
Art Hacks and Mash-Up Play:
Introducing BitFlows

by
Robert Blair King

BFA New Media
Ryerson University

2005

A thesis project presented to
Ryerson University and York University

in partial fulfillment of the
requirements for the degree of

Master of Arts
in the Program of

Communication and Culture

Toronto, Ontario, Canada, 2008
© Robert Blair King 2008

Authorls declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University and York University to lend this thesis or dissertation to other
institutions or individuals for tlJ.l3...l;jlurpose of scholarly research.

I further authorize Ryerson University and York University to reproduce this thesis or
dissertation by photocopying or by other means, in total or in part, at the request of other
institutions or individuals for the purpose of scholarly research.

Hobert Blair King

ii

Abstract - Art Hacks and Mash-Up Play: Introducing BitFlows
Robert Blair King
Master of Arts
Communication and Culture
Ryerson University and York University

A new software tool called BitFlows has been developed to support creativity,

collaboration, performance and innovation in New Media. New Media practitioners already

have a diverse range of tools at their disposal. This range of tools is constantly growing

fueled by hardware and software hacks, which allow individuals to creatively use and

abuse consumer products in ways not intended by their original creators. Software such

as Ableton Live, MaxiMSP and VVVV give creators the ability to perform and demonstrate

works in a live setting. Influenced by Csikszentmihalyi's concept of Flow in creative work

(Csikszentmihalyi, 1996) and Shneiderman's suggestion that creativity can be aided by

smoother flow between applications (Shneiderman, 2000a), BitFlows provides a simple

means for users to maSh-Up the data-flows from all of these diverse pieces of hardware

and software, over the network, in single or collaborative settings.

iii

Acknowledgements

I would like to thank my advisor, Dr. Michael Murphy for providing encouragement

and support throughout the past three years. Greg Elmer who first suggested I enter this

program. Jerry Durlak for joining us at my defence while still in recovery. Bob and Glenna

King, who provided constant encouragement through good times and bad. And finally I

would like to thank Gwen Potter without whose patience, understanding and support I

could never have done this.

iv

Table of Contents
I. Introduction ... 1
II.Four Themes in New Media Culture ... 4

lI.a.The Hack .. 5
Il.b.The Mash-Up ... 11
II.c:rhe Demo ... 14
Il.d:rhe Network ... 17

IILCreativity, Flow and Play .. 24
IV. Bit Flows ... 32

IV.a.The Issues ... 33
IV.b.lntroducing BitFlows .. 38
IV.c.User Interface .. 49
lV.d.Using BitFlows .. 59

V.Future Directions .. 65
VI.Conclusion .. 68

v

List of Figures
Figure 1: The user interface for Bit Flows ... 52
Figure 2: Three uses of identicons in BitFlows ... 53
Figure 3: The use of sparklines in BitFlows .. 55
Figure 4: A list of plug-ins available to a BitFlows user .. 59
Figure 5: Six instantiated BitFlows plug-ins (nodes) .. 60
Figure 6: Adding a pin to a flow ... 61
Figure 7: Dragging a pin to a flow .. 61
Figure 8: A simple text-to-speech instrument built entirely in BitFlows 62
Figure 9: The BitFlows Chat area ... 62
Figure 10: Two users in BitFlows' user Iist.. ... 62
Figure 11: Four nodes from two different machines. Note the use of identicons to show
which node is running on which machine .. 63

vi

I. Introduction

Just as painters manipulate and position paints on a canvas, and poets play with

the structure and arrangement of words, New Media creators work in the manipulation of

digital bits. Bits however have no tangible presence, a New Media creator cannot

generally delve into the internal workings of a computer and physically rearrange individual

bits to generate a new work. The bits on their own have no inherent meanings behind

them, rather creators must rely upon generally accepted standards for interpreting the

meaning of the bits, and turning them into words, sounds, images or video. Individuals

working in digital media generally need to rely upon specially created pieces of software

and hardware to create and manipulate these patterns. There is no lack of software or

hardware available to help creators manipulate and position bits in just such a way as to

produce precisely the sort of product which they desire. A talented user of Adobe's

Photos hop image editing software can produce any image they can imagine. Now more

than ever, New Media producers have access to a diverse range of tools for developing

New Media artworks. With the explosion of the Internet, every computer made today now

ships with networking capabilities. The popularity of video games has created a market for

new and innovative control devices. Input devices formerly reserved for high-end

professional and research work such as 3D mice1
, data-gloves2

, and camera tracking

1 Such as the 3DConnexion SpaceNavigator (http://www.3dconnecion.com)
2 Such as the P5 Data Glove (http://www.vreaIities.com!P5.html)

1

systems3 are now all inexpensively available for use by artists. Each of these tools

provides creators with a new stream of bits ready to be moulded to their desires, and yet a

user trying to use their fancy new joystick in Photoshop will quickly find it impossible.

Why? Because the developers of every tool make certain assumptions about how it will

be used. The developers of Photoshop (quite reasonably) only expected it to be used with

a mouse, a keyboard, and maybe a drawing tablet.

Every tool carries with it certain assumptions and usage biases. Certain tools make

certain behaviours easier than others. It's easier to use a mouse in Photoshop than a

Joystick. It's easier to edit a sound in Logic than in a text editor. It's easier to perform live

music with Ableton Live than with Logic. The effect of these biases on creative practice

can be seen in certain trends in the creative output of users of the tools. For example, the

introduction of complex user definable brushes in Photoshop has led to certain tendencies

in design practice. Similarly the introduction of the drum machine and sampling made

certain styles of music possible. Entire musical genres have formed based of the biases of

these machines, for example the squelchy melodies of the Roland TB-303 bass-line

synthesizer was highly influential in the development of "acid house" music (as well as

electronic music as a whole). Of course the biases inherent in these tools do not

completely define the creative output of a certain tool. It's not the tools one uses that

define the creative output, it's how one uses (or misuses) them. Increasingly within the

3 Such as the ReacTIVision software (http://mtg.upf.es/reactablel?software)

2

domain of New Media some of the most innovative and interesting works create or use

"hacks", or misuses of existing tools and technologies. The creation of hacks is an effort

to break free from the assumptions and biases of a tool. Not every tool is well suited to

hacking though, often proprietary systems, technological lock-down, or even just system

limitations can get in the way. What then can be done to provide gateways into systems,

and pathways between them to make hacking possible and pleasurable and to encourage

unique and innovative creative developments in the domain of New Media?

This paper documents one exploration into the nature of creativity in a New Media

context, and outlines the development of a software tool which attempts to create

conditions conducive to the development of uniquely creative New Media works. This

paper begins by examining four areas of New Media culture and artistic practice where

there is significant innovative activity: the hack, the mash-up, the demo, and the network.

The next section will concern itself with exploring prior research on creativity and the

various factors that influence creative work. Particular attention will be given to Mihaly

Csikszentmihalyi's systems model of creativity, the use of play in creativity and education,

and his concept of flow in creative work. Finally, the findings of the previous sections will

be synthesized, and various issues impeding the development of uniquely creative New

Media works will be outlined. The software project BitFlows will then be presented as a

new sort of meta-tool intended to provide an environment for the live creation of hacks and

mash-ups over the network.

3

II. Four Themes in New Media Culture

The field of New Media, as can be inferred from its name, is in constant flux.

Technologies are constantly appearing and becoming obsolete. Yet even within this ever­

shifting environment there are certain themes that reveal themselves. This section will

cover four different, but inter-related themes that have emerged both in New Media art

practice, and in our modern networked culture: the hack, the mash-up, the demo, and the

network. While these themes are in no way exclusive to New Media Art practice, they

represent sites of significant creativity. This is also not meant to be a comprehensive

account of New Media culture, but rather an examination of elements that can be taken

advantage of in the effort of inspiring creativity in New Media art practice. Each of these

themes are deserving of a book of their own to do them justice. For the purposes of this

paper however, I will give a brief overview of the subject, and it's uses in New Media

work.

4

Il.a. The Hack

For me, the true standout in the world of jazz is Thelonious Monk. The first time I
heard Monk's music, I thought, What the hell is going on? This sounds awful. Notes
in places they shouldn't be, timing structures all over the place - all twisted and
distorted like I'd never heard. But then, isn't that what I try to to with visual images?
Isn't that what a lot of digital artists do - bend and shape bits of code, bits of data,
into new forms, in the hope that something exciting will come of it? And the more I
forced myself to listen to Monk and those like him, the more it struck me that they're
all essentially hackers. But instead of ha'cking with computers to change code, they
hacked with instruments to twist and reshape musical notes. (Dawes. 2007, p. 144)

Our culture is full of hackers. Not only in the domain of computers or technology,

but in every domain that requires innovation and creative thought. Eric Raymond (one of

the original computer hackers) defines the hacker, as "one who enjoys the intellectual

challenge of creatively overcoming or circumventing limitations." (Raymond, 1996, pp.

233-234). This definition is consciously very general. A hacker doesn't need to be

involved in computers or technology at all, and there are hackers in every domain: math,

physics, even graffiti art. Regardless of their domain, hackers are all creators. They

develop new software and hardware, art and techniques. In short they develop hacks.

The term "hack" as we are using it here has a dual meaning. On the one hand it refers to

the clever manipulation of hardware or software to give it new capabilities, or use it in ways

not originally intended by it's original creators. On the other hand it simply refers to a

quick, cheap, or clever way of doing something. Take for instance the Jeff Han's

5

"Frustrated Total Internal Reflection" (FTIR) multi-touch interface solution (Han, 2005).

Using a consumer-grade webcam slightly modified to be receptive to infra-red light, a

sheet of acrylic, a video projector, and a set of infra-red LEOs, he has developed a simple,

elegant and inexpensive way to create a multi-touch sensitive display. Historically these

sorts of mUlti-touch interfaces used capacitive touch sensors, and would have been near

impossible for individuals to build themselves and prohibitively expensive to purchase.

Han's invention can be considered to fall under both categories of hack, the modification

of the webcam repurposes it as a positional sensor, a use likely not imagined by it's

original creators. At the same time it uses a clever technique to make multi-touch

technology available to nearly anyone with the desire to experiment with it. It's a very II neat

hack".

The use of the hack in New Media art often becomes somewhat of a necessity. As

Simon Penny (1995) has pointed out: IIUnless artists are in direct contact with research

labs, their access to 'science' is via commodities ... ", A painter can mix their own paints,

and a sculptor can find their own rocks, but a New Media artist can't make their own

microprocessor or hard-drive. Even faced with these constraints, artists and creators have

been able to hack and misuse commodity hardware and software to work in new and

unexpected ways; in the words of Jon Ippolito (2002): "What sets art apart from other

technological endeavours is not the innovative use of technology, but a creative misuse of

it. II The entire musical genre of "glitch" and "microsound ll is built on the the creative

6

misuse of technology, and the aesthetics of failure (Thomson, 2004; Cascone, 2000).

The Apple iPhone, Sony PSP, and Nintendo DS have all been hacked to allow users

to develop and use their own custom software. On each of these pieces of "locked-down"

consumer hardware, independent developers have found means to unlock them for their

own use and develop software for creative expression. Mrmr (Integrated Digital Media

Institute of Polytechnic University, Brooklyn, 2007) and the i3L MIDI bridge (Thille,

2007) allow artists to control music and visuals from an iPhone, making it a relatively

inexpensive alternative to multi-touch controllers like the Jazz Mutant Lemur (Jazz Mutant).

PlayLive provides similar capabilities to the PSP (King, 2006). NitroTracker (Weyland,

2008) and PSP Rhythm (B. Iturzaeta & L. Iturzaeta, 2007) allow Nintendo DS and PSP

users to sequence music on their devices. Even commercial software packages like

Ableton Live have been hacked to unlock a hidden internal API (King & Ramella, 2007),

and computer game "mod" communities hack new games from the foundations of other

games (Galloway, 2006; Nieborg, 2005; Postigo, 2003).

One device that has recently become the subject of numerous creative hacks is the

Nintendo Wii Remote video game controller. The Wii Remote is a fascinating device for

several reasons: For one, it packs a remarkable amount of technology in an inexpensive,

small package (currently about $45). With the Wii Remote one gets a three axis

accelerometer, a infrared digital camera, a vibration motor, eleven buttons, four LEDs, and

a Bluetooth wireless radio. Within the gaming community the controller has been lauded

7

for the innovative game control schemes that it has inspired. More interesting though is

the community that has emerged around hacking the Wii Remote for use with normal

computers. Because the Wii Remote uses a standard Bluetooth signal to communicate

with the Wii console, developers have been able to hijack the signal for use on normal

computers. Because of this a large community has emerged around the development of

alternate uses for the controller. It has been adapted for use as a virtual drum-kit (Merz,

2007), a robotics controller (Rasmussen, 2007), a musical looping device (Seznec, 2008),

a multi-touch controller and even a 3D head-tracker (Lee, 2007).

Hacker culture has always had close ties to open-source ideologies, most

hardware hacks are available freely or have been documented so as to allow anyone to

perform the same hack. Open-source ideals and methodologies have also permeated

certain aspects of hardware development. The people behind the Monome musical

controller have released all the software, schematics, and build instructions necessary for

individuals to build and hack their own Monome4 (Crabtree & Cain, 2007). This openness

has allowed a community to form around building, using and modifying Monome devices.

