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ABSTRACT 

QUADROTOR UAV CONTROL: ONLINE LEARNING APPROACH 

Pong-in Pipatpaibul 

A thesis for the degree of 

Master of Applied Science, 2011 

Department of Aerospace Engineering, Ryerson University 

 

 

Quadrotor unmanned aerial vehicles (UAVs) are recognized to be capable of various tasks 

including search and rescue and surveillance for their agilities and small sizes. This thesis 

proposes a simple and robust trajectory tracking controller for a quadrotor UAV utilizing 

online Iterative Learning Control (ILC) that is known to be effective for tasks performed 

repeatedly. Based on a nonlinear model which considers basic aerodynamic and gyroscopic 

effects, the quadrotor UAV model is simulated to perform a variety of maneuvering such as 

take-off, landing, smooth translation and horizontal and spatial circular trajectory motions. 

PD online ILCs and PD online ILCs with switching gain (SPD ILCs) are studied, tested and 

compared. Simulation results prove the ability of the online ILCs to successfully perform 

certain missions in the presence of considerably large disturbances and SPD ILCs can obtain 

faster convergence rates. 
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Chapter 1 Introduction 

1.1 Motivation 

Unmanned Aerial Vehicles (UAVs) have drawn much attention from many researchers for 

decades and their studies still keeps growing intensely. With the advanced technology, their 

existences became reality and even better each day. Because of being unmanned, not only 

that their sizes and cost can be minimized but also capability of various tasks that manned 

aircrafts cannot perform can be achieved. Some tasks that suit UAVs include surveillance, 

geographic monitoring and crop dusting in open-areas or even accessibility in urban areas, 

and many more. There exists many categories of UAVs, one of the most interesting and 

challenging, in terms of capability, is the type of vertical take-off and landing (VTOL) 

UAVs. The feature of vertical movement provides them with advantages over other types of 

UAVs in terms of accessibility, agility, low speed flight and hovering. Different 

configurations of VTOL UAVs were proposed and designed, among them are quadrotor 

UAVs. Having four rotors located at each end and heading upward makes them one of the 

simplest, yet most efficient configurations. Being underactuated systems (less actuators than 

degrees of freedom) and agile, however, result in natural instability and thus require a 

carefully designed control system for stabilization and path tracking. 

 Many of control methods have been proposed to satisfactorily deal with the control problems 

of UAVs. Most of them focused heavily on the stabilization problem which is the first step 

toward successful flights. Some also handled position tracking or velocity tracking in order to 

obtain certain maneuverings and thus full autonomous control. However, most of them relied 

on complicated dynamic model which might be unavailable in certain situations and some 

control methods require intense computation which might become a problem when applied 

on-board. Furthermore, only a few researches addressed disturbances in simulations or 

experiments, which should be a major concern in real applications.  

Iterative Learning Controls (ILCs) were proposed to deal with tasks performed repeatedly, 

which are mostly used in industrial applications such as robotic manipulation and pneumatic 

systems. They are also well known for their simplicities to implement and robustness against 
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uncertainties and disturbances. These features fit well to quadrotor UAVs’ maneuverings that 

mostly are performed repeatedly and oftentimes experience model uncertainties and noises 

from sensors. Motivated by the aforementioned advantages of ILCs, this research will focus 

on the control system design of a quadrotor UAV for various maneuverings. 

1.2 Objectives and Methodology 

This thesis intends to take advantage of simplicity and robustness of online-type ILCs and to 

develop a learning control system for a quadrotor UAV in order to obtain a good trajectory 

tracking performance. Main objectives of this thesis can be summarized as 

 To verify the capability, performance and robustness against large disturbances of 

online ILCs on the implemented system of nonlinear dynamic model of a quadrotor 

UAV. 

 To compare performance among online ILCs for future development. 

 To pioneer online learning approach on quadrotor trajectory tracking and obtain 

guidelines for further improvement. 

