
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

Parallel Implementation of Non-slicing Floorplans
with MPI and OpenMP
Oluvaseun Owojaiye
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer and Systems Architecture Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Owojaiye, Oluvaseun, "Parallel Implementation of Non-slicing Floorplans with MPI and OpenMP" (2012). Theses and dissertations.
Paper 1461.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1461?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1461&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

PARALLEL IMPLEMENTATION OF NON- SLICING FLOORPLANS

WITH MPI AND OPENMP

By

Oluwaseun Owojaiye

BSc. Computer Science, University of Ilorin Nigeria,

August 2012

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2012

© Oluwaseun Owojaiye 2012

ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals

for the purpose of scholarly research

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

Parallel Implementation of Non-slicing Floorplans with MPI and OpenMP

Master of Applied Science 2012

Oluwaseun Owojaiye

Electrical and Computer Engineering

Ryerson University

ABSTRACT

Advancement in technology has brought considerable improvement to processor design and now

manufacturers design multiple processors on a single chip. Supercomputers today consists of

cluster of interconnected nodes that collaborate together to solve complex and advanced

computation problems. Message Passing Interface and Open Multiprocessing are the popularly

used programming models to optimize sequential codes by parallelizing them on the different

multiprocessor architecture that exist today. In this thesis, we parallelize the non-slicing

floorplan algorithm based on Multilevel Floorplanning/placement of large scale modules using

B*tree (MB*tree) with MPI and OpenMP on distributed and shared memory architectures

respectively. In VLSI (Very Large Scale Integration) design automation, floorplanning is an

initial and vital task performed in the early design stage. Experimental results using MCNC

benchmark circuits show that our parallel algorithm produced better results than the

corresponding sequential algorithm; we were able to speed up the algorithm up to 4 times, hence

reducing computation time and maintaining floorplan solution quality. On the other hand, we

compared both parallel versions; and the OpenMP results gave slightly better than the

corresponding MPI results.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisor, Dr. Nagi

Mekhiel for his guidance and support from the initial to the final phase of my MASc program. I

am thankful for his adequate supervision that has given me a solid footing in my research area.

I would like to thank my family members, especially my husband and kids for supporting and

encouraging me to pursue this degree.

 Lastly, I thank my parents and siblings for their prayers and encouragement throughout my

program.

v

TABLE OF CONTENTS

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

1. INTRODUCTION .. 1

1.1. Motivation ... 1

1.1.1. Thesis Goal ... 3

1.1.2. Organization of Thesis .. 4

2. BACKGROUND .. 5

2.1. Why Parallelization .. 5

2.2. Parallelization explained ... 5

2.3. High Performance Computing (HPC) ... 7

2.3.1. Multiprocessors ... 7

2.3.1.1. The Shared Memory Architecture ... 8

2.2.2. Parallel Programming Models .. 10

2.4. Performance Modeling .. 16

2.4.1. Amdahl’s Law ... 16

2.4.2. Speedup ... 17

2.4.3. Overhead ... 18

vi

2.4.4. Efficiency .. 19

3. VLSI FLOORPLANNING WITH MB*TREE ... 20

3.1. What is Floorplanning? .. 20

3.2. The Sequential MB*tree Algorithm ... 21

3.2.1. The Packing phase .. 21

3.2.2. The Perturbation phase .. 23

3.2.3. Simulated Annealing ... 23

3.3. RELATED WORK ... 25

4. THE PARALLEL ALGORITHM .. 26

4.1. MB*Tree parallelized for Message Passing Interface (MPI ... 26

4.1.1. MB*Tree on MIMD Architecture ... 26

4.1.2. Parallelization Strategy ... 28

4.1.3. Implementing MB*tree with MPI ... 28

4.1.4. Task decomposition and assignment ... 31

4.1.5. Load balancing .. 34

4.1.6. Parallel Wirelength Computation .. 35

4.2. MB*Tree parallelized with Open Multiprocessing (OpenMP) ... 37

4.2.1. Execution Mechanism for Parallel Section and barrier synchronization 38

5. EXPERIMENTAL METHODOLOGY .. 40

5.1. Installing and Building MPICH2 .. 41

5.2. Challenges faced in implementing parallel MB*Tree algorithm. ... 45

6. RESULTS AND DISCUSSION ... 46

6.1. Runtime and overhead results of ami33 circuit with module based partitioning (sequential vs.

parallel) - MPI ... 46

6.2. Runtime and overhead results of ami49 circuits with module based partitioning (sequential vs.

parallel) – MPI .. 48

vii

6.3. Effects of Granularity on the execution time .. 50

6.4. Runtime and overhead results of ami33 and ami49 circuits with (sequential vs. parallel) –

OpenMP .. 51

7. CONCLUSION AND FUTURE WORK.. 55

7.1. Contribution and Conclusion .. 55

7.2. Future Work .. 56

viii

LIST OF TABLES

Table 1: Main MPI functions used to parallelize MB*Tree Algorithm .. 40

Table 2: List of Computer nodes running MPI ... 42

Table 3: Table comparing overhead and execution time of ami33x4 on MPI and OpenMP 52

Table 4: Table comparing overhead and execution time of ami49x4 on MPI and OpenMP 52

ix

LIST OF FIGURES

Figure 1: Parallelization tasks ... 6

Figure 2: Shared memory architecture .. 9

Figure 3: Shared memory architecture with each processor having its own local memory 9

Figure 4: Distributed Memory Architecture ... 10

Figure 5: OpenMP Fork and Join approach ... 12

Figure 6: MPI Master/Slave Approach ... 16

Figure 7: Arrangement of a set of module blocks on a rectangular space .. 20

Figure 8: Description of the Packing Algorithm ... 22

Figure 9: SISD architecture .. 27

Figure 10: MIMD Architecture for MB*Tree Parallelization .. 27

Figure 11: Parallel MB* tree algorithm using the master-slave approach .. 30

Figure 12: Task partitioning for a circuit with 33 modules .. 32

Figure 13: Half-perimeter wirelength estimation method ... 36

Figure 14: showing the description of the OpenMP implementation ... 38

Figure 15: Bar graph showing the execution time for ami33 circuit with MPI 46

Figure 16: Bar graph showing the execution time for ami33x2 circuit with MPI 47

Figure 17: Bar graph showing the execution time for ami33x4 circuit with MPI 48

Figure 18: Bar graph showing the execution time for ami49 circuit with MPI .. 49

Figure 19: Bar graph showing the execution time for ami49 circuit with MPI .. 49

Figure 20: Bar graph showing the execution time for ami49 circuit with MPI ... 50

Figure 21: Bar graph showing the execution time for ami33x4 circuit with OpenMP 51

Figure 22: Bar graph showing the execution time for ami33x4 circuit with OpenMP 51

Figure 23: Graph showing overhead time for 3 ami49 circuits on MPI ... 53

Figure 24: Graph showing overhead time for 3 ami33 circuits on MPI ... 53

file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348359
file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348360
file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348361
file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348362
file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348363
file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348364
file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348365
file:///E:/Thesis%20Report--%20-%20-%20Copy.docx%23_Toc335348366

1

CHAPTER 1

1. INTRODUCTION

1.1. Motivation

Since the past few years, there has been a significant shift towards parallel computing of

commercial applications as the demand for faster computing system has increased

considerably. As processor manufacturers tend to develop multi-core processors rather than

improve single core processor speeds, parallelization has become increasingly popular [20].

Multiple processors on a parallel computing system work in collaboration to solve advanced

computation problems faster and more efficiently [24]. Open Multiprocessing (OpenMP) and

Message Passing Interface (MPI) are the two major parallel programming models used on

parallel architectures. Both of the paradigms aim to provide an interface for high

performance, but their approach is somewhat different. Open MP can be used on a multicore

architecture with shared memory and multiple cores exist on a single chip. There exists

multicore chips today that have over 64 cores on a single chip and manufacturers like Tilera

are increasing this number to 100. This would help to conserve power and also the distance

between processors will be highly reduced. MPI can be used on a shared memory as well as

distributed memory architecture. In distributed memory architecture, each processor has its

own private memory and multiple processors communicate through a communication

network. VLSI Floor planning applications can benefit from parallelism because they are

time consuming and computationally intensive. The building of electronic components with a

very large number of transistors is referred to as VLSI. Defining block shapes and positions

with the aim of minimizing dead space and wirelength can be referred to as floor planning

2

[3]. Dead space can be defined as the amount of unused space contained in between module

blocks arranged on a rectangular space. The problem of floor planning is to arrange a set of

module blocks on a rectangular area space in an optimal manner, so that none of these blocks

extend over another and with minimal amount of free unused space called dead space.

Floorplanning is a very critical task in VLSI design and can be computationally intensive. Its

purpose is to use the minimal space possible as well as minimal wire for connection. The

floorplanning algorithms based on MB*tree [4] has been implemented for two different

parallel models: MPI (Message Passing Interface) and OpenMP (Open Multiprocessing) with

the aim to speedup computation, as the computational time for the algorithm to run on large

circuits could be enormous. Floorplanning in VLSI could be slicing or non-slicing [3, 6, 10,

12]. Our parallel algorithm is based on the work on floorplanning in [4] using B*-trees. To

find the optimal orientation, the sequential algorithm is divided into two stages: clustering

(packing) and declustering (perturbation) [2, 4]. In this thesis, we deal with non-slicing

structures. All the possible orientation is considered and the optimal arrangement that gives

the minimal dead space and wirelength is selected. The first phase of the algorithm is

clustering which involves packing or grouping of module blocks with the avoidance of

overlapping and wirelength computation; in the declustering stage these arrangements are

refined to an optimal point using the Simulated Annealing (SA) approach [1, 5, 8, 11, 13]. It

is used for finding optimal solution to many-dimensional problems [5, 10]. Wirelength

calculation in this algorithm consumes so much computational time because each time the

tree is refined, wirelength computation takes place.

