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Abstract

Portfolio efficiency and suitability are two important goals in the asset allocation 

process involving a financial advisor and clients. In this project report, a multiple 
objective asset allocation method which is intended to obtain a suitable portfolio 

for a specific individual investor is proposed. The Analytic Hierarchy Process 

(AHP) technique is employed as a framework to address an investor’s muitipie 
investment objectives. Single-objective portfolio optimization techniques are 
integrated into the decision hierarchy. To determine a single-objective optimal 

portfolio, a method is proposed to measure an investor’s risk tolerance. An 
interactive procedure based on the proposed asset allocation method is 
presented to implement the allocation process. Comparisons with a 

single-objective optimization method using a hypothetical example show that 

improved portfolio efficiency in terms of all objectives can be achieved. 
Questionnaires, GAMS (General Algebraic Modeling System) programs and 
spreadsheet models are developed to facilitate the communications between the 

financial advisor and investor.
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Chapter 1; Introduction

Almost every one in the world owns a combination of assets. It can be composed of real 
assets, such as a house, a car, or furniture, and financial assets, such as cash, stocks, or 

bonds. Real assets are mostly for personal use in everyday life. There is not much room left 
to be managed to generate income unless one sells them. Financial assets are resources that 

can be organized to provide potential future growth and income. Asset allocation is an 
investment decision process about how to allocate available capital among different types 
of financial assets. A combination of these assets is called a portfolio. For many individual 
investors, however, the process of constructing a portfolio can be time-consuming and may 

be a tough task because of limited knowledge and experience. Financial markets are full of 
uncertdnty. No one can predict what will exactly happen in the future. Investors worry 
about making wrong decisions. And when investors seek advice firom a financial 
professional, they worry that the advisor may make wrong decisions for them. In order to 
make a good investment recommendation, the financial advisor should consider multiple 
dimensions of an investor’s objectives and preferences.

Optimization techniques have traditionally been used in asset allocation process. However, 
an efficient portfolio determined by an optimization model is not necessarily also suitable 
for a particular investor, partly because the judgment of a portfolio’s suitability is largely 
subjective (Bolster, et al., 1995), and partly because traditional optimization is in practice 

constructed as a single-objective decision problem. Multiple-objective decision making 
methods, such as the Analytic Hierarchy Process (AHP) developed by Saaty (1980), are 
suitable to deal with complex situations where multiple objectives should be considered. 

However, a suitable portfolio obtained by the AHP normally is not optimal (Bolster and 
Warrick, 2000). By integrating the AHP with traditional optimization techniques, it is 
hoped that a suitable portfolio with improved overall effidency can be obtained. A major 

objective of this project report is to present such a multiple objective asset allocation model 
for individual investors. When using the mean-variance optimization technique to 
determine a portfolio, an investor’s risk tolerance is a key input factor. A theoretically 
sound and workable measure for an investor’s risk tolerance is also presented in this report.

To develop a multiple objective asset allocation model, an understanding of asset allocation
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process is needed. An introduction to this process, as well as portfolio’s efiBciency and 

suitability, is given below.

1.1 Asset Allocation Process

All decision problems have common elements: criteria of choice, alternatives and the 

preferred solution(s). The decision alternatives for asset allocation are numerous possible 
combinations of asset classes. For individual investors, they themselves, or the financial 
advisor help them, evaluate the alternatives according to their financial goals and 
considerations, and choose an asset combination that can achieve these goals. This process 
can be summarized as goal setting, asset class selection, and portfolio determination.

1.1.1 Investment Goals

The key for a successful financial advisor is to know what his client needs. And the key for 
an investor is to know what himself needs. The old saying “knowing the destination is half 
the journey” indicates the important role of goal setting in asset allocation process. It 

determines an investor’s asset allocation strategy. That is, asset allocation should be 
consistent with investors’ investment goals.

Many investors have a list of concrete goals, such as to buy a house, send children to 
universities, save enough money to retire early and comfortably, and so on. Some investors 
would like to defer their income tax to future years or utilize the favorable tax rates on 
different investment instruments. Some would like to preserve their capital firom potential 
losses. Some are concerned about tiie purchasing power of their money and would like to 
seek investments to hedge increased inflation. Many investors seek multiple investment 

objectives. Most of these goals can be translated into retum requirements fi-om investment 
portfolios.

Investors’ financial status, time horizons and stages in their life cycle affect the asset 
allocation decision. For example, liigh tax-bracket investors may seek investments that 
generate income firom capital gains and dividends, which are taxed at a lower rate than 

interest income. Different investor risk attitudes also direct the investment portfolio toward 
more conservative or more aggressive asset combinations.



1.1.2 Asset Classes

If we define asset allocation as spreading investments across a variety of asset classes, a 

natural question is what asset classes are available for investors. Actually there are 
thousands of asset alternatives available in the financial markets. In broad terms, cash, 
bonds, stocks and real estate are four basic asset classes (see Maginn and Tuttle, 1990, p. 
10-2, for the detailed discussions about treating real estate as an asset class in portfolio 
analysis). They can be subdivided into smaller classes according to certain classification 
methods. Stocks, for example, can be subdivided into large-cap and small-cap; value and 
growth; international and domestic; and/or combinations thereof. Bonds can be subdivided 
into governmental and corporate; short, intermer îate, and long term; convertible and 

non-convertible; coupon and zero-coupon, etc. Each sub-class can be furtirer divided. Each 
asset class possesses some common properties that can distinguish it fi'om others.

Asset classes provide various investment opportunities as well as different risk and retum 
characteristics. Cash and cash equivalents, such as bank accounts, term dq)Osits, treasury 
bills, money market mutual funds and other short-term instruments, typically provide 

interests and generally be considered conservative because of their low risk, high liquidity 
and abilities to preserve capital. Fixed-income assets, such as corporate bonds, provide 
potential higher income opportunities but have moderate risk because they are subject to 
potential default risk for reasons such as bankruptcy. Government bonds rarely have 
default risk but are still subject to long-term inflation risk and generally have lower interest 
rates tiian those of corporate bonds. Historically, stocks have been the best performing 

asset class among traditional investments (Information Please, 2003). They typically offer 
greater growth possibilities and good hedge to inflation in long-term. However, their prices 

fluctuate fi'equently, sometimes significantly and therefore have high risk of loss. 

Commercial real estate provides both lease income and potential capital appreciation, but 

is not firequently traded and has high liquidity risk.

Rational investors prefer higher returns and dislike risk (Markowitz, 1952). However, the 

natural law of investments is that the higher the returns, the higher are the risks, and vice 
verse. Although controversial, Efticient Market Hypothesis (Fama, 1995) states that 
security prices fully reflect all available information of both historical and expected future 

events, and any efforts to pick up undervalued securities are like “random walk” in markets.
3



Asset allocation is neither intended to oulperform market nor a tool to ‘lauy low, sell high”, 

but a strategy to protect potential losses and to provide “satisfied” retum by combining 

asset classes into a portfolio.

1.1.3 Diversification

Once asset classes are identified, investors should determine how much of each class 

should be included in the portfolio. That is, how much of funds should be invested in 
stocks, how much in bonds, and so on. The answer is crucial to long-term portfolio 
performance. An old adage tells us: “Don’t put all the eggs in one basket”. If one drops the 
basket that carries all eggs, one loses all. This saying is well suited to situations of investing. If 
an investor invests in a number of assets, he prevents himself from large losses linked to 
one or some poor decisions. Modem portfolio theory (MPT), developed first by Markowitz 

(1952), goes further than traditional random diversification. Analyses and attentions are 
not only given to the risks associated to each individual asset (asset class), but also 
provided to interrelationships among component assets within a portfolio. Diversification 
works because not all financial assets go up or down at the same time or at the same rate. 
When stock markets go up, bond markets may go down. While the high-tech sector falls 
sharply, the food sector may slide only slightly or remain the same. If investors hold assets 
that do not correlate with each other, the increase in one can offeet losses in another. MPT 
points out that a well-diversified portfolio will achieve higher returns without having to 
take more risk, or achieve given expected returns for minimal risk. This is the theoretical 
foundation of asset allocation.

1.1.4 Portfolio Determination

In asset allocation process involving a financial advisor and clients, typically the advisor 

provides available market opportunities (Maginn and Tuttle, 1990, p. 7-12). These 
opportunities are combinations of several asset classes that are believed to be efficient or 
suitable based on capital market research results. A final portfolio for a given individual 
investor is determined by combining the available market opportunities with that investor’s 
preferences, usually the most important one is the investor’s risk tolerance (Magiim and



Tuttle, 1990, p. 7-27). Typically the value of the investor’s risk tolerance is evaluated using 

a designed questionnaire. The responses to the questionnaire are scored. An asset allocation 

recommendation can be made using rules of thumb based on die accumulated score 
(Droms and Stauss, 2003), or the score can be transformed into a value of risk tolerance 
that can be incorporated into an optimization model to detamine an optimal asset mix 
(Bolster and Warrick, 2000).

1.2 Asset Allocation’s Efficiency and Suitability

Investors hope to be given a portfolio that is consistent with their financial status as well as 
investment goals and preferences. But they may be concerned about if the recommended 
portfolio is the “best” one available. There are two important considerations in asset 
allocation process: portfolio’s suitability and efficiency.

After the birth of Markowitz’s mean-variance theory (Markowitz, 1952), traditional 
research of asset allocation focuses on two major areas: one bn the solution techniques of 
mean-variance optimization, die other on the différent definitions of portfolio risks. The 

studies in the first area lead to the developments of other important components of modem 
portfolio theory, including index model (Sharpe, 1963), Capital Asset Pricing Model 
(CAPM) (Sharpe, 1964), and Arbitrage Pricing Theory (APT) (Ross, 1976). The research 
in the second area leads to various alternative portfolio optimization methods, such as 
mean absolute deviation optimization (Konno and Yamazaki, 1991). Both areas of research 
pay attentions to the optimality of a portfolio and distinguish themselves based on what is 
the most appropriate measure of asset risk and portfolio risk From a viewpoint of decision 
making, all of these models generate objective judgments of alternatives. As long as the 
properties of component assets are known, the ouqjut portfolios are deterministic. They are 

optimal or efficient based on mean-variance sense or mean absolute deviation sense.

The efficient portfolios derived from optimization models are not necessarily also suitable 
for a particular investor. In many portfolio optimization methods, one of the major 
investment objectives is often formulated as the objective function that needs to be 
optimized, while other objectives or considerations come into the optimization models as 

constraints. A portfolio obtained by this single-objective optimization method is efficient in 

terms of this objective, but not necessarily also optimal in terms of others. Because of the
5



various situations faced by different investors, it may be impossible to find a universally 
optimal portfolio (Saraoglu and Detzler, 2002). If multiple conflicting objectives coexist 
and one objective does not significantly dominate others, investors may not think the 
portfolio is suitable for them. Furthermore, the determinations of portfolio suitability are 
largely subjective, and financial advisors often have to rely on intuition and past 
experience to make judgments. Disgruntled investors may sue for damage or file 

complaints against financial advisors if they believe the recommended investments are not 
suitable for them (Bolster, et al., 1995).

Professional associations, such as Association for Investment Management and Research 
(AIMR, 2003), require their members consider the appropriateness and suitability of 

investment recommendations for clients. However, the research in the suitability of a 
portfolio appeared in financial literature only in recent years and was relative rare. The 
Analytic Hierarchy Process (AHP), developed by Saaty (1980), has been used by several 

researchers to formulate portfolio mix (Khaksari, et al., 1989), to determinate an investor’s 
suitability (Bolster, et al., 1995) and to select mutual funds (Saraoglu and Detzler, 2002). 
AHP constructs the asset allocation decision problem as a hierarchy. Each objective in the 
hierarchy is prioritized and its relative importance is weighed. The performance of each 
asset is evaluated in terms of each objective or sub-objective. A portfolio can be formulated 
by combining the weighed asset classes. The purpose of using AHP in asset allocation is to 

ensure that investors’ objectives and preferences are reasonably satisfied. Generally, 
however, the portfolio obtained is not optimal (Bolster and Warrick, 2000).

1.3 Organization of this Report

This project report presents an asset allocation method which is intended to obtain a 
suitable portfolio for a specific individual investor. Improved overall portfolio efficiency 
can also be achieved. In this proposed method, the AHP is employed as a firamework to 
address an investor’s multiple investment objectives. For each objective, an optimization 
model is used to determine a local optimal portfolio. Interactive communications between 

the financial advisor and the investor ensure that the asset allocation process effectively 
reflect the investor’s preferences.

This project report is organized as follows. In Chapter 2, the classical mean-variance
6



portfolio theory, alternative portfolio optimization methods and efiticient asset allocation, 
techniques are reviewed and their limitations are discussed. In Chapter 3, the Analytic 

Hierarchy Process (AHP) is first introduced. A multiple^objective asset allocation model 
which integrates the AHP framework and portfolio optimization techniques is presented. A 

hypothetical investment problem is constructed to illustrate the application of the proposed 
model. In Chapter 4, a theoretical formulation of measuring an investor’s risk tolerance is 
derived. An interactive process is designed to ascertain the measurement In Chapter 5, the 
process of constructing a complete portfolio is first reviewed. Then the complete portfolios 

constructed for the hypothetical investment problem are presented. A deviation index is 
designed to mesure the overall efficiency of the complete portfolios and used to compare 
tiie results with those obtained using a single-objective optinüzation method. In Chapter 6, 

a summary of the author’s contributions is provided and some areas of future work are 

suggested. •



Chapter 2: Portfolio Theory and Asset Allocation

Modem portfolio theory is the theoretical foundation, of eflBcient asset allocation. It 
suggests that diversifying a portfolio into different assets increases portfolio retum or 
decreases portfolio risk. Combining efficient market opportunities with an investor’s 

preference, an optimal portfolio can be determined. In this chapter, the classical 

mean-variance portfolio theory is first introduced and alternative optimization methods are 

reviewed. The methods of detamining optimal portfolios are described. Limitations of 
single-objective optimization methods are discussed.

2.1 Mean-variance Portfolio Theory

The first pioneering contribution to modem portfolio theory was the seminal work of Dr. 
Markowitz (1952), who received the 1990 Nobel Prize in Economics (Royal Swedish 
Academy of Science, 1990). Before Markowitz, the investment management principle was 

to buy assets thought to be undervalued, and sell them later hopefolly for a profit 
Markowitz formulated the portfolio selection problem as to take the mean or expected rate 
of retum of a portfolio as the investment retum and the standard deviation (or variance) of 
retum of a portfolio as the investment risk. The mechanism of portfolio diversification was 
quantitatively analyzed. When assets are proparly mixed, investors could construct a 
portfolio that provides a higher overall retum without having to undertake more portfolio 
risk. Markowitz’s mean-variance theory has since become the standard firamework in 

modem portfolio management (Michaud, 1998, p. 2).

An efficient portfolio, according to Markotiwz, is defined as one that has the largest 
expected retum for a given level of risk, or the smallest portfolio risk for given level of 
expected retum The mathematical formulation of this problem is a quadratic programming 
model (denoted as Model 2.1):

Model 2.1:
Objective:

N
Maximize E{ Rp)  = ^  XfE{R. )

/ = !



Subject to:

CTp = X; x^(J^  + Y, T. XiXjp, j(7,aj
f=i 1=1 y=i

J^i
N

where: E(Rp) = expected retum of portfolio;

Op = standard deviation of retum of portfolio-\ .

E(Rf) = expected retum for asset class /;

Oi = standard deviation of retum of asset class /;
Pij = correlation coefficient between returns of asset class i andy;
N = the number of asset classes;

and Xf = proportion of portfolio invested in asset class /.

Rational investors would seek efficient portfolios because these portfolios are optimized on 

both expected returns and risks, which are believed to be the most important considerations 
to investors. This can be illustrated in Figure 2.1. The circled area in Figure 2.1 is the 
opportunity set, which is the entire set of all attainable asset combinations. The efficient 
portfolios are found along the efficient frontier starting from point K to Q. The efficient 
frontier is a concave risk-retum trade-off curve in the expected retum-standard deviation 
space that extends from the minimum variance portfolio K to the maximum retum 

portfolio Q (Elton and Gmber, 1991, p. 53). Each portfolio in the efficient frontier, say, 
portfolio Q is optimal because the expected retum of portfolio G is greater than the 
expected retum of all other portfolios within the opportunity set with the same standard 

deviation, and its standard deviation is less than any other portfolios with the same level of 
expected return. Portfolio K is the global minimum variance portfolio because no other 
minimum-variance portfolio has a smaller risk. Portfolio Q is the maximum retum 

portfolio because no other efficient portfolio has a higher return.
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efficient frontier

opportunity set

Standard deviation

Figure 2.1 : The opportunity set and efficient frontier 
(Source: Snhanimer and Sephton, 1998, p. 127)

In Markowitz’s mean-variance model, analysis of portfolio risk not only includes the 
analysis of the risks associated with individual component assets, but also contains the 
analysis of the co-movements, or correlations, between the component assets within a 
portfolio. A positive correlation means their returns tend to change in the same direction, 
while a negative correlation indicates their returns tend to change in the opposite direction. 
A well-diversified portfolio would eliminate part of the total risk, the nonsystematic risk of 
a portfolio (Jones, 1998, p. 220). That is, the risk of a portfolio is commonly less than the 
risk of the any of the component assets, provided that they are not perfectly positively 

correlated. Thus rational investors diversify to reduce risk.

Assets’ expected returns, standard deviations, and the correlation coefficients can be 
obtained firom research results of security analyses. They are inputs in die Markowitz 
model. In strategic asset allocation, which always employs long-term capital market 

conditions, these inputs are considered constant (Sharpe, 1987). Weights of assets making 
up the portfolio are variables that can be manipulated to solve the quadratic programming 

problem to determine efficient portfolios.

Variant optimization models have been proposed based on Markowitz’s work. In particular,
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in 1960s and 1970s, some simplified approximation methods were proposed in order to 

reduce computational difficulties related to the solution of a quadratic programming model 

(see Sharpe 1967,1971; Stone, 1973). Sharpe was the co-redpient of the 1990 Nobel Prize 
in Economics for having developed the Capital Asset Pricing Model (CAPM) (Royal 

Swedish Academy of Sciences, 1990). CAPM (Sharpe, 1964) was built on Markowitz 

portfolio theory. It treated market as a whole as optimal risky portfolio, and gave us the 

concept of the "beta" — a coefficient designed to measure the risk of a particular stock 
relative to the performance of the market portfolio.

2.2 Alternatives to Mean-varlance Portfolio Theory

Markotiwz’s model was built on some assumptions. Two of those assumed that the 
expected returns of assets are normally distributed and an investor is rational, which means 
he prefers higher return of the portfolio and smaller standard deviation. Markotiwz’s model 
is known to be valid if these underlying assumptions are satisfied (Konno and Yamazaki, 
1991). However, these assumptions may not represent the more sophistical real situations. 
Some researchers commented that rational investors are not necessarily all risk aversive, 
and standard deviation (or variance) not necessarily the most appropriate measure of risk 
(see Cohen, et al., 1987, p. 135). Polsky (1998) stated that even though expected future 
volatility and correlation are good inputs, there is a limitation to using them as risk 

measures when taking portfolio options into considerations. Michaud (1998, p. 3) also 
argued that, the most important limitations of Markowitz’s model were its instability and 
ambiguity. The optimized portfolio was extremely sensitive to input changes and tended to 

maximize input errors.

Alternative models have been proposed. They include mean-absolute deviation 

optimization model (Konno and Yamazaki, 1991); mean semi-absolute deviation model 
(Speranza, 1996), and mean-semivariance model (Hamza and Janssen, 1998). In addition, 
researchers have proposed alternative portfolio theories that included more moments such 
as skewness (see Elton and Gruber, 1997). Shortfall risk, downside variance, value-at-risk, 
and relative risk are considered as alternative measures of risk (see Chriss and Fanelli, 
1998). Other portfolio selection techniques include Monte Carlo simulation approaches 

(Magjnn and Tuttle, 1990, p. 7-46) and utility function evaluations (Maginn and Tuttle, 
1990, p .7-49). ‘ . • • .
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Among these alternatives, linear programming methods have received increased attentions. 

For example, Konno and Yamazaki (1991) demonstrated that a linear programming model 
using mean absolute deviation risk function has computational advantage, among others, 
over classical Markowitz’s model However, in practice, using linear programming to 

construct a precise portfolio structure may not be easy. It needs to formulate a variety of 
linear equality and inequality constraints to reflect the relationships between assets and to 

control portfolio risk. "From a theoretical point of view, only a MV (mean-variance) 
optimization framework can optimally use active forecast information” (see Michaud, 
1998, p. 32).

2.3 Efficient Asset Allocation I

The process of portfolio construction in practice is separated into asset allocation and 
security selection (Bodie, et al, 1997, p. 259). Althou^ the Markowitz model was initially 

developed for security selection, it has found successful applications in implementing asset 
allocation strategies. Both of efficient asset allocation and security selection require the 
formulation of efficient frontier and the determination of an optimal portfolio along the 

frontier. Security selection generally involves the allocation of hundreds, even thousands, 
of securities, while asset allocation involves normally 2-20 asset classes. However, studies 
show that more than 80% of long-term portfolio performance come from choosing the 
right combination of assets, not from choosing the right assets (RBC Investments, 2003).

All the portfolios in the efficient frontier are optimal in the mean-variance context To 
determine the optimal portfolio for a specific investor, the investor’s preferences and the 

relevant constraints should be combined with the market opportunities. If a risk-free asset 
is available to an investor, then the determination of the optimal complete portfolio is 
illustrated in Figure 2.2. The optimal capital allocation line (CAL) is a capital allocation 
line starting from Rf (the return of the risk-free asset) in vertical axis and tangent with the 
curve of optimal opportunity set (efficient frontier). It has the highest reward-to-variability 
ratio (Bodie, et al., 1997, p. 246). The point of tangency between thé efficient frontier and 
optimal CAL is the optimal risky portfolio, that is, P in Figure 2.2. An optimal risky 
portfolio is composed of risky assets only. A complete portfolio is obtained by allocating 

capitals between the risk-free asset and optimal risky portfolio. The point of tangency 
between the investor’s indifference curve and the optimal CAL is the optimal complete
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portfolio j that is, T in Figure 2.2. It provides highest utility to the given investor.

Optimal CAL

Indifference curve efficient frontier

Standard deviation

Figure 2.2: Determination of optimal complete portfolio with a risk-free asset 
(Source: Bodie, et al, 1997, p. 249)

'S Indifference curve

opportunity set

T = Optimal complete portfolio

Standard deviation

Figure 2.3: Determination of optimal complete portfolio without a risk-free asset 
(Source: Bodie, et al, 1997, p. 260)
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Actually, the risk-free asset does not exist in real world. The treasury-bills, commonly to be 

viewed as the risk-free asset, are subject to interest rate risk. If a risk-free asset is not 

available, as the data used for hypothetical investment example in this project report, the 
asset allocation decision is to find the optimal risky portfolio that provides the highest 
utility to the given investor. This is illustrated in Figure 2.3, where the optimal complete 

portfolio, T, is the point of tangency between the investor’s indifference curve and the 
efficient frontier.

