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Abstract

Primbs et al. (2007) proposed an option pricing method using a pentanomial lattice that

incorporates mean, volatility, skewness, and kurtosis. This approach is very useful when the return

of the underlying asset follows a lognormal distribution. However, Primbs et al. (2007) claimed

that "with four moments, one could conceivably use a quadrinomial lattice (i.e., four branches);

however, the recombination conditions along with the requirement of non-negative probabilities

are quite limiting in terms of the range of skewness and kurtosis that can be captured". In this

research, as a refutation, a quadrinomial lattice model has been developed incorporating mean,

volatility, skewness, and kurtosis; and it has been shown that the conditions for the non-negative

probabilities are the same as the conditions obtained for the pentanomial lattice in Primbs et al.

(2007). Several numerical examples are presented to compare the result obtained from the

quadrinomial lattice with that ofthe pentanomial lattice.
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CHAPTER 1

1.1 Introduction

In the last 25 years, derivatives such as options became extremely important in the world of

finance. An option is a contract between a buyer and a seller that gives the buyer a right, not an

obligation, to trade an underlying asset on or before an expiration date, at an agreed price (Hull,

2006). In return for granting the option, the buyer pays an amount of money to the seller that is

called the option premium or option price. On the basis of when the option is exercised, options

can be classified as: European options and American options. European options can be exercised

only on the expiration date, while American options can be exercised at any time until the

expiration date. The option can also be categorized in two classes on the basis of whether to buy

or sell an underlying asset. One is the call option that offers the buyer the right to buy the asset.

The other is the put option that gives the buyer the right to sell the asset.

In the option price theory, a breakthrough was made in 1973, when Black and Scholes (1973)

presented the first satisfactory equilibrium option pricing model based on the risk neutral

arbitrage argument. This model is well known as the Black-Scholes Model. Robert Merton

extended their model for many subsequent studies (e.g., Merton, 1973). Unfortunately, the

Black-Scholes Model can only be used to value simple options such as European options; it can

not be used to value more sophisticated options such as American options. Moreover, as the

model provides a closed-form solution to a partial differential equation, it limits its application

when a partial differential equation can not be derived for a particular option contract.

Therefore, different alternative techniques have been proposed for pricing the options.



Among many option pricing techniques, one well-known method is the lattice approach. Cox et

al. (1979) have developed a binomial lattice approach using the fundamental economic

principles of option valuation which is no arbitrage arguments. The binomial lattice approach,

also known as CRR model, can be used to value a wide range of options when the return of the

underlying asset follows a normal distribution. The model has been developed by matching the

two moments (mean and variance) of a discrete random variable over small time interval with

those of a continuous random variable. After this flourishing attempt, many multinomial lattice

methods have been proposed that can be used to value more complex options on several

underlying variables. Boyle (1988) has extended the CRR binomial lattice to a trinomial lattice

for a single underlying variable. Using the results of the trinomial lattice, Boyle (1988) has

created a pentanomial lattice that can handle the situation where the payoff from the option

depends on two underlying variables. By matching the characteristic function of a discrete

distribution with that of a continuous lognormal distribution, Boyle et al. (1989) have developed

a lattice model for multivariate contingent claims. Kamrad and Ritchken (1991) have proposed

an alternative way of valuing the contingent claims on one or more underlying variables. This

has been accomplished by matching the first two moments of a discrete distribution with those

of a continuous normal distribution. Kamrad and Ritchken (1991) have also showed that the

convergence rate of the trinomial lattice is much higher than that of the binomial lattice.

Moreover, for two state underlying variables, the pentanomial lattice model possesses a higher

convergence rate than the quadrinomial lattice.

All the models stated above have matched only the first two moments, mean and variance, as the

normal distribution was considered for the return on the stock. However, since the return on the

stock is assumed to have the lognormal distribution, the third and fourth moments (skewness



and kurtosis) must be included. Rubinstein (1994) has proposed a lattice model that incorporates

skewness and kurtosis by using an Edgeworth expansion. Yamada et al (2004) and Primbs et al.

(2007) have explored the issue of incorporating skewness and kurtosis directly in a pentanomial

lattice model using a moment-matching procedure. Recombination conditions along with the

requirement of non-negative probabilities were also obtained in terms of skewness and kurtosis.

However, Primbs et al. (2007) have claimed that one could possibly use four moments by

developing a quadrinomial lattice (four branches), but the requirement ofpositive probabilities is

relatively limiting for the quadrinomial lattice in terms of the range of skewness and kurtosis

that can be captured.

In this research, a quadrinomial lattice that incorporates skewness and kurtosis has been

developed, and conditions for the non-negative probabilities have been derived. The conditions

obtained for the quadrinomial lattice are same as the conditions obtained for the pentanomial

lattice in Primbs et al. (2007).

The report is organised as follows: Chapter 2 provides a brief introduction ofthe option, types of

option and basic methodologies to calculate the option prices. Basic models for the option

pricing include the well known Black-Scholes model (Black et al, 1973), Monte Carlo

simulation techniques (e.g., Boyle, 1977), finite difference methods (e.g., Brennan and

Schwartz, 1978) and the binomial lattice approach (Cox et al., 1979). In addition, brief

summaries of the trinomial lattice model (Boyle, 1988), the pentanomial lattice for two

underlying variables (Boyle, 1988), the quadrinomial lattice model for two underlying variables

(Boyle et al, 1989) and the pentanomial lattice model for two underlying variables (Kamrad and

Ritchken, 1991) have been presented. It also reviews the pentanomial lattice model developed in

Primbs et al. (2007) for a single underlying variable that includes skewness and kurtosis along
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with the mean and volatility. Chapter 3 presents the quadrinomial lattice model development

procedure. Furthermore, the conditions for positive branch probabilities have also been found

and shown that these conditions are same as the conditions obtained for the pentanomial lattice

in Primbs et al. (2007). Chapter 4 provides numerical examples considering a European call

option. This chapter shows how to calculate the option prices using the quadrinomial lattice

model developed in Chapter 3. The results obtained from the quadrinomial lattice model

(developed in Chapter 3) and the pentanomial lattice model (proposed in Primbs et al. (2007))

are compared based on convergence, effect of volatility, and volatility smiles and smirks for

different maturity periods. Chapter 5 concludes the results.