3

1.1.1. Thesis Goal

In this thesis, we explore the parallelization of the MB*tree sequential algorithm. Our

approach parallelizes one of the most computationally intensive phase in the algorithm. The

main idea of our parallel approach is to use the master-slave approach for parallelization

taking advantage of the technology of distributed and shared memory systems. In [4], the

algorithm describes the clustering stage where a set of module blocks are grouped into

clusters to form one module containing all the blocks and in the same way these clusters are

perturbed for optimal solution. Our parallel approach uses the master node to carry out the

perturbation task and in the packing stage both the master and the slave nodes work in

collaboration to execute the wirelength computation after area update has been completed. In

the perturbation phase, simulated annealing is employed to refine the tree constructed during

the packing phase. The master processor/thread distributes the total modules by the number

of processor modules to each slave node. Each slave process accepts the modules distributed

by the master node and then computes the wirelength of its own share of the modules. Each

processor forwards its wirelength result to the master; the master then sums the results up,

finds the aggregate and computes the final wirelength. Our parallel approach was

implemented using two different parallel models: MPI and OpenMP. Results of both models

were compared with each other and also with the sequential version and results obtained

show decreased runtime as the number of nodes increases and speedup was achieved. The

Microelectronics Center of North Carolina (MCNC) benchmark circuit [4, 37] was used for

testing. The MCNC benchmark suite is popularly used in academic research. It is a collection

of standardized libraries of circuit designs ranging from simple to advanced circuits collected

4

from industries and academia. We obtained the net list of these circuits which contains the

module information that make up the circuits and the interconnections between the modules.

1.1.2. Organization of Thesis

Chapter 1 contains the introduction.

Chapter 2 presents some background theories and related work for this thesis. A short

introduction to Parallel programming with OpenMP and MPI is given, along with some

parallel programming models and performance modeling information. A brief description of

multiprocessors and computer architectures are also presented.

Chapter 3 describes the sequential MB*tree Algorithm Floorplanning algorithm.

Chapter 4 describes the Parallelization of MB*Tree using MPI and OpenMP models. This

chapter describes the methods employed to achieve parallelism.

Chapter 5 describes the experimental methodology used in this thesis. The installation and

configuration of MPI and OpenMP is described. The computer and network information used

in this thesis is also presented.

Chapter 6 presents the detailed analysis of performance results from our tests for both the

Parallel algorithm; comparison of the sequential and parallel versions is discussed.

Execution time and overhead incurred is shown in various charts and discussed. The speed

achieved for each test is also presented.

Chapter 7 contains the conclusion and future work in this thesis area.

5

CHAPTER 2

2. BACKGROUND

In this chapter, an overview of the theory and technology used in this project is presented.

2.1. Why Parallelization

In the past few years, there has been a significant shift towards parallel computing of

commercial applications as the demand for computing power has increased considerably. As

processor manufacturers tend to develop multi-core processors rather than improve single

core processor speeds, parallelization has become increasingly popular [20]. So many large

applications with serial programs take an enormous amount of execution time. Running

computationally intensive applications sequentially is very time consuming and today’s

supercomputers have the capability to use multiple cores or multicomputer to run programs

in order to improve performance, efficiency and considerably reduce runtime. Running a

program on a single core can be optimized by parallelization. The objective is to reduce the

execution time. Many applications have gained from parallelization because multiple

processes are executing the code. So the goal is to use multiple cores or computers to reduce

the execution time. Performance is one of the major factors to be considered in parallel

processing.

2.2. Parallelization explained

What is parallelization?

Parallel computing can simply be defined as a computing approach in which multiple cores

or processors are used for execution of a single program [20, 24]. In parallel processing, tasks

6

of a sequential program is identified and split amongst multiple processes to execute

independently and simultaneously. The work is distributed over multiple computers or cores

depending on the architecture. There are various programming models that exists today for

parallel processing, they include: pthreads, Message Passing interface, OpenMP e.t.c. These

models make use of library of functions for parallel processing [19, 20, 22, 24]. MPI is

designed for distributed memory and is probably the best known paradigm in parallel

computing. In MPI, communication between processes is well defined and it also provides a

good number of functions that opens up for high performance and improvement of the

system [20]

Figure 1: Parallelization tasks

Figure 1 above shows the steps involved in parallelization of a serial application. The

following steps are involved in converting a serial program to parallel program:

1. Task Decomposition: This involves the breaking down a problem into chunks of tasks to

be assigned to multiple processors.

2. Task Assignment: Here the decomposed tasks are assigned to the processes that would

perform the computation simultaneously.

Sequential

code

Decomposition

of tasks

Assignment of

processes to

processors

Orchestration

Process

Mapping

7

3. Orchestration: This involves the arrangement, control and coordination of processes for

necessary data access, communication and synchronization among processes [24].

4. Mapping: Mapping involves binding of processes to processors [24].

Benefits of Parallelism: Major aim and benefit of parallelism is to achieve speedup by

reducing the total execution time of a program. Also with parallelization, a program can

make use of the memory of multiple separate computers at once [23].

Challenges of Parallelism: Interprocessor communication is one of the major challenges in

parallel programming. Each processor or core might have to communicate, depending on the

algorithm and this brings about overheads that increases the total execution time for some

applications and reduces performance and efficiency.

2.3. High Performance Computing (HPC)

2.3.1. Multiprocessors

While some computational problems can be solved on a machine with one processor or core,

so many other complex problems require computers comprising of more than one processor,

this types of computers are referred to as parallel computers. Due to the high demand for

higher performance and more efficient computing machines, processor manufacturers are

focusing more on multicore processors. Cluster computers and supercomputers are used

today to solve complex computational problems. Different kinds of architectures have been

introduced to overcome the limitation of single processor machines; these include vector

processors, interconnected workstations, shared memory and distributed memory processors

[34].

8

The processors in a parallel machine collaborate to solve complex and advanced computation

problems which save time. These are the most commonly used models in today’s world.

Many grand challenge applications have benefited from parallel computing, they include:

Computational Fluid Dynamics, Climate modeling, Computational Biology, Human Genome

problem, e.t.c. Parallel machines can either be shared memory or distributed memory

machines.

2.3.1.1. The Shared Memory Architecture

 In a multiprocessor system, shared memory architecture contains only a single address space

with two or more processors accessing the shared memory through a bus. One of the benefits

of this model is that communication is done using one shared memory and there is quick

access to data [34]. One of the limitations of shared memory model is that there is memory

access contention because only one address space exists and this might lead to increased

memory access time and poor performance. Access contention can also lead to bottlenecks

and generally shared memory computers do not scale well [20, 34]. Another drawback of

shared memory architecture is cache coherence; changes of data in cache need to be updated

on all other processors that require this information for data consistency; and this has to be

done by the system. Figure 2 shows shared memory architecture. OpenMP programming

model can be used on shared memory architecture [20, 24]. To solve the problem of access

contention of shared memory architecture in Figure 2, each processor can have its own local

memory as shown in Figure 3, to store unshared codes and this reduces the access contention

time.

http://en.wikipedia.org/wiki/Cache_coherence

9

 Memory

Figure 2: Shared memory architecture

 Memory

2.3.1.2. Distributed Memory Architecture

In distributed memory architecture, communication exists between multiple computers or

nodes on the network. Each node consists of its own private memory and does not have

access to the memory of other nodes in the network but can communicate with them. In this

model, data exchange is done by the various nodes in the network. Interprocessor

communication is done by message passing via the network. One of the benefits of this

M1 Core

1
M2 Core

n

Core n Core 1

Figure 3: Shared memory architecture with each processor having its own local memory

10

model is that it allows for scalability e.g. a network of interconnected work station is

distributed memory architecture and therefore it can allow for more machines to be

connected to the network and this has led to an increasingly growing use of computer

clusters to implement parallel applications [34].

Network

2.2.2. Parallel Programming Models

There exist many programming tools to implement parallel programs. Some of the most

popularly used tools are OpenMP and MPI, Parallel Virtual Machines (PVM) is also a

commonly used message passing model for distributed parallel programming.

2.2.2.1. OpenMP Overview

OpenMP is a multithreading process [19, 20, 21] and it is directive based. In this approach,

directives are used in parts of the code that needs to be parallelized; this is defined by the

programmer. These directives are used to parallelize sections of the code defined by the

user, task partitioning and synchronization.

Processor 1

Memory

Processor n

Memory

Figure 4: Distributed Memory Architecture

11

“#pragma omp parallel for” is used in C or C++ to parallelize a for loop. Tasks are divided

into chunks using the pragma some of the basic OpenMP routines are:

 # pragma omp parallel for - indicates a loop that can be executed in parallel. The for

loop’s iterations can be divided among the number of threads and the distribution method

is dependent upon the scheduling strategies [25].

 omp_get_num_threads () - It returns the number of threads in the parallel region.

 omp_set_num_threads() - is used to change the number of threads during execution

 omp_num_threads () – is used to define the number of threads to be used in execution.

