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Abstract

Portfolio efficiency and suitability are two important goals in the asset allocation
process involving a financial advisor and clients. In this pbject report, a multiple
objective asset allocation method which is intended to obtain a suitable portfolio
for a specific individual investor is proposed. The Analytic Hierarchy Process
(AHP) technique is employed as a framework to address an investor’s muitiple
investment objectives. Single-objective portfolio optimization techniques are
integrated into the decision hierarchy. To determine a single-objective optimal
portfolio, a method is proposed to measure an investor’s risk tolerance. An
interactive procedure based on the proposed asset allocation method is
presented to implement the allocation process. Comparisons with a
single-objective optimization method using a hypothetical example show that
improved portfolio efficiency in terms of all objectives can be achieved.
Questionnaires, GAMS (General Algebraic Modeling System) programs and

spreadsheet models are developed to facilitate the communications between the
financial advisor and investor.
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Chapter 1: Introduction

Almost every one in the world owns a combination of assets. It can be composed of real
assets, such as a house, a car, or furniture, and financial assets, such as cash, stocks, or

- bonds. Real assets are mostly for personal use in everyday life. There is not much room left
to be managed to generate income unless one sells them. Financial assets are fesourc&s that
can be organized to provide potential future growth and income. Asset allocation is an
-investment decision process about how to allocate available capital among different types
of financial assets. A combination of these assets is called a portfolio. For many individual
investors, however, the process of constructing a portfolio can be time-consuming and may
be a tough task because of limited knowledge and experience. Financial markets are full of
uncertainty. No one can predict what will exactly happen in the future. Investors worry
about making wrong decisions. And when investors seek advice from a financial
professional, they worry that the advisor may make wrong decisions for them. In order to
make a good investment recommendation, the financial advisor should consider multiple
dimensions of an investor’s objectives and preferences.

Optimization techniques have traditionally been used in asset allocation process. However,
an efficient portfolio determined by an optimization model is not necessarily also suitable
for a particular investor, partly because the judgment of a portfolio’s suitability is largely
subjective (Bolster, et al., 1995), and partly because traditional optimization is in practice
_constructed as a single-objective decision problem. Multiple-objective decision making
methods, such as the Analytic Hierarchy Process (AHP) developed by Saaty (1980), are
suitable to deal with complex situations where multiple objectives should be considered.
| However, a suitable portfolio obtained by the AHP normally is not optimal (Bolster. and
“Warrick, 2000). By integrating the AHP with traditional optimization techniques, it is
hoped that a suitable portfolio with improved overall efficiency can be obtained. A major
objective of this project report is to present such a multiple objective asset allocation model
for individual investors. When using the mean-variance optimization technique to
determine a portfolio, an investor’s risk tolerance is a key input factor. A theoretically

sound and workable measure for an investor’s risk tolerance is also presented in this report.

To develop a multiple objective asset allocation model, an understanding of asset allocation
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process is needed. An introduction to this process, as well as portfolio’s efficiency and
suitability, is-given below.

1.1 Asset Allocation Process

All decision problems have common elements: criteria of choice, alternatives and the
preferred solution(s). The decision alternatives for asset allocation are numerous possible
combinations of asset classes. For individual investors, they themselves, or the financial
advisor help them, evaluate the alternatives according to their financial goals and
considerations, and choose an asset combination that can achieve these goals. This process

can be summarized as goal setting, asset class selection, and portfolio determination.

1.1.1 Investment Goals

The key for a successful financial advisor is to know what his client needs. And the key for
an investor is to know what himself needs. The old saying “knowing the destination is half
the journey” indicates the important role of goal setting in asset allocation process. It
determines an investor’s asset allocation strategy. That is, asset allocation should be
consistent with investors’ investment goals. .

Many investors have a list of concrete- goals, such as to buy a house, send children to
universities, save enough money to retire early and comfortably, and so on. Some investors
would like to defer their income tax to future years or utilize the favorable tax rates on
different investment instruments. Some would like to preserve their capital from potential
losses. Some are concerned about the purchasing power of their money and would like to
seek investments to hedge increased inflation. Many investors seck multiple investment

objectives. Most of these goals can be translated into return requirements from investment
portfolios.

Investors’ financial status, time horizons and stages in their life cycle affect the asset
allocation decision. For example, high tax-bracket invesiors may seek investments that
generate income from capital gains and dividends, which are taxed at a lower rate than
interest income. Different investor risk attitudes also direct the investment portfolio toward

more conservative or more aggressive asset combinations.

-
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'1.1.2 Asset Classes

If we define asset allocation as spreading investments across a variety of asset classes, a
natural question is what asset classes are available for investors. Actually there are
thousands of asset alternatives available in the financial markets. In broad terms, cash,
bonds, stocks and real estate are four basic asset classes (see Maginn and Tuttle, 1990, p.
10-2, for the detailed discussions about treating real estate as an asset class in portfolio
analysis). They can be subdivided into smaller classes according to certain classification
methods. Stocks, for example, can be subdivided into large-cap and small-cap; value and
growth; international and domestic; and/or combinations thereof, Bonds can be subdivided
into governmental and corporate; short, intetmec\iate, and long term; convertible and
non-convertible; coupon and zero-coupon, etc. Each sub-class can be further divided. Each

asset class possesses some common properties that can distinguish it from others.

Asset classes provide various investment opportunities as well as different risk and return
characteristics. Cash and cash equivalents, such as bank accounts, term deposits, treasury
bills, money market mutual funds and other short-term instruments, typically provide
interests and generally be considered conservative because of their low risk, high liquidity
and abilities to preserve capital. Fixed-income assets, such as corporate bonds, provide
potential higher income opportunities but have moderate risk because they are subject to
potential default risk for reasons such as bankruptcy. Government bonds rarely have
default risk but are still subject to long-term inflation risk and generally have lower interest
rates than those of corporate bonds. Historically, stocks have been the best performing
asset class among traditional investments (Information Please, 2003). They typically offer
greater growth possibilities and good hedge to inflation in long-term. However, their prices
fluctuate frequently, sometimes significantly and therefore have high risk of loss.
Commercial real estate provides both lease income and potential capital appreciation, but
is not frequently traded and has high liquidity risk.

- Rational investors prefer higher returns and dislike risk (Markowitz, 1952). However, the
natural law of investments is that the higher the returns, the higher are the risks, and vice
verse. Although controversial, Efficient Market Hypothesis (Fama, 1995) states that
security prices fully reflect all available information of both historical and expected future

- events, and any efforts to pick up undervalued securities are like “random walk” in markets.
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Asset allocation is neither intended to outperform market nor a tool to “buy low, sell high”,
but a strategy to protect potential losses and to provide “satisfied” return by combining
asset classes into a portfolio.

1.1.3 Diversification

Once asset classes are identified, investors should determine how much of each class
should be included in the portfolio. That is, how much of funds should be invested in
stocks, how much in bonds, and so on. The answer is crucial to long-term portfolio
performance. An old adage tells us: “Don’t put all the eggs in one basket”. If one drops the
basket that carries all eggs, one loses all. This saying is well suited to situations of investing. If
an investor invests in a number of assets, he prevents himself from large losses linked to
one or some poor decisions. Modern portfolio theory (MPT), developed first by Markowitz
(1952), goes further than traditional random diversification. Analyses and attentions are
ot dnly given to the risks associated to each individual asset (asset class), but‘ also
provided to interrelationships among component assets within a portfolio. Diversification
works because not all financial assets go up or down at the same time or at the same rate.
When stock markets go up, bond markets may go down. While the high-tech sector falls
sharply, the food sector may slide only slightly or remain the same. If investors held assets
that do not correlate with each other, the increase in one can offset losses in another. MPT
points out that a well-diversified portfolio will achieve higher returns without having to
take more risk, or achieve given expected returns for minimal risk. This is the theoretical
foundation of asset allocation.

1.1.4 Portfolio Determination

In asset allocation process involving a financial advisor and clients, typically the advisor
provides available market opportunities (Maginn and Tuttle, 1990, p. 7-12). These
opportunities are combinations of several asset classes that are beIieved_to be efficient or
suitable based on capital market research results. A final portfolio for a given individual
investor is determined by combining the available market oppoftum’ties with that investor’s

preferences, usually the most important one is the investor’s risk tolerance (Maginn and
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Tuttle, 1990, p. 7-27). Typically the value of the investor’s risk tolerance is evaluated using
a designed questionnaire. The responses to the questionnaire are scored. An asset allocation
recommendation can be made using rules of thumb based on the accumulated score
(Droms and Stauss, 2003), or the score can be transformed into a value of risk tolerance

that can be incorporated into an optimization model to determine an optimal asset-mix
(Bolster and Warrick, 2000).

1.2 Asset Allocation’s Efficiency and Suitability

Investors hope to be given a portfolio that is consistent with their financial status as well as
investment goals and preferences. But they may be concerned about if the recommended
portfolio is the “best” one available. There are two important considerations in asset
" allocation process: portfolio’s suitability and efficiency.

After the birth of Markowitz’s mean-variance theory (Markowitz, 1952), tradiﬁbnél
research of asset allocation focuses on two major areas: one on the solution techniques of
"mean-variance optimization, the other on the different definitions of portfolio risks. The
- studies in the first area lead to the developments of other important components of modern
portfolio theory, including index model (Sharpe, 1963), Capitél Asset Pricing Model
(CAPM) (Sharpe, 1964), and Arbitrage Pricing Theory (APT) (Ross, 1976). The research
in the second area leads to various alternative portfolio optimization methods, such as
mean absolute deviation optimization (Konno and Yamazaki; 1991). Both areas of research
pay attentions to the optimality of a portfolio and distinguish themselves based on what is
the most appropriate measure of asset risk and portfolio risk. From a viewpoint of decision
making, all of these models generate objective judgments of alternatives. As long as the
properties of component assets are known, the output portfplios are deterministic. They are

optimal or efficient based on mean-variance sense or mean absolute deviation sense.

The efficient portfolios derived from optimization models are not necessarily also suitable
'fo_r' a particular investor. In many portfolio optimization meihods, one of the major
‘investment objectives is often formulated as the objective function that needs to be -
"op'ﬁn;ized, while other objectives or considerations come into the optimization models as
;:onstraintsf A portfolio obtained by this single-objective optimization method is efficient in
terms of this obje;:ﬁve, but not necessarily also optimal in terms of others. Because of the
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~various situations faced by different investors, it may be impossible to find a universally
optimal poxtfolio (Saraoglu and Detzler, 2002). If multiple conflicting objectives coexist -
and one objective does not significantly dominate others, investors may not think the
portfolio is suitable for them. Furthermore, the determinations of portfolio suitability are
largely subjective, and financial advisors often have to rely on intuition and past
experience to make judgments. Disgruntled investors may sue for damage or file
complaints against financial advisors if they believe the recommended investments are not
suitable for them (Bolster, et al., 1995). o

Professional associations, such as Association for Investment Management and Research
(AIMR, 2003), require their members consider the appropriateness and suitability of
investment recommendations for clients. However, the research in the suitability of a
portfolio appeared in financial literature only in recent years and was relative rare. The |
Analytic Hierarchy Process (AHP), developed by Saaty (1980), has been used by several
researchers to formulate portfolio mix (Khaksari, et al., 1989), to determinate an investor’s
suitability (Bolster, et al., 1995) and to select mutual funds (Saraoglu and Detzler, 2002).
AHP constructs the asset allocation decision problem as a hierarchy. Each objective in the
hierarchy is prioritized and its relative importance is weighed. The performance of each
asset is evaluated in terms of each objective or sub-objective. A portfolio can be formulated
i)y combining the weighed asset classes. The purpose of using AHP in asset allocation is to
ensure that investors’ objectives and preferences are reasonably satisfied. Generally,
however, the portfolio obtained is not optimal (Bolster and Warrick, 2000).

1.3 Organization of this Report

This project report presents an asset allocation method which is intended to obtain a
suitable portfolio for a specific individual investor. Improved overall portfolio efficiency
can also be achieved. In this proposed method, the AHP is employed as a framework to
. address an investor’s multiple investment objectives. For each objective, an optimization
‘ rﬁodel is used to determine a local optimal portfolio. Interactive communications between
the financial advisor and the investor ensure that the asset allocation process effectively
reflect the investor’s preferences. |

This project report is organized as follows. In Chapter 2, the classical mean-variance
6



portfoho theory, alternative portfolio optnmzatron methods and efficient asset allocatron.

techmques are reviewed and their limitations are discussed. In Chapter 3, the Analytlc. |

_ ‘Hrerarchy ‘Process (AHP) is first. mtroduced A multiple-objective asset allocatron model
which: mtegrates the AHP framework and portfolio optimization techniques is presented. A
hypothetlcal investment problem is constructed to illustrate the application of the proposed
model In Chapter 4, a theoretical formulation of measuring an investor’s risk tolerance is
derlved An interactive process is designed to ascertain the measurement. In Chapter 5, the
process of constructing a complete portfolio is first reviewed. Then the complete portfolios

'constructed for the hypothetical investment problem are presented. A deviation index is

- designed to measure the overall efficiency of the complete portfolios and used to compare

) vthe results with those obtained using a single-objective optimization method. In Chapter 6

a summary of the author s contributions is provided and some areas of future work are. v
suggested



_ Chapter 2: Portfolio Theory and Asset Allocation

Modern portfolio theory is the theoretical foundation. of efficient asset allocation. It
suggests that diversifying a portfolio into different assets increases portfolio return or
decreases portfolio risk. Combining efficient market opportunities with an investor’s
preference, an optimal portfolio can be determined. In this chapter, the classical
mean-variance portfolio theory is first introduced aﬁd alternative optimization methods are

reviewed. The methods of determining optimal portfolios are described. Limitations of
single-objective optimization methods are discussed.

|
2.1 Mean-variance Portfolio Theory

The first pioneering contribution to modern portfolio theory.was the seminal work of Dr.
Markowitz (1952), who received the 1990 Nobel Prize in Economics (Royal Swedish
Academy of Science, 1990). Before Markowitz, the investment management principle was
to buy assets thought to be undervalued, and sell them later hopefully for a profit.
Markowitz formulated the portfolio selection problem as to take the mean or expected rate
of return of a portfolio as the investment return and the standard deviation (or variance) of
return of a portfolio as the investment risk. The mechanism of portfolio diversification was
qﬁantitatively analyzed. When assets are properly mixed, investors could construct a
portfolio that provides a higher overall return without having to undertake more portfolio
risk. Markowitz’s mean-variance theory has since become the standard framework in
modern portfolio management (Michaud, 1998, p. 2).

An efficient portfolio, according to Markotiwz, is defined as one that has the largest
expected return for a given level of risk, or the smallest portfolio risk for given level of
expected return. The mathematical formulation of this problem is a quadratic programming
model (denoted as Model 2.1):

Model 2.1:
Objective:

N
Maximize E(R,) =) x,E(R,)
i=1 )
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Subjectto:

o= xlol+ Z > xx,p,00,

where: E(Rp) = expected return of portfolio;,
op= standard deviation of return of portfolio‘;
E(R;) = expected return for asset class i;
= standard deviation of return of asset class i;
" p,j = correlation coefficient between returns of asset class i and J
" N = the number of asset classes;

“and x; = proportion of portfolio invested in asset class i.

Rational investors would seek efficient portfohos because these portfohos are optlmlzed on
‘both expected returns and risks, which are believed to be the most nnportant con51derat10ns
to mvestors This can be illustrated in Flgure 2.1. The clrcled area in Flgure 2.1 is the
opportunity set, wh1ch is the entire set of all attainable asset combinations. The efficient
portfohos are found along the efficient ﬁ'ontler startmg from pomt K to 'Q. The efficient
frontier is a concave risk-return trade-off curve in the expected return-standard deviation
space that extends from the minimum variance portfolio K to the maximum return
portfolio Q (Elton and Gruber, 1991, p. 53) Each porl:foho in the eﬂ'lclent frontier, say,
portfolio G, is optlmal because the expected retum of portfoho G is greater than the
_Aexpected return of all other portfollos w1th1n the opportumty set with the same standard
:'dewatlon, and its standard deviation is less than any other portfohos with the same level of
expected return. Portfolio K is the global minimum variance portfolio because no other
mlmmumfvarlance portfolio has a smaller risk. Portfolio Q _1s the maxunumv return

portfolio because no other efficient portfolio has a higher return.



efficient frontier

Expected return

opportunity set

T

Standard deviation

Figure 2.1: The opportunity set and efficient frontier
(Source: Bnhammer and Sephton, 1998, p. 127)

In Markowitz’s mean-variance model, analysis of portfolio risk not only includes the
analysis of the risks associated with individual component assets, but also contains the
anaIysxs of the co-movements, .or correlations, between the component assets within a
portfolio. A positive correlation means their returns tend to change in the same dlrectlon,.
while a negative correlation indicates ﬂleir returns tend to change in the opposite direction.
A well-diversified portfolio would eliminate part of the total risk, the nonsystematic risk of
a portfolio (Jones, 1998, p. 220). That is, the risk of a portfolio is commonly less than the
risk of the any of the component assets, provided that they are not perfectlyA positively
correlated. Thus rational investors diversify to reduce risk.

Assets’ expected returns, standard deviations, and the correlation coefficients can be
obtained from research results of security analyses. They are iriputs in the Markowitz
model. In strategic asset allocation, which always employs long-term capital market
conditions, these inputs are considered constant (Sharpe, 1987). Weights of assets making
up the portfolio are variables that can be manipulated to solve the quadratlc programmmg
problem to determine efficient portfollos

Variant optimization models have been proposed based on Markowitz’s work. In particular,
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in 1960s and 1970s, some simplified approximation methods weré proposed in order to
reduce computational difficulties related to the solution of a quadtaticﬂpl;ogramming model
(see Sharpe 1967, 1971; Stone, 1973). Sharpe was the co-recipient of the 1990 Nobel Prize
in Economics for having developed the Capital Asset Pricing Model (CAPM) (Royal
Swedish Academy of Sciences, 1990). CAPM (Sharpe, 1964) was built on Markowitz
portfolio theory. It treated market as a whole as optimal risky portfolio, and gave us the

concept of the "beta" -- a coefficient designed to measure the risk of a particular stock
relative to the performance of the market portfolio.

2.2 Alternatives to Mean-variance Portfolio Theory

Markotiwz’s model was built on some assumptions. Two of- those -assumed that the
expected returns of assets are normally distributed and an investor is rational, which means
he prefers higher return of the portfolio and smaller standard deviation. Markotiwz’s model
is known to be valid if these underlying assumptions are satisfied (Konno and Yamazaki,
1991). However, these assumptions may not represent the more sophistical real situations.
Some researchers commented that rational investors are not necessarily all risk aversive,
and standard deviation (or variance) not necessarily the most appropriate measure of risk
(see Cohen, et al., 1987, p. 135). Polsky (1998) stated that even though expected future
volatility and- correlation are good inputs, there is a limitation to using them as risk
measures when taking portfolio options into considerations. Michaud (1998, p. 3) also
argued that, the most important limitations of Markowitz’s model-zwere"its-inst'ability and
ambiguity. The optimized portfolio was extremely sensitive to input changes and tended to

maximize input errors.

Alternative models have been proposed. They include mean-absolute deviation
optimization model (Konno and Yamazaki, 1991); mean semi-absolute ‘deviation model
' (Speranza, 1996), and mean-semivariance model (Hamza and Janssen, 1998). In addition,
researchers. have proposed alternative portfolio theories that included more'moments such
as skewness (see Elton and Gruber, 1997). Shortfall risk, downside va;iahée,’ Value-éf-ﬁsk,
and relative risk are considered as alternative measures of risk (see ‘Chriss and Fanelli,
©1998). Other portfolio selection techniques include Monte Carlo simulation approaches
(Maginn and Tuttle, 1990, p. 7-46) and utility function evaluations (Maginn and Tuttle,
1990; p. 7-49). | L
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Among these alternatives, linear programming methods have received increased attentions.
For example, Konno and Yamazaki (1991) demonstrated that a linear programming model
using mean absolute deviation risk function has computational advantage, among others,
over classical Markowitz’s model. However, in practice, using linear programming to
construct a precise portfolio structure may not be easy. It needs to formulate a variety of
linear equality and inequality constraints to reflect the relationships between assets and to
control portfolio risk. “From a theoretical point of view, only a MV (mean-variance)

optimization framework can optimally use active forecast information” (see Michaud,
1998, p. 32).

2.3 Efficient Asset Allocation \

The process of portfolio construction in practice is separated into asset allocation and
security selection (Bodie, et al, 1997, p. 259). Although the Markowitz model was initially
developed for security selection, it has found successful applications in implementing asset
allocation strategies. Both of efficient asset allocation and security selection require the
formulation of efficient frontier and the determination of an optimal portfolio along the
frontier. Security selection generally involves the allocation of hundreds, even thousands,
of securities, while asset allocation involves normally 2-20 asset classes. However, studies

show that more than 80% of long-term portfolio performance come from choosing the

right-combination of assets, not from choosing the right assets '(RBC Investments, 2003).

All the portfolios in the efficient frontier are optimal in the mean-variance context. To
determine the optimal portfolio for a specific investor, the investor’s preferences and the
relevant constraints should be combined with the market opportunities. If a risk-free asset
is available to an investor, then the determination of the optimal complete portfolio is
illustrated in Figure 2.2. The optimal capital allocation line (CAL) is a capital allocation
line starting from Rg (the return of the risk-free asset) in vertical axis and tangent with the
curve of optimal opportunity set (efficient frontier). It has the highest rewafd-to-vaﬁability
ratio (Bodie, et al., 1997, p. 246). The point of tangency lSetWeen the efficient frontier and
optimal CAL is the optimal risky portfolio, that is, P in Figure 2.2. An optimal tisky
portfolio is composed of risky assets only. A complete portfolio is obtained by allocating
capitals between the risk-free asset and optimal risky bortfolio. The point of tan_géncy
between the investor’s indifference curve and the optimal CAL is the optimal complete
12



portfolio, that is, T in Figure 2.2.-It provides highest utility to:the given investor.

Y
a
.-
2 .
- - % Optimal CAL
- E‘ Ifld_ifferénce'cmvé ' efficient frontier

L)

Stanf:lard deviation

Figure 2.2: Determination of optimal complete portfolio with a risk-free asset
(Source: Bodie, et al, 1997, p. 249)

a

&
5
=

8 Indiff

3 erence curve

E‘ opportunity set

.................... ! 'T = Optimal complete portfolio

Sl

 Standard deviation

Figure 2.3: Determination of optimal complete portfolio. without a risk-free asset
' (Source: Bodie, et al., 1997, p. 260)
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Actually, the risk-free asset does not exist in real world. The treasury-bills, commonly to be
viewed as the risk-free asset, are subject to interest rate risk. If a risk-free asset is not
available, as the data used for hypothetical investment example in this project report, the
asset allocation decision is to find the optimal risky .poftfolio that provides the highest
utility to the given investor. This is illustrated in Figure 2.3; where the optimal complete
portfolio, T, is the point of tangency between the investor’s’ indifference curve and the
efficient frontier.

An investor’s utility function is usually unknown. However, if we assume that an investor’s
utility function can be represented by a particular type of smooth curve, and the investor
has constant risk tolerance, then a reasonable utility function can be derived (Sharpe, 1987).
Here an investor’s risk tolerance is defined as the added variance for per unit of added
expected return, providing the same utility for the investor (Maginn and Tuttle, 1990, p.-

7-9). In this utility function, a risk aversive investor considers the risk as a penalty to the
utility value. The greater the volatility of a portfolio, or the smaller the risk tolerarice, the
greater is the penalty. A general formulation of this optimization problem is a quadratic -
programming model (denoted as Model 2.2). Model 2.2 is showed as follows:

Model 2.2:
Objective:

Maximize U = E(RP GP '

Subject to:

N ) ‘N N ‘
=Y x’o} +ZZ X,X;p,;0,0,

i=] i=1 j=
]

—

t

N

E(Rp)=). x,.E(_R,)

) i=1
N
Z x; =1

i=1

v
o

i=1,., N

where: U = utility of the portfolio provided to the investor; -
14



.~ t=the investor’s risk tolerance; -
E(Rp).= expected return of portfolio;
op = standard deviation of return of portfolio; . .. :
~ E(R)).= expected return for asset-class i; . S
. .0; = standard deviation of return of assetclassi; . - Sl
py = correlation coefficient between asset class i andj; - RS
N = the number of asset classes;

and x; = proportion of portfolio invested in asset class i.

