switch level for CMOS technology-based circuits of any size.

e Analysis of different types of multiple faults. Multiple faulté were defined as any
combination of bridging, stuck-at-fault and open-wire faults occurring simultaneously in the
circuit.

e It was confirmed from the result that multiple fault injection into the circuit speeds up

switch-level simulation.

e The functionality of the algorithm was checked with the Cadence Spectra simulator. The
expéﬁment was completed for all CMOS gates at transistor level.

e Multiple Fault Simulation (MFS) software was developed and run on several ISCAS85 and
ISCAS89 benchmark circuits.

e An algorithm is designed capable of mapping faults from a transistor level model to a gate
level model.

e This algorithm has a unique ability to propagate delay faults as a constant defect at output
which is the most challenging bottleneck in latest technology. This method is fundamentally

different from all existing methods.

1.4 Organization of Thesis

In Section 2 fundamental definitions and logical values for CMOS transistors are presented.
Section 3 demonstrates the circuit graph model for both directional and bi-directional circuits
and also how to find a dominant value from a lookup table when two signals meet each other in
the connection node of a CMOS transistor. Section 4 explains an arithmetic model with its
equation and truth table. Section 5 presents single fault simulation. Multiple fault simulation is
covered in Section 6. The experimental evaluation of the presented algorithm is discussed in
Section 7. Section 8 describes the ability of the presented algorithm to propagate delay faults in
future works. Section 9 concludes this paper, followed by a list of cited publications and

references.

CHAPTER 2
FUNDAMENTAL DEFINITIONS

2.1 Fault models

In this section fundamental definitions for switch level are presented, which are necessary
and sufficient to describe electrical behaviour of stuck-open/stuck-on faults (switch level) on the
gate level. Some of these fault models are well known. In addition some new fault models will
be defined, which are partly based on an extension of existing gate level fault models [15]. All of
these gate level fault models can be treated efficiently by a four valued gate level fault simulator.
A prototype of a gate level fault simulator (COMSIM, also used in [29]) for non-classical faults
has been implemented. Most of the non-classical faults can be mapped onto the classical stuck-at
faults [30], bridging faults and transition faults. The bridging fault model has been introduced in
[30]. For bipolar technologies wired-OR and wired-AND type are sufficient. The wired-OR is
equivalent to a bridging "1" and the wired-AND equivalent to a bridging "0". For CMOS
technologies these types of bridging faults are not sufficient. When a resulting voltage between

two shorted nodes can neither be interpreted as a logical "1" nor as a logical "0", this fault is

defined as a bridging "unknown". This type of bridging fault is detected by a pattern, which
detects both the bridging "0" and bridging "1". The transition fault is a special kind of a delay
fault. It is based on the assumption that a transition at a gate never occurs in a combinational

circuit. In a sequential circuit transition does not occur within a clock cycle.

2.2 Function Conversion

Defects inside a CMOS gate may result in the incorrect function of the gate. For example,
with a short between input and output of an inverter the gate is no longer inverting. Furthermore,
conversion of an AND to a NAND, OR to NOR etc. are possible. Although every modification
inside the logic table can be considered as a function conversion, our definition is limited to

simple Boolean function conversions [15].

2.3 General Method

The idea of our method is to combine the accuracy of modeling faults on the electrical or
switch level with the efficiency of fault simulation and test pattern generation based on a gate
level description of a circuit. The starting point for our investigations is an electrical or switch
level description of a standard gate. An appropriate fault model was selected which is assumed to
be accurate enough to model realistic faults [15], e.g. the hard fault model (shorts and opens) on

tﬁe electrical level. For each element in the circuit the effect of each fault was determined in

Cadence tools. Usually this was done using analog simulations. This fault list accurately reflects

the electrical or switch level faults which have been defined as target faults.

24 Logical values

The switch-level is an abstraction level that resides between the gate-level and the electrical-
level and offers many advantages. Switch-level models can reliably model many important
phenomena in CMOS circuits, such as bi-directional signal propagation, charge sharing and

variations in driving strength [16][21]

On the switch-level, transistors are viewed as switches and the circuit state is described by
discrete values, consisting of a logic state (e.g. 0, 1, U - unknown, Z - high impedance) and
strength (e.g. weak, strong, medium ...) [12][13]. Various strength levels may be used in switch-
level models. In some methods, only two levels of strengths are used (e.g. weak and strong) [12],
while others use more levels. For example, the hardware description language Verilog supports

switch-level modeling with eight different levels of strength [13].

Each transistor switch is a bi-directional element, which is controlled by the gate terminal G.
A point at which two or more transistors have a common connection is called a node. If a node is
driven with the driver signals SI, S2... Sn, the value (i.e. the logic state and the strength) of the

node is equal to the value of the strongest driver signal. If two driver signals, with the same

strengths and different logic states have the highest output strength, the logic state of the node

will be U (unknown) [12][13][16][21].

In some methods, resistive switches are used. These switches reduce the strength of signals
that propagate through them. For instance, in Verilog HDL both resistive and non-resistive

switches can be used [13].

In CMOS techneclogy [24] the basic components at switch-level are transistors. N-channe}
and P-channel transistors (Figure 1) can receive different logical values on their pins. These
logical values are ‘0°, ‘1°, ‘F1°, ‘F0’, ‘Z’, and ‘U’ [7][12][13]. Logic value ‘F1’ or Forcing 1
represents power source, ‘FO’ or Forcing O represents ground, ‘Z’ represents the state of an
isolated or floating connector and may be interpreted as the high impedance, and, finally, ‘U’
represents an intermediate voltage level, which occurs when ‘0’ and ‘1’ signals are applied

simultaneously to a connector and may be interpreted as an unknown signal.