  To extend applicability of ILCs on wider range of applications in addition to 

industrial applications. 

All the previously mentioned objectives can be achieved in this thesis via simulations done in 

MATLAB programming by 

 Forming nonlinear dynamic model of a quadrotor and referring model parameters 

from a well-design quadrotor. 

 Simulating major maneuverings which include take-off, landing, X-Y translation and 

circular trajectory. 

 Adding large disturbances in all simulations to prove robustness of online ILCs 

 Comparing two types of online ILCs in simulations and comparing other types by 

citing results from other sources. 

 Indentifying effect of each control gain on the tracking performances. 
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1.3 Organization of Contents 

The contents in this research are organized as follows: 

Chapter 2: Literature Reviews - to provide general concepts of aircrafts, background of 

quadrotor UAVs including their history, designs and control methods implemented to 

quadrotor UAVs from various studies; and researches and development in ILCs. 

Chapter 3: Quadrotor Modeling - to explore detailed concepts and modeling of a quadrotor 

UAV which includes basic motions of a quadrotor; assumptions adopted in modeling; 

kinematics; dynamics; and parameters used in the simulations. 

Chapter 4: Control System Design - to present detailed concepts of ILCs and their 

implementations on the quadrotor model. These include convergence analyses, state-space 

modeling, implemented control laws of both PD online ILCs and SPD ILCs, and finally 

trajectory generation method. 

Chapter 5: Simulation Results - to demonstrate performances, convergence rates and tracking 

errors in the presences of disturbances of the two ILCs implemented to the quadrotor model 

performing various maneuverings.   

Chapter 6: Conclusion and Discussion - to provide general reviews of this thesis and to 

discusse some issues and possible future development 

  



4

Chapter 2 Literature Reviews 

This chapter is devoted to describe and summarized past studies and developments of 

quadrotor UAVs by various research groups and some investigation in iterative learning 

control. Firstly, basic principles and the main reasons for choosing quadrotor UAVs are 

established in Section 2.1. Brief history and studies in quadrotor UAVs are then shown in 

Section 2.2. Control algorithms for quadrotor UAVs and ILCs are investigated in Section 2.3 

and 2.4, respectively. Finally, concluding remarks of this chapter are summarized in Section 

2.5.   

2.1 Aircraft and UAV 

2.1.1 Aircraft Generalities and Principles 

Aircrafts have been invented and developed long ago. Many designs and principles were 

proposed and implemented. In this modern era, aerial vehicles can be generally classified into 

two categories: Heavier Than Air (HTA) and Lighter Than Air (LTA) and consequently 

divided into several sub-categories as illustrated in Fig. 2-1. 

 

Fig. 2-1 Aircraft Classification  
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It is clear that gliders, planes and autogyros, which need forward flight in order to generate 

lift, are not capable of hovering and VTOL. Balloons and blimps are able to hover easily, 

owing to buoyant force from lighter-than-air gases they contain, but they are poorly 

maneuverable. Flapping-wing or bird-like (or insect-like) UAVs may be able to hover and 

VTOL at the expense of extremely complex mechanics and control. VTOL rotorcrafts are 

highly agile, maneuverable and able to hover at the expense of high energy consumption, 

hence seem to fit best to the aforementioned requirements.  

There are several configurations of recognized VTOL rotorcrafts. One of the most common 

VTOL rotorcrafts is a conventional helicopter; one main rotor above the center of gravity for 

lift generating and smaller one on the tail boom for counter-torque. This configuration uses a 

quite large main rotor and takes more space from long tail and requires relatively complex 

mechanics from pitching rotor. Another configuration is double-rotor. This includes tandem 

rotors [1] and coaxial rotors[2]. These two configurations have advantages over conventional 

helicopters. For example, two rotors generate lift instead of only one main rotor, allowing 

more payloads, and the two rotors cancel out each other’s torque that stabilizes the yaw 

direction motion. Two main rotors are located on each end of a tandem helicopter (Fig. 2-2, 

Fig. 2-3). This also allows wider range of the center of gravity. On the other hand, it needs a 

larger size body and a synchronous transmission between two rotors to avoid blade collision, 

making it more complicated.  