Optimization models using quadratic programming techniques were widely used for
implementing efficient asset allocation. Unlike most other approaches, one advantage of
- these models is that they can effectively reflect and utilize the fact that risk depends-on
interactions among assets (Maginn and Tuttle, 1990, p. 7-54). |

2.4 Limitations of Single-objective Optimization Methods

In asset allocation optimization models, such as Model 2.1 and Model 2.2, an investor’s
objectives are generally defined in terms of return requirements or a utility function.
Constraints are limitations such as budget constraints and nonnegative weights of assets
(short sales not allowed). An investor’s preferences or other considerations, such: as
taxation and liquidity, are generally integrated into the objective function or constraints.
For example, if after-tax return is of interest, the expected returris, standard deviation and
correlations will adopt after-tax values. If an investor imposes specific requirements for
some assets, additional linear inequality and equality constraints may be needed to reflect
the requirements. ' ’ ' |

An important m&ssagé from these analyses is that, 'traditional portfolio optimization is in
practice constructed as a single-objective decision problem. This modeling method may
not be consistent with some real world characteristics of an investor’s investment goal. For
example, an investor, who seeks to .maximize the expected total return while seeks to
obtain current income, may find the model’s objective is to maximize the total return,
while the income objective comes as one of constraints. This model actually treats these
two objectives as follows: the total return objective can only be achieved within such a
- framework that current income objective tust be fully met. It doesn’t consider the relative
.- 15



importance between income objective and total return objective. It is-intuitive that if the
investor feels the total return is much more important, he may be willing to give up certain
current income in order to achieve larger total return if these two goals are actually
conflicting with each other. Or, if the investor believes the ‘current income is more

important, he would be eager to relax some total return requirements. There can be a
trade-off between two objectives. ‘

Another limitation of using single-objective portfolio optimization is that if multiple
objectives do exist, they cannot be optimized at a time. Under the criteria of different
objectives, the same portfolio may perform differently, sometimes significantly. For
example, the total return consists of two components, income (interest or dividends) and
capital gain (loss). A portfolio whose majority of assets are stocks may perform better, in
terms of capital gain objective, than a portfolio whose majority of assets are bonds in the
long term. However, the later portfolio generally pe_rfonns better than foi'mer in terms of
current income objective. Another example, real estate assets may perform better than
bonds in terms of real return. However, because of its illiquidity, an investor who is very
concerned with asset liquidity may avoid to invest in it. The result is the fraction of the real
estate is reduced in the complete portfolio despite its superiority in terms of real return
objective. In these situations, the single-objective optimization solution actually may not
be optimal in terms of the investor’s overall objectives. -
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Chapter 3: Multi-objective Asset Allocation -

- Because of limitations of traditional portfolio modeling methods, it is desirable to consider
"an- asset allocatlon problem as a multrple-objectrve dec1sron problem. In this chapter,
mult:ple obJectrve asset allocation method is proposed This approach is intended to
- construct a portfolio that is consistent with multiple objective investment needs of an
- _individual investor, while at the same time airn to improve the portfolio’s overall efficiency
in terms of multiple objectives. Trade-offs between different objectives are considered. The
- Analytic Hlerarchy Process (AHP), nutlally developed by Saaty (1980), is employed to
’_,develop a multlple-objectrve decision hierarchy. Single-objective .portfolio optnmzatxon
B 'techmques are integrated into the model to construct local optimal portfohos The basic
‘procedure of this method is: (1) to identify the investor’s objectives; (2) to. evaluate the
“relative importance of these objectives; (3) for each objective, to construct a local optimal
“portfolio using an optimization model; and (4) to obtain the complete portfoho by
: combmmg the local optrmal portfolios according to their weights.

3.1 The Analytic Hierarchy Process

~ The Analytic Hierarchy Process (AHP) provides a proven, effective means to structure a
complex multi-attribute decision problem. It begins by discomposing an unstructured
multiple attribute decision problem into components. In its simplest form, this structure
consists of three levels: goal, criteria and alternative levels. A typical AHP hierarchy is-
shown in Figure 3.1. Each component can be further decomposed into suboomponents at
appropriate level of details. The process continues to the lowest le'vel' of hierarchy. After
the decisioh hierarchy is constructed, relative priorities of one component over 'other
components are evaluated and represented by numerical weights. .Using the APIP, decisioh
‘makers don’t need to make an absolute judgment or assessment over all elements. Instead,
decision makers are only required to make a relative assessment between two elements at a
time. This makes decision process easier. For example, if there are six investment |
objectives, and an investor wants to evaluate their importance, clearly it is difficult to
evaluate them directly. However, it is easier to compare one objective to another. In the
-final step of AHP, alternatives are ranked according to their weighted ,perfo_rmance m terme ,

of each criterion.
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Level 1 Overall Goal

Level 2 Criterion 1 Criterion 2 Criterion 3 Criterion M

Level 3 Alternative 1 Alternative 2 - Alernative3 | - | Alemative N

Figure 3.1: Typital AHP hierarchy

The AHP has been applied to many disciplines, such as conflict resolution and group
decision making (Saaty, 1982), supplier selection (Muralidharan, et al., 2002), formulation
of portfolio mix (Khaksari, et al., 1989) and determination of an inv&sfor’s suitability
(Bolster, et al., 1995). The AHP approach in asset allocation incorporates multiple
dimensions of an investor’s preferences into decision hierarchy, and considers the priorities
of different objectives. Therefore, although the suitability of a portfolio recommendation is
largely subjective, it is believed that the asset allocation generated by the AHP is consistent
with the investor’s objectives and preferences (Saraoglu and Detzler, 2002).

3.2 Proposed Multiple-objective Asset Allocation Model

A “suitable” portfolio developed by traditional AHP is normally not optimal in a
mean-variance sense. “There is no guarantee that the resulting portfolio will be the highest
return available at the given level of expected risk” (Bolster and Warrick, 2000). In order to
improve its efficiency, an asset allocation model which integrates the AHP decision
hierarchy with traditional optimization techniques is proposed. The general hierarchy
structure for M objectives and N asset classes is illustrated in Figure 3.2. In this hierarchy,

the overall goal, located at the top, is the desired complete portfolio. The second level
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consists of M local optimal ‘portfoli-os‘, each of which is associated with the investor’s one
objective. The weights' of local optimal portfolios are the same as those of associated
objectives, which are evaluated using AHP priority analysis method. Each local portfolio
can be obtained by solving an appropriate single-objeéﬁve portfolio optimization model,
which is shown in the third level of this hierarchy. The inputs for each optimization model
are parameters needed to be estimated for the associated model. For ‘mean-variance
optimi;ation, the parameters can be expected returns, standard deviations, correlations of
asset classes and the investor’s risk tolerance. The bottom level consists of N asset classes
that will be weighted and used to make up the local optimal portfolios. The overall goal is
achieved by combining weighted local 0ptima1 portfolios. That is, the complete portfolio is

obtained'by combining the local optimal portfolios\ which are weighted according to their
relative.importance. o

Complete
Portfolio

Local optimal Local optimal Local optimal Local optimal
portfolio for portfolio for portfolio for portfolio for
objective 1 ) objective 2 objective 3 objective M
| Inputs ) Inputs Inputs Inputs
Single objective - Single objective Single objective Single objective
optimization optimization optimization .. optimization
model model model . model
»
.
Assetclassl | - Asset class 2 | Assetclass 3 i Asset class N

Figure 3.2: General model for multiple-objective asset allocation
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The proposed model can be explained as follows:

Let Wj; denote the local weight of asset class i in local portfolio J, where z e {1, 2 , N}
and N is the number of asset classes; j € {1, 2; .., M} and M is the number of
objectives (also the number of local portfolios). Let Wﬁ denote the weight of local portfolio
J in the complete portfolio. Then the sum of local weights of all asset classes in local
portfolio j is equal to 1: . |

N
SW,=1 je{l2..M} (32.))

i=1

and the sum of the weights of local portfolios in the complete portfoho is equal to 1:

ZW =1 (3.22)

Fdr each individual asset class i, its weight in the cbmplete portfolio, x;, is equal to the sum
of weighted local weights of asset class i in M numbers of localv portfolios:

M
x,.=§W,W,., ie{12,.,N} (3.2.3)

It can be derived from formulae (3.2.1), (3.2.2) and (3.2.3) that, the sum of the weights of
each asset class in the complete portfolio is equal to 1:. -

ixi ZZWW—l - B24)

i=1 Jj=l =l
3.3 An Investor’s Objectives

After the decision hierarchy is constructed, the information about an investor’s objectives
should be obtained. Objectives vary from person to person and may change from time to
time according to the investor’s financial status and preferences. Some investors may seek
assets that would grow in value and/or provide income, and want returns as large as
possible. For others, the real future asset value, i.e., value measured in terms of purchasing
power, may be more relevant. For yet others, they may be more concerned with ‘the

after-tax return. In research using the AHP to model multi-objective portfolio selection

problems, the criteria used for choosing objectives vary significantly (see Bolster and =

Warrick, 2000; and Saraoglu and Detzler, 2002). Therefore, each investor should be treated

individually.
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One way to ascertain an investor’s objecﬁv&s is to use appropriétély designed
questionnaires. A sample questionnaire, as shown in Figure 3.3, is designed for gathering
information about an .investor’s objectives .'and genefai. risk profile. Note that this
questionnaire is not a replacement for’obtaining the details of an investor’s financial status,
such as income sources, savings, and the structure of financial ‘assets, Which can be
processed separately.

This questionnaire serves for three puipos&c’. First, it serves for compliance with regulatory
requirements. For example, AIMR code of ethics and standards of professional conduct
requires thé Charted Financial Analysts (CFA) should “know” their customers before an
investment recommendation is made (AIMR, 2003). Second, this questionnaire can be
used to gathér the necessary information for determining an investor’s investment
objectives. ‘Based on this information, a ‘financial advisor can design a customized
questionnaire to assess the priority of an investor’s objectives.

Third, this questionnaire can be used to give the advisor general profile about an investor’s
risk tolerance. This information is helpful to the advisor when he selects the starting point
for generating a reference portfolio list. Details about this topic will be discussed in
Chapter 4. Unlike most of existing questionnaires, however, it does not provide a
“measure” of an investor’s risk tolerance. The reason is, the numerical values of risk
tolerance, as defined in Sharpe’s (1987) utility function, do not indicate the aggr&ssiven&ss
of a specific investor. A similar nurherical value of risk tolerance, say, 50,. may mean very
aggressive in one situé.tion while in others may mean relative conservative, depending on
the choice of the reference portfolios.
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This questionnaire is designed for gathering an investor's objective requlrements and assessmg the mvestor s
risk attitude.

1. What interval is your age in?
A. 30 or under
B. 30-44
C.44-54
D. 54-64
E. 65 or above

2, When do you expect to begin withdrawing money from your portfolio?
A. Less than 2 years
B. 2-4 years
C.5-7 years |
D. 8-10 years g
Specification:

3. Inflation is the rise in prices over time. Long-term investors should be aware that, if portfolio returns, or
returns of any assets are less than inflation rate, the ability to purchase goods and service might actually
decline. Instead, the dollar wealth you receive from your investment are nominal returns, which don't
reflect the change of purchasing power of your wealth, Which of these two kinds of wealth is in your
concerns, nominal wealth or real wealth?

A. Nominal wealth
B. Real wealth
C.Both

4, Investment returns generally consist of capital gains and regular stream of income, such as dividends or
interests. Which of them do you concern about?
A. Capital gains
B. Regular income
C.Both

5. Government considers the increase in funds, or the return on investment, to be-taxable. In Canada,
capital gains are taxed at a lower rate than dividend incomes, and in turn, dividend incomes are taxed
lower than interest incomes. This means different asset mix in your investment will have dlfferent
- impact on your after-tax income. What statement below would you choose?

‘A. After-tax returns are really important.
B. Idon't care about taxation as long as I am making money.

6. Do you think it is important to choose an investment that can provide an opportunity to defer taxation
of capital gains and/or interest to future years?
A. Yes,
B. Idon't care about this.

Figure 3.3: Investor's objectives and risk profile questionnaire (to be continued)
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7. Some assets have relative low liquidity compared to others. This means if you hold these assets, and in
case of having to sell them in a short time, you have to accept lower prices than market prices. However,
these assets may have higher average investment returns and less wolatility. Are you financially able to
accept a low level of liquidity in your investment portfolio?

A Yes

B. Ido hawe a liquidity requirement for my investment portfolio.

8. Investing inwolves a trade-off between risk and return. Generally investors who expect to receive higher
long-term average returns should expect to experience greater price fluctuations and higher poteitial
for loss, and vice verse. Considering this, which statement best describes your investment goals?

" A Iprefer investments with little or no fluctuation in value and I am willing to accept lower long-te:
returns associated with these investments. -

B. Iprefer investments that can provide moderate levels o}' returns, and am willing to accept moderate
lewels of risks.

C. Iprefer investments that can provide maximal long-term returns, and I am willing to accept large
fluctuations in value. . . B . s

9. Historically, markets have experienced periods of catastrophic short-term price fall. Suppose you own
awell-diversified portfolio that fell by 20% in one day, how would you react?
A. I'would buy more of this portfolio.
B. I'would not change my portfolio.
C. Iwould sell part of my portfolio.
D. I'would sell all of my portfolio.

" 10. Which statement below best describes your experience and knowiedge about investing?
A.Tam a novice in financial market and don't have much knowledge about investing.
B. Ihave some experience in stock market but I don't have much knowledge about investing.
C. Ihawe prior experience with stocks and bonds investment, and I have general knowledge of investing.
D. Iam a very experienced investor and understand how the stock and bond markets work.

Figure 3.3: Tnwestor's objectives and risk proﬁle questionnaire (continued)

3.4 Asset Classes and Objectives for a Hypothetical Investor

An asset class is a-group of assets that share some common properties. In broad terms, cash

(or cash equivalents), bonds, stocks and real estate are four basic asset classes. The

remaining asset classes are composed of precious metals and other assets, which are

closely held and traded. not. frequently. Each of the asset classes can be subdivided into a

mumber of smaller asset classes according to certain classification methods. For the
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hypothetical investor in this project report, six asset classes are employed for illustrative
purpose. The); are large-cap stocks (denoted as LaStock'), sméll-cap stocks (denoted as
SmStock), long-term corporate bonds (denoted as LCBond), long-term government bonds
(denoted as LGBond), Treasury bills (denotes as T-Bill) and real estate (denoted as
RealEst). Also, it is assumed that the financial advisor has learned from the investor’s
responses to the questionnaire shown in Figure 3.3 that the hypothetical investor has six
major investment objectives: total nominal return (denoted as TNR), capital appreciation
(denoted as CA), current income (denoted as CRI), after-tax return (denoted as ATR),
preservation of purchasing power (denoted as PP), and liquidity (denoted as LD). The PP
and LD objectives should be transformed into return requirements that can be used as

objective functions for associated optimization models. These objectives are described
below. '

Total Nominal Return (TNR)

This is the total return that is not adjusted for the inflation factor. In dollar value; total
return of investment is the sum of capital gains and income received in the holding period.

In this project report, the returns of asset classes or portfolios are defined in terms of
percentage. Therefore, total nominal return of investment is defined as the sum of nominal .
capital appreciation yield and the nominal income yield in the holding period. An asset’s

“total nominal return can be written as:

TNR = Capital appreciation + Income  (3.4.1)
Capital Appreciation (CA)

Nominal capital appreciation (CA) is the difference between what the.investor paid for an
asset purchased and what he may realize when the asset is sold. It can be written as:

CA = (Ending price — Beginning price) / Beginning price  (3.4.2)
Current Income (CRI)

For stocks, current income consists of dividends that the investor receives from the shares
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hexho]ds':For-zT-bills and bonds, current income. is .the interest income. For rea1 &étate

current income is the lease income (assuming the property held is commercial real &state)
The. formula for nominal current income can be written as:

~ CRI= (Income received in the holding period) / Beginning price ~~ (3.4.3)
After-tax Return (ATR)

Interests,” dividends, and capital gains are subject to government taxation. Canadian tax
system rewards equity. investment for growth (capital appreciation)b more than equity
investment for dividend income, and in turn, rewards dividend income more than interest
income. Here it is assumed that the hypothetical investor is in the top tax bracket (i.e.,
taxable income above $104,648 in Ontario), and the following combined (federal and
provincial) marginal rate is used to adjust the total nominal return: interest and ordinary
income (46.41%), capital gains (23.20%), Canadian dividend (31.34%) '(CCH, 2003, p. xii).
Real estate incomes are treated as ordinary incomes. |

Preservation of Purchasing Power (PP)

Nominal returns capture only the growth rate of an investment;.real returns measure the
growth rate of purchasing power of the wealth. There are differences between nominal and

real returns because the inflation rate varies from period to period. Here a proxy,
| inflation-adjusted total returh, is used to represent the objective of preservation of
purchasing power. Adjustments can be made by subtracting the inflation rate from the total
nominal returns. In practice, the Consumer Price Index (CPI) is usually u;ed to adjust the
numbers (Maginn and Tuttle, 1990, p. 2-8).

Liquidity (LD)

Liquidity is usually defined "as an asset’s ability to be sold and converted to cash

apprbximately at current market prices. In order to be sold quickly, some assets may have

“to be sold in a larger discounted value. Or the large blocks of sell in a short period will

result in the fall on the sale price, thus reduce the realized cash value. Cash and money

.market instruments, such as Tre_aéury bills and commercial papefs, where the bid-asked
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spread is small, are the most liquid assets, and real estate is among the least liquid. Here a
proxy, liquidity-adjusted return (IAR), is used to represent the strength of an asset in

serving with the liquidity objective. The formula for liquidity-adjusted return can be
written as: '

IAR=TNR X LI  (3.4.4)

LI is an asset’s liquidity index, which is defined as the relative performance of one asset
according to the needed time for this asset to be sold in the full market price. The needed
liquidity time is transformed linearly to a scale of 0 to 1, with the best value (the shortest

time) 1 and the worse value (the longest time) 0, using the following formula:

Ll = W1 (3.4.5)
W-B

where W denotes the longest time, B denotes the shortest time, and T;denotes the needed
time for asset i to be sold in the full market value. In the hypothetical example, it is
assumed that the needed time for large-cap stocks, small-cap stocks, long-term corporate
bonds, long-term government bonds, T-bills and real estate are 3,14,7,7,2 and 50 days,
respectively. '

3.5 The Decision Hierarchy for the Hypothetical Investor

Following Markowitz (1952), it is assumed that, for each of the six objectives, standard
deviation (or variance) is the appropriate measure for asset risk and portfolio risk. Then
mean-variance optimization is the appropriate method to obtain each local optimal

portfolio. The complete decision hlerarchy for the hypothetical investor is ‘shown in Figure
3.4.

3.6 Assets’ Expected Returns, Standard Deviations and Correlations

As stated in Chapter 2, the mean-variance optimization method utilizes active market
estimation data. In the proposed model, Model 2.2 in Section 2.3 is employed to construct

a local optimal portfolio for each objective. Model 2.2 requxres estimates of two types of
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inputs: one consists of the expected return and risk of each asset, and the correlations
between each asset’s return with that of others; the other one is the investor’s ﬁsk tolerance.
The first type of parameters, discussed below, can be obtained from market research, which
are identical for each investor regardless of his risk tolerance. The investor’s risk tolerance
should be evaluated according to the investor’s personal preference. The details about the

measurement of an investor’s risk tolerance will be discussed separately in Chapter 4.

~ Since asset allocation deals with future return expectations of portfolios, expected values
should be used. Expected returns are distinguished from historical returns. Historical
returns record the performances of an asset over a specified historical period. They are
known with certainty. Expected returns measure the estimates of returns over some future
period. They are probabilistic in nature.

Complete
Portfolio

Local optimal | | Local optimal | | Local optimal | | Local optimal | | Local optimal | | Local optimal
portfolio for portfolio for portfolio for portfolio for portfolio for. portfolio for
TNR objective] | CA objective | | CRI objective | | PP objective | |ATR objective| | LD objective

Inputs Inputs Inputs Inputs Inputs Inputs
] .
Mean-variance Mean-variance Mean-variance Mean-variance Mean-variance Mean-variance
optimization optimization optimization optimization optimization optimization
model model model model model model
LaStock SmStock LCBond LGBond T-Bill RealEst

Figure 3.4: Decision hierarchy for a hypothetical investor
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" Expected return of an asset is often estimated by using scenario analysié. It is the weighted
average of returns in all possible scenarios, where the weights are the occurrence

probability of each return. Thus, the expected return of an asset can be written as (Bodie, et
al,, 1997, p. 181):

E(R)=zl: p.R,  (3.6.1)
i=1 .

Whe;'e E(R) is the asset’s expected return; R; is the estimated return for ith possible.
scenario, and p; is the associated probability of ith scenario. / is the number of possible
scenarios.

\
Under Markowitz’s mean-variance theory, an asset’s risk is measured by the variance (or
standard deviation) of expected return. For scenario analysis, the variance is calculated by .
the weighted squared deviations of the expected return in all possible scenarios.
Symbolically, it can be written as (Bodie, et al., 1997, p. 181):
. . ‘
o’=Y p[R-ER] (3.62)
i=1 '
For this project report, because of the practical limitations, historical data are adopted in
the illustrative example, which are shown in Table 3.1 and Table 3.2. Research shows that
historical data are quite useful for estimating standard deviations, reasonably useful for
predicting correlations, and virtually useless for estimating expected returns (Maginn and
Tuttle, 1990, P. 7-37). Moreover, the time horizons of the data used are not consistent with

each other. From these points of view, the data adopted in this ‘project serve only for
illustrative purpose. "

In Table 3.1, returns and. standard deviations of real estate are partially adopted from
Ciochetti et al. (2003) for the period_ 1978-2002. For each of the other five assets, the total
nominal retumn (TNR), capital appreciation (CA), current income (CRI), and
inflation-adjusted return (PP) are bartially' adopted from Ibboston Associates for period
1926-1988 (Maginn and Tuttle, 1990, p. 2-9). The data for after-tax return (ATR) and
liquidity-adjusted return (LD) are adjusted data using methods discussed in Section 3.4.
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Table 3.1: Expected returns (return) and standard deviations (STD) of asset classes (%)
"7 TNR  CA  CRI PP ATR LD
_retwn STD retun STD retum STD retum STD rewm SID retwm STD |

LaStock 121" 209 73 176 - 48 ‘33 88 211 89 154 119 205
SmStock 17.8 356 . 128 278 50 80 143 349 133 265 134 267
LCBond 53 84 -06 49 59 35 24 100 32 50 48 15
LGBond 47 15 -04 46 49 29 17 85 26 42 42 67
TBill 36 33 -01 10 37 24 05 44 20 18 36 33
RealEst - .75 15 23 117 52 33 43 15 46 80 00 00

The correlation data, shown in Table 3.2, are adopted from Ibboston Associates (Maginn
and Tuttle, 1990, p. 2-21, p. 2-37). Correlations between real estate and other assets are
data for :the period of 1947-1984. Correlations between large stocks, small stocks,
long-term..corporate bonds, long-term government. bonds, and Treasury bills are data for
the period of 1926-1988. It is assumed in this project report that these correlation data are
good estimates for returns of all six objectives under study.

Table 3.2: Correlations between asset classes

LaStock SmStock LCBond LGBond TBill RealEst

_.LaStock 100 082 019 .01 -007 -0.06
SmStock  0.82 - 1.00. 008  -001 -0.08 006 -

~ LCBond  0.19 008 100 093 019  -0.08

1GBond - 001  -001 093 100 022  -0.09

“TBll O -007° 008 019 022 100 038

RealEst - -0.06  0.06 - -008 -009 038 100

3.7 Pairwise Comparisons of Objéctives

~ In AHP, decxslon makers express their preferences for a set of altematlves by constructmg '
a matrix of pa1rw15e comparisons in terms of orie criterion. This matnx D,,., shown below,
isa posmve rec1procal atrix satisfying the requirements of d;> 0 and 1/dj = dy, where i i,j
=1, 2, ..., m,and mis the number of alternatlves Each element dj; in the matnx represents

" the decision maker s subjectlve judgrnent of altematwe i over ]
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Pairwise comparison judgments are made using a 1-9 scale. The suggested scale by Saaty
(1980) is shown in Table 3.3. For example, if an element i is judged to be moderat_ely_
important than element j, a “5” number is entered as the value for the pairwise _cbmparison .
judgment dj in the matrix D,,, while its reciprocal value, “1/5”, is entered for the pé,irwise
| comparison judgment dj; .

Table 3.3: Suggested scale for AHP ratio assessments
~ The ratio for attribute.I over attribute Il should be:-
If the two attributes are judged to be equally important
If attribute I is judged to be slightly more important than attributeII
If attribute I is judged to be moderately more important than attributell
If attribute [ is judged to be strongly more important than attribute I
9 If attribute [ is judged to be extremely more important than attributell
24,6,8 Ifintermediate values between two adjacent judgments are needed

(Source: Hobbs and Meier, 2000, p. 78)

NS D W

.An investor’s relative preference can be evaluated by a designed questionnaire. For the
illustrative asset éllocation example, a sample questionnaire is shown in Figure 3.5. After
the investor makes the responses to the questionnaire, the scale values are entered into the
comparison matrix. For the illustrative pufpose, itis .'assumed that the hypothetical investor
makes the responses shown in Table 3.4. Since the matrix reflecting the investor’s actual
attitude may not be known, this comparison matrix in Table 3.4 is the observed matrix.

Table 3.4: Comparison matrix based on the investor’s responses

TNR CA CRI ATR PP LD
TNR 1 5 .3 12 4 2.
‘cA 5 1 112 177 1 113
CRI 13 2 ) 1/5 2 12
ATR 2 7 5 1 6 4
PP 1/4 1 112 /6 1 12
LD 12 3 2 /4 2 1
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This questionnaire is designed for the purpose of assessing your preference over different investment
objectives. Please use the scale explained in the following table to compare the relative importance of
each investment objective. The former objective mentioned in each question is referred as objective I,
and the latter objective is referred as objective IL.

Suggested scale for pairwise comparison assessments

Scale . » Description .