CHAPTER 2

This chapter provides a brief introduction to the basic concepts of the option and some models

and methods for the option pricing. An option is an agreement between a buyer and a seller that

gives its buyer a right, but not an obligation, to buy or sell an underlying asset at a specified

price on or before a specified date. In return for granting the option, the seller collects an amount

of money from the buyer that is called the option premium or option price. There are different

techniques available for option pricing. The most commonly used techniques are the Black-

Scholes model, Monte Carlo simulation technique, finite difference methods and the lattice

approaches.

2.1 Literature Review more about options

An option is a financial instrument that offers a right to the holder, but not a responsibility, to be

engaged in a future transaction of the underlying asset at a specified price at any time on or

before a given date (Hull, 2006). The specified price is also called the strike price and the given

date is called the expiration date or maturity date. Based on when an option can be exercised,

there are two types of options: European options and American options. European options can

be exercised only on the expiration date, whereas American options can be exercised at any time

until the maturity date. Options can also be categorized based on the right to buy or sell an asset,

such as a call option and a put option. A call option gives the buyer the right to buy an asset,

while a put option offers the buyer the right to sell an asset. When the spot price (price of the

underlying asset) exceeds the strike price, a call option should be exercised. A put option should



be exercised when the spot price is less than the strike price. Let the strike price be Y, and the

spot price of the underlying asset at the date of exercise be S. If 4* is the value of a call option

and Q. is the value of a put option, then they can be expressed as

. V = max(5 - Y, 0) and H = max(Y-S,0). (2.1)

Since different option pricing models are available, we will briefly discuss them as follows.

2.1.1 Black-Scholes model

In finance history, option pricing theory underwent a revolutionary change in 1973, when Black

and Scholes (1973) presented the first option pricing model. They have shown how the no

arbitrage argument can be used to derive a partial differential equation to describe the relations

between the value of an option and the price of its underlying asset. The concept of no arbitrage

is the most significant tool for the analysis of derivatives. In finance, an arbitrage is an

opportunity to take the advantage from the price differential between two markets (Hull 2002).

If there is any arbitrage opportunity, one can make profit by simultaneously buying and selling

the same assets in two different markets. However, the Black-Scholes model can only be used

for European options, since the model is developed under the assumption that option can be

exercised only at the expiration.

The Black-Scholes model considered that the stock price, S, follows the geometric Brownian

motion, which is given by

dS = dSdt + aSde, (2.2)

where d is the expected return on the stock price and a is the volatility, t is the time and 6 is a

variable that follows the Wiener process.



Now from Ito's lemma (Hull, 2006), the process followed by any function G of S and t is given

by

dG =
dG dG ld2G dG

—

oS
(2.3)

dS dt 2 J

Now if/ is the price of the option contingent on S, then / must be some function of S and t.

Therefore, from Equation (2.3),

The Wiener process can be eliminated by choosing an appropriate portfolio having a short

position of one derivative and a long position of — number of shares.

Define n as the value ofportfolio then,

(2.5)

and the change in the value ofthe portfolio, 8U , for short time interval, St, is given by

(2.6)

By substituting Equations (2.2) and (2.4) in Equation (2.6), we get,

(2.7)

Equation (2.7) does not have the stochastic term de; therefore, the portfolio can be said to be

riskless during time period St under no arbitrage argument. Therefore,

<SII = rfU8t, (2.8)



where rf is the risk-free interest rate. Then the following partial differential equation, known as

the Black-Scholes differential equation, can be obtained by substituting Equations (2.5) and

(2.7) into Equation (2.8).

df df id2/ , ,
-Lxr-.c-L-i. -^S2-rff. (2.9)

Black and Scholes (1973) found a closed form solution for the European call option using the

boundary condition

V = max(5 - Y, 0) when t = T

and for the European put option using the boundary condition

fl = max(r - 5,0) whent = T.

A large number of option prices can be calculated in a simple manner using the Black-Scholes

model. However, since the Black-Scholes model is only applicable to European option pricing,

other numerical methods such as the Monte Carlo simulation technique, finite difference

methods, and lattice approaches have been proposed as alternate option pricing methods for both

European options and American options.

2.1.2 Monte Carlo simulation technique

A Monte Carlo simulation method is a computational algorithm that generates a number of

sample paths to value an option. In an option pricing procedure, numbers of random sample

paths are generated to obtain the expected payoff of an option in a risk-neutral world. The

expected payoff is then discounted back at a risk-free rate to estimate the option price (Hull,

2006).

8



The Monte Carlo simulation technique was introduced by Boyle (1977) to price European

options. The Monte Carlo simulation technique can be used efficiently in situations where the

payoff from the derivative depends on several underlying market variables. Additionally, it also

estimates a standard error for the estimates made. Even ifthe Monte Carlo simulation procedure

is very time consuming for a single variable, it is considered to be quicker compared to the other

procedures for more variables since the total time taken by the Monte Carlo simulation increases

linearly with the number of variables, while the total time taken by other procedures increases

exponentially. Even though the Monte Carlo simulation procedure can not handle American

options easily, Broadie et al. (1997) have proposed an enhanced Monte Carlo simulation

technique for American options.

2.1.3 Finite difference methods

For valuing the derivatives, finite difference methods such as implicit and explicit finite

difference methods (e.g., Hull and White, 1990; Wilmott, 1998) are available. Finite difference

methods value a derivative by iteratively solving the differential equations that describe the

behaviour of the underlying asset. Finite difference methods are applicable for both European

and American options. However, the situation in which payoff depends on more than one

underlying variable can not be dealt easily using finite difference methods.

2.1.4 Lattice approach

Since developing a lattice approach that takes into account skewness and kurtosis is the main

purpose of this project, a more detailed explanation about the lattice approach has been

presented in this section.



A lattice is a graphical representation of all the possible paths that might be followed by the

stock price (Hull, 2006). In this technique, a life of an option is discretized into a large number

of time intervals. In this discrete framework, the stock price movements are calculated at each

small time interval from the present time to the expiration time. Then the option value is

estimated by discounting backwards from the expiration to the present.