OpenMP code is an extension of the sequential code i.e. the OpenMP directives used

between the codes provides a parallelization method which is portable for

implementation.

2.2.2.1.1. Implementation of OpenMP

Fork-Join approach is employed in executing a sequential code with OpenMP [20, 26].

When a directive is added into an OpenMP code at runtime, the code initially starts with a

sequential region execution and then when the OpenMP directives are encountered,

additional threads are spawned and the work is partitioned and assigned to the threads. In

the parallel region, each thread carries out its own share of the task concurrently with other

threads. # pragma omp parallel directive is included in an OpenMP code to define parallel

regions in C or C++ programming language.

In the diagram below, the master thread assigns workload to itself just like other worker

threads it creates and is involved in computation and execution of data and tasks

respectively. The omp_barrier directive is added to the end of the parallel region to allow all

12

other threads to wait until all threads have completed execution of their tasks before

synchronization and then a join is created by the master thread to synchronize all other

threads.

 Master thread

2.2.2.1.2. OpenMP Memory Models

 Private Memory: in private memory, each worker thread can only access its own private

memory. It makes changes to its own memory and can only access and modifies it.

 Shared Memory: In shared memory, each thread has access to data in the memory; and

each thread has the right to make modifications to the shared variable. The threads use a

mechanism to read and write to the shared memory.

Fork

Worker threads
Parallel region

Serial region

Join

Serial region

Master thread

Figure 5: OpenMP Fork and Join approach

13

2.2.2.2. Parallel Virtual Machine (PVM)

PVM is based on message passing that can be used in distributed environment as well as

multiprocessor environment. In PVM, a group of computers appear as one single virtual

machine; these computers are able to communicate with each other using an interface. PVM

works well with data parallel approach in which the same instruction is executed on each

share of the data on each processor. However, PVM was not standardized and was not as

popular as the Message Passing Interface [20].

2.2.2.3. Message Passing Interface (MPI)

MPI is one of the most popular models for programming a cluster of computers. MPI provides

an Application Programming Interface (API) through the set of functions that also handle

input/output operations. It uses a distributed memory model and can only access data from its

own local memory. MPI standard consists of library of specifications used for point to point

communication. The objective of MPI is to establish a communication or message passing

standard for message passing coding. Message Passing Interface is known to be portable,

flexible and efficient for writing MPI codes on high performance computers [20]. MPI can be

used on any distributed memory or shared memory. In MPI, # include “mpi.h” is required for

all coding. It is used to make a library call.

The following are the basic routines used in MPI programs.

 MPI_Init: this is used to initialize the environment for code execution. This function is

required in every program and should be used before all other MPI functions.

14

 MPI_Send: This function is used for sending messages. Processors have access only to its

own local memory, and might require data from other processes and MPI_Send is used to

request data from other processors.

 MPI_Recv: This function is used to receive messages. A processor needs to execute this

function to receive messages from another processor. The message is tagged with the

MPI_send message to be able to distinguish message pairs.

 MPI_Comm_size: This function determines the number of processors associated with a

communicator.

 MPI_Finalize: this function stops the code execution in the MPI environment.

 MPI_Comm_rank: This function determines the identifier of a process.

Other MPI functions include but are not limited to:

 MPI_Isend: is used for synchronous communication for sending messages.

 MPI_IRecv: is used for receiving messages in asynchronous communication.

 MPI_Comm_Create: This function creates a subset of global communicators and then

restricts communication to this subset only by specifying the appropriate communicator

in the call [20, 22].

 MPI_Bcast: is used to broadcast one message to all processors.

 MPI_Gather: is used to collect messages from all processors.

2.2.2.3.1. Implementation of MPI

To launch MPI, all processes must be started individually. Exchange of data will be done by

transferring data across the network from one processor to another. The number of nodes of

the cluster to use and how many processes are required on each processor is defined by the

15

programmer during execution. The first function to be executed before any other function is

the MPI_Init, MPI_finalize is called at about the time when the program is about to finish.

Any other MPI function added after MPI_finalize is ignored and cannot be executed. For this

thesis, we executed the MB*tree algorithm using the master-slave approach illustrated below.

Figure 5 below shows the Master slave model in which the master node is responsible for

coordination, control, partitioning and assignment of tasks and generating the final result

from the collective results of the slave nodes.

2.2.2.3.2. MPICH2

MB*tree algorithm in this thesis was implemented with MPI standards using MPICH.

MPICH [29] is an open source project used for MPI Implementation. It is one of the most

popularly used projects for executing MPI. Majorly developed at the Argonne National

Laboratory, it produces portable implementation of MPI standards [28, 29] with

programming languages C, FORTRAN and C++. MPICH can be used on distributed

environment, on a network of interconnected workstations, single processor or

multiprocessor computers

16

2.4. Performance Modeling

Performance in parallel processing is harder to evaluate than in sequential processing

because a number of processors are working independently on a single program with both

sequential and parallel sections. Also synchronization and message passing are not easily

measurable; however, they can be measured by inserting some codes into the algorithm.

Generally, an algorithm that has a serial section will limit the speedup of an application

executed on parallel architectures.

2.4.1. Amdahl’s Law

One of the general laws used in parallel computing for evaluating performance and

efficiency of applications is Amdahl’s law [20, 22]. Amdahl’s law is used as a performance

prediction model for parallel applications. Amdahl’s law can be used to determine the

Master

Node

slave

node 1

slave

node 2

slave

node 3

slave

node n

…

Master

Node

Figure 6: MPI Master/Slave Approach

17

speedup achieved for a parallel application compared to its serial version. The number of

threads, or processors used, determines the speedup that can be achieved [20], and also the

fraction of the code that can be parallelized is an important factor that determines speedup.

It is applicable in codes that have a serial portion and a parallel portion.

2.4.2. Speedup

The major benefit of parallelism is speedup. The speedup of parallel processors is governed

by Amdahl’s law. This is used to evaluate the time it takes to run a code in serial and in

parallel with more than one processor with the assumption that the size of the problem is the

same. Amdahl’s law is more focused on the speedup that can be achieved from an

improvement to a computation that affects a proportion of that computation where the

improvement has a speedup of S.

Speedup can be defined as S= T (1) eqn (1)

 T (N)

Where T(1) is the time it takes to execute the whole application on one processor and T(N)

is the time it takes to execute the application on N processors where N>1

Speedup above 100% is known as super-linear speedup. To further explore Amdahl’s

Speedup S = N

 (N*P) + (1 – P) eqn (2)

where N = Number of processors and P is the % of the algorithm that is serial.

Equation 1 can be translated into S(N) = T(1) = Ts + Tp eqn(3)

 T(N) Ts+Tp/N

Ts = original single processor serial time

Tp = Parallel time

Equation 3 is known as Amdahl’s Law [20]

18

To see considerable speedup in a parallelized code, the parallel portion of the code must be

much greater than the serial portion. Perfect speedup is hard to obtain as the number of

threads or processors increase, the parallel overhead begin to saturate and speedup

decreases. In general, speedup cannot be greater than the number of processors N. However,

when speedup is obtained from a parallel application, then some of the factors considered to

enhance speedup are:

More work: Serial algorithms tend to do more work than the corresponding parallel version

due to enhanced features in parallel architectures.

Cache: In parallel applications, there is a larger cache available to the algorithm because

data has been decomposed into smaller chunks hence enhancing speedup.

2.4.3. Overhead

One of the factors that affect the performance of parallel applications is overhead. There are

various sources of overhead in parallel applications and they include but not limited to idle

time, synchronization and interprocessor communication, task partitioning and assignment,

thread and process creation time. Overhead can therefore be defined as :

To = Tex – (Ts+Tp) eqn 4

where Tex = Total execution time

 Ts = Time to run the sequential portion of the code

 Tp = Time to run the parallel portion of the code on n processors

Overheads could be difficult to measure so we can use equation (4) to compute the

overhead incurred and the To obtained in equation (4) includes the communication time, idle

19

time of processors, synchronization time, process creation time, and task division. In theory

running an application over multiple threads or processors should improve performance

when compared to running it on a single thread or processor. But there are other factors that

could limit the performance of a parallel application [19, 20].

Parallel applications cause additional work to be done in terms of dividing tasks among

processors or threads, creation and synchronization of threads and many more. Most threads

will need to exchange data and a cost is associated to it called communication overhead.

Also imbalanced load might be another factor that impacts performance. Tasks must be

evenly distributed among processors or threads to avoid or reduce the overhead caused by

imbalanced load. For an application to benefit from parallelism, parallel overheads have to

be considered and minimized considerably [20].

2.4.4. Efficiency

Efficiency can be defined as the time spent in doing useful work [19, 20]. Efficiency of

parallel application is measured by comparing work done by sequential algorithm to its

parallel counterpart. Theoretically,

Efficiency = speedup / (number of processors = 1) eqn 5

where speedup = number of processors, but as most parallel algorithm comes with

overhead, efficiency goes down as it increases number of processors.

20

CHAPTER 3

3. VLSI FLOORPLANNING WITH MB*TREE

3.1. What is Floorplanning?

In VLSI design, Floorplanning is a very crucial task, performed at the very early and initial

stage of design automation. Floorplanning aims at arranging a set of module blocks in an

optimized manner thereby reducing the dead space, area space and interconnection cost to a

minimum. Floorplanning is known to be an NP-hard problem. There is an optimal way to

arrange these module blocks and floorplanning algorithms are employed to find feasible

floorplan solutions. They are optimization algorithms that solve complex problems. These

algorithms are computationally intensive and time-consuming. Some Floorplanning

algorithm could take several days to find a feasible floorplan solution especially for large

industrial circuits. The MB*tree (Multilevel placement of large scale modules using

B*trees) algorithm has been studied and it is an algorithm that scales well as the circuit size

increases but also runtime increases with circuit size [4, 39].