Further following open-source methodologies popular hacks of the Monome, such as

incorporating an accelerometer, have been incorporated into the core design of new

iterations of the device. Similarly, the Arduino is an open-source micro-controller hardware

4 As well as allowing people to build their own Monome devices, http://monome.org sells pre­
built devices, the most recent version of which (the sixty four) sold out in 2 minutes of online
availability (as of January 2008).

8

and software system that serves as a platform for individuals to create or control their own

hardware devices (Banzi, Cuartielles, Igoe, Martino, & Zambetti).

These sorts of open architectures encourage users to break out of their traditional

roles as simply consumers, and become makers. Much has been written about

collaborations between artists and engineers, though most of these collaborations focus

on the artist developing a concept which is then implemented by the engineer (Mamykina,

Candy, & Edmonds, 2002; Nakakoji, Yamamoto, & Ohira, 2000; S. Wilson, 2002; Y. Zhang

& Candy, 2007). This divide between the arts and sciences is reminiscent of C.P. Snow's

"two cultures" (1998). Ehn (1998) has proposed a "Manefesto for a Digital Bauhaus",

where art and tecllnology are united within a single practice. The capability for artistic use

and misuse that hacking technology provides takes great strides towards this merger of art

and technology. Numerous explorations have been made into alternative musical

interfaces (Bongers, 1999; Collins, 2003; Wanderley & Battier, 2000), and physical

computing interfaces (Fleck, 2003; Ishii & Ullmer, 1997; Villar, Lindsay, & Gellersen, 2005a,

2005b; G. Weinberg, 2002). Hacks such as the ones outlined above, put these sorts of

interaction possibilities within the reach of most artists. It seems apparent that there is a

new culture of hacking and DIY is emerging thanks to open-source hardware and software

platforms and an online culture of knowledge sharing . Every new piece of software or

hardware presents a new challenge to the hackers of our culture, a new source of bits to

use and a new opportunity for creativity. Individuals are working not only to explore the

9

creative potential inherent within a product, but to find new and creative ways to expand

and misuse it.

10

lI.b. The Mash-Up

In 2001 musical producer The Freelance Hellraiser released a track titled A Stroke

of Genius that mixed the vocals of a Christina Aguilera song with the instrumental track of

a Strokes song. The blending of Aguilera's mainstream pop vocals with the independent

rock guitar of the Strokes grew to be hit in online music communities and eventually even

in the general public, being hailed as one of the best songs of 2001. In the music world

this track spawned a new production style and music genre known as the "mash-up", a

style in which producers take different elements of diverse songs, and combine them to

form a new whole artwork (Ferguson, 2004; McLeod, 2005). The mash-up technique

quickly spread throughout the music world and began to manifest itself in fields that had

nothing to do with music at all.

At the same time that music producers were building stores of a cappella vocals

and instrumental backing tracks, computer scientists and programmers were developing

evolutions of the Web. As more and more websites began making their data available in

standardized data formats such as XML and allowing the general public to interface with

their systems using Application Programmer Interfaces (API's), users began experimenting

with creating web mash-ups. In these mash-ups, similar to the musical mash-ups, the

creators take the data from one website and incorporate it into another. For example, a

number of web mash-ups have been made that take data from the online classified ad site

11

craigslist.com and bring it into Google Maps to show the geographic locations of the ads.

Google5
, Yahoo!6 and even Microsoft1 have gone as far as to develop web-based tools

which give users a simple interface to build their own mash-ups from a variety of data-

sources. These mash-up editors effectively act as routers to direct, modify, and reinterpret

flows of data in the Web. The web is fundamentally built in such a way as to allow the

mashing up of data. The WWW is probably one of the most successful technologies of

our time, and that success can in no small part be attributed to it's ability to infinitely link

to, combine, and recombine its component parts. In reference to the ability for

recombination on the Internet, Manuel Castells has written:

Recombination is the source of innovation ... the ability to experiment with this
recombining from a multiplicity of sources considerably extends the realm of
knowledge, as well as the connections that can be made between different fields. }
(Himanen & Torvalds, 2001, p. 163)

Essentially, every website that incorporates images hosted on another website is making a

mash-Up. Though it would be a stretch to call most websites innovative on their own, the

ability to freely play with the interconnections between data on the Web has been the

source of much innovation and creativity.

Weinberger (2002) has appropriately described the web as "small pieces loosely

joined". This principle can be applied to the mash-Up technique as a whole. Nearly

anything can be seen as the potential subject of a mash-Up. Lev Manovich (2002) defines

5 http://editor.googlemashups.com
6 http://pipes.yahoo.com
7 http://www.popfly.ms/

12

five basic principles of !\Jew Media: numerical representation, modularity, automation,

variability and transcoding. In New Media, every file, data-stream, input and output can be

distilled down to a single basic language of ones and zeroes. This data can be interpreted

in a variety of ways depending on how it is processed. These principles make New Media

the perfect environment for the maSh-Up. New Media artist and designer Brendan Dawes

(2007) finds his inspiration from the world around him, he is able to find sources of data in

nearly any situation he finds himself in, whether from a ball of Playdoh, or the crowds of an

airport. It is just this approach to seeing data-sources as small, modular, interchangeable

and everywhere that characterizes the mash-Up process. Given some creative

experimentation, nearly any collection of hardware and software can produce an

experience far greater than the sum of it's individual parts. As a creative technique, the

maSh-Up is a powerful way to explore and unearth unexpected possibilities. The use of

mashing up as a source of innovation will be further covered in section III, but for now it is

sufficient to show the pervasiveness of the mash-Up.

3

lI.c. The Demo

Nicholas Negroponte, founder of the MIT Media Lab was once famously quoted as

saying that "At the MIT Media Laboratory ... the academic slogan 'publish or perish' has

been re-codified as 'demo or die'" (Lunenfeld, 2000, p. 13). Short for demonstration, the

demo as used here refers to the performative exhibition of technology. Whether it is a

film-maker showing their demo reel, a research lab demoing a new technology, a

programmer showing off their skills at a demoscene competition, or even a time-limited

demo version of some software, the demo has become an important method for

dissemination of creative works. In fact, Lunenfeld has argued that the "demonstration or

"demo" has become the defining moment of the digital artist's practice at the turn of the

millennium."(2000, p. 13) The demo serves two roles in New Media art production. Firstly,

the demo provides an opportunity for the dissemination of what would otherwise be

transient works. It is difficult to convey and disseminate the full impact of moving,

interactive, site-specific, or hardware-specific works in a textual form. Yet, as will be

discussed in section III, creative practice is dependant on dissemination to the relevant

field. As such, the demo is indispensable to New Media culture. Undoubtedly there are

innumerable hacks which have been developed by individuals in their own private work,

but without disseminating their creations these hacks have gone unnoticed.

Secondly the demo is a performance of a New Media work. Digital artists have a

14

wide range of tools at their disposal. Photoshop, Logic, Final Cut Pro, Illustrator, After

Effects, and other such software tools are common to find in most digital artist's

toolboxes. All of these programs, while being more than suitable for creative work, are

generally only for the creation of static works. That is, the artist uses them to develop a

fully formed final product which may then be distributed. It is rare for them to be used in a

performative setting as they are designed for the slow, methodical production of highly

polished works. These tools are not built for the real-time dynamic shifts and adaptation

typically required in a performance or demo setting. But, as the demo has become an

important part of New Media practice, an entire genre of tools has emerged specifically for

developing, and performing New Media art works. Back as early as 1977, artists and

programmers were beginning to see the value in "interactive program environments" for

artistic production [fruax & Barenholtz, 1977). Audio software such as Ableton Live and

Seq 24 pride themselves on their performative capabilities, and 'NVV, Quartz Composer,

Jitter, Resolume and several other pieces of software give artists the capability to perform

and generate video on the fly.

In the mid-1980s, spawning from the practice of developing graphical intros to

cracked software, groups of hackers began applying their skills to stretching the graphical

capabilities of the computers of the time. Known collectively as the "demoscene", the

compositions (usually termed "compos") created by these individuals and groups used

procedural and generative techniques, undocumented assembly language calls, and self

5

modifying code to create real-time video and audio works, often programmed within a

space constraint (of about 8 to 64 KB), or a time constraint (often 24 hour marathon

programming sessions) (Kuittinen, 2004; Raymond, 1996, p. 150; Green, 1995). Although

most compos were not interactive and theoretically much more easily rendered frame by

frame and recorded to video, an important aspect to demoscene programs is that they are

run in real-time on a computer, showing off both what the hardware and programmer are

capable of. More importantly though, this emphasis on real-time execution gives the

compo a performative aspect that wouldn't be as present in a static video. A logical

extension of demoscene practice has emerged more recently with "live coding". In live

coding, artists perform music and visuals by programming the computer in real-time, often

in front of an audience (Blackwell & Collins, 2005; Brown, 2006; Collins, 2003; Collins,

McLean, Rohrhuber, & Ward, 2004; G. Cook & Misra; Kapur, G. Wang, Davidson, & P. R.

Cook, 2005; Nilson, 2007; G. Wang, Misra, & P. R. Cook, 2006; G. Wang, Misra,

Davidson, & P. R. Cook, 2005; G. Wang & P. R. Cook, 2004). The CHUCK programming

language was developed specifically with live musical programming in mind, and it's

Audicle interface allows the live coding of visuals (G. Cook & Misra). MaxiMSP and Pure

Data also offer graphical interfaces to live-coding activities (Puckette, 2002). Live coding is

the far extreme of the demo as technological performance. Similar to an improvising jazz

musician live coding artists don't simply present a finished work, they perform the entire

creation process.

16

lI.d. The Network

In the previous sections I have presented three loosely related themes in New

Media culture. The network is the tie that binds all these themes together. The use of the

network in artistic practice certainly predates both the Internet, and New Media as we

know it. Roy Ascott's explorations into telematic art date back to the early 1980's (Ascott,

2003), and Laszlo Moholy-Nagy produced a series of paintings over the telephone network

as early as 1922 (Kaplan, 1993). Early uses of the WWW for art often used the network

solely as a distribution system for digitized version of off-line works. Later as the Internet

became more accessible and more artists began exploring the creative possibilities of the

Internet, the network became the subject of numerous artworks (Ippolito, 2002). Artists

like Alex Galloway (Galloway, 2006) and early net.art practitioners such as jodLorg (S.

Wilson, 2002) built works using hacks of the formats and protocols that form the Internet.

The network also serves as an invaluable resource for the sharing of knowledge. Han's

release of the plans for his FTIR multi-touch display on his website (Han, 2008) has

spawned a sizeable online community of individuals developing their own FTIR surfaces

(http://nuigroup.coml). Similarly, the Wii Linux forums and wiki at willi.org have been

incubators for the development of Wii Remote hacks. The new rise of a DIY culture can at

least in part be attributed to the network, due to the increased ability to disseminate

knowledge and hacks, and collaborate with like minded individuals over long distances.

17

Although network art often focuses on manipulating general purpose protocols and

standards such as e-mail and the WWW for artistic purposes, several protocols have also

emerged specifically for using networks for artistic expression. In the early years of

electronic musical synthesis, synthesizers were developed as modular pieces of

equipment. A typical synthesizer would consist of an oscillator which would produce a

sound wave, this sound wave could then be passed through a number of different

modules such as filters and envelope shapers to create a wide variety of different sorts of

sounds. Each of these modules needed a standard way to pass signals from one module

to another so that users or other modules (such as keyboards or Low-Frequency

Oscillators (LFOs)) could control the parameters of each module. The most common

protocol (and I use protocol here in a very loose sense) used at the time was cal/ed Control

Voltage (CV). The CV protocol simply consisted of a variable voltage sent across a cable

which could be interpreted by synthesizer modules in a variety of ways to correspond to

different values. While CV was effective for the modular synthesizers of the time, as

electronic musical instruments increased in complexity and polyphony, and as musicians

desired to connect more and more diverse instruments together the limitations of CV

became evident.

In 198213 a number of musical instrument manufacturers came together to develop

a standard protocol for communication between different musical instruments cal/ed

Musical Instrument Digital Inteliace or MIDI (Loy, 1985). MIDI consists of a set of

18

standardized digital messages such as "Note On", "Note Off''. "Control Change", and

"Clock", which are interpreted in more-or less the same way by any instrument. Since it's

creation, the MIDI protocol has become the standard for musical communication. Nearly

every modern synthesizer and musical software package has MIDI support. In fact, use of

MIDI has extended beyond the musical domain and been adopted as a method of

controlling stage lighting, live video software, and interfacing with hardware sensors.

Although an improvement over CV, MIDI stili has a number of limitations (Moore, 1988).

MIDI was not originally intended for use outside of a musical domain, and so non-musical

applications need to map musical semantics and assumptions to their own domain. So,

for example in a video mixing application, note-on messages might trigger various videos,

and pitch-bend messages might mix between them. The semantics of the protocol are

lost. MIDI was also designed to use it's own specifically designed low-speed serial

hardware layer. All MIDI communication is half-duplex, meaning a MIDI cable can only

carry messages in one direction. Because of this, networks of MIDI devices can tend to

get rather complex very quickly; bi-directionally networking six-performers would require at

least 30 MIDI cables. MIDI was also only designed to be a local point-to-point protocol,

with no support for control over networks like the Internet. Finally, most MIDI messages

also only have a resolution of 7 -bits, meaning expression is limited to 128 steps of

resolution.