Cox et al. (1979) have developed a binomial lattice approach, shown in Figure 2.1. In a binomial

lattice, let p be the probability that the value of variable goes up in time At and (p be the

continuously compounded return of the underlying variable when it is going along the upward

branch. These two parameters, (p and p, can be determined by matching the first two moments

of the process implied by the binomial lattice with those of the continuous process over a small

discrete time interval At.

Figure 2.1 Binomial lattice model

10



Cox et al. (1979) have considered that a binomial lattice is governed by the geometric Brownian

motion. Therefore, for a small time interval, At, the process implies that the continuously

compounded return of that stochastic process is normally distributed with a mean of dAt and a

volatility of a^f^t. Hence, by matching the mean and variance of the return implied by the

binomial lattice with those ofthe continuous stochastic variable, we get,

pe* + (l-p)e-*=el9At (2.10)

and p(0)2 + (1 -p)(-0)2 = a2At.

By solving Equations (2.10) and (2.11), we get

p = and <tVaT.

(2.11)

(2.12)

Boyle (1988) has developed a trinomial lattice for a single underlying stochastic process. Three

branches (up, middle, and down) have been considered as shown in Figure 2.2.

Boyle (1988) obtained the probability distribution by matching the first two moments of the

lattice with those of the lognormal distribution over a small interval of time. According to

Boyle's trinomial lattice model, the continuously compounded returns ofthe underlying variable

when it is going along the up branch is given by,

(f> = AcryAt. (2.13)

By numerical examples, Boyle (1988) has shown that A, a sealer, should be greater than one for

keeping all the probabilities positive. Boyle (1988) has extended his analysis for two underlying

stochastic processes using five branches.

11



Figure 2.2 Trinomial lattice model

Boyle et al. (1989) have proposed a quadrinomial lattice for two underlying variables. The

characteristic function of the discrete random variable has been matched with that of the

continuous lognormal distribution. Boyle et al. (1989) have obtained positive probabilities for

all branches having the condition

0 = ffVAt, (2.14)

where 0 represents the continuously compounded return of the underlying stochastic variable

when it is going along the upward branch. The study has also been extended to n number of

underlying variables.

Kamrad and Ritchken (1991) have proposed a trinomial lattice model for a single underlying

variable. A pentanomial lattice model for two underlying variables has been proposed by

matching the first two moments of the continuous normal distribution with those of discrete

random variables over a short time interval. Kamrad and Ritchken (1991) have also proved that

12



the trinomial lattice model converges faster than the binomial lattice model, and the pentanomial

lattice model converges faster than the quadrinomial lattice.

2.1.5 Option pricing model that incorporates skewness and kurtosis

When the return on the stock is assumed to have a lognormal distribution, the third and fourth

moments (skewness and kurtosis) must be considered in the lattice construction. However, the

aforementioned lattice models have considered only the first two moments to develop the

lattices. Rubinstein (1994) has proposed a lattice model that incorporates skewness and kurtosis.

Primbs et al. (2007) have also proposed a pentanomial lattice model by matching the first four

central moments of discrete random variable with those of a continuous random variable. By

doing so, Primbs et al. (2007) have found the probability distribution with their positivity

conditions in terms of skewness and kurtosis. As the time interval between two steps tends to

zero, the discrete model converges to a continuous lattice framework. Hence, using the

relationship between central moments and cumulants, for the small time interval, the probability

distribution in terms of cumulants has been found; and then the positivity conditions have been

obtained as follows:

cAc2 > 3c32 and c4 > 0, (2.15)

where ct is the ith cumulant. Figure 2.3 shows the pentanomial lattice model developed in Primbs

et.al (2007), where the distance between two outcomes (the amount by which the value goes up

or down) was considered to be 2a, where a is a parameter given by,

(2.16)

13



Figure 2.3 Pentanomial lattice model

Primbs et al. (2007) have claimed that the recombination conditions along with the requirement

of non-negative probabilities are relatively restrictive in terms of skewness and kurtosis for the

quadrinomial lattice, which is not true. In the next chapter, we have developed a quadrinomial

lattice that includes skewness and kurtosis and derived the same conditions given in Equation

(2.15), which have been obtained using the pentanomial lattice model.

14



CHAPTER 3

This chapter presents a procedure for developing a quadrinomial lattice model incorporating

skewness and kurtosis along with the first two moments. The procedure is to create a discrete

random variable whose first four central moments match those of a continuous variable. Then a

lattice has been constructed using the relationship between central moments and cumulants.

Finally, for a small time interval, the recombination conditions along with positive branch

probabilities have been obtained in terms ofthe skewness and kurtosis.

3.1 Problem Definition

Primbs et al. (2007) have developed a pentanomial lattice model that includes skewness and

kurtosis and also obtained the recombination conditions along with positive probabilities in

terms of skewness and kurtosis. However, it has been claimed that "With four moments, one

could conceivably use a quadrinomial lattice {i.e., four branches); however, the recombination

conditions along with the requirement of non-negative probabilities are quite limiting in terms

ofthe range ofskewness and kurtosis that can be captured. " In this chapter, we have developed

a quadrinomial lattice model that includes both skewness and kurtosis and obtained the

conditions for non-negative probabilities that are the same as the one obtained in Primbs et al.

(2007) for the pentanomial lattice model.

3.2 Development of a Quadrinomial Lattice Model

Let the stock price follow the exponential Levy process that is defined as

15



St = Soex*. (3.1)

First, we will construct the lattice forXt, and then by simply taking the exponential of Xt, we

will develop the lattice model for SL In order to create the lattice for X (for simplicity, the time

index t is omitted), we will define a discrete random variable Z; and then by matching the first

four moments of the discrete random variable, Z, with those of continuous variable, X, we can

construct the lattice for X.

3.2.1 Parameterization of quadrinomial lattice model

First, consider the random variable X. Let us say rtij is its jth raw moment, fij is its jth central

moment and Cj is its/'' cumulant. Now define Z, the discrete random variable, having values

Z = m1 + (L-l- l)a, 1 = 1,2,3,4 with probabilities Vi, (3.2)

where a is a parameter that shows the jump size (distance between two outcomes), mx is the

mean of X, L is equal to number of branches, and in this case L = 4. Figure 3.1 shows the

possible values ofthe discrete random variable Z.