Figure 7: Arrangement of a set of module blocks on a rectangular space

21

Figure 7 above illustrates floorplan with a set of block modules arranged on a rectangular

space in an optimal manner. The white spaces in the figure are the dead spaces which are

the unused portion of the space and floorplan aims at minimizing the dead space as much

as possible. Floorplans can either be slicing or non-slicing structures. In this project we

have dealt with non-slicing structure. In slicing floorplan structure, the rectangular blocks

can be further divided by either vertical or horizontal lines. For the non-slicing structure,

the rectangle blocks cannot be recursively divided into smaller rectangles [2, 4, 7, 12, 27].

3.2. The Sequential MB*tree Algorithm

The MB*tree Algorithm [4] is based on the B*tree floorplanning algorithm and works in

three phases: packing phase, perturbation phase and simulated annealing which will be

discussed in details. Given a set of module blocks to be arranged in an optimal manner in

order to reduce cost, minimize wirelength and dead space this algorithm will be described

using the following sections.

3.2.1. The Packing phase

A primitive module is a single module block and a cluster module is a group of module

blocks. Given a set of module blocks to be arranged on a rectangular space, MB* tree uses

the packing algorithm to cluster the given set of modules based on connectivity and area

space factors. Packing is the process whereby a given set of module blocks are placed into

different groups and then the group set are clustered continuously until they make up one

single cluster. The attribute for grouping is the dead space and connectivity density. The

dead space is defined as the unused spaces left in between modules that are arranged on a

rectangular space. The larger the cluster of modules, the higher the connectivity. The

22

algorithm below describes how modules are clustered together into one. For example, if

we need to cluster two module blocks m1 and m2 assuming m1 is on the left of m2, placed

horizontally, then m2 will be the left child of m1 for the corresponding B*tree[2,4].

The relation for each pair of modules in a cluster is established and recorded in the

corresponding B*-sub tree during clustering. It will be used for determining how to

expand a node into a corresponding B*-sub tree during declustering. At the end of

clustering an expandable one node tree is formed and the next algorithm is applied to the

tree. An initial floorplan is obtained from the clustering of the modules into one single

cluster and a corresponding tree is constructed which will be the initial input for

refinement in the perturbation stage. The wirelength is then computed for the current

solution. The clustering algorithm is illustrated below:

1. Initialize a stack

2. Initialize the root node index int p = nodes_root

3. call subplace _module and pass it our root node index subplace_module

(p,NIL);

4. Initialize the root node on each node

5. On the root, stack the node to the right side of the root node; directly above it.

if (n.right != NIL) S.push(n.right)

6. Stack the node to the left side of the root node; pushed directly above the node

at its right side. if(n.left != NIL) S.push(n.left);

7. In order, traverse the stack, till the stack is empty

8. Inside this loop check if the current popped node from the stack is at the right

side of its parent if so, call the subplace_module function to pack the nodes

along with its neighboring nodes and then push the sub cluster on to the stack

further

9. Compute Width, Height

10. Record this module information to the corresponding module. Calculate the

floorplan area and update it each time.

11. Calculate the wirelength

Figure 8: Description of the Packing Algorithm

23

The subplace_module function deals with the geometry of the modules, like rotation and

swapping; it is responsible for rotation and swapping of modules for optimal arrangement

[4, 39]. It transforms the modules during the packing phase when they are being clustered

together.

3.2.2. The Perturbation phase

In the perturbation stage, Simulated Annealing explained below is used for refining the

floorplan solution obtained previously. Area utilization (dead space) and the wirelength

among modules are the declustering metrics [2, 4]. Dead space: These are the unused

spaces on a rectangular space with arranged modules. Wire length: This is the wirelength

of a net is measured by half the bounding the length of the center-to-center

interconnection between the modules in a net [4]. To find the total wirelength of a

floorplan an aggregate of interconnecting wirelength is computed for the total wirelength

value. The declustering stage iteratively expands a node into a sub tree according to the

B*-tree constructed at the packing phase and then Simulated Annealing is used for

refinement [4]. To find a neighboring solution, we perturb a tree to get another tree by

simulated annealing.

The next section gives a brief description of the Simulated Annealing algorithm.

3.2.3. Simulated Annealing

Simulated annealing is an iterative and probabilistic optimization algorithm popularly

used for floor plan optimization [2, 4,]. Simulated Annealing works basically on three

24

rules. 1
st
 Rule: Rotate a module; 2

nd
 Rule: Move a module to another place; Rule 3: Swap

two modules [4]. These three operations are applied to the initial tree formed for each

node of the tree and based on these operations a new tree is formed which implies a new

floorplan solution. SA is applied to subsequent solutions formed until a predefined value

is reached and the tree is converted to the corresponding floorplan. Simulated Annealing

algorithm uses the concept of thermodynamics for the growing of crystals [7, 8, 12]. In the

annealing process, with minimal global energy expended, materials in their solid state can

form an almost perfect crystal. The solid materials go through a state of melting and

cooling, the temperature is raised to a high point and as the temperature decreases steadily,

based on predefined value, the material cools down as atoms form a perfect crystal. This

concept is simulated for optimization in other areas. The cost function in MB*tree is the

energy that needs to be minimized [4, 5, 6] and also the modules are the atoms. Simulated

Annealing in floor planning begins with initiating a floor planning placement solution in

which the modules are clustered randomly which occurs in the packing phase and the

temperature is set to a high level, then a new solution is generated by refinement in the

perturbation phase using the operations in Simulated Annealing[2, 4]. The packing and

perturbation continues and the temperature decreases gradually, solutions are accepted or

rejected based on some predefined rules. The solution obtained is dependent on how high

the initial temperature was set and the conditions or criteria for cooling. The slower it

cools the higher the probability of obtaining better results. Dynamic and static cooling

method can be used. The solution which achieves the minimum of the objective function

over the iterations is the best one.

25

3.3. RELATED WORK

The parallel algorithm in our work is based on a sequential MB*tree for floorplanning

proposed in [4]. This approach uses two basic methods for Floorplanning optimization:

clustering and declustering and it is based on B*tree representation for non-slicing

floorplan proposed in [2]. There has been a number of algorithms proposed for non-slicing

floorplans like O-tree[14], Corner Block List[11], B*tree[2], MB*tree[4], Sequence

pair[15] and each of these algorithms provide different solutions to floorplan representation

with each having its own advantages and disadvantages as stated in [2]. Researchers have

also proposed parallel implementations for a number of these algorithms. In [7], Tang et al

proposed a parallel genetic algorithm for floorplan area optimization using O-tree

representation. This approach adopts Island model with an asynchronous migration method

and uses different chromosome representation [7]. Also in [1], Liang et al proposed a

parallel VLSI algorithm using corner block list representation which gave considerable

speedup. In this method, multiple markov was used in parallelization. Our parallel MB*tree

with its 2-stage technique uses a master-slave approach for parallelization, and compared to

other implementation, MB*tree scales better as the circuit size is increased [4].

26

CHAPTER 4

4. THE PARALLEL ALGORITHM

4.1. MB*Tree parallelized for Message Passing Interface (MPI)

To accelerate the sequential algorithm, a parallel approach is incorporated to implement the

algorithm with MPI and OpenMP models. The objective of our parallel algorithm is to

reduce the computation time, and not compromising the quality of floorplan solution. The

wirelength calculation is a very time consuming task of the packing phase. It takes a

considerable part of the computation time because each update or change in the B*tree at the

perturb phase would require wirelength computation in the packing phase; in order to

accelerate this, we have proposed a parallelized approach which splits the cluster modules

onto slave processors/threads by the master to compute the wirelength without diminishing

the quality of the floorplan. The packing phase of the algorithm is where the wirelength

computation occurs. The wirelength calculation occurs at the end of the packing phase [21]

4.1.1. MB*Tree on MIMD Architecture

The MIMD (Multiple Input multiple Data) model was used to implement MB*tree algorithm

on Message passing Interface (MPI). The MIMD model was employed to achieve

parallelism of MB*tree. We implement MB*tree on MIMD architecture in which each

processor node has its own local memory and does not have information of other nodes’

memory. We used an interconnection of workstations and employed one processor as the

master that controls communication, control and task assignment and the other processor are

the slaves that carry out the tasks assigned to them by the master. Each node communicates

27

with the master node in the master-slave approach we employed to parallelize MB*tree. They

are multicomputer with local memory. The sequential algorithm in [4] was implemented

using a SISD (Single instruction Single data) in which the application is executed on one

single core like a conventional computer.

 Single instruction

MIMD is a popular and well accepted architecture for multiprocessors. Here each processor

operates separately on its set of data simultaneously. Each processor accesses its own program

memory i.e. Non–Uniform Memory Access (NUMA). The architecture of the multiple computer

used to run parallel MB*tree is based on MIMD which runs multiple tasks on multiple machines.

Processor

Single input Single output

Single instruction

Processor 1

Processor...