If objective I and objective Il are judged to be equally important
If objective Lis judged to be slightly more important than objective II
_If objective I'is judged to be moderately more important than objective I
If objective Iis judged to be strongly more important than objective II
If objective Lis judged to be extremely more important than objective II
2,4,6,8 If intermediate values between two adjacent judgments-are needed -
‘173 If objective Ilis judged to be slightly more important than objective I
1/5 - Ifobjecuve ITis judged to be moderately more important than objective I
17 If objective ITis judged to be strongly more important than objective I

19 If objective ITis judged to be extremely more important than objective I
1/2,1/4,1/6,1/8. If intermediate values between two adjacent judgments are needed

O 2 W —

Questions:

1. Do you think which scale best describes the relative importance between Total Nominal Return
and Capital Appreciation?
,,1 23456.7891213 14 15 1/6 .1/7 1/8 1/9

- 2.Do you think whichscale best describes the relative 1mportance between Total Nominal Return
. and Current Income?
1'2'3 456789 1/213-141516 1718 19 .

3. Do you think which scale best describes the relatlve importance between Total Nominal Return
and After-tax Total Return?
1 234 5 6 7 8.9 1/2 173 1/4 A/5 16 17 1/8 1/9

4.Do you thmkwlnch scale best describes the relative importance between Total Nominal Return
and Preservation of Purchasing Power?
1234567891213 1415 16 117 18 1/9

5. Do you think which scale best describes the relative importance between Total Nominal Return '

and Liquidity? . _
1234567891213 141516111819 -

Figure 3.5: Investor’s preferences for investment objective questionnaire (to be’comimcd)l
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6. Do you think which scale best describes the relatwe xmponance between Capital Appreclatnon
and Current Income?

123456789 1213 1/41/5 1/6 1/7 178 1/9

7. Do you think which scale best describes the relative importance between Capltal Appreciation
and After-tax Total Return?

12345678912 1/3 /4 1/5 1/6 171 1/8 119

8. Do you think which scale best describes the relative importance between Capital Appreciation
and Preservation of Purchasing Power? ‘

1234567891213 1/4151/6 17 1/8 1/9

9. Do you think which scale best describes the relative i importance between Capntal Appreciation -
and Liquidity?

1234567891213 141/51/6 17 1/8 1/9

10. Do you think which scale best describes the relative i mponance between Current Income and
After-tax Total Return? :

1234567891213 141516 1/7 18 1/9

11. Do you think which scale best describes the relative importance between Current Income and
Preservation of Purchasing Power?

1234567891213 14151/6 1/7 18 1/9

12. Do you think which scale best describes the relatlve lmportance between Current Income and -
Liquidity?
1234567891213 14151/6 17 1/8 1/9

13. Do you think which scale best describes the relative i 1mportam.e between After-tax Total Return
and Preservation of Purchasing Power?

123456789 1213141516 1118 1/9

14.Do you think which scale best describes the relative importance between After-tax Total Return,
and Liquidity?

12345678912 1/3 1415 1/6-1/1-1/8 1/9 »
15. Do you think which scale best describes the relative importance betw*en Preservation of

Purchasing Power and Liquidity?
1234567891213 141/ 16 177 1/8 1/9

Figure 3.5: Investor's preferences for investment objective questionnaire (continued)

The priority vector can be obtained from the given comparison matrix. In mathematical

terms, the normalized principle eigem)ectb_r of matrix D,, is the vector of priorities. For
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matrix Dy, a good estimate of the principal elgenvector (EV) can be described as to
multiply the m elements in each row and take the mth foot (Saaty, 1980, p.'19):

bl
o
Ev .=|"} (3.7.2)

b

-where:
| ._(d,lxd,zx Xd,,)'" ie{12 ,m} (3.7.3)

“The norrnahzed principal elgenvector is obtained by dividing each element in the
.elgenvector by the sum of all its elements. The fonn\ula is wntten as:

" Normalized — EV = (b by, ,b.)7 (3.7.4)

where b, =b,1% b, ie{l,2,..m) (3.1.5)

J=1

‘3.8 Consistency Test

Before determininé the normalized principal eigenvector is a good estimate of the relative_
weights of the six investment objectives, the eonsistency of the investor’s responses should
be tested. Many times investors may not fully understand their own prefere'néec and often
make inconsistent preference responses (Saraoglu and Detzler, 2002). For example
suppose an investor has made expression that cap1ta1 apprecnatlon (CA) is more important
_than current income (CRI). The investor also believes the current income objective is more
- important than the: preservation of purchasing pAo'wer (PP) objective. The same investpr
may also make a response that preservation of purehesing power is more important than
~ capital appreciation, which is inconsistent with his pfevious answer. Psychological research
" also shows that consistency of comparisons declines as the number of elements increases
| (Khaksari, et'al- 1989) That is, the consistency of responses are normally not perfect. A
suitable asset allocation plan can be achieved only after the investor makes reasonable

consistent responses

: A matnx D of order m is sa1d to be consxstent as deﬁned by Saaty (1980) if it satisfies

- ‘thé followmg trans1t1v1ty requlrements
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dy =dyXdy fori, j, k=1,2,...,m. (3.8.1)
For example, if d;> = 2, and d2;=3, in a consistent matrix the Value ofd;s _has to be 6.

One of the important advantages of AHP approach is that it can check the consistency of
comparison matrix using its built-in mechanism.. Consistency is tested by usiﬁg consistency |
index and consistency ratio, a technique suggested by Saaty (1980, 1994). Consistency
index (CI) is a measure of the deviation of an observed matrix from a consistent matrix. If -
we denote Amax the largest eigenvalue of observed matrix of pairwise compaﬁsohs, then the
consistency index (CI) can be written as: S

Cl = Ame =M (3.8.2)
m -1
The value of Amax, formulated as (3.8.3), is considered an estimation of m. The closer of the

value of Amax t0 m, the more consistent is matrix D,,.

A = max Zd bp 3.3y
e 0, o

where by, b; (i, =1, 2, ..., m) are the elements of principal eigenvector of matrix D;.

The average consistency index of randomly generated reciprocal matrices is called average
consistency index (RI). Consistency ratio is the’ ratio of consistency index (CI) to average '
consistency index (R/) of the same order matrices, which can be written as:

cr=L (334
RI

For 1-10 order of matrix, the values of RI can be taken from Table 3.5 (Saaty, 1994).

Table 3.5: The average random consistency index _
Matrixoderm 1 2 3 4 5 6 7 8 "9 ‘10
RI " 0.00 0.00 052 0.89 1.11 125 135 1.40- 145 149
Source: Saaty (1994).

Saaty (1994) also suggested that, the consistency of a comparison }ma_tn'x 1s acceptable if

the required consistency ratio (CR) is less than or equal to 0.1. If the conéiétency of an
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observed matrix is accepted, the elements in the normalized principal exgenvector are
considered the good estimates of the weights of ob]ectlves

When a pairwise matrix fails the consistency test, and if the number of order is large, it is
- difficult to revise the matrix without the assistance of computer. A number of algorithms
~-have been developed to improve the consistency of pairwise comparisons. For-example,
' Xu and Wei (1999) developed a method to modify a given matrix to acceptable consistency
_wit_hout requiring the initial respondent to make any revisions. Peters and Zelewski (2003)
devélopéd a heuristic algorithm to adjust an observed inconsistent matrix- iteratively to
improve the consistency. Ishizaka and Lusti (2003) described an expert module application

which can assist the decision maker to build a consistent matrix or a matrix with tolerated
error. '

3.9 Spreadsheet Model for Objective Weighting

Spreadsheets are powerful tools for performing tasks invoivirig related data such as
calculating objective weights and performing consistency test. For the hypothetical asset
allocation problem, we design a model using Microsoft Excel as shown in Figure 3.6. Input
data and:fonhula or functions used in this model are illustrated in Figﬁre 3.7.: -

This model functions as follows: users (investors or financial advisors) input the scale
values-obtained from the~questionnairé given in Figure 3.5. The number of independent
inputs is equal to the number of questions. For this exémple, it-is 15. Comparisons on
principal diagonal are all 1s. Other values are reciprocal values of corresponding
independent inputs and can automatically be filled using Excel built-in formula. Once the
data have been input, the principal eigenvector of the comparison matrix. 1s calculated
automatlcally and shown in cell range H6:H11. The normalized principal elgenvector is
shown in cell range 116.111. - '

The conswtency of the matrix is tested at the same tlme The elgenvalues of thlS matnx are
shown in cells J6:J11. They are obtamed using the followmg formula B

Z d,, b | i=v1,‘2,... 6 (3 9. 1)

The maximum e1genvalue is shown in cell J14 using Excel function, MAX(J6 J11). The
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value of average consistency index RI (shown in cell E17) is taken from Table 3.5 for the
order of matrix m = 6. The consistency index CI and consistercy ratio CR are calculated
- using formula (3.8.2) and formula (3.8.4), respectively. '

This model is designed for calculating the weights of objectives
andpref;)ming consistiency tests
ITNR| CA | CRI |ATR PP | LD | bi | Nommal| Xi
TNR | L | 5 « 3 112 4 | 2 |1979 | 0245 |6018
CA . 15| 1 12 17 1 | 13|0410 0051 |6046
CRI 173 2 175 2 12 {0715 | 008 | 6.091 .
AR [ 2 |7 5 [ 1 6'1 4 |3am 0w |eon |
PP | 1 12 146 1 | 12 |0467 | 0058 |6075
| LD 12| 3 2 [ 144 2 i1 |1070 0132 |6090
i ; Sum=| 8089 | 1.000
| E - '
Lid | Consistency test: (1: pass; 0:fai) | 1 | A mex = 6.091
Order of mateixm=| 6 | |
g"’i‘xﬁ!{;!h:”{“ Consistency Index Cl = 0018 . i
;ﬂﬁ:ﬁ: RandomIndexRI= | 125 | f
e Consistency Ratio CR=| 0.015 | |
3 I I N

Figure 3.6: Sample Excel model for objective weighting

Cell Values, formulae or functions
B6, C7, D8, E9, F10,G11 =1 ' A
B7, B8, B9, B10, B11  =1/C6, 1/D6, 1/E6, 1/¥6, 1/G6, respectively
C8,C9,C10,C11  =UD7, 1ET, 1/FT, UGT, respectivdly
D9, D10,D11 =1/ES, 1/F8, 1/GS8, respectively | :
E10, E11 =1/F9, 1/GY, respectively
» F11 =1/G10 |
C6:G6, D7:G7, E8:G8,F9:G9, G10  (Obtained from the investor’s r&spoﬁses) :
H6 =.POWER(PRODUCT(B6:G6),1/6)
Figure 3.7: Excel model inputs and formulae for Figure 3.6 (to be continued). .
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Cal Valﬂes,ffdrmillae orfuncﬁdhs. )

H] *=POWER(PRODUCT(BT:GT),1/6)
H§ <POWER(PRODUCT(BS:G8)1/6) ..
HO' =POWER(PRODUCT(BO:GO),/6). -
" HI0 ‘=POWER(PRODUCT(B10:G10),1/6)
HIl =POWER(PRODUCT(BIL:G11),1/6)
HI2 =SUM(HGHID) - '

16 =H6/SHS12

1 =HUSHS12
18 =HESHSI2 |
19 =HO/SHS12

110 =H10/SHS12
Il =HI11/SHS12

112 =SUM(6:I11)

Cell '
_Values, formulae or functions
J6 —B6*$I$6/I6+C6*$I$7/16+D6*$I$8/16+E6"'$I$9/I6+F6*$I$10/I6+G6*$I$11/16
J7  =B7*$IS6/17+CT7*SIST/IT+DT*SIS8/IT+ET*$IS9/17+F7 *$I$ 10/17+G7*$1811/17
18 -B8*$I$6/18+C8*$I$7/I8+D8*$I$8/18+E8"‘$I$9/18+F8*$I$10/18+G8"‘$I$11/18'.
19 ‘=B9*$I$6/I9+C9*$I$7/I9+D9*$I$8/I9+E9*$I$9/I9+F9*$I$10/'I9+G9*$I$ll/19
. 110 —Bl0"‘$I$6/IIO+C10*$I$7IIIO+D10*$I$8/HO+E10*$I$9/IIO+F10*$I$10/110
0 4GIOSISIIMO - L .
m —B11*$I$6/Ill+C11*$I$7/111+D11*$I$8/II1+E11*$I$9I111+F1l*$I$10/Ill
+G11*$I$11/111
J14- —MAX(JG.JH). '
- El§ =6
- -E16 =(Jl4—E15)./(E15~1)‘_'
E17 =125
 E18 =E16/E17
Gl4 —IF(E18<-() L1 0)

~"Figure3.7: Excel model inputs and foni)ulaeifor Figure 3.6'(c'qnﬁnued)
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The consistency test result is shown in cell G14. It is calculated using Excel function

IF(E18<=0.1,1,0). It means if the consistency test is passed (CR < 0.1), the answer is

“Yes” (“1” in cell G14). If the test is not passed (CR > 0.1), the answer is “Nb” (“0” in cell

G14), and the investor’s responses to the questionnaire should be revised to improve

consistency. In this example CR < 0.1, the consistency of the observAed‘ matrix is accepted.

Therefore the elements of normalized principal eigenvector (cell range 16:111.in Figure 3.6)
represent the corresponding weights for six objectives. They are shown in Table 3.6.

Table 3.6: Relative importance of six objectives
TNR CA CRI. ATR PP LD
Weight 7, 0.245 0.051 0.088 0.426 0.058 0.132

38



Chapter 4: Estimating an Investor’s Risk Tol.erance‘

Assets’ expected returns standard dev1at10ns and correlatlons were discussed in Chapter 3.
These inputs, however represent only half of the ingredients required: for determining an
' optlma] and su1table portfollo In this chapter another i important mput factor, an investor’s
risk tolerance will be dlscussed and a method to measure it based on Sharpe s (1987)
ut111ty function deﬁmtlon is proposed In the proposed method, an investor’s risk tolerance
is defined as the ratio of added portfolio variances to added portfoho returns, considering
- the investor’s relative degree of preference between two reference portfolios, The investor
 selects his own reference portfolios. The AHP technique is used fo evaluate the relative
degree of preference between reference p'ortfolios.. Risk- tolerance obtained from the

proposed method can be entered directly as one input' into Model 2.2 to determine a local
optimal portfolio.

4.1 Traditional Risk Tolerance Measurements

Modern portfolio theory indicates that the asset allocation decision process can be
separated into two independent processes (Saraoglu and Detzler, 2002). First, a variety of
optimal risky portfolios are constructed usmg the input data from the results of market
research, such as assets’ expected returns, standard deviations and correlations. For the
same input data, these optimal risky portfolios are identical for all investors regardless of
their risk tolerance. Second, the optimal cornplete portfoho is determined by considering

the investor’s preference and risk tolerance Ievel

Risk tolerance is a person’s emotional and financial capacity to tolerate the ups and downs
of the investment market. Risk tolerances vary from person to person, and from period to
period. Some are associated with personality factors, while others are related to the stages
in the investor’s life cycle. Financial advisors often ask individual investors to fill out a
~ questionnaire whose primary purpose is to.assess the investors’ risk tolerance as well as
time horizon, investment experience, and financial status. Each question in the
questionnaire is given a score and the scores are accumulated. A recommendation of asset
allocation is typically based on the accumulated score of an investor’s responses using-
.rules of thumb. For example, portfolio allocation scoring system (PASS), the first
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published risk tolerance questionnaire developed by Droms in early 1980s (see Droms and
Strauss (2003)), is such a system that the more aggressive the investor’s return objecﬁveé
and the higher the investor’s risk tolerance, the more scores will be assigned to the investor.
The higher the score, the more aggressive is the asset allocation plan. Other questionnaires,
such as ones developed by New York Institute of Finance (2003) and Vanguard Group -
(2003), provide similar functions. s

PASS and most existing questionnaire-based measurements use the accumulated score to
choose an asset allocation plan according to pre-designed investment categories. No doubt,
these methods provide practical convenience to investment companies and financial
advisors. However, it is not realistic that a definitive asset allocation plan can be obtained -
by a questionnaire itself (Droms and Strauss, 2003). Also, using a scoﬁhg system to
measure risk tolerance may not have theoretic support that allows the value of risk

tolerance to be incorporated into an optimization model such as Model 2.2 directly.

In order to model efficient asset allocation problems, Bolster and Warrick (2000) used the
risk acceptance parameter (RAP) to reflect the scores. A higher RAP indicates greater risk
tolerance. They estimated the value of risk tolerance by assigning a RAP value according
to the responses of an investor made to a designed questionnaire. Using this method, the
value of risk tolerance can be incorporated directly into an optimization model. However,
there is a drawback of using this method. Although the response to the questionnaire
reflects the investor’s risk attitude, it is not necessarily also true for the value of RAP
assigned, simply because there is no direct link between these two numbers. The RAP
reflects just the advisor’s, instead of the investor’s, subjective attitude because the value of
risk tolerance heavily depends on the selection of reference portfalios. Moreover, in a
multiple objective modeling context, since the performance of- asset classes varies
significantly in terms of different objectives, using rules of thumb to assign the risk
tolerance value is not useful.

4.2 Theoretic Foundation for the Proposed Method

" The proposed method is based on Sharpe’s (1987) utility function definition and risk

tolerance definition. Sharpe assumed an investor’s objective was to maximize the expected

utility of wealth. As discussed in Section 2.3, the utility function can be illustrated by
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suchaformula: ...- - . . .

i . . c 2 . .
o - U =*-1:“(R'P)~— tP T (4.2.1) -
where'WV T o |
- U= uuhty of portfoho for an g1ven mvestor;
E(Rp) expected return of portfollo,
op = standard deviation of return of portfolio;

and ¢ = the investor’s risk tolerance.

In thls formula, an mvestor s risk tolerance is assumed constant, and deﬁned as the added
 variance for per unit of added expected return, providing the same utility for the investor

(Maginn and Tuttle, 1990 p. 7-9). A method for nieasurmg risk tolerance can be derlved
‘ from tlns formula and is described be]ow

. Efficient frontier Portfolio C

N

Eip ected return

\ Indifference curve . -

Portfolio A

“Standard deviation
Figure 4.1: Efficient frontier and indifference curves
‘Along the efficient frontier showed in Figure 4.1, each portfolio, with given expected

return E(Rp), has associated standard deviation op, which is minimal among all avallable
portfoho mix. However “different optlmal portfoho mix may provide different utility to the

‘ ‘-glven investor. In Flgure 41 portfoho A, with expected retum E(RA) and standard
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deviation o, provides the investor with utility value of U,; portfolio C, with expected
return E(Rc) and standard deviation oc, provides the investor with utility value of Uc.
Every portfolio in the investor’s indifference curve provides the same level of r:tility to the
given investor. '

For two portfolios, A and C, the exact values of utilities are unknown to bOfil the investor
and the financial advisor. However, the investor’s relative degree of preference between
these two portfolios can be estimated through appropriately designed procedures. If the
investor’s relative degree of preference between portfolio A and portfolio C is denoted by k, -
then k can be expressed as: '

=Ya (4.2.2)

Uc

From utility definition formula (4.2.1), the ut111t1es of portfoho A and portfoho C are
written as:

0.2
Uy=E(R ) -4 (4.2.3)
and
ol : -
(4.2.4)

Uc = E(R¢) -
From (4.2.2), (4.2.3), and (4.2.4), we can derive the following formula:

o’ —-kol
E(RA) kE(R;)

(4.2.5)

Formula (4.2.5) indicates that an investor’s risk tolerance can be defined as the ratio of
added portfolio variances to added portfolio returns, eOnsidering the investor’s relative
degree of preference between two reference portfolios. Therefore, if the characteristics of
two reference portfolios, E(Ra), 6a and E(Rc), oc, as well as the value of k, are known, the
value of ¢ can be determined. In the next sections of this chapter methods to obtain the
appropriate reference portfolios and to estimate the value of k are proposed The investor
selects his own reference portfolios from the candidates provided by the ﬁnanclal advisor.
Hrs relative degree of preference between the two reference portfohos is evaluated through

the AHP technique.
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| 4.3 Selection of Reference Portfolios

In order to measure an investor’s risk tolerance, the financial advisor should first obtain
two reference portfolios with known characteristics. These two portfolios:can be found
along the efficient frontier if we assume that the investor is rational, that is, he always
prefers the higher return and less risk. The selection. of reference portfolios: significantly
affects the value of risk tolerance. In order to let the investor make a better and more clear
comparison, one of the two portfolios should be considered as very conservative, and the

other should be considered as very aggressive, These two portfolios, A and C, can be
described as follows:

Portfolio A:
An efficient portfolio that the investor oelieves is very conservative. It has a
~small expected return and a small variance. ' ‘
Portfolio C: .
An efficient portfolio that the investor believes is very aggressive. It has a large
expected return and a large variance.

There are two options for the selection procedure. The first one is the advisor provides the
reference portfolios to the investor. The second one is the investor selects own reference
portfolios. The first option is more convenient but-the investor may not think the reference
portfolios are suitable to him. Because different people have different risk attitudes towards
~ a same portfolio, the “aggressiveness” of reference portfolios is vague if they are not
selected byan investor himself, This difference can be illustrated by an example. Assuming
there are two portfolios, say, A and C, which are considered conservative and aggressive
respecuvely by the advisor. The investor is asked to choose one of them to invest in it. If
investor chooses portfolio C, he is considered “aggressive”. If the investor chooses A, heis -
con51dered “conservative”. However, to the investor hlmself,.he may think he is just
cﬁoosing the “right” portfolio according to his oWn pneference neither “aggreséive” nor
conservatlve’ It means an investor doesn’t always think in the same manner as the
adv1sor or other people, who select the reference portfolios. Therefore, it is desirable to ask
the mvestor to, select his own reference portfolios. Considering the limited investment
knowledge of an investor, m the proposed method, the adwsor will provide: several
candldate portfohos and the investor chooses reference portfohos from the candldates .
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4.4 Select the Conservative Reference Portfolio

The expected return of a portfolio is determined by the characteristics of assets making up
the portfolio. It is a weighted average of the expected returns for individual assets in the
~ portfolio. Usually people believe that, if an investor is willing to invest most of his funds to
assets that have low volatility of expected returns, he is conservative; because usually the
lower the volatility, the lower is the return. Since the advisor only helps ‘an investor select
reference portfolio instead of making judgment for him, a reasonable number of candidate
portfolios should be provided. A procedure based on a heuristic method is used to select the

conservative reference portfolio.
4.4.1 Heuristic Method

The following heuristic can be used to select the conservative reference portfolio A:

A very conservative portfolio = The first portfolio, from the top down in a list of
portfolio (called A;) which the specified investor believes it is investable.
Here A. denotes the set of the efficient portfolios that most people believe they are very
conservative. The portfolios in A are sorted in terms of their relative conservativeness and
the top portfolio in the list is the most conservative.

The statement means the investor believes the reference portfolio A is investable in terms
of his preference, although the possibility to invest in it is fow because it is t0o
.conservative to him. Based on the above heuristic, a procedure to select reference portfolio
A is described as follows.

Step 1: The financial advisor generates the list A; that includes several efficient portfolios
that are usually believed (that is, according to the adﬁsor’s experience) as very .
conservative. The global minimum variance portfolio K, described in Chapter 2,is the low
bound of this list.

Step 2: The financial advisor sorts these portfohos in Ac in decreasmg orde1 accordmg to.
their relative conservativeness. The most conservative portfoho is sorted at the top of the
list.



Step 3: The financial advisor asks the investor to judge if it is possible for him'to invest in
Aone'Of the portfolios, starting from the top of the list A.. If the answer is no, ask the

investor to- make judgment for the next portfolio. This procedure . oontmues until the
investor makes a positive answer.

- -4.4.2 The Global Minimum Variance Portfolio

“The global minimum variance portfolio K is considered as the most conservative portfolio.

It can be used as a-good starting point for the advisor to generate candidate reference
portfolios.

|
All portfolios along the efficient frontier have such a property that when the expected

return decreases, its standard deviation also decreases. Portfolios on both sides of the
. global minimum variance portfolio K have larger variance than K. As shown in F,igﬁre 42,
‘when the expected return of a portfolio continues to decrease and once passes K, the
portfolio’s variance no longer decreases but increases. It is said this portfolio becomes
inefficient. Based on this property, a heuristic algorithm is developed to find the portfolio
K, This algorithm is to search along the efficient frontier with decreasing expected returns
until the variance of one portfolio is found to be larger than its predecessor.

search direction

g

efficient frontier

Expected return .

.
-~
Seaw

Standard deviation

Figure 4.2: Search for the global minimum variance portfolio
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Figure 4.3: Fowchart for finding the global minimum variance portfolio

N

The flowchart based on the above algorithm is shown in Figure 4.3. The procedure is
implemented as follows. First, specify an initial target return, solve the mean-variance
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optimization model (denoted as Model 4.1) and obtain a minimum variance V1. Then
decrease the target return value by one step length, solve Model 4.1 again, and obtain
current mlmmum variance V2. Compare V1 with V2. If V1 is larger than the current

variance V2, continue the search. IfV2 is larger than V1, this means the predecessor of the
current portfolio is the global minimum variance portfolio.