Values

2a

a

ml — a

Probabilities

Pi

Pi

P3

P4

Figure 3.1 Possible values ofZ with their probabilities

16



Now we need to match the first four moments of Z with those of X to consider skewness and

kurtosis. Therefore,

(2a) Pi + (a) p2 + (0) p3 + (-a) p4 = ^ ,

(2a)2 Pl + (a)2 p2 + (0)2 p3 + (-a)2 p4 = fe .

(2a)3 Pl + (a)3 p2 + (0)3 p3 + (-a)3 p4 = //3 ,

(2a)4 Pl + (a)4 p2 + (0)4 p3 + (-a)4 p4 = fx4 ,

and since all probabilities sum up to one, we have

Pi + p2 + p3 + p4 = 1.

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Now solving Equations (3.4), (3.5), (3.6), and (3.7), we get

Pl =

p2 =■

12a4 '

i4 + jj.3a +

2a4

4a4

(3.8)

6a4

The detailed derivation of Equation (3.8) has been shown in Appendix A.

These probabilities are in terms ofthe second, third, and fourth central moments. By substituting

Vi>V2,P-i, and p4, given in Equation (3.8), in Equation (3.3) and solving it for a, it will give us

the jump size in terms of central moments.
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Therefore, by substituting Equation (3.8) in Equation (3.3), we get,

(2a)
2[i2a7

12a 2a4 6a4
(3.9)

By simplifying Equation (3.9), we get,

= 0. (3.10)

Since we are matching the moments of the discrete random variable Z with those of the random

variable X, and m1 is the mean of X, the condition n± = 0 must be satisfied to make sure that

the mean ofZ remains m1.

So by replacing fa = 0 in Equation (3.10), we get,

— 2\iza — n2a2 = 0 (3.11)

Now by solving Equation (3.11) for a, it leads us to

a =

\h.

or a =

(3.12)

Since the fourth central moment is the expectation of a fourth power, it is always strictly

positive, i.e., [i4 > 0. Hence, ^ 0 and -yj^32 + ^jx^ > fj.3.

Therefore,

Now consider

V-2
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i.e., a will be negative. In this case, simply inverting the lattice (two branches downward, one

central branch and one branch upward) will result in positive a.

For simplicity, consider

a = (3.13)

The general procedure for moment matching has been described so far. Now in the next section,

the lattice construction using a discretized framework will be shown.

3.1.2 Creating lattice model

Now for any given time period t, we will use the results obtained so far and we will match the

moments of Xt with those of Z(t). As indicated in Equation (3.1), Xt is a Levy process, so its

cumulants are linearly proportional to time (Primbs et ah, 2007). Since the yearly cumulants are

specified, cumulants at any time t can be estimated easily. If, let us say c;- is the jth cumulant

ofXlt then they** cumulant ofXt will be Cjt. The concept of cumulants was introduced for more

than two moments as this method is simpler compared to the method in which the central

moments for a lognormal distribution are estimated and then moments are matched with those of

a discrete variable. The derivation ofthe first four central moments of the lognormal distribution

is shown in Appendix B.

Before we go any further, it is appropriate to give the relationship between central moments and

cumulants.
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c2,

c3.

(3.14)

(3.15)

(3.16)

Now ifwe have AT step increments in t, then the time period, t, between two steps is

T = N- (3-17)

Hence, to create the lattice model for Xtj we first need to match each increment XT with the

discrete random variable Z(t), which corresponds to the recombining lattice model.

Let us say So is the initial stock price, then the model St = SoeXt is given by

St =

where Zfc(r) is the random variable expressed in terms of cumulants as

2a

P2(T) =

c4t + 3c22r2 — c2ra2

- 12a4 '

—c4t — 3c22t2 + c3ra + 2c2Ta2

2^~
c4t + 3c22t2 — 5c2Ta2

4a1

— a P4(t) =
c4t + 3c22t2 - 3c3ra + 2c2za2

and also the jump size, a, in terms of cumulants can be written as

Therefore,

a

a =

2T2 + C2T(C4T + 3C22T2)

3c22r)

(3.18)

(3.19)

(3.20)

(3.21)

2.0



Equations (3.19) and (3.20) are obtained from (3.8) and (3.13), respectively. Figure 3.2 shows

the quadrinomial lattice model. Figure 3.2 (a) shows the model when a > 0. When

a < 0, simply by inverting the branch as shown in Figure 3.2 (b), one could easily use the

quadrinomial lattice model.

r+2a

(a) The quadrinomial lattice with two up, one

middle and one down branch

s P3(T) .'■ r, Clr

; Se<v-a

pfrr- Se
c,r-2a

(b) The quadrinomial lattice with one up, one

middle and two down branches

Figure 3.2 One step of the quadrinomial lattice

3.1.3 Limits of quadrinomial lattice model

Now as t -* 0, the lattice can be categorized as a continuous lattice model and, for that situation,

we will obtain the conditions for which the probabilities, specified in Equation (3.19), remain

positive.

So as t -> 0, from Equation (3.21), we get,

an =
~c3 c2c4

(3.22)
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Let us define f and the new probabilities qx, qz, and qA in terms of the branch probabilities

defined in Equation (3.19) as follows:

-c.

c4 - 5c2a02
(3.23)

Therefore,

(3.24)

By substituting a0 from Equation (3.22) in Equation (3.23) and solving for f,q±, q2, and q4, we

get,

c _
c23(5c3

3(-5c

3c32H

5c32 +

; T £C2C4 DC

2(c3 ~Vc32 +

C3(C3-VC32

32 - 2c2c4 + 5<

hc2c4-3c3^

2c2c4 - 5c3/c

f 3c2c4 - 7c3A/

3A/c32 + c2c4)

c2c4)4

+ c2c4)

:32 + C2C4

'c32 + c2c4

15c32 + 6c2c4 - 15C3VC32 + c2c

(3.25)

'2L4
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From Equation (3.25), qlf q2, and q4 can also be written in terms of <f, that is,

r 3

2

/■ •

2c,

- C3)

c3

3c2c4

3c2c4

(Vc32 + c2c4 -C3)4

5c,

9c,

- c2c4 -

7c3

C2C4 -

(3.26)

To make sure the probabilities specified in Equation (3.26) remain positive, the following

conditions should be satisfied.