An investor’s utility function is usually unknown. However, if we assume that an investor’s 
utility function can be represented by a particular type of smooth cifrve, and the investor 
has constant risk tolerance, then a reasonable utility function can be derived (Sharpe, 1987). 
Here an investor’s risk tolerance is defined as the added variance for per unit of added 

expected return, providing the same utility for the investor (Maginn and Tuttle, 1990, p. 
7-9). In this utility function, a risk aversive investor considers the risk as a penalty to the 
utility value. The greater the volatility of a portfolio, or the smaller the risk tolerance, the 
greater is the penalty. A general formulation of this optimization problem is a quadratic 
programming model (denoted as Model 2.2). Model 2.2 is showed as follows:

Model 2.2:
Objective:

Maximize U  = E( Rp)  —CTp

Subject to:

t

N  N  N

1=1 1=1 y=l
j^i

N

E ( R ^ ) =  x , Ê C R , )
1 = 1

N

É  '
1 = 1

X, > 0 / =  1,..., N

where: U = utility of the portfolio provided to tire investor;
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. - f = the investor’s risk tolerance; = . • . . . " ■

E(Rp) = expected return of portfolio;

Op = standard deviation of return of portfolio;
E(Rf) — expected return for asset class ;; /

0/= stand^d deviation of return of asset class/; . ' • :

Pÿ = correlation coefiBcientbetween asset class / andy; '
N = the number of asset classes;

and Xi = proportion of portfolio invested in asset class i.

Optimization models using quadratic programming techniques were widely used for 
implementing efiBcient. asset allocation. Unlike most other approaches, one advantage of 
these models is that they can effectively reflect and utilize the fact that risk depends on 

interactions among assete (Maginn and Tuttle, 1990, p. 7-54).

. . .  ■ ■ ■ ■ • ' • •
2.4 Liniitatiens of Single-objective Optimization Methods

In asset allocation optimization models, such as Model 2.1 and Model 2.2, an investor’s 
objectives are generally defined in terms of return requirements or a utility function. 
Constraints are limitations such as budget constraints and nonnegative weights of assets 
(short sales not allowed). An investor’s preferences or other considerations, such as 
taxation and liquidity, are generally integrated into the objective function or constraints. 
For example, if after-tax return is of interest, the expected returns, standard deviation and 

correlations will adopt after-tax values. If an investor imposes specific requirements for 

some assets, additional linear inequality and equality constraints may be needed to reflect 
the requirements.

An important message firom these analyses is that, traditional portfolio optimization is in 
practice constructed as a single-objective decision problem. This modeling method may 
not be consistent with some real world characteristics of an investor’s investment goal. For 
example, an investor, who seeks to maximize the expected total return while seeks to 

obtain current income, may find the model’s objective is to maximize the total return, 
while the income objective comes as one of constraints. This model actually treats these 

two objectives as follows: the total return objective can only be achieved within such a 
firamework that current income objective ihust be fully met- It doesn’t consider the relative
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importance between income objective and total return objective. It is intuitive that if die 

investor feels the total retum is much more important, he may be willing to give up certain 
current income in order to achieve larger total retum if these two goals are actually 
conflicting with each other. Or, if the investor believes the current income is more 

important, he would be eager to relax some total return requirements. There can be a 
trade-off between two objectives.

Another limitation of using single-objective portfolio optimization is that if multiple 

objectives do exist, they cannot be optimized at a time. Under the criteria of different 
objectives, the same portfolio may perform differently, sometimes significantly. For 
example, the total retum consists of two components, income (interest or dividends) and 

capital gain (loss). A portfolio whose majority of assets are stocks may perform better, in 

terms of capital gain objective, than a portfolio whose majority of assets are bonds in the 
long term. However, the later portfolio generally performs better than former in terms of 
current income objective. Another example, real estate assets may perform better than 
bonds in terms of real return. However, because of its illiquidity, an investor who is very 

concerned with asset liquidity may avoid to invest in it  The result is the fraction of the real 
estate is reduced in the complete portfolio despite its superiority in terms of real retum 

objective. In these situations, the single-objective optimization solution actually may not 

be optimal in terms of the investor’s overall objectives.
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Chapter 3: Multi-objective Asset Allocation

Because of limitations of traditional portfolio modeling methods, it is desirable to consider 

an asset allocation problem as a multiple-objective decision problem. In this chapter, a 
multiple objective asset allocation method is proposed. This approach is intended to 

construct a portfolio that is consistent with multiple objective investment needs of an 
individual investor, while at the same time aim to improve the portfolio’s overall efficiency 

in terms of multiple objectives. Trade-ofife between different objectives are considered. The 
Analytic Hierarchy Process (AHP), initially developed by Saaty (1980), is employed to 
develop a multiple-objective decision hierarchy. Single-objective portfolio optimization 

techniques are integrated into tiie model to construct local optimal portfolios. The basic 
procedure of this method is: (1) to identify the investor’s objectives; (2) to evaluate the 
relative importance of these objectives; (3) for each objective, to construct a local optimal 

portfolio Using an optimization model; and (4) to obtain the complete portfolio by 
combining the local optimal portfolios according to their weights.

3.1 The Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) provides a proven, effective means to structure a 

complex multi-attribute decision problem. It begins by discomposing an unstructured 
multiple attribute decision problem into components. In its simplest form, this structure 
consists of three levels: goal, criteria and alternative levels. A typical AHP hierarchy is 
shown in Figure 3.1. Each component can be further decomposed into subcomponents at 

appropriate level of details. The process continues to the lowest level of hierarchy. After 
the decision hierarchy is constructed, relative priorities of one component over other 
components are evaluated and represented by numerical weights. Using the AHP, decision 
makers don’t need to make an absolute judgment or assessment over all elements. Instead, 

decision makers are only required to make a relative assessment between two elements at a 
time. This makes decision process easier. For example, if there are six investment 
objectives, and an investor wants to evaluate their importance, clearly it is difficult to 
evaluate them directly. However, it is easier to compare one objective to another. In the 

final step of AHP, alternatives are ranked according to their weighted performance in terms 

of each criterion.
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Level 1

Level 2

Levels Alternative N

Criterion 3Criterion 2Criterion 1 Criterion M

Overall Goal

Alternative 2Alternative 1 Alternatives

Figure S. 1 : Typital AHP hierarchy

The AHP has been applied to many disciplines, such as conflict resolution and group 
decision making (Saaty, 1982), supplier selection (Muralidharan, et al., 2002)  ̂formulation 

of portfolio mix (Khaksari, et al., 1989) and determination of an investor’s suitability 
(Bolster, et al., 1995). The AHP approach in asset allocation incorporates multiple 
dimensions of an investor’s preferences into decision hierarchy, and considers the priorities 

of different objectives. Therefore, although the suitability of a portfolio recommendation is 
largely subjective, it is believed that the asset allocation generated by the AHP is consistent 
with the investor’s objectives and preferences (Safaoglu and Detzler, 2002).

3.2 Proposed Multiple-obj ective Asset Allocation Model

A “suitable” portfolio developed by traditional AHP is normally not optimal in a
mean-variance sense. “There is no guarantee that the resulting portfolio will be the highest
retum available at the given level of expected risk” (Bolster and Warrick, 2000). In order to

improve its efficiency, an asset allocation model which integates the AHP decision
hierarchy with traditional optimization techniques is proposed. The general hierarchy
structure for M objectives and N asset classes is illustrated in Figure 3.2. In this hierarchy,

the overall goal, located at the top, is the desired complete portfolio. The second level
18



consists of M local optimal portfolios, each of which is associated with the investor’s one 
objective. The weights of local optimal portfolios are the same as those of associated 
objectives, which are evaluated using AHP priority analysis method. Each local portfolio 
can be obtained by solving an appropriate single-objective portfolio optimization model, 
which is shown in the third level of this hierarchy. The inputs for each optimization model 
are parameters needed to be estimated for the associated model. For mean-variance 

optimization, the parameters can be expected returns, standard deviations, correlations of 
asset classes and the investor’s risk tolerance. The bottom level consists of N asset classes 

that will be weighted ;^d used to make up the local optimal portfolios. The overall goal is 
achieved by combining weighted local optimal portfolios. That is, the complete portfolio is 
obtained by combining the local optimal portfolios which are weighted according to their 
relativeimportance.

Inputs InputsInputsInputs

S&ngle objective 
optimization 

model

Single otgective 
optimization 

model

Local optimal 
portfolio for 
objective M

Asset class N

Local optimal 
portfolio for 
objective 2

Local optimal 
portfolio for 
objective 3

Asset class 3

Local optimal 
portfolio for 
objective 1

Sngle objective 
optimization 

model

Asset class 2

Complete
Portfolio

Smgle objective 
optimization 

model

Asset class 1

Figure 5.2: General model for multçib-objective asset allocation
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The proposed model can be explained as follows:

Let JV// denote the local weight of asset class / in local portfolio j ,  where / e  { 1 , 2 , N} 

and N is the number of asset classes; /  s  {1, 2̂  M} and M is the number of 

objectives (also the number of local portfolios). Let denote die weight of local portfolio 

J in die complete portfolio. Then the sum of local weights of all asset classes in local 

portfolio J is equal to 1 :

J€{t,2  M ) (3.2.1)
f=l

and the sum of the wdghts of local portfolios in the complete portfolio is equal to 1:
M

(3-2.2)
J=l

For each individual asset class /, its w ei^t in the complete portfolio, Xi, is equal to the sum 
of weighted local weights of asset class / in M numbers of local portfolios:

= < e ( U .....N )  (3.2.3)
y=l

It can be derived from formulae (3.2.1), (3.2.2) and (3.2.3) that, the sum of die weights of 

each asset class in the complete portfolio is equal to 1:
N N M

(3.2.4)
i= l J=1 1=1 '

3.3 An Investor’s Objectives

After the decision hierarchy is constructed, the information about an investor’s objectives 
should be obtained. Objectives vary from person to person and may change from time to 
time according to the investor’s financial status and preferences. Some investors may seek 
assets that would grow in value and/or provide income, and want returns as large as 
possible. For others, the real future asset value, i.e., value measured in terms of purchasing 
power, may be more relevant For yet others, diey may be more concerned with the 
after-tax return. In research using the AHP to model multi-objective portfolio selection 
problems, the criteria used for choosing objectives vary significantly (see Bolster and 

Warrick, 2000; and Saraoglu and Detzler, 2002). Therefore, each investor should be treated 
individually.
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One way to ascertain an investor’s objectives is to use appropriately designed 

questionnaires. A sample questionnaire, as shown in Figure 3.3, is designed for gathering 
information about an investor’s objectives and general, risk profile. Note that this 
questionnaire is not a replacement for obtaining the details of ah investor’s financial status, 
such as income sources, savings, and the structure of financial'assets, which can be 
processed separately.

This questionnaire serves for three purposes. First, it serves for compliance with regulatory 
requirements. For example, AIMR code of ethics and standards of professional conduct 
requires the Charted Financial Analysts (CFA) should “know” their customers before an 

investment recommendation is made (AIMR, 2003). Second, this questionnaire can be 
used to gather the necessary information for determining an investor’s investment 
objectives. Based on this information, a financial advisor can design a customized 

questionnaire to assess the priority of an investor’s objectives.

Third, this questionnaire can be used to give the advisor general profile about an investor’s 
risk tolerance. This information is helpful to the advisor when he selects the starting point 
for generating a reference portfolio list. Details about this topic will be discussed in 
Chapter 4. Unlike most of existing questionnaires, however, it does not provide a 

“measure” of an investor’s risk tolerance. The reason is, the numerical values of risk 
tolerance, as defined in Sharpe’s (1987) utility function, do not indicate the aggressiveness 
of a specific investor. A similar numerical value of risk tolerance, say, 50, may mean very 
aggressive in one situation while in others may mean relative conservative, depending on 

the choice of the reference portfolios.
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This questionnaire is designed for gathering an investor’s objective requirements and assessing the investor's 
risk attitude.

1. What interval is your age in?
A. 30 or under
B. 30-44
C. 44-54
D. 54-64
E. 65 or above

2. When do you expect to begin withdrawing money from your portfolio?
A. Less than 2 years
B. 2-4 years
C. 5-7 years \
D. 8-10 years 
Specification:

3. Inflation is the rise in prices over time. Long-term investors should be aware that, if  portfolio returns, or 
returns o f any assets are less than inflation rate, the ability to purchase goods and service might actually 
decline. Instead, the dollar wealth you receive fi*om your investment are nominal returns, which don't 
reflect the change of purchasing power of your wealth. Which of these two kinds o f wealth is in your 
concerns, nominal wealth or real wealth?
A. Nominal wealth
B. Real wealth
C.Both

4. Investment returns generally consist o f capital gains and regular stream of income, such as dividends or 
interests. Which of them do you concern about?
A. Captai gains
B. Regular income
C. Both

5. Government considers the increase in funds, or the retum on in\ostment, to be taxable, hi Canada, 
capital gains are taxed at a lower rate than dividend incomes, and in turn, dividend incomes are taxed 
lower than interest incomes. This means different asset mix in your investment will have different 
impact on your after-tax income. What statement below would you choose?
A, After-tax returns are really important.
B. I don't care about taxation as long as I am making money.

6. Do you think it is important to choose an investment that can povide an opportunity to defer taxation 
of capital gains and/or interest to future years?
A. Yes,
B. I don't care about this.

Figure 3.3: hvestor's objecti\es and risk pro file questionnaire (to be continued)
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7. Some assets have relative low liquidity compared to others. This means if you hold these assets, and in 
case of having to sell them in a short time, you have to accept lower prices than market prices. However, 
these assets may have hi^er average investment returns and less volatility. Are you financially able to 
accept a low level of liquidity in your investment portfolio?
A. Yes
B. I do have a liquidity requirement for my investment portfolio.

8. Investing involves a trade-off between risk and return. Generally investors who expect to receive higher 
long-term average returns should expect to e3q>erience greater price fluctuations andhi^er potential 
for loss, and vice verse. Considering this, which statement best describes your investment goals?
‘ A. I prefer investments with little or no fluctuation in value and I am willing to accept lower long-term 

returns associated with these investments.
B. I prefer investments that can provide moderate levels of returns, and am willing to accept moderate 

levels o f risks.
C. I prefer investments that can provide maximal long-term returns, and I am willing to accept large 

fluctuations in value.

9. Historically, markets have experienced periods of catastrophic short-term price fall. S i#ose you own 
a well-diversified portfolio that fell by 20% in one day, how would you react?
A. I would buy more of this portfolio.
B. I would not change my portfolio.
C. I would sell part of my portfolio.
D. I would sell all of my portfolio.

10. Which statement below best describes your e:q)erience and knowledge about investing?
A. I am a novice in financial market and don't have much knowledge about investing.
B. I have some experience in stock market but I dont have much knowledge about investing.
C. I have prior e^qxrience with stocks and bonds investment, and I have general knowledge of investing.
D. lama very ejqjerienced investor and understand how the stock and bond markets work.

Figure 3.3: Investor's objectives and risk profile questionnaire (continued)

3.4 Asset Classes and Objectives for a Hypothetical Investor

An asset class is a group of assets that share some common properties. In broad terms, cash
(or cash equivalents), bonds, stocks and real estate are four basic asset classes. The
remaining asset classes are composed of precious metals and other assets, which are

closely Jield and traded not frequently. Each of the asset classes can be subdivided into a
number of smaller asset classes according to certain classification methods. For the
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hypothetical investor in this project rqjort, six asset classes are employed for illustrative 

purpose. They are large-cap stocks (denoted as LaStock), small-cap stocks (denoted as 
SmStock), long-term corporate bonds (denoted as LCBond), long-term government bonds 
(denoted as LGBond), Treasury bills (denotes as T-Bill) and real estate (denoted as 
RealEst). Also, it is assumed that the financial advisor has learned from the investor’s 
responses to the questionnaire shown in Figure 3.3 that the hypothetical investor has six 

major investment objectives: total nominal retum (denoted as TNR), capital appreciation 
(denoted as CA), current income (denoted as CRJ), after-tax retum (denoted as ATR), 
preservation of purchasing power (denoted as PP), and liquidity (denoted as LD). The PP 
and LD objectives should be transformed into retum requirements that can be used as 
objective functions for associated optimization models. These objectives are described 
below.

Total Nominal Retum (TNR)

This is the total retum that is not adjusted for the inflation factor. In dollar value, total 
retum of investment is the sum of coital gains and income received in the holding period. 
In this project report, the returns of asset classes or portfolios are defined in terms of 
percentage. Therefore, total nominal retum of investment is defined as the sum of nominal 
capital appreciation yield and the nominal income yield in the holding period. An asset’s 
total nominal retum can be written as:

TNR = Capital appreciation + Income (3.4.1)

Capital Appreciation (CA)

Nominal capital appreciation (CA) is the difference between what the. investor paid for an 
asset purchased and what he may realize when the asset is sold. It can be written as:

CA = (Ending price -  Beginning price) / Beginning price (3.4.2)

Current Income (CRI)

For stocks, current income consists of dividends that the investor receives from the shares
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he holds. For T-bills and bonds, current income is the interest income. For real estate, 
current income is the lease income (assuming the property held is commercial real estate). 

The formula for nominal current income can be writtèn as:

CRI = (Income received in the holding period) / Beginning price (3.4.3)

After-tax Return (ATR)

Interests, dividends, and capital gains are subject to government taxation. Canadian tax 

system rewards equity investment for growth (capital appreciation) more than equity 
investment for dividend income, and in turn, rewards dividend income more than interest 

income. Here it is assumed that the hypothetical investor is in the top tax bracket (i.e., 

taxable income above $104,648 in Ontario), and the following combined (federal and 
provincial) marginal rate is used to adjust the total nominal retum: interest and ordinary 
income (46.41%), capital gains (23.20%), Canadian dividend (31.34%) (CCH, 2003, p. xii). 
Real estate incomes are treated as ordinary incomes.

Preservation of Purchasing Power (PP)

Nominal returns capture only the growth rate of an investment; real returns measure the 

growth rate of purchasing power of the wealth. There are differences between nominal and 
real returns because the inflation rate varies from period to period. Here a proxy, 
inflation-adjusted total return, is used to represent the objective of preservation of 

purchasing power. Adjustments can be made by subtracting die inflation rate from the total 
nominal returns. In practice, the Consumer Price Index (CPI) is usually used to adjust the 

numbers (Maginn and Tuttle, 1990, p. 2-8).

Liquidity (LD)

Liquidity is usually defined ' as an asset’s ability to be sold ^ d  converted to cash 
approximately at current market prices. In order to be sold quickly, some assets may have 
to be sold in a larger discounted value. Or the large blocks of sell in a short period will 

result in the fall on the sale price, thus reduce the realized cash value. Cash and money 

market instruments, such as Treasury bills and commercial papers, where the bid-asked
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spread is small, are the most liquid assets, and real estate is among the least liquid. Here a 
proxy, liquidity-adjusted retum (lAR), is used to represent the strength of an asset in 

serving with the liquidity objective. The formula for liquidity-adjusted retum can be 
written as:

IAR = TNR X LI (3.4.4)

LI is an asset’s liquidity index, which is defined as the relative performance of one asset 
according to the needed time for this asset to be sold in the full market price. The needed 

liquidity time is transformed linearly to a scale of 0 to 1, with the best value (the shortest 
time) 1 and the worse value (the longest time) 0, using the following formula:

W - T

where W denotes the longest time, B denotes the shortest time, and 7} denotes the needed 
time for asset / to be sold in the full market value. In the hypothetical example, it is 
assumed that the needed time for large-cap stocks, small-cap stocks, long-term corporate 
bonds, long-term government bonds, T-bills and real estate are 3, 14, 7, 7, 2 and 50 days, 

respectively.

3.5 The Decision Hierarchy for the Hypothetical Investor

Following Markowitz (1952), it is assumed that, for each of the six objectives, standard 
deviation (or variance) is the appropriate measure for asset risk and portfolio risk. Then 

mean-variance optimization is the appropriate method to obtain each local optimal 
portfolio. The complete decision hierarchy for the hypothetical investor is shown in Figure 
3.4.

3.6 Assets’ Expected Returns, Standard Deviations and Correlations

As stated in Chapter 2, the mean-variance optimization method utilizes active market
estimation data. In the proposed model. Model 2.2 in Section 2.3 is employed to construct
a local optimal portfolio for each objective. Model 2.2 requires estimates of two types of
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inputs: one consists of the expected return and risk of each asset, and the correlations 
between each asset’s retum with that of others; the other one is the investor’s risk tolerance. 

The first type of parameters, discussed below, can be obtained from market research, which 
are identical for each investor regardless of his risk tolerance. The investor’s risk tolerance 
should be evaluated according to the investor’s personal preference. The details about the 

measurement of an investor’s risk tolerance will be discussed separately in Chapter 4.

Since asset allocation deals with future retum expectations of portfolios, expected values 
should be used. Expected returns are distinguished from historical returns. Historical 

returns record the performances of an asset over a specified historical period. They are 
known with certainty. Expected returns measure the estimates of returns over some future 
period. They are probabilistic in nature.

Complete
Portfolio

Local optimal 
portfolio for 

TNR objective

Local optimal 
portfolio for 
CA objective

Local optimal 
portfolio for 
CRI objective

Local optimal 
portfolio for 
PP objective

Local optimal 
portfolio for 

ATR objective

Local optimal 
portfolio for 
LD objective

Mean-variance 
optimization 

model

Mean-variance 
optimization

Mean-variance 
optimization 

model

Mean-variance 
optimization 

model

Mean-variance 
optimization 

model

Mean-variance 
optimization 

model

LaStock SmStock LCBond LGBond T-Bill RealEst

Figure 3.4: Decision hierarchy for a hypothetical investor
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Expected retum of an asset is often estimated by using scenario analysis. It is the weighted 
average of returns in all possible scenarios, where the weights are the occurrence 
probability of each return. Thus, the expected retum of an asset can be written as (Bodie, et 

al., 1997, p. 181):
/

E ( R ) = Y  (3 .6 .1 )
1 = 1

Where E(R) is the asset’s expected retum; R,- is the estimated retum for zth possible 
scenario, and pt is the associated probability of zth scenario. I is the number of possible 
scenarios.

