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ABSTRACT 

 

Advancement in technology has brought considerable improvement to processor design and now 

manufacturers design multiple processors on a single chip. Supercomputers today consists of 

cluster of interconnected nodes that collaborate together to solve complex and advanced 

computation problems. Message Passing Interface and Open Multiprocessing are the popularly 

used programming models to optimize sequential codes by parallelizing them on the different 

multiprocessor architecture that exist today. In this thesis, we parallelize the non-slicing 

floorplan algorithm based on Multilevel Floorplanning/placement of large scale modules using 

B*tree (MB*tree) with MPI and OpenMP on distributed and shared memory architectures 

respectively. In VLSI (Very Large Scale Integration) design automation, floorplanning is an 

initial and vital task performed in the early design stage. Experimental results using MCNC 

benchmark circuits show that our parallel algorithm produced better results than the 

corresponding sequential algorithm; we were able to speed up the algorithm up to 4 times, hence 

reducing computation time and maintaining floorplan solution quality. On the other hand, we 

compared both parallel versions; and the OpenMP results gave slightly better than the 

corresponding MPI results. 
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CHAPTER 1 

1. INTRODUCTION 

1.1.  Motivation 

 

Since the past few years, there has been a significant shift towards parallel computing of 

commercial applications as the demand for faster computing system has increased 

considerably.  As processor manufacturers tend to develop multi-core processors rather than 

improve single core processor speeds, parallelization has become increasingly popular [20]. 

Multiple processors on a parallel computing system work in collaboration to solve advanced 

computation problems faster and more efficiently [24]. Open Multiprocessing (OpenMP) and 

Message Passing Interface (MPI) are the two major parallel programming models used on 

parallel architectures. Both of the paradigms aim to provide an interface for high 

performance, but their approach is somewhat different. Open MP can be used on a multicore 

architecture with shared memory and multiple cores exist on a single chip. There exists 

multicore chips today that have over 64 cores on a single chip and manufacturers like Tilera 

are increasing this number to 100. This would help to conserve power and also the distance 

between processors will be highly reduced. MPI can be used on a shared memory as well as 

distributed memory architecture. In distributed memory architecture, each processor has its 

own private memory and multiple processors communicate through a communication 

network. VLSI Floor planning applications can benefit from parallelism because they are 

time consuming and computationally intensive. The building of electronic components with a 

very large number of transistors is referred to as VLSI. Defining block shapes and positions 

with the aim of minimizing dead space and wirelength can be referred to as floor planning 
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[3]. Dead space can be defined as the amount of unused space contained in between module 

blocks arranged on a rectangular space. The problem of floor planning is to arrange a set of 

module blocks on a rectangular area space in an optimal manner, so that none of these blocks 

extend over another and with minimal amount of free unused space called dead space. 

Floorplanning is a very critical task in VLSI design and can be computationally intensive. Its 

purpose is to use the minimal space possible as well as minimal wire for connection. The 

floorplanning algorithms based on MB*tree [4] has been implemented for two different 

parallel models: MPI (Message Passing Interface) and OpenMP (Open Multiprocessing) with 

the aim to speedup computation, as the computational time for the algorithm to run on large 

circuits could be enormous. Floorplanning in VLSI could be slicing or non-slicing [3, 6, 10, 

12]. Our parallel algorithm is based on the work on floorplanning in [4] using B*-trees. To 

find the optimal orientation, the sequential algorithm is divided into two stages: clustering 

(packing) and declustering (perturbation) [2, 4]. In this thesis, we deal with non-slicing 

structures. All the possible orientation is considered and the optimal arrangement that gives 

the minimal dead space and wirelength is selected. The first phase of the algorithm is 

clustering which involves packing or grouping of module blocks with the avoidance of 

overlapping and wirelength computation; in the declustering stage these arrangements are 

refined to an optimal point using the Simulated Annealing (SA) approach [1, 5, 8, 11, 13].  It 

is used for finding optimal solution to many-dimensional problems [5, 10]. Wirelength 

calculation in this algorithm consumes so much computational time because each time the 

tree is refined, wirelength computation takes place.  
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1.1.1. Thesis Goal 

In this thesis, we explore the parallelization of the MB*tree sequential algorithm. Our 

approach parallelizes one of the most computationally intensive phase in the algorithm. The 

main idea of our parallel approach is to use the master-slave approach for parallelization 

taking advantage of the technology of distributed and shared memory systems. In [4], the 

algorithm describes the clustering stage where a set of module blocks are grouped into 

clusters to form one module containing all the blocks and in the same way these clusters are 

perturbed for optimal solution. Our parallel approach uses the master node to carry out the 

perturbation task and in the packing stage both the master and the slave nodes work in 

collaboration to execute the wirelength computation after area update has been completed. In 

the perturbation phase, simulated annealing is employed to refine the tree constructed during 

the packing phase. The master processor/thread distributes the total modules by the number 

of processor modules to each slave node. Each slave process accepts the modules distributed 

by the master node and then computes the wirelength of its own share of the modules. Each 

processor forwards its wirelength result to the master; the master then sums the results up, 

finds the aggregate and computes the final wirelength. Our parallel approach was 

implemented using two different parallel models: MPI and OpenMP. Results of both models 

were compared with each other and also with the sequential version and results obtained 

show decreased runtime as the number of nodes increases and speedup was achieved. The 

Microelectronics Center of North Carolina (MCNC) benchmark circuit [4, 37] was used for 

testing. The MCNC benchmark suite is popularly used in academic research. It is a collection 

of standardized libraries of circuit designs ranging from simple to advanced circuits collected 
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from industries and academia. We obtained the net list of these circuits which contains the 

module information that make up the circuits and the interconnections between the modules. 

 

1.1.2. Organization of Thesis 

 

Chapter 1 contains the introduction. 

Chapter 2 presents some background theories and related work for this thesis. A short 

introduction to Parallel programming with OpenMP and MPI is given, along with some 

parallel programming models and performance modeling information. A brief description of 

multiprocessors and computer architectures are also presented.  

 

Chapter 3 describes the sequential MB*tree Algorithm Floorplanning algorithm. 

  

Chapter 4 describes the Parallelization of MB*Tree using MPI and OpenMP models. This 

chapter describes the methods employed to achieve parallelism.  

 

Chapter 5 describes the experimental methodology used in this thesis. The installation and 

configuration of MPI and OpenMP is described. The computer and network information used 

in this thesis is also presented. 

 

Chapter 6 presents the detailed analysis of performance results from our tests for both the 

Parallel algorithm; comparison of the sequential and parallel versions is discussed.  

Execution time and overhead incurred is shown in various charts and discussed. The speed 

achieved for each test is also presented.  

 

Chapter 7 contains the conclusion and future work in this thesis area.  
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CHAPTER 2 

2. BACKGROUND 

 

In this chapter, an overview of the theory and technology used in this project is presented.  

2.1. Why Parallelization   

 

In the past few years, there has been a significant shift towards parallel computing of 

commercial applications as the demand for computing power has increased considerably.  As 

processor manufacturers tend to develop multi-core processors rather than improve single 

core processor speeds, parallelization has become increasingly popular [20]. So many large 

applications with serial programs take an enormous amount of execution time. Running 

computationally intensive applications sequentially is very time consuming and today’s 

supercomputers have the capability to use multiple cores or multicomputer to run programs 

in order to improve performance, efficiency and considerably reduce runtime. Running a 

program on a single core can be optimized by parallelization. The objective is to reduce the 

execution time. Many applications have gained from parallelization because multiple 

processes are executing the code. So the goal is to use multiple cores or computers to reduce 

the execution time. Performance is one of the major factors to be considered in parallel 

processing.  

2.2.  Parallelization explained 

What is parallelization? 