Processor n

Data

Data

Data

Instruction

Instruction

Instruction

Figure 9: SISD architecture

Figure 10: MIMD Architecture for MB*Tree Parallelization

28

Distributed memory MIMD with MPI and shared memory MIMD with OpenMP have been

used in this project to parallelize MB*tree and this will be discussed in details in the

following sections.

Figure 9 shows a MIMD architecture, in the distributed MIMD, data is distributed to multiple

processors with private memory. Each computing node in this architecture has a processor,

memory and communicator.

4.1.2. Parallelization Strategy

We employ a master-slave model. All slave nodes will send results of their local computation

of their assigned tasks to the master. The master computes the aggregate wirelength result and

uses this result for the next refinement of the floorplan, and this is distributed among the

slaves for computation, until the best floorplan solution is achieved.

4.1.3. Implementing MB*tree with MPI

The MPI approach creates processes and our method is based on master/slave approach. The

master node controls the communication, coordinates and assigns tasks to slave processors. It

reads the floorplan solution data, divides the modules by the number of processors and sends

them to the slave processors using MPI_Send() and the data is received by the slaves using

MPI_Recv().Each of the slaves carry out computation of wirelength, the master gathers the

results and computes the aggregate wirelength for the entire floorplan. Figure 10 shows the

flowchart for the parallel MPI implementation of MB*tree on distributed processors. When

the packing function is called, and the area has been updated, the cluster modules are sent by

master to the slaves. Because the wirelength computation has to be done each time there is an

update to the floor plan based on the perturbation phase, the wirelength calculation has to be

29

calculated for each new update, hence we have parallelized this to achieve speedup. As

shown in figure 10, at the initial stage, the master node distributes the cluster modules to the

slave nodes (number of clusters/n) where n is the number of processors.

In our parallel algorithm, each of the slave nodes get their share of the cluster modules and

then the relative position of these modules with respect to each other, their distance relative

to the master module cluster to compute its own module distance from each other and the

number of pins on each module is obtained, these parameters are used for the wirelength

computation on each slave processors and hence the wirelength is calculated taking into

account the number of pins on each module. In order to get their relative distances from each

other, their position must be known and in order to get each module’s position, they will

reference the module information which contains each module's distance from the master

module and the master processor performs final connections among the clusters returned by

all processors after each processor has forwarded its wirelength results to the master.

30

Figure 11: Parallel MB* tree algorithm using the master-slave approach

Initialize the object of the floorplan

to call MPI functionality

Master node performs scaling and

initial arrangement of modules

within a floorplan

Master processor distributes the

total modules/ number of processor

to each slave process slave node

Slave

node

1

 1

Slave

node

3

Slave

node

…

Slave

node

n

Slave

node

2

 Each slave processor tracks the location of its modules

 Each slave processor calculates the pin that falls within the

range and then calculates its wirelength

 Each slave processor forwards its wirelength result to the

master node

 While the slave nodes are doing their computation locally, the

master node is computing wirelength for wires that extend
 between processors.

The master node then computes

the total wirelength

31

4.1.4. Task decomposition and assignment

In parallel programming, decomposition also known as partitioning is one of the first steps in

designing a parallel algorithm after the algorithm is studied and understood by a programmer.

This involves breaking the problem space of the serial algorithm into multiple tasks to be

assigned and run concurrently on multiple processors. The speed-up and performance of a

parallel code is highly determined by the level of decomposition of the problem space into

concurrent tasks. There are two approaches to decomposition: domain or data and functional or

task decomposition [22]. In data decomposition, the problem space is broken down by data and

each chunk of data set is processed concurrently by multiple processors. If the dependency

among the data is high, then this approach might be difficult to implement. Task decomposition

is easy to use if there are no dependencies. In data decomposition, the problem space is

partitioned based on tasks and not data, hence a programmer has to analyze all the tasks

performed in the algorithm to check which ones can be parallelized. We describe two

decomposition methods used our parallel algorithm in the following sections.

4.1.4.1. Task decomposition and assignment by module blocks

The binary tree structure is used in the representation of modules in a floor plan for the serial

algorithm. The tree is formed at the initial stage of the algorithm during clustering, the

decomposition of data is based on the B*tree, which is illustrated in Figure 12. In our parallel

algorithm the modules are partitioned based on the tree structure. One or more binary nodes are

mapped onto each processor depending on the number of nodes and number of processors. The

splitting of nodes begins from the bottom of the tree to the top. Since a binary tree has a

maximum of two leaf nodes for each non-leaf node, the group of modules is divided by the

32

number of processors and each processor has equal number of modules. In the case where the

number of processors is not divisible by the number of nodes, then the remainder is given to the

master node and in this case the master node has more number of modules than the other

processors.

4.1.4.2. Pseudo code for data decomposition

1. Start node grouping from the leaf node i.e. bottom of the tree

2. If the binary tree is balanced, group each leaf node with the same root in one cluster; the last two

levels of the tree is grouped

3. One group will contain 3 nodes or modules, that can form a binary tree with 2 leaf nodes

4. Move bottom up to the next 2 levels and group other leaf nodes with their root.

5. Leaf nodes on the same level with different roots cannot be grouped together.

6. If a node is unbalanced for grouping, then select a node one step above it into the same group

7. If a node is divisible by 3, all nodes should have equal number of modules, otherwise the

remainder ungrouped node is assigned to a group

8. If a tree is unbalanced at the leaf node level with just one leaf node at the bottom, begin grouping

at the next level, if there are remainder nodes at the top of the tree, put the leaf node in the group

9. Group in threes until no node is remaining and all nodes are formed into groups.

10. Assign each group to a processor.

Figure 12: Task partitioning for a circuit with 33 modules

33

Figure 11 shows a 33 module circuit partitioned into 11 groups with 3 modules represented by

nodes in each module. As described in the pseudo code, the partitioning begins from bottom to

top of the tree. Each of these groups is now mapped to multiple processors. In this approach, the

connection between different clusters is minimized and each of the partitions has an equal

computational load. In task assignment, a minimum of one cluster is assigned to a node; the

master processor assigns numbers to the clusters from bottom to top, and maps each of these

groups to the corresponding processor. More than one cluster can be assigned to a processor this

will be an ideal situation for performance, because too many partitions leads to increased

overhead and too less partitions leads to processor idling which is another form of overhead. So

for the circuit in Figure 12 with eleven clusters after partitioning can be mapped to one processor

each and each processor will have the same number of modules. If for example five nodes are

used to execute our parallel algorithm, 2 clusters will be assigned to each processor remaining 1

cluster, which will be assigned to the master processor. But in ideal situations, it is better to use

the number of processors that is divisible by the number of clusters to balance the computation

load. It is a very vital task to appropriately partition the data so as to map the computational load

onto the processors [32].

To assign tasks to modules, an one – to – all personalized communication [35, 36] is used, where

the master nodes sends a unique message to each slave processor i.e. each slave processor gets

the same number of modules but different data set to process locally.

4.1.4.3. Handling wires that extend across processors

One of the major factors of module clustering is their connectivity density i.e. module blocks

with higher connectivity are placed into one group and they are positioned close to each other

34

during floorplanning to reduce the wire length. During data decomposition, these module blocks

are placed on the same processor. However, wires may extend across modules and a module may

require data from another processor to compute its wirelength. This issue is addressed by the

master processor. The master processor has the entire net list of the circuits used in the

experiment. The net list consists of the connectivity of module blocks, the x and y coordinates of

each module block in the circuit and the net. The master processor after sending data to each of

the processors will assign the wirelength computation of wires that extend across processors to

itself. The computation on the master processor occurs concurrently with the slave processors.

This data decomposition method worked well for small scale circuit and the master node was

able to handle wires that run across modules in different processors.

4.1.5. Load balancing

Static load balancing was employed to implement MB*tree parallel algorithm. This is a

commonly used load balancing method used if a fixed number of processor is assigned to carry

out computation task; the tasks assigned to each processor are evenly distributed and the

processors are homogenous. Our parallel algorithm, distributes tasks evenly among processors to

avoid idle time among processors while others are still running their assigned tasks. In static load

balancing, the master node is responsible for task coordination and it assigns tasks to the slaves

at runtime. In our parallel algorithm, the cluster modules are forwarded to all processors involved

using the one – to- all communication type [35]. In this type of communication the master node

has unique data for all the slave processors and transmits specific data to each of the slaves.

35

4.1.6. Parallel Wirelength Computation

For the wirelength calculation, the half perimeter bounding box method is used [2, 4]. Each

module has information of its distance to the root node, contained in the module information data

structure, which is their relative x and y coordinate values. Each processor or thread calculates

the distances between its modules which is the wirelength within the cluster modules and finds

the coordinate of the module pins to get the highest coordinate values and this will be the upper

limit, similarly it will find the lower limits coordinates; the lower limits is subtracted from the

upper limits to find the bounding box and then half the bounding box can be computed to find

the wirelength. The half perimeter bounding box method is the half-perimeter of the minimum

bounding box for which all pins are enclosed. The module lying on the lower limits of the box

comparatively will be the module whose distance from the other consecutive modules will be

calculated; then the distance will be calculated from the node that lies at the upper limit

consecutively. However, if the positions of the pins are not given, then the computation is done

using a position lying in the center of each module.