More recently a new protocol called Open Sound Control (OSC) has been

19

developed to remedy some of the issues plaguing MIDI (Wright & Freed, 1997). The OSC

protocol uses standard ethernet UDP packets as it's transport layer (though it is adaptable

to other transport layers as well). Instead of a pre-defined semantic structure like MIDI,

OSC uses a hierarchical user-defined file-system-like structure. OSC also has a flexible

payload structure, so a variety of different high-resolution data-types can be contained in

an single OSC packet. OSC has become a favourite among hardware and software

hackers, as it is a relatively simple and flexible protocol that doesn't require special

hardware and has user-definable semantics. Hacks of the Wii Remote all use the OSC

protocol to communicate data between the controller and software, the open-source

Monome controller communicates exclusively over OSC, and the Princeton Laptop

Orchestra has used OSC to experiment with distributed, network controlled music

(Fiebrink, G. Wang, & P. R. Cook, 2007).

MIDI and OSC have both been used as protocols for networked creative

collaboration, but are far from the only solutions. Uses of the network for creative

collaboration can roughly be categorized along temporal (realtime or non-realtime) and

spatial (local or remote) axes (Barbosa, 2003; D. Williams & P. Webster, 1999; Hickey,

1998; G. Weinberg, 2005b). Most non-realtime remote collaboration efforts tend to be

organizations of pre-existing communications technologies to trade content (Net jam (Latta,

1991) or deposit content in a central store (Faust Music On-Line (Jorda, 1999), MICNet!

(Hickey, 1998), CC-Remix (fanaka, Tokui, & Momeni, 2005)). Yamagishi's "Variations for

20

V#IW" (1998) and Young and Packer's Telemusic pieces (young, 2002) use a web

interfaces to control remotely hosted MaxiMSP patches and stream the musical results of

every user's manipulations back to the user. Realtime local collaborations have tended to

use MIDI, OSC, or serial data to communicate between participants. Many experiments

have also been done in locally networked music performance (Bischoff, Gold, & Horton,

1978; Gresham-Lancaster, 1998; Gurevich, 2006; G. Weinberg, 2005a). In realtime

remote collaborations the nature of the data being transferred becomes much more

important, control data is much easier to transmit in real time than actual audio or video

data, thus most realtime remote collaborative efforts are made possible by transmitting

MIDI or other control data over the Internet with either the server or client producing the

actual sounds (Biaz, Chapman, & J. Williams, 2005; Burk, 2000; Gang, Chockler, Anker,

Kremer, & Winkler; Lazzaro & Wawrzynek, 2001). Co-Audicle, a collaborative networked

interface to the CHUCK live coding language uses a single audio server which allows

multiple clients to connect and run code on the server instead of transmitting audio data

(G. Wang et aI., 2005; G. Wang et aI., 2006). The issues of bandwidth and latency have

somewhat limited the possibilities of realtime collaboration using audio or video data

(Bartlette, Headlam, Bocko, & Velikic, 2006; Gu, Dick, Kurtisi, Noyer, & Wolf, 2005; Gu,

Dick, Noyer, & Wolf; Gurevich, Chafe, Leslie, & Tyan, 2004). Some projects such as

Ninjam aim to avoid the problem of latency by increasing the delay in transmission to a

musical quantity (one bar) (Bouillot, 2007; Underwood, 2007). Other projects avoid the

21

bandwidth issue by using high-speed research networks (Chafe, S. Wilson, Leistikow,

Chisholm, & Scavone, 2000; Ox, 2002). The GIGAPOPR project used a high bandwidth

connection between Princeton and McGill to allow for low latency streaming of audio,

video, and MIDI data (Kapur et al., 2005). Carot, Kramer and Schuller (2006) developed

low-latency streaming software to allow audio data to be sent with low latency over a

narrow-band network.

As has been shown, the network plays numerous roles in artistic practice. It works

as a distribution system, enabling the distribution of inspirational works and demos of new'

hacks and techniques. It serves as a subject for net.art practitioners. It serves as a means

of communication between different musical instruments and hardware devices. It serves

as a collaborative tool. Weinberger has described the web as a set of "small pieces

loosely joined" (Weinberger, 2002). The numerous hacks disseminated over the network

as well as the network itself provide a huge diversity of sources of bits. At the same time

the network serves as a transport mechanism to join and mash-up the "small parts" that

these hacks provide. The network is the tool for "loosely joining" all these pieces into a

greater whole, but using the network to join these pieces is far from a trivial task in most

cases. Each device speaks its own dialect, has it's own distinct way of physical

interconnection and makes its data available in a variety of formats. With the demo

becoming a crucial moment in digital art practice, a degree of spontaneity and

performability is desirable. Herein lies the conflict I seek to address: how can the

22

complexity of the network and the mash-up be reconciled with the desire for spontaneity?

In Dawes quote at the beginning of the section he describes jazz musicians as hackers.

Jazz music has a long tradition of improvisation and spontaneity in performance. How can

we bring a similar capability for spontaneity to network and mash-up creative play?

23

III. Creativity, Flow and Play

In order to develop a tool to support creative activity, it is first necessary to provide

a working definition of creativity and an examination must be made into the nature of

creative behaviour and the factors which influence creative production. Creativity has been

a subject of significant psychological research, and several models of creativity have been

developed. Shneiderman (2000a) has divided the research on creativity into three main

models: inspirationalist, structuralist, and situationalist. The inspirationalist model of

creativity focuses on the so-called "Aha!" or "Eurekal" moment. Long periods of

preparation followed by a sudden inspiration, then followed by much hard work to put the

inspiration into practice. Structuralists instead emphasize a methodical approach to

innovation, and use systematic techniques for problem solving. Situationalists emphasize

the effect of social, physical, and intellectual surroundings on creativity.

Mihaly Csikszentmihalyi suggests that the situationalist model of creativity is a useful

one to adopt in efforts it facilitate creativity because: lilt is easier to enhance creativity by

changing conditions in the environment than by trying to make people think more

creatively"(1996, p. 1). Csikszentmihalyi suggests a "systems model" of creativity, in which

" ... creativity does not happen inside people's heads, but in the interaction between a

person's thought and a socio-cultural context. It is a systemic rather than an individual

phenomenon" (1996, p. 23). Csikszentmihalyi specifies three main components to the

24

systems model of creativity: the domain, the individual, and the field. The domain as

Csikszentmihalyi defines it is a body of knowledge that is comprised of a set of memes or

cultural genes (a concept from Dawkins' Selfish Gene) and symbolic rules. The individual

works within the domain (be it music, math, physics, etc.) and makes contributions to the

domain by creating novel memes. Finally the field consists of the other individuals working

within the domain who evaluate the contributions of the individual and determine whether

their work is worthy of inclusion into the domain. Creativity comes from the individual

changing or adding to the set of memes that define a domain.

In many ways this model of creativity is very similar to the peer-review structure of

academia. It is important to note though that despite their similarities there is a subtle but

significant difference between them. For something to be deemed as a contribution to the

domain, and thus a creative work, it is not necessary for it to be formally published, merely

for it to be disseminated and accepted by other members of the field. Applied to New

Media, the effect that the Internet has had on both its domain and field cannot be under­

stated. Since Lunenfeld wrote on the subject of the demo, advances in video-streaming

technology have eliminated the requirement for a demo to be done in person. It is now

simple to make a video of a demonstration and distribute it using online video sites like

YouTube. Jeff Han's FTIR interface was demoed at the TED conference in 2006 and has

been published by the ACM (Han, 2005), but most people were first exposed to it through

either his website (Han, 2008) or a video recording of his TED demo placed online (TED

25

Conferences, LLC, 2006). The Internet serves a threefold purpose: it serves as an

educational tool for those interested in learning a domain (familiarization with existing

memes). It provides an open platform for the dissemination of an individual's work

(potential memes). Finally, it provides an informal and distributed structure for the

evaluation of memes. Blogs like BOinboing.net, aggregation sites like digg.com and social

bookmarking sites like deLicio.us have become a sort of massively distributed peer-review

and dissemination system for memes. Here is where the differences between the peer

review structure of academia and the systems model of creativity become apparent. The

peer-review structure is designed to maintain high-standards, and prevent the inclusion of

false claims in a body of knowledge. The systems-model of creativity however is

concerned more with the creation and modification of memes.

As has already been mentioned, in order to be creative wltrlin a domain, first one

must become immersed within the domain and learn it's rules. But how can the learning

of a domain (in this case New Media) be facilitated in such a way as to promote creative

exploration and innovation? Developmental psychologist, Jean Piaget had this to say

regarding his approach to education:

Education, for most people, means trying to lead the child to resemble the typical
adult of his society . . . but for me and no one else, education means making
creators You have to make inventors, innovators-not conformists (Bringuier,
1980, p. 132)

Much of his pedagogical theory was based in prinCipal around the concept that "To know

an object is to act upon it and to transform it" (Bringuier, 1980). Similarly, in his works on

26

education John Dewey developed the pedagogical approach of 'learning by doing'

(Dewey, 1916). Both Piaget and Dewey suggest that learning is often best achieved

through either structured, or unstructured play and exploration (Roussou, 2004). This

pedagogical theory certainly applies to the learning of technologies as well. Playfulness

has been shown to assist in the learning of new technologies (J. J. Martocchio & J.

Webster, 1992; Monk, 2002; Roussou, 2004). Turkle suggests the following regarding the

ways in which technology is learned:

In the emerging culture of simulation, the computer is less like a hammer and more
like a harpsichord. You don't learn to playa harpsichord primarily by learning a set of
rules, just as you don't learn about a simulated micro-world ... by delving into an
instruction manual. In general, you learn by playful exploration. (Turkle, 1995, p. 61)

Play serves not only as a pedagogical tool, but also as a facilitator for innovation in art,

science and technology. In her study of the nature of playfulness, Lieberman examines the

relation between creativity and playfulness, finding that artists (who she argues are

undeniably creative) exhibit playful tendencies (Lieberman, 1977). Do and Gross

(2007) have found that playful approaches to technology encourage the making and

hacking of things. Several studies have examined factors influencing individual's playful

interactions with computers (T. P. Novak, D. l. Hoffman, & Yiu-Fai Yung, 2000; J. Webster

& J. J. Martocchio, 1992; Yager, Kappelman, Maples, & Prybutok, 1997), the WWW

(Agarwal & Prasad, 1998; Chen, Wigand, & Nilan, 2000), and virtual reality (Reid, 2004;

Roussou, 2004). Hackers are well known for their playful behaviour. Eric Raymond has

said that "To do the UNIX philosophy right ... you need to play. You need to be willing to

27

explore" (2004, p. 27). Tim Berners-Lee laid the foundations of the VWV\N by linking

together a series of "play-programs" (Berners-Lee, 1999, pp. 9-13). Combinatorial play

allows for the free form interplay between a range of different pre-existing concepts and

ideas, a sort of mash-up of ideas. Even Albert Einstein, when describing his process of

innovation termed it "combinatorial play" (Schilpp, 1970). Similarly, Koestler describes

creativity as the process of connecting multiple previously unrelated "matrices of thought"

to produce a new insight or invention (Koestler, 1964). The use of playas a tool for both

education and innovation can be seen in the design for several programming languages

and environments designed both for educational and creative uses. The Scratch

programming environment, a language created to teach children programming techniques,

was designed for children to play with at after-school computer centres rather than within a

formal educational environment (J. Maloney et aI., 2004). Scratch is built on top of

Squeak, an implementation of Smalltalk-80 (Ingalls, Kaehler, J. Maloney, Wallace, & Kay,

1997). Both Scratch and Squeak use a non-traditional programming interface that allows

users to get immediate graphical feedback from their program, and generate programs by

combining and playing with programming constructs similar to building with LEGO blocks.

Processing, a version of Java designed specifically for artistic exploration, comes with over

250 small programs covering topics ranging from flocking behaviour to fluid dynamics. All

of these programs code is available to be creatively modified and recombined to let the

Processing beginner jump right in and begin playing with interesting technologies (Fry &

28

Reas}.

Similar approaches have been taken in live performance coding environments.

Within live performance environments, it is common to have a selection of pre-made

snippets of media such as audio, video or code. In "Don't Forget the Laptop", Cook et. al.

(2007) present an argument for the use of the built in functionality of the laptop (keyboard,

trackpad, joystick, motion sensing, webcam, microphone) to do collaborative live

performances as part of the Princeton Laptop Orchestra. They make available a set of

sample programs using each control method for artists to build upon. They argue that:

A critical mass of ubiquitous, easy-to-use code can encourage willing
experimenters to make more music together with their laptops, while continuing to
ponder and refine the use of laptop inputs in their music-making.

(Fiebrink et aI., 2007)

Having these code snippets available and ready for use allow participants to create mash-

ups of different data streams in a collaborative live performance setting. There is only so

much that a teacher, a book, or a manual can tell a user about a piece of technology.

While these may be excellent starting points to help users understand the basics of a

technology, it is only by "playing around with" a technology that one can begin to truly

explore what is possible with a technology.