Parallel computing can simply be defined as a computing approach in which multiple cores 

or processors are used for execution of a single program [20, 24]. In parallel processing, tasks 
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of a sequential program is identified and split amongst multiple processes to execute 

independently and simultaneously. The work is distributed over multiple computers or cores 

depending on the architecture. There are various programming models that exists today for 

parallel processing, they include: pthreads, Message Passing interface, OpenMP e.t.c. These 

models make use of library of functions for parallel processing [19, 20, 22, 24]. MPI is 

designed for distributed memory and is probably the best known paradigm in parallel 

computing. In MPI, communication between processes is well defined and it also provides a 

good number of functions that opens up for high performance and improvement of the 

system [20] 

 

 

 

 

 

 

Figure 1: Parallelization tasks 

 

Figure 1 above shows the steps involved in parallelization of a serial application. The 

following steps are involved in converting a serial program to parallel program: 

1. Task Decomposition: This involves the breaking down a problem into chunks of tasks to 

be assigned to multiple processors. 

2. Task Assignment: Here the decomposed tasks are assigned to the processes that would 

perform the computation simultaneously. 

Sequential 

code 

Decomposition 

of tasks 

Assignment of 

processes to 

processors 

Orchestration 

Process 

Mapping 
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3. Orchestration: This involves the arrangement, control and coordination of processes for 

necessary data access, communication and synchronization among processes [24]. 

4. Mapping:  Mapping involves binding of processes to processors [24]. 

    

Benefits of Parallelism: Major aim and benefit of parallelism is to achieve speedup by 

reducing the total execution time of a program. Also with parallelization, a program can 

make use of the memory of multiple separate computers at once [23].     

Challenges of Parallelism: Interprocessor communication is one of the major challenges in 

parallel programming. Each processor or core might have to communicate, depending on the 

algorithm and this brings about overheads that increases the total execution time for some 

applications and reduces performance and efficiency. 

2.3. High Performance Computing (HPC) 

 

2.3.1. Multiprocessors 

While some computational problems can be solved on a machine with one processor or core, 

so many other complex problems require computers comprising of more than one processor, 

this types of computers are referred to as parallel computers. Due to the high demand for 

higher performance and more efficient computing machines, processor manufacturers are 

focusing more on multicore processors. Cluster computers and supercomputers are used 

today to solve complex computational problems. Different kinds of architectures have been 

introduced to overcome the limitation of single processor machines; these include vector 

processors, interconnected workstations, shared memory and distributed memory processors 

[34]. 
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The processors in a parallel machine collaborate to solve complex and advanced computation 

problems which save time. These are the most commonly used models in today’s world. 

Many grand challenge applications have benefited from parallel computing, they include: 

Computational Fluid Dynamics, Climate modeling, Computational Biology, Human Genome 

problem, e.t.c. Parallel machines can either be shared memory or distributed memory 

machines. 

2.3.1.1. The Shared Memory Architecture 

 In a multiprocessor system, shared memory architecture contains only a single address space 

with two or more processors accessing the shared memory through a bus. One of the benefits 

of this model is that communication is done using one shared memory and there is quick 

access to data [34]. One of the limitations of shared memory model is that there is memory 

access contention because only one address space exists and this might lead to increased 

memory access time and poor performance. Access contention can also lead to bottlenecks 

and generally shared memory computers do not scale well [20, 34]. Another drawback of 

shared memory architecture is cache coherence; changes of data in cache need to be updated 

on all other processors that require this information for data consistency; and this has to be 

done by the system. Figure 2 shows shared memory architecture. OpenMP programming 

model can be used on shared memory architecture [20, 24]. To solve the problem of access 

contention of shared memory architecture in Figure 2, each processor can have its own local 

memory as shown in Figure 3, to store unshared codes and this reduces the access contention 

time. 

http://en.wikipedia.org/wiki/Cache_coherence
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       Memory 

 

Figure 2: Shared memory architecture 

 

 

 

 

 

 

    Memory 

 

 

2.3.1.2. Distributed Memory Architecture 

In distributed memory architecture, communication exists between multiple computers or 

nodes on the network. Each node consists of its own private memory and does not have 

access to the memory of other nodes in the network but can communicate with them. In this 

model, data exchange is done by the various nodes in the network. Interprocessor 

communication is done by message passing via the network. One of the benefits of this 

M1 Core                

1 
M2 Core                

n 

Core n Core 1 

Figure 3:  Shared memory architecture with each processor having its own local memory 
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model is that it allows for scalability e.g. a network of interconnected work station is 

distributed memory architecture and therefore it can allow for more machines to be 

connected to the network and this has led to an increasingly growing use of computer 

clusters to implement parallel applications [34]. 

 

 

 

 

 

 

Network 

 

 

2.2.2. Parallel Programming Models 

There exist many programming tools to implement parallel programs. Some of the most 

popularly used tools are OpenMP and MPI, Parallel Virtual Machines (PVM) is also a 

commonly used message passing model for distributed parallel programming.  

2.2.2.1. OpenMP Overview 

 

OpenMP is a multithreading process [19, 20, 21] and it is directive based. In this approach, 

directives are used in parts of the code that needs to be parallelized; this is defined by the 

programmer. These directives are used to parallelize sections of the code defined by the 

user, task partitioning and synchronization. 

Processor 1 

Memory 

Processor n 

Memory 

Figure 4: Distributed Memory Architecture 
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“#pragma omp parallel for” is used in C or C++ to parallelize a for loop. Tasks are divided 

into chunks using the pragma some of the basic OpenMP routines are: 

 # pragma omp parallel for - indicates a loop that can be executed in parallel. The for 

loop’s iterations can be divided among the number of threads and the distribution method 

is dependent upon the scheduling strategies [25].  

 omp_get_num_threads () - It returns the number of threads in the parallel region. 

 omp_set_num_threads() - is used to change the number of threads during execution 

 omp_num_threads () – is used to define the number of threads to be used in execution. 

OpenMP code is an extension of the sequential code i.e. the OpenMP directives used 

between the codes provides a parallelization method which is portable for 

implementation. 

2.2.2.1.1. Implementation of OpenMP 

Fork-Join approach is employed in executing a sequential code with OpenMP [20, 26]. 

When a directive is added into an OpenMP code at runtime, the code initially starts with a 

sequential region execution and then when the OpenMP directives are encountered, 

additional threads are spawned and the work is partitioned and assigned to the threads. In 

the parallel region, each thread carries out its own share of the task concurrently with other 

threads. # pragma omp parallel directive is included in an OpenMP code to define parallel 

regions in C or C++ programming language. 

In the diagram below, the master thread assigns workload to itself just like other worker 

threads it creates and is involved in computation and execution of data and tasks 

respectively. The omp_barrier directive is added to the end of the parallel region to allow all 
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other threads to wait until all threads have completed execution of their tasks before 

synchronization and then a join is created by the master thread to synchronize all other 

threads. 

                                           Master thread 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.1.2. OpenMP Memory Models 

 

 Private Memory: in private memory, each worker thread can only access its own private 

memory. It makes changes to its own memory and can only access and modifies it. 

 Shared Memory: In shared memory, each thread has access to data in the memory; and 

each thread has the right to make modifications to the shared variable. The threads use a 

mechanism to read and write to the shared memory. 

 

Fork 

Worker threads 
Parallel region 

Serial region 

Join 

Serial region 

Master thread 

 
Figure 5:  OpenMP Fork and Join approach 
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2.2.2.2. Parallel Virtual Machine (PVM) 
 

PVM is based on message passing that can be used in distributed environment as well as 

multiprocessor environment. In PVM, a group of computers appear as one single virtual 

machine; these computers are able to communicate with each other using an interface. PVM 

works well with data parallel approach in which the same instruction is executed on each 

share of the data on each processor. However, PVM was not standardized and was not as 

popular as the Message Passing Interface [20]. 

 

2.2.2.3. Message Passing Interface (MPI) 

MPI is one of the most popular models for programming a cluster of computers. MPI provides 

an Application Programming Interface (API) through the set of functions that also handle 

input/output operations. It uses a distributed memory model and can only access data from its 

own local memory. MPI standard consists of library of specifications used for point to point 

communication. The objective of MPI is to establish a communication or message passing 

standard for message passing coding. Message Passing Interface is known to be portable, 

flexible and efficient for writing MPI codes on high performance computers [20]. MPI can be 

used on any distributed memory or shared memory. In MPI, # include “mpi.h” is required for 

all coding. It is used to make a library call.  