1) For £ to be positive:

2c2c4

- C3)

Simplifying the above equation, we get,

2c2c4 + 5c32

5c3
>

Squaring both sides,

5c,

25c34 + 20c2c4c32 > 25c34 + 25c2c4c32.

Therefore,

(3.27)

(3.28)

(3.29)
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> -7 ]CS. (3.30)

2) For qt to be positive:

and c3 > 0 .

Simplifying Equation (3.31), we get

c4 > 0 and c3 > 0 .

3) For q2 to be positive:

3c2c4 9c3

C3J VVC3 ' C2C4 ""■ C3J

which simplifies to,

C2C4 > 3C32.

4) For q4 to remain positive:

3c2c4 7c,

- c3)

which leads to,

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

32- (3.36)

Among all the conditions given in Equations (3.30), (3.34), and (3.36), the most constraining

condition is,

c2c4 > 3c32
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Therefore, there are three conditions that must be satisfied for non-negative probability

distributions:

c2c4 > 3c32, c4 > 0, and c3 > 0. (3.37)

Now that we have derived these probabilities and conditions, consider Figure 3.2 (a) having the

jump size, a, given in Equation (3.12), equal to

a =

^2

This corresponds to a positively skewed lattice and that is the reason we have c3 > 0 in

Equation (3.37).

For a negatively skewed lattice, by selecting

a =

the conditions that can be obtained are:

c2c4 > 3c32, c4 > 0, and c3 < 0. (3.38)

Appendix C contains the derivation for the negatively skewed lattice (Figure 3.2 (b)) and shows

the conditions given in Equation (3.38).

Hence, for the given skewness (positive or negative), by appropriately choosing a and properly

constructing one of the lattices shown in Figure 3.2, one can use the developed quadrinomial

lattice model. Hence, from Equations (3.37) and (3.38), the conditions c3 > 0 and c3 < 0 can be

omitted respectively.
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Therefore, the two conditions, for which the developed quadrinomial lattice is applicable, are:

> 3c32 and c4 > 0 . (3.39)

The conditions specified in Equation (3.39) for non-negative probabilities are the same as the

one obtained in Primbs et al. (2007) for the pentanomial lattice model (Equation (2.15)).

The next chapter contains numerical examples and compares the convergence rate, the effect of

volatility and the volatility smiles and smirks ofthe quadrinomial lattice model developed in this

chapter with those ofthe pentanomial lattice model developed in Primbs et al. (2007).
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CHAPTER 4

In this chapter, first, we will demonstrate how to use the quadrinomial lattice, developed in

Chapter 3, for option pricing. Then, we will show the convergence ofthe quadrinomial lattice in

comparison with that of the pentanomial lattice proposed in Primbs et al. (2007). Finally, we

will compare the effect of the volatility, the volatility smiles and smirks generated by the

pentanomial lattice and the quadrinomial lattice.

4.1 Option Pricing using the Quadrinomial Lattice

In this section, we will show the features of the quadrinomial lattice model for option pricing

considering a case that involves a non-dividend paying underlying asset with daily skewness and

excess kurtosis of

(; = 0.5, k = 3

The yearly volatility is a — 0.2; the risk-free rate, rf, and the first cumulant, c1, are assumed to

be zero. Total trading days are assumed to be 250 and we have used time to expiration, T, of 20

days. The aforementioned values ofparameters are same as the one used in Primbs et al. (2007).

Since the initial stock price and strike price were not mentioned, we assume that the initial stock

price, So, to be $100 and the strike price, Y, is to be $100. That is, we use this model to price the

at-the-money European call option.

Since the daily skewness and excess kurtosis are given, we need to convert them into yearly

skewness and excess kurtosis respectively.
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If the cumulants are considered as independent parameters, they possess the additive property

when summed together. Therefore,

jth order cumulants of the N day log stock return = NCj, j = 1,2,... (4.1)

Now daily skewness and excess kurtosis can be expressed, in terms of cumulants, as

(4.2)

Combining Equations (4.1) and (4.2), it leads to,

N day skewness =

N day kurtosis =

V2
\ = =

(Nc2) It. NV2

Nc4 k

(4.3)

(4.4)
(Nc2)2 N'

So if we denote yearly skewness and excess kurtosis as £ and k respectively, by considering a

total of250 trading days in a year, we get,

0.5
C =

(250)V2

3

jT- =0.0316,

From volatility, the second cumulant can be calculated as follows:

c2= az = 0.22 = 0.04.

From the definition of skewness,

c3= q c23/2 = (0.0316)(0.04)3/2 = 2.5298 X 10"4 ,

From the definition of kurtosis, we can have the fourth cumulant,
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c4 = kc22 = (0.012)(0.04)2 = 1.92 x 10"5 .

We consider a two-step lattice to price a European call option with a maturity period of 20 days.

Hence, the time step-size is 10 days. It can be expressed in terms of years as follows:

Time period between two steps (t) =
I (2°/250)

No of steps
= 0.04 years.

Figure 4.1 shows a two-step quadrinomial lattice model developed in Chapter 3 with c3 > 0. As

shown in Figure 4.1, at time zero, the initial stock price is SQ. Since we are using the

quadrinomial lattice, after time period t, we can have four possible nodes that can be obtained

by extending two upward, one middle and one downward branches from the initial node.

Similarly, after time period 2t, seven nodes can be generated in the same pattern.

Figure 4.1 A two-step quadrinomial lattice model with c3 > 0.
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Now, for each time period t, the jump size, a, can be calculated using Equation (3.21),

a =
-c3 3c22t)

_ -(2.5298 X IP"4) + 7(2.5298 x 10~4)2 + (0.04){1.92 X 10~5 + 3(0.04)2(0.04)}

0.04

Therefore, a = 0.0666.