S D
G ’—OI P-Channel G 0—-I N-Channel
D S
(@)

G’—Ol P-Channel G'—I N-Channel

(b)

Figure 1. (a) Normal behaviour (b) Switching behaviour or bi-directional

Logic values ‘F1’ and ‘FO’ are always in Forcing 1 and Forcing 0, but the logic value of ‘1’

and ‘0’ can be Weak 1 and Weak 0 especially when there is fan-out.

Gate Input Output
G I P(G,D) N(G,)
0 0 0 Z
0 1 1 Z
0 Z Z Z
0 F1 F1 Z
0 FO FO Z
0 U U Z
1 0 Z 0
1 1 Z 1
1 Z Z Z
1 F1 Z F1
1 FO Z FO
1 U Z U
Z 0 U U
Z 1 U U
Z Z U U
Z F1 U U
Z FO U U
Z U U U
F1 0 Z 0
F1 1 Z 1
F1 Z Z Z
F1 F1 Z F1
F1 FO Z FO
F1 U Z U
FO 0 0 Z
FO 1 1 Z
FO Z Z Z
FO F1 F1 Z
FO FO FO Z
FO U U Z
U 0 U U
U 1 U U
U Z U U
U F1 U U
U FO U U
U U U U
Table 1. Bi-directional behaviour lookup table for CMOS

Table 1 displays all the possible states of a transistor in a digital circuit. Later we will see

how to use this look-up table to find the output of our functions.

25 Connection node

An important subject in digital circuits is networks and connections. A connection node
(Figure 2) defines where two or more signals meet each other [14] and generate a network. In
Figure 2 for example, the drain of a P1 transistor is connected to the drain of an N2 transistor
each with its own logical value. The outcome is a dominant value for this connection. For
instance, if the drain of the P1 transistor has the value ‘F1’ and the drain of N2 transistor has the
value ‘Z’ then the dominant value ‘F1’ is considered for the connection node, which is

symbolized as ‘V’. Table 2 shows the dominant logic value for connection nodes.

Connection Node (V)
AN

Y1
B e p1

Y2

c o[~z

Figure 2. CMOS Circuit

10

———— — —

In Figure 2 transistor P1 shows the bi-directional functionality of a CMOS transistor. This
transistor can either propagate the ground signal to output Y1 or the VDD signal to output Y2.

The arithmetic equation for Y1 and Y2 outputs are shown in Equation (EQ-2-1).

Y1=NI (A, F1) V P1 (B, (N2 (C, F0) V Y2))

Y2=N2 (C, F0) VP1 (B, N1 (A, FI) VY1)) (EQ-2-1)

Section 4 will discuss in detail the arithmetic model to generate these equations for any CMOS

circuit.

VIi0|1|Z)|F1|F0
0)0|U|O0|[F1]|FO
1 [{U|1(1|F1|FO
Z|0)|1]|Z|Fl|FO

F1|F1|F1|F1|F1|U
FO |[FO[FO|FO| U | FO

Table 2. Connection node equivalent value lookup table

11

CHAPTER 3
CIRCUIT GRAPH MODEL

With an increase in circuit size it becomes more complex to analyze and observe its
behaviour especially when there is fault in the circuit [1][4][8]1[10][19]. In our algorithm a graph

model converts a transistor level model to a graph and is independent of circuit complexity.

3.1 Bi-directional graph model

@ i

Figure 3. (a) NOT gate, (b) NOT gate bi-directional graph

12

This graph model simplifies the use of the algorithm and fault injection. [5][6]. In this graph
nodes represent a transistor or a connection and the edges represent wires. Figure 3 (a) shows a
'NOT gate circuit with (b) its related graph. In this graph P represents a P-type transistor, ‘N’
represents an N-type transistor and ‘V’ shows connection node. ‘A’ is the primary input signal,
‘Y’ the primary output signal, ‘F1’ represents the éower source, and ‘FO’ represents ground. ‘P’
and ‘N’ are transistors with ‘G’, ‘I’ and ‘O’ edges that represent gate, input and output,

respectively, for transistors.

3.2 Directional graph model

The Directional graph model is similar to bi-directional graph. However there is a distinction

between source and drain as shown in Figure 4 (b).

S
G
—-(4 P-Channel
D
[ey Y

G

—I N-Channel

S
(a) — (b)

Figure 4. (a) NOT gate, (b) NOT gate directional graph

~

13

In this graph ‘A’ is the primary input signal, Y’ the primary output signal, ‘F1’ fepresents
the power source and ‘FO’ represents ground. ‘P’ and ‘N’ are transistors with ‘G, ‘S’ and ‘D’

edges that represent gate, source and drain, respectively, for transistors.

14

CHAPTER 4
ARITHMETIC MODEL AND EQUATION

4.1 Function definitions

In this arithmetic model each transistor is considered a function such as ‘P’ and ‘N’. Each has
two arguments as inputs and a returning logical value that is considered for output. P (G, I),
N (G, 1) are the syntaxes for our functions. The ‘P’ function is used for P-type transistors and ‘N’
function is used for N-type transistors. Th¢ first argument or ‘G’ is the value of gate and the
second argument or ‘I’ is the value of input for each transistor. To handle bi-directiona_ll signals I
can be considered either for source (S) or for drain (D). The return value of these functions will
be considered as output (O). The result of the function is analyzed with the logic value at the
output. The value of each function can be taken from Table 1. For example, given the logical
values G = 0 and I = F1 then, according to Table 1, these functions will be P (0, F1) = F1 and N
(0, F1) = Z. In Figure 3 (b) the outputs of the two functions collide at a connection node. This is

represented in the following circuit equation:

15

Y=P(G,) VN (G,I) (EQ-4-1)

The symbol V in equation (EQ-4-1) represents the connection point of two signals [14]. The

actual input values for the function according to Figure 3 (b) should be replaced in the equation

(EQ-4-1).
Y =P (A, F1) V N (A, FO) (EQ-4-2)

The primary output ‘Y’ can be calculated for different values of the primary input ‘A’ using
equation (EQ-4-2). Table 1 is a lookup table to return the equivalent value for each function.
Table 2 is a lookup table to return the value for each connection node.