 

The following are the basic routines used in MPI programs. 

 MPI_Init: this is used to initialize the environment for code execution. This function is 

required in every program and should be used before all other MPI functions. 
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 MPI_Send: This function is used for sending messages. Processors have access only to its 

own local memory, and might require data from other processes and MPI_Send is used to 

request data from other processors. 

 MPI_Recv: This function is used to receive messages. A processor needs to execute this 

function to receive messages from another processor. The message is tagged with the 

MPI_send message to be able to distinguish message pairs. 

 MPI_Comm_size: This function determines the number of processors associated with a 

communicator. 

 MPI_Finalize: this function stops the code execution in the MPI environment. 

 MPI_Comm_rank: This function determines the identifier of a process. 

Other MPI functions include but are not limited to: 

 MPI_Isend: is used for synchronous communication for sending messages. 

 MPI_IRecv: is used for receiving messages in asynchronous communication. 

 MPI_Comm_Create: This function creates a subset of global communicators and then 

restricts communication to this subset only by specifying the appropriate communicator 

in the call [20, 22].  

 MPI_Bcast: is used to broadcast one message to all processors. 

 MPI_Gather: is used to collect messages from all processors. 

2.2.2.3.1. Implementation of MPI 

 

To launch MPI, all processes must be started individually. Exchange of data will be done by 

transferring data across the network from one processor to another. The number of nodes of 

the cluster to use and how many processes are required on each processor is defined by the 
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programmer during execution. The first function to be executed before any other function is 

the MPI_Init, MPI_finalize is called at about the time when the program is about to finish. 

Any other MPI function added after MPI_finalize is ignored and cannot be executed. For this 

thesis, we executed the MB*tree algorithm using the master-slave approach illustrated below. 

Figure 5 below shows the Master slave model in which the master node is responsible for 

coordination, control, partitioning and assignment of tasks and generating the final result 

from the collective results of the slave nodes. 

2.2.2.3.2. MPICH2 

 

MB*tree algorithm in this thesis was implemented with MPI standards using MPICH. 

MPICH [29] is an open source project used for MPI Implementation. It is one of the most 

popularly used projects for executing MPI. Majorly developed at the Argonne National 

Laboratory, it produces portable implementation of MPI standards [28, 29] with 

programming languages C, FORTRAN and C++. MPICH can be used on distributed 

environment, on a network of interconnected workstations, single processor or 

multiprocessor computers 
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2.4.   Performance Modeling 

 

Performance in parallel processing is harder to evaluate than in sequential processing 

because a number of processors are working independently on a single program with both 

sequential and parallel sections. Also synchronization and message passing are not easily 

measurable; however, they can be measured by inserting some codes into the algorithm. 

Generally, an algorithm that has a serial section will limit the speedup of an application 

executed on parallel architectures. 

 

2.4.1. Amdahl’s Law 

One of the general laws used in parallel computing for evaluating performance and 

efficiency of applications is Amdahl’s law [20, 22]. Amdahl’s law is used as a performance 

prediction model for parallel applications. Amdahl’s law can be used to determine the 
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Figure 6: MPI Master/Slave Approach 
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speedup achieved for a parallel application compared to its serial version. The number of 

threads, or processors used, determines the speedup that can be achieved [20], and also the 

fraction of the code that can be parallelized is an important factor that determines speedup. 

It is applicable in codes that have a serial portion and a parallel portion. 

2.4.2. Speedup 

The major benefit of parallelism is speedup. The speedup of parallel processors is governed 

by Amdahl’s law. This is used to evaluate the time it takes to run a code in serial and in 

parallel with more than one processor with the assumption that the size of the problem is the 

same. Amdahl’s law is more focused on the speedup that can be achieved from an 

improvement to a computation that affects a proportion of that computation where the 

improvement has a speedup of S.  

Speedup can be defined as S= T (1)       eqn (1) 

             T (N) 

Where T(1) is the time it takes to execute the whole application on one processor and T(N) 

is the time it takes to execute the application on N processors where N>1  

Speedup above 100% is known as super-linear speedup. To further explore Amdahl’s  

 

Speedup S =          N 

                    (N*P) + (1 – P)         eqn (2) 

 

where N = Number of processors and P is the % of the algorithm that is serial.      

Equation 1 can be translated into S(N) = T(1) = Ts + Tp    eqn(3) 

       T(N)    Ts+Tp/N 

 

Ts = original single processor serial time 

Tp = Parallel time 

Equation 3 is known as Amdahl’s Law [20] 
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To see considerable speedup in a parallelized code, the parallel portion of the code must be 

much greater than the serial portion. Perfect speedup is hard to obtain as the number of 

threads or processors increase, the parallel overhead begin to saturate and speedup 

decreases. In general, speedup cannot be greater than the number of processors N. However, 

when speedup is obtained from a parallel application, then some of the factors considered to 

enhance speedup are: 

More work: Serial algorithms tend to do more work than the corresponding parallel version 

due to enhanced features in parallel architectures. 

Cache: In parallel applications, there is a larger cache available to the algorithm because 

data has been decomposed into smaller chunks hence enhancing speedup. 

 

2.4.3. Overhead 

 

One of the factors that affect the performance of parallel applications is overhead. There are 

various sources of overhead in parallel applications and they include but not limited to idle 

time, synchronization and interprocessor communication, task partitioning and assignment, 

thread and process creation time. Overhead can therefore be defined as : 

To = Tex – (Ts+Tp)         eqn 4 

where Tex = Total execution time 

            Ts = Time to run the sequential portion of the code 

            Tp = Time to run the parallel portion of the code on n processors 

Overheads could be difficult to measure so we can use equation (4) to compute the 

overhead incurred and the To obtained in equation (4) includes the communication time, idle 
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time of processors, synchronization time, process creation time, and task division. In theory 

running an application over multiple threads or processors should improve performance 

when compared to running it on a single thread or processor. But there are other factors that 

could limit the performance of a parallel application [19, 20].  

Parallel applications cause additional work to be done in terms of dividing tasks among 

processors or threads, creation and synchronization of threads and many more. Most threads 

will need to exchange data and a cost is associated to it called communication overhead. 

Also imbalanced load might be another factor that impacts performance. Tasks must be 

evenly distributed among processors or threads to avoid or reduce the overhead caused by 

imbalanced load. For an application to benefit from parallelism, parallel overheads have to 

be considered and minimized considerably [20]. 

2.4.4. Efficiency 

 

Efficiency can be defined as the time spent in doing useful work [19, 20]. Efficiency of 

parallel application is measured by comparing work done by sequential algorithm to its 

parallel counterpart. Theoretically,  

Efficiency = speedup / (number of processors = 1)     eqn 5 

where speedup = number of processors, but as most parallel algorithm comes with 

overhead, efficiency goes down as it increases number of processors. 
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CHAPTER 3 

3. VLSI FLOORPLANNING WITH MB*TREE 

3.1. What is Floorplanning? 

 

In VLSI design, Floorplanning is a very crucial task, performed at the very early and initial 

stage of design automation. Floorplanning aims at arranging a set of module blocks in an 

optimized manner thereby reducing the dead space, area space and interconnection cost to a 

minimum. Floorplanning is known to be an NP-hard problem. There is an optimal way to 

arrange these module blocks and floorplanning algorithms are employed to find feasible 

floorplan solutions. They are optimization algorithms that solve complex problems. These 

algorithms are computationally intensive and time-consuming. Some Floorplanning 

algorithm could take several days to find a feasible floorplan solution especially for large 

industrial circuits. The MB*tree (Multilevel placement of large scale modules using 

B*trees) algorithm has been studied and it is an algorithm that scales well as the circuit size 

increases but also runtime increases with circuit size [4, 39].  

 

 

 

 

 

 

 

 

 

 
Figure 7: Arrangement of a set of module blocks on a rectangular space 
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Figure 7 above illustrates floorplan with a set of block modules arranged on a rectangular 

space in an optimal manner. The white spaces in the figure are the dead spaces which are 

the unused portion of the space and floorplan aims at minimizing the dead space as much 

as possible. Floorplans can either be slicing or non-slicing structures. In this project we 

have dealt with non-slicing structure. In slicing floorplan structure, the rectangular blocks 

can be further divided by either vertical or horizontal lines. For the non-slicing structure, 

the rectangle blocks cannot be recursively divided into smaller rectangles [2, 4, 7, 12, 27]. 