The role of play in creativity and innovation is closely linked with a phenomenon that

Csikszentmihalyi calls "flow", or "optimal experience". Flow is a state which individuals

experience when they are intensely focused on an activity and the individual feels

29

completely in control of their situation (Csikszentmihalyi, 1990, p. 6). Flow is experienced

by individuals working in all domains; rock-climbers, chess champions, musicians and

theoretical physicists have all reported experiencing flow (or being "in the zone").

Csikszentmihalyi identifies nine elements to flow experiences: clear goals, immediate

feedback, balance between challenge and skills, a merger of action and awareness, the

exclusion of distractions, no concern of failure, the disappearance of self-consciousness, a

sense of time distortion, and an autotelic aspect to the activity (it becomes worth doing for

it's own sake)(Csikszentmihalyi, 1990, 1996, pp. 48-67). Playfulness is particularly

important in making an activity autotelic (Malone, 1981). Numerous studies have been

done exploring how the principles of flow can be applied to human computer interaction

and software design (Bederson, 2004; Chen et aI., 2000; Farooq, 2005; Finneran & P.

Zhang, 2002; T. P. Novak et aI., 2000; Shneiderman, 2000b; Trevino & J. Webster, 1992; J.

Webster & J. J. Martocchio, 1992). Ghani, Supnick and Rooney (1991) have identified a

set of antecedents and consequences of flow. According to their model the challenge/skill

relationship, perception of control and spontaneity or playfulness help individuals

experience flow. Hoffman and Novak (1996) have studied how flow can be used to create

compelling WWW experiences, and have added two more secondary antecedents to 1l0w:

interactivity and telepresence. In 2000 they furthered this exploration by examining

playfulness in web interactions as a sign of flow (T. P. Novak et aI., 2000) . Trevino

(1992) has studied instances of flow in voice and e-mail communications, specifically

30

examining playful and exploratory behaviours. He defines four dimensions of flow: control,

attention focus, curiosity, intrinsic interest (pleasure interacting). Similarly, Korzaan

(2003) has found that flow is linked with curiosity and exploratory behaviour. Sawyer has

examined how flow exists in group and collaborative settings, specifically focusing on

improvised jazz and theatre performance (Sawyer, 2000, 2006). He argues that while

much effort has been put into studying flow in individuals, little has been put into studying

flow in groups. He finds there to be three characteristics of group creativity:

improvisation, collaboration and emergence. According to these characteristics creativity

happens at the spur of the moment when all members contribute their varying skills and

the output is greater than any of the individuals would have been capable of on their own.

These characteristics are applied to the design of the Beatbug, a collaborative musical

interface for children.

Flow and play serve important roles in the creative process. It is up to the designer

of a technology however, to design their system in such a way as to support 110w. Many of

the tools outlined in section II already have the capability for flow-like experiences, however

when attempting to use these tools in a collaborative situation, a networked environment,

or using a mash-up technique flow can tend to suffer as users get bogged down with

technical issues. The next section will present a tool which attempts to provide a tool for

enabling flow in these situations.

31

IV. BitFlows

With the understanding of creativity from the previous section it is now possible to

begin formulating the requirements of a platform to support innovation and creative flow in

New Media practice. To do this we will examine the ways in which the systems model of

creativity, play, and flow can be applied to the four themes in New Media culture which I

have previously outlined. From this a few outstanding issues with current New Media

practice become apparent. It is these issues that I will attempt to address in the following

section by presenting Bit Flows as a software tool for aiding flow, play, and creativity in New

Media practice.

32

IV.a. The Issues

As has been outlined in the previous sections, there are already a number of

performative tools that artists use on a regular basis. As can be attested by their

popularity, MaxiMSP, Resolume, Ableton Live and other performance tools are all excellent

platforms for artistic exploration. Likewise, open-source hardware and hacks have

provided impressive opportunities for expression. Each of these tools can be the source of

significant creativity on their own but they each also have limitations. What can be done

when a piece of software doesn't meet one's requirements? One either needs to find a

way to extend the capabilities of the software or find a new piece of software. Generally

most of these creative tools are designed with a stand-alone mode of operation in mind,

and only have limited means of interacting with other hardware or software. To connect an

Arduino microcontroller to Ableton Live would require the user to develop a custom piece

of software for converting the serial data from the Arduino into MIDI signals accessible by

Live, and then mapping .those signals to controls within live. Although connecting

programs to each other, to software on other computers, or to pieces of hardware which

were not antiCipated by their developers is usually not impossible, it can often be

surprisingly difficult and time consuming. More importantly though, the process of trying to

figure out the technology and develop mappings between these elements removes the

creator from creative flow. But, as was discussed in the previous section, often the source

33

of innovation is combinatorial creativity. So how can software/hardware mash-ups be

made without sacrificing creative flow?

One of Csikszentmihalyi's observations is that the intersections between different

cultures or domains often tend to be fruitful sources of creative developments

(Csikszentmihalyi, 1996, p. 9). It follows that individuals who are knowledgeable in multiple

domains have a more diverse range of ways in which combinatorial creativity can be

applied. He also notes however, that to make a creative contribution to a domain, it is first

necessary to have an in depth understanding of that domain, and learning a new domain

takes a significant amount of time and energy (Csikszentmihalyi, 1996, pp. 7 -8). This is as

true in artistic domains as any other. Artists take years to learn their domains. Every artist

has their own set of tools and skills which they have invested significant time and effort in

learning, and have developed an aesthetic understanding of their particular craft.

Collaboration between individuals working in different domains can often bring innovative

results. Each participant can take advantage of the collective knowledge of several

domains without requiring the degree of investment in learning all of them. At it's best,

collaboration allows the different skills, knowledge and abilities of each partiCipant to be

made available for mashing up, just as audio tracks are in music, or various forms of data

are on the Internet.

In the section on the network, several uses of the network for creative

collaborations were examined. Much of the research to date on networked artistic

34

performance and collaboration has required artists to adopt new and unfamiliar tools for

the sake of the collaborative act. This is a somewhat backwards approach to

collaboration. Instead of allowing collaborators to take advantage of the time and energy

each of them has put in to learning their domain, many of these collaborative tools are

requiring all of the participants to learn a completely new tool. In their examination of

collaborative musical environments, Blaine and Fels (2003) argue that "In a collaborative

musical environment, it becomes even more imperative that the technology serves

primarily as a catalyst for social interaction, rather than as the focus of the experience. II

Collaborating with other artists in local or remote locations often creates technical hurdles

to be overcome, particularly in heterogeneous computing environments (Correa & Marsic,

2004). The process of discovering and resolving these issues removes the artist from their

practice. Take for example the case of "The League of Automatic Music Composers" and

liThe HUB", two groups of electronic musicians that have been experimenting in realtime

networked musical collaboration since the late 1970's (Bischoff et aI., 1978). One of the

earliest examples of networked musical collaboration, The League of Automatic Music

Composers, created custom musical circuits that communicated via the RS232 serial

protocol, but found that " ... the non-uniform interconnections and the lack of a common,

shared protocol between individual players in this ensemble pointed to much-needed

refinements," (Gresham-Lancaster, 1998). The refinement of which Gresham-Lancaster

speaks of came about in the 1985 HUB concerts in New York city where a "huge technical

35

effort" eventually allowed three performers to play over phone lines using modems each

sending and receiving trlree variables important to the sound of the work. In later

experiments with transmitting musical data over the Internet, Gresham-Lancaster

describes the performance of the HUB to have been " ... more of a technical exercise than a

full-blown concert.... In this case, the technology was so complex that we were unable to

reach a satisfactory point of expressivity. II (Gresham-Lancaster, 1998). As seen in the case

of The Hub, even local collaboration can be overly complex, with significant time spent

arranging protocols for the hardware of the participants to talk to one another.

The demo, or the performative act has been shown as being important for the

dissemination or performance of the creative act. Though important in the systems model

of creativity, the dissemination of New Media works is already well supported by blogs,

link-aggregators, Internet video and other outlets. The exploration of tools for the

performative aspect of New Media, however, remains an ongoing concern, and one

appropriate to address using Csikszentmihalyi's principles of flow. Performative software

is rapidly developing but as of yet there is only limited support of developing mash-ups

between different pieces of software and hardware hacks. Likewise, it is currently difficult

to incorporate networked collaboration into live performative and spontaneous creative

settings. As mentioned earlier, live coding represents one far-extreme of New Media

performance, but also allows for unique performative capabilities. Nachmanovich

suggests that all art is improvisation at some point, some presented " ... whole and at once;

36

others are 'doctored improvisations' that have been revised and restructured over a period

of time before the public gets to enjoy the work." (1990, p. 6) Sawyer (2000) presents a

similar argument, that the process of artistic creation is a/ways a form of improvisation. In

this case, an environment designed for spontaneity and improvisation would serve as a

good platform for general artistic exploration whether for live-performance or not. How

then can flow principles be used to bring hacks, mash-up techniques and networking

capabilities to areas of New Media performance and live coding situations?

37

IV.b. Introducing BitFlows

Bit Flows is an open-source software platform for facilitating flow, play and

spontaneous experimentation with technology in both realtime networked collaborative

and solo settings. In other words, it's a tool for hacking together hardware and software

mash-ups in a live setting over the network. Probably the best way to introduce Bit Flows

is to use the metaphor of the equipment of an electric guitarist. An electric guitarist

typically has three main elements in their set-up, their guitar, an amplifier, and any number

of effects pedals and boxes between the two. Playing the guitar creates an electrical

signal which is passed through a cable to the effect pedals. Each pedal then performs a

manipulation on this signal and passes the modifies signal on to the next pedal in line.

Finally the last pedal passes the signal on to the amplifier which then amplifies the signal

and converts it to sound though its speaker. In this system each part in the chain is a

modular component. The guitar doesn't know or care about what it is connected to, its

only job is to create a signal and pass it on. Likewise, each effect pedal is interchangeable

with others, it doesn't matter what they are connected to, they just take a signal, modify it,

and pass it on regardless of what comes next in the chain. If the musician decides they

need some distortion, they can just add the pedal to the chain. If another musician comes

along to play, they can plug into the same system and just start playing along.

This is roughly what BitFlows does for New Media artists, except instead of audio

38

signals, BitFlows offers a modular system for routing and modifying control data. To

extend our metaphor, imagine if the guitar instead of sending an audio signal sent a signal

saying what note the guitarist is currently playing. One can then imagine a different sort of

effects pedal that would modify this signal. Instead of applying a distortion or flange effect

to the audio signal, a pedal could transpose the note value so a C would become an E, or

change its volume so a quiet note would become loud. At the far end of the chain, in

place of the amplifier one would have a device which converts the note value into an actual

sound played at the appropriate pitch. This sort of signal or data routing has been used in

computers for decades. In fact part of the power of the UNIX operating system (and its

descendants like Linux, and Mac OSX) comes from the ability to "pipe" the outputs of

command line programs into the inputs of other commands. This is similar to J. P.

Morrison's "flow based" model of programming, developed in the early 1970's at IBM. In

his 1994 book on the subject Morrison describes flow-based programming: "An

application can ... be expressed as a network of simple programs, with data travelling

between them" (Morrison, 1994, p. 25). Flow based programming has a long history in

artistic practice, as it is a natural way to deal with the constant data stream of audio and

video data. MaxiMSP and Pure Data have been using flow based programming since the

1980's to provide artists with a means to create and modify audio (and later, video)

(Puckette, 2002).

Although BitFlows uses flow-based programming prinCiples, it is not intended to be

39

a general programming language, or in fact a programming language at all. Rather, the

scope of BitFlows has been intentionally limited to being a sort of data router. By limiting

the scope of BitFlows, the need for an artist to learn a new programming environment is

eliminated, and rather the artist is encouraged to further develop their knowledge of their

preferred artistic tools. Programs like MaxlMSp, Ableton Live, and V\f\N are popular

because they are good at what they do. Rather than try and recreate the functionality

already available in numerous programs, BitFlows follows Shneiderman's suggestion that

creativity can be aided by smoother flow between applications (Shneiderman, 2000a).

Using flow-based programming techniques, BitFlows allow users to route flows of data to

and from a variety of creative software packages and hardware devices.

BitFlows is designed so that nearly any piece of software or hardware can

potentially be used in BitFlows, so long as it has some sort of user-accessible inputs or

outputs. Of course it is impossible to predict new developments in technology and the

eventual requirements of all users. In fact, Edmonds et al. (2005) suggest that the

demands of creative work often expose the limitations of technologies. To address this

issue, BitFlows adopts what Fischer (2004) terms as "meta-design" a mode of design

where facilities for "end user development" is built in to a system. A similar solution has

been proposed by Von Hippel {2001}, and Jeppesen (Jeppesen, 2001, 2002, 2005) who

propose the inclusion of "user toolkits for innovation". BitFlows has been implemented to

use a modular architecture which allow users to easily customize and create new modules

40

for BitFlows. This architecture manifests itself in BitFlows in a few different ways. In

BitFlows, every piece of hardware or software on a computer is considered a module

consisting of inputs and outputs. BitFlows modules are akin to what Morrison terms a

"component" in flow-based programming, and the inputs and outputs of a module are like

Morrison's ports. Each module is represented by a simple plug-in script that tells BitFlows

what sort of inputs and outputs a device has, and how to interact with them. Using a

plug-in architecture effectively separates the core logic of BitFlows from that of the devices

it connects to. The plug-ins are how BitFlows talks to the rest of the world, internally

hardware and software are treated in precisely the same way. This makes it easy for artists

and developers interested in adding new software or hardware modules to BitFlows to

quickly create their module without requiring them to have any significant knowledge of

how the core of Bit Flows operates. Each plug-in simply consists of one or more small

Python scripts in a plug-in directory. Naturally, a number of essential (and otherwise

interesting) plug-ins come by default with BitFlows, including interfaces to asc, MIDI, and

HIDB devices.