Model 4.1 is a quadratic programming model used to find the optimal value of portfolio
variance associated with given expected target return. This model is an alternative

formulation of Markvitiwz model (Model 2.1). Its general formulation is written as
follows:

Model 4.1: .
Objective:
Minimize Zx o; +ZZx p,j0'0'
i=1 Jj=1
J#i
subject to:

N

.E(RP) = Z xiE(R:;)

i=1

N
Z x,."—=1

i=1

v
o

S X i=1,., N

where: E(Rp) = expected return of portfolio;
 gp= standard deviation of return of portfolio;
E(R) = expécted return for asset-class i;
o; = standard deviation of return of asset class i;
pyy = correlation coefficient between asset class i and j;
N = the number of asset classes;

and x; = proportion of po'rtfolio invested in asset:class' i.

, Computer programs based on General Algebralc Modelmg System (GAMS developed by
GAMS Development Corporatlon) language are written to implement the aigorithm for

47



fmdihg the global minimum portfoliol for each objective (Appendices 1.1,2.1;3.1, 4.1, 5.1,
and 6.1). The inputs for each program are the initial target value of expected return and the
step length. The outputs are the characteristics of the portfolio K, including the expected
return, standard deviation, and optimal weight of each asset class making up the portfolio.

The results for the hypothetical investment example using data of Table 3.1 and Table 3.2
are shown in Table 4.1. T

Table 4.1: The global minimum variance portfolio for each objective
Retun STD Fraction of assets making up the portfolio
-Objective % %  LaStock SmStock LGBond LCBond T-Bill RealEst

TNR 39 3161 0.025 0.000 0.080 0.000 0.895 0.000
CA 0.0 099 0.007 0.004 0.000 0.000  0.980  0.000
CRI 4.5 1.629  0.246 0.000 0.230 0.000 0355 0.169
ATR 22 1739 0.016 0.004 0.083 0.000 0.897 0.000
PP 10 4100 0042 0000 0125 0000 0833  0.000
LD 0.0 0.000 0.000 0.000 0.000 0.000  0.000 1.000

4.4.3 Generating the List A. of the Candidate Portfolios |

A simple algorithm is used to generate the list A; of the candidate portfolios. The financial
advisor first specifies an initial small target return for one portfolio. This value can be the
expected return of the global minimum portfolio K. But it is up to theé advisor’s choice if
the portfolio K is believed to be too conservative and he would like to limit the size of the
list. After generating the first portfolio, increase the target return by one step length, solve
Model 4.1 again, and obtain the second portfolio. Continue this procedure until the
required size of candidate portfolios is met. The flowchart Based on this algorithm is shown
in Figure 4.4. GAMS progfams are written to implement the algorithm for generating the
list of candidate conservative portfolios for each objective (see Appendices 1.2,2.2,32,
4.2, 5.2, and 6.2). The inputs for each program are the ‘initial target value of expected
return, the step length as well as the required size of list n, The outputs are the
characteristics of each portfolio, including the expected return, standard deviation, and
optimal weight of each asset class making up the portfolio. Sorting the portfolios in the list
is automatically completed using the above algorithm.
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Figure 4.4: Generating the list of the conservative reference portfolios

4.4.4 Select the Reference Portfolio A Using Questionnaires °

The investor selects his own reference portfolio from the. candidate portfolio list A.
_pfovided by the advisor. This procedure can be.imple'm:ented by ‘using questionnaires.
Normally investors consider the portfolio return and risk in terms of dollar value, o
presenting one portfolio to investors in  dollar value description may be more
straightforward. If the return distribution is assumed to follow approximately the normal
distribution, then the chance that the outcome value of expected return will fall in [E(R)



+ o] is 68% (approximately two of three times), and the chance that the outcome value of
expected return will fall in [E(R) +30] is 99.7%. If the extreme value is considered as

worse or best case, the following description of portfolio can be used when designing a
questionnaire.

The description of portfolio A: _
‘You have an available capital of $V. If you invest it in-portfolio A, the average net
return of this investment by the end of investment period will be $VXE(Ra). Two out
of three times that the net return of this investment will come out to be between $V X
[E(RaA) - 0a] and SVX[E(Ra) + 04l HoWever, in the worse case, the investment will
lose SVX[E(Ra) - 304), and in the best case the investment will gain SVX[E(Ra) +
30a];

A sample questionnaire, designed for selecting the conservative reference portfolio in
terms of the total nominal return objective, is shown in Figure 4.5. If the response from the
investor is “absolutely not”, the advisor presents other portfolios in the candidate list one

by one. If the investor’s answer is “it is possible”, set this portfolio as the reference
portfolio A.

4.5 Select the Aggressive Reference Portfolio

The expected return of a portfolio is limited and must fall between the highest and lowest
expected returns of the component individual assets. Usually people believe that, if an
investor is willing to invest most of his funds to assets that have highest attainable
expected returns, he is aggressive; because usually the highefthe return, the higher is the
~ risk. But for an individual investor, his attitude towards the definition of aggressiveness
may vary significantly. For example, some investors may think investing in stocks is -
always a very risky action and always try to avoid it. Therefore, the maximum return
_ portfolio is not necessarily the right aggressive reference portfolio for a specific investor. A-
procedure based on a heuristic method is used to select the aggressive reference portfolio. -
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* This fqﬁestionneire‘ is desiéned for an investor to select the reference consewetive portfolio in
- . terms of the total nominal return objective. Based on the description of this portfolio, please
answer the question provided below.

‘ Description of portfolio A (based on $100,000 funds)

Expected STD Averagenet 2 outof 3 times net return range Worse case - Best case
Return(%) (%) retum($) Low end($) Highend (§) netreturn($) net return($)
4 3162 4,000 838 7,162 -5,486 13,486

Fractions of assets making up the portfolio:
LaStock0.030,.SmStock 0.004, LGBond 0.087, LCBondO 000, TBill 0.879, RealEst 0.000

Question: : \

You have an available capital of $100,000. Would you like to invest in this portfolio?

' .Your. answer is: _ _
1. Absolutely not.” 2.1t is possible.

Figure 4.5: Example questionnaire for selecting the conservative reference portfolio

4.5.1 Heuristic Method

The heuristic used for selecting the aggressive reference portfolio can be expressed as
| follows |
| A very aggresswe portfoho The first portfollo &om the top down in set C, that the
spemﬁed investor beheves it is investable.

Here C, denotes the set of efﬁclent portfolios that most people beheve they are very

' aggresswe The portfollos in C, are sorted in terms of thelr relative aggressweness and the

top portfollo in the list is the most aggressive.

The statement means the mvestor believes the reference portfolio C is 1nvestab1e in terms
of his preference, although the poss1b111ty to invest in it is low because it is too aggresswe
to him. Based on the above heuristic, a procedure used to select reference the reference

portfolio C is suggested as follows:
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Step 1: The financial advisor generates the list C, that includes several efficient portfolios
that are usually believed (that is, according to the advisor’s experience) as very aggressive.
The maximum return portfolio Q, described in Chapter 2, is the upper bound of this list.

Step 2: The financial advisor sorts the portfolios in C, in decreasing order accordmg to
their relative aggressiveness. The most aggressive portfolio is sorted at the top of the list.

Step 3: The financial advisor asks the investor to judge if it is possible for him to invest in
one of the portfolios, starting from the top of the list. If the answer is no, ask the investor to
make judgment for the next portfolio. This procedure continues until the investor makes a
positive answer.

4.5.2 The Maximum Return Portfolio

The maximum return portfolio Q is considered as the most aggressive efficient portfolio. It
can be used as a good' starting point for the advisor to generate candidate aggressive
reference portfolios.

efficient frontier

search direction/v

Expected return
/

Standard deviation

Figure 4.6: Search for the maximum return portfolio
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- All portfolios -along the efficient frontier have such a property that when the standard
deviation. increases, expected return also increases. Portfolios on both sides of the
maximum return portfolio Q have smaller expected.return than Q. As shown in Figure 4.6,
when the standard deviation of a portfolio continues to increase and once passes Q, the
portfolio’s return no longer increases but decreases. It is said this portfolio becomes
inefficient. Based on this property, a heuristic algorithm is developed to find the portfolio
Q. This algorithm is to search along the efficient frontier with increasing variances until the
expected return of one portfolio is found to be smaller than its predecessor.

The flowchart based on the above algorithm is shown in Figure 4.7. The procedure is
implemented as follou)s. First, specify an initial target variance, solve the mean-variance
optimization model as given in Model 2.1, and obtain an optimal return R1. Then increase
the target variance value by one step length, solve Model 2.1 again, and obtain the current
optimal return R2. Compare R1 with R2. If R1 is smaller than the current optimal return
R2, continue the search. If R1 is larger than R2, this means the predecessor of the current
portfolio is the maximum return portfolio.

GAMS programs are written to implement the algorithm for finding the maximum return
portfolio for each objective (see Appendices 1.3, 2.3, 3.3, 4.3, 5.3, and 6.3). The inputs for
each program are the initial target value of standard deviation and the step length. The
outputs are the characteristics of the portfolio Q, including the expected return, standard

. deviation, and optimal weight of each asset class making up the portfolio. The results for
the hypothetical investment example using data of Table 3.1 and Table 3.2 are shown in
Table 4.2.

Table 4.2: The maximum return portfolio for each objective
Return STD Fraction of assets making up the portfolio
Objective k% - % laStock SmStock LGBond LCBond T-Bill RealEst
TNR 178 356  0.000 1.000 0.000 0.000  0.000 0.000

cA 128 278 0000 1000  0.000 0000 0000 0.000
CRI 59 35 0000 0000 0000 1000 0000 0.000
ATR 133 265 0000 1000 0000  0.000 0.000 0.000
PP 143 249 0000 1000 0000 0000 0000 0.000

LD 134 267 0000  1.000  0.000 0000 0.000 0.000
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Figure 4.7: Flowchart for finding the maximum return portfolio -

4.5.3 Generating the List C, of the Candidate Portfolios

The algorithm used to generate the candidate portfolio list C, is similar to the one used to
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generate the candidate conservative portfolio list A.. The financial advisor first specifies an

initial large target return for one portfolio. This initial value can be the expected return of
' the maximum return portfolio Q. But it is*up to the advisor’s choice if the portfolio Q is
believed to be too aggressive and he would like to limit the size of the list. After generating
the first portfolio, decrease the target return by one step length, solve Model 4.1 again,
obtain the second portfolio. The process stops once the required size of candidate
portfolios is reached. The flowchart based on this algorithm is shown in the Figure 4.8."
GAMS programs similar to ones given in Ap;;endices 1.2,22,32,4.2,5.2, and 6.2 are
used to implement the algorithm for generating the candidate aggressive portfolio list for
each objective. The inputs for each program are the initial target value of expééted return,
the step length, as well as the required size of the lift n. The outputs are the characteristics
of each portfolio, including the expected return, standard deviation, and optimal weight of
each asset class making up the portfolio; Sorting the portfolios in the list is automatically
achieved using the above algorithm. ' .
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- Figure 4.8: Generating the.agg!:essive reference portfolio list -
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4.5.4 Select the Reference Portfolio C Using Questionnaires

The questionnaires used to select the aggressive reference portfolio C are similar to those
for selecting the conservative reference portfolio A. A sample quesﬁbnnaire, designed for
selecting the aggressive reference portfolio for the total nominal return objec’ﬁve, is shown
in Figure 4.9. If the response from the investor is “absolﬁtely not”, the adﬁsor presents
other portfolios in the candidate list one by one. If the investor’s answer is “it is possible”,

set this portfolio as the reference portfolio C.

This questionnaire is designed for an investor to select the reference aggressive portfolio in
terms of the total nominal return objective. Based on the descnptlon of thls portfolio, please
answer the question provided below.

Description of portfolio C (based on $100,000 funds)

Expected STD Averagenet 2 outof3 times netreturnrange Worse case Best case
Return(%) (%)  return ($) Low end ($) Highend(§) netreturn($) net return($)

13 2030 13,000 -7,300 33,300 -47,900 73,900

Fractions of assets making up the portfolio:
LaStock 0.237, SmStock 0.428, LGBond 0.000, LCBond 0.000, TBill 0.000, RealEst 0.335

Question:

You have an available capital of $100,000. Would yoii like to invest in this portfolio?

Your answer is:
1. Absolutely not. 2. It is possible.

Figure 4.9: Example questionnaire for selecting the aggressive reference portfolio '

Assuming that the hypothetical investor has selected the conservative reference portfolio A

and aggressive reference portfolio C in terms of each objective. These portfolios are -
summarized in Table 4.3
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Table 4.3: Reference portfolios for each objective
- Refgren;e ' ER) © _ Fractions of assets making up the portfolio
Objective” portfolio (%) (%) LaStock SmStock LCBond LGBond T-Bill RealEst

CTNR - A 40 3161 0030 0004 0000 0087 0.879 0.000
S C 130 2030 0237 0426 -0.000: " 0.000 0000 0335 °
" CA A . 30 6165 0130 0130 _ 0000 . 0000 .0548 0.192
C 100 2078 0049 0710 0000 0000 0.000 0.241
- CRI A 45 1629 0246 0.000 0000 0230 0355 0.169
. C 59 3500 0000 0000 0000 1000 0.000 0.000
ART A 30 2278 0065 0011 0142 - 0010 0676 0096 -
. 'C 100 1667 0270 - 0487 0000  0.000 0.000 0.243.
PP A 20 4564 0083 0021 0000 0191 0628 0.077
- c 90 1820 0257 0354  0.000  0.000 -0.000 0.388
1D A 30 2271 0033 0016 0025 0.064 0554 0307
C 100 1528 0519 0176 ~ 0305 ‘0.000 ° 0.000. 0.000. . -

. 4.6 Relative Degree of Preference between Reference Portfolios

After the referénce portfolios are chosen, the next step is to obtain the investor’s-relative
preference of two p'ortfolids for each objective. Because both portfolios A and C are not the
~ desired portfolio for the investor, he is not asked to make direct comparison ‘between
portfolios A and C. Instead, another reference portfolio, the investor’s desired porffolio, is
employed as a medium to derive the relative preference between portfolio A and C. This
portfolio, denoted as portfolio B, is the one that the investor will most likely choose, but it
is not necessary for him to know the exact characteristics of this portfolio.

Questionnaires, such as the sample questiorinaire shown in Figure 4.10, are designed to
assess the investor’s relative degree of preference. In these questionnaires, the investor is
| asked to express his preference between portfolio B and A, and his preference between B
and C, in terms of each objective. The scale used in this questionnaire is similaf-to the one
suggested by Saaty (1980)..
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This questionnaire is designed for the purpose of assessing your preference over the reference portfolios
in terms of the total nominal return objective. You have selected Portfolio A as a conservative portfolio
and selected Portfolio C as the aggressive portfolio. The portfolio, say, B, is your most desired portfolio.
Please use the.suggested scale to represent your preference between two portfolios in terms of the total
nominal return objective. The former portfolio mentioned in each question is referred as'portfolio I, and
the latter portfolio is referred as portfolio IL

Description of portfolios Aand C

Expected | STD |Average net| 2 out of 3 times net return range | Worse Case | Best Case
Return(%)| (%) | return (§) Low end ($) | Hghend ($) net return ($) net return (§)

Portfolio A 4 3.162| 4,000 88 7, 162 -5,486 13,486

Fractions of assets making up portfolio A:
LaStock 0.030, SmStock 0.004, LGBond 0.087, LCBord 0.000, THill 0.879, RealEst 0.000

Portfolio C 13 20.30] 13,000 -7,300 33,300 -47,900 73,900

Fractions of assets making up portfolio C: )
LaStock 0.237, SmStock 0.428, LGBond 0.000, L.CBond 0.000, THill 0.000, RealEst 0.335

Suggested scale for pairwise comparison assessments

1 If portfolio Iand portfolio Il are judged to be equally preferred
3 If portfolio I'is judged to be slightly more preferred over portfolio II.
5 If portfolio I'is judged to be moderately more preferred over portfolio I
7 If portfolio Iis judged to be strongly more preferred over portfolio I
9 If portfolio Iis judged to be extremely more preferred over portfolio Il
2,468 If intermediate values between two adjacent judgments are needed
173 If portfolio I is judged to be slightly more preferred over portfolio I
1/5 If portfolio ITis judged to be moderately more preferred over portfolio I
177 If portfolio I is judged to be strongly more preferred over portfolio I
1/9 If portfolio I is judged to be extremely more preferred over portfolio I

1/2,1/4,1/6,1/8 If intermediate values between two adjacent judgments are needed

| Questions: _ _
1. Do you think which scale best describes your relative preference between Portfolio B and Portfolio A?
123456789 1/2131/4151/61/71/81/9

-2. Do you think which scale best describes your relative preference between Portfolio B and Portfolio C?
123456789 1/21/31/41/51/61/71/81/9 )

Figure 4.10: Example questionnaire for assessing relative degreé of
prefer_ence between reference portfolios
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" If the investor takes a normal action, that is, neither aggressive nor conservative aecerd{ng
to the' investor’s own judgment, then most likely the answer, for example, is:

~ - Bis ;s-trengly preferred over A and B is strongly preferred over C - (S;atement 1).

If the investor takes a more aggresswe action, then portfoho B becomes more aggresswe
and the possible answer for example, is,.

B is'slightly preferred over C but strongly preferred over A -- (Statement i).

If the investor takes a more conservative action, then portfolio B becomes more
conservative, and the possible answer, for example, is,

B is slightly preferred over A but strongly preferred over C -- (Statement 3).

No matter what action he takes, the aggressiveness of portfolio‘B will lie between A and C,
the lower and upper bound of the feasible portfolios.

'A comparison matrix involving three portfolios, A, B, and C, cari be constructed. The scale
values for above three statements are entered to the matrix, the diagonal comparisons are
filled with “1”. The resulting matrices are shown in Table 4.4.

Table 4.4: Initial comparison matrices for portfolios A ; B and C

Aggressive action Normal action Conservative action
Al B |C A|lB |C Al B [C
All1(1/7]7? All1|1/7]? All|133](?
B(7]|1 |3 B|7(1 |7 B|3|1]|7
cl?]|13]1 Ci?11/7]|1 C '7 1/7]1

The questlon mark “?” in the matrices means the investor doesn’t have to make a direct
companson between ‘A and C Instead, the consistency requirement of ‘the comparison
matrix is used to denve the answer Or if the investor does make a direct comparison, the
consistent test still should be performed.
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A comparison matrix involving three portfolios, AB a;id C can be written as:

ch dCB dCc

A perfectly consistent matrix should satisfy the transitivity and rec1proc1ty reqmrements
For mamx D3, the following equahtles should be held:

dac=dag X dpc (4.6.2) |
dCA = I/dAc (463)

Using these formulae to calculate the scale values for cells assigned with “?”, the matrices
in Table 4.4 are transformed to those in Table 4.5.

Table 4.5: Comparison matrices for portfolios A, B and C

Aggressive action Normal action ~ Conservative action
A|B|C A|B |C]|. A|B|C
Al 1l |1/7]3/7 All|1/7]1 \ Al 111373
B| 7 113 B{7|1 |7 B|.3 117
Cl73 (13| 1 Cl1]1/7]1 Cl37(1/7] 1

The fractions, 3/7 and 7/3 in matrices' of Table.4.5, don’t have corresponding suggested
scales, so they have to be founded. For example, the closest suggested scale for 3/7 is 1/2
or 1, and for 7/3, that is 2 or 3, and so on. Which value is selected will depend on the
investor’s preference, as long as the consistency reqmrement is met. The complete E
comparison matrlces for the hypothetical mvestor are shown in Table 4. 6

Table 4.6: Comparison matrices for hypothetical investor

Aggressive action Noxinal_ acﬁon Conservative action
A|B|C AlBJc| [ JAlB]|C
All|1/7]12 Al1|1/711} |A|l1-]173|3
B|7]|1 3 B|7|1 17 B| 3 117
Cl21B] 1 Cl1]|1/711 cCl13]1/71.1
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- Consistency Test and Relative Degree of Preference Calculations

Similar to matrix D, discussed in Section 3.7, for matrix-Ds defined in formula (4.6.1), a
good estimate of the principal ¢igenvector (EV) can be described as.to multiply the

elements in each row and take the 3™ root. The formula is written as:
EV = (b,,bp,bc)T  (4.6.4)

where b, = (dy xdyxd)  i=A,B,orC (4.6.5)

The normalized principal eigenvector of matrix Dsis the vector of priorities (Saaty, 1980,
p. 19). It can be obtained by: .

-~ Normalized = EV = (b)y,by,be)" (4.6.6)

where b;=b,/(b,+by +b;) i=A4,B,orC (4.6.7)

The eigenvalue of each row of the observed comparison matrix is:

A =(dyb, +dyb, +dche)/b, i=AB,orC (468)

.For'the observed matrix, the consistency index CI, as defined in formula (3.8.2), is
calculated by: - '
A . 3 o
Cl = -/1—‘—""‘—-——- (4.6.9)
2 - .
From T‘abié 3..5,.fqr the order of matrix m = 3, the a,verage-random, consistency index RI =
0.52. The consistency ratio CR, as defined in formula (3.8.4), should be no larger than 0.1
for compliance with acceptable consistency. If the consistency of comparison matrix is
accepted, then the relative degree of preference between the two reference portfolios, k, is
estimated by the ratio of the normalized priority values of the two portfolios. This

relationship can be expressed as:
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k=24 (4.6.10)
b ,

4.7 Spreadsheet Model fbr Calculating the Degree of Preference

Similar to the spreadsheet model developed in Chapter 3 for calculating objective weights

and performing the consistency test, Excel models are designed to calculate the investor’s

relative degree of preference between reference portfolios and perform the consistency

tests. The sample model shown in Figure 4.11.is developed for the situation when the

hypothetical investor takes an aggressive action. The formulae and functions used in this
" model are shown in Figure 4.12.

A B C. bi  Normalied LS
| \Portfolioa | 1 | 1/7| 1/2 |0.415 |0.103 | 3.003 .
PortfolioB | 7 | 1 3 |2.759 |0.682 | 3.003
PostfolioC | 2 | 1/3| 1 10.874 | 0.216 | 3.003
§ | Sum= | 4047 | 1.000 ‘
i | Amax= 3003

: : e i .

Consisiency test (1: pass; 0: fail): 1

Order of matrixm= 3 :
Consistency IndexCI= |0.0013 :
RendomIndexRI= ‘| 0.52 :

Consistency Ratio CR= |0, 0025
| ! P

Figure 4.11: Sample Excel modei for calculaiixig an investor’s reléﬁve

degree of preference between two reference pqrtfolibs )

-
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Cell Values, formulae or functions
B6,C7,D8 =t
B8 =1/Dé6
C8 =1/D7 °
B7,D7  Obtained from questionnaire
-C6 =1/B7
C8 =1/D7
D6 =C6*D7 (may need to be adjusted)
~ E6 =POWER(B6*C6*D6,1/3)
E7° =POWER(B7*C7*D7,1/3)
E8 =POWER(B8*C8*D3,1/3)
F6 =E6/$E$9
F7 =E7/$E$9
F8 =E8/$E$9
E9 =SUM(E6:E8)
F9 =SUM(F6:F8)
- E12  =$F$6/$F$8
- G6 - —B6*F6/F6+C6*F7/FG+D6*F8/F6
G7 =B7*F6/F1+C7*F7/F1+D7*F8/F7
GS8 - —B8*F6/F8+C8*F7/F8+D8*F8/F8
Gl1 —MAX(G6 G3) ‘
D15 =3
D16 .=(G11-D15)/(D15-1).
D17 =0.52
D18 =DI16/D17 _
- E14 =IF($D$18<=0.1,1,0)

Figure 4.12: Excel model inputs and formulae for Figure 4.11.

In this Excel model, the financial advisor inputs the scale values of the investor’s responses
to the designed questionnaire shown in Figure 4:10. The number of inputs equals to the
.number of questions. In fact, only two mdependent input data are needed to enter into cell
'B7 and cell D7. Diagonal comparisons are filled with “1”. Other values are filled using
Excel built-in formulae. The value in cell D6 is obtained using formula D6=C6 *D7, which
is designed for compliance with initial transitivity requirements. This value can be adjusted
* according to the investor’s preference as long as the consistency requirement is satisfied.
The principal eigenvector is shown in cell range E6:E8. The normalized principal
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eigenvector is shown in cell range F6:F8. The consistency iest results are shown in cell
E14. If the consistency test is passed (CR < =0.1), the e,nswer is “Yes” ("‘l” in cell E14). If
the test is not passed (CR > 0.1), the answer is “No” (“O” in cell E14). In this example, the
consistency of the matrix is accepted. The relative degree of preference between portfolio
A and portfolio C, k;, is shown in cell E12, which is obtained by using formula (4.6.10).

Similar models can be designed to calculate the investor’s relative degree of preference
when he takes normal action or conservative action and to perform the consistency tests.
The values of the relative degree of preferenice for the hypothetical investor, whose
comparison matrices are shown in Table 4.6, are summarized in Table 4.7. For different
objectives, the same investor may make different responses. Thus the relative degfees of

preference between reference portfolios may be different. However, for illustrative purpose,
it is assumed that for each of six objectives,lthe investor makes the similar responses.