3.2. The Sequential MB*tree Algorithm  

 

The MB*tree Algorithm [4] is based on the B*tree floorplanning algorithm and works in 

three phases: packing phase, perturbation phase and simulated annealing which will be 

discussed in details. Given a set of module blocks to be arranged in an optimal manner in 

order to reduce cost, minimize wirelength and dead space this algorithm will be described 

using the following sections. 

3.2.1. The Packing phase 

 

A primitive module is a single module block and a cluster module is a group of module 

blocks. Given a set of module blocks to be arranged on a rectangular space, MB* tree uses 

the packing algorithm to cluster the given set of modules based on connectivity and area 

space factors. Packing is the process whereby a given set of module blocks are placed into 

different groups and then the group set are clustered continuously until they make up one 

single cluster. The attribute for grouping is the dead space and connectivity density. The 

dead space is defined as the unused spaces left in between modules that are arranged on a 

rectangular space. The larger the cluster of modules, the higher the connectivity. The 
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algorithm below describes how modules are clustered together into one. For example, if 

we need to cluster two module blocks m1 and m2  assuming m1 is on the left of m2, placed 

horizontally, then m2 will be the left child of m1 for the corresponding B*tree[2,4]. 

The relation for each pair of modules in a cluster is established and recorded in the 

corresponding B*-sub tree during clustering. It will be used for determining how to 

expand a node into a corresponding B*-sub tree during declustering. At the end of 

clustering an expandable one node tree is formed and the next algorithm is applied to the 

tree. An initial floorplan is obtained from the clustering of the modules into one single 

cluster and a corresponding tree is constructed which will be the initial input for 

refinement in the perturbation stage. The wirelength is then computed for the current 

solution. The clustering algorithm is illustrated below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Initialize a stack 

2.  Initialize the root node index int p = nodes_root 

3. call subplace _module and pass it our root node    index  subplace_module 

(p,NIL); 

4. Initialize the root node on each node 

5. On the root, stack the node to the right side of the root node; directly above it. 

if (n.right != NIL)      S.push(n.right) 

6.  Stack the node to the left side of the root node; pushed directly above the node 

at its right side. if(n.left  != NIL)      S.push(n.left); 

7. In order, traverse the stack, till the stack is empty 

8. Inside this loop check if the current popped node from the stack is at the right 

side of its parent if so, call the subplace_module function to pack the nodes 

along with its neighboring nodes and then push the sub cluster on to the stack 

further  

9. Compute Width, Height 

10. Record this module information to the corresponding module. Calculate the 

floorplan area and update it each time. 

11. Calculate the wirelength  

 

Figure 8: Description of the Packing Algorithm 
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The subplace_module function deals with the geometry of the modules, like rotation and 

swapping; it is responsible for rotation and swapping of modules for optimal arrangement 

[4, 39]. It transforms the modules during the packing phase when they are being clustered 

together. 

3.2.2. The Perturbation phase 

 

In the perturbation stage, Simulated Annealing explained below is used for refining the 

floorplan solution obtained previously. Area utilization (dead space) and the wirelength 

among modules are the declustering metrics [2, 4]. Dead space: These are the unused 

spaces on a rectangular space with arranged modules. Wire length: This is the wirelength 

of a net is measured by half the bounding the length of the center-to-center 

interconnection between the modules in a net [4]. To find the total wirelength of a 

floorplan an aggregate of interconnecting wirelength is computed for the total wirelength 

value. The declustering stage iteratively expands a node into a sub tree according to the 

B*-tree constructed at the packing phase and then Simulated Annealing is used for 

refinement [4]. To find a neighboring solution, we perturb a tree to get another tree by 

simulated annealing. 

The next section gives a brief description of the Simulated Annealing algorithm.  

 

3.2.3. Simulated Annealing  

 

Simulated annealing is an iterative and probabilistic optimization algorithm popularly 

used for floor plan optimization [2, 4,]. Simulated Annealing works basically on three 
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rules. 1
st
 Rule: Rotate a module; 2

nd
 Rule:  Move a module to another place; Rule 3: Swap 

two modules [4]. These three operations are applied to the initial tree formed for each 

node of the tree and based on these operations a new tree is formed which implies a new 

floorplan solution. SA is applied to subsequent solutions formed until a predefined value 

is reached and the tree is converted to the corresponding floorplan. Simulated Annealing 

algorithm uses the concept of thermodynamics for the growing of crystals [7, 8, 12]. In the 

annealing process, with minimal global energy expended, materials in their solid state can 

form an almost perfect crystal. The solid materials go through a state of melting and 

cooling, the temperature is raised to a high point and as the temperature decreases steadily, 

based on predefined value, the material cools down as atoms form a perfect crystal. This 

concept is simulated for optimization in other areas. The cost function in MB*tree is the 

energy that needs to be minimized [4, 5, 6] and also the modules are the atoms. Simulated 

Annealing in floor planning begins with initiating a floor planning placement solution in 

which the modules are clustered randomly which occurs in the packing phase and the 

temperature is set to a high level, then a new solution is generated by refinement in the 

perturbation phase using the operations in Simulated Annealing[2, 4]. The packing and 

perturbation continues and the temperature decreases gradually, solutions are accepted or 

rejected based on some predefined rules. The solution obtained is dependent on how high 

the initial temperature was set and the conditions or criteria for cooling. The slower it 

cools the higher the probability of obtaining better results. Dynamic and static cooling 

method can be used. The solution which achieves the minimum of the objective function 

over the iterations is the best one.  



25 

 

3.3.  RELATED WORK  

 

The parallel algorithm in our work is based on a sequential MB*tree for floorplanning 

proposed in [4]. This approach uses two basic methods for Floorplanning optimization: 

clustering and declustering and it is based on B*tree representation for non-slicing 

floorplan proposed in [2]. There has been a number of algorithms proposed for non-slicing 

floorplans like O-tree[14], Corner Block List[11], B*tree[2], MB*tree[4], Sequence 

pair[15] and each of these algorithms provide different solutions to floorplan representation 

with each having its own advantages and disadvantages as stated in [2]. Researchers have 

also proposed parallel implementations for a number of these algorithms. In [7], Tang et al 

proposed a parallel genetic algorithm for floorplan area optimization using O-tree 

representation. This approach adopts Island model with an asynchronous migration method 

and uses different chromosome representation [7]. Also in [1], Liang et al proposed a 

parallel VLSI algorithm using corner block list representation which gave considerable 

speedup. In this method, multiple markov was used in parallelization. Our parallel MB*tree 

with its 2-stage technique uses a master-slave approach for parallelization, and compared to 

other implementation, MB*tree scales better as the circuit size is increased [4].   
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CHAPTER 4 

 

4. THE PARALLEL ALGORITHM 

 

4.1.  MB*Tree parallelized for Message Passing Interface (MPI) 

 

To accelerate the sequential algorithm, a parallel approach is incorporated to implement the 

algorithm with MPI and OpenMP models. The objective of our parallel algorithm is to 

reduce the computation time, and not compromising the quality of floorplan solution. The 

wirelength calculation is a very time consuming task of the packing phase. It takes a 

considerable part of the computation time because each update or change in the B*tree at the 

perturb phase would require wirelength computation in the packing phase; in order to 

accelerate this, we have proposed a parallelized approach which splits the cluster modules 

onto slave processors/threads by the master to compute the wirelength without diminishing 

the quality of the floorplan. The packing phase of the algorithm is where the wirelength 

computation occurs. The wirelength calculation occurs at the end of the packing phase [21] 

4.1.1. MB*Tree on MIMD Architecture 

 

The MIMD (Multiple Input multiple Data) model was used to implement MB*tree algorithm 

on Message passing Interface (MPI).  The MIMD model was employed to achieve 

parallelism of MB*tree. We implement MB*tree on MIMD architecture in which each 

processor node has its own local memory and does not have information of other nodes’ 

memory. We used an interconnection of workstations and employed one processor as the 

master that controls communication, control and task assignment and the other processor are 

the slaves that carry out the tasks assigned to them by the master. Each node communicates 
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with the master node in the master-slave approach we employed to parallelize MB*tree. They 

are multicomputer with local memory. The sequential algorithm in [4] was implemented 

using a SISD (Single instruction Single data) in which the application is executed on one 

single core like a conventional computer.  