I

Under Markowitz’s mean-variance theory, an asset’s risk is measured by the variance (or 
standard deviation) of expected retum For scenario analysis, the variance is calculated by 

the weighted squared deviations of the expected retum in all possible scenarios. 
Symbolically, it can be written as (Bodie, etaL, 1997, p. 181):

a ^ = '£ p , l R , - E ( R ) Ÿ  (3.6.2)
i=l

For this project report, because of the practical limitations, historical data are adopted in 
the illustrative example, which are shown in Table 3.1 and Table 3.2. Research shows that 
historical, data are quite useful for estimating standard deviations, reasonably usefiil for 
predicting correlations, and virtually useless for estimating expected returns (Magnn and 

Tuttle, 1990, P. 7-37). Moreover, the time horizons of the data used are not consistent with 
each other. From these points of view, the data adopted in this project serve only for 
illustrative purpose.

In Table 3.1, returns and. standard deviations of real estate are partially adopted from 
Ciochetti et al. (2003) for the period 1978-2002. For each of the otiier five assets, the total 

nominal retum (TNR), capital appreciation (CA), cuixent income (CRI), and 
inflation-adjusted retum (PP) are partially adopted firom Ibboston Associates for period 
1926-1988 (Maginn and Tuttle, 1990, p, 2-9). The data for after-tax retum (ATR) and 

liquidity-adjusted retum (LD) are adjusted data using methods discussed in Section 3.4.
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■ ' ■ TNR CA CRI PP ATR LD
return STD return STD retum STD return STD retum STD retum STD

LaStock 12.1 • 20.9 7.3 17.6 4.8 ‘3.3 8.8 21.1 8.9 15.4 11.9 20.5

SmStock 17.8 35.6 . 12.8 27.8 5.0 8.0 14.3 34.9 13.3 26.5 13.4 26.7

LCBond 5.3 8.4 -0.6 4.9 5.9 3.5 2.4 10:0 3.2 5.0 4.8 7.5

LGBond 4.7 7.5 -0.4 4.6 4.9 2.9 1.7 8.5 2.6 4.2 4.2 6.7

T-BUl 3.6 3.3 -0.1 1.0 3.7 2.4 0.5 4.4 2.0 1.8 3.6 3.3

RealEst .7.5 15 2.3 11.7 5.2 3.3 4.3 15 4.6 8.0 0.0 0.0

The correlation data, shown in Table 3.2, are adopted from Ibboston Associates (Maginn 
and Tuttle, 1990, p. 2-21, p. 2-37). Correlations between real estate and other assets are 

data for the period of 1947-1984. Correlations between large stocks, small stocks, 

long-term.corporate bonds, long-term government bonds  ̂ and Treasury bills are data for 
the period of 1926-1988. It is assumed in this project report that these correlation data are 

good estimates for returns of all six objectives under study.

Table 3.2: Correlations between asset classes

LaStock SmStock LCBond LGBond TBÜ1 RealEst

• LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06

SmStock 0.82 ■ 1.00 0.08 -0.01 -0.08 0.06

LCBond 0.19 0.08 1.00 0.93 0.19 -0.08

LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09

T-Bill -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

3.7 Pairwise Comparisons of Objectives

In AHP, decision makers express their preferences for a set of alternatives by constructing 

a matrix of pairwise comparisons in terms of oiie criterion. This matrix Dm, shown below, 
is a positive reciprocal matrix satisfying the requirements of d{j> 0 and \ldji = dij, where i,j 
— 1,2 , .  :., m, and m is the number of alternatives. Each element dij in the matrix represents 

the decision maker’s subjective judgment of alternative / over/
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dx 

di2

^m2

2̂m

‘'mm J

(3.7.1)

Pairwise comparison judgments are made using a 1-9 scale. The suggested scale by Saaty 
(1980) is shown in Table 3.3. For example, if an element i is judged to be moderately 
important than element j,  a “5” number is entered as the value for the pairwise comparison 
judgment dij in the matrix Dm, while its reciprocal value, “1/5”, is entered for the pairwise 

comparison judgment dji.

___________ Table 3.3: Suggested scale for AHP ratio assessments__________
The ratio for attribute,1 over attribute II should be:  .. • -■
1 If the two attributes are judged to be equally important
3 If attribute I is judged to be slightly more important than attribute II
5 If attribute I is judged to be moderately more important than attribute II
7 If attribute I is judged to be strongly more important than attribute II
9 If attribute I is judged to be extremely more important than attribute II
2,4,6,8 If intermediate values between two adjacent judgments are needed

(Source: Hobbs and Meier, 2000, p. 78)

An investor’s relative preference can be evaluated by a designed questionnaire. For the 
illustrative asset allocation example, a sample questionnaire is shown in Figure 3.5. After 
the investor makes the responses to the questionnaire, the scale values are entered into the 
comparison matrix. For the illustrative purpose, it is assumed that the hypothetical investor 

makes the responses shown in Table 3.4. Since the matrix reflecting the investor’s actual 
attitude may not be known, this comparison matrix in Table 3.4 is the observed matrix.

Table 3.4: Conq)arison matrix based on the investor’s réponses

TNR CA CRI AIR PP LD

TNR 1 5 3 1/2 4 2

CA 1/5 1 1/2 1/7 1 1/3

CRI 1/3 2 1 1/5 2 1/2

ATR 2 7 5 1 6 4

PP 1/4 1 1/2 1/6 1 1/2 '

ID 1/2 3 2 1/4 2 I
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This qœstionnaire is designed for the purpose of assessing your preference over different investment 
objectives. Please use the scale e?q)lained inthe following table to compare the relative importance of 
each investment objective. The former objective mentioned in each question is referred as olgective I, 
and the latter olgective is referred as objective tt

Suggested scale for pairwise comparison assessments

Scale Description

1 If olgective I and objective H are judged to be equally important
' 3 If objective I is judged to be sligjitly more important than objective n

5 If ol^ective I is judged to be moderately more important than objective H
7 If olgective I is judged to be strongly more important than objective II
9 If oljective I is judged to be extremely more important than objective II

2,4,6,8 If intermediate values between two adjacent jud^entsare needed

" 1/3 If oiy ective E is judged to be slightly more important than objective I
1/5 ' If objective n is judged to be moderately more important tW  ol  ̂ective I 
1/7 If objective H is judged to be strongly more important than objective I

. 1 / 9  If oljective n is judged to be extremely more important than objective I
l/2 ,l/4,l/6,l/8 If intermediate values between two adjacent jud^ents are needed_____

Questions:

1. Do you think which scale best describes the relative importance between Total Nominal Return 
and Capital Appreciation?

1 2 3 4 5 6 ,7 8 9 1/2 1/3 1/4 1/5 1/6 .1/7 1/8 1/9

2. Do you think whichscale best describes the relative importance between Total Nominal Return 
and Current Income?

' • T 2  3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 .

3. Do you think which scale best describes the relative importance between Total Nominal Return 
and After-tax Total Return?

1 2 3 4 5 6 7 8 .9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

4. Do you think winch scale best describes the relative importance between Total Nominal Return 
and Preservation of Purchasing Power?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

5. Do you think which scale best describes the relative importance between Total Nominal Retum 
and Liquidity?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

Figure 3.5: Investor's preferences for investment oljective questionnaire (to be continued)
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6. Do you think vhich scale best describes the relative importance between Capital v^preciation 
and Current Income?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

7. Do you think uhich scale best describes the relative importance between Capital Appreciation 
and After-tax Total Retum?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

8. Do you think which scale best describes the relative importance between Capital Appreciation 
andPreservation ofPùrchasii^ Power?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

9. Do you think which scale best describes the relative importance between Capital ^predation  
and Liquidity?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

10. Do you think which scale best describes the relative importance between Current Income and 
After-tax Total Return?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

11. Do you think which scale best describes the relatiw importance between Current Income and 
Preservation of Purchasing Power?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

12. Do you think which scale best describes the relative importance betwen Current Income and ' 
Liquidity?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5. 1/6 1/7 1/8 1/9

13. Do you think which scale best describes the relative importance between After-tax Total Return 
and Preservation of Purchasing Power? ' .

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

14. Do you think which scale best describes the relative importance between After-tax Total Return 
and Liquidity?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

15. Do you think which scale best describes the relative importance between Preservation of 
Purchasing Power and Liquidity?

1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

Figure 3.5 : hivestor’s preferences for investment olgective questionnaire (continued)

The priority vector can be obtained from the given comparison matrix. In mathematical 
terms, the normalized principle eigenvector of matrix Dm is the vector of priorities. For
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matrix Dm, a good estimate of the principal eigenvector (EV) can be described as to 
multiply the m elements in each row and take the mth foot (Saaty, 1980, p. 19):

^  61

E V  = (3 .7 .2 )

where:

6, = (d„xd,,x-x<i,„y'“ (3.7.3)

The normalized principal eigenvector is obtained by dividing each element in the 
eigenvector by the sum of all its elements. The formjula is written as:

Normalized E V  = {b[,b2 , ' "  ,b]„Ÿ (3.7.4)

where b\ = 6, / b j  / g .  (1,2,..., m). (3.7.5)
j=i

3.8 Consistency Test

Before determining the normalized principal eigenvector is a good estimate of the relative 
weights of the six investment objectives, die consistency of the investor’s responses should 
be tested. Many times investors may not fully understand their own preferences and often 
make inconsistent preference responses (Saraoglu and Detzler, 2002), For example, 
suppose an investor has made expression that capital appredatioii (CA) is more important 
than current income (CRI). The investor also believes the current income objective is more 
important than the preservation of purchasing power (PP) objective. The same investor 
may also make a response that preservation of purchasing power is more important than 
capital appreciation, which is inconsistent with his previous answer. Psychological research 

also shows that consistency of comparisons declines as the number of elements increases 
(Khaksari, et al., 1989). That is, the consistency of responses are normally not perfect A 
suitable asset allocation plan can be achieved only after the investor makes reasonable 

consistent responses.

A matiix D„ of order m is said to be consistent, ̂  defined by,$aaty (1980), if it satisfies 

the following transitivity requirements:
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dij =dik^di^ fori, j ,  k = l ,2 ,  (3.8.1)

For example, if = 2, and d23 =3, in a consistent matrix the value of di3 has to be 6.

One of the important advantages of AHP approach is that it can check the consistency of 
comparison matrix using its built-in mechanism. Consistency is tested by using consistency 

index and consistency ratio, a technique suggested by Saaty (1980, 1994). Consistency 
index {Cl) is a measure of the deviation of an observed matrix from a consistent matrix. If 
we denote Xmax the largest dgenvalue of observed matrix of pairwise comparisons, then the 

consistency index (C/) can be written as:

Cl = ( 3 .8 .2 )
w — 1

The value of Xmax, formulated as (3.8.3), is considered an estimation of m. The closer of the 

value ofXmax to m, the more consistent is matrix £)„.
b ;

m̂ax = max (3.8.3)
'  y = i

where hi, bj {i,j =1,2,.. .,  tm) are the elements of principal eigenvector of matrix Dm.

The average consistency index of randomly generated reciprocal matrices is called average 

consistency index (RT). Consistency ratio is the ratio of consistency index (Ci) to average 
consistency index (RI) of the same order matrices, which can be written as:

C R = ^  (3.8.4)

For 1-10 order of matrix, the values of Ü /canbe taken from Table 3.5 (Saaty, 1994).

Table 3.5: The average random consistency index

Matrix order m 1 2 3 4 5 6 . 7 8 9 10

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Source: Saaty (1994).

Saaty (1994) also suggested that, the consistency of a comparison matrix is acceptable if
the required consistency ratio (CR) is less than or equal to 0.1. If the consistency of an
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observed matrix is accepted, the elements in the normalized principal eigenvector are 
considered the good estimates of the weights of objectives.

When a pairwise matrix fails the consistency test, and if.the number of order is large, it is 

difficult to revise Ihe matrix without the assistance of computer. A number of algorithms 
have been developed to improve the consistency of pairwise comparisons. For example, 

Xu and Wei (1999) developed a method to modify a given matrix to acceptable consistency 
without requiring the initial respondent to make any revisions. Peters and Zelewski (2003) 

developed a heuristic algorithm to adjust an observed inconsistent matrix iteratively to 
improve the consistency. Ishizaka and Lusti (2003) described an expert module application 
which can assist the dedsion maker to build a consistent matrix or a matrix with tolerated 
error.

3.9 Spreadsheet Model for Objective Weighting

Spreadsheets are powerful tools for performing tasks involving related data such as 

calculating objective weights and performing consistency test For the hypothetical asset 

allocation problem, we design a model using Microsoft Excel as shown in Figure 3.6. Input 
data and formula or functions used in this model are illustrated in Figure 3.7. :

This model functions as follows: users (investors or financial advisors) input the scale 
values obtained from the questionnaire given in Figure 3.5. The number of indq>endent 
inputs is equal to the number of questions. For this example, it is 15. Comparisons on 
principal diagonal are all Is. Other values are redprocal values of corresponding 
independent inputs and can automatically be filled using Excel built-in formula. Once the 
data have been input, the principal eigenvector of the comparison .matrix is calculated 
automatically and shown in cell range H6:H11. The normalized principal eigenvector is 

shown in cell range 16:111.

The consistency of the matrix is tested at the same time. The dgenvalues of this matrix are 

shown in cells J6:J11. They are obtained using the following formula:

Z f  = ^  d i j  / = 1 ,2 , . . .  6 ( 3 . 9 . 1 )
, . - - •

The maximum eigenvalue is shown in cell J14 using Excel function, MAX(J6:J11). The
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value of average consistency index RI (shown in cell E l7) is taken from Table 3.5 for the 

order of matrix m = 6. The consistency index Cl and consistency ratio CR are calculated 
using formula (3,8.2) and formula (3.8.4), respectively.

nrismodeHs designed fcr calciilatiiig the weights of ohjectfares 
andpreftnwing consistency tests

m .............. 1.......... ■ ....-!■“  F

i TNR CA i CRI ATR ! PP 1 LD bi Normal A-i

TNR I 1 5 ! 3 1/2  ̂ 4 1 2 1979 0.245 6.018

CA ! 1/5 1 j 1/2 1/7 i 1 i 1/3 0.410 0.051 6.046

CRI j 1/3 2  ̂ 1 1/5 I 2 i 1/2 0.715 0.088 6.091

W r t  ATR 2 7 : 5
■ 1 ?1 ! 6 ' ! 4 3.448 0.426 6.071

PP ! 1/4 1 i 1/2 1/6 1 ! 1/2 0.467 0.058 6.075
m i LD I 1/2 3 1 2 1/4 i 2 ! 1 1.070 0.132 6.090

iSum = 8.089 i 1.000
! • j

P H j Consistency test (1: pass; 0: fail) ! 1 ^max = 6.091
iffiiS Order of matrix m = 6 1 1

P |i^ Consistency Index Cl = 0.018 ; s

m Random Index RI = 125 \
Consistency Ratio CR = 0.015 ;

1

Figure 3.6: Sanple Excel model for objective w ei^ting

CeU Values, formulae or functions

B6, C7, D8, E9, FIO, G il =1

B 7,B 8,B 9,B 10,B 11 =1/C6,1/D6,1/E6,1/F6,1/G6, respectively 

C8, C9, CIO, O il =1/D7,1/E7, l/Fl, 1/G7, respectively 

D9, DIO, D l l  =1/E8,1/F8,1/G8, respectively 

ElO, E ll  =1/F9, 1/G9, respectively 

F ll  =1/G10

C6:G6, D7:G7, E8:G8,F9:G9, GIO (Obtained from the investor’s responses) 

____________________________ H6 =POWER(PRODUCT(B6:G6).l/6)__________

Figure 3.7: Excel model inputs and formulae for Figure 3.6 (to be continued).
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Cell Values, formulae or functions
H7 :=POWER(PRODUCT(B7:G7),l/6)

* * H8 =POWER(PRODUGT(B8:G8),l/6) -,

=POWER(FRODUCT(B9:G9),l/6).

HIO =P0WER(PRGDUCT(BlG:GlG),l/6)

HII =P0W ER(PR0DUCT(Bll;Gll).l/6)

H12 =SUM(H6:H11) .

16 =H6/$H$12

17 =H7/$H$12

18 =H8/$H$12 \

19 =H9/$HS12

110 =H1G/$H$12

111 =H11/$H$12

112 =SUM(16:111)

Cell
Values, formulae or functions

J6 =B6*$1$6/16-K:6*$1$7/16+-D6*S1$8/16+E6*$1$9/16+F6*$1$10/16+G6*$1$11/16

J7 =B7*$1$6/17-K:7*$1$7/17+D7*$1$8/17+E7*$1$9/17+F7*S1$10/17-K}7*$1$11/17

J8 =B8*$1$6/184C8*$1$7/18+D8*$1$8/18+E8*$1$9/18+F8*$1$1G/18Hi8*$1$11/18 .

J9 -B9*$1$6/19-K:9*$1$7/19i-D9*$1$8/19+E9*$1S9/19+F9*$1$10/19+G9*$1$11/19

JIO =B10*S1S6/110+G10*S1$7/110+D10*S1$8/11(H-E10*$1$9/110+F10*S1$10/110

-H3l'0*Sl$ll/110

J l l = B ll*$ l$6 /[ll-K :il*$ l$7 /lll+ D ll*S l$8 /lll+ E ll*S l$9 /in + F ll*$ l$ lO /lll

+G.11*S1$11/111

J14 =MAX(J6:J11)

. E15 =6

E16 =(J14-E15)/(E15-1)

E17 =1.25

E18 =E16/E17

G14 =1F(E18<=0.1,1,0)

' Figuré'3.7: Excel model inputs and iformulae for Figure 3.6 (continued)
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The consistency test result is shown in cell G14. It is calculated using Excel function 
IF(E18<=0.1,1,0). It means if the consistency test is passed (CR ^  0.1), the answer is 

“Yes” (“1 ” in cell 014). If the test is not passed (CR > 0.1), the answer is “No” (“0” in cell 

014), and the investor’s responses to the questionnaire should be revised to improve 

consistency. In this example CR < 0.1, the consistency of the observed matrix is accepted. 

Therefore the elements of normalized principal eigenvector (cell range 16:111 in Figure 3.6) 
rq>resent the corresponding weights for six objectives. They are shown in Table 3.6.

Table 3.6: Relative importance of six objectives
TNR CA CRI ATR PP LD

Weight Fy 0.245 0.051 0.088 0.426 0.058 0.132
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Chapter 4: Estimating an Investor’s Risk Tolerance

Assets’ expected returns, standard deviations and correlations were discussed in Chapter 3. 
These inputs, however, r^resent only half of the ingredients required for determining ah 
optimal and suitable portfolio. In this chapter, another important input factor, an investor’s 
risk tolerance, will be discussed, and a method to measure it based on Sharpe’s (1987) 
utility function definition is proposed. In the proposed method, an investor’s risk tolerance 
is defined as the ratio of added portfolio variances to added portfolio returns, considering 
the investor’s relative degree of preference between two reference portfolios. The investor 

selects his own reference portfolios. The AHP technique is used to evaluate the relative 
degree of preference between reference portfolios. Risk tolerance obtained firam the 
proposed method can be entered directly as one input into Model 2.2 to determine a local 
optimal portfolio. . .

4.1 Traditional Risk Tolerance Measurements

Modem portfolio theory indicates that the asset allocation decision process can be 

separated into two independent processes (Saraoglu and Detzler, 2002). First, a variety of 

optimal risky portfolios are constructed using the input data firom the results of market 
research, such as assets’ expected returns, standard deviations and correlations. For the 
same input data, these optimal risky portfolios are identical for all investors regardless of 
their risk tolerance. Second, the optimal complete portfolio is determined by considering 

the investor’s preference and risk tolerance level.

Risk tolerance is a person’s emotional and financial capacity to tolerate the ups and downs 
of the investment market Risk tolerances vary firom person to person, and from period to 
period. Some are associated with personality factors, while others are related to the stages 

in the investor’s life cycle. Financial advisors often ask individual investors to fill out a 
questionnaire whose primary purpose is to .assess the investors’ risk tolerance as well as 
time horizon, investment experience, and financial status. Each question in the 

questionnaire is given a score and the scores are accumulated. A recommendation of asset 
allocation is typically based on the accumulated score of an investor’s responses using 

rules of thumb. For example, portfolio allocation scoring system (PASS), the first
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published risk tolerance questionnaire developed by Droms in early 1980s (see Droms and 
Strauss (2003)), is such a system that the more aggressive the investor’s return objectives 
and the higher the investor’s risk tolerance, the more scores will be assigned to the investor. 
The higher the score, the more aggressive is the asset allocation plan. Other questionnaires, 
such as ones developed by New York Institute of Finance (2003) and Vanguard Group 

(2003), provide similar functions.

PASS and most existing questionnaire-based measurements use the accumulated score to 

choose an asset allocation plan according to pre-designed investment categories. No doubt, 
these methods provide practical convenience to investment companies and financial 
advisors. However, it is not realistic that a definitive asset allocation plan can be obtained • 

by a questionnaire itself (Droms and Strauss, 2003). Also, using a scoring system to 
measure risk tolerance may not have theoretic support that allows the value of risk 
tolerance to be incorporated into an optimization model such as Model 2.2 directly.

In order to model efiicient asset allocation problems. Bolster and Warrick (2000) used the 
risk acceptance parameter (RAP) to reflect the scores. A higher RAP indicates greater risk 
tolerance. They estimated the value of risk tolerance by assigning a RAP value according 
to the responses of an investor made to a designed questionnaire. Using this method, the 
value of risk tolerance can be incorporated directly into an optimization model. However, 
there is a drawback of using this method. Although the response to the questionnaire 
reflects the investor’s risk attitude, it is not necessarily also true for the value of RAP 

assigned, simply because there is no direct link between these two numbers. The RAP 

reflects just the advisor’s, instead of the investor’s, subjective attitude because the value of 
risk tolerance heavily depends on the selection of reference portfolios. Moreover, in a 
multiple objective modeling context, since the performance of asset classes varies 

significantly in terms of different objectives, using rules of thumb to assign the risk 
tolerance value is not useful.

4.2 Theoretic Foundation for the Proposed Method

The proposed method is based on Sharpe’s (1987) utility function definition and risk 

tolerance definition. Sharpe assumed an investor’s objective was to maximize the expected 
utility of wealth. As discussed in Section 2.3, the utility function can be illustrated by
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such a formula:

■ U = E \ R p ) ^ a  I (4 .2 .1 )

where:

U = utility of portfolio for given investor,
E(Rp) = expected return of portfolio ;

Op = standard deviation of return of portfolio; 

and r = the investor’s risk tolerance.

In this formula, an investor’s risk tolerance is assumed constant, and defined as the added 

variance for per unit of added expected return, providing the same utility for the investor 
(Maginn and Tuttle, 1990, p. 7-9). A method for nieasuring risk tolerance can be derived 
fi-om this formula and is described below.