Table 4.7: The relative degree of preference for the hypothetical invester |
Aggressive action Normal action Conservative action
K - 0.475 0.630 2.759

4.8 Construction of Local Optimal Portfolios

After the investor’s relative degree of preference between two reference portfoli.os.is
obtained, the investor’s risk tolerance, ¢, can be'.calculated ﬁsing fortmx_la (4.2.5). The value
of ¢, along with expected returns, standard deviations of asset classes and their correlation
coefficients, are the inputs to Model 2.2, which is used to obtain the local optimal portfolio -
for each objective. Replacing the risk tolerance ¢ with formula (4.24.5»),'M0c'fe1 2.2 can be
modified. The modified Model 2.2 is shown as Model 4.2. For each local optimization
model, the expected returns and standard deviations of two reference portfohos A and C,
can be obtained from Table 4.3, and the investor’s relative degree of preference between
the two reference portfolios can be obtained from Table 47.

Model 4.2;
Objective:

Maximize U = E(RP 9



Subjectto: = ..: -

'_ko'c'.
E(R,r) kE(R)

Zxa +22xxp0'0'

i=l j=1
J#i

N

E(Rp)=) x;E(R)
HECI o
Y =

i=1

[}

X .

%
o
I
— .
2

where: U = the utility of portfolio;
t = the investor’s risk tolerance;
k = the investor’s relahve degree of preference between portfoho A and portfolio C;
E(R4) = expected return of reference portfolio A; '
E(Rc) = expected return of reference portfolio C;
o4 = standard deviation of return of i)ortfolio A;
oc= starida.rd deviation of return of portfolio C;
| ‘E(Rp) expected return of portfoho, ) ‘
op = standard dev1at10n of return of portfoho .
. E(R;) expected return for asset class i; ‘
o= = standard deviation of return of asset class i )
p = correlation coeﬁ'lclent between asset class i and Ji
N the number of asset  classes;

o and x; proportlon of portfoho mvested in asset classi.

' GAMS programs given in Appendices 1.4, 2:4, 3.4,4.4,5.4 and 6.4 are written to solve the
quadratic programming model (Model 4.2). The outputs of these programs are
characteristics of the local optimal portfolio', including the expected return, standard
deviation, percent of each asset class invested, as well as the values of the investor's n'sk
tolerance and utility. " -
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. Chapter 5: Complete Portfolios and Comparisons *

Based on the methods described in Chapter 3 and Chapter 4, a complete portfoho for an
individual investor can be obtained. In tlus chapter, the basic- procedure of the proposed -
multiple-objective asset allocation approach is first reviewed. Then the complete portfolios
constructed for the hypothetical mvestor are presented. A deviation index is suggested to
measure the overall inefficiency of complete portfolios from. efficient portfolios.
Comparisons of the overall efficiency are made among the complete portfolios obtained by
the proposed model and those of portfolios obtained by a sihgle-objecﬁve opti'r_nizatior;'
method.

5.1 The Process of Constructing a Complete Portfolio .

In the proposed method, the asset allocation problem for an individual investor is’
considered as a multiple-objective decision making problenL The general model of the
proposed approach for M objectives and N asset classes is presented in Figure 3.2. The
Analytic Hierarchy Process (AHP) is employed as the framework to address an investor’s
multiple investment objectives. Traditional portfolio optimization techniques are integrated
into the AHP decision hierarchy. In the asset allocation process involving' a financial
advisor and a client, the client’s investmeht objectives and preferences are reflected
through effective communications with the financial advisor. The advisor offets expertlse
through providing available market opportunities, demgmng customized questlonnalres and
helping the client making effective judgments. The result of this asset allocation process is

'to construct a complete portfolio that is consistent with the investor’s i'niiestinent goals

while considering the portfolio’s overall efficiency. The basic‘pri)cedure of constructing

such a complete portfolio based on our proposed method is summarized as followé:

Step 1: The ﬁnanciai advisor gathers information from the investor. Questionnaires such as.

Figure 3.3 are used. The investor rnakes reeponses to the questionnaire provided by the
financial advisor. The investor’s investment obj ectives and gerieral risk profile are obtained
in this step. S ‘ '

Step 2: The financial advisor designs customized Questionnéires such as Figure 3.5 to
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. assess the pnorrty of the investor’s - :multiple investment - objectrves “The investor’s
responses to the ‘questionnaires are tested for consistency and the relatwe preferences are
evaluated usmg the AHP techniques. Spreadsheet models such as Figure 3.6 can be used to

A perform these tasks. The relatlve 1mportance of the investor’s obJectrves is obtamed in this
step: . - '

Step'3:. ~Th‘e financial advisor transforms the investor’s ir\vestment objectives into return
requrrements that can be used as objective functions of appropriate optrmrzatron models.
The data from capital market research results should be avarlable in this step For .

mean—vanance optimizations, the data of asset classes’ expected return standard deviation
~and correlatrons in terms of each obJectrve are needed. Using these data, the efficient
| fronner in terms of each objectrve is obtained. In this step, the ﬁnancral advrsor provrdes
the “market opportumtres” to the investor.

 Step 4: The financial advisor generates candidate refererrce portf‘elios with the aid of
computer programs. The investor selects his own reference portfolios from the candidates.
Questionnaires such as Figure 4.5 and Figure 4.9 are used. Reference portfolios that reflect
- the investor’s risk attitude and personal preferences are obtained in this step. ‘

Step 5: The investor make responses to questionnaires such as Figure 4.10 to express his
preference between his desired portfolio and reference portfolios in terms of each objective.
- The responses are tested for consistency and the investor’s relative. degree of preference
* between reference portfolios is evaluated using the AHP techmque.-»Spreadsheet ,models
such as Figure 4.11 are used to perform these tasks. The investor’s risk- tolerance is
" estimated in this step. '

Step 6: The financial advisor constructs each local optimal pbrtfelio in terms of each
investment objective of the 1nvestor Quadratic programming models- such as Model 4.2 are
‘used to combine the market opportunmes with the investor’s preferences The local

'optlmal portfohos assocrated with the investor’s obJectxves are ebtamed in this step.

Step 7: The financial advisor constructs the complete portfolto by combmmg the local
Optlmal portfolios according to the relatrve nnportance of their associated objectives. The

complete portfoho a mix of different asset classes, is obtained in this step.
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5.2 Complete Portfolios for the Hypothetical Investor

In Chapter 3, the relative importance of the six investment objectives of the hypothetical
inveétor 1s obtained, as shown in Table 3.6 and the left sides of Tables 5.1, 5.2 and 5.3. In
Chapter 4, the investor’s risk tolerance is incorporated into the associated optimization
model to determine the local optimal portfolio for each objective. The: local optimal
_ portfolios for the hypothetical investor when he takes aggressive, normal and conservative
actions are displayed in the right sides of Tables 5.1, 5.2, and 5.3 respectivel'y. The items
for each portfolio include the relative weight, expected return, standard deviation, and the
fraction of each assets making up the portfolio. The complete portfolios are obtained by
combining the weighted local optimal portfolios according to their relative importance.
The proportion of a complete portfolio invested in each individual asset class is obtained
using formula (3.2.3). For the hypothetical investor when he takes aggressive, normal and
‘conservative actions, the resulting complete portfolios are displayed at the bottom lines of
Tables 5.1, 5.2, and 5.3, respectively. ' '

As it is shown, the complete portfolio for the aggressive action is composed: of 28.6%
large-cap stocks, 26.6% small-cap stocks, 14.8% long-term corporate bonds, 0.9%
Treasury bills, and 29.1% real estate. The compléte portfolio for the normal action is
composed of 28.2% large-cap stocks, 16.4% sxhall—cap s.tocks, 17.7%‘16ng-term corporate
bon_dé, 4.0% Treasury bills, and 33.7% real estate. ‘The complete portfolio for the
conservation action is composed of 23.2% large-cap stocks, 8.1% sma]i-cap stocks, 28.3%
'long-term corporate bonds, 0.1% long-term government bonds, 7.5% Tieasﬁry bills, and
32.8% real estate. Real estate makes up one of the major coinponénts in each case because
it performs superior in terms of most of the objectives except the income and liquidity
objectives. The investor’s low liquidity requirement also contributes to the results. The
results also indicate that the complete portfolio tends to smooth the extreme large and
extreme small weights of individual assets in local optimal pbrtfolios. Therefore, it can be

' éxpected that the complete portfolio is less sensitive to input errors from individual local
portfolios. ' ' '
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- Table 5.1: Local optimal and complete portfolios when the investor takes an aggressive action.
Objective ER) o Fraction of assets making up the portfolio

& Weight (%) (%) LaStock SmStock LCBond LGBond T-Bill RealEst
TNR .. 0245 11.61' 1644 - 0337 . 0.249 0.000 0.000 -~ 0.000 0414
. CA 0051 9.66 . 19.98 0.073 0.666 0.000 - 0.000 0.000 0.261
- CRI 0.083 590 3.50 0.000 0.000 1.000 0.000  0.000 . 0.000
ATR 0426 ‘881 1333 0304 0333 0000 0000 0.000 0363
PP - 0.058 687 1275 0262 0173~ 0.178 ~ 0.000° 0.000 0.387
ID. 0.132 892 1266 0415 0.146 0373 0.000 ~ 0.066 0.000
Complete portfolio 0.286 0.266 0.148 0.000 0.009 0.291

~ Table 5.2: Local optimal and complete portfolios when the investor takes a normal action.
" Objective ER) o Fraction of assets making up the portfolio ,

& Weight (%) (%) LaStock SmStock LCBond LGBond T-Bill RealEst
. TNR. 0245 10.12 12.80 0.308 0.149 - 0.150  0.000 0.000 0.393
CA 0051 794 1601 0180 = 0.447 0.000 -0.000 0.000 -0.364
"CRI 0.088 590 3.50 0.000  0.000 1.000 0.000  0.000  0.000
CATR 0426 7.73 1052 0336 093 0000  0.000 0.00 0471
PP 0.058 636 11.59 0.248 0.139 0236  0.000 0.000 0.377
ID 0132 749 928 0300 0.107 0.292 0.000 0.301 0.000
Complete portfolio 0.282 0.164 0.177 0.000 0.040 0337

~ Table 5.3: Local optimal and complete portfolios when the investor takes a conservative action
- Objective- ER) o Fraction of assets making up the portfolio
. & Weight - - (%) (%) -LaStock SmStock LCBond LGBond T-Bill RealEst
~TNR 0245 852 939 0236 0.070 0.356 0.000 0.000 0.338
"CA” 0051 599 1199 0257 0250  0.000  0.000 0.090 0.403
"CRI 0.088 5.90 3.50 0.000 0.000 . 1.000 - 0.000 0.000 ’ 0.000
.- ATR 0426 637 .7.51 . -0.290 0.085 0.148  0.000 ~ 0.000 0477
PP 0.058  5.65 . 10.11  0.230 0.093  0.295 0.022 0.000 0360
LD 0.132 6. 08 6.14 0.187 0.069 -0.212 0.000, 0.532 0.000
T Completeportfolio 0232 0081 0283 0.001 0075 0328

-The-performance, i.e., expected return and standard deviation, of the oomblete portfolio m
- :"temls of each obJectlve can be obtained by usmg following equations:
E(ch) = Z X E(R,P) (5.2.1)
i=1

N N

Gc,, = Zx, o2+ xx,0,0 P, (5.2.2). |

=l ) i=1 J=1
ji
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where ) .
E(Rcp) = expected return of complete portfolio in terms of objecﬁvé D
ocp = standard deviation of return of the complete portfolio in terms of dbjective P
E(Rip) = expected return for asset class i in terms of objective p; .
dgp = standard deviation of return of asset class i in terms of objective p;
pi,-A = correlation coefficient between asset class i and j; ‘
N = the number of asset classes;

and x; = proportion of the complete portfolio invested in asset class i."

GAMS programs are written to perfonn these calculations, as shown in Appendlm 1.5,
2.5,3.5,4.5,5.5, and 6.5. The results are summarized in Table 5. 4.

Table 5.4: The performances of a complete portfolio in terms of each objective
- Aggressiveaction Normal action Conservative action
Objective Weight E(R) c ER) c E(R) c
W (%) B (k) (B (%) (%)
TNR 0245 1120 1564 994 12.53 848 . . 938
CA 0051 6.07 1249 482 1002  3.31 7.39
CRI 0.088 5.12 3.21 512 257 5.18 210
ATR 0426 -17.91 1134 6.89 8.87 5.71 6.36
PP 0.058 - 7.93 15560 6.72 1254 533 - 9.6
ID 0132 771 1257 655 998 548 7.30
Weighted return 8.35 ‘ 7.32 6.17 :

The complete portfolio obtained may not be optimal in terms of each individual objéctive. ‘
The associated efficient pottfolios for the complete portfolios in terms of" each 6bjective are

summarized in Table 5.5. They are minimum variance poi'tf'olioé 'wivth the same ekpe,cted .
returns as the complete portfolio in terms of each objective. They are obtained by solving
Model 4.1 with given expected returns. GAMS programs are written to pérfdnn these tasks,
as given in Appendices 1.6, 2.6, 3.6, 4.6, 5.6, and 6.6. For example, the e’xpeqied return of
the normal action portfolio in terms of the total nominal return objecﬁvé is 9.94% (see
Table 5.4). With expected return of 9.94%, the standard déviation of the efficient portfolio
in terms of the total nominal objective ié 12.39% (denoted as o* in Table 5.5), which is
slightly less than that of the complete portfolio, 12.53% (see Table 5.4). Note that an
efficient portfolio that is “efficient” in all dimensions may not actually exist at all,
Therefore, the efficient portfolios in Table 5.5 are the hypothetical combination of six

portfolios, each of them is efficient for its associated objective only. The weighted returns,
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shown at the bottom line of Table 5.4 and Table 5.5, are the weighted avefage returns for

six objectives. They can be used to evaluate the overall aggrecs:ven&cs of a portfolio in
terms of overall investment objectwes

Table 5.5: Agsoc:ated eﬂicwnt portfolios of coniplete portfolios :

Agegressive action Normal action  Conservative action

Efficient portfolios  Efficient portfolios Efficient portfolios
Objective  Weight E®R) o* ER) - o* ER) o*
Wi % % A %)

TNR 0.245 11.20 15.40 9.94 1239 8.48 931
CA 0051 6.07 1215 482 9.711 3.31 6.77

~CRI" . 0.088 512 184 512 184 518 187
ATR 0426 - 791 1097 68 86l 571 62l
PP 0.058 793 1537 © 672 1241 533 9.51
ID - 0132 771 9.80 655 715 548 492
Weighted refurn 835 . 732 - 617

5.3 Measurement of Portfolio Efficiency

A deviation index, DI, is used to measure the overall inefficiency of a complete portfolio.
DI is defined as the sum of weighted relative deviations of portfolio standard deviations
from efficient portfolios in terms of all objectives. The formula of deviation index is

written as:

DI= ZW ] ’><100% - (53.))

where DI = deviation index bf the complete portfolio;
weiéht of objective Ji '
= standard dev1atlon of return of the complete portfolio in terms of objective J;
* = standard deviation of return of the efficient portfolio w1th the same expected
rgtu.&n as the complete portfolio in terms of objective j;
M = the nu'r_anr of objectives.

The éfﬁciéncy of the complete portfolio, E, can be written as:
E=100%-DI (53.2)

Usit;g formulae (5.3.1) and (5.3.2), the deviation index and efficiency for each of the three
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complete portfolios can be calculated. The values of o;and o/* are taken from Tables 5.4
and 5.5, respectively. The results are shown in Table 5.6.

Table 5.6: Deviation index and efficiency of complete portfolios
Aggressive action Normal action Conservative action

portfolio portfolio portfolio .
Weighted return 8.35% 7.32% - 6.17%,
Deviation index 12.3% 10.5% . - 9.2%
Efficiency 87.7% 89.5% : .90.8%

Table 5.6 indicates that, for the hypothetical asset allocation example, when a portfolio

becomes more aggressive, it has larger weighted deviation from efficient portfolios, and
the efficiency of the portfolio decreases.

5.4 Comparison with Single Objectiire Optimization

The proposed multiple objective asset allocation method considers the multiple dimensions
of an investor’s investment objectives and preferences, some of them are conflicting.
Tradeoffs and priorities of these objectives are considered. Therefore, although the
suitability of a portfolio is largely subjective, a portfolio constructed using our proposed
method can be considered more suitable than the one obtained by using a single objective

optimization method, which only considers the returns and risks according to one"
objective. '

As stated in Section 2.4, an optimal portfoho in terms of one objective rnay not also be
optimal in terms of other objectives. Here the overall efﬁmency of the complete portfolios
constructed using the proposed method is compared with those obtamed using
single-objective optimization. For the hypothetlcal investor, the weight of the after-tax
return (ATR) objective dominates other objectlves Therefore three local optnnal portfolios
in terms of the after-tax return objective are used for _oompans_ons. These three portfohos
are obtained when the hypothetical investor takes aggressive, normal and ‘conse;yative
actions, respectively. The proportions of these three poftfolids invested m each asset class
are shown in Tables 5.1, 5.2, and 5.3 respectively, under thie aﬁer-tax feﬁim objective For
example, from Table 5.2, when the hypothetical 1nvestor takes a normal acnon, the local

optimal portfollo for the after-tax return objective consists* of 33 6% large-cap stocks o

72



19.3% small-cap stocks and 47.1% real estates. The performances of-thi's‘po:rtfolio in terms
of each of the six objectives can be obtained by using formulaé (5.2.1) and (5~:2.2). Revised
GAMS programs shown in Appendices 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 are used to perform
the calculations, replacing the set of parameters x(i) with. {0 336, 0: 193, 0,0, 0,0.471}. For
the aggressive and conservative actlons the sets of parameters x() are replaced with
{0.304, 0.333, 0, 0, 0, 0.363} and {0 290, 0.085, 0.148, 0, 0, 0477} taken from Tables 5.1
and 5.3 for after-tax return objective respectively. The results are summarized in Table 5.7.
Their associated efficient portfolios-are summarized in Table 5.8, which are obtained by
solving Model 4.1 for each given expected return in terms of each objective. GAMS

programs given in Appendices 1.6, 2.6, 3. 6 4.6, 5.6 and 6.6 are used to perform these
‘ calculatlons :

Tabie 5.7: Performances of the ATR portfolio in terms of each objective
Aggressive action Normal action Conservative action
Objective weight E(R) 6 ER o ER) o
(%) B) (k) (%) (%) (%)
TNR 0245 1232 1837 11.03 15.02 937 11.29
CA - 0.05s1 731 1468 © 601 -12.08 4.20 9.05 -
CRI 0088 501 376 503 299 517 2.29
ATR 0426 881 1333 773 1052 637 151
"PP- 0058 899 1820 774 1495  6.16 11.34
ID  0.132- -83l 1493 672 11777 535 827
Weightedreturn = 9.20 8.08 .. . 647"

Table 5.8: Associated efficient portfolios of the ATR portfolios

Aggressive action Normal action  Conservative action
. : Efficient portfolios  Efficient portfolios- Efficient portfolios
Objective Weight ~ E®R)  o* = E®R o - E® - o
L %) W . % ()
~ TNR 0245 12.32 1835 1103 1499  937. 1LI8
" CA 0051 731 14.64 601 1204 420 850
'CRI 0088 501 178 - . 563 . 179 - 517 ° 187
_ATR 0426 881 * 1333.- 773 1052 ~ 637 ~ 1751
PP 0.058 899 1817 774 1489 . 616  1LI6
LD 0.132 831, 1121 .- 672 753 535 468

‘Weightedreturn 9.20 ‘ 8.08 647

“The deviation index and eﬁicxency of the three portfohos are obtamed usmg fonnulae

(5.3.1) and (5.3. 2). The results are shown in Table 5. 9 Table 5.9 also indicates that, when a
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portfolio becomes more aggressive, it has a larger‘ weighted deviation from efficient
portfolios, and the efficiency of the portfolio decreases. Comparisons between Tables 5.6
and 5.9 indicate in all three cases, the efficiencies of portfolios obtained from our proposed
multiple objective method are higher than those of portfolios obtained by using after-tax

return objective optimization. The overall efficiency of the complete portfolios in terms of

all investment objectives is improved.

Table 5.9: Deviation index and efficiency of the ATR portfolios
Aggressive action Normal action Conservative action

portfolio portfolio portfolio

Weighted return 9.20% 8.08% 6.47%
Deviation index 14.2% 13.4% 12. 6%
Efficiency 85.8% 86.6% 87.4%
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-Chapter 6: Conclusions and Future Work
6.1 SMafy of Contributions
The main contributions of this project report are as follows:

(1) An asset allocation model that is consistent with an individual investor’s multiple
investment objecﬁvés and préferences is developed. The concept of the Anélytic
Hierarchy Process (AHP) is employed to construct the multiple objective decision
model, while traditional portfolio optimization techniques are integrated’ into the
hierarchy. Both of the suitability and efficiency of the complete portfoﬁo are
considered. In .-comparison with single-objective optimization, improved overall
efficiency in terms of all objectives is zichieved. The complete portfolio constructed is
less sensitive to input errors from individual optimization models.

*(2) A method to measure an individual investor’s risk tolerance is proposed. In this method,
risk tolerance is defined as the ratio of added portfolio variances to added portfolio
returns, considering the investor’s relative degreg of preference between two reference
portfolios. The investor selects his own reference portfolios from a list of candidates
provided by the financial advisor. The relative degree of preference is estimated by the
AHP technique. Risk tolerance measured usihg the proposed method can be
incorporated into a quadratic programming model to determine a local optimal
portfolio.

(3) An interactive procedure based on the proposed model is suggested to implement the
asset allocation process involving é financial advisor and an individual investor. Five
‘sample questibnhaires are designed for the following tasks: (i) to gather informgtion
about an investor’s investment objectives and general risk proﬁle; (ii) to assess an
investor’s preference over different investment objectives; (iii) to select aggressive and

_ conservative reference portfolios; and (iv) to assess an investor’s preference over the

reference portfolios.

(4) Computer programs are developed to perform the following tasks: (i) to find the global
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minimum variance portfolios; (ii) to find the maximum return portfolios;-and (iii) to

generate the lists of aggressive and conservative reference portfolios. 36 sample

programs are written for a hypothetical asset allocation example with six investment

objectives and six asset classes. These programs can be generalized to solve
* mean-variance portfolio optimization models with N numbers of asset classes.

(5) Two sample spreadsheet models based on the AHP technique are designed to perform

priority analysis and to perform consistency tests for an investor’s responsés.
6.2 Future Work

By utilizing the AHP method, the proposed method provides a mechanism to ‘integrate
portfolio dptimization methods into a single asset allocation decision model. However,
only classical mean-variance optimization techniques are employed in the hypothetical
investment example in this project report. No extra efforts  are made to include other
alternative pbrtfolio optimization models. Considering only the variance as the portfolio
risk surely cannot explain many investors’ investment behaviors. One direction of future
work is to consider various risk measurements according to an investor’s risk attitude. For
example, if an investor believes the downside variance, a measure of portfolio variability
below the expected return, is a more appropriate portfolio risk measure in terms of current
income dbjective, then mean-semivariance optimizétion methods can be used to obtain the
local optimal portfolio in terms of the current income objective, while other local optimal

portfolios may be determined by using other appropriate gptimization techniques.