                                                 Single   instruction 

  

 

 

 

 

 

MIMD is a popular and well accepted architecture for multiprocessors. Here each processor 

operates separately on its set of data simultaneously. Each processor accesses its own program 

memory i.e. Non–Uniform Memory Access (NUMA). The architecture of the multiple computer 

used to run parallel MB*tree is based on MIMD which runs multiple tasks on multiple machines.  
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Figure 9: SISD architecture 

Figure 10:  MIMD Architecture for MB*Tree Parallelization 
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Distributed memory MIMD with MPI and shared memory MIMD with OpenMP have been 

used in this project to parallelize MB*tree and this will be discussed in details in the 

following sections. 

Figure 9 shows a MIMD architecture, in the distributed MIMD, data is distributed to multiple 

processors with private memory. Each computing node in this architecture has a processor, 

memory and communicator. 

4.1.2. Parallelization Strategy 

 

We employ a master-slave model. All slave nodes will send results of their local computation 

of their assigned tasks to the master. The master computes the aggregate wirelength result and 

uses this result for the next refinement of the floorplan, and this is distributed among the 

slaves for computation, until the best floorplan solution is achieved. 

4.1.3. Implementing MB*tree with MPI 

 

The MPI approach creates processes and our method is based on master/slave approach. The 

master node controls the communication, coordinates and assigns tasks to slave processors. It 

reads the floorplan solution data, divides the modules by the number of processors and sends 

them to the slave processors using MPI_Send() and the data is received by the slaves using 

MPI_Recv( ).Each of the slaves carry out computation of wirelength, the master gathers the 

results and computes the aggregate wirelength for the entire floorplan. Figure 10 shows the 

flowchart for the parallel MPI implementation of MB*tree on distributed processors. When 

the packing function is called, and the area has been updated, the cluster modules are sent by 

master to the slaves. Because the wirelength computation has to be done each time there is an 

update to the floor plan based on the perturbation phase, the wirelength calculation has to be 
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calculated for each new update, hence we have parallelized this to achieve speedup. As 

shown in figure 10, at the initial stage, the master node distributes the cluster modules to the 

slave nodes (number of clusters/n) where n is the number of processors.  

In our parallel algorithm, each of the slave nodes get their share of the cluster modules and 

then the relative position of these modules with respect to each other, their distance relative 

to the master module cluster to compute its own module distance from each other and the 

number of pins on each module is obtained, these parameters are used for the wirelength 

computation on each slave processors and hence the wirelength is calculated taking into 

account the number of pins on each module. In order to get their relative distances from each 

other, their position must be known and in order to get each module’s position, they will 

reference the module information which contains each module's distance from the master 

module and the master processor performs final connections among the clusters returned by 

all processors after each processor has forwarded its wirelength results to the master. 

 

 

 

 

 

 

 

 

 

 



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Parallel MB* tree algorithm using the master-slave approach 
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4.1.4.  Task decomposition and assignment  

 

In parallel programming, decomposition also known as partitioning is one of the first steps in 

designing a parallel algorithm after the algorithm is studied and understood by a programmer. 

This involves breaking the problem space of the serial algorithm into multiple tasks to be 

assigned and run concurrently on multiple processors. The speed-up and performance of a 

parallel code is highly determined by the level of decomposition of the problem space into 

concurrent tasks.   There are two approaches to decomposition: domain or data and functional or 

task decomposition [22]. In data decomposition, the problem space is broken down by data and 

each chunk of data set is processed concurrently by multiple processors. If the dependency 

among the data is high, then this approach might be difficult to implement. Task decomposition 

is easy to use if there are no dependencies. In data decomposition, the problem space is 

partitioned based on tasks and not data, hence a programmer has to analyze all the tasks 

performed in the algorithm to check which ones can be parallelized. We describe two 

decomposition methods used our parallel algorithm in the following sections. 

4.1.4.1. Task decomposition and assignment by module blocks 

 

The binary tree structure is used in the representation of modules in a floor plan for the serial 

algorithm. The tree is formed at the initial stage of the algorithm during clustering, the 

decomposition of data is based on the B*tree, which is illustrated in Figure 12. In our parallel 

algorithm the modules are partitioned based on the tree structure. One or more binary nodes are 

mapped onto each processor depending on the number of nodes and number of processors. The 

splitting of nodes begins from the bottom of the tree to the top. Since a binary tree has a 

maximum of two leaf nodes for each non-leaf node, the group of modules is divided by the 
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number of processors and each processor has equal number of modules. In the case where the 

number of processors is not divisible by the number of nodes, then the remainder is given to the 

master node and in this case the master node has more number of modules than the other 

processors.  

4.1.4.2.  Pseudo code for data decomposition 

 

1. Start node grouping from the leaf node i.e. bottom of the tree 

2. If the binary tree is balanced, group each leaf node with the same root in one cluster; the last two 

levels of the tree is grouped 

3. One group will contain 3 nodes or modules, that can form a binary tree with 2 leaf nodes 

4. Move bottom up to the next 2 levels and group other leaf nodes with their root. 

5. Leaf nodes on the same level with different roots cannot be grouped together. 

6. If a node is unbalanced for grouping, then select a node one step above it into the same group 

7. If a node is divisible by 3, all nodes should have equal number of modules, otherwise the 

remainder ungrouped node is assigned to a group 

8. If a tree is unbalanced at the leaf node level with just one leaf node at the bottom, begin grouping 

at the next level, if there are remainder nodes at the top of the tree, put the leaf node in the group 

9. Group in threes until no node is remaining and all nodes are formed into groups. 

10. Assign each group to a processor. 

  

 
 

Figure 12: Task partitioning for a circuit with 33 modules 
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Figure 11 shows a 33 module circuit partitioned into 11 groups with 3 modules represented by 

nodes in each module. As described in the pseudo code, the partitioning begins from bottom to 

top of the tree. Each of these groups is now mapped to multiple processors. In this approach, the 

connection between different clusters is minimized and each of the partitions has an equal 

computational load. In task assignment, a minimum of one cluster is assigned to a node; the 

master processor assigns numbers to the clusters from bottom to top, and maps each of these 

groups to the corresponding processor. More than one cluster can be assigned to a processor this 

will be an ideal situation for performance, because too many partitions leads to increased 

overhead and too less partitions leads to processor idling which is another form of overhead. So 

for the circuit in Figure 12 with eleven clusters after partitioning can be mapped to one processor 

each and each processor will have the same number of modules. If for example five nodes are 

used to execute our parallel algorithm, 2 clusters will be assigned to each processor remaining 1 

cluster, which will be assigned to the master processor. But in ideal situations, it is better to use 

the number of processors that is divisible by the number of clusters to balance the computation 

load. It is a very vital task to appropriately partition the data so as to map the computational load 

onto the processors [32]. 

To assign tasks to modules, an one – to – all personalized communication [35, 36] is used, where 

the master nodes sends a unique message to each slave processor i.e. each slave processor gets 

the same number of modules but different data set to process locally. 

 

4.1.4.3.  Handling wires that extend across processors 

One of the major factors of module clustering is their connectivity density i.e. module blocks 

with higher connectivity are placed into one group and they are positioned close to each other 
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during floorplanning to reduce the wire length. During data decomposition, these module blocks 

are placed on the same processor. However, wires may extend across modules and a module may 

require data from another processor to compute its wirelength. This issue is addressed by the 

master processor. The master processor has the entire net list of the circuits used in the 

experiment. The net list consists of the connectivity of module blocks, the x and y coordinates of 

each module block in the circuit and the net. The master processor after sending data to each of 

the processors will assign the wirelength computation of wires that extend across processors to 

itself. The computation on the master processor occurs concurrently with the slave processors. 