A Significant amount of effort has gone in to making the BitFlows plug-in system as

user-accessible as possible. It makes extensive use of Python's decorator functionality to

make it possible for plug-in developers to convert pre-existing code into a BitFlows plug-in

by simply annotating their function calls. As a simple hello world example. take the code:

8 Human Interface Devices. Devices such as mice, keyboards and joysticks.

41

class NotAPlugin:

def helloWorld(seID:

return "Hello world"

To convert this simple class into a BitFlows plug-in only requires three changes: the

importing of the BitFIows plug-in library, converting the class into a BitFlowsPlugin

subclass, and annotating the method to tell BitFlows that you want to use it as an output.

import plugin

class APlugin(plugin. BitFlowsPlugin):

@plugin.output

def helioWorld(selD:

return "Hello world"

BitFIows is released under an open-source license so as to allow and encourage end-user

development and user contributions. In this way artists and programmers can learn from

and modify the code to adapt to their needs, and allow for what Fischer (2004) terms as

"social creativity", Modifications can also be incorporated into the main distribution of

BitFlows to allow other users to benefit from the modifications of everyone in the

community,

Internally BitFlows has four main types of objects: nodes, pins, packets and flows.

Each node represents a running instance of a plug-in, and roughly corresponds to a piece

of software or hardware. Each node has a set of pins which represent the possible inputs

42

and outputs of that node. Flows consist of a set of pins which are chained together.

Packets are passed from left to right along a flow, passing the outputs of one pin to the

input of the next. Of course because the data which different pins produces is

heterogeneous, sometimes it is necessary to convert the data contained within a packet

from one format to another to make it compatible with the next pin. Morrison's model of

flow based programming requires that data must be be converted from the format of the

sending object to the format accepted by a receiving object before it can be transmitted

between objects, usually through the use of extra conversion nodes (Morrison, 1994, p.

31). Requiring manual conversions between different types of data can be detrimental to

flow. Every device input and output of a computer system has a limited set of values

which are logical for it to send or receive. For example a joystick might send out values

between -1 and 1 to correspond to its tilt along an axis. The range of sensible values for

the position of a cursor on a screen would be a range of values between zero and the

width of the screen. If one were to attempt to directly map the output of the joystick to the

cursor position only a very limited range of motion would be possible (the cursor could

either be 0 pixels or 1 pixel from the edge of the screen). In a typical application,

programmers must develop methods to logically map one range of values to another.

While these methods are usually fairly trivial to implement, the process of implementing

them distracts the developer from the real task at hand. BitFlows attempts to free the user

to experiment by providing an automatic mapping system between modules. In the plug

43

in architecture developers have the option of adding semantics to a node's pins,

specifying the type of data and range of values which make sense for each pin to receive.

Developers can also specify the range of values which a pin can send. Using this

information BitFlows automatically converts the data passing between modules to be

sensible for each module. Even if a developer doesn't specify a range of values that a pin

might output, BitFlows keeps track of the highest and lowest values that pin has output

and uses them to create a logical mapping between the pins. In this way, BitFlows

automatically calibrates itself to the actions of the user and the idiosyncrasies of various

devices.

The auto-conversion system tries to map nearly any type of value to any other so as

to allow any pin "from any module to be mapped to any pin from any other module. Even

data-types which may not intuitively make sense to convert to other types are converted.

For example, if one had a pin which outputs a string of characters and connected it to a

pin which expects numbers, BitFlows will use the internal Python conversion system to

convert the characters to numeric ASCII character codes. While this sort of conversion

may not be 'frequently used, it gives users freedom to experiment with any combination of

modules and pins, and the potential to stumble upon unexpected serendipitous

combinations. This also aids the potential for the experience of flow while using BitFlows,

as there are no wrong connections to try, and no negative feedback from experimentation.

In it's most simple form, BitFlows allows users to mash-Up any combination of

44

hardware and software on their computer. The real power of BitFlows however, is revealed

when it is used as a tool for connecting those same bits of hardware and software over a

network. BitFlows is designed in a way so as to create network transparency. Users of

BitFlows do not have to concern themselves with the low level network aspects of

connecting pieces of software or hardware. Typically to connect pieces of software over a

network, users are required to know the IP address of the machine that they are trying to

connect to, and the port on wrlich software on that machine is listening. This process of

determining the IP addresses and ports of participating machines can be quite

bothersome, particularly in cases where multiple participants all wish to connect to one

another. Additionally, only a few pieces of hardware or software natively have any sort of

network capability at all. Third party programs, custom software or hardware is necessary

to provide these capabilities.

To avoid this problem in BitFlows, the Bonjour networking protocol was used.

Bonjour (also known as Zeroconf, or Multicast DNS) is a creative manipulation of the DNS

system which allows software and hardware to announce it's presence on the local

network, and discover what services are available on the network (Internet Engineering

Task Force). For example the iTunes music player uses the Bonjour protocol to find other

computers that are sharing their music libraries. Many network enabled printers also use

Bonjour to allow clients on the network to discover them. Similarly, when BitFlows is

started it announces it's presence on the network using Bonjour, and then begins listening

for other machines also running BltFlows. When it discovers another machine running

BitFlows, the two machines are automatically connected and ready to send data to one

another. The user never has to know their or anyone else's IP address, they can just

connect to the network and start sharing data immediately. BitFlows also uses Bonjour to

announce the availability of it's web interface to compatible web browsers such as Safari

or Camino so that anyone using one of these web-browsers would be able to access the

web-interface of any BitFlows instance on their network simply by clicking on the

corresponding link in their "Bonjour Bookmarks" menu. BitFlows also does away with the

concept of separate client and server software. Because communication using BitFlows is

intended to be bi-directional and spontaneous, it makes no sense for there to be a single

server which all clients must connect to. Rather BitFlows has adopted a peer-to-peer

model, where all nodes on the network are equal and data can freely flow between any

two nodes.

The principle of network transparency also manifests itself in the user experience.

As was mentioned earlier, every piece of hardware and software which Bit Flows interfaces

with is a module, and is treated in the same way by Bit Flows. This paradigm remains true

in the networked experience of BitFlows. Every piece of software and hardware that has

been interfaced with Bit Flows on any machine on the local network is available for use in

the exact same manner as local software and hardware. It doesn't matter where the

sofVhardware is, it is available for play. Because of the networked nature of Bit Flows , it

46

naturally also supports a modular workflow when used as a collaborative tool. As every

device and piece of software is considered a module in BitFlows, artists can feel free to

develop their work completely separately from BitFlows and from one another. Artists

simply need to consider what aspects of their work can use data inputs, and what sort of

data their work can produce to be shared. With these considerations in mind it should be

simple for artists to connect their work with BitFlows. This phase of development can be

done in the presence of collaborators, or completely separately. Once the connections

between their work and BitFlows are established, collaborators can then come together

and begin experimenting with the various possible connections between their work and

other peoples works or devices. Everyone's work is just another module to play with, and

these modules can be developed either together with, or separate from each other.

Developing collaborative tools for use over large distances is no simple task,

especially when there are very few tools that have attempted to address the issues of

electronic collaboration within the same physical space. As outlined in the earlier section

on collaboration protocols, while many attempts have been made to develop tools for

collaboration over the Internet, few have attempted to create tools to allow co-located

collaboration. These efforts often concentrate more on the technical aspects and

limitations of networked collaboration, developing new ways to transmit sound and media

in lOW-latency ways, while only giving lip-service to user-experience. BitFlows attempts to

reverse this trend by creating a tool which is deSigned first and foremost to provide for a

47

smooth collaborative experience with the people around you. Once a work has been

developed locally with BitFlows, it is trivial to make the work function over the Internet at

large. Virtual Private Network tools such as Hamachi9, Tinc10, Wippen1\ and Leaf12 allow

users to create virtual local networks consisting of any set of machines on the Internet.

Once such a network is set up, systems developed locally using BitFlows should work

nearly identically from anywhere in the world.

9 https:llsecure.logmein.com!productslhamachi/vpn.asp
10 http://www.tinc.vpn.org/
11 http://wippien.com!
12 http://www.leafnetworks.net

48

IV.c. User Interface

Flow-based programming is not a new concept, and several tools have been built

on it's principles for general purpose programming, as well as business and artistic

purposes. BitFlows takes the inspiration for it's user interface both from graph-based

programming tools, and the live musical performance software packages Ableton Live and

Seq 24. Most graph-based programming tools such as MaxlMSp, Pure Data, VVVV, and

the Yahoo! Pipes mash-up editor have an interface which consists of a canvas upon which

programming modules can be freely placed. Usually these modules have one or more

input or output ports. The ports of different modules can be connected by graphically

drawing lines between them, similar to routing cables between different bits of audio or

video hardware. This approach allows for a powerful degree of expressiveness, however

as programs increase in complexity it can become difficult to understand what exactly is

happening. By contrast, domain speCific tools like Ableton Live utilize a simplified

approach to routing signals. In these applications, data is separated into a number of

channels, each of which can contain a number of effects. Audio data routed to a channel

is fed through the effects chain linearly, with the output of one effect being patched directly

into the input of the next. This makes for a simple and relatively intuitive interface, but at

the expense of interaction between the modules in different channels. It is only in the most

recent version of Ableton Live that limited cross-channel interaction was made possible in

49

the form of "side-chaining".

As has been mentioned earlier, the goal of BitFlows is not to develop a

programming tool, but rather a patch bay for control data. As such, in the process of

developing the interface for BitFlows it was decided that a full fledged graph-based

interface would be unnecessarily complex. Rather, Bit Flows takes a hybrid approach to

it's interface, allowing complex interactions between plug-in modules while retaining a

simple intuitiveness. Instead of directly patching together the inputs and outputs of plug-in

modules, BitFlows takes a more structured approach. When a BitFlows user instantiates a

plug-in, it appears as a "node" in the "Nodes" section of the interface. Under the title of

each node there is a list of configuration options for the node and a list of input, output,

and modifier pins. To connect the pins of different nodes together, one simply adds them

to a "flow". Flows are roughly akin to the channels in an audio application. Data flows in a

linear fashion from left to right between the different pins in a flow. A typical flow will begin

with an output pin (meaning a pin which outputs data; a data source) followed by any

number of modifier pins (which accept data, perform an operation on it, and then return a

modified value), and end with an input pin (a pin which accepts data and outputs it in

some way external to BitFlows)13. So, for example, a flow could consist of the y-axis input

13 At first glance this naming scheme might seem confusing, but it is very much in line with
how hardware video and audio systems work. The audio output of a guitar is connected to the
input of an amplifier, even though the guitar is a input device and the amplifier an output device.
In any case, this terminology is hidden to the end user as the status of a pin as an input, output, or
modifier is represented in an intuitive graphical rather than textual form.

50

pin of a Wii Remote node connected to threshold modifier pin (which only passes along

data if it goes above or below a certain value) and then to a MIDI output pin which is

connected to a drum synthesizer. Using only three pins and a single flow the Wii Remote

is transformed into a drum-stick. By retaining the separation between nodes and the

connections between different node's pins Bit Flows is able to keep nodes independent of

the tlows unlike in audio software where each effect is bound to a channel. This allows for

much more complex interactions between different nodes, while presenting the user with a

simpler interface for connecting nodes.

The decision to not use a graph-based interface was also mitigated by a second

design decision. Being a tool for networked collaboration and communication, it was

decided that the user interface for BitFlows should be network oriented as well. Hence,

the entire user interface for BitFlows is built to be accessible from a web-browser14
• This

has a number of advantages. For one, it becomes simple to control multiple instances of

Bit Flows running on different networked computers. This makes it possible to run BitFlows

"headlessly" on computers without a monitor, keyboard or mouse. This might be desirable

if designing large-scale distributed works that run across several computers. It also allows

users to take advantage of platform specific hardware and software simply by adding new

computers to the BitFlows network. Another advantage of developing a web interface for

14 Although Yahoo! Pipes has a graph-based user interface within the web-browser
environment, experimentation found the interface to be relatively slow to use and incompatible
across a variety of browser platforms.

51

Figure 1: The user interface for BitFlows

BitFlows is that all of the internal methods used to interact with BitFlows are mapped to

"RESTful "15 web URLs. This means that it is possible for users to create their own

interfaces to BitFlows using simple HTML or any other language of their preference. Even

15 Representational State Transfer. A system for mapping function calls to URLs that are user­
readable and stateless.

52

though the interface for BitFlows is web-based, it maintains a rich and responsive user

interface using AJAX16 web development techniques (as used by such rich web

applications as GMail and Google Maps).

BitFlows makes nodes running on any machine on the network available for use on

any BitFlows instance on the same network. Having multiple instance of the same node

running on different machines would become confusing if there was

no means of determining which machine was running which nodes . .