Uc

Portfolio C. Efficient frontier

Indifference curve .

Portfolio A

Standard deviation

Figure 4.1 : Efficient frontier and indifference curves

Along the efficient fi’ontier showed in Figure 4.1, each portfolio, with given expected 

return E(Rp), has associated standard deviation op, which is minimal among all available 
portfolio mix. However, different optimal portfolio mix may provide different utility to the 

giveri investor, hr Figure 4.1, portfolio ^  with expected return E(Ra) and standard
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deviation oa, provides the investor wiüi utility value of Ua; portfolio C, with expected 
return E(Rc) and standard deviation oc, provides the investor with utility value of Uc. 
Every portfolio in the investor’s indifference curve provides the same level of utility to the 

given investor.

For two portfolios, A and C, the exact values of utilities are unknown to both the investor 

and the financial advisor. However, the investor’s relative degree of preference between 
these two portfolios can be estimated through appropriately designed procedures. If the 

investor’s relative degree of preference between portfolio A and portfolio C is denoted by k, 
then ̂  can be expressed as:

U
k = ^  (4.2.2)

, t /c  • •

From utility definition formula (4.2.1), the utilities of portfolio A and portfolio C are 

written as:

U ^ ^  ( 4 .2 .3 )
t

and
2

U c = E ( R c )  -  ^  ( 4 .2 .4 )t

From (4.2.2), (4.2.3), and (4.2.4), we can derive the following formula:

Formula (4.2.5) indicates that an investor’s risk tolaunce can be defined as the ratio of 
added portfolio variances to added portfolio returns, consideriiig tlie investor’s relative 
degree of preference between two reference portfolios. Therefore, if the characteristics of 

two reference portfolios, E(Ra), oa and E(Rc), oc, as well as the value of k, are known, the 
value of t can be determined. In the next sections of this chapter, methods to obtain the 

appropriate reference portfolios and to estimate the value of k are proposed. The investor 

selects his own reference portfolios fium the candidates provided by the financial advisor. 

His relative degree of preference between the two reference portfolios is evaluated throu^ 
the AHP technique.
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4.3 Selection of Reference Portfolios '

In order to measure an investor’s risk tolerance, the financial advisor should first obtain 

two reference portfolios with known characteristics. These two portfolios can be found 
along the efficient fi-ontier if we assume that the investor is rational, that is, he always 

prefers the higher return and less risk. The selection, of reference portfolios significantly 
affects the value, of risk tolerance. In order to let the investor make a better and more clear 
comparison, one of the two portfolios should be considered as very conservative, and the 

other should be considered as very aggressive. These two portfolios, A and C, can be 
described as follows: -

Portfolio A:

An efficient portfolio that the investor believes is very conservative. It has a 
small expected return and a small variance.

Portfolio C:

An efficient portfolio that the investor believes is very aggressive. It has a large 
expected return and a large variance.

There are two options for the selection procedure. The first one is the advisor provides the 
reference portfolios to the investor. The second one is the investor selects own reference 

portfolios. The first option is more convenient but the investor may not think the reference 
portfolios are suitable to him. Because different people have different risk attitudes towards 

a same portfolio, the “aggressiveness” of reference portfolios is vague if they are not 
selected by an investor himself. This difference can be illustrated by an example. Assuming 
there are two portfolios, say, A and C, which are considered conservative and aggressive 
respectively by the advisor. The investor is asked to choose one of them to invest in it  If 
investor chooses portfolio C, he is considered “aggressive”. If the investor chooses A, he is 
considered “conservative”. However, to the investor himself,, he may think he is just 
choosing the “right” portfolio according to his own preference, neither “aggressive” nor 
“conservative”. It means an investor doesn’t always think in the same manner as the 
advisor or other people, who select die reference portfolios. Therefore, it is desirable to ask 
the investor to select his own reference portfolios. Considering ffie limited investment 

knowledge of an investor, in the proposed method, the advisor will provide several 
candidate portfolios, and the investor chooses reference portfolios firom the candidates. .
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4.4 Select the .Conservative Reference Portfolio

The expected return of a portfolio is determined by the characteristics of assets making up 

the portfolio. It is a weighted average of the expected returns for individual assets in the 
portfolio. Usually people believe that, if an investor is willing to invest most of his funds to 
assets that have low volatility of expected returns, he is conservative; because usually the 

lower the volatility, the lower is the return. Since the advisor only helps an investor select 
reference portfolio instead of making judgment for him, a reasonable number of candidate 

portfolios should be provided. A procedure based on a heuristic method is used to select the 

conservative reference portfolio.

L
4.4.1 Heuristic Method

The following heuristic can be used to select the conservative reference portfolio A:

A very conservative portfolio = The first portfolio, fiom the top down in a list of 

portfolio (called Ac) which the specified investor believes it is investable.
Here Ac denotes the set of the efficient portfolios that most people believe they are very 

conservative. The portfolios in A« are sorted in terms of their relative conservativeness and 

the top portfolio in the list is the most conservative.

The statement means the investor believes the reference portfolio A is investable in terms 
of his preference, although the possibility to invest in it is low because it is too 
conservative to him. Based on the above heuristic, a procedure to select reference portfolio 

A is described as follows.

Step 1: The financial advisor generates the list A« that includes several efficient portfolios 

that are usually believed (that is, according to the advisor’s .experience) as very 
conservative. The ^obal minimum variance portfolio K, described in Chapter 2, is the low 
bound of this list.

Step 2: The financial advisor sorts these portfolios in A« in decreasing order according to 

their relative conservativeness. The most conservative portfolio is sorted at the top of the 

list ............
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Step 3: The financial advisor asks the investor to judge if it is possible for him to invest in 
one of the portfolios, starting from the top of the list Ac. If the answer is no, ask the 
investor to make judgment for the next portfolio. This procedure continues until the 
investor makes a positive answer.

4.4.2 The Global Minimum Variance Portfolio

The global minimum variance portfolio K is considered as the most conservative portfolio. 

It can be used as a good starting point for die advisor to generate candidate reference 
portfolios.

\

All portfolios along the efficient frontier have such a property that when the expected 
return decreases, its standard deviation also decreases. Portfolios on both sides of the 

• global minimum variance portfolio K have larger variance than K. As shown in Figure 4.2, 

when the expected return of a portfolio continues to decrease and once passes K, the 
portfolio’s variance no longer decreases but increases. It is said this portfolio becomes 
inefficient. Based on this property, a heuristic algorithm is developed to find the portfolio 
K, This algorithm is to search along the efficient frontier with decreasing expected returns 

until the variance of one portfolio is found to be larger than its predecessor.

search direction,

efficient frontier

Standard deviation

Figure 4.2: Search for the global minimum variance portfolio 
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No
VI >V2?

Yes

End

SetVl =V2

Obtain current V2 .

Solve Model 4.1

Target = target - step

Obtain optimal variance VI

Solve Model 4.1

Solve Model 4.1

Set initW target return

Target = target + step

Target = target -step

Obtain the solution

Solve Model 4.1

Obtain current optimal variance V2

Figure 4.3: Fbwchart for finding the global minimuni variance portfolio

The flowchart based on the above algorithm is shown in Figure 4.3. The procedure is 

implemented as follows. First, specify an initial target return, solve the mean-variance
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optimization model (denoted as Model 4.1) and obtain a minimum variance VI. Then 
decrease the target return value by one step length, solve Model 4.1 again, and obtain 
current minimum variance V2. Compare VI with V2. If VI is larger than the current 
variance V2, continue the search. If V2 is larger than VI, this means the predecessor of the 
current portfolio is the global minimum variance portfolio.

Model 4.1 is a quadratic programming model used to find the optimal value of portfolio 
variance associated with given expected target return. This model is an alternative 
formulation of Markvitiwz model (Model 2.1). Its general formulation is written as 
follows:

\ '

Model 4.1:
Objective:

N  N  N

Minimize + Z  Z

subject to:

i= l i= l y—1
J î

N

E l R ^ )  = 2  1 C ,E (R ,)
1 = 1

N

■ '
> 0 i = 1,..., N

where: E(Rp) = expected return of portfolio;
Op = standard deviation of return of portfolio;

E(Rf) = expected return for asset class /;
Oi = standard deviation of return of asset class /; 
p,y = correlation coefiicient between asset class / andy;

N = the number of asset classes;
and Xi = proportion of portfolio invested in asset class /. • •

Computer programs based on General Algebraic Modeling System (GAMS, developed by 
GAMS Development Corporation) language are written to implement the algorithm for
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finding the global minimum portfolio for each objective (Appendices 1.1,2.1; 3.1,4.1,5.1, 
and 6.1). The inputs for each program are the initial target value of expected return and the 
step length. The outputs are the characteristics of the portfolio K, including the expected 
return, standard deviation, and optimal weight of each asset class malting Up the portfolio. 
The results for the hypothetical investment example using data of Table S.Tand Table 3.2 
are shown in Table 4.1.

 Table 4.1 : The global minimum variance portfolio for each objective________
Return STD Fraction of assets making the portfolio

Objective % % LaStock SmStock LGBond LCBond T-Bill RealEst
TNR Ï9  3T6Ï ÔÔ25 ÔÔÔÔ ÔÔSÔ ÔÔÔÔ Ô895 0.000
CA 0.0 0.996 0.007 0.004 0.000 0.000 0.989 0.000
CRI 4.5 1.629 0.246 0.000 0.230 0.000 0.355 0.169
ATR 2.2 1.739 0.016 0.004 0.083 0.000 0.897 0.000
PP 1.0 4.100 0.042 0.000 0.125 0.000 ' 0.833 0.000
LD 0.0 0.000 0.000 0.000 0.000 0.000 0.000 1.000

4.4.3 Generating the List Ac of the Candidate Portfolios

A simple algorithm is used to generate the list Ac of the candidate portfolios. The financial 
advisor first specifies an initial small target return for one portfolio. This value can be the 

expected return of the global minimum portfolio K. But it is up to thé advisor’s choice if 
the portfolio K is believed to be too conservative and he would like to limit the size of the 
list. After generating the first portfolio, increase the target return by one step length, solve 

Model 4.1 again, and obtain the second portfolio. Continue this procedure until the 
required size of candidate portfolios is met The flowchart based on this algorithm is shown 
in Figure 4.4. GAMS programs are written to implement the algorithm for generating the 

list of candidate conservative portfolios for each objective (see Appendices 1.2, 2 .2 , 3 .2 , 
4.2, 5.2, and 6.2). The inputs for each program are the initial target value of expected 
return, the step length as well as the required size of list n. The outputs are the 

characteristics of each portfolio, including the expected return, standard deviation, and 
optimal weight of each asset class making up the portfolio. Sorting the portfolios in the list 
is automatically completed using the above algorithm.
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Start

No
i< n ?

Yes

End

Set i = i + 1

Display target, variance, Xi

Target = target + step

Solve Model 4.1

Set i = 1

Solve Model 4. r

Set initial target return

Figure 4.4: Generating the list o f the conservadve reference portfolios

4.4.4 Select the Reference Portfolio A Using Questionnaires

The investor selects his own reference portfolio from the candidate portfolio list Ac

provided by the advisor. This procedure can be implemented by using questionnaires.
Normally investors consider the portfolio return Md risk in terms of dollar value, so
presenting one portfolio to investors in dollar value description may be more
straightforward. If the return distribution is assumed to follow approximately the normal
distribution, then the chance that the outcome value of expected return will fall in [E(R)
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+ a] is 68% (approximately two of three times), and the chance that the outcome value of 
expected return will fall in [E(R) ±3o] is 99.7%. If the extreme value is considered as 

worse or best case, the following description of portfolio can be used when designing a 
questionnaire.

The description of portfolio A:
You have an available capital of $V. If you invest it in portfolio A, the average net 
return of this investment by the end of investment period will be $Vx E(Ra). Two out 
of three times that the net return of this investment will coihe out to be between $Vx 

[E(Ra) - Oa] and $V x  [E(Ra) + oa] However, in the worse case, the investment will 
lose $V x [E(Ra) - 3o a ], and in the best case the investment will gain $V x [E(Ra) + 

3oa];

A sample questionnaire, designed for selecting the conservative reference portfolio in 
terms of the total nominal return objective, is shown in Figure 4.5. If the response from the 
investor is “absolutely not”, the advisor presents other portfolios in the candidate list one 
by one. If the investor’s answer is “it is possible”, set this portfolio as the reference 
portfolio A.

4.5 Select the Aggressive Reference Portfolio

The expected return of a portfolio is limited and must fall between the hipest and lowest 

expected returns of the component individual assets. Usually people believe that, if an 
investor is willing to invest most of his funds to assets that have highest attainable 
Kcpected returns, he is aggressive; because usually the higher the return, the higher is the 

risk. But for an individual investor, his attitude towards the definition of aggressiveness 
may vary significantly. For example, some investors may think investing in stocks is 
always a very risky action and always try to avoid it. Therefore, the maximum return 

portfolio is not necessarily the right aggressive reference portfolio for a specific investor. A 
procedure based on a heuristic method is used to select the aggressive reference portfolio.
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This questionnaire is designed for an investor to select the reference conservative portfolio in 
terms of the total nominal return otgective. Based on the description of this portfolio, please 
answer the question provided below.

Description of portfolio A (based on S100,000 funds)
Expected STD Average net 2 out of 3 times net return range Worse case • Best caSe 
Retum(%) (%) return (S) Lowend($) High end ($) net retum($) net retum($)

3.162 4.000 838 7,162 -5,486 13,486
Fractions of assets making rg) the portfolio:

I.aStock 0.03 0,. SmStock 0.004, LGBond 0.087, LCBond 0.000, TBill 0.879, RealEst 0.000

Question: \

You have an available coital of S100,000. Would you like to invest in this portfolio? 

Your answer is:
• 1. Absolutely not. ‘ 2. It is possible.

Figure 4.5 : Example questionnaire for selecting the conservative reference portfolio

4.5.1 Heuristic Method

The heuristic used for selecting the aggressive reference portfolio can be expressed as 

follows:
A very aggressive portfolio = The first portfolio, from the top down in set C» that the 

specified investor believes it is investable.
Here C» denotes the set of efficient portfolios that most people believe they are very 
aggressive. The portfolios in C. are sorted in terms of their relative aggressiveness and the 

top portfolio in the list is the most aggressive.

The statement means the investor believes the reference portfolio C is investable in terms 

of his preference, although the possibility to invest in it is low because it is too aggressive 
to him. Based on the above heuristic, a procedure used to select reference the reference 

portfolio C is suggested as follows:
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Step 1: The financial advisor generates the list C, that includes several efficient portfolios 

that are usually believed (that is, according to the advisor’s experience) as very aggressive. 
The maximum return portfolio Q, described in Chapter 2, is the upper bound of this list

Step 2: The financial advisor sorts the portfolios in C» in decreasing order according to 

their relative aggressiveness. The most aggressive portfolio is sorted at the top of the list

Step 3: The financial advisor asks the investor to judge if it is possible for him to invest in 

one of the portfolios, starting firom the top of the list If the answer is no, ask die investor to 
make judgment for the next portfolio. This procedure continues until the investor makes a 
positive answer.

4.5.2 The Maximum Return Portfolio

The maximum return portfolio Q is considered as the most aggressive efficient portfolio. It 
can be used as a good starting point for the advisor to generate candidate aggressive 
reference portfolios.

efficient frontier%

1 search direction

Standard deviation

Figure 4.6: Search for the maximum return portfolio
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All portfolios along the efficient frontier have such a property that when the standard 

deviation, incre^es, expected retpm also increases. Portfolios on both sides of the 

maximum return portfolio Q have smaller expected return than Q. As shown in Figure 4.6, 
when the standard deviation of a portfolio continues to increase and once passes Q, the 
portfolio’s return no longer increases but decreases. It is said this portfolio becomes 

mefficient. Based on this property, a heuristic algorithm is developed to find the portfolio 

Q. This algorithm is to search along the efficient frontier with increasing variances until the 
expected return of one portfolio is found to be smaller than its predecessor.

.The flowchart based on the above algorithm is shown in Figure 4 .7. The procedure is 
implemented as follows. First, specify an initial target variance, solve the mean-variance 
optimization model as given in Model 2.1, and obtain an optimal return Rl. Then increase 
the target variance value by one step length, solve Model 2.1 again, and obtain the current 
optimal return R2. Compare Rl with R2. If Rl is smaller than the current optimal return 

R2, continue the search. If Rl is larger than R2, this means the predecessor of the current 
portfolio is the maximum return portfolio.

GAMS programs are written to implonent the algorithm for finding the maximum return 
portfolio for each objective (see Appendices 1.3,2.3 ,3.3,4.3,5.3, and 6.3). The inputs for 
each program are the initial target value of standard deviation and the step length. The 
outputs are the characteristics of the portfolio Q, including the expected return, standard 
deviation, and optimal weight of each asset class making up the portfolio. The results for 
the hypothetical investment example using data of Table 3.1 and Table 3.2 are shown in 
Table 4.2.

Table 4.2: The maximum return portfolio for each objective

Objective
Return

%
STD
%

Fraction of assets making iq) the portfolio
LaStock SmStock LGBond LCBond T-Bill RealEst

TNR 17.8 35.6 0.000 1.000 0.000 0.000 0.000 0.000
CA 12.8 27.8 0.000 1.000 0.000 0.000 0.000 0.000
CRI 5.9 3.5 0.000 0.000 0.000 1.000 0.000 0.000
ATR 13.3 26,5 0.000 1.000 0.000 0.000 0.000 0,000
PP 14.3 24.9 0.000 1.000 0.000 0.000 0.000 0.000
LD 13.4 26.7 0.000 1.000 0.000 0.000 0.000 0.000
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Target = target - step
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Solve Model 2.1
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Solve Model 2.1
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Solve Model 2.1

Obtain optimal return Rl

Obtain current optimal return R2

Figure 4.7: Flowchart for finding the maximum return portfolio

4.5.3 Generating the List Ca of the Candidate Portfolios

The algorithm used to generate the candidate portfolio list C, is similar to the one used to
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generate the candidate conservative portfolio list Ac. The financial advisor first specifies an 

initial large target return for one portfolio. This initial value can be the expected return of 

the maximum return portfolio Q. But it is*up to the advisor’s choice if the portfolio Q is 
believed to be too aggressive and he would like to liniit the size of the list After generating 

die first portfolio, decrease the target return by one step length, solve Model 4.1 again, 
obtain the second portfolio. The process stops once the required size of candidate 

portfolios is reached. The flowchart based on this algorithm is shown in the Figure 4.8. 
GAMS programs similar to ones given in Appendices 1.2, 2.2, 3.2, 4.2, 5.2, and 6.2 are 
used to implement the algorithm for generating the candidate aggressive portfolio list for 
each objective. The inputs for each program are the initial target value of expected return, 
the step length, as well as the required size of the li t̂ n. The ouq>uts are the characteristics 

of each portfolio, including the expected return, standard deviation, and optimal weight of 
each asset class making up die portfolio. Sorting the portfolios in the list is automatically 
achieved using the above algorithm.

Start

No
i< n ?

Yes

Set initial target return

Solve Model 4.1

Target = target - step

Solve Model 4.1

Display target, variance, Xi

Figure 4.8: Generating the aggressive reference portfolio list
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4.5.4 Select the Reference Portfolio C Using Questionnaires

The questionnaires used to select the aggressive reference portfolio C are similar to those 
for selecting the conservative reference portfolio A. A sample questionnaire, designed for 

selecting the aggressive reference portfolio for the total nominal return objective, is shown 
in Figure 4.9. If the response from the investor is “absolutely not”, the advisor presents 

other portfolios in the candidate list one by one. If the investor’s answer is “it is possible”, 

set this portfolio as the reference portfolio C.

This questionnaire is designed for an investor to select the reference aggressive portfolio in 
terms of the total nominal return objective. Based on the description of this portfolio, please 
answer the question provided below. -

Description of portfolio C (based on $ 100,000 funds)

Expected STD Average net 2 out of 3 times net return range Worse case Best case 
Retum( %) ( %) return ($) Low end ($) end ($) net retum($) net retum(S)

13 20.30 13,000 -7,300_______33,300 -47,900 73,900
Fractions of assets making iq> the portfolio:

LaStock 0.237, SmStock 0.428, LGBond 0.000, LCBond 0.000, TBill 0.000, RealEst 0.335

Question:

You have an available capital of $100,000. Would you like to invest in this portfolio?

Your answer is:
1. Absolutely not. 2. It is possible.

Figure 4.9: Example questionnaire for selecting the aggressive reference portfolio

Assuming that the hypothetical investor has selected the conservative reference portfolio A 

and aggressive reference portfolio C in terms of each objective; These portfolios are 
summarized in Table 4.3
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Table 4.3: Reference portfolios for each objective
Reference E(R) o Fractions of assets making up the portfolio

Objective portfolio (%) (%) LaStock SmStock LCBond LGBond TBill RealEst
TNR A 4.0 -3.161 ' 0.030 0.004 0.000 0.087 0.879 0.000

C 13.0 20.30 0.237 0.426 ' 0.000 0.000 0.000 0.335
ÇA A . 3.0 6.165 0.130 0.130 , 0.000 . . Q.OOO, . 0.548 0.192

 ________ C 10.0 20.78 0.049 0.710 0.000 0.000 0.000 , 0.241
• CRI A 4.5 1.629 0.246 0.000 0.000 0.230 0.355 0.169

 _________ C 5.9 3.500 0.000 0.000 0.Ô00 1.000 0.000 0.000
ART A 3.0 2.278 0.065 0.011 0.142 0.010 0.676 0.096

C 10.0 16.67 0.270 0.487 0.000 0:000 0.000 0.243
PP A 2.0 4.564 0.083 0.021 0.000 0.191 0.628 0.077

C 9.0 18.20 0.257 0.35f 0.000 0.000 0.000 0.388
LD A 3.0 . 2.271 0.033 0.016 0.025 0.064 0.554 0.307

C 10.0 15.284 0.519 0.176 0.305 ' O.OOO ' 0.000 0.000

4.6 Relative Degree of Preference between Reference Portfolios

After the reference portfolios are chosen, flie next step is to obtain the investor’s-relative 

preference of two portfolios for each objective. Because both portfolios A and C are not the 
desired portfolio for the investor, he is not asked to make direct comparison between 

portfolios A and C. Instead, another reference portfolio, the investor’s desired portfolio, is 

employed as a medium to derive the relative preference between portfolio A and C. This 
portfolio, denoted as portfolio B, is the one that the investor will most likely choose, but it 
is not necessary for him to know the exact characteristics of this portfolio.