This data decomposition method worked well for small scale circuit and the master node was 

able to handle wires that run across modules in different processors. 

4.1.5. Load balancing 

 

Static load balancing was employed to implement MB*tree parallel algorithm. This is a 

commonly used load balancing method used if a fixed number of processor is assigned to carry 

out computation task; the tasks assigned to each processor are evenly distributed and the 

processors are homogenous. Our parallel algorithm, distributes tasks evenly among processors to 

avoid idle time among processors while others are still running their assigned tasks. In static load 

balancing, the master node is responsible for task coordination and it assigns tasks to the slaves 

at runtime. In our parallel algorithm, the cluster modules are forwarded to all processors involved 

using the one – to- all communication type [35]. In this type of communication the master node 

has unique data for all the slave processors and transmits specific data to each of the slaves. 
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4.1.6. Parallel Wirelength Computation 

 

For the wirelength calculation, the half perimeter bounding box method is used [2, 4]. Each 

module has information of its distance to the root node, contained in the module information data 

structure, which is their relative x and y coordinate values. Each processor or thread calculates 

the distances between its modules which is the wirelength within the cluster modules and finds 

the coordinate of the module pins to get the highest coordinate values and this will be the upper 

limit, similarly it will find the lower limits coordinates; the lower limits is subtracted from the 

upper limits to find the bounding box and then half the bounding box can be computed to find 

the wirelength. The half perimeter bounding box method is the half-perimeter of the minimum 

bounding box for which all pins are enclosed. The module lying on the lower limits of the box 

comparatively will be the module whose distance from the other consecutive modules will be 

calculated; then the distance will be calculated from the node that lies at the upper limit 

consecutively. However, if the positions of the pins are not given, then the computation is done 

using a position lying in the center of each module. 

This distance is computed by every processor/thread on the modules assigned to them. The local 

wirelength values are sent to the master node, it then sums up all the wirelength results, scales 

them accordingly to yield the final wirelength for the floor plan. Figure 12 below shows the 

wirelength computation of a floorplan, in our MB*tree parallel algorithm, the modules are 

grouped into clusters and then wirelength computation takes place concurrently because the tasks 

have been divided among multiple processors, when each of the processors have their local 

results, they send their local it to the master node to compute the aggregate wirelength. Our 

algorithm uses the half perimeter estimation as shown in figure 12 which is a popular method for 
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wirelength estimation. Alternatively center to center estimation can also be used in which the 

wirelength is estimated from the center point of each module.  

 

Figure 13: Half-perimeter wirelength estimation method 

In Figure 13 above, half the perimeter of the bounding rectangle that encloses all the pins of the 

net to be connected is used to estimate wirelength. The figure illustrates 3 module blocks with 

net pins that extend to all the 3 modules. The grey dots indicate pins in one net and the thick 

dotted bounding box is the minimal rectangle that covers the net pins. To use the HPWL to 

estimate the wirelength, we find the length and breadth values of the red bounding rectangles and 

half the perimeter is the estimated wirelength.  

Thick dotted bounding box wirelength estimate using HPWL = (6+4)/2 = 5 

Another net in figure 12 is illustrated with the black dots with 3 net pins bounded in their 

minimal bounding rectangle, the HPWL is calculated below: 

Thin dotted bounding box wirelength estimate using HPWL = (4+4)/2 = 4 
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There could be more than 2 nets across multiple nets and this method is used to estimate the 

wirelength across each of them and the aggregate is computed finally by the master node in 

case of parallelism. 

 

4.2.  MB*Tree parallelized with Open Multiprocessing (OpenMP)  

 

In the multithreading process with OpenMP, we implemented on a quad core computer using 

the fork and join approach. The master thread creates a thread and the worker threads are 

assigned data from the master thread, each then computes its own part of the wirelength 

calculation simultaneously. The node modules are split among the workers on each core. The 

OpenMP directive is added to the wirelength calculation section. #pragma omp parallel is 

used before the region of the code that will be parallelized. The master thread encounters the 

pragma directive and spawns a predefined number of worker threads and then divides tasks 

among the existing threads. To minimize the overhead caused by multiple creations of fork 

and joins we have restricted the OpenMP directives to the wirelength calculation section of 

the code only. At the initial part of the code, the worker threads are idle as the master thread 

carries out the sequential part of the code and then it finds an initial floor plan solution, 

creates forks and splits the modules among worker threads to begin wirelength computation. 

At the end, the threads involved with computation waits for each other to complete tasks, 

pragma omp barrier is added in order to achieve this. The master thread creates a join and 

gathers the results of each thread to compute the final wirelength result; 

omp_set_num_threads is used to define the number of threads to be created by the master 

thread. Figure 14 shows a description of the OpenMP implementation with fork and joins. 
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Figure 14: showing the description of the OpenMP implementation 

 

4.2.1. Execution Mechanism for Parallel Section and barrier synchronization 

 

The MB*tree algorithm has some serial section that is executed solely by the master thread. It 

also contains some sections to be parallelized and those will be referred to as the parallel section.  



39 

 

The master thread executes the serial section with 1 thread and at the point where the master 

reaches the parallel section in this case the packing phase, the master sends out data to each 

thread to start computation. The worker threads on receiving the request from the master, 

executes the parallel section in the packing stage. The master and workers execute an identical 

executable object. However, as soon as the program is executed, the workers immediately go on 

standby, and wait while the master completes executing a serial section. When the master has 

finished executing the serial section, it requests the workers to start executing the parallel-

execution section by utilizing barrier synchronization. Barrier synchronization is a mechanism 

that synchronizes more than two computing nodes at the same time. Each computing node 

temporary suspends processing at the provided point of the program and waits until all 

computing nodes arrives at the same point of the program. Barriers are used in sections of the 

parallel algorithm to enforce a wait on processors that finish up task faster before proceeding to 

the next computation phase. All the other processes must reach the barrier before the 

computation can proceed. 

Computing is accomplished in parallel with multiple threads. After the parallel-execution section 

has been executed, barrier synchronization is again conducted, and the workers again return to 

standby; the master then executes the serial execution section (see Figure 13). A request for 

execution of the parallel execution section is informed from the master to the workers by using 

the barrier synchronization directive.  
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CHAPTER 5 

    

5. EXPERIMENTAL METHODOLOGY 

This chapter details the methodology and tools used to implement the parallelization of 

MB*tree Floorplanning algorithm. The parallel MB*tree algorithm was implemented using 

the C++ programming language with MPI and OpenMP parallel programming models. 

For distributed architecture, we used the master-slave approach where one processor is 

named the master and performs coordination, task partitioning and task assignment and 

control. MPI was employed as the programming model.  The main MPI functions used in 

our implementation are listed on the table below: 

 

MPI_INIT Initialize the MPI environment 

MPI_COMM_SIZE Returns the number of processes 

MPI_COMM_RANK Returns the rank of the process 

MPI_SEND Sends message 

MPI_RECV Receives message 

MPI_FINALIZE Terminate MPI process 

 

Table 1: Main MPI functions used to parallelize MB*Tree Algorithm 

 

 

MPICH2 version 1.4 was installed and used to implement MB*tree in parallel .MPICH2 is a 

high performance and widely portable implementation of the MPI standard [29]. It provides 

MPI implementation that supports computation on homogeneous computer systems [29]. 