The quadratic programming models adopted in this report are based on the classical
Markowitz models, which consider only the budget constraints and nonnegative weights of
assets. No additional constraints, such as transaction costs and-minimum transaction unit
requirements, are considered. Ignoring these constraints is largely based on. the
consideration that general solution téchniﬁues are not ﬁvailable at présent for specially
structured portfolio problems. However, including these constraints to a model represent
" more realistic investment situations in real world. Therefore, the proposed model would

benefit from the continuing research of portfolio optimization techniques.
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Appendix 1.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Total Nominal Return Objective

$OnText
This sample GAMS program is written to find the global minimal variance portfolio
along efficient frontier in terms of the total nominal return (TNR) objective. The

underlying quadratic programming model is Model 4.1.
$OffText '

Set i assets /LaStock, SmStock,LCBond LGBond, TBill, RealEst/; alias (i,j);
Scalars k index for loop
target initial target return /4.2/;

Parameters return(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8

LCBond 53 -
LGBond 4.7

TBill 3.6

RealEst 75 1/

Parameters STD(i) standard deviations of TNR of individual assets(%)

/ LaStock 20.9
SmStock 35.6

LCBond 8.4
LGBond 1.5
TBill 33

RealEst 150 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07: --0.06
SmStock 0.82 1.00 008  -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08

LGBond - 0.11 -0.01 093 .00 022 -0.09
TBill -0.07  -0.08 0.19 022 1.00 0.8
RealEst -0.06 0.06 -0.08 -0.09 038 100
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Variables x(i) fraction of portfolio invested in asset i
variance  variance of portfolio

» standev .. standard deviation of portfolio
Positive Variable x; :

Equations ‘
- fsum . fractions must add to 1.0.
. A dmean definition of mean expected return on portfoho
fvariance definition of portfolio variance;
fsum.. sum(i, x(i)) ‘ =e= 1.0 ;
dmean.. sum(i, return(i)*x(i)) =e= target;

fvariance..  sum(i, x(i)*sum(j, CO](IJ)*STD(I)*STD(])*X(_]))) =e= variance;

Model portfolio '/ all/;

Solve portfolio using nlp minimizing variance;
target = target - 0.1;

Scalars vl ;

Scalars Vv2;

vl = variance.l;
*  setvl current variance

Model pl /fsum,dmean, fvariance/;
Solve p1 using nlp minimizing variance;

v2 = variance.l;

k=1;
For (k=1t06,
If (vl >v2,
target = target -0.1 ;
vi=v2
Solve p1 using nlp minimizing variance;
v2 = variance.};
Else ‘
target = target + 0.1 ; -
- Solve p1 using nlp minimizing variance;
standev.] = sqrt(v1)
Display v1, standev.], target ;
target = target -0.1 ;
);
)
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Appendix 1.2

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Total Nominal Return Objective

$OnText
This sample GAMS program is written to generate the candidate conservative
reference portfolio list in terms’ of the total nominal return (TNR) objective. Slightly
modified, this program can also be used to generate the aggressive portfolio list. The
underlying quadratic programming model is Model 4.1.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j)
Scalar target targeted mean after-tax return on portfolio (%) /4/; '
* If generate aggressive portfolio, the target value can be set as 15, for example.
Scalar k ' index for loop;

Parameters return(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1.
SmStock 17.8

LCBond 53
LGBond 47
TBill 3.6

RealEst 75 1/
Parameters STD(i) standard deviations of TNR of individual assets (%)

/ LaStock 20.9
SmStock 35.6

LCBond 84
LGBond 7.5
TBill 33

RealEst 15.0 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 093 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 022 1.00 038

RealEst -0.06 0.06 -0.08 -0.09 038 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance  variance of portfolio

- standev = . standard dev1at10n of portfoho

- . Positive Variable x;

Equations fsum - . fractions must add to 1.0
- dmean - -definition of expected TNR on portfolio -
fvariance - definition of portfolio variance;
fsum.. sum(i, x(i)) . =e=1.0;
dmean.. sum(i, return(i)*x(i)) : =e= target ;

fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(E)*STD()*x(j))) =e= variance;

Model portfolio- /all/; ' A
. Solve portfolio using nlp minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

For (k=1to5,
target = target +0.5;

* If used for generating aggressive portfolio list, target = target step
* In this example, the length of step is set at 0.5

Solve portfolio-using nlp minimizing variance;
standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.], x.1;

)
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- Appendix 1.3

GAMS Program for Finding the Maximum Return Portfolio .
in terms of the Total Nominal Return Objective

$OnText
This sample GAMS program is written to find the maximum return portfolio
along the efficient frontier in terms of the total nominal return (TNR) objective.
This portfolio "is considered the most aggresswe The underlymg quadratic
programming model is Model 2.1.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j);
Scalar k index for loop;

Scalar TargetSTD target standard deviation of portfolio (%) /33/;
Parameters return(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock = 17.8

LCBond 53
LGBond 4.7
TBill 3.6

RealEst 75 /;
Parameters STD(i) standard deviations of TNR on individual assets (%)

/ LaStock 20.9
SmStock 35.6

LCBond 8.4
LGBond 7.5
TBill 33

" RealEst 150 /
Table col(i,j) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 "-0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond - 0.11 -0.01 - - 093 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 -0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x(i) fraction of portfolio invested in asset i
ExReturn expected return on portfollo

Positive Variable x;
Equations
fsum . ~ fractions must add to 1.0 ’
dmean : definition of mean expected TNR on portfolio
o . fSTD deﬁnition of standard deviation of portfolio;
fsum.. sum(i, x(1)) =e= 1.0 ;
dmean.. sum(i, return(i)*x(i)) =e= ExReturn ;

fSTD..  sqrt(sum(i, x(1)*sum(] COl(l,J)*STD(l)*STD(J)*X(])))) =e= TargetSTD;

Model portfollo /all/;
Solve  portfolio using nlp maximizing ExReturn;
Display ExReturn., targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD =  targetSTD +0.2;

Scalars Rl
Scalars R2;
R1 = ExReturn.];

Model pl /fsum, dmean, fSTD/;
Solve pl using nlp maximizing ExReturn;

R2 = ExReturn.l;
k=1;

For (k=1 to 20,

If R1 <R2,
targetSTD = targetSTD + 0.2
R1=R2 ; .
Solve p1 using nlp maximizing ExReturn;
R2 = ExReturn.l; :
Else -
targetSTD = targetSTD -0.2 ;
Solve pl using nlp maximizing ExReturn;
Display ExReturn.1, targetSTD, x.1 ;
targetSTD = targetSTD +0.2
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Appendix 1.4

GAMS Program for Obtaining Local Optimal Portfolio
in terms of the Total Nominal Return Objective

$OnText
This GAMS program is written to solve the quadratic programming model (Model 4.2)
whose objective function is to maximize an'investor's utility in terms of the total
nominal return (TNR) objective. The outputs are the characteristics of local optimal
portfolio, including the expected return, standard deviation, percentage of portfolio
invested in each asset class, as well as the values. of the investor's risk tolerance and
utility. :

$OffText

: \

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j);

Set m reference portfolio A /ReA, VarA/;

Set 1 reference portfolio C /ReC,VarC/;

Scalar t the investor's risk tolerance;
Scalar k therelative degree of preference between portfolios Aand C /0.630/;

For aggressive action, k=0.475

*  For normal action, k =0.630
* For conservative action, k =2.759

Parameters refA(m) expected return and variance of reference portfolio A

/ReA  4.00
VarA 999 /;
Parameters refC(I) expected return and variance of reference portfolio C
/ReC ~ 13.00

VarC  411.68 /;

t = (refA('VarA') — k * refC('VarC')) / (refA('ReA") -k * refC('ReC’)),
* Definition of an investor’s risk tolerance

Parameters return(i) - expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8

LCBond 53
LGBond 4.7
TBill 3.6

RealEst 7.5 /
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Parameters STD(i) standard deviations of TNR of individual assets (%)

T

LaStock SmStock LCBond LGBond

LaStock
SmStock
LCBond
LGBond
TBill
RealEst
Variables x(i)
returnEx
variance
standev
utility

Positive Variable x‘;

/ LaStock
SmStock
LCBond
LGBond
TBill .
RealEst

Table col(i,j) correlations between assets

1.00 0.82

0.82 - 1.00
0.19 0.08
0.11 -0.01
-0.07 -0.08
0.06

-0.06

fraction of portfolio invested in asset i

209

35.6
8.4
7.5
33

-15.0 /;

0.19

008!

1.00
0.93
0.19
-0.08 -

expected return.of portfolio

definition of potfolio variance
standard deviation of portfolio
definition of utility ;

0.11
-0.01
0.93
'1.00
0.22
-0.09

Equations
fsum fractions must add to 1.0
freturnEx  definition of portfolio return
fvariance  definition of potfolio variance
dutil definition of utility;

fsum.. sum(i, x())

freturnEx..  sum(i, return(i)*x(i))
fvariance.. sum(i, x(i)*sum(j,col(i,j)*STD(i)*STD(j)*x(j)))

dutil..

returnEx - variance/t

Model portfolio /all/;

Solve portfolio using nlp maximizing utility;

standev.l = sqrt(variance.) ;
Display t, utilityl, returnEx.], standev.l, x.1;
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TBill
-0.07
-0.08
0.19
0.22
1.00
0.38

RealEst
-0.06
0.06
-0.08
-0.09
0.38
1.00

=e=1.0;

=e= returnEx ;
=e= variance;
=e= utility ;

.
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- Appendix 1.5
GAMS Program for Finding Performance of the Complete Portfolio .
in terms of the Total Nominal Return Objective

$OnText
This GAMS program is written to obtain the performahce information (expected return
and standard deviation) of the complete portfolio in terms of the total nominal return
(TNR) objective. S :
$OffText

Set i assets /LaStock, SmStock LCBond, LGBond,TBill, RealEst/; alias (i.j)

Scalar ReturnC  Excepted return of complete portfolio in terms of TNR objective
VarC Variance of complete portfolio in terms of TNR objective
StdC Standard deviation ;

Parameters x(i) fraction of assets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0.337 /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond = 0.148, .

* LGBond =0.000, TBill = 0.009, RealEst= 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond - =0.001, TBill = 0.075, RealEst = 0.328.

Parameters return(i) expected nominal total returns of individual assets (%)

/ LaStock 12.1
SmStock 17.8

LCBond 53
LGBond 4.7
TBill - 36

RealEst 75 /;
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Parameters STD(i) standard deviations of TNR of individual assets (%)

'/ LaStock - .209

- SmStock  35.6.

) LCBond 84

' LGBond 7.5
CTBil 33

RealEst - 150 /;
Table col(ij) correlations between assets

. LaStock SmStock LCBond LGBond
LaStock . 1.00. 082 . 0.19 0.11
SmStock 082  1.00 0.08 -0.01
LCBond =~ 019 ~  0.08 1.00 0.93
LGBond - 0.11.  -0.01 0.93 1.00

TBill --0.07. -0.08 0.19 0.22
RealEst -0.06 0.06 -0.08 -0.09
returnC = sum(i, return(i)*x(i)); | »
varC = sum(i, x(i)*sum(j,col(ij)*STD(@{)*STD()*x(j))) ;
stdC = sqrt(varC);
Display ReturnC, StdC;
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TBill
-0.07
-0.08

1 0.19

0.22
1.00

0.38

RealEst
©-0.06
0.06
-0.08
-0.09
0.38
1.00



.- Appendix 1.6

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return

$OnText

in terms of the Total Nominal Return Objective

This GAMS program is written to solve the quadratic programming model (Model 4.1)
whose objective is to minimize a portfolio's variance in terms of the nominal total
return (TNR) objective. The input data are the specified expected target returns. The
outputs are the characteristics of optimal portfolio, including the expected return,
standard deviation, and the percentage of portfolio invested in each asset class.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i)
Scalar target target mean total nominal return (TNR) of portfolio (%) / 13/;

Parameters return(i) expected nominal total returns of individual assets (%)

Parameters STD(i)

/ LaStock
SmStock
LCBond
LGBond
TBill
RealEst

12.1
17.8
53
4.7
3.6

75 /;

standard deviations of TNR on individual assets (%)

/ LaStock
SmStock
LCBond
LGBond
TBill
RealEst

Table col(i,j) correlations between assets

LaStock
SmStock
LCBond
LGBond
TBill
RealEst

LaStock SmStock LCBond LGBond

1.00
0.82
0.19
0.11
-0.07
-0.06

0.82
1.00
0.08
-0.01
-0.08
0.06

20.9
35.6
8.4
- 1.5
33

150 /;

0.19
0.08
1.00
0.93
0.19
-0.08

- 88

0.11
-0,01
0.93
1.00
0.22
-0.09

TBill
-0.07
-0.08
0.19
0.22
1.00
0.38

RealEst
-0.06
0.06
-0.08
-0.09
0.38
1.00



Variables x(i) fraction of portfolio invested in asset i
variance  variance of expected TRN on portfolio
standev.  standard deviation of portfolio - - -

Positive Variable x;

Equations © fsum - - fractions must add to 1.0 - -
.- . dmean- . definition of expected TNR on portfolio -
fvariance  definition of portfolio variance; '

fsum sum(i, x(Q)) - : - .=e= 1.0 ;
dmean.. sum(i, return(i)*x(i)) . ~ =e= ftarget; -
fvariance..  sum(i, x(i)*sum(j,col(ij)*STD(I)*STD(G)*x(j))) =e= variance;
Model portfolio -/all/; v o o

Solve portfolio using nlp minimizing variance;

standev.1 = sqrt(variance.]) ;
Display target, variance.l, standev.], x.1;
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Appendix 2.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Capital Appreciation Objective

$OnText

This GAMS program is written to find the global minimum variance portfoho along

efficient frontier in terms of the capital appreciation (CA) objective. The underlying
quadratic programming model is Model 4.1.
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst} ; alias (i,);
Scalars k  index for loop '

target initial target return /0.2/;

Parameters return(i) expected capital appreciations of individual assets (%}

/ LaStock 73
SmStock 12.8

LCBond -0.6
LGBond -04
TBill -0.1

RealEst 23 /;
Parameters STD(i) standard deviations of expected CA of individual assets (%)

/ LaStock 17.6
SmStock 27.8

LCBond 4.9
LGBond 4.6
TBill 1.0

RealEst 11.7 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 006  -0.08 -0.09 038 1.00

91



Variables . x(i) fraction of portfolio invested in asset i
variance  variance of portfolio
standev  standard deviation of portfolio

Positive Variable x;
Equations
fsum fractions must add to 1.0
dmean definition of mean expected return on portfolio
fvariance definition of portfolio variance;
- fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, return(i)*x(i)) : ' =e= target;

fvariance..  sum(i, x(i)*sum(j,col(i,j)*STD(i))*STD(j)*x(j))) =e= variance;

Model portfolio /all/; \
Solve portfolio using nlp minimizing variance;

target = target - 0.1;
Scalars vl ;

Scalars Vv2;

vl = variance.l;
*¥  setvl current variance

Model pl /fsum, dmean, fvariance/;
Solve p1 using nlp minimizing variance;

v2 =variance.l;

k=1;
For (k=1to06,
If (vl >v2,
target = target -0.1 ;
vl=v2 ;
Solve pl using nlp minimizing variance;
v2 = variance.l;
Else
target = target + 0.1 ;
Solve p1 using nlp minimizing variance;
standev.l = sqrt(vl) |
Display v1, standev.], target ; -
target = target -0.1 ;
)
);
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‘Appendix 2.2+ - - - v

GAMS Program for Generating the List of Candidate Portfolio list
in terms of the Capital Appreciation Objective

$OnText

This GAMS program is written to generate the candidate conservative reference
portfolio list in terms of the capital appreciation (CA) objective. Slightly modified, this
program can also be used to generate the aggressive portfolio list.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j)
Scalar target targeted mean after-tax return on portfolio (%) /2.8/;

* If generate aggressive portfolio, the target t‘;an be set as 12, for example. -
. Scalar k index for loop; .

Parameters return(i) expected capital appreciations of individual assets (%)

/ LaStock 1.3

SmStock 12.8
LCBond -0.6
LGBond -0.4
TBill -0.1
RealEst

23 /;

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 17.6
SmStock  27.8
LCBond 49
LGBond 4.6
TBill 1.0
RealEst 11.7 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock - 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 * -0.08 - 0.06
LCBond 0.19 0.08 1.00 093  0.19 :0.08

LGBond
TBill
RealEst

0.11 -0.01
-0.07 -0.08
-0.06 0.06

0.93
0.19
-0.08

93

1.00
0.22

-0.09 -

022

1.00
0.38

-0.09
0.38
1.00 ;



Variables . x(i) fraction of portfolio invested in asseti -
variance  variance of portfolio
standev  standard deviation of portfolio *

Positive Variable x;

Equations  fsum fractions must add to 1.0
dmean definition of expected CA on portfolio
fvariance definition of portfolio variance; '
fsum.. sum(i, x(i)) ' - =e=1.0;
dmean.. sum(i, return(i)*x(i)) =e= target ;

fvariance..  sum(i, x(i)*sum(j,col(ij)*STD()*STD(j)*x(j))) =e= variance;

Model portfolio /all/;
Solve portfolio using nlp minimizing variance;

standev.] = sqrt(variance.l) ;
Display target, variance.], standev.l, x.1;

For (k=1to5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - step’
* In this example, the length of step is set at 0.5

Solve portfolio using nlp minimizing variance;.
standev.] = sqrt(variance.l) ;
Display target, variance.], standev.l, x.1;

);
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Appendix23 - - .. SRR

GAMS Program for Finding the Maximum Return Portfolio
in terms of the Capital Appreciation Objective

$OnText
This‘GAMS program is written to find the maximum return portfolio along the
efficient frontier in terms of the capital appreciation (CA) objective. This portfolio
is considered the most aggressive. The underlymg quadratic programming model
is Model 2.1.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond TBill, RealEst/ alias (1,]),
Scalar k index for loop

Scalar TargetSTD target standard deviation on portfolio (%) /26/; - -~

Parameters return(i) expected capital appreciations of individual assets (%)

/ LaStock 73 .
SmStock 12.8

LCBond -0.6
LGBond -04
TBill -0.1

RealEst 23 /;
Parameters STD(i) standard deviations of CA of individual assets (%)

/ LaStock 17.6
SmStock . 27.8

LCBond 49
LGBond 4.6
TBill 1.0

RealEst 11.7 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01- 093 1.00 0.22 -0.09
TBill - =0.07 -0.08 0.19 0.22 1.00 038
RealEst -0.06 0.06 -0.08 -0.09 038 1.00
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Variables . x(i) fraction of portfolio invested in asseti -
ExReturn expected return on portfolio

Positive Variable x;
Equations
fsum fractions must add to 1.0
dmean definition of expected CA on portfolio -
fSTD definition of standard deviation of portfoho
fsum.. sum(i, x(i)) =e=1.0 .
dmean.. sum(i, return(i)*x(i)) =e= ExReturn ;

fSTD..  sqrt(sum(i, x(i)*sum(j, col(l,])*STD(1)*STD(J)*x(J)))) =e= TargetSTD;
Model portfolio /all/;

Solve portfolio using nlp maximizing ExReturn; |

Display ExReturn.], targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars Rl1;
Scalars R2;
R1 = ExReturn.];

Model pl /fsum, dmean, fSTD/;
Solve pl using nlp maximizing ExReturn;

R2 = ExReturn.l;
k=1;

For (k=1 to 20,
If R1<R2,
targetSTD = targetSTD + 0.2
R1I=R2 ;
Solve p1 using nlp maximizing ExReturn;
R2 = ExReturn.l;
Else
targetSTD = targetSTD -0.2 ;
Solve pl using nlp maximizing ExReturn;
Display ExReturn.l, targetSTD, x.1 ;
targetSTD = targetSTD +0.2  ;

);
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Appendix24 ¢ ¥

GAMS Program for Obtaining Local Optimal Portfolio - -
in terms of the Capital Appreciation Objective

$OnText

‘This GAMS program is written to solve the quadratlc programming model (Model 4.2)
whose objective function is to-maximize an investor's utility in terms of the capital
- appreciation (CA) objective. The outputs are the characteristics of local optimal
portfolio, including the expected return, standard deviation, percentage of portfolio

invested in each asset class, as.well as the values of the investor's risk-tolerance and
utility.

_ $0ffI‘ext

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);:
Set m reference portfolio A /ReA, VarA/;
Set 1 reference portfolio C /ReC,VarC/;

Scalar t the investor's risk tolerance; '
Scalar k the relative degree of preference between portfollos AandC /0.630/;

For aggressive action, k= 0.475

_ For normal action, k=0.630
_ * For conservative action, k =2.759

Parameters refA(m) expected return and variance of reference portfolio A

/ ReA 3.00
VarA  38.01/
Parameters refC(I) expected return and variance of reference portfolio C
!/ ReC 10.00

VarC 431.81/,
t = (refA('VarA') — k * refC('VarC") / (refA(ReA") — k * refC(‘ReC"));
* definition of an investor’s risk tolerance
Parameters return(i) expected capital appreciations of individual assets _(%)
/ LaStock 73 |

SmStock 12.8 -
LCBond -0.6 A

LGBond -0.4
TBill -0.1

RealEst 23 1
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Parameters STD(i) standard deviations of individual assets (%)

-/ LaStock 17.6

SmStock 27.8
LCBond 4.9
LGBond 4.6
TBill 1.0
RealEst 11.7 /;

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond

LaStock 1.00 0.82 019, 0.1
SmStock  0.82 1.00 0.08 -0.01
LCBond 019 008  -1.00 - 093
LGBond 0.11 -0.01 0.93 1.00
TBill 007  -008 019 022
RealEst -0.06 0.06 -0.08  -0.09

Variables x(i)

returnEx  expected return of portfolio
variance  definition of portfolio variance
standev standard deviation of portfolio
utility definition of the utility ;

Positive Variable Xx;

Equations ‘
fsum fractions must add to 1.0
freturnEx  definition of portfolio return
fvariance  definition of portfolio variance
dutil definition of utility;

fsum.. sum(i, x(i))

freturnEx..  sum(i, return(i) *x(i))

fvariance.. sum(i, x(i)*sum(j,col(i,j)*STD(i) *STD()*x(j)))

dutil.. returnEx - variance/t

Model portfolio /all/;
Solve portfolio using nlp maximizing utility;
standev.l = sqrt(variance.l) ; ,
Display t, utilityl, returnEx.], standevl, x.1;
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fraction of portfolio invested in asset i

TBill RealEst

-0.07 -0.06
-0.08 0.06
. 019  -0.08
022 -0.09
1.00 0.38
0.38 1.00
=e=1.0;
=e= returnEx ;
=e= variance;
=e= utility ;



Appendix 2.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Capital Apprecmtlon Objective

$OnText

This GAMS program is written to obtain the performance information (expected return

and standard deviation) of the complete portfolio in terms of the capxtal appreciation
(CA) objective.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond TBill, RealEst/: alias (i)

Scalar ReturnC  Excepted return of complete p&rtfolio in terms of CA objective
VarC Variance of complete portfolio in terms of CA objectlve o
StdC Standard deviation ;

Parameters .x(i) fraction of éssets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill 0.040 -
RealEst 0.337 /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond =0.148,

* LGBond =0.000, TBill = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232,"SmStock = 0.081, LCBond = 0.283,

* LGBond =0.001, TBill = 0.075, RealEst = 0.328.

Parameters return(i) expected capital appreciations of individual assets (%)

/ LaStock 73.
SmStock 12.8

LCBond -0.6
LGBond - -04 -

TBill -0.1 o
RealEst 23 /5 S
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Parameters STD(i) standard deviations of of CA of individual asset(%)

/ LaStock
SmStock
LCBond
LGBond
TBill
RealEst

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond

LaStock 1.00 0.82 0.19 0.11
SmStock 0.82 1.00 0.08 -0.01
LCBond 0.19 0.08 1.00 = 0.93.
LGBond 0.11 -0.01 093  1.00-
TBill -0.07 -0.08 0.19 0.22
RealEst -0.06 0.06 - -0.08  -0.09

returnC = sum(i, return(i)*x(i));

varC = sum(i, x(i)*sum(j,col(ij)*STD(@A)*STD()*x())) ;

stdC = sqrt(varC) ;

Display ReturnC, StdC;

17.6

- 278
49
4.6

1.0

11.7 /4

100

TBill

-0.07 -
-0.08

0.19
0.22
1.00
0.38

‘RealEst
-0.06
0.06
-0.08
. =0.09
- 0.38
1.00



Appendix 2.6 |

GAMS Program for Obtaining the Optimé’l Portfolio for a Given Target Return
in terms of the Capital Appreciation Objective

$OnText

This GAMS program is written to solve the quadratic programming model (Model 4.1)
whose objective function is to minimize a portfolio's variance in terms of the capital
appreciation (CA) objective. The input data are the specified expected target returns.
The outputs are the characteristics of optimal portfolio, including the expected return,

standard deviation, percentage of portfolio invested in each asset class.
$OffText ' .