Questionnaires, such as the sample questionnaire shown in Figure 4.10, are designed to 
assess the investor’s, relative degree of preference. In these questionnaires, the investor is 

asked to express his preference between portfolio B and A, and his preference between B 
and C, in terms of each objective. The scale used in this questionnaire is similaf to the one 

suggested by Saaty (1980). •



This questionnaire is designed for the purpose o f assessing your preference over the reference portfolios 
in terms of the total nominal return o^'cctive. You have selected Portfolio A as a conservative portfolio 
and selected Portfolio C as the aggressive portfolio. The portfolio, say, B, is your most desired portfolio. 
Please use the.suggested scale to represent your preference between t\vo portfolios in terms of the total 
nominal return objective. The former portfolio mentioned in each question is referred as'portfolio I, and 
the latter portfolio is referred as portfolio tt

Description of portfolios A and C

Expected
Rctum(%)

STD
(%)

Average net 
return ($)

2 out of 3 times net return range
Low end ($) High end ($)

Worse Case 
net return ($)

Best Case 
net return ($)

Portfolio A 3.162 4,000 838 7,162 -5,486 13,486
Fractions of assets making up portfolio A*

LaStock 0.030, SmStock 0.004, LGBond 6.087, LCBond 0.000, TBill 0.879, RealEst 0.000

Portfolio C 13 20.30 13,000 -7,300 33,300 -47,900 73,900

Fractions of assets making up portfolio C:
LaStock 0.237, SmStock 0.428, LGBond 0.000, LCBond 0.000, TBOl 0.000, RiralEst 0.335

Suggested scale for pairwise comparison assessments

1 If portfolio I and portfolio E are judged to be equally preferred
3 If portfolio I is judged to be slightly more preferred over portfolio II.
5 If portfolio I is judged to be moderately more preferred over portfolio II
7 If portfolio I is judged to be strongly more preferred over portfolio II
9 If portfolio I is judged to be extremely more preferred over portfolio II

2,4,6,8 If intermediate values between two adjacent judgments are needed
1/3 If portfolio n is judged to be sli^tly more preferred over portfolio I
1/5 If portfolio n is judged to be moderately more preferred over portfolio I
1/7 If portfolio H is judged to be strongly more preferred over portfolio I
1 /9 If portfolio n is judged to be extremely more preferred over portfolio I

l/2 ,l/4 ,l/6 ,l/8  If intermediate values between two adjacent judgments are needed

Questions:

1. Do you think which scale best describes your relative preference between Portfolio B and Portfolio A?
1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

2. Do you think which scale best describes your relative preference between Portfolio B and Portfolio C?
1 2 3 4 5 6 7 8 9 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

Figure 4.10: Example questionnaire for assessing relative degree o f  
preference between reference portfolios
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If the investor takes a normal action, that is, neither aggressive nor conservative according 
tp the investor’s own judgment, then most likely the answer, for example, is:

• B is ,strongly preferred over A and B is strongly preferred over C — (Statement 1).

If the investor takes a more aggressive action, then portfolio B becomes more aggressive, 
and the possible answer, for example, is,

. B is slightly preferred over C but strongly preferred over A -  (Statement 2).

If the investor,takes a more conservative action, then portfolio B becomes more 
conservative, and the possible answer, for example, is,

B is slightly preferred over A but strongly preferred over C — (Statement 3).

No matter what action he takes, the aggressiveness of portfolio B will lie between A and C, 
the lower and upper bound of the feasible portfolios.

A comparison matrix involving three portfolios. A, B, and C, c ^  be constructed. The scale 
values for above three statements are entered to the matrix, the diagonal comparisons are 

filled with “1 ”. The resulting matrices are shown in Table 4.4.

Table 4.4: Initial comparison matrices for portfolios A  ̂B and C 
Aggressive action Normal action Conservative action

A B C
A 1 1/7 ?
B 7 1 3
C ? 1/3 1

A B C
A 1 1/7 ?
B 7 1 7
C ? 1/7 1

A B C
A 1 1/3 ?
B 3 1 7
C ? 1/7 1

The question mark “?” in the matrices means the investor doesn’t have to make a direct 
comparison between A and C. Instead, the consistency requirement of the comparison 

matrix is used to derive the answer. Or, if the investor does make a direct comparison, the 

consistent test still should be performed.
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A comparison matrix involving three portfolios, A, B and C can be written as:

^AA ^A B ^A C

— ^BA ^BB ^BC

A ca ^CB ^C C .

(4.6.1)

A perfectly consistent matrix should satisfy the transitivity and reciprocity requirements. 
For matrix Dj, the following equalities should be held:

dAC — dAB X dec 
dcA — 1/dAC

(4.6.2)
(4.6.3)

Using these formulae to calculate the scale values for cells assigned with the matrices 
in Table 4.4 are transformed to those in Table 4.5.

Table 4.5: Comparison matrices for portfolios A , B and C 
Aggressive action Normal action Conservative action

A B C
A 1 1/7 3/7
B 7 1 3
C 7/3 1/3 1

A B C
A 1 1/7 1
B 7 1 7
C 1 1/7 1

A B C
A 1 1/3 7/3
B 3 1 7
C 3/7 1/7 1

The fractions, 3/7 and 7/3 in matrices of Table 4.5, don’t have corresponding suggested 
scales, so they have to be rounded. For example, the closest suggested scale for 3/7 is 1/2 

or 1, and for 7/3, that is 2 or 3, and so oa Which value is selected will depend on the 
investor’s preference, as long as the consistency requirement is met The complete 
comparison matrices for the hypothetical investor are shown in T^le 4.6.

. Table 4.6 : Comparison matrices for hypothetical investor
Aggressive action Normal action Conservative action

A B C
A 1 1/7. 1/2
B 7 1 3
C 2 1/3 1

A B C
A 1 1/7 1
B 7 1 7
C 1 1/7 1

A B C
A 1 1/3 3
B 3 1 7
C 1/3 1/7 .1
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Consistency Test and Relative Degree of Preference Calculations

Similar to matrix D„ discussed in Section 3.7, for matrix Dj defined in formula (4.6.1), a 
good estimate of the principal eigenvector (EV) can be described as to multiply the 
elements in each row and take the 3"* root The formula is written as:

E V  = { b ^ , b s , b c Ÿ  (4.6.4) 

where = i = A ,B ,o r C  (4.6.5)

The normalized principal eigenvector of matrix D$ \is the vector of priorities (Saaty, 1980, 
p. 19). It can be obtained by.

Normalized E V  = (6 j ,6 g ,6 c )^  (4.6.6)

where b\ = bf l(b^ +bg+ be) i = A,B ,or C (4.6.7)

The eigenvalue of each row of the observed comparison matrix is:

= {dj)^ + d j)g  + dfcbc)lb/ i = A ,B ,or C (4.6.8)

For the observed matrix, the consistency index Cl, as definW in formula (3.8.2), is 

calculated by:

a  = (4 6-9)

From Table 3.5, for the order of matrix in=  3, the average random consistency index RI = 

0.52. The consistency ratio CR, as defined in formula (3.8.4), should be no larger than 0.1 
for compliance with acceptable consistency. If the consistency of comparison matrix is 
accepted, then the relative degree of preference brtween the two reference portfolios, k, is 

estimated by the ratio of the normalized priority values of the two portfolios. This 

relationship can be expressed as:
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= (4.6.10)
Or

4.7 Spreadsheet Model for Calculating the Degree of Preference

Similar to the spreadsheet model developed in Chapter 3 for calculating objective weights 

and performing the consistency test. Excel models are designed to calculate the investor’s 
relative degree of preference between reference portfolios and perform the consistency 

tests. The sample model shown in Figure 4.11. is developed for the situation when the 
hypothetical investor takes an aggressive action. The formulae and functions used in this 
model are shown in Figure 4.12.

TTiis model is designed ftr calculatiiig the iiwesipr's relative degree

I H ! 1
i A 1 B c bi iNormalied ^i

PortfoHoA 1 1 1 1/7 1/2 0.415 1 0.103 3.003
Portfolio B j 7 1 1 3 2. 759 i 0. 682 3. 003
Portfolio C Î 2 i 1/3 . 1 0.874 1 0.216 3. 003

! i . Sum= 4.047 ! 1.000
H B ! i I ■

• i i j ^max= 3.003 ;
The relative degree of preference k = 0.475,1

1 !
I *”

i* r
ConsistBncytest(l:pass;0:faiI):| 1 j

Older of matrix m= 3 . ; ■ ■
C onsistency Index CI= 0.0013

Random Index RI ~ ' 0. 52
Consistency Ratio CR= 0.0025 ---------f".......... ....

I ________L - _ ! ..............1 ...

Figure 4.11: Sairple Excel model for calculating an investor’s relative 

degree of preference between two reference portfolios
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_______ Values, formulae or functions
B6, C7, D8 =1-

B8 =1/D6 
C8‘ =1/D7 '

B7, D7 Obtained from questionnaire 
C6 =1/B7 
C8 =1/D7 .
D6 =C6*D7 (may need to be adjusted) 
E6 =POWER(B6*C6*D6,l/3)
E7 =POWER(B7*C7*D7,l/3)
E8 =POWER(B8*C8*D8,l/3)
F6 =E6/$E$9 
F7 =E7/$E$9 
F8 =E8/$E$9 
E9 =SUM(E6 :E8)
F9 =SUM(F6 :F8)

E12 =$F$6/$F$8
. G6 =B6*F6/F6+C6*F7/F6+D6*F8/F6

07 =B7*F6/F7+C7*F7/F7+D7*F8/F7
08 =B8*F6/F8+C8*F7/F8+D8*F8/F8 

O il =MAX(06:08)
D15 =3
D16 .=(011-D15)/(D15-1)
D17 =0.52
D18 =D16/D17
E14 =IF($D$18<=0.1,1.0)__________

Figure 4.12: Excel model iiçuts and formulae for Figure 4.11.

In this Excel model, the financial advisor inputs the scale values of the investor’s responses 
to the designed questionnaire shown in Figure 4.10. The number of inputs equals to the 

number of questions. In fact, only two independent input data are needed to enter into cell 
B7 and cell D7. Diagonal comparisons are filled with “1”. Other values are filled using 

Excel built-in formulae. The value in cell D6 is obtained using formula D6=C6*D7, which 
is designed for compliance with initial transitivity requirements. This value can be adjusted 

according to the investor’s preference as long as the consistency requirement is satisfied. 
The principal eigenvector is shown in cell range E6:E8. The normalized principal
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eigenvector is shown in cell range F6 :F8. The consistency test results are shown in cell 

E14. If the consistency test is passed (CR < =0.1), the answer is “Yes” (“1” in cell E14). If 

the test is not passed (CR > 0.1), tlie answCT is “No” (“0” in cell E14). In this example, the 
consistency of the matrix is accepted. The relative degree of preference between portfolio 

A and portfolio C, k, is shown in cell E12, which is obtained by using formula (4.6.10).

Similar models can be designed to calculate the investor’s relative d ^ e e  of preference 

when he takes normal action or conservative action and to perform the consistency tests. 
The values of the relative degree of prefereiice for die hypothetical investor, whose 

comparison matrices are shown in Table 4.6, are summarized in Table 4.7. For different 
objectives, the same investor may make different responses. Thus the relative degrees of 

preference between reference portfolios may be different However, for illustrative purpose, 

it is assumed that for each of six objectives, the investor makes the similar responses.

Table 4.7: The relative degree of preference for the hypothetical investor
Aggressive action Normal action Conservative action

K 0.475 0.630 2.759

4.8 Construction of Local Optimal Portfolios

After the investor’s relative degree of preference between two reference portfolios is 
obtained, the investor’s risk tolerance, t, can be calculate! using formula (4.2.5). The value 

of t, along with eiqiected returns, standard deviations of asset classes and their correlation 
coefficients, are the inputs to Model 2.2, which is used to obtain die local optimal portfolio 
for each objective. Replacing the risk tolerance t with formula (4.2.5), Model 2.2 can be 

modified. The modified Model 2.2 is shown as Model 4.2. For each local optimization 
model, the expected returns and standard deviations of two reference portfolios, A and C, 
can be obtained from Table 4.3, and the investor’s relative degree of preference betw'’een 

the two reference portfolios can be obtained from Table 4.7.

Model 4.2:
Objective:

Maximize U = E ( R p ) - ap
t
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Subject to:

E l R : ^ ) - k E { R ^ ) -  .

 ̂Z + Z Z x,Xjp^a,(Tj
: = 1  1=1 y = i

J^i

^( ^p)  = Z 
>•=1

N ■
Z  ^

.. .. . . (=1 . ..- • .

. r  ^  ̂ ~ ^   ■  ̂ .

where: U = the utility of portfolio;

r = the investor’s risk tolerance;

k  = Àe investor’s relative degree of preference between portfolio A and portfolio C; 
E(Ra) = expected return of reference portfolio A;

E(Rc) = expected return of reference portfolio C; 
a A = standard deviation of return of portfolio A; 
oc = standard deviation of return of portfolio C;
E(Rp) = expected return of portfolio;

. ' * . . .  . • ■ ’ * -

Op = standard deviation of return of portfolio;

E(R;) = expected return for asset class./;
Of = standard deviation of return of asset class/;
p,y = correlation coefficient between asset class / and J;

N = the number of asset classes;
and X/ = proportion of portfolio invested in asset class /.

GAMS programs given in Appendices 1.4,2.4,3.4,4.4,5.4 and 6.4 are written to solve the 
quadratic programming model (Model 4.2). The outputs of these programs are 

characteristics of the local optimal portfolio, including the expected return, standard 

deviation, percent of each asset class invested, as well as the values of the investor's risk 

tolerance and utility.
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Chapter 5: Complété Portfolios and Comparisons

Based on the methods described in Chapter 3 and Chapter 4, a complete portfolio for an 

individual investor can be obtained. In this chapter, the basic procedure of the proposed 
multiple-objective asset allocation approach is first reviewed. Then the complete portfolios 

constructed for the hypothetical investor are presented. A deviation index is suggested to 

measure the overall inefficiency of complete portfolios from efficient portfolios. 
Comparisons of the overall efficiency are made among die complete portfolios obtained by 

the proposed model and those of portfolios obtained by a single-objective optimization 
method.

5.1 The Process of Constructing a Complete Portfolio

In the proposed method, the asset allocation problem for an individual investor is 
considered as a multiple-objective decision making problem. The general model of the 

proposed approach for M objectives and N asset classes is presented in Figure 3.2. The 
Analytic Hierarchy Process (AH?) is employed as the framework to address an investor’s 
multiple investment objectives. Traditional portfolio optimization techniques are integrated 
into the AH? decision hierarchy. In the asset allocation process involving a financial 

advisor and a client, the client’s investment objectives and preferences are reflected 
through effective communications with the financial advisor. The advisor offers expertise 

through providing available market opportunities, designing customized questionnaires and 
helping the client making effective judgments. The result of this asset allocation process is 
to construct a complete portfolio that is consistent with the investor’s investment goals 
while considering the portfolio’s overall efficiency. The basic procedure of constructing 

such a complete portfolio based on our proposed method is summarized as follows:

Step I: The financial advisor gathers information from the investor. Questionnaires such as 
Figure 3.3 are used. The investor makes responses to the questionnaire provided by the 

financial advisor. The investor’s investment objectives and general risk profile are obtained 

in this step.

Step 2: The financial adwsor designs customized questionnaires such as Figure 3.5 to
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assess the priority of .the investor’s r multiple investment objectives  ̂ The investor’s 
responses to the questionnaires are tested for consistency and the relative preferences are 

evaluated using the AHP techniques. Spreadsheet models such as Figure 3.6 can be used to 
perform these tasks. The relative importance of the investor’s objectives is obtained in this 
step: ■

Step 3; The financial advisor transforms the investor’s investment objectives into return 

requurements that can be used as objective functions of appropriate optimization models. 
The data from capital market research results should be available in this step. For 
mean-variance optimizations, the data of asset classes’ expected return, standard deviation 
and correlations in terms of each objective are needed. Using these data, the efiBcient 
frontier in terms of each objective is obtained. In this step, the financial advisor provides 
the “market opportunities” to the investor.

Step 4: The financial advisor generates candidate refermce portfolios with the aid of 
computer programs. The investor selects his own reference portfolios from the candidates. 

Questionnaires such as Figure 4.5 and Figure 4.9 are used. Reference portfolios that reflect 

the investor’s risk attitude and personal preferences are obtained in this step.

Step 5: The investor make responses to questionnaires such as Figure 4.10 to express his 
preference between his desired portfolio and reference portfolios in terms of each objective. 
The responses are tested for consistency and the investor’s relative degree of preference 
between reference portfolios is evaluated using the AHP technique. Spreadsheet models 

such as Figure 4.11 are used to perform these tasks. The investor’s risk tolerance is 

estimated in this step.

Step 6: The financial advisor constructs each local optimal portfolio in tarns of each 
investment objective of the investor. Quadratic programming models such as Model 4.2 are 
used to combine the market opportunities with the investor’s preferences. The local 

optimal portfolios associated with the investor’s objectives are obtained in this stq).

Step 7: The financial advisor constructs the complete portfolio by combining the local 

optimal portfolios according to the relative importance of their associated objectives. The 

complete portfolio, a mix of different asset classes, is obtained in this step.
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5.2 Complete Portfolios for the Hypothetical Investor

In Chapter 3, the relative importance of the six investment objectives of the hypothetical 
investor is obtained, as shown in Table 3.6 and the left sides of Tables 5.1,5.2 and 5.3. In 

Chapter 4, the investor’s risk tolerance is incorporated into the associated optimization 

model to determine the local optimal portfolio for each objective. The local optimal 

portfolios for the hypothetical investor when he takes aggressive, normal and conservative 

actions are displayed in the right sides of Tables 5.1, 5.2, and 5.3 respectively. The items 
for each portfolio include the relative weight, expected return, standard deviation, and the 

fraction of each assets making up the portfolio. The complete portfolios are obtained by 
combining the weighted local optimal portfolios according to their relative importance. 

The proportion of a complete portfolio invested in each individual asset class is obtained 

using formula (3.2.3). For the hypothetical investor when he takes aggressive, normal and 

conservative actions, the resulting complete portfolios are displayed at the bottom lines of 

Tables 5.1,5.2, and 5.3, respectively.

As it is shown, the complete portfolio for the aggressive action is composed of 28.6% 

large-cap stocks, 26.6% small-cap stocks, 14.8% long-term corporate bonds, 0.9% 

Treasury bills, and 29.1% real estate. The complete portfolio for the normal action is 
composed of 28.2% large-cap stocks, 16.4% small-cap stocks, 17.7% long-term coiporate 

bonds, 4.0% Treasury bills, and 33.7% real estate. The complete portfolio for the 
conservation action is composed of 23.2% large-cap stocks, 8.1% small-cap stocks, 28.3% 

long-term corporate bonds, 0.1% long-term government bonds, 7.5% Treasury bills, and 

32.8% real estate. Real estate makes up one of the major components in each case because 
it performs superior in terms of most of the objectives except the income and liquidity 

objectives. The investor’s low liquidity requirement also contributes to the results. The 

results also indicate that the complete portfolio tends to smooth the extreme large and 

extreme small weights of individual assets in local optiihal portfolios. Therefore, it can be 
expected that the complete portfolio is less sensitive to input arors from individual local 
portfolios.
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Table 5.1: Local optimal and coiqplete portfolios when tfae investor takes an aggressive action 

Objective E(R) a Fraction o f assets making un the portfolio
& Weight (%) (%) LaStock SmStock LCBond LGBond T-Bill RealEst

TNR 0.245 11.6P 16.44 0.337 - 0.249 0.000 0.000 0.000 0.414
, CÂ 0.051 9.66 19.98 0.073 0.666 0.000 • 0.000 0.000 0.261

CRI 0.088 5.90 15 0 0.000 0.000 1.000 0.000 0.000 , 0.000
ATR ■ 0.426 8.81 13.33 0.304 0.333 0.000 0.000 0.000 0.363
PP 0.058 6.87 12.75 ■ 0.262 0.173 0.178 0.000- 0.000 0.387
ID  0.132 8.92 12.66 0.415 0.146 0.373 0.000 ■ 0.066 0.000

Conq)lete portfolio 0.286 0.266 0.148 0.000 0.009 0.291

Table 5.2: Local optimal and conplete portfolios when the investor takes a normal action
Objective E(R) o Fraction of assets making up the portfolio

■ & Weight (%) (%) LaStock SmStock LCBond LGBond T-BUl RealEst
. TNR 0.245 10.12 12.80 0.308 0.149 0.150 0.000 0.000 0.393

CA 0.051 7.94 16.01 0.189 0.447 0.000 0.000 0.000 0.364
CRI 0.088 5.90 3.50 0.000 0.000 LOOO 0.000 0.000 0.000
ATR 0.426 7.73 10.52 0.336 0.193 0.000 0.000 0.000 0.471
PP 0.058 6.36 11.59 0.248 0.139 0.236 0.000 0.000 0.377

ID  0.132 7.49 9.28 0.300 0.107 0.292 0.000 0.301 0.000

Conçlete portfolio 0.282 0.164 0.177 0.000 0.040 0.337

Table 5.3: Local optimal and conq)We portfolios when the investor takes a conservative action

Objective E(R) a Fraction o f assets making iq> the portfolio

& W d ^ t (%) (%) LaStock SmStock LCBond LGBond T-Bill RealEst

TNR 0.245 8.52 9.39 0.236 0.070 0.356 0.000 0.000 0.338

CA 0.051 5.99 11.99 0.257 0.250 0.000 0.000 0.090 0.403

CRI 0.088 5.90 3.50 0.000 0.000 1.000 0.000 0.000 0.000

ATR 0.426 6.37 7.51 0.290 0.085 0.148 0.000 0.000 0.477

PP 0.058 5.65 , 10.11 0.230 0.093 0.295 0.022 0.000 0.360

ID  0.132 6.08 6.14 0.187 0.069 0.212 0.000 0.532 0.000

Conçlete portfolio 0.232 0.081 0.283 0.001 0.075 0.328

The performance, i.e., expected return and standard deviation, of the complete portfolio in 

tenhs of each objective can be obtained by using following equations:
N

i=l

N  N N
(5.2.2)

i=i /=i y=i
j*i
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T ^ e r e

E(Rcp) = expected return of complete portfolio in terms of objective p\ 
ocp = standard deviation of return of the complete portfolio in terms of objective p; 

E(Ra>) = expected return for asset class / in terms of objective p;
OiP = standard deviation of return of asset class i in terms of objective p;

Pij = correlation coefficient between asset class / and j',
N = the number of asset classes;

and Xi = proportion of the complete portfolio invested in asset class /.

GAMS programs are written to perform diese calculations, as shown in Appendices 1.5, 
2.5,3.5,4.5,5.5, and 6.5. The results are summarized in Table 5.4.