MPICH1 provides support for heterogeneous platforms. 
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5.1. Installing and Building MPICH2  

MPI was built and installed on Ryerson University Electrical Engineering (EE) network to 

implement parallel MB*tree algorithm. This section briefly describes the installation and 

configuration of MPI standards on Ryerson EE network. In the Department of Electrical and 

Computer Engineering, all the workstations located in the labs, are networked together with 

home directories and applications served from a Central File server. All workstations have 

access to the Internet through a gateway. The network consists primarily of x86 

workstations running Linux (Fedora Core 5) and Sun SPARC workstations running Solaris 

(5.9); some Sun workstations have Sun PC cards running Windows 98. A list of some 

workstations used as servers in this project is as follows:  

1. brampton.ee.ryerson.ca 

2. acton.ee.ryerson.ca 

3. danforth.ee.ryerson.ca 

4. eglinton.ee.ryerson.ca 

5. whitby.ee.ryerson.ca 

6. clarkson.ee.ryerson.ca 

7. dixie.ee.ryerson.ca 

8. kipling.ee.ryerson.ca 

9. guelph.ee.ryerson.ca 

10. bloor.ee.ryerson.ca 

11. oshawa.ee.ryerson.ca 

12. york.ee.ryerson.ca 

13. ajax.ee.ryerson.ca 

14. malton.ee.ryerson.ca 

15. sequence.ee.ryerson.ca 

16. vibrato.ee.ryerson.ca 

17. vivace.ee.ryerson.ca 

18. requiem.ee.ryerson.ca 

19. gigue.ee.ryerson.ca 

20. forte.ee.ryerson.ca 

21. concerto.ee.ryerson.ca 

22. minuet.ee.ryerson.ca 

23. theex.ee.ryerson.ca 

24. keele.ee.ryerson.ca 

25. appleby.ee.ryerson.ca 
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26. finch.ee.ryerson.ca 

27. sequence.ee.ryerson.ca 

28. sorano.ee.ryerson.ca 

29. alto.ee.ryerson.ca 

30. concerto.ee.ryerson.ca 

 

Table 2: List of Computer nodes running MPI 

 

These computers can be found in ENG406, ENG411 and ENG412. 

MPICH2 uses a default set of configuration options during installation; this creates the socket 

communication device and the MPD process manager, for languages C, C++, Fortran-77, and 

Fortran-90 with compilers chosen automatically from the user’s environment, without tracing 

and debugging options. It uses the VPATH feature of make, so that the configuration process 

can take place on a local disk to improve speed[29]. The mpich2.tar.gz in [29] is unpacked 

and installed into “home/you/” into our master server; brampton. This directory is shared by 

all computers in the network. MPICH2 is configured based on the commands in [29]. The 

MPICH2 commands are also installed and the bin subdirectory of the installation directory is 

added to the installation location path using “setenv” command based on instructions in [29]. 

The following commands are used to check the bin subdirectory: 

 

 which mpd 

 which mpicc 

 which mpiexec 

 which mpirun. 

 

On executing these commands, a path is displayed in the command line that shows that each 

of these installation files exists in the bin directory as this is crucial to the smooth running of 

MPI in the execution environment. 
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At this stage the directory is on all computers on the network since it is a Network File 

System (NFS). MPICH2 uses a process manager to start MPI jobs on multiple machines. The 

process manager is known as MPD, it forms a daemon ring on the set of computers where 

MPI programs run[29]. The “mpd &” is used to start up MPD on one computer, “mpdtrace” 

command displays what computer is started by the daemon. The “mpdboot –n <number to 

start> -f mpd.hosts” command is run on one of the machines to start MPI on a number of 

machines depending on the value of n. The value of n cannot be greater than the number of 

machines listed in the mpdhosts file. The mpdhosts file consists of a list of the computer 

names on the EE network that will be used to run the parallel MB*Tree algorithm. When the 

daemon is started, MPI should be running on the machines listed and to check what machines 

are running in the MPI ring, the “mpdtrace –l” command is used and this displays the list of 

machines running MPI. All the computers used in executing the code are running on Linux 

platforms. I used up to 22 interconnected machines to execute the parallel program for MPI. 

 

Computers in ENG 412 have the same specification as shown below:  

Processor - Intel (R) Xeon (R) CPU 

Proc. Speed - 2.00 GHz 

Cache- 6144KB ~ 6MB 

Network speed- 100Mbps 

CPU MHz - 1995.042 

 

ENG 406 and ENG 411 machines have 2 varying specifications 

     Processor - Intel (R) Xeon (R) CPU 

Proc. Speed - 2.00 GHz 

Cache- 6144KB ~ 6MB 

Network speed- 100Mbps 

CPU MHz - 1995.042  

 

Processor - Intel (R) Core ™2 Quad CPU 

Proc. Speed - 2.40 GHz 
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Cache- 4096KB ~4MB 

Network speed- 100Mbps 

CPU MHz - 2394.201 

 

In the OpenMP model, one main thread and other worker threads are created. The 

communication overhead is lower than in MPI because communication between the master 

and worker threads is within a node eliminating network communication overhead as in MPI. 

The MB*tree algorithm was compiled and run using a single quad core: Brampton. For the 

shared memory model programming, OpenMP was employed as the Application 

Programming Interface (API). With the operating system on each of the machines listed 

above, OpenMP is already incorporated in gcc; hence, no installation is required. The gcc 

version 4.2.1 already installed on all machines, supports “-fopenmp” option to compile 

OpenMP programs. For the OpenMP version, Brampton server in ENG 412 with  Intel  Xeon 

processor , 4 cores and Linux operating system with gcc compiler. Due to resource limitation 

i.e. only a maximum of 4 cores exists on one node, we were unable to run the parallel 

MB*tree algorithm on a larger number of cores on the same node.  

The data set used for running the parallel code is the Microelectronics Center of North 

Carolina (MCNC) benchmark circuits [4, 37] were used. The ami33 and ami49 were used. 

These circuits were duplicated up to 4 times to obtain a larger circuit to validate the benefits 

of parallelism on large circuits that could take several hours to obtain a quality floorplan 

solution. 

 

Barrier synchronization is used in both MPI and OpenMP versions of the parallel algorithm. 

For the OpenMP version,  “#pragma omp barrier for” directive is used to impose barriers i.e. 

this instructs all the threads to stop at the point where it is added to the code and wait until all 
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the other threads complete their computation and reach the barrier. For MPI, int MPI Barrier 

(MPI Comm comm.) was used to instruct all processes to wait until all other processes reach 

the barrier. The master thread or processor can now gather all results for the final 

computation. 

 

5.2. Challenges faced in implementing parallel MB*Tree algorithm. 

One of main challenges faced parallelizing MB*tree is data partitioning, as the data 

partitioning scheme plays an important role in the performance of the parallel algorithm. A 

new partitioning algorithm was devised to decompose the cluster module blocks into sub-trees 

and assigned evenly to the processors or cores avoiding unbalanced load. In the OpenMP 

implementation, due to limited number of cores on the machines, we were unable to explore the 

capability and performance of OpenMP on more than 4 cores. 
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CHAPTER 6 

 

6. RESULTS AND DISCUSSION 

 

This chapter contains the performance results of the parallel MB*Tree Algorithm and discussion 

of these results. We optimized the Floorplanning algorithm for Multilevel 

Floorplanning/placement for large scale modules using B*tree (MB*tree) on MPI and OpenMP 

parallel models using C++ programming language and the experiment was executed on an Intel 

Pentium/Celeron processor (2.4GHz) running GNU Linux. For the MPI test we used up to 22 

interconnected workstations. The MCNC benchmarks ami33 and ami49 which contains 33 and 

49 modules respectively were used for testing. Duplicates of these circuits (two and four times) 

were also used for testing in order to study the performance of parallelism on larger circuits.  

6.1. Runtime and overhead results of ami33 circuit with module based partitioning 

(sequential vs. parallel) - MPI 

 

 

Figure 15:  Bar graph showing the execution time for   ami33 circuit with MPI 



47 

 

Figure 15 above shows the execution time for ami33 circuit in terms of time spent in executing 

the sequential part of the code, time spent on parallel computation and also the overhead incurred 

during communication and computation.  The algorithm was run on 1, 3, 6 and 11 processors. 

The one node bar represents a purely sequential code, in which the overhead is very negligible. 

The sequential time is measured on one node; this is obtained by using the time function to 

measure the execution time of the code from start to finish. The parallel computation time is the 

time it takes to run the parallel part of the code which is majorly the clustering section of the 

code where wirelength calculation is done on multiple computers. The overhead is then 

computed using equation 4. To = Tex – (Ts+Tp). Where Tex is the total execution time, Ts is the 

sequential time and Tp is the parallel computation time. The overhead time covers the time it 

takes for communication between processes and the time it takes to assign and synchronize data 

between processes. A speedup of 2.8 was obtained on 11 nodes although the overhead incurred 

increased as the number of processors is increased, the total execution time was greatly reduced. 