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, ReglEst/; alias (i,j)
Scalar target target mean capital appreciation (CA) of portfolio (%) / 10/;

Parameters return(i) expected capital appreciations of individual assets (%)

/ LaStock 73
SmStock 12.8

LCBond -0.6
LGBond -0.4
TBill -0.1

RealEst 23 /;
Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 17.6
SmStock  27.8

LCBond 49
LGBond 4.6
TBill 1.0

RealEst 11.7 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 - 0.82. 0.19 0.11  -0.07 -0.06
SmStock 082 100 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 093 - 0.19 -0.08
LGBond 0.11 -0.01 0.93 "1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 1.00
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Variables .  x(i) fraction of portfolio invested in asset i
variance  variance of portfolio v
standev  standard deviation of portfolio -

Positive Variable x;

Equations fsum fractions must add to 1.0

dmean definition of mean expected CA on portfolio
fvariance  definition of portfolio variance;

fsum.. sum(i, x(1)) - =e= 1.0

dmean.. sum(i, return(i)*x(i)) =e=. target; -
fvariance..  sum(i, x(i)*sum(j,col(i,j)*STD (i) *STD(j)*x(j))) =e= variance;

\
Model portfolio /all/;

Solve portfolio using nlp minimizing variance;

standev.] = sqrt(variance.l) ;
Display target, variance.], standev.l, x.1;
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Appendix 3

- GAMS Programs Associated with the Current Income Objective
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Appendix 3.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Current Income Objective

$OnText v - . .
This GAMS program is written to find the global minimum variance portfolio along
efficient frontier in terms of the current income (CRI) objective. The underlying

quadratic programming model is Model 4.1.
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j);
Scalars k index for loop
target /5.0/;

Parameters return(i) expected current incomes of individual assets (%)

/ LaStock 4.8

SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7

RealEst 52 /;
Parameters STD(i) standard deviations of CRI of individual assets (%)

/ LaStock 3.3

SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill 2.4

RealEst 33 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 . 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 .0.38
RealEst -0.06 0.06 -0.08 -0.09 038 1.00
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Variables  x(i) fraction of portfolio invested in asset i
variance  variance of portfolio
standev.  standard deviation of portfolio

Positive Variable x; et P
~ Equations
fsum fractions must add to 1.0
dmean . definition of mean expected return on portfolio
L fvariance  definition of portfolio variance; ’
fsum..  sum(i, x(i)) == 1.0 ;
dmean.. sum(i, return(i)*x(i)) =e= target;

~fvariance..  sum(j, x(i) *sum(i,col(i,j)*STD(i)*STD(i)*x(i))) =e= variance;
Mod'el portfolio / all/ ’;

Solve portfolio using nlp minimizing variance;

target = target - 0.1;

Scalars vl ;
Scalars Vv2;

vl = variance.];
*  getvl current variance

Model pl /fsum, dmean, fvariance/;
Solve p1 using nlp minimizing variance;

v2 = variance.l;
k=1,

For (k=1t06,
I (vI> V2,
target = target -0.1 ;
vi=v2
Solve p1 using nlp minimizing variance;
v2 = variance.l; '
Else
target = target + 0.1 ;-
Solve pl using nlp minimizing variance;
standev.l = sqrt(vl) '
Display v1, standev.], target ;
target = target -0.1 ;
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- Appendix 3.2 -

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Current Income Objective

$OnText
This GAMS program is written to generate the candidate conservative reference
portfolio list in terms of the current income (CRI) objective: Slightly modlﬁed this

program can also be used to generate the aggressive portfoho list. -
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j)
Scalar target targeted mean income on portfolio (%) /4.5/;

* If generate aggressive portfolio, the target vqlue can be set as 5.9, for example .
Scalar k mdex for loop; o

Parameters return(i) expected current incomes of individual assets (%)

/ LaStock 4.8

SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7

- RealEst 52 /;
Parameters STD(i) standard deviations of CRI of individual assets (%)

/ LaStock 33

SmStock 8.0
LCBond 35
LGBond 29 -
TBill 24

RealEst 33-/;
Table col(i,j) correlations between assets

LaStock SmStock LCBond- LGBond TBill RealEst
LaStock 1.00 0.82 019 - 0.1 -007 -0.06
SmStock 0.82 1.00 008 . -0.01 -0.08 0.06
LCBond 0.19 008 100 - 093 019 -0.08
LGBond 0.11 -0.01 093  1.00 022 -0.09
TBill -0.07 -0.08 0.19 022 100 0.38
RealEst -0.06 0.06 -0.08  -0.09 038 1.00
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" Variables x(i) fraction of portfolio invested in asset i ‘
~ variance  variance of portfolio
. -standev - . standard deviation of portfolio

Positive Variable x;

Eduétit_)’ns‘ <. fsum. - fractions must add to 1.0
. -« . dmean ~ - definition of expected income on portfolio
- fvariance - definition of portfolio variance;
| fsum : sum(i, x(i)) =e=1.0;
~ dmean.. - sum(i, return(i)*x(i)) - =e= target ;

fvariance.. sum(i, x(l)*sum(J col(1,3)*STD(l)*STD(;)*x(J))) =e= variance; -

Model portfoho /all/;
- Solve portfolio using nlp minimizing variance;

standev.l = sqrt(i'ariance.l) ; A
Display target, variance.l, standev.], x.1;

For (k=1toS5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - step
* In this example, the length of step is set at 0.5

Solve portfolio using nlp minimizing variance;
standev.] = sqrt(variance.l) ;
Display target, variance.l, standev.], x.1;

) : -
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Appendix 3.3

GAMS Program for Finding the Maximum Return Portfolio
in terms of the Current Income Objective = .

$OnText
This GAMS program is written to find the maximum return portfolio along the
efficient frontier in terms of the current income (CRI) objective. This portfolio is

considered the most aggressive. The underlying quadratic programming model is

Model 2.1.
$OffText

'Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i);
Scalar k index for loop \ .
Scalar TargetSTD target standard deviation of portfolio (%) /2.9/;

Parameters return(i) expected current incomes of individual assets (%)

/ LaStock 4.8

SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7

RealEst 52 / ;» |
Parameters STD(i) standard deviations of CRI of individual assets (%)

/ LaStock 33

SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill 24

RealEst 33 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01  -0.08 0.06
LCBond 0.19 0.08 1.00 093 0.19 -0.08
LGBond 0.11 -0.01 0.93 .00 022 -0.09
TBill - =0.07 -0.08 0.19 022 100 0.38
RealEst - -0.06 0.06 -0.08 -0.09 038 1.00
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Variables

x(1) - fraction of portfolio invested in asset i
ExReturn - expected return on portfoho
Positive Variable x; .
Equations )
. .. fsum - fractions must add t0°1.0
dmean = - definition of expected income on portfolio
Lo fSTD definition of standard deviation of portfolio; -
fsum.. sum(i, x(i)) - o=e=10
" dmean..  sum(i, return(i)*x(i)) =e= ExReturn’;
fSTD.. sqrt(sum(1 x(1)*sum(3 COl(l,])*STD(I)*STD(])*X(])))) =e= TargetSTD;

Model portfoho /all/;

Solve  portfolio using nip maximizing ExReturn; \
Display ExReturn.], targetSTD, x.1

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars Rl
Scalars R2;
R1 = ExReturn.l;

Model pl /fsum, dmean, fSTD/;
Solve pl using nlp maximizing ExReturn;

R2 = ExReturn.l; -
k=1;

For (k=1 to 20,
If RI<R2,
targetSTD = targetSTD + 0.2 ;
R1=R2 ;
Solve p1 using nlp maxn'mzmg ExReturn;
R2 = ExReturn.];
Else . _
targetSTD = targetSTD -0.2 ; :
Solve pl using nlp maximizing ExReturn; -
Display ExReturn.], targetSTD, x.1;
targetSTD = targetSTD +0.2 - ;
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Appendix 3.4

GAMS Program for Obtaining Local Optimal Portfolio
in terms of the Current Income Objective

$OnText
- This GAMS program is written to solve the quadratic programming model (Model 4.2)
whose objective function is to maximize an investor's utility in terms of the current
income (CRI) objective. The outputs are the characteristics of local optimal portfolio,
including the expected return, standard deviation, percentage of portfolio invested in
each asset class, as well as the values of the investor's risk tolerance and utility.
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond, TB111 RealEst/; alias (13);
Set m reference portfolio A /ReA, VarA/;
Set 1 reference portfolio C  /ReC,VarC/;

Scalar t the investor's risk tolerance;
Scalar k the relative degree of preference between portfollos AandC /0. 754 /

For aggressive action, k= 0.754

For normal action, k = 0.763
* For conservative action, k=0.793

Parameters refA(m) expected return and variance of reference portfolio A
/ReA 450

VarA  2.65 /;

Parameters r1efC(I) expected return and variance of reference portfolio C
!/ ReC 5.90
VarC  12.25 /;

t= (refA('VarA") — k * refC("VarC")) / (refA('ReA") — k * refC('ReC"));
Parameters return(i) expected current incomes of individual assets (%)

/ LaStock 4.8

- SmStock 5.0
LCBond 5.9
LGBond 4.9

TBill 37

RealEst 5.2 /;
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Parameters STD(i) standard deviations of CRI of individual assets (%)

/. LaStock 33

SmStock 8.0
LCBond 3.5
LGBond 29
TBill 24

RealEst © 33 /;

Table col(i,j) correlations between assets

LaStock SmStock LCBond LGBond

LaStock 1.00 0.82 0.19 0.11
SmStock 082  1.00 0.08 -0.01

LCBond 0.19 0.08 1.00 093

LGBond 0.11 -0.01 - 093 1.00

TBill -0.07 -0.08 0.19 0.22

RealEst -0.06 0.06 -0.08 -0.09
Variables x(i) fraction of portfolio invested in asset i

returnEx  expected return of portfolio
variance  definition of portfolio variance
standev  standard deviation of portfolio
utility definition of utility ;

Positive Variable x;

Equations
“fsum fractions must add to 1.0
freturnEx  definition of portfolio return
fvariance  definition of portfolio variance
dutil definition of utility;

fsum.. ~ sum(i, x(i))

freturnEx.. sum(i, return(i)*x(i))
fvariance.. sum(i, x(1)*sum(J,col(l,])*STD(l)*STD(])*x(_])))
dutil.. returnEx - variance/t

Model portfolio /all/;

Solve portfolio using nlp maximizing utility;-
standev.] = sqrt(variance.l) ; ' ‘ ,
Display t, utility]l, returnEx.], standev.l, xl;

111

TBill
-0.07
-0.08

0.19-

0.22
1.00
0.38

RealEst
-0.06
0.06
-0.08

" -0.09

0.38
1.00

=e=1.0;
=e=returnEx ;
=e= variance;
=e= utility ;



Appendix 3.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Current income Objective

$OnText
This GAMS program is written to obtain the performance information (expected return
and standard deviation) of the complete portfolio in terms of the current income (CRI)
objective.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond, TBill, RealEst/; alias (ij)
\ _
Scalar ReturnC Excepted return of complete portfolio for CRI objectlve
VarC Variance of complete portfolio for CRI obJectlve
StdC Standard deviation of complete portfolio for CRI objective;

Parameters x(i) fraction of assets making up the complete portfolio

/ LaStock 0.282
SmStock 0.164
LCBond 0.177
LGBond 0.000
TBill - 0.040
RealEst 0.337 /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0. 266 LCBond =0.148,

* LGBond =0.000, TBill =0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond =0.001, TBill =0.075, RealEst =0.328.

Parameters return(i) expected current incomes of individual assets (%)

/ LaStock 4.8

SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7

RealEst 52 [

112



Parameters STD(i) standard deviations of CRI of individual assets (%)

./ LaStock -
SmStock
LCBond
LGBond
TBill. .
RealEst

Table col(i,j) correlations between assets

33
8.0
3.5
2.9
24

33 /;

LaStock SmStock LCBond LGBond TBill
.00 082 0.9
0.82 1.00 - 0.08!

LaStock
SmStock
LCBond
LGBond
TBill
RealEst

019 008 . 100

0.11.. - -0.01. 0.93
-0.07 -0.08 0.19
-0.06- 0.06 -0.08

returnC = sum(i, return(i)*x(i));

varC = sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j)*x())) ;

stdC  =sqrt(varC) ;

Display ReturnC, StdC;
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0.11

-0.01-
093 .
. 100

0.22

-0.09 -

-0.07
-0.08
0.19
0.22
1.00
0.38

.

RealEst
-0.06
0.06
-0.08

-0.09
0.38
1.00



Appendix 3.6

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return
in terms of the Current Income Objective

$OnText :
This GAMS program is written to solve the quadratic programming model (Model 4.1)
whose objective function is to minimize a portfolio's variance in terms of the current
income (CRI) objective. The input data are the specified expected target returns. The
outputs are the characteristics of optimal portfolio, including the expected return,
standard deviation, percentage of portfolio invested in each asset class.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; aliés (iJ)
Scalar target target mean current income (CRI) of portfolio (%) /5.9/; .

Parameters return(i) expected current incomes of individual assets (%)

/ LaStock 4.8

SmStock 5.0
LCBond 5.9
LGBond 4.9
TBill 3.7

RealEst 52 /;
Parameters STD(i) standard deviations of CRI of individual assets (%) -

/ LaStock 33

SmStock 8.0
LCBond 3.5
LGBond 2.9
TBill 2.4

RealEst 33 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01  -0.08° 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables x() fraction of-portfolio invested in asset i
variance  variance of portfolio
standev -~ standard deviation of portfolio

Positive Variable x;
Equations - fsum.. - fractions must add to 1.0°
. .dmean ‘definition of expected income on portfolio

- fvariance  definition of portfolio variance;

fsum su;n(i, x(1)

== 10 ;
dmean.. sum(i, return(i)*x(i)) =e= target;
fvariance..  sum(i, x(i)*sum(j,col(ij) *STD(i) *STD()*x(j))) =e= variance;

Model portfolio / all/ ;
Solve portfolio using nlp minimizing variance;

standev.] = sqrt(variance.l) ;
Display target, variance.], standev.], x.I;
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Appendix 4.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the After-tax Return Objective

$OnText

This GAMS program i§ written to find the global minimum variance portfolio along

efficient frontier in terms of the after-tax return (ATR) objective. The underlying
- quadratic programming model is Model 4.1.
$OffText »

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j);
Scalars k  index for loop |

target iniﬁal target return /2.5/;

Parameters return(i) expe@:ted after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock  13.3

LCBond 32
LGBond 2.6
TBill 2.0

RealEst 4.6 /;
Parameters STD(i) standard deviations of ATR of individual assets (%)

/ LaStock 15.4
SmStock 26.5.

LCBond 5.0
LGBond 4.2
TBill 1.8

"RealEst 8.0 /;
Table col(ij) correlations between assets

‘ LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 -0.06
SmStock . 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 093 0.9 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 019 022 100 0.38
RealEst -0.06 0.06 008 -009 038 100 ;
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Variables - x(i) fraction of portfolio invested in asset i
variance  variance of portfolio
standev standard deviation of portfolio

Positive Variable x;
Equations
fsum fractions must add to 1.0
dmean definition of expected return on portfolio
fvariance definition of portfolio variance;
fsum.. - sum(i, x(i)) == 1.0 ;
dmean.. sum(i, return(i)*x(i)) =e=_ target;

fvariance..  sum(i, x(i)*sum(j,col(i,j)*STD()*STD(j)*x(j))) =e= variance;

Model portfolio /all/; | \
Solve portfolio using nlp minimizing variance;

target = target - 0.1;
Scalars vl ;
Scalars Vv2;

vl = variance.l;
*  setvl current variance

Model pl /fsum,dmean, fvariance/;
Solve pl using nlp minimizing variance;

v2 = variance.l;
k=1,

For (k=1to6,
If (v1 > v2,
target = target -0.1
vi=v2
Solve p1 using nlp minimizing variance;
v2 = variance.l;
Else
target = target + 0.1 ;
Solve p1 using nlp minimizing variance;
standev.l = sqrt(vl)
Display v1, standev.], target ;
target = target -0.1 ;

)s
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: :-Appendix4’2 S

GAMS Program for- Generatmg the List of Candidate Portfolios
in terms of the After-tax Return Objective

$OnText
This GAMS program is written to generate the candidate conservative reference
portfolio list in terms of the after-tax return (ATR) objective. Slightly modified, this

program can also be used to generate the aggressive portfolio list.
$OffText

~ Set i -assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j)
Scalar target targeted mean ATR on portfolio (%) /2.5/;

* If generate aggressive portfolio, the target value can be set as 12, for example.
Scalar k index for loop; )

Parameters return(i) expected after-tax returns of individual assets (%).

/ LaStock 8.9
SmStock 13.3

LCBond 3.2
LGBond 2.6
TBill 2.0

RealEst 4.6 I,
Parameters STD(i) standard deviations of ATR of individual assets (%)

[ LaStock 154
SmStock 26.5

LCBond 5.0
LGBond 42
TBill 1.8

RealEst 8.0 /

Table - col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock .00 08 019 011 - -007 -0.06°
SmStock 082 100 008  -0.01 -0.08 0.06
LCBond 019 008 100 .093 "019 -0.08
LGBond 0.1  -0.01 093 100 022 -0.09
TBill /007 -008 019 022 100 038

RealEst -0.06 0.06 -0.08 -0.09 038 1.00 ;
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Variables . x(i) fraction of portfolio invested in asset i -
variance  variance of portfolio
standev  standard deviation of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0 ~
dmean definition of expected ATR on portfolio
fvariance definition of portfolio variance;
fsum.. sum(i, x(i)) =e=1.0;
dmean.. sum(i, return(i)*x(i)) "=e= target ;

fvariance.. sum(i, x(i)*sum(i,col(ij)*STD(i)*STD(j)*x(j))) . =e= variance;

b

Model portfolio /all/;
Solve portfolio using nlp minimizing variance;

standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.], x.1;

For (k=1to5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - step
* In this example, the length of step is set at 0.5 ‘

Solve portfolio using nlp minimizing variance;
standev.] = sqrt(variance.l) ;
Display target, variance.l, standev.], x.1;

);
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GAMS Program for Finding the Maximum Return Portfolio
in terms of the After-tax Return Objective

$OnText
This GAMS program is written to find the maximum return’ portfolio along the
efficient frontier in terms of the after-tax return (ATR) objective. This portfolio is

considered the most aggressive. The underlying quadratic programming model is
Model 2.1.

$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j);
Scalar k index for loop;

Scalar TargetSTD  target STD on portfolio (%) /24.9/; -

Parameters return(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3

LCBond 3.2
LGBond 2.6
TBill 2.0

RealEst 46 1
Parameters STD(i) standard deviations of ATR of individual assets (%) '

/ LaStock 154
SmStock - 26.5

LCBond 5.0
LGBond 42
TBill 1.8

RealEst 8.0 /;
Table col(ij) correlations bewteen assets -

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 1.00
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Variables .  x(i) fraction of portfolio invested in asset i
ExReturn  expected return on portfoho

Positive Variable x;
Equations

fsum fractions must add to 1.0

dmean definition of expected ATR on portfolio
. fSTD definition of standard deviation of portfolio;
fsum.. - sum(i, x(i) : - =e=1.0 ;
dmean.. sum(i, return(i) *x(i)) =e= ExReturn ;
fSTD.. sqrt(sum(i, x(i)*sum(j,col(i,j)*STD(i)*STD(j)*x(j)))) =e= TargetSTD;

Model portfolio /all/; |
Solve portfolio using nlp maximizing ExReturn
Display ExReturn.], targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD +0.2;

Scalars Rl ;
Scalars R2;
R1 = ExReturn.l;

Model pl /fsum,dmean, fSTD/;
Solve pl using nlp maximizing ExReturn;

R2 = ExReturn.];
k=1;

For (k=1 to 20,
If (R1<R2,
targetSTD = targetSTD + 0.2
R1=R2 ;
Solve p1 using nlp maximizing ExReturn;
R2 = ExReturn.l;
Else
targetSTD = targetSTD -0.2 ;
Solve p1 using nlp maximizing ExReturn;
Display ExReturn.], targetSTD, x.1;
targetSTD = targetSTD +0.2  ;
);
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Appendix 44 -

GAMS Program for Obtaining the Local Optimal Portfolio -
in terms of the After-tax Return Objective

$OnText

This GAMS program is written to solve the quadratlc programming model (Model 4.2)
whose objective function is to maximize an investor's utility in terms of the after-tax
return (ATR) objective. The outputs are the characteristics of local optimal portfolio,
including the expected return, standard deviation, percentage of portfolio invested in

each asset class,,as well as the values of the investor's risk tolerance and utility.
$OffText

Set i assets’ /LaStock, SmStock,LCBond LGBond, TBill, RealEst/; alias (14)
Set m reference portfolio A /ReA, VarA/;

Set 1 reference portfolio C /ReC,VarC/;

Scalar t the investor's risk tolerance; : '
Scalar k therelative degree of preference between portfolios A and Cc /0. 630 /;

For aggressive action, k= 0.475
* For normal action, k =0.630
* For conservative action, k= 2.759

Parameters refA(m) expected return and variance of reference portfoho A
/ReA  3.00
VarA 5.19/

Parameters refC() expected return and variance of reference portfolio C
/ ReC 10.00
VarC 277.89/,
t = (refA("VarA') — k * refC('VarC")) / (refA(ReA') — k * refC(ReC));

Parameters return(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3

LCBond 3.2
LGBond - 2.6
TBill 2.0

RealEst 4.6 /
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Parameters STD(i) standard deviations of ATR of individual assets (%)

'/ LaStock 154 -
SmStock 26.5

LCBond 50
LGBond 42
TBill « 1.8

RealEst 8.0 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond - LGBond TBill RealEst
LaStock 1.00. 0.82 0.19 ~0.11  -0.07 -0.06
SmStock 082  1.00 . 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 - 093 0.19 . -0.08
LGBond  0.11 --0.01 0.93 .-1.00 022 -0.09

TBill . -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -008 . =0.09 - 038 1.00
Variables  x(i) fraction of portfolio invested in asset i

returnEx  expected return of portfolio
variance  definition of portfolio variance
standev standard deviation of portfolio
utility definition of utility ;

Positive Variable x;

Equations

fsum fractions must add to 1.0

freturnEx  definition of portfolio return

fvariance  definition of portfolio variance

‘dutil definition of utility;
fsum.. ‘sum(i, x(i)) : - =e=1.0;
freturnEx.. sum(i, return(i)*x(i)) _ =e= returnEx ;
fvariance.. sum(i, x(i)*sum(j,col(i,j)*STD({)*STD(j)*x(j))) - =e= variance;
dutil.. returnEx - variance/t ' =e=utility ;

Model portfolio /all/;

Solve portfolio using nlp maximizing utility;
standev.l = sqrt(variance.l) ; .
Display t, utilityl, returnEx.l, standev.], x.l;

124



Appendix4.5--"

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the After-tax Return Objective

$O0nText

This GAMS program is written to obtam the perfonnance information (expected return
and standard deviation) of the complete portfolio-in terms of the after-tax return (ATR)
objective.

SOffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; "alias ()

Scalar RetumC - Excepted return of complete portfolio for ATR obJecuve
VarC Variance of complete portfolio for ATR objective
StdC Standard dewatlon of complete portfoho for ATR obJectlve

Parameters x(i) fractlon of assets makmg up the complete portfolio

/" LaStock 0.282
SmStock 0.164
LCBond  0.177
LGBond 0.000
TBill 0.040

” RealEst 0.337 /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond = 0.148,

X LGBond = 0.000, TBill = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond =0.001, TBill = 0.075, RealEst = 0.328.

Parameters return(i) expected after-tax returns of individual assets (%)

/ LaStock 8.9
SmStock 13.3

LCBond 3.2
LGBond 2.6
TBill 2.0

RealEst 46 /;
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Parameters STD(i) standard deviations of ATR of individual assets (%)

/ LaStock
SmStock
LCBond
LGBond
TBill
RealEst

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond

LaStock 1.00
SmStock 0.82
LCBond 0.19
LGBond 0.11
TBill -0.07
RealEst -0.06

returnC = sum(i, return(i)*x(i));

0.82
1.00
0.08
-0.01
-0.08
0.06

15.4
26.5
5.0
42
1.8

80/

0.19
0.08 |
1.00
0.93
0.19
-0.08

0.11
-0.01
0.93
1.00
0.22
-0.09

varC = sum(i, x(i)*sum(j, col(u)*STD(1)*STDG)*x(J)))

stdC = sqrt(varC) ;

Display ReturnC, StdC;
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'Appendix 46 = : g

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return
in terms of the After-tax Return Objective

$OnText ‘ ,
This GAMS program is written for solving the quadratic programming model (Model

4.1) which objective is to minimize a portfolio's expected variance in terms of the |

after-tax return (ATR) objective. The input data are the specified expected target returns.
The outputs are the characteristics of optimal portfolio, including the expected return,
- standard deviation, percent of each asset class 1nvested
$OfiText '

Set. i assets /LaStock, SmStock,LCBond LGBond,TBill, RealEst/; alias (i,j)
Scalar target target mean ATR on portfolio (%) / 10/

Parameters retum(i) expected after-tax returns of individual assets (%)'"

|/ LaStock 89
SmStock 13.3 , -

LCBond 32
LGBond 2.6
TBill 2.0

RealEst 46 I,
Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 154
SmStock 26.5

LCBond 5.0
LGBond 42
TBill 1.8

RealEst 8.0 /;
"Table col(ij) correlations between assets

: LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 100 ;

127



Variables.  x(i) fraction of portfolio invested in asset i
variance  variance of portfolio
standev standard deviation of portfolio

-~

Positive Variable x;
Equations fsum fractions must add to 1.0
dmean definition of expected income on portfolio

fvariance  definition of portfolio variance;

fsum.. sum(i, x(i)) ' == 1.0 ;
dmean.. sum(i, return(i)*x(1)) a =e= target;
fvariance..  sum(i, x(i)*sum(j, col(l,J)*STD(l)*STD(])*x(]))) =e= variance;

\
Model portfolio /all/;

Solve portfolio using nlp minimizing variance;

standev.] = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;
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Appendix 5.1

GAMS Program for Finding the Global Minimum Variance Portfolio
in terms of the Preservation of Purchasing Power Objective

$OnText
This GAMS program is written to find the global minimum variance portfolio along
efficient frontier in terms of the preservation of purchasing power objective (PP) The
underlying quadratic programming model is Model 4.1.