Then probability for each branch can be calculated using Equation (3.8),

Pi =

C4T + 3C2 T — C2T(X

12a4

_ (1.92 x 10~5 x 0.04) + [3 x (0.04)2 x (0.04)2] - [0.04 x 0.04 x (0.0666)2]

12x(0.0666)4

= 0.0057,

—c4t — 3c22t2 + c3tcc + 2c2za2

2a4

= {[-(1.92 x 10~5) x 0.04] - [3 x (0.04)2 x (0.04)2] +

[(2.5298 X 10"4) X 0.04 x 0.0666] + [2 x 0.04 x 0.04 x (0.0666)2]}/[2 x (0.0666)4]

= 0.1632,

c4t + 3c2rz — 5c2ra

(1.92 x 10~5 x 0.04) + [3 x (0.04)2 x (0.04)2] - [5 x 0.04 x 0.04 x (0.0666)2]

+ 4x(0.0666)4

= 0.6565,
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C4T — 3c3za + 2c2tcc7

= {(1.92 x 10"5 x 0.04) + [3 x (0.04)2 x (0.04)2] - (3 x 2.5298 x 10~4 x 0.04 x 0.0666)
+ [2 x 0.04 x 0.04 x (0.0666)2]}/[6 x (0.0666)4]

= 0.1746.

Figure 4.2 shows a two-step quadrinomial lattice with both the stock price (the upper number at

each node) and option price (the lower number at each node). Once the price step-size, a, and

time step-size, t, are known, the stock price at each node can be determined. For example, let us

consider node C, F, and K.

At node C:

Stock price at node C = (Stock price at node A) x eClT+a = 100 x e00666 = $ 106.8883.

At node F:

Stock price at node F = (Stock price at node B) x eClT+2a = 114.2510 x e2x00666

= $130.5329.

At node K:

Stock price at node K = (Stock price at node E) x eClT = 93.5557 x e00000 = $ 93.5557

Or

Stock price at node K = (Stock price at node D) x eClT~a = 100 x e-°0666 = $ 93.5557.

Since we know the stock price at each node, first the payoffs can be determined at the last layer

ofthe lattice and then the discounted expected value at the seed node can be found to determine

the option price. As it is an at-the-money option, the strike price Y = $100. For the European call
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option, at nodes F, G, H, I, J, K, and L, we can calculate the option price simply by using the

following formula:

Call option price at given node = max(stock price at given node - strike price, 0).

130.5329

' 30.5329

/ G

M
122.1209

22.1209

B /// H

/

/
/

/ /

114.2510

14.3426

c

106.8883

6.9740

/ 1 .

,/X7

\i }

114.2510

14.2510

,

106.8883

6.8883

A // D /X/ J
100.0000

2.0179

\ t
\

100.0000

1.2053

E

93.5557

0.0393

i/1\

/y.

\

100.0000

0.0000

K

93.5557

0.0000

\ L

\ 87.5266

0.0000

Figure 4.2 Two steps of the quadrinomial lattice for maturity period of 20 days

Sample calculations:

At node H:

Call option price at H = max(stock price at H — strike price, 0).
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Therefore, Call option price at H = max (114.2510 - 100, 0) = $ 14.2510.

Now discounting backward, we can calculate the option prices for the remaining nodes as

follows:

Consider node C:

n „ . f (Pi x option price at G) + (p2 x option price at NTH
Call option price at C = j ft- j\ ^^

[ +(p3 x option price at I) + (p4 x option price at J) J

Call option price at C = f(°;0057 X 22A20<» + (0-1632 * 14-2510)j M
V I+(0.6565 x 6.8883) +(0.1746 x 0.0000) je

Therefore, Call option price at C = $ 6.9740.

The option values can be calculated the same way for nodes B, D, and E. The present value of

the option is obtained by discounting them back at node A as follows:

At node A:

{ . (Pi x option price at B) + (p2 x option price at C))
Call option price at A = < i x e~Trf

(+(p3 x option price at D) + (p4 x option price at E) j

Call option price at A = l^0*** 1f42c6), + (°'1632 X 6"9740)) x
(+(0.6565x1.2053)+ (0.1746x0.0393)1

Therefore, Call option price at A = $ 2.0179.

So the option value of the at-the-money European call option that has 20 days of maturity is

$2.0179 using the quadrinomial lattice model.
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4.2 Convergence of Quadrinomial Lattice

In this section, we have compared the convergence rate of the quadrinomial lattice with that of

the pentanomial lattice.

The at-the-money European call option of a non-dividend paying underlying asset has been

valued. In this example, we have considered a maturity period of 1 year (250 days) and the rest

of the parameters are the same as above. The number of steps is varied from 10 to 250 steps in

intervals of 10. For example, 250 steps with a maturity period of 250 days means 1 day is

considered as one time step size. Two different cases have been considered for two different

values of the daily skewness: (1) ^ = 0.5 (Figure 4.3) and (2) g = 0 (Figure 4.4).

Case 1: Daily skewness <; = 6.5

9.15

9.10 -

Skewness = 0.5

excess kurtosis - 3

T= 250 days

Pentanomial Lattice

Quadranomial Lattice

100 150

No. of Steps

200 250

Figure 4.3 Convergence rates of pentanomial and quadrinomial models

for an at-the-money call option with daily skewness equal to 0.5.
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Case 2: Daily skewness <; = 0

9.15 , Skewness = 0

I excess kurtosis = 3

T= 250 days

9.10

o

u

I
"a.
O

9.05

9.00

8.95

/

8.90 '

i i

Pentanomial Lattice

■ Quadranomial Lattice

8.85

50 100 150

No. of Steps

200 250

Figure 4.4 Convergence rates of pentanomial and quadrinomial models

for an at-the-money call option with daily skewness equal to 0.