For each value of primary input ‘A’ the primary output ‘Y’ for Figure 3 is calculated as:

A=0, Y=P(0,F1) VN (0,F0)=F1V Z=F1

A=1, Y=P(1,F1) VN (1,F0)=Z VF0=F0

Table 3 displays the truth table for the circuit equation. ‘A’ is the primary input for the NOT
gate, ‘P’ is the output of the function ‘P’ and ‘N’ is the output of the function ‘N’. The first ‘Y’
in column 4 of the table is the equivalent value for the connection node at switch-level and the
second ‘Y’ in column 5 (greyed) is the output of the gate at gate level. Although both “Y” values

are equal, the second “Y” indicates gate behaviour.

16

Table 3. NOT truth table
The greyed columns above correspond to primary input and output and represent gate or system

level behaviour for the circuit

4.2 Function definitions for directed signals

Each function is considered as a directed switch. Thus the input signal always goes through
source (S) and the output will be (irive from drain (D). Except for some slight changes in
parameters, the function definition for the algorithm will remain the same. As discussed in the
previous section, both functions ‘P’ and ‘N’ have two arguments as inputs and a returning logical
value that is considered for Drain pin. P (G, S), N (G, S) are the models for our functions. The
‘P’ function is used for P-type transistors and ‘N’ function is used for N-type transistors. The
first argument or ‘G’ is the value of Gate and the second argument or ‘S’ is the value of Source
for each transistor. The result of the function is analyzed with the logic value at the drain. The
value of each function can be derived from Table 4. For example, given the logical values G =0
and S = F1 then, according to Table 4, these functions will be P (0, F1) =F1 and N (0, F1) = Z.
In Figure 4 (b) the outputs of two functions collide at a connection node. This is represented in

the following circuit equation:

Y=P(G,S) VN (G, S) (EQ-4-3)

17

Drain N(G, S)

F1
FO

F1

FO

Drain P(G, S)

F1 -

FO

F1

FO

Source

F1

FO

F1

FO

F1

FO

F1

FO

F1

FO

F1

FO

A Directioﬁal behaviour lookup table for CMOS

Gate

F1

F1

F1

F1

F1

F1

FO

FO

FO

FO

FO

FO

Table 4.

18

The symbol V in equation (EQ-4-3) represents the connection point of two signals
[16][17][21]. The actual input values for the function according to Figure 3 (b) should be

replaced in the eqﬁation.
Y=P(A,F1) V N (A, FO) (EQ-4-4)
The primary output ‘Y’ can be calculated for different values of the primary input ‘A’ .using

equation (EQ-4-4). The rest of the calculations are the same as in the previous section for bi-

directional signals.

4.3 Gate equations

 The ISCAS85 and ISCAS89 benchmark circuits have several kinds of gates that are used in
this thesis report and have been applied in our simulation software. These gates and their

equivalent equations are listed as follows.

19

431 NOT

Figure 5. Not Gate

S =P(A, F1) VN(A, FO)

4.3.2 NAND2

!

Figure 6. NAND2 Gate

j;namlz = (P(A’ Fl) v P(B’ Fl)) V N(A: N(B’ FO))

20

433 NAND3

g

Figure 7. NAND3 Gate

Joanaz = (P(A, F1) V P(B, F1) V P(C, F1)) V N(A, N(B, N(C, F0)))

21

434 NAND4

Figure 8. NAND4 Gate

Joanas = (P(A, F1) VP(B, F1) V P(C, F1) V P(D, F1)) V N(A, N(B, N(C, N(D, F0))))

.22

Figure 9. NANDS Gate

foumas = (P(A, F1) V P(B, F1) V P(C, F1) V P(D, F1) P(E, F1)) V N(A, N(B, N(C, N(D, N(E,
F0)))))

23

436 NOR2

Figure 10. NOR2 Gate

Juorr =P(B, P(A, F1)) V (N(A, FO) V N(B, F0))

437 NOR3

Figure 11. NOR3 Gate

ﬁars =P(B, P(A, P(C, F1))) V (N(A, F0) V N(B, F0) V N(C, F0))

24

438 NOR4

L

Figure 12. NOR4 Gate

Joors =P(B, P(A, P(C, P(D, F1)))) V (N(A, F0) V N(B, F0) V N(C, F0) V N(D, F0))

25

439 NORS

E_dD_ﬂc_ﬂB_dA

<

Figure 13. NORS Gate

Joors =P(B, P(A, P(C, P(D, P(E, F1))))) V (N(A, F0) V N(B, F0) V N(C, F0) V N(D, F0) V N(E,
F0))

26

4310 AND2

A_[_[

. Figure 14. AND2 Gate

Juanaz = (P(A, F1) V P(B, F1)) V N(A, N(B, F0))

j;de = P(f;lale ’ Fl) V N(j;umd2 ’ FO)

27

4311 AND3

Figure 15. AND3 Gate

Soanas = (P(A, F1) VP(B, F1) V P(C, F1)) V N(A, N(B, N(C, F0)))

j;mﬂ = P(f;nmd3’ Fl) \% N(f;umdS’ FO)

28

43.12 AND4

Figure 16. AND4 Gate

Sranas = (P(A, F1) VP(B, F1) V P(C, F1) V P(D, F1)) V N(A, N(B, N(C, N(D, F0))))

Sonas =P(Sranas» F1) VN(S, 00as» FO)

29

43.13 ANDS

T

A

|
!
!

|
1

Figure 17. ANDS5 Gate

Joanas = (P(A, F1) V P(B, F1) V P(C, F1) V P(D, F1) P(E, F1)) V N(A, N(B, N(C, N(D, N(E,
F0)))))

f;nds = P(f;mmiS ’ Fl) v N(f;umd5’ FO)