BitFlows incorporates visual and textual cues to differentiate between

nodes and pins running on different machines. Upon start-up, each

BitFlows instance is assigned a unique name based on the network

name of their computer. This name is changeable by the user at any

time. A hash of the network name of the computer is also used as a

seed to dynamically generate small unique image called an

,....J"
identicon17

: ~~) . Because of their small size, these identicons can be
Figure 2: Three uses

used as inline elements to uniquely identify which machine a node or of identicons in
BitFlows

pin exists on. Figure 2 shows three places identicons are used in BitFlows: each user is

associated with an identicon in the user's section, this same identicon is used to link any

16 Asynchronous JavaScript And XML

17 Original concept and term developed by Don Park. Originally intended for giving unique
visual presences to blog commenters.

http: //www.docuverse .comlblog/donparkl2007/0 1 1 18/visual-security-9-block-i p-identification

53

nodes or pins in a flow to that user's network location.

By default BitFlows also comes with a plug-in module that provides input and

output pins for URL based data. This is an incredibly powerful feature which makes

developing custom interfaces to artworks a simple matter of designing a web-page and

mapping URLs to whatever inputs or outputs are necessary. Using this feature, creating

control schemes for mobile devices like cellular phones, the Nintendo OS, the Sony

Playstation Portable, or any other device with a web-browser or Internet connection

becomes very easy. The use of such an interface for collaborative musical works has been

shown in the works of Young (2002) and Yamagishi (1998).

In live performance situations, and in fact in almost any complex network or MIDI

set-up, at some point something is not going to work entirely as expected, and the user is

going to want to know what exactly is going on in the system. To debug these systems

often tools called MIDI monitors, or network sniffers are employed to allow the user to

examine the data as it is transferred through the system. These sort of system issues are

even more hazardous in live performance environments, trying to debug a MIDI network in

real-time can be a nerve wracking (and flow disrupting) experience. Unlike performances

which use traditional instruments which have natural sensory feedback methods (for

example a de-tuned guitar can be heard, and relatively easily re-tuned), the data flowing

through computer systems is invisible.

To help alleviate this problem, BitFlows attempts to give users a constant

54

awareness of the nature of the data passing through the system. This was done by

adopting a technique first proposed by Edward Tufte (2006), called the "sparkline" .

Sparklines are "small, high resolution graphics embedded in a context of words, numbers,

images". For example this sparkline: 18 shows the activity of the Dow

Jones on February 7, 2006. This sort of graph is not intended to provide precise

information for every data point, but rather to give viewers a sense of general trends. In

BitFlows, sparklines are embedded into the graphical representation of every section of a

flow. This way users can immediately see at each

point in a flow whether the data seems random , sine-
I F1o~l • • e -
D,MacMouse-l.x Position -~ S I

, ~

• 316 wave like, binary, or if any data is being passed at all.
Figure 3: The use of sparklines in

In Bit Flows sparklines are integrated into the display of
BitFlows

each pin within a flow. The sparkline shows the last 30 values output by that pin. By

moving their mouse over any pOint on the graph , the user can see the exact value of that

point.

One of the other problems when working with invisible data, is the lack of

awareness of the sorts of messages which are being sent. This is a problem with both the

MIDI and OSC protocols, where devices communicating using either protocol have a wide

range of message types which are possible to send. MIDI allows for 256 types of

message to be passed over 16 channels and OSC allows for an unlimited range of OSC

18 Image from the WikiMedia Commons, licensed under a Creative Commons Attribution
ShareAlike 2.5 License.

55

addresses. Most software and devices come with a manual which lists the messages

used, but searching through documentation is generally not conducive to the experience

of flow. Bit Flows addresses this issue by introducing message auto-discovery for both

MIDI and OSC. When users create an instance of the OSC receiver or MIDI receiver

modules, BitFlows listens for any messages being sent to the corresponding network or

MIDI port. When a new message is received, the module will examine the message type

and automatically generate new output pins for that module which correspond to the type

of message received. Users can then use this new pin to access any future messages of

the same type. Thus to interface with new or unknown data flows, users simply need to

create some example data, and BitFlows will make it accessible. This is much simpler and

more conducive to flow than manually searching for the appropriate message type.

The auto-discovery capability of the MIDI and OSC plug-ins can also be taken

advantage of to automatically generate new plug-ins. The source code of the MIDI and

OSC plug-ins is annotated with very simple template instructions contained in comment

blocks. As the plug-ins discover new data and add new pins, they also use these

templating instructions to analyse their own source code. and dynamically generate a file

containing the code needed to recreate the plug-in with its current set of pins. To create

a new plug-in is simply a matter of copying the generated file into a new plug-in directory.

Using this sort of automatic plug-in generation, even non-programmers who wish to

develop their own plug-ins can be given a head start at development.

56

Bit Flows was built in Python, a high-level scripting language. The decision to use

Python was made because of its ease of use, large community, deployed support, and

range of external modules available. High-level languages such as Python serve as a

natural platform for artistic work. Paul Graham (Graham, 2004) argues that using a high­

level language allows individuals to use a programming style more similar to sketching than

lOW-level languages, One of the other strengths of scripting languages like Python is that

it is possible to execute code without requiring a compilation step. This makes possible

the development of plug-ins for live coding activities, As BitFlows is designed to be able to

interface with most widely used audio and video performance software, this has the

potential to simply add live coding and procedural performance techniques to programs

which were not originally designed with these capabilities in mind. Additionally BitFlows

allows bindings between the core Python code and external Java modules using Jython

(an implementation of Python in Java), This allows developers to take advantage of

libraries available both for Python and Java, as well as artistically oriented flavours of Java

such as Processing 19, The choice to use Python and Java as the languages for Bit Flows

was further motivated by a desire for BitFlows to be as platform independent as possible.

Artists use a wide range of operating systems and platforms to develop their work, and

incompatibilities between platforms should not be a barrier to artistic collaboration. In

BitFlows, great lengths were taken to ensure cross-platform compatibility. Though Python

19 http://processing.org

57

is a cross-platform language, it has the capability to use 'binary' modules that wrap pieces

of platform-specific C/C++ code. Though certain features of Bit Flows would have been

easier to implement using some readily available binary Python libraries (for example the

joystick module could have used the PyGame library), in the interests of having a single

BitFlows distribution work on all platforms, these libraries were explicitly avoided opting

instead for "pure" Python libraries whenever possible. A side-effect of this decision was

the implementation of the Python-Java bridging in BitFlows. This allowed the range of

cross-platform Java libraries to be accessed by BitFlows. In the end, the flexibility of a

completely cross-platform solution, and an extended range of Java libraries should be

worth the extra effort expended in this area.

58

IV.d. Using BitFlows

Bit Flows is designed with three major use cases in mind: single-user single-

computer, single-user multi-computer, and multi-user multi-computer. In the most basic

use case - single-user single-computer - a user desires to connect multiple pieces of

hardware or software within a single computing environment, for example developing a

musical performance that has a visual aspect which reacts in a meaningful way to the

music. The typical workflow in this case would go as follows: First,

separate from Bit Flows the user would work on developing the main

elements of their work in the software or hardware system(s) of their

choice (e.g. Ableton Live, MaxiMSP, WW). During this development

phase the user should be thinking about what parts of their work they

might wish to use as sources of or destinations for data. As the

development of the individual elements progresses, users may begin

connecting parts to BitFlows and experimenting with different

interactions. Users start BitFlows either by running a Python script, or if
Figure 4: A list of

they have a version packaged for their operating system simply double- plug-ins available
to a BitFlows user.

clicking on the application file. This will start the BitFbws engine, and

load the web-interface for BitFlows in their default browser. The user can then begin

instantiating plug-ins for each piece of hardware or software they wish to play with. To do

59

this they simply click on a plug-in in the list of plug-ins (Figure 4). This creates an instance

of that plug-in (or node) in the BitFlows engine, which is displayed in the user interface in

the "Nodes" section (Figure 5). Each node is roughly analogous to a single piece of

hardware or software, so if a user wished to use a MIDI keyboard and a separate set of

MIDI faders they would create two MIDlinput plug-in instances, one for each device. If

they are using plug-ins that support auto-discovery the user should then send BitFlows

some example data from the control they wish to use. In Figure 5 for example, the user

has created a MIDlinput plug-in instance and moved the five knobs that they want to use.

BitFlows used this data to create the new pins "Control 5", "Control 6", etc. Next the user

can begin adding flows (data channels) and adding pins to the flows by either clicking on

the pin and selecting the flow to add it to (Figure 6) , or dragging the pin and dropping it on

tD:ES Ii
MIDDnput-1 Con~nt-l Gates-1
device integer I lesSThan U~B Axiom 49 Pan a G
onStart float IgreaterThan

bpm text !eQuals

noteOn
Growl-l Speech-1

onStop
Inotify

voice

noteOff
Agnes li B

rawl'lIDI
Fay

onBtJt
Itrigger

Discovered Ipltch

Control 9 LeGend:

Control 8 Debug-1 ~

Control 7
IShow Packet

II ControlS
Groupl
IEcho To Conso le

Control 6

Figure 5: Six instantiated BitFlows plug-ins (nodes).

60

the flow (Figure 7). Once added to a flow,

a pin will immediately start outputting data.

By adding the appropriate plug-ins for

each piece of hardware or software that a

user wishes to use it should be easy for

the user to start experimenting with a

variety of different interactions. Figure 8

Figure 6: Adding a pin to a flow
shows a simple set of flows that creates a

Row-ll!! e G) .
text-to-speech based instrument where

hostr4!Dllnput l.noteOn , ---... e I Iolt~h
cha~1 ..- .e
411 11iii G ."

each MIDI keyboard key press makes a

Figure 7: Oragging a pin to a flow. text-to-speech plug-in say "Hello World" at

different pitches according to the MIDI note number. Although this example may only be of

limited use in practice it shows how simple it can be to create interesting interactions in

BitFlows. The example uses only three plug-ins (a MIDI input plug-in, a text-to-speech

plug-in, and a constant plug-in) and three flows (one to set the phrase to say, one to set

the pitch, and one to trigger the speech).

In the example case of a user wanting to develop a closely tied visual interaction

with a musical performance piece they could create a flow where a single MIDI input would

trigger both a audio-sample or musical phrase and a video-c'lip. As the user experiments

more they could find that binding the velocity of a Wii remote's motion to the speed of a

61

Figure 8: A simple text-to-speech instrument built entirely in BitFlows

video clip and the volume of an audio track creates an interesting performance tool.

Alternately they could set up their music software to send a signal upon a key or mood

change which would then change the colour palette of the video to something appropriate.

The user could even take the opposite approach, where the velocity of an object in their

video piece affects an audio filter.

BitFlows in either single- or multi-user mUlti-computer mode requires pretty much

the same user-interaction with one small addition. Any computers running BitFlows on the

local network (or remote network if running over a virtual private

network using a tool such as Hamachi) appear in the Users section of

the user interface (Figure 10). By clicking on the name of any of the

users in the user list, the user is brought to the web interface for that

USERS
• BitFIowsUser2

<.; BitFlowsUserl

Changf N,all'

Figure 10: Two users
. in BitFlows' user list.

maChine. From here a user can instantiate plug-Ins on that machine

remotely. The nod.es running on every machine are shown in the nodes section of every

user's interface (Figure 11). The location of each node on the network is identified by an

62

identicon associated with each node. The process of creating flows and adding pins to

flows is identical to the single-user single-computer experience. A user can mix and

match pins from different nodes spread across the network just as easily as adding pins on

a local machine. The network is transparent to the user. In multi-user situations, a simple

chat application is also provided to facilitate communications across distances, or to let

users communicate without talking in performance settings (Figure 9).

There are several reasons why a single user might wish to use Bit Flows in a multi-

computer environment. It allows users to blend platform specific software and hardware

seamlessly. For example they might wish to use the Linux specific Seq24 music software

to perform a musical piece and use the Mac OS X specific Quartz Composer to create

reactive visuals. Likewise at the moment the Wii remote is much simpler to connect to a

Mac than to a Windows computer. Connecting these pieces of software and hardware

over the network using BitFlows is as simple as if they were running on the same machine.

Figure 11,' Four nodes from two different machines. Note the use of identicons to show which node is
running on which machine.

63

Bit Flows could also be used to control works distributed over a multitude of computers on

the network. Were BitFlows to be installed on every computer in a typical school

computer lab it could be possible to control the audio output from each computer,

facilitating unique experiences such as a 50-channel distributed musical piece. Alternately

the mouse and keyboard inputs of each machine could be captured, and used to control

the audio output of a single machine, effectively creating a computer orchestra where

anyone using one of the computers is also a performer. The screens of each computer

could even be used as individual pixels of a large scale display, controlled from a single

computer. In multi-user environments Bit Flows permits collaborative spontaneity. For

example a laptop musician and a computer visualist who have never met before could

connect to a local wireless network and through BitFlows immediately start exploring

different interactions between their individual works. Using a VPN tool such as Hamachi it

would even be simple to make a locally created performance piece into a remote

networked experience.

64

v. Future Directions

BitFlows has been developed as a platform for expansion. In it's current iteration,

BitFlows contains most of the plug-ins necessary for users to begin their explorations of

interesting mash-ups and networked collaborative experiences. As has already been

discussed, l\Jew Media is a constantly srlifting field and new technologies are constantly

being developed. The plug-in system for BitFlows was developed to accommodate for

this constant change. It is the hope of the author that Bit Flows will grow to be a

community driven project with users contributing plug-ins for new hardware and software.