In case 1, as shown in Figure 4.3, after 150 steps the quadrinomial lattice converges while after

100 steps the pentanomial lattice converges. As expected, the higher number of branches in a

lattice, the faster the convergence rate. One could observe that, after 50 steps, the price

determined by the quadrinomial lattice is a bit higher than the price determined by the

pentanomial lattice. However, the difference in the option prices obtained by the pentanomial

lattice and the quadrinomial lattice is less than 2 cents for a maturity period of 1 year with 250

steps.
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In case 2, as shown in Figure 4.4, after 200 steps the quadrinomial lattice converges, while after

100 steps the pentanomial lattice converges. The reason is that the higher number of branches in

a lattice, the faster the convergence rate. The price determined by the quadrinomial lattice is

lower than that of the pentanomial lattice. However, the difference between the prices is getting

smaller as the steps increases. In this case also, the difference between the option prices obtained

by the pentanomial and the quadrinomial lattices is less than 2 cents for maturity period of 1

year with 250 steps.

Therefore, from Figure 4.3 and 4.4, it can be said that the quadrinomial lattice model can also be

used efficiently and effectively since the difference in the option prices, obtained from the

quadrinomial lattice and the pentanomial lattice, is not much.

4.3 Effect of Volatility on Quadrinomial Lattice

This section shows the effect of higher volatility on the quadrinomial lattice model (developed

in Chapter 3) compared to the pentanomial lattice model (proposed in Primbs et al. (2007)).

Again, the at-the-money European call option of a non-dividend paying underlying asset has

been considered with the same parameters used in section 4.1 and 4.2. Both the quadrinomial

and the pentanomial lattices are used to determine the option price assuming maturity period of

250 days (1 year) with 100 time steps. Case 1 is for the daily skewness of 0.5 (Figure 4.5), while

case 2 is for the daily skewness of 0 (Figure 4.6).
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Case 1: Daily skewness <; = 0. 5

C3

£

|
"S.
o

68 -i
j Skewness = 0.5

58 j T= 250 days
steps = 100

48

38

28

18

.-*

..-"*

— ~ Pentanomial Lattice

..,,._ Quadranomial Lattice

20 30 40 50 60 70

Volatility in percentage

80 90

Figure 4.5 Effect of volatility on pentanomial and quadrinomial models

for an at-the-money call option with daily skewness equal to 0.5.

Case 2: Daily skewness <; = 0

a

d
o
l

ic
e

i
o
n

68 -|

58 |
48 4

|

38 !

28 -I

18

8

Skewness = 0

T= 250 days

steps = 100

- Pentanomial Lattice

- Quadranomial Lattice

20 30 40 50 60 70 80 90

Volatility in percentage

Figure 4.6 Effect of volatility on pentanomial and quadrinomial models

for an at-the-money call option with daily skewness equal to 0.

As we can see from Figures 4.5 and 4.6, the quadrinomial lattice model provides the same

option price as the pentanomial lattice even for high volatilities.
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4.4 Volatility Smiles and Smirks

In real markets, traders usually use the Black-Scholes model but not the same way that it was

originated. The Black-Scholes model assumes that the implied volatility is constant and

homogeneous for options with different strike prices and maturity periods. But that is not the

case. In practice, the implied volatility ofoptions is a function of strike prices and exercise dates.

A plot of implied volatility of an option as a function of its strike price is known as a volatility

smile (Hull, 2006).

Usually two types of patterns have been observed. One of them shows valley type pattern,

known as a volatility smile, whereas the other possesses a skewed smile, known as a volatility

skew or volatility smirk. A volatility smile is a pattern in which out-of-money and in-the-money

options tend to have higher implied volatilities than at-the-money options. Volatility smiles have

usually been noticed in currency markets. Volatility smirks, observed in equity markets, exhibit

a slopping pattern in which the implied volatilities of high strike price options are lower than

those of at-the-money options. In terms of a probability distribution, the implied distributions

having smiles possess heavier tails than the lognormal distributions, while the distributions with

smirks are usually skewed with one side having a heavier left tail and a less heavy right tail than

the lognormal distributions.

Volatility smiles and smirks are obtained using both the quadrinomial lattice model that is

developed in Chapter 3 and the pentanomial lattice model given in Primbs et al. (2007) for a

European call option using yearly volatility of 0.2, a daily kurtosis of 3, a risk-free rate of 0, and

an initial stock price of $100. For three different maturity periods (20, 50 and 100 days),

volatility smiles and smirks are determined when daily skewness values are 0.5 and 0, where

1
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250 steps are used.

As we can see, Figures 4.7, 4.8 and 4.9 show volatility smirks for both the quadrinomial and the

pentanomial lattices when daily skewness = 0.5. The implied volatility is slightly skewed and

exhibits lower implied volatility for out-of-the money options (high strike price) than that of at-

the-money options.
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20.5
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19.5 {

19 i

skewness = 0.5

T= 20 days

= 18.5
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17.5 "r- -

0.7

~ Pentanomial Lattice

- Quadranomial Lattice

0.8 0.9 1
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1.1 1.2 :

Figure 4.7 Implied volatility plots using pentanomial and quadrinomial models

for an at-the-money call option with <; = 0.5 and T = 20 days.
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Figure 4.8 Implied volatility plots using pentanomial and quadrinomial models

for an at-the-money call option with g = 0.5 and T = 50 days.
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Figure 4.9 Implied volatility plots using pentanomial and quadrinomial models

for an at-the-money call option with <; = 0.5 and T = 100 days.

Figures 4.10, 4.11, and 4.12 are the plots for different maturity periods for skewness 0. The plots

possess a valley shaped pattern, which are volatility smiles. The figures show that the

quadrinomial lattice model gives almost the same implied volatility as the one obtained using

the pentanomial lattice model.
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Figure 4.10 Implied volatility plots using pentanomial and quadrinomial models

for an at-the-money call option with ^ = 0 and T = 20 days.
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Figure 4.11 Implied volatility plots using pentanomial and quadrinomial models

for an at-the-money call option with ^ = 0 and T= 50 days.
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Figure 4.12 Implied volatility plots using pentanomial and quadrinomial models

for an at-the-money call option with £ = 0 and T = 100 days.

Different characteristics of the quadrinomial lattice model have been demonstrated and the

figures show that there is not much difference in the characteristics of quadrinomial and

pentanomial lattices. Hence, one can use the quadrinomial lattice model for option pricing. The

next chapter concludes the results and offers recommendations.