Table 5.4: The performances of a conçlete portfolio in terms of each objective

Objective Weight
Wj

Aggressive action Normal action Conservative action

E(R)
(%)

a
(%)

E(R)

(%)

o

(%)

E(R)
(%)

a

(%)
TNR 0.245 11.20 15.64 9.94 12.53 8.48 9.38
CA 0.051 6.07 12.49 4.82 10.02 3.31 7.39
CRI 0.088 5.12 3.21 5.12 2.57 5.18 2.10
ATR 0.426 7.91 11.34 6.89 8.87 5.71 6.36
PP 0.058 7.93 15.56 6.72 12.54 5.33 9.56
LD 0.132 7.71 12.57 6.55 9.98 5.48 7.30

Weighted rrtum 8.35 7.32 6.17 ' _

The complete portfolio obtained may not be optimal in terms of each individual objective.
The associated efficient portfolios for the complete portfolios in terms o f each objective are

summarized in Table 5.5. They are minimum variance portfolios with the same expected
returns as the complete portfolio in terms of each objective. They are obtained by solving
Model 4.1 with given expected returns. GAMS programs are written to perform these tasks,

as given in Appendices 1.6,2.6,3.6,4.6,5.6, and 6.6. For example, the expected return of

the normal action portfolio in terms of the total nominal return objective is 9.94% (see
Table 5.4). With expected return of 9.94%, the standard deviation of the efficient portfolio

in terms of the total nominal objective is 12.39% (dehoted as o* in Table 5.5), which is
slightly less dian that of the complete portfolio, 12.53% (see Table 5.4). Note that an

efficient portfolio that is “efficient” in all dimensions may not actually exist at all.
Therefore, the efficient portfolios in Table 5.5 are the hypothetical combination of six
portfolios, each of them is efficient for its associated objective only. The weighted returns,
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shown at the bottom line of Table 5.4 and Table 5.5, are the weighted average returns for 
six objectives. They can be used to evaluate the overall aggressiveness of a portfolio in 
terms of overall investment objectives.

Table 5.5: Associated efiBcient portfolios of complete portfolios
Aggressive action Normal action Conservative action
Efficient portfolios EfiScient portfolios Efficient portfolios

Objective Weight E(R) o* E(R) o* E(R) o*
Wj (%) (%) (%) (%) (%) (%)

TNR 0.245 11.20 15.40 9.94 12.39 8.48 9.31

CA 0.051 6.07 12.15 4.82 9.71 3.31 6.77

CRI ‘ 0.088 5.12 1.84 5.12 1.84 5.18 1.87

ATR 0.426 7.91 10.97 639

6.72

8.61 5.71 6.21

PP 0.058 7.93 15.37 12.41 5.33 9.51

LD . 0.132 7.7.1 9.80 6.55 7.15 5.48 4.92

Weighted return 8.35 7.32 - • 6.17 ;

5.3 Measurement of Portfolio Efficiency

A deviation index, DI, is used to measure the overall inefficiency of a complete portfolio. 

DI  is defined as the sum of weighted relative deviations of portfolio standard deviations 
firom efficient portfolios in terms of all objectives. The formula of deviation index is 

written as;
£T. -  <7*.

DI = ÿ w ,  •>..^ xlOO% (5.3.1)

where £>/= deviation index of the complete portfolio;

wy= w ei^ t of objective
oy= standard deviation of return of the complete portfolio in tarns of objective/, 
o/* = standard deviation of return of the efficient portfolio with the same expected 

return as the complete portfolio in terms of objective/;

M = the number of objectives.

The efficiency of the complete portfolio, E, can be written as.

£ = 1 0 0 % -jD/, (5.3.2)

Using formulae (5.3.1) and (53.2), the deviation index and efficiency for each of the three
; t • ' '
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complete portfolios can be calculated. The values of a,-and q,* are taken from Tables 5.4 

and 5.5, respectively. The results are shown in Table 5.6.

Aggressive action Normal action Conservative action
portfolio portfolio portfolio.

Weighted return 8.35% 7.32% .6.17%.
Deviation index 12.3% 10.5% 9.2%

Efficiency 87.7% 89.5% .90.8%

Table 5.6 indicates that, for the hypothetical asset allocation example, when a portfolio 
becomes more aggressive, it has larger weighted deviation from efiScient portfolios, and 

the efficiency of the portfolio decreases.

5.4 Comparison with Single Objective Optimization

The proposed multiple objective asset allocation method considers the multiple dimensions 
of an investor’s investment objectives and preferences, some of them are conflicting. 
Tradeoffs and priorities of these objectives are considered. Therefore, although the 

suitability of a portfolio is largely subjective, a portfolio constructed using our proposed 
method can be considered more suitable than the one obtained by using a single objective 
optimization method, which only considers the returns and risks according to one 

objective.

As stated in Section 2.4, an optimal portfolio in terms of one objective may not also be 

optimal in terms of other objectives. Here the overall efficiency of the complete portfolios 
constructed using the proposed method is compared with those obtained using 
single-objective optimization. For the hypothetical investor, the weight of the after-tax 

return (ATR) objective dominates other objectives. Therefore three local optimal portfolios 
in terms of the after-tax return objective are used for comparisons. These three portfolios 
are obtained when the hypothetical investor takes aggressive, normal and conservative 

actions, respectively. The proportions of these three portfolios invested in each asset class 

are shown in Tables 5.1,5.2, and 5.3 respectively, under the after-tax return objective. For 

example, from Table 5.2, when the hypothetical investor takes a normal action, the local 

optimal portfolio for the after-tax return objective consists of 33.6% large-cap stocks,
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19.3% small-cap stocks and 47.1% real estates. The performances of this portfolio in terms 
of each of the six objectives can be obtained by using formulaè (5.2.1) and (5.2.2). Revised 

GAMS programs shown in Appendices 1.5,2.5, 3.5,4.5, 5.5 and 6.5 are used to perform 
the calculations, replacing the set of parameters x(i) with {0.336,0.193,0,0,0,0.471}. For 

the aggressive and conservative actions, the sets of parameters x(i) are replaced, with 

(0.304,0.333,0,0, 0,0.363} and (0.290,0.085,0.148,0,0,0.477}, taken from Tables 5.1 

and 5.3 for after-tax return objective respectively. The results are summarized in Table 5.7. 
Their associated efficient portfolios are summarized in Table 5.8, which are obtained by 
solving Model 4.1 for each given expected return in terms of each objective. GAMS 

programs given in Appendices 1.6, 2.6, 3.6, 4.6, 5.6 and 6.6 are used to perform these 
calculations.

Table 5.7 : PaTormances o f the ATR portfolio in terms o f each objective

Aggressive action Normal action Conservative action -
Objective w e i^ t E(R)

(%)
o

(%)
E(R)
(%)

a
x % )

E(R)
(%)

a
(%)

TNR 0.245 12.32 18.37 11.03 15.02 9.37 11.29
CA 0.051 7.31 14.68 6.01 • 12.08 4.20 9.05
CRI 0.088 5.01 3.76 . 5.03 2.99 5.17 2.29
ATR 0.426 8.81 13.33 7.73 10.52 6.37 7.51
PP 0.058 8.99 18.20 7.74 14.95' 6.16 11.34
LD 0.132 8.31 14.93 6.72 11.77 5.35 ■ • 8.27 ■

W a ite d  return 9.20 8.08 6.47 -

Table 5.8: Associated efficient portfolios o f the ATR portfolios

Objective W ei^t

Aggressive action 

Efficient portfolios
Normal action 

Efficient portfolios
Conservative action 
Efficient portfolios

E(R)

(%)

o*
(%)

E(R)

.(%)

a*
(%)

E(R) 

. (%)

o*
(%)

TNR 0.245 12.32 18.35 11.03 14.99 9.37 . 11.18

CA 0.051 7.31 14.64 6.01 12.04 4.20 8.50

CRI 0.088 5.01 1.78 5.03 1.79 '■ 5.17 • 1.87

ATR 0.426 8.81 • 1333; • 7.73 T0.52 6.37 7.51

PP 0.058 8.99 18.17 7.74 14.89 6.16 11.16

LD 0.132 8.31. 11.21 . • 6.72 7.53 5.35 4.68

Weighted return 9.20 8.08 6.47

The deviation index and efficiency of the three portfolios are obtained using formulae 
(5.3.1) and (5.3.2). The results are shown in Table 5.9. Table 5.9 also indicates that, when a
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portfolio becomes more aggressive, it has a larger weighted deviation from efiBcient 

portfolios, and the efiSciency of the portfolio decreases. Comparisons between Tables 5.6 

and 5.9 indicate in all three cases, the efficiencies of portfolios obtained from our proposed 
multiple objective method are higher than those of portfolios obtained by vising after-tax 

return objective optimization. The overall efficiency of the complete portfolios in terms of 
all investment objectives is improved.

Table5.9: Deviation index and efiBciency ofthe ATR portfolios

Aggressive action Normal action Conservative action

portfolio portfolio portfolio

Weighted retum 9.20% 8.08% 6.47%
Deviation index 14.2% q.4% 12. 6%

EfiBciency 85.8% 86.6% 87.4%
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Chapter 6: Conclusions and Fiiliife Work

6.1 Summary of Contributions

The main contributions of this project rqjort are as follows:

(1) An asset allocation model that is consistent with an individual investor’s multiple 
investment objectives and preferences is developed. The concept of the Analytic 

Hierarchy Process (AHP) is employed to construct the multiple objective decision 
model, while traditional portfolio optimization techniques are integrated into the 
hierarchy. Both of the suitability and efficiency of the complete portfolio are 

considered. In . comparison with single-objective optimization, improved overall 

efficiency in terms of all objectives is achieved. The complete portfolio constructed is 
less sensitive to input errors from individual optimization models.

• (2) A method to measure an individual investor’s risk tolerance is proposed. In this method, 
risk tolerance is defined as the ratio of added portfolio variances to added portfolio 
returns, considering the investor’s relative degree of preference between two reference 
portfolios. The investor selects his own reference portfolios from a list of candidates 
provided by the financial advisor. The relative degree of preference is estimated by the 
AHP technique. Risk tolerance measured using the proposed method can be 

incorporated into a quadratic programming model to determine a local optimal 

portfolio.

(3) An interactive procedure based on the proposed model is suggested to implement the 
asset allocation process involving a financial advisor and an individual investor. Five 
sample questionnaires are designed for the following tasks: (i) to gather information 

about an investor’s investment objectives and general risk profile; (ii) to assess an 
investor’s preference over different investment objectives; (iii) to select aggressive and 

conservative reference portfolios; and (iv) to assess an investor’s preference over the 

reference portfolios.

(4) Computer programs are developed to perform the following tasks: (i) to find the global
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minimum variance portfolios; (ii) to find the maximum return portfolios; and (iii) to 

generate the lists of aggressive and conservative reference portfolios. 36 sample 

programs are written for a hypothetical asset allocation example with jsix investment 
objectives and six asset classes. These programs can be generalized to solve 

mean-variance portfolio optimization models with N numbers of asset classes.

(5) Two sample spreadsheet models based on the AHP technique are designed to perform 
priority analysis and to perform consistency tests for an investor’s responses.

6.2 Future Work

By utilizing the AHP method, die proposed method provides a mechanism to integrate 
portfolio optimization methods into a single asset allocation decision model. However, 
only classical mean-variance optimization techniques are employed in the hypothetical 

investment example in this project report No extra efforts are made to include other 
alternative portfolio optimization models. Considering only the variance as the portfolio 
risk surely cannot explain many investors’ investment behaviors. One direction of future 

work is to consider various risk measurements according to an investor’s risk attitude. For 

example, if an investor believes the downside variance, a measure of portfolio variability 

below the expected return, is a more appropriate portfolio risk measure in terms of current 
income objective, then mean-semivariance optimization methods can be used to obtain the 
local optimal portfolio in terms of the current income objective, while other local optimal 
portfolios maybe determined by using other appropriate optimization techniques.

The quadratic programming models adopted in this report are based on the classical 

Markowitz models, which consider only the budget constrmnts and nonnegative weights of 
assets. No additional constraints, such as transaction costs and minimum transaction unit 
requirements, are considered. Ignoring these constraints is largely based on the 
consideration that general solution techniques are not available at present for specially 

structured portfolio problems. However, including these constraints to a model represent 
more realistic investment situations in real world. Tlierefore, the proposed model v/ould 
benefit fi’om the continuing research of portfolio optimization techniques.
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Appendix 1.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Total Nominal Retum Objective

SOnText
This sample GAMS program is written to find the global minimal variance portfolio 
along efficient fi’ontier in terms of the total nominal retum (TNR) objective. The 
underlying quadratic programming model is Model 4.1.

SOfiText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalars k index for loop

target initial target retum 74.2/;

Parameters retum(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8
LCBond 5.3
LGBond 4.7
TBill 3.6
RealEst 7.5

Parameters STD(i) standard deviations of TNR of individual assets(%)

/ LaStock 20.9
SmStock 35.6
LCBond 8.4 
LGBond 7.5 
TBill 3.3
RealEst 15.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 : -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations
fsum fractions must add to 1.0.
dmean definition, of mean expected retum on portfolio
fvariance definition of portfolio variance;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / all / ;
Solve portfolio using nip minimizing variance;

target = target - 0.1 ;
Scalars vl ;
Scalars v2 ;

vl = variance.l;
* setvl current variance

Model pi /fsum, dmean, fvariance/;
Solve pi using nip minimizing variance;

v2 = variance.l; 
k=l;

For (k = 1 to 6,
If(v l> v 2 ,

target = target-0.1 ;
vl=v2 ;
Solve pi using nip minimizing variance; 
v2 = variance.l;

Else
target = target + 0.1 ; •
Solve pi using nip minimizing variance; 
standev.l = sqrt(vl)
Display vl, standev.l, target ; 
target = target-0.1 ;

);
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Appendix 1.2

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Total Nominal Retum Objective

SOnText
This sample GAMS program is written to generate the candidate conservative 
reference portfolio list in terms of the total nominal retum (TNR) objective. Slightly 
modified, this program can also be used to generate the aggressive portfolio list The 
underlying quadratic programming model is Model 4.1.

SOfTText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
Scalar target targeted mean after-tax retum on portfolio (%) /4/;
* If generate aggressive portfolio, the target value can be set as 15, for example.
Scalar k index for loop;

Parameters retum(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8
LCBond 5.3
LGBond 4.7
TBill 3.6
RealEst 7.5 /;

Parameters STD(i) standard deviations of TNR of individual assets (%)

/ LaStock 20.9
SmStock 35.6
LCBond 8.4
LGBond 7.5
TBill 3.3
RealEst 15.0 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance of portfolio

• standev standard deviation of portfolio'

Positive Variable x;

Equations fsum fractions must add to 1.0
dmean ■ definition of expected TNR on portfolio
fvariance definition of portfolio variance;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target ;
fvariance.. sum(i, x(i)*sum(j,col(i j)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio /.all / ; ^
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

For (k = 1 to 5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - stq)
* In this example, the length of stq> is set at 0.5

S oive portfolio using nip minimizing variance; 
standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.l;

);
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Appendix 1.3

GAMS Program for Finding the Maximum Retum Portfolio.
in terms of the Total Nominal Retum Objective

SOnText
This sample GAMS program is written to find the maximum retum portfolio 
along the efficient fi’ontier in terms of the total nominal retum (TNR) objective. 
This portfolio is considered the most aggressive. The underlying quadratic 
programming model is Model 2.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalar k index for loop;
Scalar TargetSTD target standard deviation of portfolio (%) /33/;
Parameters retum(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8
LCBond 5.3
LGBond 4.7
TBill 3.6
RealEst 7.5 /;

Parameters STD(i) standard deviations of TNR on individual assets (%)

/ LaStock 20.9
SmStock 35.6
LCBond 8.4
LGBond 7.5
TBill 3.3
RealEst 15.0 /;

Table col(i j) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19. 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolio invested in asset i 
ExRetum expected retum on portfolio 

Positive Variable x; . _

Equations
feum. fractions must eidd to 1.0
dmean definition of mean expected TNR on portfolio
fSTD definition of standard deviation ofportfolio;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= ExRetum;
fSTD.. sqrt(sum(i, x(i)*sum(j,col(ij)*STD(i)*STDO)*x(j)))) =e= TargetSTD;

Model portfolio /all / ;
Solve portfolio using nip maximizing ExRetun^
Display ExRetum.1, targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars Rl ;
Scalars R2 ;
Rl = ExRetural;

Model pi /fsum, dmean, fSTD/;
Solve pi using nip maximizing ExRetum;

R2 = ExRetum.1; 
k^l;

For (k = 1 to 20,
If(R K R 2 ,

targetSTD = targetSTD + 0.2 ;
R1=R2 ;
Solve pi using nip maximizing ExRetum;
R2 = ExRetural;

Else
targetSTD = targetSTD -0.2 ;
Solve pi using nip maximizing ExRetum;
Display ExRetum 1, targetSTD, x.1 ; 
targetSTD .= targetSTD+0.2 ;

); 
);
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Appendix 1.4

GAMS Program for Obtaining Local Optimal Portfolio
in terms nf the Total Nominal Retum Obj ective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.2) 
whose objective function is to maximize an investor's utility in terms of the total 
nominal retum (TNR) objective. The outputs are the characteristics of local optimal 
portfolio, including the expected return, standard deviation, percentage of portfolio 
invested in each asset class, as well as the values of the investor's risk tolerance and 
utility.

SOfTText
I

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Set m reference portfolio A/ReA, VarA/;
Set 1 reference portfolio C/ReC,VarC/;

Scalar t the investor's risk tolerance;
Scalar k the relative degree of preference between portfolios A and C / 0.630 /;

* For aggressive action, k = 0.475
* For normal action, k = 0.630
* For conservative action, k = 2.759

Parameters refA(m) expected retum and variance of reference portfolio A 
/ReA 4.00 

VarA 9.99 /;
Parameters refC(l) expected retum and variance of reference portfolio C 

/ReC 13.00 
VarC 411.68 /;

t = (refA('VarA') -  k * refC('VarC')) / (refA('ReA') -  k * refC('ReC'));
* Definition of an investor’s risk tolerance

Parameters retum(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8
LCBond 5.3
LGBond 4.7
TBill 3.6
RealEst 7.5 /;
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Parameters STD(i) standard deviations of TNR of individual assets (%)

/ LaStock 20.9
SmStock 35.6
LCBond 8.4

. LGBond 7.5
TBill 3.3
RealEst 15.0

Table col(ij) correlations between assets

/;

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 ' -0.01 -0.08 0.06 ■
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00 ;

Variables x(i) fraction of portfolio invested in asset i
retumEx expected return of portfolio
variance definition of potfolio variance
standev standard deviation of portfolio
utility definition of utility ;

Positive Variable x;

Equations

feum..
fretumEx..
fvariance..
dutil..

fsum fractions must add to 1.0
fretumEx definition of portfolio retum
fvariance definition of potfolio variance
dutil definition of utility;

sum(i, x(i)) 
sum(i, retum(i)*x(i))
sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) 
retumEx - variance/t

=e= 1.0 ;
=e= retumEx ; 
=e= variance; 
=e= utility ;

Model portfolio / all / ;
Solve portfolio using nip maximizing utility; 
standev.l = sqrt(variance.l) ;
Display t, utility.l, retumEx.1, standev.l, x.1 ;
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Appendix 1.5 .

GAMS Program for Finding Performance of the Complete Portfolio .
in terms of the Total Nominal Return Objective

SOnText
This GAMS program is written to obtain the performance information (expected return 
and standard deviation) of the complete portfolio in terms of the total nominal return 
(TNR) objective.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)

Scalar RetumC Excepted return of complete portfolio in terms of TNR objective
VarC Variance of complete portfolio in terms of TNR objective
StdC Standard deviation ;

Parameters x(i) fraction of assets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0.337  /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286 , SmStock = 0.266 , LCBond = 0.148 ,
* LGBond = 0 .000 , TBill = 0.009 , RealEst = 0 .2 9 1.
* For conservative action, LaStock = 0 .232 , SmStock = 0i081 , LCBond = 0 .283 ,

* LGBond = 0 .0 0 1 , TBill = 0.075 , RealEst = 0.328.

Parameters retum(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8
LCBond 5.3
LGBond 4.7
TBill 3.6
RealEst 7.5
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Parameters STD(i) standard deviations of TNR of individual assets (%)

. 7 LaStock .20.9
SmStock 35.6
LCBond 8.4
LGBond 7.5

, . - TBill 3.3 ■
RealEst • 15.0 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 . 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 LOO 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07. -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00 ;

retumC = sum(i, retum(i)*x(i));
varC = sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) ; 
StdC = sqrt(varC) ;

Display RetumC, StdC;
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. Appendix 1.6

GAMS Program for Obtaining the. Optimal Portfolio for a Given Target Return
in terms of the Total Nominal Return Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.1) 
whose objective is to minimize a portfolio's variance in terms of the nominal total 
return (TNR) objective. The input data are the specified expected target returns. The 
outputs are the characteristics of optimal portfolio, including the expected return, 
standard deviation, and the percentage of portfolio invested in each asset class. 

SOfTText

Set i assets /LaStock, SmStock,LCBond, LCyBond,TBill, RealEst/; alias (ij)
Scalar target target mean total nominal return (TNR) of portfolio (%) / 13/;

Parameters retum(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8
LCBond 5.3
LGBond 4.7
TBill 3.6
RealEst 7.5

Parameters STD(i) standard deviations of TNR on individual assets (%)

/ LaStock 20.9
SmStock 35.6
LCBond 8.4
LGBond 7.5
TBill 3.3
RealEst 15.0 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0,01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -O.OI 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00



Variables x(i)
variance
standev

fraction of portfolio invested in asset i 
variance of expected TRN on portfolio 
standard deviation of portfolio • •

Positive Variable x;

Equationis

feutn..
dmean..
fvariance..

feum fractions must add to 1.0
dmean . definition of expected TNR on portfolio

. fvariance definition of portfolio variance;

sum(i, x(i)) 
sum(i, retmn(i)*x(i))
sum(i,x(i)*sum(i,col(iJ)*STD(i)*STDa)*x(j)))

=e= 1.0 ; 
=e= target; 
=e= variance;

Model portfolio / a l l / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.l;
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Appendix 2

GAMS Programs Associated with the Capital Appreciation Objective
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Appendix 2.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Capital Appreciation Obj ective

SOnText
This GAMS program is written to find the global minimum variance portfolio along 
efiQcient frontier in terms of the capital appreciation (CA) objective. The underlying 
quadratic programming model is Model 4.1.