30

4314 OR2

Figure 18. OR2 Gate

Soor2 = P(B,VP(A, F1)) V (N(A, F0) V N(B, F0))

Jor2 = P(foor2s F1) VN(S5, FO)

31

43.15 OR3

< N

Figure 19. OR3 Gate

Joors =P(B, P(A, P(C, F1))) V (N(A, FO) V N(B, F0) V N(C, F0))

f;rS = P(j;mrJ’ Fl) v N(f;wr3’ FO)

32

43.16 OR4

J‘:_ =

Figure 20. OR4 Gate

Jrow =P(B, P(A, P(C, P(D, F1)))) V (N(A, F0) V N(B, F0) V N(C, F0) V N(D, F0))

f;r4 = P(f;mr4 ’ Fl) \4 N(f;mr4 > FO)

33

43.17 OR5

J__ =
Figure 21. ORS5 Gate

Joors =P(B, P(A, P(C, P(D, P(E, F1))))) V (N(A, FO) V N(B, F0) V N(C, F0) V N(D, F0) V N(E;
F0))

f;rS = P(j;wrS’ Fl) v N(f;mrS’ FO)

34

43.18 D-Latch

nC

T1

Figure 22. D-Latch

T1 = (P(nC, D) V N(C, D))
Q1=P({P(T1,F1)V N(T1, FO), F1) VN(P(T1,F1) V N(T1, F0), FO)
T2=(P(C, Q1) VN(C, Q1))

Qp1uen=P(P((T1 V T2), F1) V N((T1 V T2), F0), F1) V N(P((T1 V T2), F1) V N((T1 V T2),
F0), F0)

35

CHAPTER 5
SINGLE FAULT SIMULATION

The arithmetic equation model can simulate circuit behaviouvr‘ at switch-level for any input
combination. However, if the circuit contains even a single fault the behaviour of the circuit will
be affected. We will inject a fault [1][5][6] into the circuit and consequently in the equation to

observe circuit behaviour during fault simulation [4][8][10][19][20].

(@

Figure 23. (a) NOT gate circuit with bridging fault (b) Circuit pre-graph with bridging

(c) Fault implementatidn in graph

36

We will start by considering a single fault, followed by modeling multiple fault simulation in the

circuit.

5.1 Bridging fault

Figure 23 (a) shows a NOT gate circuit with a bridging fault [25] between two néfworks
indicated by a dashed line. This bridging fault is displayed in the pre-graph Figure 23 (b) as well.
The logical values of all edges thét meet in a connection node are equal and have the value of Y.
In this algorithm a bridging fault between two networks can be considered as a feedback into the
circuit. In Figure 23 (b) the value of connection nodes 'Y' should feed back to the gate of
transistor 'P'. To implement this feedback the algorithm must add a connection node to the graph
as shown in Figure 23 (c) and thus feed the 'Y back into the gate of transistor 'P'. Here, 'A' is an

input signal for transistor 'N' as well.

According to equation (EQ-4-1), a fault free equation for NOT gate circuit, variable 'G' in
function 'P' is connected to input signal 'A'. With this fault the value of signal 'A' will change

according to the following equation:

Af=AVY (EQ-5-1)

The new value for signal 'A’ is calculated with equation (EQ-5-1) and assigned to Af. Index

‘P refers to a fault in circuit affected input ‘A’. To find the final equation for the bridging fault

37

shown in Figure 23, A¢ should be replaced with ‘A’ in equation (EQ-4-2). The result is shown in

equation (EQ-5-2):
Yr=P (A F1) V N (A, FO) (EQ-5-2)

Table 5 demonstrates that the NOT gate will behave either as a buffer or a wire when there is

a bridging fault in the circuit (Figure 23).

P|N
FO
F1| Z

Table 5. Truth table with bridging fault

5.2 Open circuit fault

An open circuit fault results from a metal wire causing a disconnection in a circuit. In somé
cases, an open circuit wire may have unknown value due to the effects of noise and magnetic
fields. However, in most cases, an open circuit is considered as high impedance in a circuit. With
this algorithm the whole branch before the open edge is removed and the logical value 'Z' is

aésigned to that edge. This open circuit fault is represented as stuck-at-z in the equation. In

38

equation (EQ-4-1) the return value for function 'P' is stuck-at-z under all circumstances. Figure

24 shows the graph for an open circuit fault.

Figure 24. P-type transistor is stuck-at-z

The equation and values are shown in the following equations:
Yr=ZVN(G,)=Z VN (A, F0)
The output value for all the input connections (A=0 or 1) will be calculated as follows:

A=0, Yf=ZVN(O,FO)=ZVZ=Z

A=1, Yf=ZVN(1,F0)=ZVF0=F0

Table 6 displays all outputs for the above equation. When the input signal for the gate is equal to

‘0’ the output is ‘Z’ and when the input is ‘1’ the circuit functions as a normal inverter.

39

Table 6. Truth table for open circuit fault

5.3 Stuck-at Fault

Stuck-at-fault simulation is a unique aSpect of this algorithm. No changes in the graph or
equation are required in order to inject a stuck-at fault. With a stuck-at fault the transistor
remains in a stable state in all situations and the return value for 'P' and 'N' functions are
independent of input values. If there is a stuck-at fault transistor in the circuit, the return value

for its function is taken from Table 7 rather than Table 1.

Type P — Switch N — Switch
Stuck-at-0 0=0 0=0
Stuck-at-1 0=1 0=1

Stuck-at-off | O=Z,G=1 | 0=Z,G=0
Stuck-at-on | O=1,G=0 0=1,G=1

Table 7. Stuck-at fault lookup table, O = Output, I = Input and G = Gate

It is assumed that for stuck-at-off the gate for the P-type transistor is stuck-at-1 and for N-
type is stuck-at-0. Also assume that for stuck-at-on the gate for the P-type transistor is stuck-at-0
‘and for N-type is stuck-at-1 [17]. These values are shown in Table 7. The following example

explains how to use Table 7 for stuck-at-1 fauit.