This distance is computed by every processor/thread on the modules assigned to them. The local

wirelength values are sent to the master node, it then sums up all the wirelength results, scales

them accordingly to yield the final wirelength for the floor plan. Figure 12 below shows the

wirelength computation of a floorplan, in our MB*tree parallel algorithm, the modules are

grouped into clusters and then wirelength computation takes place concurrently because the tasks

have been divided among multiple processors, when each of the processors have their local

results, they send their local it to the master node to compute the aggregate wirelength. Our

algorithm uses the half perimeter estimation as shown in figure 12 which is a popular method for

36

wirelength estimation. Alternatively center to center estimation can also be used in which the

wirelength is estimated from the center point of each module.

Figure 13: Half-perimeter wirelength estimation method

In Figure 13 above, half the perimeter of the bounding rectangle that encloses all the pins of the

net to be connected is used to estimate wirelength. The figure illustrates 3 module blocks with

net pins that extend to all the 3 modules. The grey dots indicate pins in one net and the thick

dotted bounding box is the minimal rectangle that covers the net pins. To use the HPWL to

estimate the wirelength, we find the length and breadth values of the red bounding rectangles and

half the perimeter is the estimated wirelength.

Thick dotted bounding box wirelength estimate using HPWL = (6+4)/2 = 5

Another net in figure 12 is illustrated with the black dots with 3 net pins bounded in their

minimal bounding rectangle, the HPWL is calculated below:

Thin dotted bounding box wirelength estimate using HPWL = (4+4)/2 = 4

37

There could be more than 2 nets across multiple nets and this method is used to estimate the

wirelength across each of them and the aggregate is computed finally by the master node in

case of parallelism.

4.2. MB*Tree parallelized with Open Multiprocessing (OpenMP)

In the multithreading process with OpenMP, we implemented on a quad core computer using

the fork and join approach. The master thread creates a thread and the worker threads are

assigned data from the master thread, each then computes its own part of the wirelength

calculation simultaneously. The node modules are split among the workers on each core. The

OpenMP directive is added to the wirelength calculation section. #pragma omp parallel is

used before the region of the code that will be parallelized. The master thread encounters the

pragma directive and spawns a predefined number of worker threads and then divides tasks

among the existing threads. To minimize the overhead caused by multiple creations of fork

and joins we have restricted the OpenMP directives to the wirelength calculation section of

the code only. At the initial part of the code, the worker threads are idle as the master thread

carries out the sequential part of the code and then it finds an initial floor plan solution,

creates forks and splits the modules among worker threads to begin wirelength computation.

At the end, the threads involved with computation waits for each other to complete tasks,

pragma omp barrier is added in order to achieve this. The master thread creates a join and

gathers the results of each thread to compute the final wirelength result;

omp_set_num_threads is used to define the number of threads to be created by the master

thread. Figure 14 shows a description of the OpenMP implementation with fork and joins.

38

Figure 14: showing the description of the OpenMP implementation

4.2.1. Execution Mechanism for Parallel Section and barrier synchronization

The MB*tree algorithm has some serial section that is executed solely by the master thread. It

also contains some sections to be parallelized and those will be referred to as the parallel section.

39

The master thread executes the serial section with 1 thread and at the point where the master

reaches the parallel section in this case the packing phase, the master sends out data to each

thread to start computation. The worker threads on receiving the request from the master,

executes the parallel section in the packing stage. The master and workers execute an identical

executable object. However, as soon as the program is executed, the workers immediately go on

standby, and wait while the master completes executing a serial section. When the master has

finished executing the serial section, it requests the workers to start executing the parallel-

execution section by utilizing barrier synchronization. Barrier synchronization is a mechanism

that synchronizes more than two computing nodes at the same time. Each computing node

temporary suspends processing at the provided point of the program and waits until all

computing nodes arrives at the same point of the program. Barriers are used in sections of the

parallel algorithm to enforce a wait on processors that finish up task faster before proceeding to

the next computation phase. All the other processes must reach the barrier before the

computation can proceed.

Computing is accomplished in parallel with multiple threads. After the parallel-execution section

has been executed, barrier synchronization is again conducted, and the workers again return to

standby; the master then executes the serial execution section (see Figure 13). A request for

execution of the parallel execution section is informed from the master to the workers by using

the barrier synchronization directive.

40

CHAPTER 5

5. EXPERIMENTAL METHODOLOGY

This chapter details the methodology and tools used to implement the parallelization of

MB*tree Floorplanning algorithm. The parallel MB*tree algorithm was implemented using

the C++ programming language with MPI and OpenMP parallel programming models.

For distributed architecture, we used the master-slave approach where one processor is

named the master and performs coordination, task partitioning and task assignment and

control. MPI was employed as the programming model. The main MPI functions used in

our implementation are listed on the table below:

MPI_INIT Initialize the MPI environment

MPI_COMM_SIZE Returns the number of processes

MPI_COMM_RANK Returns the rank of the process

MPI_SEND Sends message

MPI_RECV Receives message

MPI_FINALIZE Terminate MPI process

Table 1: Main MPI functions used to parallelize MB*Tree Algorithm

MPICH2 version 1.4 was installed and used to implement MB*tree in parallel .MPICH2 is a

high performance and widely portable implementation of the MPI standard [29]. It provides

MPI implementation that supports computation on homogeneous computer systems [29].

MPICH1 provides support for heterogeneous platforms.

41

5.1. Installing and Building MPICH2

MPI was built and installed on Ryerson University Electrical Engineering (EE) network to

implement parallel MB*tree algorithm. This section briefly describes the installation and

configuration of MPI standards on Ryerson EE network. In the Department of Electrical and

Computer Engineering, all the workstations located in the labs, are networked together with

home directories and applications served from a Central File server. All workstations have

access to the Internet through a gateway. The network consists primarily of x86

workstations running Linux (Fedora Core 5) and Sun SPARC workstations running Solaris

(5.9); some Sun workstations have Sun PC cards running Windows 98. A list of some

workstations used as servers in this project is as follows:

1. brampton.ee.ryerson.ca

2. acton.ee.ryerson.ca

3. danforth.ee.ryerson.ca

4. eglinton.ee.ryerson.ca

5. whitby.ee.ryerson.ca

6. clarkson.ee.ryerson.ca

7. dixie.ee.ryerson.ca

8. kipling.ee.ryerson.ca

9. guelph.ee.ryerson.ca

10. bloor.ee.ryerson.ca

11. oshawa.ee.ryerson.ca

12. york.ee.ryerson.ca

13. ajax.ee.ryerson.ca

14. malton.ee.ryerson.ca

15. sequence.ee.ryerson.ca

16. vibrato.ee.ryerson.ca

17. vivace.ee.ryerson.ca

18. requiem.ee.ryerson.ca

19. gigue.ee.ryerson.ca

20. forte.ee.ryerson.ca

21. concerto.ee.ryerson.ca

22. minuet.ee.ryerson.ca

23. theex.ee.ryerson.ca

24. keele.ee.ryerson.ca

25. appleby.ee.ryerson.ca

42

26. finch.ee.ryerson.ca

27. sequence.ee.ryerson.ca

28. sorano.ee.ryerson.ca

29. alto.ee.ryerson.ca

30. concerto.ee.ryerson.ca

Table 2: List of Computer nodes running MPI

These computers can be found in ENG406, ENG411 and ENG412.

MPICH2 uses a default set of configuration options during installation; this creates the socket

communication device and the MPD process manager, for languages C, C++, Fortran-77, and

Fortran-90 with compilers chosen automatically from the user’s environment, without tracing

and debugging options. It uses the VPATH feature of make, so that the configuration process

can take place on a local disk to improve speed[29]. The mpich2.tar.gz in [29] is unpacked

and installed into “home/you/” into our master server; brampton. This directory is shared by

all computers in the network. MPICH2 is configured based on the commands in [29]. The

MPICH2 commands are also installed and the bin subdirectory of the installation directory is

added to the installation location path using “setenv” command based on instructions in [29].

The following commands are used to check the bin subdirectory:

 which mpd

 which mpicc

 which mpiexec

 which mpirun.

On executing these commands, a path is displayed in the command line that shows that each

of these installation files exists in the bin directory as this is crucial to the smooth running of

MPI in the execution environment.

43

At this stage the directory is on all computers on the network since it is a Network File

System (NFS). MPICH2 uses a process manager to start MPI jobs on multiple machines. The

process manager is known as MPD, it forms a daemon ring on the set of computers where

MPI programs run[29]. The “mpd &” is used to start up MPD on one computer, “mpdtrace”

command displays what computer is started by the daemon. The “mpdboot –n <number to

start> -f mpd.hosts” command is run on one of the machines to start MPI on a number of

machines depending on the value of n. The value of n cannot be greater than the number of

machines listed in the mpdhosts file. The mpdhosts file consists of a list of the computer

names on the EE network that will be used to run the parallel MB*Tree algorithm. When the

daemon is started, MPI should be running on the machines listed and to check what machines

are running in the MPI ring, the “mpdtrace –l” command is used and this displays the list of

machines running MPI. All the computers used in executing the code are running on Linux

platforms. I used up to 22 interconnected machines to execute the parallel program for MPI.

Computers in ENG 412 have the same specification as shown below:

Processor - Intel (R) Xeon (R) CPU

Proc. Speed - 2.00 GHz

Cache- 6144KB ~ 6MB

Network speed- 100Mbps

CPU MHz - 1995.042

ENG 406 and ENG 411 machines have 2 varying specifications

 Processor - Intel (R) Xeon (R) CPU

Proc. Speed - 2.00 GHz

Cache- 6144KB ~ 6MB

Network speed- 100Mbps

CPU MHz - 1995.042

Processor - Intel (R) Core ™2 Quad CPU

Proc. Speed - 2.40 GHz

44

Cache- 4096KB ~4MB

Network speed- 100Mbps

CPU MHz - 2394.201

In the OpenMP model, one main thread and other worker threads are created. The

communication overhead is lower than in MPI because communication between the master

and worker threads is within a node eliminating network communication overhead as in MPI.