This problem can be eliminated by having two rotors in a single shaft as in coaxial 

helicopters (Fig. 2-4), making this configuration quite compact. Although having advantages, 

it takes an even more complex mechanics in order to drive two coaxial rotors in opposite 

direction to balance torque and a more complicated aerodynamics that the two rotors affect 

each other, making it more difficult to design and control. However, coaxial configuration is 

more likely to be useful for miniaturization [2]. 
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Fig. 2-2 Boeing CH-47 Tandem helicopter [1] 

 

Fig. 2-3 Dragonfly Pictures DP-6 Tandem rotor UAV [3] 

Unlike the previous VTOL rotorcraft configurations, a quadrotor is much simpler although 

requires a larger size. Having all four fixed-pitch rotors located at each end of the body, this 

configuration utilizes every rotor to generate lift, allowing more payloads. This also results in 

simple mechanics and design. Hence the quadrotor configuration is then chosen in this 

research for its simplicity, in terms of designs, mechanics and aerodynamics, and the 

capability of VTOL, hovering and low speed flight. More details in quadrotor concepts are 

explained in Chapter 3. 
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Fig. 2-4 CoaX Coaxial rotor UAV[2] 

2.1.2 UAVs Applications 

Since the early years of aircraft invention, most of them relied heavily, if not solely, on 

human being to control. This resulted in very large size vehicles in order to accommodate a 

pilot. Sometimes, due to technology limitations, the systems were even unreliable and too 

complicated to control by human being, sometimes even leading to tragic accidents. 

Later on, with the dramatic growth in industry and improvement in technology, the 

possibility of small Unmanned Aerial Vehicles (UAVs), which eliminated the needs for pilot 

and thus decreasing weight, size and cost, seemed to be within grasp. This also opened doors 

for new applications including, for example, reconnaissance for military purpose, 

surveillance for geographic study, planetary exploration [4] and search and rescue.  

Many types of UAVs were developed for certain range of missions, filling the gap for 

specific needs. However, hovering, low speed flight, high maneuverability and Vertical Take-

off and Landing (VTOL) are preferred or required for many applications since those features 

would result in a more accessible UAV, which is especially needed in urban area missions 

where spaces are limited.  
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2.2 Quadrotor UAVs History and Development 

The idea of vertical flight has been around in mankind since 400 BC by a toy called Chinese 

Top[5], consisting of feathers (or a propeller) at an end of a stick, as seen in Fig. 2-5, one can 

simply quickly spin the stick off hands and let it fly freely.  The history of quadrotor aerial 

vehicles, however, only dates back in 1907 when the French brothers Louis and Jacques 

Breguet invented the first full-sized piloted quadrotor. The vehicle shown in Fig. 2-6, named 

Gyroplane No.1 [1], consisted of four long girders made of steel tubes. Each rotor had four 

blades and placed on each of four ends, summing up to 32 individual lifting surfaces. Due to 

lack of a high power engine and light-weight materials, it was reported to hop above ground 

for only a few moments. 

 

Fig. 2-5 Chinese top[5] 

 

Fig. 2-6 Gyroplane No.1 by the Breguet brothers in 1907 [1] 

Later on, some successful designs of quadrotor were achieved; one of them was 

Convertawings by D.H.Kaplan in the United States in 1956[6], shown in Fig. 2-7. The 
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vehicle was configured in ‘H’ shape rather than ‘+’ shape and weighed totally about 990 kg. 

It could successfully fly but then the development was ceased by the United States military.   