40

According to Table 7, a P-Type transistor (Figure 25) is stuck-at-1 and the return value for

function P (G, I) in equation (EQ-4-1) is always equal to 1.

Y =P (A, F1) VN (A, FO)= 1 V N (A, F0)

For each value of 'A' the output"Y' is calculated as:

A=0, Y=1VZ=1 A=1, Y=1VF0=F0

(@

Figure 25. P-type transistor is stuck-at-1
To better demonstrate the functionality of this algorithm further examples with larger circuits

follow. Figure 26 illustrates a two input OR gate circuit. For this circuit we will find the circuit

equation and then observe the result of fault injection into the circuit.

41

......

B -—o| 1522. Tolg’:

—rY

A o—][n1]3_.|Né “5‘:3

Figure 26. Transistor model of OR gate

In CMOS technology [24] an OR gate circuit is a combination of a NOR and a NOT gate. In
Figure 27 below, the output of NOR gate is assigned toY and Y is the primary output for the

entire circuit. The circuit is represented in the following equation (EQ-5-3)

Figure 27. Graph model for OR circuit

42

Y=P2 (B, P1(A, F1)) V [N1(A, F0) V N2(B, F0)]

Y =P3 (Y, F1) VN3 (Y, F0) (EQ-5-3)

Figure 26 indicates the behaviour of the above equation for various inputs.

P2 N1 |N2| Y |P3
F1|Z | Z |F1|Z
Z | Z |FO [FO|F1
Z |FO| Z |FO|F1
Z | FO | FO | FO | F1

Table 8. Truth table for OR circuit équation

We have used the arithmetic model to illustrate the behaviour of the circuit (Figure 26). We will
now inject faults [5][6] into the circuit and analyze the equation for all possible inputs. Some

single bridging fault examples are shown as follows.

5.4 Bridging between A and 1

This fault causes a connection between two edges in the related pre-graph (Figure 28)

indicated by a dashed line. To remove this problem from the graph the algorithm must add a

connection point in the graph and feed the sigrlal back from the point with the value Y to the

gate of transistor ‘P1°. The equation is then regenerated with the added nodes.

43

Figure 28. OR circuit pre-graph with bridging fault

Figure 29 displays the changes in the graph with a bridging fault implemented as a feedback.

Figure 29. OR graph with bridging fault

In equation (EQ-5-3) value ‘A’ should be replaced with Ag= AV Y. The result is reflected in

equation (EQ-5-4).

44

Y,=P2 (B, P1 (Ag, F1)) V [N1 (Ag, FO) V N2 (B, F0)]

Y,=P3(Y,,F1) VN3 (¥,, F0) (EQ-5-4)

Table 9 shows all the primary and intermediate logical values for the circuit graph (Figure 29)

with a bridging fault between points ‘A’ and ‘1°.

P1|P2|NI|N2|[¥% (P3

F1|Z | Z | FO |FO |F1
F1|F1|Z | Z |F1| Z
F1|Z | Z |FO |FO |F1

Table 9. Truth table for OR gate circuit with bridging fault between points ‘A’ and ‘1’

5.5 Shortbetween AandY
Another fault represented in the circuit is a short between points ‘A’ and ‘Y. This fault can
also be considered in gate level with a connection between primary output ‘Y’ and primary input
‘A’ and can be explained by equation (EQ-5-6).

Y,=AVY (EQ-5-6)

Table 10. Truth table for OR gate circuit with bridging fault between two points ‘A’ and ‘Y’

The result for all input combinations is shown in Table 10.

45

5.6 Short between 1 and 2

Any bridging between source and drain in a transistor can be considered a stuck-at-on fault
for the transistor. As illustrated in Table 7, the gate could be considered as stuck-at-0 for a P-type
transistor. Figure 30 shows the pre-graph for a short between point '1' and "2'. The graph for the

fault injected circuit above is shown in Figure 31.

Figure 31. OR circuit graph with bridging fault

46

Equation (EQ-5-7) shows the bridging fault between points '1' and '2".

Y,= P2 (B, P1(A, F1)) V [N1(A,FO)VN2 (B, F0)]

Y,=P3(¥,,F1) VN3 (¥,,Fl) (EQ-5-7)

All primary and intermediate logical values for the equation (Eq-5-7) with bridging fault

between two points '1' and 2' are shown in Table 11.

Bi|P1|r2 [N1|N2| ¥ [P3

0|F1|F1 |2z F1| 2z

N

Table 11. Truth table for OR gate with bridging fault between points '1' and '2'

47

CHAPTER 6
MULTIPLE FAULT SIMULATION

The simultaneous injection of two faults into a CMOS circuit is represented in Figure 32.

Transistor P3 is stuck-at-on and a bridging fault is present between points ‘A’ and ‘1°.

Figure 32. CMOS circuit with stuck-at-on for P3 and bridging between points 'A' and '1'

. 48

The pre-graph for the circuit (Figure 32) with two injected faults is displayed in Figure 33

and its graph is shown in Figure 34

Figure 34. Circuit graph with stuck-at-on for 'P3' and bridging between points 'A' and '1"

Equation (EQ-7-1) is the fault free equation for the same circuit.

49
PROPERTY OF
RYERSON UNIVERSITY LIBRARY

Y=Pp2 (B, P1(A, F1)) V [N1(A, F0) V N2(B, F0)]

Y =P3 (Y, F1) VN3 (Y, FO) (EQ-7-1)

By replacing A, =AV Y and P3, =F1 in equation (EQ-7-1) we derive the results in

equation (EQ-7-2).

¥,=P2 (B, P1(4,,F1)) VN1 (4,, F0) V N2 (B, F0)]

Y,= P3,VN3 (¥,,F0) (EQ-7-2)

Table 12 shows all the primary and intermediate logical values for the circuit in Figure 32
with multiple faults between two points ‘A’ and ‘1’ and stuck-at-on for P3 transistor. The result
of two different types of faults simultaneously injected into the circuit is shown in this table. The

grey columns represent gate behaviour for the fault injected at switch level.