The MB*tree algorithm was compiled and run using a single quad core: Brampton. For the

shared memory model programming, OpenMP was employed as the Application

Programming Interface (API). With the operating system on each of the machines listed

above, OpenMP is already incorporated in gcc; hence, no installation is required. The gcc

version 4.2.1 already installed on all machines, supports “-fopenmp” option to compile

OpenMP programs. For the OpenMP version, Brampton server in ENG 412 with Intel Xeon

processor , 4 cores and Linux operating system with gcc compiler. Due to resource limitation

i.e. only a maximum of 4 cores exists on one node, we were unable to run the parallel

MB*tree algorithm on a larger number of cores on the same node.

The data set used for running the parallel code is the Microelectronics Center of North

Carolina (MCNC) benchmark circuits [4, 37] were used. The ami33 and ami49 were used.

These circuits were duplicated up to 4 times to obtain a larger circuit to validate the benefits

of parallelism on large circuits that could take several hours to obtain a quality floorplan

solution.

Barrier synchronization is used in both MPI and OpenMP versions of the parallel algorithm.

For the OpenMP version, “#pragma omp barrier for” directive is used to impose barriers i.e.

this instructs all the threads to stop at the point where it is added to the code and wait until all

45

the other threads complete their computation and reach the barrier. For MPI, int MPI Barrier

(MPI Comm comm.) was used to instruct all processes to wait until all other processes reach

the barrier. The master thread or processor can now gather all results for the final

computation.

5.2. Challenges faced in implementing parallel MB*Tree algorithm.

One of main challenges faced parallelizing MB*tree is data partitioning, as the data

partitioning scheme plays an important role in the performance of the parallel algorithm. A

new partitioning algorithm was devised to decompose the cluster module blocks into sub-trees

and assigned evenly to the processors or cores avoiding unbalanced load. In the OpenMP

implementation, due to limited number of cores on the machines, we were unable to explore the

capability and performance of OpenMP on more than 4 cores.

46

CHAPTER 6

6. RESULTS AND DISCUSSION

This chapter contains the performance results of the parallel MB*Tree Algorithm and discussion

of these results. We optimized the Floorplanning algorithm for Multilevel

Floorplanning/placement for large scale modules using B*tree (MB*tree) on MPI and OpenMP

parallel models using C++ programming language and the experiment was executed on an Intel

Pentium/Celeron processor (2.4GHz) running GNU Linux. For the MPI test we used up to 22

interconnected workstations. The MCNC benchmarks ami33 and ami49 which contains 33 and

49 modules respectively were used for testing. Duplicates of these circuits (two and four times)

were also used for testing in order to study the performance of parallelism on larger circuits.

6.1. Runtime and overhead results of ami33 circuit with module based partitioning

(sequential vs. parallel) - MPI

Figure 15: Bar graph showing the execution time for ami33 circuit with MPI

47

Figure 15 above shows the execution time for ami33 circuit in terms of time spent in executing

the sequential part of the code, time spent on parallel computation and also the overhead incurred

during communication and computation. The algorithm was run on 1, 3, 6 and 11 processors.

The one node bar represents a purely sequential code, in which the overhead is very negligible.

The sequential time is measured on one node; this is obtained by using the time function to

measure the execution time of the code from start to finish. The parallel computation time is the

time it takes to run the parallel part of the code which is majorly the clustering section of the

code where wirelength calculation is done on multiple computers. The overhead is then

computed using equation 4. To = Tex – (Ts+Tp). Where Tex is the total execution time, Ts is the

sequential time and Tp is the parallel computation time. The overhead time covers the time it

takes for communication between processes and the time it takes to assign and synchronize data

between processes. A speedup of 2.8 was obtained on 11 nodes although the overhead incurred

increased as the number of processors is increased, the total execution time was greatly reduced.

The overhead incurred includes the time it takes the master node to compute the wirelength for

the wires that extend across processors.

Figure 16: Bar graph showing the execution time for ami33x2 circuit with MPI

48

In figure 16, we duplicated ami33 twice the circuit is twice as big as ami33. A speedup of 3 is

obtained from up to 22 nodes. The number of processors is divisible by the number of nodes, on

22 nodes, each processor would have one cluster module containing 3 blocks, on 11 processors,

and each cluster module will have 2 clusters of 6 blocks in total. The overhead in the ami33x2

circuit is higher than the overhead in ami33 because there is more modules and nets, hence more

computation work. In figure 17 below, ami33 was duplicated 4 times and this produces a larger

circuit, better speedup was achieved for ami33x4 with 3.4 on 22 processors. This is a good

indication that the parallel algorithm will scale better as the circuit size increases.

Figure 17: Bar graph showing the execution time for ami33x4 circuit with MPI

6.2. Runtime and overhead results of ami49 circuits with module based partitioning

(sequential vs. parallel) – MPI

Figure 18 below shows the result of ami49 on 1,2,4,7 and 14 processors. On 14 processors the

overhead is the highest due to the fine granularity nature of the data and the number of processor

involved. Although the runtime was reduced but the overhead incurred is higher. On 7 processors

49

the data is coarser grained than on 14, and this reduces the number of wires that extend across

multiple nodes or processors. The ami49 circuit is a larger circuit than ami33 and the speedup

achieved with this circuit is better.

Figure 18: Bar graph showing the execution time for ami49 circuit with MPI

Figure 19: Bar graph showing the execution time for ami49 circuit with MPI

50

Figure 20: Bar graph showing the execution time for ami49 circuit with MPI

A speedup of 3.2 was obtained for ami49, 3.9 for ami49x2 and 4.01 for ami49x4. Generally we

observed that in order to obtain better performance, the granularity of the data should not be

purely fine, because the finer the granularity of data, the higher the overhead cost, as many wires

will extend across processors which is incurs high overhead cost.

6.3. Effects of Granularity on the execution time

Experiments were performed using fine grained granularity and coarse grained granularity. The

extent to which the data is decomposed is the known as granularity. In the parallel MB*tree

algorithm, although data is broken down into very fine parts, the number of parts assigned to

each processor determines how coarse grained or fine grained the data can be. For example

ami33 circuit executed on 11 processors indicates that granularity is very fine i.e. a cluster of 3

modules is mapped onto each of the 11 nodes. This greatly affected the performance as the

51

overhead increased and also too many wires will extend across multiple nodes there by

increasing the amount of sequential work to be done by the master processor.

6.4. Runtime and overhead results of ami33 and ami49 circuits with (sequential vs.

parallel) – OpenMP

For the OpenMP test we used a quad core workstation. Figures 18 and 19 below show results

for OpenMP. The parallel algorithm was tested using, ami33x4 and ami49x4 test circuit.

Figure 21: Bar graph showing the execution time for ami33x4 circuit with OpenMP

Figure 22: Bar graph showing the execution time for ami33x4 circuit with OpenMP

52

 The overhead in OpenMP is considerably lower than the corresponding MPI results, for

example the MPI result for ami33x4 in Table 3 on 4 processors compared to OpenMP result

for 1 node to 4 cores shows that OpenMP produced better results in terms of execution time

and reduced overhead. Similarly for ami49x4 in Table 4, result shows that OpenMP produced

better results than MPI (comparing 3 nodes and 1node/three cores) due to the overhead

incurred in communication across nodes.

 Table 3: Table comparing overhead and execution time of ami33x4 on MPI and OpenMP

 Table 4: Table comparing overhead and execution time of ami49x4 on MPI and OpenMP

Overall, the results obtained from the MPI and OpenMP implementation shows that it gives

better runtime and speedup than the sequential implementation. Comparing the MPI and

OpenMP results, although we were only able to implement OpenMP on a single quad core

node, the runtime is better than the corresponding results for MPI. Due to the resource

limitation, we were only able to use a maximum of 4 cores for OpenMP implementation and

with the trend of the result and speedup; it is likely to obtain more speedup as the core

53

increases because overhead is less compared to MPI. The overhead is shown in all the results,

the average overhead is obtained by taking the total time and deducting the parallel

computation time and sequential time, the remaining value could be taken as the overhead.

Figures 23 and 24 shows the overhead trend as the number of processors and the circuit size

increases

Figure 23: Graph showing overhead time for 3 ami49 circuits on MPI

Figure 24: Graph showing overhead time for 3 ami33 circuits on MPI

54

For the larger circuits there is more increase in the overhead due to the circuit size and the

increasing number of processors. Furthermore, the area and wirelength of the parallelized

floorplans was not compromised. Tables 4 and 5 below shows the result obtained for the area

and dead space for the parallelized algorithm, which is no different from its sequential

version as we were able to maintain the floorplan quality while optimizing the algorithm. The

quality of the floorplan was maintained while reducing computation time. The MB* tree

algorithm is very scalable [4] and hence very large VLSI circuits will achieve more speedup

with the parallel approach.

Table 5: Area and dead space obtained for ami49 and its duplicate circuits

Table 6: Area and dead space obtained for ami33 and its duplicate circuits

55

CHAPTER 6

7. CONCLUSION AND FUTURE WORK

In this thesis we were able to optimize the MB*Tree Floorplanning Algorithm by parallelization

using OpenMP/MPI and evaluated the performance of different results produced by these two

programming paradigms using the MCNC benchmark circuits for the experiments.