To help facilitate this a web presence will need to be developed to allow users to upload

new plug-ins which they have developed and have a central location to discuss their uses

of Bit Flows with other users.

One of the specific areas of plug-in development which I would like to focus on is

the development of close integration with a variety of common software environments. For

example the development of an "external" for MaxiMSP and Pure Data wrlich allows the

same sort of dynamic data-source discovery as the current OSC and MIDI plug-ins. Using

such a module would allow MaxiMSP and Pure Data users to easily integrate their patches

with BitFlows.

One of the eventual goals for Bit Flows is to develop it into a platform for live coding.

65

Using the current plug-in system it should be possible to develop a plug-in that allows

users to input Python code dynamically into the interface to create new output signals on

the fly. The development of such a plug-in would allow any software or hardware

connected to BitFlows to be used as a part of a live coding performance.

While every attempt has been made to make BitFlows as flexible as possible it still

has some outstanding limitations. BitFlows currently doesn't have support for branching

flows so that multiple pins can feed different inputs of a single pin. This sort of interaction

can be seen as useful in cases where multiple data-sources should feed a single output

such as a MIDI note message which has both a note-number and velocity variable. It is

probable that this issue is solvable in the current architecture by providing separate pins for

different variables as well as a trigger pin (as seen with the text-to-speech plug-in example)

however this solution has not been fully explored at the moment. Linked with this issue is

the problem of scheduling the order of events in BitFlows. Flows are currently executed in

parallel. The current order of execution in Bit Flows is that packets from flows are

distributed to each node. Each node then executes the appropriate methods for each pin,

and returns the results from all of it's pins. This may cause issues when dealing with

situations such as the MIDI note issue described above where the pitch and velocity of the

note must be set before the note is triggered. In a future iteration a more robust method

for scheduling events will be developed.

66

As has been explained earlier, BitFlows allows plug-ins to be developed in both

Python and Java using Jython. The current method of communication between Python

and Java uses network sockets within a machine. This allows for simplicity in coding but

could possibly cause a slight performance hit as local sockets are not usually as fast as

direct processing within a single application. Future iterations of this functionality might

use other inter-process communication techniques like FIFO to increase processing speed.

Finally a future iteration of BitFlows might incorporate a non-web-based user

interface to increase interface responsiveness and user-feedback in single-user single­

computer environments.

67

VI. Conclusion

If we return to Csikszentmihalyi's elements of flow, Hoffman's additional

antecedents to 110w, and Sawyer's characteristics of group creativity, we can see the ways

in which BitFlows attempts to support flow experiences in both individual and collaborative

contexts. The modular interaction made capable by Bit Flows helps create a balance

between the challenges of creative work and the skills of the creator. Individuals working in

creative domains naturally must first learn their basic tools, be it the development of visual

environments in VVVV or the construction of a musical performance in Ableton Live. As

creators become familiar with their base environment and desire to extend it's possibilities

BitFlows comes into play. BitFlows allows a simple means of exploring the range of

possibilities of connecting various pieces of software and hardware, and developing new

control systems and interactions. Bit Flows also allows individuals to collaboratively

integrate the creative works of others into a single work. BitFlows gives the creator as

large or small of a creative pallet as they desire, expanding the range of possible

interactions as the individual's skills increase. This modular design also allows the simple

creation of hardware/software mash-ups and combinatorial play.

The user interface is designed to give users immediate feedback as to how a set of

flows is functioning. The incorporation of sparklines to show data at each stage within a

flow allows for a deeper understanding of how data is passing through a flow as well as

68

debugging capabilities. Likewise, identicons give users immediate feedback as to their

position on, and use of the network. The interactive and real-time nature of BitFlows helps

to give the user feedback regarding the operation of BitFlows as well as merging action

and awareness. Every action taken within BitFlows has an immediate consequence.

BitFlows contains no drop down menus or hidden options, all the possible interactions are

immediately visible. Distractions within BitFlows are minimized through the auto­

conversion mechanism as well as the data detection and automatic network connection

mechanisms. Users will not be taken out of flow by the necessity to figure out how to

connect two pins with different sorts of data, connect to another Bit Flows user, or find out

what sorts of data a device outputs. The auto-conversion mechanism also allows users

to connect any series of pins without fear of failure. Free-association is supported by

designing the modules so that there is no "wrong" way to connect any selection of

BitFlows modules. The simpliCity of BitFlows is designed so that users can proceed

directly from a set of goals to a working prototype without taking them out of their creative

"flow. At the same time BitFlows doesn't require clear goals, but allows for play,

improvisation, experimentation and emergent discovery. The ability for playful interaction is

intended to help make the use of BltFlows an autotelic activity. The networking capabilities

of BitFlows allows for both local collaboration and remote telepresence.

The open-source nature of BitFlows also caters to the situationalist model of

creativity, at it's root BitFlows is a social and collaborative tool. BitFlows is built to facilitate

69

technological exploration in groups, where inspiration can be shared. The open plug-in

system further supports community interactions, as any individual using BitFlows can

develop a new plug-in and easily share it with the larger community of BitFlows users. A

significant amount of time and effort has gone into the design and development of

BitFlows. It it the hope of the author that BitFlows will be adopted by the New Media

community as a tool for exploring new and innovative creative and collaborative

expressions, creating and using hacks, developing mash-ups, live-performance, and

networked experiences.

70

References

Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal
innovative ness in the domain of information technology., Information Systems
Research, 9(2), 204-215. doi: Article.

Ascott, R. (2003). Telematic embrace visionary theories of art, technology, and
consciousness. Berkeley: University of California Press.

Banzi, M., Cuartielles, D., Igoe, T., Martino, G., & Zambetti, N. Arduino. Retrieved February
25,2008, from http://www.arduino.cc/.

Barbosa, A. (2003). Displaced soundscapes: a survey of network systems for music and
sonic art creation, Leonardo Music Journal, 13(1), 53-59.

Bartlette, C., Headlam, D., Bocko, M., & Velikic, G. (2006). Effect of network latency on
interactive musical performance, Music Perception, 24(1), 49-62.

Bederson, B. B. (2004). Interfaces for staying in the flow, Ubiquity, 5(27}, 1-1.

Berners-Lee, T. (1999). Weaving the web: the original design and ultimate destiny of the
world wide web by its inventor (1 st ed.). San Francisco: HarperSanFrancisco.

Biaz, S., Chapman, R., & Williams, J. (2005). Rtp and tcp based midi over ip protocols,
Proceedings of the 43rd ACM Southeast Conference, March, 18-20.

Bischoff, J., Gold, R., & Horton, J. (1978). Music for an interactive network of
microcomputers, Computer Music Journal, 2(3), 24-29.

71

Blackwell, A, & Collins, N. (2005). The programming language as a musical instrument,
Proceedings of PPIG05 (Psychology of Programming Interest Group).

Blaine, T., & Fels, S. (2003). Contexts of collaborative musical experiences, Proceedings of
the 2003 conference on New interfaces for musical expression, 129-134.

Bongers, B. (1999). Exploring novel ways of interaction in musical performance,
Proceedings of the Third Conference on Creativity & Cognition, 76-81.

Bouillot, N. (2007). Njam user experiments: enabling remote musical interaction from
milliseconds to seconds, Proceedings of the 7th international conference on New
interfaces for musical expression, 142-147.

Bringuier, J. (1980). Conversations with jean piaget. Chicago: University of Chicago Press.

Brown, A R. (2006). Code jamming, MIC Journal, 9(6).

Burk, P. L. (2000). Jammin'on the web-a new client/server architecture for multi-user
performance, Proceedings of the 2000 International Computer Music Conference,
117-120.

Carot, A, Kramer, U., & Schuller, G. (2006). Network music performance (nmp) in narrow
band networks In . Paris, France.

Cascone, K. (2000). The aesthetics of failure: "post-digital" tendencies in contemporary
computer music ., Computer Music Journal, 24(4), 12. doi: Article.

Chafe, C., Wilson, S., Leistikow, R., Chisholm, D., & Scavone, G. (2000). A simplified
approach to high quality music and sound over ip, Proc. Workshop on Digital Audio
Effects (DAFx-OO), Verona, Italy, 159-163.

72

Chen, H.i Wigand, R. T., & Nilan, M. (2000). Exploring web users' optimal flow
experiences, Information Technology & People, 13(4}, 263-281.

Collins, N. (2003). Generative music and laptop performance, Contemporary Music
Review, 22(4).

Collins, N., McLean, A, Rohrhuber, J., & Ward, A (2004). Live coding in laptop
performance, Organised Sound, 8(3), 321-330.

Cook, G., & Misra, A Designing and implementing the chuck programming language,
Proceedings of the 2005 International Computer Music Conference.

Correa, C. D., & Marsic, I. (2004). Software framework for managing heterogeneity in
mobile collaborative systems., Computer Supported Cooperative Work: The
Journal of Collaborative Computing, 13(5/6}, 603-638.

Crabtree, B., & Cain, K. (2007). Monome. Retrieved February 25, 2008, from
http://monome.org/.

Csikszentmihalyi, M. (1990). Flow: the psychology of optimal experience (1 st ed. --), 303.
New York: Harper & Row.

Csikszentmihalyi, M. (1996). Creativity: flow and the psychology of discovery and invention
(1 st ed), 456. New York: HarperCollinsPublishers.

Dawes, B. (2007). Analog in, digital out: brendan dawes on interaction design. Berkeley
CA: New Riders.

Dewey, J. (1916). Democracy and education: an introduction to the philosophy of
education. New York: Macmillan.

Do, Y. L., & Gross, M. D. (2007). Environments for creativity: a lab for making things,
Proceedings of the 6th ACM SIGCHI conference on Creativity & cognition, 27-36.

Edmonds, E. A., Weakley, A., Candy, L., Fell, M., Knott, R., & Pauletto, S. (2005). The
studio as laboratory: combining creative practice and digital technology research,
International Journal of Human-Computer Studies, 63(4-5),452-481.

Ehn, P. (1998). Manifesto for a digital bauhaus., Digital Creativity, 9(4), 207. doi: Article.

Farooq, U. (2005). Eureka! past, present, and future of creativity research in hci,
Crossroads, 12(2), 6-6.

Ferguson, W. (2004). The mainstream mash-up, The New York Times.

Fiebrink, R., Wang, G., & Cook, P. R. (2007). Don't forget the laptop: using native input
capabilities for expressive musical control, Proceedings of the 7th international
conference on New interfaces for musical expression, 164-167.

Finneran, C. M., & Zhang, P. (2002). The challenges of studying flow within a computer­
mediated environment, Eighth American Conference in Information Systems, Dallas,
TX, 1047-1054.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., & Mehandjiev, N. (2004). Meta-design: a
manifesto for end-user development, Communications ofthe ACM, 47(9), 33-37.

Fleck, R. (2003). How the move to physical user interfaces can make human computer
interaction a more enjoyable experience, Workshop on Real World User Interfaces,
Mobile HCI.

Fry, B., & Reas, C. Processing.org, Processing.org. Retrieved from http://processing.org.

74

Galloway. (2006). "carnivore personal edition": exploring distributed data surveillance, AI &
Society, 20(4), 483-492. doi: 10.1 007/s00146-006-0034-9.

Galloway, A. R. (2006). Gaming: essays on algorithmic culture (1), 160. Univ Of Minnesota
Press.

Gang, D., Chockler, v., Anker, T., Kremer, A., & Winkler, T. Transmidi: a system for midi
sessions over the network using transis, Proceedings of the International Computer
Music Conference (lCMC 1997).

Ghani, J. A., Supnick, R., & Rooney, P. (1991). The experience of flow in computer­
mediated and in face-to-face groups In , Proceedings of the twelfth international
conference on Information systems (pp. 229-237). New York, New York, United
States: University of Minnesota.

Graham, P. (2004). Hackers & painters: big ideas from the computer age (1 st ed.).
Sebastopol CA: O'Reilly.

Green, D. (1995, July). Demo or die!, Wired, 3(7).

Gresham-Lancaster, S. (1998). The aesthetics and history of the hub: the effects of
changing technology on network computer music, Leonardo Music Journal, 8, 39-
44.

Gu, X., Dick, M., Kurtisi, Z., Noyer, U., & Wolf, l. (2005). Network-centric music
performance: practice and experiments, Communications Magazine, IEEE, 43(6),
86-93.

Gu, X .• Dick, M., Noyer, U., & Wolf. l. Nmp-a new networked music performance system,
Global Telecommunications Conference Workshops, 2004. GlobeCom Workshops
2004. IEEE. 176-185.

75

Gurevich, M. (2006). Jamspace: a networked real-time collaborative music environment,
Conference on Human Factors in Computing Systems, 821-826.

Gurevich, M., Chafe, C., Leslie, G., & Tyan, S. (2004). Simulation of networked ensemble
performance with varying time delays: characterization of ensemble accuracy,
Proceedings of the International Computer Music Conference, Miami.

Han, J. Y. (2005). Low-cost multi-touch sensing through frustrated total internal reflection
In , Proceedings of the 18th annual ACM symposium on User interface software
and technology (pp. 115-118). Seattle, WA, USA: ACM.