T
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CHAPTER 5

Conclusion and Recommendations

In this research, we have proved that the recombination conditions along with non-negative

probabilities for the quadrinomial lattice are the same as the conditions provided for a

pentanomial lattice in Primbs et al. (2007). This has been done by developing an asymmetric

quadrinomial lattice model incorporating skewness and kurtosis along with mean and volatility.

In the numerical examples, we have also shown how a quadrinomial lattice model can be used to

value options of an underlying variable having skewness and kurtosis along with mean and

standard deviation. Furthermore, several characteristics of the quadrinomial lattice have been

compared with those of the pentanomial lattice. The convergence rate of quadrinomial lattice is

almost the same the convergence rate of pentanomial lattice; and the difference between the

calculated option prices is less than 2 cents when we use the time step-size as one day for a

European option with 250 days of maturity period. The effect of high volatility values on the

quadrinomial lattice is same as that of the pentanomial lattice. Moreover, both the models

generate fine volatility smiles and smirks. In short, one can apply the quadrinomial lattice model

developed in this research to estimate the option price for a single underlying asset. As for future

research, this approach can be extended to develop a multinomial lattice model for multiple

underlying assets.
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Appendix A

Calculation of the probabilities obtained in Equation (3.8).

We have following five equations:

(2a) p1 + (a) p2 + (0) p3 + (-a) p4 = ^

(2a)2 p1 + (a)2 p2 + (0)2 p3 + (-a)2 p4 =

(2a)3 Pl + (a)3 p2 + (0)3 p3 + (-a)3 p4 =

(2a)4 Pl + (a)4 p2 + (0)4 p3 + (-a)4 p4 =

Pi + P2 + P3 + P4 = 1

(3-3)

(3-4)

(3.5)

(3-6)

(3.7)

Applying the Gaussian Elimination Method,
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Appendix B

First four central moments for the lognormal distribution.

Consider a variable, V, follows the lognormal distribution with probability density

function h(V). For the lognormal distribution, the nth raw moment, mn, can be calculated using

following equations (Ref. Technical notes 2, Hull 2002),

mn= ! Vnh(V)dV = exp Ing +
no)

(1)

where Q and (o are the mean and the standard deviation of ln{ST) given by,

?-T)T' (2)

(3)

and using the relationship between the raw moments and central moments, the first four central

moments for the variable Fcan be estimated.

So, using Equation (1), (2), and (3), the first four moments can be estimated as follows:

For the mean (first moment), n = 1.

r°° a)2
mi = Vh(V)dV = exp (<? + —)

Jo z

= exp

<72\ a2T

-t)t+-

= exp(lnS0+i9r)

— on e

Therefore, \i1 = m1= So e°T. (4)
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For the variance (second moment), n = 2.

f00 4o>2
m2 = V2h(V)dV = exp (2g + —)

Jo 2

= exp [2 j/n 50

Therefore, \i2 = m2

,2i9r

= S02e™T(e°2T - 1). (5)

For the skewness (third moment), n = 3.

= exp (3q

= exp

Therefore, \i3 = m3 — 3mxm2 + 2ma3

3'2T - [3(SQ

2). (6)

For the kurtosis (fourth moment), n = 4.

= [ V4h(V)dV = exp

1

= exp
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= So

Therefore, \i4 = m4 - 4m1m3 + 6m12m2 - 3m!

- 3). (7)
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Appendix C

Derivation of the conditions for the negatively skewed lattice shown in Figure 3.2 (b):

For the negatively skewed lattice, consider the jump size.

a =

In terms of cumulants, the above equation can be written as,

-c3 -

a =

c2(c4 H- 3c22t)

As t -» 0, we have,

-c3 - c2c2<-4
a0

Now we have the probability distributions (Equation (3.23)) as follows:

lim(-)Pl(r) =

Iim(i)p2(r) =
-c4 2c,an2c2a0

(1)

(2)

(3)

(4)

Substituting Equation (3) into Equation (4), and solving for <f, qv q2, and q4, we have,

i
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^2 v 3 * "^2^4 "•" ^^3v^3 ' ^2^4/

2(c3+Vc32+c2c4)

flfi =
3(5c32 + 2c2c4 + 5c3A/c32 + c2c4) '

3c32 + c2c4 + 3c3A/c32 + c2c4

DC3 "r tiC2C4 "1~ 303-1/1.5 ~t~ C-2C4

7c3 + 3c2c4 + 7c3Jc3 + c2c4

. 15c,2 + 6c,c,32 + 6c2c4 c2c4

From Equation (5), qlt q2, and q4, can also be written in terms of £, that is,

In Equation (5), for q-i to be positive,

c3 < 0

is the first condition since negatively skewed lattice has been considered.

Moreover,

C2C4 + C3 > 0.

Therefore, > -c3.

(5)

(6)

(7)

(8)

(9)
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Since, according to Equation (7), c3 < 0, the right side of the Equation (9) becomes positive, so

simplifying Equation (9), we get,

c4 > 0. (10)

Now, for ^ to be positive,

2c2c4 5c3

C2C4 + C3)

2c2c4

■ + ■ > 0.

-5c3

\* — f I—= j ■

i) WC3 +C2C4 + C3J

2c2c4 > -5c3

2c2c4 + 5c32 > -5c3

_ Cr 2
— DC, .

(11)

(12)

(13)

Therefore, zc2c4 + be,' > -5c, ( A/c,^ + c?cA ). (14)

Since c3 < 0 according to Equation (7), the right side of the Equation (14) becomes positive, so

simplifying Equation (14), we get,

C2^4> T (15)

For q2 to be positive:

3c2c4 -9c,

(/c 3)
(16)

With the same argument that is used for Equation (14), i.e., since we have c3 < 0, the right side

ofthe Equation (16) becomes positive. Hence, by simplifying Equation (16), we get,

c2c4 > (17)

Finally, for q4 to remain positive:

J
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~7c3

C3)
4 — (18)

which leads to,

C2C4 ^ 7T (19)

Among all the conditions given in Equations (15), (17), and (19), the most constraining

condition is,

c2c4 > 3c32.

Therefore, there are three conditions that must be satisfied for non-negative probability

distributions for the negatively skewed lattice:

C2C4. > 3c32, c4 > 0, and c3 < 0 . ■ (20)
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