P1|P2 N1 [N2|¥ | P

Z\|Z|FO|Z |FO|[F1
F1|Z | Z |FO|FO|F1
F1|F1|Z | Z |F1|Fl
F1|Z | Z |FO |FO|F1

Table 12. Truth table for OR gate with multiple faults

50

CHAPTER 7
EXPERIMENTAL RESULTS

Experimental results were obtained in two phases. In first phase we checked the functionality
of the algorithm with the Cadence Spectra simulator. The experiment was completed for all
CMOS gates at transistor level. In order to explain the algorithm, just a few circuits were
mentioned in this paper. In the second phase, Multiple Fault Simulation (MFS) sofiware was

developed and run on several ISCAS85 and ISCAS89 benchmark circuits.

7.1 Cadence Spectra results for a CMOS circuit

] S
A '—G<4[Pl
I
6, LS ayd°
p—dr —dm
D ¥ 11» Y
D D 2 D
A Oil N1 B oilth _G—|[N3

Figure 35. CMOS OR gate circuit

51

The experimental results from the Cadence Spectra for a CMOS circuit (Figure 35) with
several faults are shown in Figure 36. These results are identical to those attained from the
algorithm. As shown in the timing diagram (Figure 36), input signals ‘A’ and ‘B’, fault free

output, several short faults and finally multiple fault outputs for circuit are discussed.

Input A e O e

Input B] |

-

No Fault - I I I J

-

Short B and 2

Short A and Y L 1 I > >

-

Shortl and Y] | | |

.

Short 1 and 2 L I L

Multiple Faults > >
Bridging ‘A’ and ‘1’ and N2 is stuck-at-on

Figure 36. Fault free and faulty output timing diagram for circuit in Figure 35

In the timing diagram (Figure 36) with a short between points ‘A’ and ‘1’ the OR gate

behaves like NOR when B=0. In the next diagram with a short between ‘B’ and ‘2’ the gate

52

output or.‘Y’ is stuck-at-1. The next timing diagram represents a short between ‘A’ and *Y’. This
fault is modeled as bridging unknown. In the case of a short between ‘1’ and ‘Y’ this defect
changes the funcﬁon of the OR to NOR. In the case of short between ‘1’ and ‘2’ the output signal
is identical to the input signal ‘A’. This short is modeled as ‘B’ stuck-at-0. Finally, the last
timing diagram depicts two injected faults, a bridging between ‘A’ and ¢1°, and at the same time,
transistor ‘P3’ is stuck-at-on. This fault is also modeled as bridging unknown and stuck-at fault
unknown.

The exact images from the Cadence Spectra simulator for a NOT gate circuit with a single

bridging fault is shown in Figure 37.

nouse TL SOhSaLeseLaeE0 ' ¥ schiNousePopUp0) R: 3chZoon 1t(1:0.0.9)

Figure 37. NOT gate schematic with bridging fault in Cadence Spectra

53

Input/output signals for circuit in Figure 37 are shown in Figure 38. It is evident that a NOT

gate with a single bridging fault will behave like a buffer or a wire. It was proofed from the

signals that the behaviour of actual circuit is exactly similar to algorithm behaviour.

Transient Response.’";

-'Iln "?_‘TIO_LIf» o

S 3E
e

%257

o IO T . .. [cadence]

Figure 38. In/out timing diagram for circuit in Figure 37

54

Another experiment is shown in Figure 39 using an OR gate circuit. Multiple faults are
injected into the circuit with the Cadence Spectra simulator and the input/output signals for all
input combinations as shown. According to Figure 35 there is one bridging fault between points

‘A’ and ‘1’ and a stuck-at-on fault for transistor ‘N2’

use L schSingleSelectet() e s, Mo scBHiousePopUP() o R:oschZomrit(.0.0.9) -

Figure 39. OR gate circuit with multiple fault injection in Cadence Spectra

55

Fault or schewmalic : Auy 27 12:53:52 2086 {18]
File * Eit > Graph - Axis * Trace * Marker :: Zoom “Tools

Cfina sefih ol

oF T cadence]

Figure 40. In/out timing diagram for circuit in Figure 39
Depicted in Figure 39 is a transistor model for OR gate with two different faults injected

simultaneously into the circuit. Stuck-at-on for transistor ‘N2’ is modeled with a connection

between source and drain. The result is show in Figure 40.

56

7.2

The pseudo-random input test sets are obtained from gate level test generation tools. Fault

Coverage (FC) simulation results for single faults are shown in Table 13 and for multiple faults

in Table 14.

As expected, results indicate that gate level test vector sets detect fewer switch level faults. In
this case, switch level fault coverage was less than the gate level fault coverage. This result,
while not a surprise, does confirms the fact that switch fault simulation can be a better design
verification tool since a larger test set would be required to achieve switch level fault coverage

similar to the gate level fault coverége. Any possible switch level faults that are undetected for

Multiple Fault Simulation (MFS) software

the gate level test set could be detected by the larger switch level test set.