SCfïText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalars k index for loop

target initial target return /0.2/;

Parameters retum(i) expected capital appreciations of individual assets (%)

/ LaStock 7.3
SmStock 12.8
LCBond -0.6
LGBond -0.4
TBill -0.1
RealEst 2.3

Parameters STD(i) standard deviations of expected CA of individual assets (%)

/ LaStock 17.6
SmStock 27.8
LCBond 4.9
LGBond 4.6
TBill 1.0
RealEst 11.7

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolioinvestedin asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations
feum fractions must add to 1.0
dmean definition ofmean expected return on portfolio
fvariance definition of portfolio variance;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / a l l / ;  \
Solve portfolio using nip minimizing variance;

target = target-0.1;
Scalars vl ;
Scalars v2 ;

vl = variance. 1;
* set vl current variance

Model pi /feum, dmean, fvariance/;
Solve pi using nip minimizing variance;

v2 = variance.l; 
kFl;

For (k = 1 to 6,
I f(vl>v2,

target = target-0.1 ;
vl=v2 ;
Solve pi using nip minimizing variance; 
v2 = variance.l;

Else
target = target + 0.1;
Solve pi using nip minimizing variance; 
standev.l = sqrt(vl)
Display vl, standev.l, target ; 
target = target-0.1 ;

); 
);
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Appendix 2.2-

GAMS Program for Generating the List of Candidate Portfolio list
in terms of the Capital Appreciation Objective

SOnText
This GAMS program is written to generate the candidate conservative reference 
portfolio list in terms of the capital appreciation (CA) objective. Slightly modified, this 
program can also be used to generate the aggressive portfolio list.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij) 
Scalar target targeted mean after-tax return on portfolio (%) /2.8/;
* If generate aggressive portfolio, the target can be set as 12, for example.
Scalar k index for loop;

Parameters retum(i) expected capital appreciations of individual assets (%)

/ LaStock 7.3
SmStock 12.8
LCBond -0.6
LGBond -0.4
TBill -0.1
RealEst 2.3 /;

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 17.6
SmStock 27.8
LCBond 4.9
LGBond 4.6
TBill 1.0
RealEst 11.7 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio investedin asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations feum fractions must add to 1.0
dmean definition of expected CA on portfolio
fvariance definition of portfolio variance;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target ;
fvariance.. sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / all / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

For (k = 1 to 5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - stq)
* In this example, the length of step is set at 0.5

Solve portfolio using nip minimizing variance; 
standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.l;

);
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Appendix 23 - * •*

GAMS Program for Finding the Maximum Return Portfolio 
in terms of the Capital Appreciation Objective

SOnText
This GAMS program is written to find the maximum return portfolio along the 
efficient firontier in terms of the capital appreciation (CA) objective. This portfolio 
is considered the most aggressive. The underlying quadratic programming model 
is Model 2.1.

SOffText

Set i assets /LaStock, SmStock,LCBônd, LGBond,TBill, RealEst/; alias (ij); 
Scalar k index for loop
Scalar TargetSTD target standard deviation on portfolio (%) / 26/;

Parameters retum(i) expected capital appreciations of individual assets (%)

/ LaStock 7.3
SmStock 12.8
LCBond -0.6
LGBond -0.4
TBill -0.1
RealEst 2.3

Parameters STD(i) standard deviations of CA of individual assets (%)

/ LaStock 17.6
SmStock . 27.8
LCBond 4.9
LGBond 4.6
TBill 1.0
RealEst 11.7 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 - 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
ExRetum expected return on portfolio 

Positive Variable x;

Equations
feum fractions must add to 1.0
dmean definition of expected CA on portfolio
fSTD definition of standard deviation of portfolio ;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= ExRetum ;
fSTD.. sqrt(sum(i, x(i)*sum(j,col(iJ)*STD(i)*STDG)*x(j)))) =e= TargetSTD;

Model portfolio / a l l / ;
Solve portfolio using nip maximizing ExRetum; \
Display ExRetum.1, targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars R1 ;
Scalars R2 ;
R1 = ExRetum.l;

Model pi /feum, dmean, fSTD/;
Solve pi using nip maximizing ExRetum;

R2 = ExRetural;
1^1;

For (k = 1 to 20,
I f (R K R 2 ,

targetSTD = targetSTD + 0.2 ;
R1 = R2 ;
Solve pi using nip maximizing ExRetum;
R2 = ExRetural;

Else
targetSTD = targetSTD -0.2 ;
Solve pi using nip maximizing ExRetum;
Display ExRetural, targetSTD, x.1 ; 
targetSTD = targetSTD +0.2 ;

); 
);
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Appendix 2.4 ‘ •'

GAMS Program for Obtaining Local Optimal Portfolio 
in terms of the Capital Appreciation Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.2) 
whose objective function is to maximize an investor's utility in terms of the capital 
appreciation (CA) objective. The ouq)uts are the characteristics of local optimal 
portfolio, including the expected return, standard deviation, percentage of portfolio 
invested in each asset class, as well as the values of the’ investor's risk tolerance and 
utility.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Set m reference portfolio A/ReA, VarA/;
Set 1 reference portfolio C/ReC,VarC/;

Scalar t the investor’s risk tolerance;
Scalar k the relative degree of preference between portfolios A and C / 0.630/;

* For aggressive action, k = 0.475
* For normal action, k = 0.630
* For conservative action, k = 2.759

Parameters refA(m) expected return and variance of reference portfolio A 
/ReA 3.00 

VarA 38.01 /;
Parameters refC(l) expected return and variance of reference portfolio C 

/ ReC 10.00 
VarC 431.81 /;

t = (refA.('VarA') -  k * refC('VarC')) / (ref^CReA') -  k * refC('ReC'));

* definition of an investor’s risk tolerance

Parameters retum(i) expected capital appreciations of individual assets (%)

/ LaStock 7.3 ' •
SmStock 12.8
LCBond -0.6
LGBond -0.4
TBill -0.1
RealEst 2.3 /;
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Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 17.6
SmStock 27.8
LCBond 4.9
LGBond 4.6
TBill 1.0
RealEst 11.7 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEsi
LaStock 1.00 0.82 0.19 ^ 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 . 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

Variables x(i) fraction of portfolio invested in asset i
retumEx expected return of portfolio
variance definition of portfolio variance
standev standard deviation of portfolio
utility definition of the utility ;

Positive Variable x;

Equations
feum fractions must add to 1.0
fretumEx definition of portfolio return
fvariance definition of portfolio variance
dutil definition of utility;

feum.. sum(i, x(i))
fretumEx.. sum(i, retum(i)*x(i))
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j)))
dutil.. retumEx - variance/t

=e= 1.0 ;
=e= retumEx ; 
=e= variance; 
=e= utility ;

Model portfolio / all / ;
Solve portfolio using nip maximizing utility; 
standev.l = sqrt(variance.l) ;
Display t, utility.l, retumEx.l, standev.l, x.1 ;
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Appendix 2.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Capital Appreciation Objective

SOnText
This GAMS program is written to obtain the performance information (expected return 
and standard deviation) of the complete portfolio in terms of the capital appreciation 
(CA) objective. ' -

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)

Scalar RetumC Excepted return of complete pl>rtfolio in terms of CA objective
VarC Variance of complete portfolio in terms of CA objective
StdC Standard deviation ;

Parameters x(i) fraction of assets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0.337

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond = 0.148,
* LGBond = 0.000, TBill = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond = 0.001, TBill = 0.075, RealEst = 0.328.

Parameters retum(i) expected capital appreciations of individual assets (%)

/ LaStock 7.3
SmStock 12.8
LCBond -0.6
LGBond -0.4
TBill -0.1
RealEst 2.3 /;•
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Parameters STD(i) standard deviations of of CA of individual asset(%)

/ LaStock 17.6
SmStock - 27,8 
LCBond 4.9
LGBond 4.6
TBill 1.0
RealEst .11.7 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEs
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93. 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 . -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 : 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

retumC = sum(i, retum(i)*x(i));
varC = sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) ; 
StdC = sqrt(varC) ;

Display RetumC, StdC;
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' Appendix 2.6 . * .

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return 
in terms of the Capital Appreciation Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.1) 
whose objective function is to minimize à portfolio's variance in terms of the capital 
appreciation (CA) objective. The input data are flie specified expected target returns. 
The outputs are the characteristics of optimal portfolio, including the expected return, 
standard deviation, percentage of portfolio invested in each asset class.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
Scalar target target mean capital appreciation (CA) of portfolio (%) /10/;

Parameters retum(i) expected capital appreciations of individual assets (%)

/ LaStock 7.3
SmStock 12.8
LCBond -0.6
LGBond -0.4
TBill -0.1
RealEst 2.3 /;

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 17.6
SmStock 27.8
LCBond 4.9
LGBond 4.6
TBill 1.0
RealEst 11.7 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06

SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06

LCBond 0.19 0.08 1.00 0.93 0.19 -0.08

LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09

TBill -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolioinvestedin asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0
dmean definition ofmean expected CA on portfolio
fvariance definition of portfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

l
Model portfolio / ail / ;
Solve portfolio using nlp minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;
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Appendix 3

GAMS Programs Associated with the Current Income Objective
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Appendix 3.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Current Income Objective

SOnText
This GAMS program is written to find the global minimum variance portfolio along 
efficient fi'ontier in terms of the current income (CRJ) objective. The underlying 
quadratic programming model is Model 4.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalars k index for loop 

target /5.0/;

Parameters retum(i) expected current incomes of individual assets (%)

/ LaStock 4.8
SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7
RealEst 5.2

Parameters STD(i) standard deviations ofCRI of individual assets (%)

/ LaStock 3.3
SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill 2.4
RealEst 3.3 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance of portfolio
standev. standard déviation of portfolio

Positive Variable x; .

Equations
feum fractions must add to 1.0
dmean . definition ofmean expected return bn portfolio 
fvariance definition of portfolio variance;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio /all / ;
Solve portfolio using nip minimizing variance;

target = target-0.1; *
Scalars vl ;
Scalars v2 ;

vl = variance.l;
* set vl current variance

Model pi /feum, dmean, fvariance/;
Solve pi using nip minimizing variance;

v2 = variance.l;
k=l;

For (k= 1 to 6,
If(v l> v 2 ,

target = target-0.1 ;
vl=v2 ; •
Solve pi using nip minimizing variance; 
v2 = variance.l;

Else
target f  target + 0.1 ;
Solve pi using nip minimizing variance; 
standev.l = sqrt(vl)
Display vl, standev.l, target ; 
target= target-0.1 ;

); ' ■ 
); •
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Appendix 3.2

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Current Income Objective

SOnText
This GAMS program is written to generate the candidate conservative reference 
portfolio list in terms of the current income (CRI) objective. Slightly modified, this 
program can also be used to generate the aggressive portfolio list.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
Scalar target targeted mean income on portfolio (%) /4.5/;
* If generate aggressive portfolio, the target v^lue can be set as 5.9, for example.
Scalar k index for loop;

Parameters retum(i) expected current incomes of individual assets (%)

/ LaStock 4.8
SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7
RealEst 5.2 /;

Parameters STD(i) standard deviations ofCRI of individual assets (%)

/ LaStock 3.3
SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill 2.4
RealEst 3.3 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0:06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance of portfolio 
standev • standard deviation of portfolio

Positive Variable x;

Equations , Êium fractions must add to 1.0
dmean definition of expected income on portfolio *
fvariance definition of portfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio /a l l / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

For (k = 1 to 5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - stq)
* In this example, the length of stq) is set at 0.5

Solve portfolio using nip minimizing variance; 
standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

);
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Appendix 3 J

GAMS Program for-Finding the Maximum Return Portfolio
in terms of the Current Income Objective,

SOnText
This GAMS program is written to find the maximum return portfolio along the 
efficient fircntier in terms of the current income (CRI) objective. This portfolio is 
considered the most aggressive. The underlying quadratic programming model is 
Model 2.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalar k index for loop \
Scalar TargetSTD target standard deviation of portfolio (%) /2.9/;

Parameters retum(i) expected current incomes of individual assets (%)

/ LaStock 4.8
SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7
RealEst 5.2

Parameters STD(i) standard deviations of CRI of individual assets (%)

/ LaStock 3.3
SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill 2.4
RealEst 3.3 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst • -0.06 0.06 -0.08 -0.09 0.38 1.00

108



Variables . v .
x(i) fraction of portfolio invested in asset i
ExRetum expected return on portfolio 

Positive Variable x;

Equations
fsum frracdons must add to 1.0
dmean definition of expected income on portfolio
fSTD definition of standard deviation of portfolio;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= ExRetum;
fSTD.. sqrt(sum(i, x(i)*sumO,col(i j)*STD(i)*STD(j)*x(j)))) =e= TargetSTD;

Model portfolio /a l l / ;
Solve portfolio using nip maximizing ExRetum; '
Display ExRetural, targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars R1 ;
Scalars R2 ;
R1 = ExRetural;

Model pi /feum, dmean, fSTD/;
Solve pi using nip maximizing ExRetum;

R2 = ExRetural; 
k=l;

For (k = 1 to 20,
I f(R K R 2 ,

targetSTD = targetSTD + 0.2 ;
R1 = R2 ;
Solve pi using nip maximizing ExRetum;
R2 = ExRetural;

Else
targetSTD = targetSTD -0.2 ;
Solve pi using nip maximizing ExRetum;
Display ExRetural, targetSTD, x.1 ; 
targetSTD = targetSTD+0.2 ;

);
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Appendix 3.4

GAMS Program for Obtaining Local Optimal Portfolio
in terms of the Current Income Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.2) 
whose objective function is to maximize an investor's utility in terms of the current 
income (CRI) objective. The outputs are the characteristics of local optimal portfolio, 
including the expected return, standard deviation, percentage of portfolio invested in 
each asset class, as well as the values of the investor's risk tolerance and utility. 

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Set m reference portfolio A /ReA, VarA/;
Set 1 reference portfolio C /ReC,VarC/;

Scalar t the investor's risk tolerance;
Scalar k the relative degree of preference between portfolios A and C / 0.754/;

* For aggressive action, k = 0.754
* For normal action, k = 0.763
* For conservative action, k = 0.793

Parameters refA(m) expected return and variance of reference portfolio A 
/ReA 4.50 

VarA 2.65 /;

Parameters refC(l) expected return and variance of reference portfolio C 
/ ReC 5.90 

VarC 12.25 /;

t = (refA('VarA') -  k * refC('VarC')) / (refA('ReA') -  k * refC('ReC’));

Parameters retum(i) expected current incomes of individual, assets (%)

/ LaStock 4.8
SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7
RealEst 5.2

110



Parameters STD(i) standard deviations of CRI of individual assets (%)

/.LaStock 3.3
SmStbck 8.0
LCBond 3.5
LGBond 2.9

' TBill 2.4
RealEst - 3.3 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 ■ -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

Variables x(i)
retumEx
variance
standev
utility

Positive Variable x;

fraction of portfolio invested in asset i 
expected return of portfolio 
definition of portfolio variance 
standard deviation of portfolio 
definition of utility ;

Equations

fsum..
fretumEx..
fvariance..
dutil..

■ fsum fractions must add to 1.0
fretumEx definition of portfolio return
fvariance definition of portfolio variance
dutil definition of utility;

sum(i, x(i)) 
sum(i, retum(i)*x(i))
sum(i, x(i)*sum(i,col(ij)*STD(i)*STD(j)*x(i))) 
retumEx - variance/t

=e= 1.0 ;
=e= retumEx ; 
=e= variance; 
=e= utility ;

Model portfolio / a l l / ;
Solve portfolio using nip maximizing utility; 
standev.l = sqrt(variance.l) ;
Display t, utility 1, retumEx.1, standev.l, x.l ;
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Appendix 3.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Current income Objective

SOnText
This GAMS program is written to obtain the performance information (expected return 
and standard deviation) of the complete portfolio in terms of the current income (CRI) 
objective.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
I

Scalar RetumC Excepted return of complete portfolio for CRI objective
VarG Variance of complete portfolio for CRI objective
StdC Standard deviation of complete portfolio for CRI objective;

Parameters x(i) fraction of assets making up the complete portfolio

LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0.337 /;

♦These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond = 0.148,
* LGBond =0.000, TBill = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond =0.001, TBill = 0.075, RealEst = 0.328.

Parameters retum(i) expected current incomes of individual assets (%)

/ LaStock 4.8
SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7
RealEst 5.2 /;
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Parameters STD(i) standard deviations of CRI of individual assets (%)

LaStock 3.3
SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill, . 2.4
RealEst 3.3 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.Ô6
SmStock 0.82 1.00 0.08 ' -0.01 -0.08 0.06
LCBond 0.19 , 0.08 1.00 0.93 . 0.19 -0.08
LGBond 0.11. -0.01 0.93 = 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 • 0.06 -0.08 -0.09 0.38 1.00

retumC = sum(i, retum(i)*x(i));
varC = sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) ; 
StdC = sqrt(varC) ;

Display RetumC, StdC;
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Appendix 3.6

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return
in terms of the Current Income Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.1) 
whose objective function is to minimize a portfolio's variance in terms of the current 
income (CRI) objective. The input data are the specified expected target returns. The 
outputs are the characteristics of optimal portfolio, including the expected return, 
standard deviation, percentage of portfolio invested in each asset class.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (iJ)
Scalar target target mean current income (CRI) of portfolio (%)/5.9/;

Parameters retum(i) expected current incomes of individual assets (%)

/ LaStock 4.8
SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7
RealEst 5.2

Parameters STD(i) standard deviations of CRI of individual assets (%)

/ LaStock 3.3
SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill 2.4
RealEst 3.3

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 ' 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfôlio invested in asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations frum . fractions must add to 1.0
• dmean definition of ecpected income on portfolio

fvariance definition of portfolio variance;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio /a l l / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.l;
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Appendix 4

GAMS Programs Associated with the After tax Return Objective
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Appendix 4.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the After-tax Return Objective

SOnText
This GAMS program is written to find the global minimum variance portfolio along 
efBcient firontier in terms of the after-tax return (ATR) objective. The underlying 
quadratic programming model is Model 4.1.

SOffText .

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalars k index for loop

target initial target return/2.5/;

Parameters retum(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3
LCBond 3.2
LGBond 2.6
TBill 2.0
RealEst 4.6

Parameters STD(i) standard deviations of ATR of individual assets (%)

/ LaStock 15.4
SmStock 26.5
LCBond 5.0
LGBond 4.2
TBill 1.8
RealEst 8.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations
feum fractions must add to 1.0
dmean definition of expected return on portfolio
fr'ariance definition of portfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(i,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio /a l l / ;  \
Solve portfolio using nip minimizing variance;

target = target-0.1;
Scalars vl ;
Scalars v2 ;

vl = variance. 1;
* set vl current variance

Model pi /fsum, dmean, fvariance/;
Solve pi using nip minimizing variance;

v2 = variance.l; 
k=l;

For (k = 1 to 6,
If(vl >v2,

target = target-0.1 ;
vl=v2 ;
Solve pi using nip minimizing variance; 
v2 = variance.];

Else
target = target + 0.1 ;
Solve pi using nip minimizing variance; 
standev.l = sqrt(vl)
Display vl j standev.l, target ; 
target = target-0.1 ;

); • . .

);
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: Appendix 4.2 " -

GAMS Program for Generating the List-of Candidate Portfolios
in terms of the After-tax Return Objective

SOnText ' ‘
This GAMS program is written to generate die candidate conservative reference 
portfolio list in terms of die after-tax return (ATR) objective. Slightly modified, this 
program can also be used to generate the aggressive portfolio list.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
Scalar target targeted mean ATR on portfolio (%) 11.51',
* If generate aggressive portfolio, the target value can be set as 12, for examjple.
Scalar k index for loop; \

Parameters retum(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3
LCBond 3.2
LGBond 2.6
TBill 2.0
RealEst 4.6 /;

Parameters STD(i) standard deviations of ATR of individual assets (%)

/ LaStock 15.4
SmStock 26.5
LCBond 5.0
LGBond 4.2
TBill 1.8
RealEst 8.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06 '

SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06

LCBond 0.19 0.08 1.00 0.93 0.19 -0.08'

LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09

TBill ' -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio investedin asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0
dmean definition of expected ATR on portfolio
fvariance definition of portfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmeaa. sum(i, retum(i)*x(i)) -e= target;
fvariance.. sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD(j)*x®)) =e= variance;

Model portfolio / all / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.1, standev.l, x.1;

For (k= 1 to 5,
target = target+ 0.5;

* If used for generating aggressive portfolio list, target = target - stq)
* In this example, the length of step is set at 0.5

Solve portfolio using nip minimizing variance; 
standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.l;

);
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Appendix 4.3 ' ’ '

GAMS Program for Finding the Maximum Return Portfolio
in terms of the After-tax Return Objective

SOnText
This GAMS program is written to find the maximum return portfolio along the 
efficient frontier in terms of the after-tax return (ATR) objective. This portfolio is 
considered the most aggressive. The underlying quadratic programming model is 
Model 2.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij); 
Scalar k index for loop;
Scalar TargetSTD target STD on portfolio (%) / 24.9/;

Parameters retum(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3
LCBond 3.2
LGBond 2.6
TBill 2.0
RealEst 4.6

Parameters STD(i) standard deviations of ATR of individual assets (%)

/ LaStock 15.4
SmStock ■ 26.5 
LCBond 5.0
LGBond 4.2
TBill 1.8
RealEst 8.0 /;

Table col(ij) correlations bewteen assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfblio invested in asset i
ExRetum expected return on portfolio 

Positive Variable x;

Equations
feum fractions must add to 1.0
dmean definition ofexpected ATR on portfolio
fSTD definition ofstandard deviation of portfolio;

feum.. ' sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= ExRetum ;
fSTD.. sqrt(sum(i, x(i)*sumO,col(iJ)*STD(i)*STD(j)*x(j)))) =e= TargetSTD;

Model portfolio /a l l / ;  |
Solve portfolio using nip maximizing ExRetum; 
Display ExRetum.l, targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars R1 ;
Scalars R2 ;
R1 = ExRetum.1;

Model pi /feum, dmean, fSTD/;
Solve pi using nip maximizing ExRetum;

R2 = ExRetum.l;

For (k = 1 to 20,
If(RKR2,

targetSTD = targetSTD + 0.2 ;
R1=R2 ;
Solve pi using nip maximizing ExRetum; 
R2 = ExRetum.l;

Else
targetSTD = targetSTD -0.2 ;
Solve pi using nip maximizing ExRetum; 
Display ExRetuml, targetSTD, x.1 ; 
targetSTD = targetSTD +0.2 ;

); 
);
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Appendix 4.4 ‘

GAMS Program for Obtaining the Local Optimal Portfolio -
in terms of the After tax Return Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.2) 
whose objective hmction is to maximize an investor's utility in terms of the after-tax 
return (ATR) objective. The outputs are the characteristics of local optimal portfolio, 
including the expected return, standard deviation, percentage of portfolio invested in 
each asset class,,as well as the values of the investor's, risk tolerance and utility. 