7.1. Contribution and Conclusion

In this thesis, we have implemented a parallel VLSI Floorplanning algorithm; MB* tree using

two popular parallel models; Message Passing Interface (MPI) and Open Multiprocessing

(OpenMP). We optimized the MB*tree algorithm by parallelization to reduce execution time

especially with large circuits. Experimental results show that we were able to achieve good

speedup with our parallel approach with the larger circuits giving greater speedup. The

parallelism gives good results in terms of reducing the runtime and achieving good speedup

which is better compared to the sequential version. Furthermore, the OpenMP version gave the

best results in terms of total runtime, speedup and overhead compared to the MPI

implementation. The reason for achieving better result with OpenMP is largely due to the

negligible amount of overhead incurred. Since all cores reside on a single node, no data

exchange across the network and communication among threads incurs less overhead compared

to the MPI version. In OpenMP, if a wire extends across more than one processor, the cores can

read data information about these wires and use that in computation of its wirelength hence

reducing the amount of work done sequentially by the master thread unlike in MPI. The data

56

partitioning by net method works well on the shared memory architecture in that we can divide

the total number of nets by the number of cores without any issues with inter-node

communication because all modules and net information are transparent to the cores. However,

there is a limit to the amount of resources we have, to test the OpenMP which is a single quad

core node. With a larger number of cores on a single node, our parallel algorithm will scale

better. The floorplan quality was not compromised and we were able to achieve reasonable

speedup in the floor plan computation and design as shown in our experimental results.

7.2. Future Work

In this work, MPI and OpenMP have been used to optimize the MB*Tree algorithm through

parallelization. A future work is to use the Hybrid programming model i.e. Hybrid MPI/

OpenMP to further optimize the code and explore the possibilities of maximum performance.

The hybrid programming models can utilize both shared memory and distributed memory of

high-end computing systems. MPI will be used globally to exchange modules and net

connectivity information and OpenMP will be used to parallelize the packing phase of the

algorithm precisely the wirelength computation.

57

 REFERENCES

[1] L. Huang, Y. Cai, X. Hong, “A Parallel VLSI Floorplanning Algorithm Using Corner

Block List Topological Representation,” Proc. ICCCAS, vol. 2, pp 1208-1212, June 2004.

[2] Y-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, “B*-Trees: A new representation

for non-slicing floorplans,” Proc. DAC, pp. 458-463, 2000.

[3] W.-S. Yuen and E. Young, "Slicing floorplan with clustering constraint," Proc.IEEE

TCAD, vol. 22, no. 5, pp. 652--658, May 2003.

[4] H.-C. Lee, Y.-W. Chang, J.-M. Hsu, and H. H. Yang, “Multilevel

Floorplanning/placement for large-scale modules using B*-trees,” Proceedings of

ACM/IEEE Design Automation Conference, pp. 812-817, 2003.

[5] T.-C. Chen and Y.-W. Chang, "Modern Floorplanning Based on B*-trees and Fast

Simulated Annealing," in IEEE Trans. on Computer-Aided Design of Integrated (TCAD) ,

vol. 25, no. 4, pp. 637--650, Apr. 2006.

[6] F. Balasa, “Modeling Non-Slicing Floorplans with Binary Trees,” Proc. of the 2000

IEEE/ACM International Conference on Computer-aided design pp 13-16 November 2000

San Jose California.

[7] M. Tang, R. Lau, “A Parallel Genetic Algorithm for Floorplan Area Optimization,”

Seventh International Conference on Intelligent Systems Design and Applications, pp 801-

806 October 2007.

[8] M. Chrzanowska-Jeske, B. Wang, and G. Greenwood, "Floorplanning with

performance-based clustering," Proc. ISCAS, vol. 4, pp. 724--727, 2003.

[9] C.Chen, I. G. Tollis "Parallel algorithms for slicing floorplan designs," IEEE Second

Symposium on Parallel and Distributed Processing pp.279-282, 1990.

[10] X. Hong, G. Huang, and T. Yoshimura, “Corner Block List: An Effective and

Efficient Topological Representation of Non-Slicing Floorplan,” Proc. ICCAD, pp. 8-12,

2000.

58

[11] M. Li, Y.Zhou, Y. Li, “A Non-Slicing Area Prejudged Algorithm for Floorplanning

without Simulated Annealing,”Proc. International Conference on Computer and

Automation Engineering (ICCAE), vol 1 pp. 643-647 Feb. 2010.nnnnnnnnnnnnnnnnnnn

[12] X. Tang and D. Wong,” FAST-SP: A Fast Algorithm for Block Placement Based on

Sequence Pair,” Proc ASP-DAC, pp. 521 -526, 2001.

[13] P.-N. Guo, C.-K. Cheng, and T. Yoshimu, “An 0-Tree Representation of Non-Slicing

Floorplan and Its Applications,”Proc. DAC, pp, 268 -273, 1999.

[14] H. Murata, Ernest S. Kuh, “Sequence Pair Based Placement Method for

Hard/Soft/Pre-placed Modules,” Proc. ISPD, pp. 167-172.1998.

[15] H.Foo, J. Song, W. Zhuang, H. Esbensen, E. Kuh, “Implementation of a parallel

genetic algorithm for floorplan optimization on IBM SP2,” High Performance Computing

on the Information Superhighway, pp 456-459, April 1997.

[16] J-M. Hsu, Y-W Chang, “A reusable Methodology for non-slicing Floorplanning”.

Proc. Circuits and Systems, vol 1 pp 165-168, 2004.

[17] T. Yamanouchi, K. Tamakashi, T. Kambe, “Hybrid Floorplanning based on partial

clustering and module restructuring,” Proc. ICCAD, pp 478-483 Nov 1996.

[18] I. Shanavas, R. Gnanamurthy, “Wirelength Minimization in Partitioning and

Floorplanning Using Evolutionary Algorithms,” Proc. of VLSI Design 2011.

[19] P. S Pacheco, (1997) Parallel Programming with MPI, Morgan Kaufmann Pub. Inc.

[20] An Oracle White Paper on Parallel Programming with Oracle Developer Tools May

2010.

[21] O. Owojaiye, N. Mekhiel, “Parallel Implementation of Non-Slicing Floorplans with

MPI and OpenMP”. Proc. CATA, March 2012.

[22] https://computing.llnl.gov/tutorials/parallel_comp.

[23] N. Lasgard “Parallelizing Particle-In-Cell Codes with OpenMP and MPI” Norwegian

University of Science and Technology - A technical report.

[24] David Culler, Jaswinder Pal Singh and Anoop Gupta, "Parallel Computer

Architecture, A Hardware/Software Approach", Morgan Kaufmann Publishers, 1999.

59

[25] Bernd Mohr, “Introduction to Parallel Computing”, NIC Series, Vol. 31, ISBN 3-00-

017350-1, pp. 491-505, 2006.

[26] http://www.openmp.org

[27] R. Ladani, “A Recursive Approach to Floorplanning” - Thesis Report 2005.

[28] MPI Forum. “A Message-Passing Interface Standard”, 1995. (http://www.mpiforum.

org/docs/docs.html)

[29] http://www.mcs.anl.gov/research/projects/mpich2/.

[30] Liu, W., Hong, X., and Adamson, K., “Parallel implementation of evidence

combination in qualitative Markov tress”. Technical Report, University of Ulster.

[31] P. Salembier, L. Garrido, “Binary Partition Tree as an Efficient Representation for

Image Processing, Segmentation, and Information Retrieval” Proc. IEEE trans. on Image

Processing, vol 9 pp. 561-576, Apr 2000.

[32] W. Xue, S. Qi, “Multilevel Task Partition Algorithm for Parallel Simulation of Power

System Dynamics” Proc. of the 7th international conference on Computational Science,

ICCS '07 pp. 529-537, 2007.

[33] http://static.msi.umn.edu/tutorial/scicomp/general/intro_parallel_prog.

[34] S.L. Martins, C.C. Ribeiro, and N.R. Rodriguez, “Parallel computing environments”,

Handbook of Combinatorial Optimization, Oxford, to appear.

[35] D.Barth, P. Fraigniaud, “Approximation algorithms for structured communication

problems”. Proceedings of the 9
th

 ACM Symposium on Parallel Algorithms and

Architectures, 1997, 180-188.

[36] J. Duato, S. Yalmanchili, L.M. Ni, “Interconnection networks; An engineering

approach”, IEEE Computer Society Press, 1997.

[37] http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/#MCNC_Benchmark_suite.

[38] http://vlsicad.cs.binghamton.edu/benchmarks.html.

[39] H.-C. Lee, Y.-W. Chang, J.-M. Hsu, and H. H. Yang, “MB*Tree: A Multilevel

Floorplanner for Large-Scale Building-Module Design “IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 26, No. 8, August 2007.

http://www.openmp.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://static.msi.umn.edu/tutorial/scicomp/general/intro_parallel_prog
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/#MCNC_Benchmark_suite
http://vlsicad.cs.binghamton.edu/benchmarks.html

60

[40] A. Kennings and I. L. Markov. Analytical minimization of half-perimeter wirelength.

In Proc. Asia South Paci_c Design Automation Conf., pages 179.184, 2000.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Parallel Implementation of Non-slicing Floorplans with MPI and OpenMP
	Oluvaseun Owojaiye
	Recommended Citation