Circuit # of Switches # of Faults Single FC %
C17 24 60 100
C2670 6212 1547 67.79
C7552 18802 4667 59.54
S27 66 130 99.72
S13207 30984 9705 57.67
S38417 85912 23816 52.88

Table 13. Percentage of Single Fault Coverage for Benchmark Circuits

In Table 14 the number of faults for each benchmark is multiplied by two indicating that two
different faults were applied per iteration in the circuit. If the results of this table are compared

with single fault coverage in the previous table it is clear that although the number of faults are

57

doubled, the
simulation is

" simulation.

fault coverage is still near the previous result. This result for multiple fault

obtained while thev CPU time and the number of test sets are the same for the

Circuit # of Switches # of Faults Multiple FC %
C17 24 60x2 91.94
C2670 6212 1547 x 2 56.54
C7552 18802 4667 x 2 55.81
S27 66 130x2 86.78
S13207 30984 |. 9705 x 2 51.35
S38417 85912 23816x 2 48.15

Table 14. Percentage of Multiple Fault Coverage for Benchmark Circuits

CPU time and memory requirements depend on both the number of nodes and the number

and order of the Boolean variables in the circuit function. Therefore, the analysis of very large

circuits requires embedding variable ordering and partitioning strategies into the analyzer. The

simulation was run on a Pentium 4 system (3.0 GHz, RAM =1 GB, OS = Windows XP). Table

15 shows the CPU time based on this system. The unit of measurement is second.

Circuit # Switches CPU time(s)

C17 24 <1
C2670 6212 840
C7552 18802 1440
S27 66 <1
S13207 30984 3120
S38417 85912 6480

Table 15. Benchmarks Synthesis CPU Time

. 58

In comparison with related previous research [26][27][28] involving many different factors
such as benchmark circuits and testing tools, the method presented here has better fault coverage
and CPU time in.terms of multiple fault injection, making it 2-3 times faster. In [26] which used
a DP32 RISC processor for evaluation, the fault coverage varied between 51 to 56 percent. In
other papers [27][28] using smaller benchmark circuits, this approach still results in better

performance.

59

CHAPTER 8
CONCLUSION

Multiple fault injection and test synthesis for CMOS VLSI design has the highest priority in :
current technology. In general, fault injection at switch level is more accurate than at géte level.
Many regions at gate level are not accessible and most of the physical defects occur inside the
gates. In the approach presented here, we endeavoured to address all possible physical problems
at switch level for CMOS technology-based circuits of any size. However, the focus Was mainly
on analyzing inside digital gates using simulation in addition to the algoritﬁm introduced here
capable of mapping faults from a transistor level model to a gate level model. This algorithm can
also be used for circuit synthesfs and verification. The equafions of functions can analyze CMOS
circuits whether or not faults are present in the circuit. Thus, if a fault is not injected into the

circuit, the algorithm could be considered for circuit verification and synthesis.

Another advantage of this algorithm is its ability to analyze different types of multiple faults.
A multiple fault refers to any combination of bridging, stuck-at-fault and open-wire in the circuit
occurrmg simultaneously. Expenmental results using Cadence tools and MFS software conﬁrm

that the algonthm is reliable: for CMOS technology This algorithm can reduce the time needed

60

for fault simulation. Although switch level fault simulation is more time consuming than gate

level, it is essential for advanced technology of the future.

61

CHAPTER 9
FUTURE WORK

Due to various deep submicron effects, a circuit may fail to operate at the desired clock
frequency. Timing failure analysis is a procedure used to locate the source of timing failures. The
resolution and the hit rate of the candidates, which are reported by the delay-fault diagnosis
process, will determine the efficiency of timing failure analysis. The resolution is defined as the
ratio of the number of real fault sites to the total number of the reportbed candidates.
Unfortunately, the existing delay-fault diagnosis methodologies suffer from poor resolution or

low scalability.

When a physical defect leads to excessive delays on signals instead of altering the logic
function of the circuit, it is no longer a static defect. Such unknown and unpredictable defect
behaviours make it very difficult to analyze a fault. The dynamic nature of such faults disturbs
the timing of the logic propagation. In our approach, the timing failures caused by short and open
resistive faults inside the gates, the level of the voltage presenting at the gate output will i)e
affected. The relation between the logic propagation delay and its eventual effect on the circuit

output voltage is determined by performing a switch-level analysis on CMOS primitive gates.

C 62

Consequently the defected voltage, which is carrying timing disturbance, should be propagated
to primary output. As the delay size is relatively small, the voltage changes are not causingA
logical problem at output of the gate and tracing these kinds of signals to the output is very
difficult. To resolve this problem we are going to using a nine-valued voltage model on top of a
five-valued voltage model to propagate faulty signals. The main concept is that those faults that
cause logical errors in the nine-valued voltage model are still delay faults in five-valued voltage
| model. Dynamic behaviours of resistive defects tend to delay the correct logic state propégation
at the gate output. Generally, the delay is caused by certain fault locations with respect to the
input vector the gate is subjected to, defect resistance of the fault and the technology variation.
These faults in the five-valued voltage model only disturb the lbgic propagation time without
adversely changing the functional output in most cases. As a result the output voltage fluctuates
between ranges of intermediate voltage value. However the disturbance of the propagation time
can change the functional output in nine-valued voltage model. By reducing feature sizes,
resistive fault occurrences are expected to be on a rise. Hence, their effects on the logic voltage-
levels in static CMOS primitive gates subject to technologies like 65nm, 45nm and 32 nm are

determined.

63

PUBLICATIONS

1. M. Reza Javaheri, R. Sedaghat, Leo Kant, Jason Zalev, “Verification and Fault Synthesis
Algorithm at Switch-Level”, Journal of Microprocessors and Microsystems, Science

Direct, Elsevier, Volume 30, Issue 4 , 6 June 2006, Pages 199-208

2. R. Sedaghat, R. Javaheri, “Bi-directional Switch-Level Verification and Multiple Fault
Synthesis Algorithm”, WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS,

Accepted, 2006

3. R. Sedaghat, M. Kunchwar, R. Abedi, R. Javaheri, “Transistor-level to Gate-level
Comprehensive Fault Synthesis for n Input Primitive Gates” International Journal of

Microelectronics Reliability, Science Direct, Elsevier, Accepted, 2006
4. M. Reza Javaheri, Reza Sedaghat, Mayuri Kunchwar, “Delay Propagation for Resistive

Faults in Deep Sub-Micron Technologies™ International Journal of Microelectronics

Reliability, Science Direct, Elsevier, submitted, 2006

64

REFERENCES

[1]

(2]

[3]

(4]

[3]

[6]

[7]

Al-Khalili, D.; N-Rozon, C.; B. Show, D.; Fault security analysis of CMOS VLSI
circuits using defect-injectable VHDL models EISEVIER, INTEGRATION, the VLSI
journal 32 (2002), pp. 77-97.