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Set m reference portfolio A/ReA, VarA/;  ̂ '
Set 1 reference portfolio C /ReC,VarC/;

Scalar t the investor's risk tolerance;
Scalar k the relative degree of preference between portfolios A and C / 0.630/;

* For aggressive action, k = 0.475
* For normal action, k = 0.630
* For conservative action, k = 2.759

Parameters refA(m) expected return and variance of reference portfolio A
/ReA 3.00 '

VarA 5.19 /;

Parameters refC(l) expected return and variance of reference portfolio C 
/ ReC 10.00

VarC 277.89 /;

t = ( refA('VarA') -  k * refC('VarC')) / (refA('ReA') -  k * refC('ReC));

Parameters retum(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3
LCBond 3.2
LGBond • 2.6
TBill 2.0 .
RealEst 4.6 /
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Parameters STD(i) standard deviations of ATR of individual assets (%)

LaStock
SmStock
LCBond
LGBond
TBill
RealEst

15.4
26.5

5.0 
4.2 
1.8
8.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 . 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill ; -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08; -0.09 0.38 1.00

Variables x(i) fraction of portfolio invested in asset i
retumEx expected return of portfolio
variance definition of portfolio variance
standev standard deviation of portfolio
utility definition of utility ;

Positive Variable x;

Equations

fsum..
fretumEx..
fvariance..
dutil..

fsum fractions must add to 1.0
fretumEx definition of portfolio retum
fvariance definition of portfolio variance
dutil definition of utility;

sum(i, x(i)) 
sum(i, retum(i)*x(i))
sum(i, x(i)*sum(i,col(ij)*STD(i)'*STDQ)*x(j))) 
retumEx - variance/t

=e=1.0;
=e= retumEx ; 
=e= variance; 
=e= utility ;

Model portfolio / a l l / ;
Solve portfolio using nip maximizing utility; 
standev.l = sqrt(variance.l) ;
Display t, utility. 1, retumEx.l, standev.l, x.1 ;
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Appendix 4.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the After-tax Retum Objective

SOnText •
This GAMS program is written to obtain the paformance information (expected retum 
and standard deviation) of the complete portfolio in terms of the after-tax retum (ATR) 
objective.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)

Scalar RetumC Excepted retum of complete portfolio for ATR objective
VarC : Varianceof complete portfolio for ATR objective 
StdC Standard deviation of complete portfolio for ATR objective;

Parameters x(i) fraction of assets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0.337

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond = 0.148,
* LGBond = 0.000, TBill = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond = 0.001, TBill = 0.075, RealEst = 0.328.

Parameters retum(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3
LCBond 3.2
LGBond 2.6
TBill 2.0
RealEst 4.6
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Parameters STD(i) standard deviations of ATR of individual assets (%)

/ LaStock 15.4
SmStock 26.5
LCBond 5.0
LGBond 4.2
TBill 1.8
RealEst 8.0 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

retumC = sum(i, retum(i)*x(i));
varC = sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) ; 
StdC = sqrt(varC) ;

Display RetumC, StdC;
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' Appendix 4.6 '

GAMS Program for Obtaining the Optimal Fortfolio for a Given Target Return
in terms of the After-tax Return Objective

SOnText
This GAMS program is written for solving the quadratic programming model (Model 
4.1) which objective is to minimize a portfolio's expected variance in terms of the 
after-tax retum (ATR) objective. The input data are the spedfied expected target returns. 
The outputs are the characteristics of optimal portfolio, including the expected return, 
standard deviation, percmt of each asset class invested.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij) 
Scalar target target mean ATR on portfolio (%)/10/;

Parameters retum(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3
LCBond 3.2
LGBond 2.6
TBill 2.0
RealEst 4.6

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 15.4
SmStock 26.5
LCBond 5.0
LGBond 4.2
TBill 1.8
RealEst 8.0 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06

SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06

LCBond 0.19 0.08 1.00 0.93 0.19 -0.08

LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09

TBill -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolio invested in asset i
variance variance ofportfolio 
standev standard deviation of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0
dmean definition of expected income on portfolio
fvariance definition of portfolio variance;

fsum., sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) -e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(3)*x(j))) =e= variance;

\

Model portfolio / a l l / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;
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Appendix 5

GAMS Programs Associated with the Preservation of Purchasing Power Objective
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Appendix 5.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Preservation of Purchasing Power Objective

SOnText
This GAMS program is written to find the global minimum variance portfolio along 
efficient fi-ontier in terms of the preservation of purch^ing power objective (PP). The 
underlying quadratic programming model is Model 4.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (iJ);
Scalars k index for loop 

target /1.5/;

Parameters retum(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8
SmStock 14.3
LCBond 2.4
LGBond 1.7
TBill 0.5
RealEst 4.3 /;

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 21.1
SmStock 34.9
LCBond 10.0
LGBond 8.5
TBill 4.4
RealEst 15.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01. -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolio investedin asset i
variance variance ofportfolio
standev standard deviation ofportfolio

Positive Variable x; ■ •

Equations
fsum fractions must add to 1.0
dmean . definition of mean expected retum on portfolio 
fvariance definition of portfolio variance;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) -e=  target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / all / ;
Solve portfolio using nip minimizing variance;

target = target-0.1;
Scalars vl ;
Scalars v2 ;

vl = variance.l;
* set vl current variance

Model pi /feum, dmean, fvariance/;
Solve pi using nip minimizing variance;

v2 = variance.1; 
k=l;

For (k = 1 to 6,
If(v l> v 2 ,

target = target-0.1 ; 
vl=v2 ;
Solve pi using nip minimizing variance; 
v2 = variance.l;

Else
target = target + 0.1 ;
Solve pi using nip minimizing variance; 
standev.l = sqrt(vl)
Display vl, standev.l, target ; 
target = target-0.1 ;

); -
);
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Appendix 5.2

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Preservation of Purchasing Power Objective

SOnText
This GAMS program is written to generate the candidate conservative reference 
portfolio list in terms of the preservation of purchasing power objective (PP). Slightly 
modified, this program can also be used to generate the aggressive portfolio list 

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
Scalar target targeted mean retum on portfolio (%) /l.O/;
* If generate aggressive portfolio, the target v^lue can be set as 12, for example.
Scalar k index for loop;

Parameters retum(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8
SmStock 14.3
LCBond 2.4
LGBond 1.7
TBill 0.5
RealEst 4.3 /;

Parameters STD(i) standard deviations of individual assets (%)

Table col(ij)

/ LaStock 21.1
SmStock 34.9
LCBond 10.0
LGBond 8.5
TBill 4.4
RealEst 15.0

correlations between assets

/;

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance ofportfolio
standev standard deviation of portfolio
. . - . - \

Positive Variable x;

Equations fsum fractions must add to 1.0
: dmean definition of expected return of portfolio

fvariance definition of portfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. . sum(i,retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio /a l l / ;  '
. Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

For (k = 1 to 5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - stq)
* In this example, the length of step is set at 0.5

Solve portfolio using nip minimizing variance; 
standev.l = sqrt(variance.l) ;
Display target, variance.1, standev.l, x.1;

);
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Appendix 5.3

GAMS Program for Finding the Maximum Return Portfolio
in terms of the Preservation of Purchasing Power Objective

SOnText
This GAMS program is written to find the maximum retum portfolio along the 
efficient fi’ontier in terms of the preservation of purchasing power objective (PP). 
This portfolio is considered the most aggressive. The underlying quadratic 
programming model is Model 2.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij); 
Scalar k index for loop;
Scalar TargetSTD target STD on portfolio (%) / 30.9/;

Parameters retum(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8
SmStock 14.3
LCBond 2.4
LGBond 1.7
TBill 0.5
RealEst 4.3

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 21.1
SmStock 34.9
LCBond 10.0
LGBond 8.5
TBill 4.4
RealEst 15.0 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolio invested in asset i
ExRetum expected retum on portfolio

Positive Variable x; - -

Equations
fsum fractions must add to 1.0
dmean definition of expected return on portfolio
fSTD definition of standard deviation of portfolio;

feum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= ExRetum ;
fSTD.. sqrt(sum(i, x(i)*sum(j,col(i j)*STD(i)*STD(j)*x(j)))) =e= TargetSTD;

Model portfolio / a ll/;
Solve portfolio using nip maximizing ExRetum;
Display ExRetuml, targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars R1 ;
Scalars R2 ;
R1 = ExRetuml;

Model pi /feum, dmean, fSTD/;
Solve pi using nip maximizing ExRetum;

R2 = ExRetuml; 
hr=l;

For (k = 1 to 20,
If(R K R 2 ,

targetSTD = targetSTD+ 0.2 ;
R1=R2 ; '
Solve pi using nip maximizing ExRetum;
R2 = ExRetuml;

Else
targetSTD -  targetSTD -0.2 ;
Solve pi using nip maximizing ExRetum;
Display ExRetuml, targetSTD, x.1 ; 
targetSTD = targetSTD+0.2 ;

);



Appendix 5.4

GAMS Program for Obtaining the Local Optimal Portfolio
in terms of the Preservation of Purchasing Power Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4 2) 
whose objective function is to maximize an investor's utility in terms of the 
preservation of purchasing power objective (PP). The ouq>uts are the characteristics of 
local optimal portfolio, including the expected return, standard deviation, percentage 
of portfolio invested in each asset class, as well as the values of the investor's risk 
tolerance and utility.

SOfTText

\

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Set m reference portfolio A/ReA, VarA/;
Set 1 reference portfolio C /ReC,VarC/;

Scalar t the investor's risk tolerance;
Scalar k the relative degree of preference between portfolios A and C 7 0.630/;

* For aggressive action, k = 0.475
* For normal action, k = 0.630
* For conservative action, k = 2.759

Parameters refA(m) expected return and variance of reference portfolio A 
/ReA 2.00 

VarA 20.83 /;
Parameters refC(l) expected return and variance of reference portfolio C 

/ ReC 9.00 
VarC 331.24/;

t = (refA('VarA') -  k * refC('VarC')) / (reDVCReA') -  k * refC('ReC'));

Parameters retum(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8
SmStock 14.3
LCBond 2.4
LGBond 1.7
TBill 0.5
RealEst 4.3
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Parameters STD(i) standard deviations of individual assets (%)

, / LaStock • 21.1
SmStock 34.9
LCBond 10.0

, LGBond 8.5
. ; / V  > • TBill 4.4
, . V . RealEst 15.0

Table col(i j)  correlations between assets

/;

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06 ' '
SmStock . 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond ' 0.19 0.08 1.00 ' 0.93 0.19 -0.08
LGÉond 0.11. -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00 ;

Variables x(i) Aaction of portfolio invested in asset i
retumEx expected return of portfolio
variance definition of portfolio variance
standev standard deviation of portfolio
utility definition of utility ;

Positive Variable x;

Equations
fsum firactions must add to 1.0 '
firetumEx definition of portfolio return
fvariance definition of portfolio variance
dutil definition of utility;

fsum.. ,sum(i, x(i))
firetumEx.. sum(i, retum(i)*x(i))
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j)))
dutil.. retumEx - variance/t

=e= 1.0 ;
=e= retumEx ; 
=ef= variance; 
=e= utility ;

Model portfolio / all / ;
Solve portfolio using nip maximizing utility; • 
standev.l = sqrt(variance.l) ;
Display t, utility.l, retumEx.l, • standev.l, x.l ;
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Appendix 5.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Preservation of Purchasing Power Objective

SOnText
This GAMS program is written to obtain the performance information (expected return 
and standard deviation) of the complete portfolio in terms of the preservation of 
purchasing power objective (PP).

SOflText

Set 1 assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)

Scalar RetumC Excepted return of complete portfolio for PP objective
VarC Variance of complete portfolio for PP objective
StdC Standard deviation complete portfolio for PP objective;

Parameters x(i) fraction of assets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0.337 /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond = 0.148,
* LGBond = 0.000, TBül = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond =0.001, TBill = 0.075, RealEst = 0.328.

Parameters retum(i) expected return on individual asset (%)

/ LaStock 8.8
SmStock 14.3
LCBond 2.4
LGBond 1.7
TBill 0.5
RealEst 4.3 /;
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Parameters STD(i) standard deviations'of individual assets (%)

/ LaStock 21.1
SmStock 34.9
LCBond 10.0
LGBond 8.5
TBill 4.4
RealEst 15.0 /;

Table col(iJ) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06 ■
SmStock 0.82 1.00 0.08 -0.01 -.0.08 0.06
LCBond 0.19 0.08 i.oo' 0.93 6.19 -0.08
LGBond 0:11 -0.01 • 0.93 1.00 0.22 ■ -0.09
TBill -0.07 -0.08 0.19 0.22 •' 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

retumC = sum(i, retum(i)*x(i));
varC = sum(i, x(i)*sum(j,col(i j)*STD(i)*STD(j)*x(j))) ; 
StdC = sqrt(varC) ;

Display RetumC, StdC;
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Appendix 5.6

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return
in terms of the Preservation of Purchasing Power Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.1) 
whose objective function is to minimize a portfolio's variance in terms of the 
preservation of purchasing power objective (PP). The input data are the specified 
expected target returns. The outputs are the characteristics of optimal portfolio, 
including the expected return, standard deviation, percentage of portfolio invested in 
each asset class.

SOffText

. Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij) 
Scalar target target mean inflation-adjusted return of portfolio (%)/10/;

Parameters retum(i) expected inflation-adjusted return of individual assets (%)

/ LaStock 8.8
SmStock 14.3
LCBond 2.4
LGBond 1.7
TBill 0.5
R.ealEst 4.3

Parameters STD(i) standard deviations of individual assets (%)

Table

/ LaStock 21.1
SmStock 34.9
LCBond 10.0
LGBond 8.5
TBill 4.4
RealEst 15.0

col(i j)  correlations between assets

/;

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -JO.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance of portfolio
standev standard deviation of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0
dmean definition of expected r^um on portfolio
fvariance definition of portfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / all / ; •
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variarïce.l) ;
Display target, variance.l, standev.l, x.l;
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Appendix 6

GAMS Programs Associated with the Liquidity Objective
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Appendix 6.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Liquidity Objective

SOnText
This GAMS program is written to find the global minimum variance portfolio along 
efGcient frontier in terms of the liquidity objective (LD). The underlying quadratic 
programming model is Model 4.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalars k index for loop 

target /0.5/;
I

Parameters retum(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock. 11.9
SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6
RealEst 0.0

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 20.5
SmStock 26.7
LCBond 7.5
LGBond 6.7
TBill 3.3
RealEst 0.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolio invested in asset i
variance variance ofportfolio
standev standard deviation ofportfolio

Positive Variable x;

Equations
fsum fractions must add to 1.0
dmean definition of expected return on portfolio
fvariance definition of portfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / all / ;
Solve portfolio using nip minimizing variance;

target = target-0.1;
Scalars vl ;
Scalars v2 ;

vl = variance.l;
* set vl current variance

Model pi /fsum, dmean, fvariance/;
Solve pi using nip minimizing variance;

v2 -  variance.l; 
k=l;

For (k = 1 to 6,
If (vl > v2,

target = target-0.1 ;
vl=v2 ;
Solve pi using nip minimizing variance; 
v2 = variance. 1;

Else
target = target + 0.1 ;
Solve pi using nip minimizing variance; 
standev.l = sqrt(vl)
Display vl, standev.l, target ; 
target = target-0.1 ;

); 
);
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Appendix 6.2

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Liquidity Objective

SOnText
This GAMS program is written to generate the candidate conservative reference 
portfolio list in terms of the liquidity objective (LD). Slightly modified, this program 
can also be used to generate the aggressive portfolio list 

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
Scalar target targeted mean retum on portfolio (%) /2.0/;
* If generate aggressive portfolio, the target value can be set as 12, for example.
Scalar k index for loop; '

Parameters retum(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock 11.9
SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6
RealEst 0.0

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 20.5
SmStock 26.7
LCBond 7.5
LGBond 6.7
TBill 3.3
RealEst 0.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock . 0.82 1.00 0.08 -0.01 -6.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance variance ofportfolio
standev standard deviation ofportfolio

Positive Variable x;

Equations feum fractions must add to 1.0
dmean definition of expected rrtum on portfolio
fvariance definition ofportfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target ;
fvariance.. sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / all / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

For (k = 1 to 5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - stq>
* In this example, the length of step is set at 0.5

Solve portfolio using nip minimizing variance; 
standev.l = sqrt(variance.l) ;
Display target, variance. 1, standev.l, x.l;

);
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Appendix 6.3

GAMS Program for Finding the Maximum Retum Portfolio
in terms of the Liquidity Objective

SOnText
This GAMS program is written to find the maximum retum portfolio along the 
efficient fi"ontier in terms of the liquidity objective (LD). This portfolio is 
considered the most aggressive. The underlying quadratic programming model is 
Model 2.1.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij); 
Scalar k index for loop;
Scalar TargetSTD target STD on portfolio (%)' / 23.7/;

Parameters retum(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock 11.9
SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6
RealEst 0.0

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 20.5
SmStock 26.7
LCBond 7.5
LGBond 6.7
TBill 3.3
RealEst 0.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolio invested in asset i
ExRetum expected retum on portfolio 

Positive Variable x;

Equations
fsum fractions must add to 1.0
dmean definition of expected retum on portfolio
fSTD definition of standard deviation of portfolio; 

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= ExRetum ;
fSTD., sqrt(sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD0*x(j)))) =e= TargetSTD;

Model portfolio /all / ;
Solve portfolio using nip maximizing ExRetum; 
Display ExRetum.l, targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars R1 ;
Scalars R2 ;
R1 = ExRetum.l;

Model pi /fsum, dmean, fSTD/;
Solve pi using nip maximizing ExRetum;

R2 = ExRetum.1; 
k=l;

For (k = 1 to 20,
If(R K R 2 ,

targetSTD = targetSTD + 0.2 ;
R1 = R2 ;
Solve p 1 using nip maximizing ExRetum; 
R2 = ExRetum.l;

Else
targetSTD = targetSTD -0.2 ;
Solve pi using nip maximizing ExRetum; 
Display ExRetuml, targetSTD, x.1 ; 
targetSTD = targetSTD +0.2 ;

); 
);
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Appendix 6.4

GAMS Program for Obtaining the Local Optimal Portfolio
. in terms of the Liquidity Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.2) 
whose objective function is to maximize an investor's utility in terms of the liquidity 
objective (LD), The outputs are the characteristics of local optimal portfolio, including 
the expected return, standard deviation, percentage of portfolio invested in each asset 
class, as well as the values of the investor's risk tolerance and utility.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Set m reference portfolio A/ReA, VarA/;
Set 1 reference portfolio C /ReC,VarC/;

Scalar t the investor's risk tolerance;
Scalar k the relative degree of preference between portfolios A and C / 0.630/;

* For aggressive action, k = 0.475
* For normal action, k = 0.630
* For conservative action, k = 2.759

Parameters refA(m) expected retum and variance of reference portfolio A 
/ReA 3.00 

VarA 5.157/;
Parameters refC(l) expected retum and variance of reference portfolio C 

/ReC 10.00 
VarC 233.60 /;

t = (refA('VarA') -  k * refC('VarC')) / (refA('ReA') -  k * refC('ReC'));

Parameters retum(i) expected liquidity-adjusted returns of individual assets.(%)

LaStock 11.9
SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6
RealEst 0.0
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Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 
SmStock 
LCBond 
LGBond 
TBill 
RealEst

20.5
26.7

7.5
6.7
3.3
0.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEsi
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 .1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 • 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 ■ 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

Variables x(i) fraction ofportfolio invested in asset i
retumEx expected retum of portfolio
variance definition of portfolio variance
standev standard deviation of portfolio
utility definition of utility ;

Positive Variable x;

Equations
fsum fractions must add to 1.0
fretumEx definition of portfolio retum
fvariance definition ofportfolio variance
dutil definition of utility;

fsum.. sum(i, x(i))
fretumEx.. sum(i, retum(i)*x(i))
fvariance.. sum(i, x(i)*sum(j,col(iJ)*STD(i)*STD(j)*x(j)))
dutil.. retumEx - variance/t

Model portfolio / all / ;
Solve portfolio using nip maximizing utility; 
standev.l = sqrt(variance.l) ;
Display t, utility.l, retumEx.l, standev.l, x.1 ;

=e= 1.0 ;
=e= retumEx ; 
=e= variance; 
=e= utility ;
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■ Appendix 6.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Liquidity Objective

SOnText
This GAMS program is written to obtain the performance information (expected retum 
and standard deviation) of the complete portfolio in terms of the liquidity objective 
(LD).

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)

Scalar RetumC Excepted retum of complete portfolio for ID objective
VarC Variance of complete portfolio for LD objective
StdC Standard deviation complete portfolio for LD objective;

Parameters x(i) fraction of assets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0.337 /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266; LCBond = 0.148,
* LGBond = 0.000, TBill = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond = 0.001, TBill = 0.075, RealEst = 0.328.

Parameters retum(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock 11.9
SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6
RealEst 0.0 /;
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Parameters STD(i) standard deviations of individual assets (%)

LaStock 20.5
SmStock 26.7
LCBond 7.5
LGBond 6.7
TBill 3.3
RealEst 0.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEs
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 \ -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00

retumC = sum(i, retum(i)*x(i));
varC = sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(i)*x(j))) ; 
StdC = sqrt(varC) ;

Display RetumC, StdC;
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Appendix 6.6

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return
in terms of the Liquidity Objective

SOnText
This GAMS program is written to solve the quadratic programming model (Model 4.1) 
whose objective function is to minimize a portfolio's variance in terms of the liquidity 
objective (LD). The input data are the specified expected target returns. The outputs 
are the characteristics of optimal portfolio, including thé expected return, standard 
deviation, percentage ofportfolio invested in each asset class.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij) 
Scalar target target mean liquidity-adjusted reh!im of portfolio (%) /10/;

Parameters retum(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock 11.9
SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6
RealEst 0.0

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 20.5
SmStock 26.7
LCBond 7.5
LGBond 6.7
TBill 3.3
RealEst 0.0 /;

Table col(i j)  correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09

TBill -0.07 -0.08 0.19 0.22 1.00 0.38

RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction ofportfolio investedin asset i
variance variance ofportfolio
standev standard deviation ofportfolio

Positive Variable x;

Equations fsum fractions must add to 1.0
dmean definition of expected retum on portfolio
fvariance definition ofportfolio variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, retum(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x(j))) =e= variance;

Model portfolio / a l l / ;
Solve portfolio using nip minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;
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