$OffText

Set 1 assets /LaStock, SmStock,LCBond, LGBond, TBill, RealEst/ alias (1,])
Scalars k index for loop

target /1.5/;

Parameters return(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8

SmStock 14.3
LCBond 24
LGBond 1.7.
TBill 0.5

RealEst 4.3 |/,
Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 21.1
SmStock 34,9

LCBond 10.0
LGBond 8.5
TBill 44

RealEst - 15.0 /
Table col(i,j) correlations between assets

LaStock SmStock L.CBond LGBond TBill RealEst
LaStock 1.00 0.82 019 011 -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01. -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 0.22 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 0.38 1.00
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Variables  x(i) . fraction of portfolio irivested in asset i
variance  variance of portfolio
standev - - standard deviation of portfolio
Positive Variable x; . . :

Equations
o~ ... fsum .- - fractions mustaddto 1.0 ,
: - dmean. - definition of mean expected return on portfolio
fvariance definition of portfolio variance; :
fsum.. sum(i, x(i)) =e= 10 ;
dmean.. sum(i, return(i)*x(i)) , ' =e= ftarget;
‘variance;

fvariance.. - sum(i, x(i)*sum(j,col(ij) *STD(@)*STDG)*x())) - =e=

Model portfolio /all/; .
Solve portfolio using nlp minimizing variance;

target = targef -0.1;

Scalars vl ;
Scalars Vv2;

vl = variance.l;
*  setvl current variance

Model pl /fsum, dmean, fvariance/;
Solve p1 using nlp minimizing variance;

v2 = variance.l;

k=1;
For (k=110 6,
If (vl >v2,
target = target -0.1 ;
vi=v2
Solve p1 using nlp minimizing variance;
v2 = variance.l;
Else . :
target = target + 0.1 ;
Solve pl using nlp minimizing variance;
standev.1 = sqrt(vl) '
Display v1, standev.], target ; -
target = target -0.1 ;
B
);
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. . Appendix 5.2

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Preservation of Purchasing Power Objective

$OnText _
This GAMS program is written to generate the candidate conservative reference
portfolio list in terms of the preservation of purchasing power objective (PP). Slightly
modified, this program can also be used to generate the aggressive portfolio list.
$OffText -

Set i assets ./LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij)
Scalar target targeted mean return on portfolio (%) /1.0/;

* If generate aggressive portfolio, the target value can be set as 12, for example.
Scalar k index for loop;

Parameters return(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8
SmStock 14.3
LCBond 2.4
LGBond 1.7
TBill 0.5
RealEst 43 /;

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 21.1
SmStock 34.9

LCBond 10.0
LGBond 8.5
TBill 44

RealEst 150 /;
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBord TBill RealEst
LaStock 1.00 082  0.19 0.11 -0.07° -0.06
SmStock 0.82 1.00 008  -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 .19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 - 1.00
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Variables x(i) fraction of portfolio invested in asset i
variance  variance of portfolio .
... standev. . standard deviation of portfolio

Positive Variable ’x;

Equations  fsum - . = fractions must add to 1.0
.. . -dmean . definition of expected return of portfolio
. fvariance definition of portfolio variance;
fsum.. ~sum(i, x(i)) =e=1.0;
dmean.. . . sum(j, return(i)*x(i)) : =e= target ;

fvariance.. sum(i, X(l)*sum(j,col(lJ)*STD(I)*STDO)*X(}))) =e= variance;

Model portfoho /al/; \
. Solve portfolio using nlp minimizing variance;

standev.l = sqrt(van'ancé.l) ;
Display target, variance.], standev.l, x.I;

For (k=1to 5,
target = target + 0.5;

* Ifused for generating aggressive portfolio list, target = target - step
* In this example, the length of step is set at 0.5

Solve portfolio using nlp minimizing variance;
standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.I;

) :
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Appendix 5.3

GAMS Program for Finding the Maximum Return Portfolio.
in terms of the Preservation of Purchasing Power Objective

$OnText
This GAMS program is written to find the maximum return portfolio along the
efficient frontier in terms of the preservation of purchasing power objective (PP).
This portfolio is considered the most aggressive. The underlymg quadratic -

. programming model is Model 2.1.
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond TBill, RealEst/; ahas (1,])
Scalar k index for loop;

Scalar TargetSTD  target STD on portfolio (%) /30.9/;

Parameters return(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8

SmStock 14.3
LCBond 24
LGBond 1.7
TBill 0.5

RealEst 43 /;
Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 21.1
SmStock 34.9

LCBond 10.0
LGBond 8.5
TBill 44

RealEst 15.0 4
Table col(iyj) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst:
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01  -0.08 0.06
LCBond 0.19 0.08- 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 . 0.93 1.00 022 -0.09
- TBill -0.07 -0.08 . 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 1.0
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Variables = x(i) fraction of portfolio-invested in asset i

ExReturn expected return on portfoho
Positive Variable x; : -

Equations
fsum fractions must add to 1.0
dmean  definition of expected return on portfolio
 fSTD. - definition of standard deviation of portfolio;  *

fum..  sum, x(0) =10
dmean.. sum(i, return(i)*x(i)) =e= ExReturn ;

fSTD.. sqrt(sum(i, x(1)*sum(_] col(l,])*STD(1)*STD(J)*x(])))) =e= TatgetSTD;

Model portfoho /all/;
Solve portfolio using nlp maximizing ExReturn
Display ExReturn.], targetSTD, x.1 ;

* Now change the value of targetSTD

targetSTD = targetSTD +0.2;

Scalars Rl
Scalars R2;
R1 = ExReturn.l;

Model pl /fsum, dmean, fSTD/;
Solve pl using nlp maximizing ExReturn;

R2 = ExReturn.l;
k=1;

For (k=110 20,
If R1<R2,
targetSTD = targetSTD + 0.2 ;
R1=R2 ; : ,
Solve p1 using nlp maximizing ExReturn;
R2 = ExReturn.l; S
Else ST
targetSTD =targetSTD -0.2 ;
Solve pl using nlp maximizing ExReturn;
Display ExReturn.l, targetSTD, xl;
targetSTD = targetSTD +0.2 - ;
); ' : :
)
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Appendix 54

GAMS Program for Obtaining the Local Optimal Portfolio -
in terms of the Preservation of Purchasing Power Objective

$OnText
This GAMS program is written to solve the quadratic programming model (Model 4.2)
whose objective function is to maximize .an investor's utility in terms of the
preservation of purchasing power objective (PP). The outputs are the characteristics of
local optimal portfolio, including the expected return, standard deviation, percentage
of portfolio invested in each asset class, as well as the values of the investor's risk

tolerance and utility.
$OffText
\
Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j);
Set m reference portfolio A /ReA, VarA/;
Set 1 reference portfolio C /ReC,VarC/; -

Scalar t the investor's risk tolerance;
Scalar k the relatlve degree of preference between portfohos AandC /0.630/;

For aggressive action, k= 0.475
* For normal action, k = 0.630
* For conservative action, k = 2.759

Parameters rtefA(m) expected return and variance of reference portfolio A
/ReA  2.00
VarA  20.83 /;

Parameters 1efC(l) expected return and variance of reference portfolio C
/ . ReC 9.00
VarC  331.24/;
t = (refA("VarA') — k * refC('VarC")) / (refA('ReA") — k * refC('ReC");

Parameters return(i) expected inflation-adjusted returns of individual assets (%)

/ LaStock 8.8
SmStock 14.3

LCBond - 2.4
LGBond 1.7
TBill 0.5

RealEst 43 /;
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Parameters STD(1) standard deviations of individual assets (%)

i, ‘LaStock - 211 )
SmStock 349 -
" LCBond  10.0
o - .. LGBond = 85
e v - | N W B
' .. RealEst 150 /

| TaBlé _ cbl(id) correlétions between assets

‘LaStock SmStock 'LCBond LGBond

‘LaStock " 1.00 0.82 0.19 0.11

_ SmStock .0.82 100 0.08 --0.01
~ LCBond = " 019 008 100! 093
LGBond 0.11. -0.01 093  1.00
TBill - -007  -0.08 0.19 0.22
RealEst -0.06 0.06 -0.08 -0.09
Variables - x(i) . fraction of portfolio invested in asset i
returnEx  expected return of portfolio
variance  definition of portfolio variance
standev standard deviation of portfolio
utility  definition of utility ;
Positive Variable x;
Equations =
' ~ fsum fractions must add to 1.0*
freturnEx  definition of portfolio return
fvariance  definition of portfolio variance
_ dutil definition of utility;
Cfsum.. . sum(j, x(1))
‘freturnEx., - sum(i, return(i)*x(i)) ax '
fvariance.. - sum(i, x(i)*sum(j, col(1,_1)*STD(1)*STD(])*x(J)))
dutil.. . returnEx - variance/t

Model portfolio /all/;

" Solve portfolio using nlp maximizing utility;
standev.l = sqrt(variance.l) ;

Display t, utilityl,. returnEx.l, . standev.l,x.1;

1137

TBill RealEst

-0.07 -0.06- " °

-0.08 0.06

0.19 -0.08

022 --0.09

"'1.00  0.38

0.38 1.00
=e=1.0;

=e= returnEx 3
~e= variance;
=e=utility ;



Appendix 5.5

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Preservation of Purchasing Power Objective

$OnText
This GAMS program is written to obtain the performance information (expected return
and standard deviation) of the complete portfolio in terms of the preservation of

purchasing power objective (PP).
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j)

Scalar ReturnC  Excepted return of complete portfolio for PP objective
VarC Variance of complete portfolio for PP objective
StdC Standard deviation complete portfolio for PP objective;

Parameters x(i) fraction of assets making up the complete poﬁfolio

/ LaStock 0.282
SmStock  0.164
LCBond 0.177
LGBond 0.000
TBill 0.040
RealEst 0337 /;

*These data are for normal action; :
* For aggressive action, LaStock = 0.286, SmStock = 0.266, LCBond 0. 148

* A LGBond =0.000, TBill =0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,

* LGBond =0.001, TBill = 0.075, RealEst = 0.328.

Parameters return(i) expected return on individual asset (%)

/ LaStock 8.8
SmStock 14.3

LCBond 24
LGBond 1.7.
TBill 0.5

RealEst 43 /;
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. Parameters STD(i) standard deviations-of individual assets (%)

/ LaStock  21.1

SmStock 349
LCBond 10.0

LGBond 8.5
TRBill T 44
RealEst 15.0

Table col(ij) correlations between assets

| 1.

V LaStock SmStock LCBond LGBond TBAill

LaStock  1.00
SmStock 0.82
LCBond . 0.19
- LGBond 0:11
TBill -0.07
RealEst . -0.06

returnC = sum(i, return(i)*x(1));

0.82 0.19
1.00 0.08

. 008 100!
001 - 093
-0.08 0.19
0.06 -0.08 -

- 0.11
-0.01
.0.93

1.00
0.22
-0.09

varC = sum(i, x(i)*sum(j,col(ij)*STD @) *STD()*x(}))) ;

stdC = sqrt(varC) ;

Display ReturnC, StdC;
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-0.07
-0.08-
- 0.19
10.22
‘1.00

0.38

."RealEst

-0.06
- 0.06
-0.08
-0.09
0.38
1.00



Appendix 5.6

GAMS Program for Obtaining the Optimal Portfolio for a Given Target Return
in terms of the Preservation of Purchasing Power Objective

$OnText
This GAMS program is written to solve the quadratic programming model (Model 4.1)
whose objective function is to minimize a portfolio's variance in terms of the
preservation of purchasing power objective (PP). The input data are the specified
expected target returns. The outputs are the characteristics of optimal portfolio,

including the expected return, standard deviation, percentage of portfolio invested in
each asset class.

$OffText

.Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j)
Scalar target target mean inflation-adjusted return of portfolio (%) / 10/;

Parameters return(i) expected inflation-adjusted return of individual assets (%)

/ LaStock 8.8
SmStock 14.3

LCBond 2.4
LGBond 1.7
TBill 0.5

RealEst 43 |/,
Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 21.1
SmStock 34.9

LCBond 10.0
LGBond 8.5
TBill 4.4

RealEst 15.0 4

Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 093 019 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 022 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 1.00
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Variables  x(i) fraction of portfolio invested in asset i
variance  variance of portfolio A
- standev standard deviation of portfolio

Positive Variable x;

. Equations fsum ~fractions must add to 1.0
' dmean . definition of expected return on portfolio-

fvariance  definition of portfolio variance;

fum.  sum(, x(@)) == 10 ;
. dmean.  sum(j, return(i)*x(i)) . o =e= target;
fvariance..  sum(i, x(i)*sum(j,col(i,j)*STD (i) *STD(j) *x(j))) =e= variance;

Model portfolio /all/; .
Solve portfolio using nlp minimizing variance;

standev.l = sqrt(variartce.l) ;
Display target, variance.l, standev.], x.1;
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Appendix 6

GAMS Programs Associated with the Liquidity Objective
|
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Appendix 6.1

GAMS Program for Finding the Global Miﬁimum Variance Portfolio
in terms of the Liquidity Objective

$OnText

This GAMS program is written to find the global minimum variance portfolio along

efficient frontier in terms of the liquidity objective (LD). The underlying quadratic
programming model is Model 4.1.
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j);
Scalars k index forloop - : '

target /0.5/;
\

Parameters return(i) eipected liquidity-adjusted returns of individual assets (%)

/ LaStock 11.9

SmStock 13.4
LCBond 4.8
LGBond 42
TBill 3.6

RealEst 0.0 /
Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 20.5
SmStock 26.7

LCBond 1.5
LGBond 6.7
TBill 33

RealEst 00 /
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11 -0.07 .-0.06
SmStock 0.82 1.00 008  -001 -0.08 0.06
LCBond 0.19 0.08 1.00 093 019 -0.08
LGBond 0.11 -0.01 0.93 100 022 -0.09
TBill 007  -0.08 0.19 022 1.00 038
RealEst -0.06 0.06 008 -009 038 1.00 ;
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Variables - x(i) fraction of portfolio-invested in asset i
variance  variance of portfolio
standev standard deviation of portfolio

Positive Variable x;
Equations
fsum : fractions must add to 1.0
dmean definition of expected return on portfolio -
. fvariance definition of portfolio variance;
fsum.. sum(i, x(i)) : =e= 10 ;
dmean.. sum(i, return(i)*x(i)) =e= target;

fvariance..  sum(i, x(i)*sum(j,col(i,j)*STD(I))*STD(j)*x(j))) =e= variance;

Model portfolio /all/;
Solve portfolio using nlp minimizing variance;

target = target - 0.1;
Scalars vl ;
Scalars V2 ;

vl = variance.l;
*  set vl current variance

Model pl /fsum, dmean, fvariance/;
Solve p1 using nlp minimizing variance;

v2 = variance.l;
k=1,

For (k=1to 6,
If (v >v2,
target = target -0.1 ;
vi=v2
Solve p1 using nlp minimizing variance;
v2 = variance.l;
Else
target = target + 0.1 ;
Solve pl using nlp minimizing variance;
standev.l = sqrt(v1)
Display v1, standev.], target ;
target = target -0.1

)s
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Appendix 6.2

GAMS Program for Generating the List of Candidate Portfolios
in terms of the Liquidity Objective

$OnText

This GAMS program is written to generate the candidate conservative reference
portfolio list in terms of the liquidity objective (LD). Slightly modified, this program
can also be used to generate the aggressive portfolio list.

$OffText

Set i assets /LaStock, SmStock LCBond, LGBond,TBill, RealEst/; alias (i)
Scalar target targeted mean return on portfolio (%) /2.0/;

* If generate aggressive portfolio, the target value can be set as 12, for example.
Scalar k index for loop; \ ' :

Parameters return(i) expected liquidity-adjusted returns of individual assets (%)

| LaStock 119
SmStock 13.4

LCBond 4.8
LGBond 42
TBill 3.6

RealEst 0.0 /;
Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 20.5
SmStock  26.7
LCBond 7.5
LGBond 6.7
TBill 33
RealEst 00 /;

Table bol(i,j) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 011  -0.07 -0.06
SmStock . 0.82 1.00 008 -0.01 -0.08 0.6
LCBond 0.19 0.08 1.00 093 0.9 -0.08
LGBond 0.11  -001 093 1.00 022 -0.09
TBill -0.07  -0.08 0.19 022 100 0.38
RealEst -0.06  0.06 -0.08  -0.09 038  1.00
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Variables x(i) fraction of portfolio invested in asset i
variance  variance of portfolio
standev  standard deviation of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0

dmean definition of expected return on portfolio
fvariance definition of portfolio variance;
fsum.. sum(i, x(i)) =e=1.0;
dmean.. sum(i, return(i)*x(i)) =e= target ;

fvariance.. sum(i, x(i)*sum(j,col(i,j) *STD(i) *STD(j) *x(j))) =e= variance;

Model portfolio /all/;
Solve portfolio using nlp minimizing variance;

standev.] = sqrt(variance.l) ;
Display target, variance.l, standev.l, x.1;

For (k=1to5,
target = target + 0.5;

* If used for generating aggressive portfolio list, target = target - step
* In this example, the length of step is set at 0.5

Solve portfolio using nlp minimizing variance;
standev.l = sqrt(variance.l) ;
Display target, variance.l, standev.], x.1;

);
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Appendix 6.3

GAMS Program for Finding the Maximum Return Portfolio
in terms of the Liquidity Objective

$OnText
_ This GAMS program is written to find the maximum return portfolio along the
efficient frontier in terms of the liquidity objective (LD). This portfolio is -

considered the most aggressive. The underlying quadratic programming model is
Model 2.1. |

$Offl‘ext

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (ij);
Scalar k index for loop; .

Scalar TargetSTD - target STD on portfolio (%) /23.7/;

Parameters return(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock  11.9

SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6

RealEst 00 /;
Parameters STD(i) standard deviations of individual assets (%o)

/' LaStock 20.5
SmStock  26.7

LCBond 7.5
LGBond 6.7
TBill 33

RealEst 0.0 /
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 1.00 ;
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Variables - x(i) fraction of portfolio invested in asset i
ExReturn expected return on portfolio

Positive Variable x;
Equations
fsum fractions must add to 1.0
dmean definition of expected return on portfolio
fSTD definition of standard deviation of portfolio;
fsum.. sum(i, x(i)) ‘ =e=1.0 ;
dmean.. sum(i, return(i)*x(i)) =e=ExReturn ;

fSTD., sqrt(sum(i, x(i)*sum(j,col(i,j) *STD(i) *STD(j)*x(j)))) =e= TargetSTD;

Model portfolio /all/;
Solve portfolio using nlp maximizing ExReturn;
Display ExReturn.], targetSTD, x.1

* Now change the value of targetSTD

targetSTD = targetSTD + 0.2;

Scalars Rl ;
Scalars R2;
R1 = ExReturn.l;

Model pl /fsum,dmean, fSTD/;
Solve pl using nlp maximizing ExReturn;

R2 = ExReturn.];
k=1;

For (k=1 to 20,
If (R1<R2,
targetSTD = targetSTD + 0.2
R1=R2 ;
Solve pl using nlp maximizing ExReturn;
R2 =ExReturn.l;
Else
targetSTD = targetSTD -0.2 ;
Solve p1 using nlp maximizing ExReturn;
Display ExReturn.], targetSTD, x.1;
targetSTD = targetSTD +0.2

.
b

.
b

);
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‘Appendix 6.4

GAMS Program for Obtaining the Local Optimal Portfolio
.in terms of the Liquidity Objective

$OnText

This GAMS program is written to solve the quadratic programming model (Model 4.2)
whose objective function is to maximize an investor's utility in terms of the liquidity
objective (LD). The outputs are the characteristics of local optimal portfolio, including
the expected return, standard deviation, percentage of portfolio invested in each asset
class, as well as the values of the investor's risk tolerance and utility.

© $OffText

Set i assets /LaStock, SmStock,LCBond, LﬁBond,TBill,'RealEst/; alias (i,j);
Set m reference portfolio A /ReA, VarA/;
Set 1 reference portfolio C /ReC,VarC/;-

Scalar t theinvestor's risk tolerance;
Scalar k the relative degree of preference between portfolios Aand C /0.630 /;

For aggressive action, k= 0.475

* For normal action, k = 0.630
* For conservative action, k =2.759

Parameters refA(m) expected return and variance of reference portfolio'A

/ReA  3.00
VarA 5.157/; _
Parameters refC(I) expected return and variance of reference portfolio C
/ ReC 10.00 '

VarC  233.60/;
t = (refA('VarA') — k * refC("VarC')) / (refA('ReA") — k * refC(ReC'));
Parameters return(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock 119

SmStock 13.4
LCBond 4.8
LGBond 4.2
TBill 3.6

RealEst ~ 0.0 v/;
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Parameters- STD(i) standard deviations of individual assets (%)

/ LaStock
SmStock
LCBond
LGBond
TBill
RealEst

Table col(ij) correlations between assets

20.5
26.7
7.5
6.7
33

0.0 /;

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00
SmStock 0.82
LCBond 0.19
LGBond 0.11
TBill -0.07

RealEst -0.

Variables x(i)
returnEx
variance
standev
utility

Positive Variable x;

Equations
fsum
freturnEx
fvariance
dutil
fsum.. sum(i, x(i))

06

fraction of portfolio invested in asset i
expected return of portfolio

0.82
1.00
0.08
-0.01
-0.08
0.06

0.19
0.08
1.00
0.93 -
0.19
-0.08

0.11
-0.01
0.93
1.00

022

-0.09

definition of portfolio variance
standard deviation of portfolio
definition of utility ;

fractions must add to 1.0
definition of portfolio return

definition of portfolio variance
definition of utility;

freturnEx.. sum(i, return(i)*x(i))
fvariance.. sum(i, x(i)*sum(j,col(ij)*STD(i)*STD(j) *x(j)))
dutil.. returnEx - variance/t

Model portfolio /all/;

Solve portfolio using nlp maximizing utility;

standev.l = sqrt(variance.l)

Display t, utilityl, returnEx.l, standevl, x.1;
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-0.07 -0.06
-0.08 0.06
0.19 - -0.08
022 - -0.09
1.00 0.38
0.38 1.00
=e=1.0;
=e= retumEx;
== variance;
=e= utility ;



- Appendix 6.5 - -

GAMS Program for Finding Performance of the Complete Portfolio
in terms of the Liquidity Objective

$OnText

This GAMS program is written to obtain the performance information (expected return

and standard deviation) of the complete portfolio in terms of the liquidity objective
(LD). "
$OffText

Set 1 assets /LaStock,FSmStock,LCBond, LGBond,TBill, RealEst/; alias (i,j)

Scalar ReturnC - Excepted return of complete portfdlio for LD objective -
VarC ‘Variance of complete portfolio for LD objective
StdC Standard deviation complete portfolio for LD objective;

Parameters x(i) fraction of assets making up the completé portfolio

/ LaStock 0.282
SmStock  0.164
LCBond 0.177
LGBond 0.000
TBill - 0.040
RealEst 0.337 /;

*These data are for normal action;
* For aggressive action, LaStock = 0.286, SmStock = 0.266; LCBond = 0.148,

* LGBond =0.000, TBill = 0.009, RealEst = 0.291.
* For conservative action, LaStock = 0.232, SmStock = 0.081, LCBond = 0.283,
* LGBond =0.001, TBill = 0.075, RealEst = 0.328.

Parameters return(i) expected liquidity-adjusted returns of individual assets (%) '

/ LaStock 11.9

SmStock 134
LCBond 4.8
LGBond 4.2
TBill 3.6

RealEst - 0.0 ‘ /5
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Parameters: STD(i) standard deviations of individual assets (%)

/ LaStock
SmStock
LCBond
LGBond
TBill
RealEst

Table col(i,j) correlations between assets

LaStock SmStock LCBond LGBond

LaStock 1.00
SmStock 0.82
LCBond 0.19
LGBond 0.11 -
- TBill -0.07 .
RealEst -0.06

returnC = sum(i, return(i)*x(i));

0.82
1.00
0.08
-0.01
-0.08

- 0.06

20.5
26.7
1.5
6.7
33

0.0 /;

0.19
0.08 | .
1.00
0.93
0.19
-0.08

0.11
-0.01
0.93
1.00
0.22
-0.09

varC = sum(i, x(i)*sum(j,col(i,j)*STD@{E)*STD(G)*x())) ;

stdC  =sqrt(varC) ;

Display ReturnC, StdC;
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TBill
-0.07
-0.08
0.19

0.22

1.00
0.38

RealEst
-0.06
0.06
-0.08
-0.09-
0.38
1.00



- Appendix 6.6~

GAMS Program for Obtaining the Optimal Portfoho for a Given ’I’arget Return
in terms of-the anmdlty Objective

$OnText

This GAMS program is written to solve the quadratic programming model (Model 4.1)
whose objective function is to minimize a portfolio's variance in terms of the liquidity
objective (LD). The input data are the specified expected target returns. The outputs
are the characteristics of optimal portfolio, including the expected return, standard

deviation, percentage of portfoho invested i in each asset class.
$OffText

Set i assets /LaStock, SmStock,LCBond, LGBond,TBill, RealEst/; alias (i;j)
Scalar target target mean liquidity-adjusted return of portfolio (%) / 10/;

Parameters return(i) expected liquidity-adjusted returns of individual assets (%)

/ LaStock 11.9
SmStock 134
LCBond 4.8.
LGBond 4.2
TBill 3.6
RealEst 00 /;

Parameters STD(i) standard deviations of individual assets (%)

/ LaStock 205
SmStock - 26.7

LCBond 7.5
LGBond 6.7
TBill 3.3

RealEst 0.0 /
Table col(ij) correlations between assets

LaStock SmStock LCBond LGBond TBill RealEst
LaStock 1.00 0.82 0.19 0.11  -0.07 -0.06
SmStock 0.82 1.00 0.08 -0.01 -0.08 0.06
LCBond 0.19 0.08 1.00 0.93 0.19 -0.08
LGBond 0.11 -0.01 0.93 1.00 022 -0.09
TBill -0.07 -0.08 0.19 0.22 1.00 0.38
RealEst -0.06 0.06 -0.08 -0.09 038 100 ;
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Variables - x(i) fraction of portfolio invested in asset i
variance  variance of portfolio
standev standard deviation of portfolio

Positive Variable x;
Equations fsum fractions must add to 1.0 :
dmean definition of expected return on portfolio

fvariance  definition of portfolio variance;

fsum.. sum(i, Qc(i)) ~ == 1.0

dmean.. sum(i, return(i)*x(i)) =e= target;
fvariance.. sum(i, x(i)*sum(j,col(i,j) *STD (i) *STD() *x())) =e= variance;

Model portfolio /all/;
Solve portfolio using nlp minimizing variance;

stande{'.l = sqrt({laﬁance.l) ;
Display target, variance.l, standev.l, x.1;
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