Jolly, S.; Parashkevov, A.; and McDougall, T.; Automated equivalence checking of
switch level circuits, in proceedings of the IEEE/ACM International conference on DAC,
(2002), pp. 299-304.

McDonald, C.B.; and Bryant, R.E.; CMOS Circuit verification with symbolic switch
level timing simulation, IEEE Transaction on Computer-Aided Design of integrated
Circuits and Systems, vol. 20 Issue: 3 (March 2001), pp. 458-474.

Leveugle, R.; A low-cost hardware approach to dependability validation of IPs. IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, (2001) pp.
242-249.

Antoni, L.; Leveugle, R.; Feher, B.; Using run-time reconfiguration for fault injection in
hardware prototypes. IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, (2000) pp. 405-413.

Leveugle, R.; Fault Injection in VHDL descriptions and emulafion. IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (2000), pp. 414-419.
Krishnaswamy, V.; Casas, J.; Tetzlaff, T.; A Switch Level Fault Simulation

Environment: Design Automation Conference, 2000. Proceedings 2000. 37th (2000), pp.

780-785.

65

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Cheng, K.T.; Huang S.Y.; and Dai, W.J.; Fault emulation: a new methodology for fault
grélding. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 18 - 10 (1999), pp. 1487-1495. | |
Casas, J.; Yang, H.; Khaira, M.; Joshi, M.; Tetzlaff, T.; Otto, S.; and Seligman, E.; Logic
verification of very large circuits using Sharkin: Proceedings of the Twelfth International
Conference on VLSI Design (1999) pp. 310-317.

Benso, A.; Rebaudengo, M.; Impagliazzo, L.; Marmo, P.; Fault-list collapsing for fault
injection experiments, RAMS'98. Annual Reliability and Maintainability Symposium
(1998), pp. 383-388.

Hungse Cha; Rudnick, E.M.; Patel, J.H.; Iyer, RK.; Choi; G.S.; A gate-level simulation
environment for alpha-particle-induced transient faults Computers, IEEE Transactions on
, Volume: 45 , Issue: 11 (1996), pp. 1248-1256.

Abramovici M.; Breuer, M.A.; and Friedman, A.D.; Digital System Testing and Testable
Design, Revised edition IEEE Press, (1995).

Verilog Hardware Descriptor Language Reference Manual (LRM) DRAFT, IEEE 1364,
(April 1995).

Kuehlmann, A.; Cheng, D.I; Srinivasan A.; and Lapotin, D.P.; Error diagnosis for
transistor-level verification: Proceedings of the 31th IEEE/ACM Design Automation
Conference (1994) pp. 218-224.

Alt, J.; Mahlstedt, U.; Simulation of non-classical faults on the gate level — fault
modeling — Institute fur Theoretische Elektrotechnik Universitat Hannover, Germany,

11th VLSI Test Symposium, (April 1993), pp. 351 —354.

66

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Dahlgren, P.; Liden, P.; Efficient modeling of switch-level networks containing
undetermined logic node states. Proceedings IEEE/ACM International Conference on
CAD (1993) pp. 746-752.

N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI design. Addison-Wesley
(1993) Chapter 7.

Blaauw, D.T.; Saab, D.G.; Banerjee, S.P.; Abraham, J.A.; Functional abstraction of logic
gates for switch-level simulation: Proceedings of the European Conference on Design
Automation (1991) pp. 329-333.

Johnson, B.W.; Design and analysis of fault-tolerant digital systems. Addison-Wesley
(1989) Chapter 2.

Wadsack, R.L., “Fault Modeling and Logic Simulation of CMOS and MOS Integrated
Circuits” BELL System Technical Journal, vol. 57, no.5, (May-June 1987), pp. 1449-
1474.

Bryant, R.E.; A switch-level model and simulator for MOS digital systems. IEEE
Transactions Computers C-33 2 (1984), pp. 160-177.

Chandramaouli, R.; “On testing stuck-open faults,” FTCS Fault Tolerant Computing,
(1983), pp. 258-265.

Ditlow, G.; Donath, W.; and Ruehli, A.; Logic equationsA for MOSFET circuits:
Proceedings of the IEEE International Symposium on Circuits and Systems (1983) pp.
752-1755.

Kohyama, S.; and Sate, T.; “CMOS technologies for VLSI circuits,” IEEE Conf. on

VLSI, (1981), pp. 24-25.

67

[25] Mei, K.C.Y., “Bridging and Stuck-At-Fault”, IEEE Trans. Computers, vol. C-23, no.7,
(Ji.lly 1974), pp. 720-727.

[26] Zarandi H.R.; Miremadi, S.G.; Ejlali, A.; Dependability analysis using a fault injectionA
tool based on synthesizability of HDL models Defect and Fault Tolerance in VLSI
Systems, 2003.

[27] Dahlgren P.; Switch-level bridging fault simulation in the presence of feedbacks Test
Conference, 1998. Proceedings International 18-23 Oct. 1998 Page(s):363 — 371

[28] Vandris, F.; Sobelman, G.; Algorithms for fast, memory efficient switch-level fault
simulation Design Automation Conference, 1991. 28th ACM/IEEE June 17-21, 1991
Page(s):138 — 143

[29] Mahlstedt. U., Heinik, M., Alt, J., "Test Generation for I, Testing and Leakage Fault
Detection in CMOS Circuits", EURO-DAC 92, pp.486-491

[30] Eldred, R.D., "Test Routines Based on Symbolic Logical Statements", Joumal ACM,

vol.6, no. 1, 1959

68

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080