The overhead incurred includes the time it takes the master node to compute the wirelength for 

the wires that extend across processors.  

 

Figure 16:  Bar graph showing the execution time for ami33x2 circuit with MPI 
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In figure 16, we duplicated ami33 twice the circuit is twice as big as ami33. A speedup of 3 is 

obtained from up to 22 nodes. The number of processors is divisible by the number of nodes, on 

22 nodes, each processor would have one cluster module containing 3 blocks, on 11 processors, 

and each cluster module will have 2 clusters of 6 blocks in total. The overhead in the ami33x2 

circuit is higher than the overhead in ami33 because there is more modules and nets, hence more 

computation work. In figure 17 below, ami33 was duplicated 4 times and this produces a larger 

circuit, better speedup was achieved for ami33x4 with 3.4 on 22 processors. This is a good 

indication that the parallel algorithm will scale better as the circuit size increases. 

 

 

Figure 17: Bar graph showing the execution time for ami33x4 circuit with MPI 

 

6.2. Runtime and overhead results of ami49 circuits with module based partitioning 

(sequential vs. parallel) – MPI 
 

Figure 18 below shows the result of ami49 on 1,2,4,7 and 14 processors. On 14 processors the 

overhead is the highest due to the fine granularity nature of the data and the number of processor 

involved. Although the runtime was reduced but the overhead incurred is higher. On 7 processors 
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the data is coarser grained than on 14, and this reduces the number of wires that extend across 

multiple nodes or processors. The ami49 circuit is a larger circuit than ami33 and the speedup 

achieved with this circuit is better.  

 

 

Figure 18: Bar graph showing the execution time for ami49 circuit with MPI 

 

 

Figure 19: Bar graph showing the execution time for ami49 circuit with MPI 
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Figure 20:  Bar graph showing the execution time for ami49 circuit with MPI 

 

A speedup of 3.2 was obtained for ami49, 3.9 for ami49x2 and 4.01 for ami49x4. Generally we 

observed that in order to obtain better performance, the granularity of the data should not be 

purely fine, because the finer the granularity of data, the higher the overhead cost, as many wires 

will extend across processors which is incurs high overhead cost. 

 

6.3. Effects of Granularity on the execution time 

 

Experiments were performed using fine grained granularity and coarse grained granularity. The 

extent to which the data is decomposed is the known as granularity. In the parallel MB*tree 

algorithm, although data is broken down into very fine parts, the number of parts assigned to 

each processor determines how coarse grained or fine grained the data can be. For example 

ami33 circuit executed on 11 processors indicates that granularity is very fine i.e. a cluster of 3 

modules is mapped onto each of the 11 nodes. This greatly affected the performance as the 
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overhead increased and also too many wires will extend across multiple nodes there by 

increasing the amount of sequential work to be done by the master processor. 

 

6.4. Runtime and overhead results of ami33 and ami49 circuits with (sequential vs. 

parallel) – OpenMP 

 

For the OpenMP test we used a quad core workstation. Figures 18 and 19 below show results 

for OpenMP. The parallel algorithm was tested using, ami33x4 and ami49x4 test circuit. 

 

Figure 21: Bar graph showing the execution time for ami33x4 circuit with OpenMP 

 

Figure 22: Bar graph showing the execution time for ami33x4 circuit with OpenMP 
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 The overhead in OpenMP is considerably lower than the corresponding MPI results, for 

example the MPI result for ami33x4 in Table 3 on 4 processors compared to OpenMP result 

for 1 node to 4 cores shows that OpenMP produced better results in terms of execution time 

and reduced overhead. Similarly for ami49x4 in Table 4, result shows that OpenMP produced 

better results than MPI (comparing 3 nodes and 1node/three cores) due to the overhead 

incurred in communication across nodes.  

 

 Table 3: Table comparing overhead and execution time of ami33x4 on MPI and OpenMP 

 

 

      Table 4: Table comparing overhead and execution time of ami49x4 on MPI and OpenMP 

 

Overall, the results obtained from the MPI and OpenMP implementation shows that it gives 

better runtime and speedup than the sequential implementation. Comparing the MPI and 

OpenMP results, although we were only able to implement OpenMP on a single quad core 

node, the runtime is better than the corresponding results for MPI. Due to the resource 

limitation, we were only able to use a maximum of 4 cores for OpenMP implementation and 

with the trend of the result and speedup; it is likely to obtain more speedup as the core 
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increases because overhead is less compared to MPI. The overhead is shown in all the results, 

the average overhead is obtained by taking the total time and deducting the parallel 

computation time and sequential time, the remaining value could be taken as the overhead.  

Figures 23 and 24 shows the overhead trend as the number of processors and the circuit size     

increases 

 

Figure 23: Graph showing overhead time for 3 ami49 circuits on MPI 

 

 

Figure 24: Graph showing overhead time for 3 ami33 circuits on MPI 
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For the larger circuits there is more increase in the overhead due to the circuit size and the 

increasing number of processors. Furthermore, the area and wirelength of the parallelized 

floorplans was not compromised. Tables 4 and 5 below shows the result obtained for the area 

and dead space for the parallelized algorithm, which is no different from its sequential 

version as we were able to maintain the floorplan quality while optimizing the algorithm. The 

quality of the floorplan was maintained while reducing computation time. The MB* tree 

algorithm is very scalable [4] and hence very large VLSI circuits will achieve more speedup 

with the parallel approach. 

 

 

 

Table 5: Area and dead space obtained for ami49 and its duplicate circuits 

 

 

Table 6: Area and dead space obtained for ami33 and its duplicate circuits 
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CHAPTER 6 

 

7. CONCLUSION AND FUTURE WORK 
 

In this thesis we were able to optimize the MB*Tree Floorplanning Algorithm by parallelization 

using OpenMP/MPI and evaluated the performance of different results produced by these two 

programming paradigms using the MCNC benchmark circuits for the experiments. 

7.1. Contribution and Conclusion 

 

In this thesis, we have implemented a parallel VLSI Floorplanning algorithm; MB* tree using 

two popular parallel models; Message Passing Interface (MPI) and Open Multiprocessing 

(OpenMP). We optimized the MB*tree algorithm by parallelization to reduce execution time 

especially with large circuits. Experimental results show that we were able to achieve good 

speedup with our parallel approach with the larger circuits giving greater speedup. The 

parallelism gives good results in terms of reducing the runtime and achieving good speedup 

which is better compared to the sequential version. Furthermore, the OpenMP version gave the 

best results in terms of total runtime, speedup and overhead compared to the MPI 

implementation. The reason for achieving better result with OpenMP is largely due to the 

negligible amount of overhead incurred. Since all cores reside on a single node, no data 

exchange across the network and communication among threads incurs less overhead compared 

to the MPI version. In OpenMP, if a wire extends across more than one processor, the cores can 

read data information about these wires and use that in computation of its wirelength hence 

reducing the amount of work done sequentially by the master thread unlike in MPI. The data 
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partitioning by net method works well on the shared memory architecture in that we can divide 

the total number of nets by the number of cores without any issues with inter-node 

communication because all modules and net information are transparent to the cores. However, 

there is a limit to the amount of resources we have, to test the OpenMP which is a single quad 

core node. With a larger number of cores on a single node, our parallel algorithm will scale 

better. The floorplan quality was not compromised and we were able to achieve reasonable 

speedup in the floor plan computation and design as shown in our experimental results. 

7.2. Future Work  

 

In this work, MPI and OpenMP have been used to optimize the MB*Tree algorithm through 

parallelization. A future work is to use the Hybrid programming model i.e. Hybrid MPI/ 

OpenMP to further optimize the code and explore the possibilities of maximum performance. 

The hybrid programming models can utilize both shared memory and distributed memory of 

high-end computing systems. MPI will be used globally to exchange modules and net 

connectivity information and OpenMP will be used to parallelize the packing phase of the 

algorithm precisely the wirelength computation. 
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