Han, J. Y. (2008). Ftir touch sensing, FTIR Touch Sensing. Retrieved from
http://cs.nyu.edu/ -jhan/ftirsense/.

Hickey, M. (1998). Exploring music collaboration over the internet, Proceedings of the Rfth
International Technological Directions in Music Learning Conference.

Himanen, P., & Torvalds, L. (2001). The hacker ethic (1), 256. Random House.

von Hippel, E. (2001). User toolkits for innovation, Journal of Product Innovation
Management, 18(4), 247-257.

Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated
environments: conceptual foundations, Journal of Marketing, 60(3), 50-68.

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997). Back to the future: the
story of squeak, a practical smalltalk written in itself, SIGPLAN Not., 32(10), 318-
326.

Integrated Digital Media Institute of Polytechnic University, Brooklyn. (2007). Mrmr -
idmresearch, Mrmr - IDMResearch. Retrieved February 25, 2008, from
http://poly.share .dj/wlki/index.php/Mrmr.

76

Internet Engineering Task Force. Zero configuration networking (zeroconf). Retrieved
November 8,2006, from http://www.zeroconf.org/.

Ippolito, J. (2002). Ten myths of internet art, LEONARDO, 35(5}, 485·498.

Ishii, H., & Ullmer, B. (1997). Tangible bits: towards seamless interfaces between people,
bits and atoms In , Proceedings of the SIGCHI conference on Human factors in
computing systems (pp. 234-241). Atlanta, Georgia, United States: ACM. doi:
10.1145/258549.258715.

Iturzaeta, B., & Iturzaeta, L. (2007). Psp rhythm is the homebrew audio sequencer for the
sony playstation portable. Retrieved February 25, 2008, from
http://www.psprhythm.com/.

JazzMutant. Jazzmutant lemur. Retrieved February 25, 2008, from
http://www.jazzmutant.com/lemur _overview. php.

Jeppesen, L. (2001). Organizing and tapping consumer communities. Copenhagen.

Jeppesen, L. (2002). The implications of "user toolkits for innovation", Work.

Jeppesen, L. (2005). User toolkits for innovation: consumers support each other, Journal
of Product Innovation Management, 22(4) , 347-362 ..

Jorda, S. (1999). Faust music on line: an approach to real-time collective composition on
the internet, Leonardo Music Journal, 9, 5-12.

Kaplan, L. (1993). The telephone paintings: hanging up moholy, Leonardo, 26(2}, 165-168.

Kapur, A., Wang, G., Davidson, P., & Cook, P. R. (2005). Interactive network performance:

77

a dream worth dreaming, Organised Sound, 10(3}, 209-219.

King, R. {2006}. Playlive psp midi controller. Retrieved February 25, 2008, from http://e­
mu.orgl?p=20.

King, R., & Ramella, N. (2007). Ableton live python api, Ableton Live Python API. Retrieved
from http://liveapLorg.

Koestler, A. {1964}. The act of creation. Hutchinson.

Korzaan, M. L. {2003}. Going with the flow: predicting online purchase intentions, Journal
of Computer Information Systems, 43(4), 25-31.

Kuittinen, P. (2004). Computer demos-the story so far, Intelligent Agent, 4(1).

Latta, C. (1991). Notes 'from the net jam project, Leonardo Music Journal, 1 {1}, 103-105.

Lazzaro, J., & Wawrzynek, J. {2001}. A case for network musical performance,
Proceedings of the 11 th international workshop on Network and operating systems
support for digital audio and video, 157 -166.

Lee, J. C. (2007). Johnny chung lee - projects - wii. Retrieved February 25, 2008, from
http://www.cs.cmu.edu/-johnny/projectslwii/.

Lieberman, J. (1977). Playfulness: its relationship to imagination and creativity. New York:
Academic Press.

Loy, G. (1985). Musicians make a standard: the midi phenomenon, Computer Music
Journal, 9{4}, 8-26.

Lunenfeld, P. (2000). Snap to grid: a user's guide to digital arts, media, and cultures, 252.

78

The MIT Press.

Malone, T. W. (1981). Toward a theory of intrinsically motivated instruction, Cognitive
SCience, 4, 333-369.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: a
sneak preview [education] In , Creating, Connecting and Collaborating through
Computing, 2004. Proceedings. Second International Conference on (pp. 104-109).
doi: 10.1109/C5.2004.1314376.

Mamykina, L., Candy, L., & Edmonds, E. (2002). Collaborative creativity, Communications
of the ACM, 45(10), 96-99.

Manovich, L. (2002). The language of new media (1 st MIT Press pbk. ed.). Cambridge
Mass.: MIT Press.

Martocchio, J. J., & Webster, J. (1992). Effects of feedback and cognitive playfulness on
performance in microcomputer software training, Personnel Psychology, 45(3), 553-
578.

McLeod, K. (2005). Confessions of an intellectual (property): danger mouse, mickey
mouse, sonny bono, and my long and winding path as a copyright activist­
academic, Popular Music and Society, 28(1), 79-93.

Merz, E. (2007). Thisisnotalabel.com - my wiimote drum kit. Retrieved February 25, 2008,
from http://www.thisisnotalabel.com/My-Wiimote-Orum-Kit.php.

Monk, A. (2002). Fun, communication and dependability: extending the concept of
usability, People and Computers XVI. Springer, 3-14.

Moore, F. R. (1988). The dysfunctions of midi, Computer Music Journal, 12(1), 19-28.

79

Morrison, J. P. (1994). Flow-based programming: a new approach to application
development. Van Nostrand Reinhold.

Nachmanovitch, S. (1990). Free play : improvisation in life and art. New York: G.P.
Putnam's Sons.

Nakakoji, K., Yamamoto, Y., & Ohira, M. (2000). Computational support for collective
creativity, Knowledge-Based Systems, 13(7 -8}. 451-458.

Nieborg, . D. (2005). Am i mod or not?-an analysis of first person shooter modification
culture., Creative Gamers Seminar-Exploring Participatory Culture in Gaming,
Hypermedia Laboratory (University of Tampere).

Nilson, C. (2007). Live coding practice, Proceedings of the 7th international conference on
New interfaces for musical expression, 112 -117.

Novak, T. P., Hoffman, D. L., & Yiu-Fai Yung. (2000). Measuring the customer experience in
online environments: a structural modeling approach., Marketing SCience, 19(1), 22.
doi: Article.

Ox, J. (2002). 2 performances in the 21 st century virtual color organ In , Proceedings of
the 4th conference on Creativity & cognition (pp. 20-24). Loughborough, UK: ACM.
doi: 10.1145/581710.581715.

Penny, S. (1995). Consumer culture and the technological imperative: the artist in
dataspace, Critical Issues in Electronic Media.

Postigo, H. E. -. (2003). From pong to planet quake: post-industrial transitions from leisure
to work, Information, Communication & Society, 6(4} , 593-607.

Puckette, M. (2002). Max at seventeen, Computer Music Journal, 26(4), 31-43.

Rasmussen, A. (2007). Wiibot, WiiBot. Retrieved February 25, 2008, from
http://www.usmechatronics.com/usmgaragelWiiBot.html.

Raymond, E. (1996). The new hacker's dictionary (3rd ed.). Cambridge Mass.: MIT Press.

Raymond, E. (2004). The art of unix programming. Boston: Addison-Wesley.

Reid, D. (2004). A model of playfulness and flow in virtual reality interactions., Presence:
Teleoperators & Virtual Environments, 13(4), 451-462. doi: Article.

Roussou, M. (2004). Learning by doing and learning through play: an exploration of
interactivity in virtual environments for children, Computers in Entertainment (CIE) ,
2(1),10-10.

Sawyer, R. K. (2000). Improvisation and the creative process: dewey, collingwood, and the
aesthetics of spontaneity, The Journal of Aesthetics and Art Criticism, 58(2,
Improvisation in the Arts), 149-161.

Sawyer, R. K. (2006). Group creativity: musical performance and collaboration, Psychology
of Music, 34(2), 148-165.

Schilpp, P. A. (1970). Autobiographical notes In I Albert Einstein: Philosopher-Scientist, The
Ubrary of Uving Philosophers. (pp. 1-97). La Salle, IL: Open Court.

Seznec. Y. (2008). Wii loop machine. Retrieved February 25, 2008, from
http://www.theamazingrolo.netlwiil.

Shneiderman, B. (2oo0a). Creating creativity: user interfaces for supporting innovation,
ACM Transactions on Computer-Human Interaction (TOCH!) , 7(1). 114-138.

Shneiderman, B. (2oo0b). Supporting creativity with powerful composition tools for

81

artifacts and performances, System Sciences, 2000. Proceedings of the 33rd
Annual Hawaii International Conference on, 9.

Snow, C. P. (1998). The two cultures, 107. Cambridge: Cambridge University Press.

Tanaka, A, Tokui, N., & Momeni, A (2005). Facilitating collective musical creativity,
Proceedings of the 13th annual ACM international conference on Multimedia, 191-
198.

TED Conferences, LLC. (2006). Ted I talks I jeff han: unveiling the genius of multi-touch
interface design, TED I Talks I Jeff Han: Unveiling the genius of multi-touch interface
design. Retrieved from http://wvvw.ted.com/index.php/talks/view/id/65.

Thille, T. (2007). 131 - iphone to midi bridge I artificialeyes.tv, Artificialeyes. tv. Retrieved
February 25, 2008, from http://artificialeyes.tv/node/543.

Thomson, P. (2004). Atoms and errors: towards a history and aesthetics of microsound,
Organised Sound, 9(02), 207-218.

Trevino, L., & Webster, J. (1992). Flow in computer-mediated communication: electronic
mail and voice mail evaluation and impacts, Communication Research, 19(5), 539.

Truax, B., & Barenholtz, J. (1977). Models of interactive computer composition In ,
Computing in the humanities: proceedings of the Third International Conference on
Computing in the Humanities. Waterloo Ont.: University of Waterloo Press.

Tufte, E. (2006). Beautiful evidence. Cheshire Conn.: Graphics Press.

Turkle, S. (1995). Life on the screen: identity in the age of the internet. Simon & Schuster
Trade.

82

Underwood, B. (2007). Ninjam - novel intervallic network jamming architecture for music -
main. Retrieved November 8,2006, from http://www.ninjam.com/.

Villar, N., Lindsay, A, & Gellersen, H. (2005a). A rearrangeable tangible interface for
musical composition and performance, Proc. of New Interfaces for Musical
Expression (NIME 05).

Villar, N., Lindsay, A T., & Gellersen, H. (2005b). Pin & play & perform: a rearrangeable
interface for musical composition and performance, Proceedings of the 2005
conference on New interfaces for musical expression, 188-191.

Wanderley, M., & Battier, M. (2000). Trends in gestural control of music. Ircam.

Wang, G., Misra, A, & Cook, P. R. (2006). Building collaborative graphical interfaces in the
audicle, Proceedings of the 2006 conference on New interfaces for musical
expression, 49-52.

Wang, G., Misra, A, Davidson, P., & Cook, P. R. (2005). Co-audicle: a collaborative audio
programming space, Proceedings of the International Computer Music Conference.

Wang, G., & Cook, P. R. (2004). On-the-fly programming: using code as an expressive
musical instrument In , Proceedings of the 2004 conference on New interfaces for
musical expression (pp. 138-143). Hamamatsu, Shizuoka, Japan: National
University of Singapore.

Webster, J., & Martocchio, J. J. (1992). Microcomputer playfulness: development of a
measure with workplace implications., MIS Quarterly, 16(2), 201-226. doi: Article.

Weinberg, G. (2002). The aesthetics, history, and future challenges of interconnected
music networks, Proceedings of the 2002 Computer Music Conference.

Weinberg, G. (2005a). Local performance networks: musical interdependency through

83

gestures and control/ers, Organised Sound, 10(03), 255-265.

Weinberg, G. (2005b). Interconnected musical networks: toward a theoretical framework,
Computer Music Journal, 29(2), 23.

Weinberger, D. (2002). Small pieces loosely joined: a unified theory of the web. Cambridge
MA: Perseus.

Weyland, T. (2008). Nitrotracker - a fasttracker ii style tracker for the nintendo ds. Retrieved
February 25, 2008, from http://nitrotracker.tobw.netJ.

Williams, D., & Webster, P. (1999). Experiencing music technology. Schirmer Books New
York.

Wilson, S. (2002). Information arts: intersections of art, science, and technology, 945.
Cambridge, Mass: MIT Press.

Wright, M., & Freed, A. (1997). Open sound control: a new protocol for communicating
with sound synthesizers, Proceedings of the 1997 International Computer Music
Conference, 101-104.

Yager, S. E., Kappelman, L. A., Maples, G. A., & Prybutok, V. R. (1997). Microcomputer
playfulness: stable or dynamic trait?, ACM SIGMIS Database, 28(2),43-52.

Yamagishi, S., & Setoh, K. (1998). Variations for www: network music by max and the
www. proc. of the int. computer music conf, Proceedings of the International
Computer Music Conference, 510-13.

Young, J. P. (2002). Networked music: bridging real and virtual space, Organised Sound,
6(02),107-110.

84

Zhang, Y., & Candy, L. (2007). An in-depth case study of art-technology collaboration,
Proceedings of the 6th ACM SIGCHI conference on Creativity & cognition, 53-62.