 

Fig. 2-7 Convertawings Model A in 1956[6] 

In these modern days, many aspects of technology have developed dramatically. Much lighter 

materials were discovered, higher power engines were invented, and especially MEMS were 

introduced, making small, light-weight, unmanned aerial vehicle ideas become realistic. As a 

result of the aforementioned improvement, many quadrotor UAV projects were 

independently studied and developed. 

One of the first quadrotor UAVs was ‘The Mesicopter’, shown in Fig. 2-8, developed by I. 

Kroo of Stanford University in 2001. With the span of the size of a coin, the mass of the 

UAV was approximately 3-15g and powered by DC motors. As a result of being very small, 

air viscosity, micro-manufacturing and power and control system integration become critical 

issues [7]. 
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Fig. 2-8 the Mesicopter 

In 2002, a visual feedback control was implemented in a quadrotor UAV development by E. 

Altug of Pennsylvania State University as seen in Fig. 2-9. Using image processing, the 

visual system used ground camera to estimate the position and attitude and then sent control 

input signals, derived using feedback linearization and backstepping method, to the on-board 

controller. The aircraft utilized in the study was the commercial R/C toy HMX-4 with the 

mass of 0.7kg and the span of 76cm. It was shown that relying only on ground camera was 

not enough for full control [8]. 

 

Fig. 2-9 Visual Feedback quadrotor by Pennsylvania State University[8] 
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X-4 Flyer project is another example of quadrotor UAVs studies. First developed in 2002 at 

Australian National University, the X-4 MkI weighed 2 kg with 70 cm in span. In the design 

of so called hub-and-spokes configuration, the hub was built from HDPE and spokes from a 

material used in hunting arrows. Simple gyro sensors were used. Then a new prototype of X-

4 MkII was released in 2006, with a totally different configuration made of carbon-fiber and 

aluminum and weighed up to 5kg including payload. The rotors were placed below the frame 

instead of above as mostly designed. It was said to have high thrust-to-weight ratio and to be 

more robust against disturbances. Both prototypes are illustrated in Fig. 2-10 [9][10]. 

 

Fig. 2-10 ANU’s X-4 Mk I(left) and X-4 Mk II(right)[9][10] 

Another quadrotor UAV research was established in 2003 at University of British Columbia. 

The work focused on nonlinear modeling of a quadrotor UAV and utilizing H∞ and MBPC to 

stabilize the system and manipulate trajectory tracking. The study used the Draganflyer III, a 

commercial R/C toy, as the testbed and attached to a flying mill for flight testing, shown in  

Fig. 2-11[11].  
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Fig. 2-11 University of British Columbia’s quadrotor testbed[11] 

In 2004, a study was done at Cornell University by E.B. Nice’s thesis[12]. The work 

comprised overall design; structure, propulsion and control modules. Sigma Point Filter was 

used for state estimation and LQR control was used for stabilization. After assembling, the 

prototype, shown in Fig. 2-12, finally weighed 6.2kg and could only perform hovering due to 

hardware failure before maneuvering tests could be done[12]. 

 

Fig. 2-12 a Cornell University’s quadrotor project[12] 

At about the same time, Stanford University launched a new quadrotor development project 

called ‘STARMAC’ in 2004. Its main goal was to provide testbed for algorithms verification 

in decentralized optimization so that each vehicle could compute optimal trajectory to avoid 

collision and obstacles. The project utilized the Draganflyer III as a testbed and would 
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communicate with a ground station. Linearized dynamic model was used along with the 

Kalman filter for state estimation. It was also reported that frame stiffening added to the 

testbed greatly improved attitude estimation. Then later in 2007, STARMAC II was 

introduced. This sequel included more intense aerodynamic effects study and reconfigured 

the testbed with higher thrust. STARMAC and its successor of STARMAC II are shown in 

Fig. 2-13 Fig. 2-14, respectively [13][14]. 

 

Fig. 2-13 Two Draganflyer III used in STARMAC[13] 

 

Fig. 2-14 STARMAC II[14] 

Another interesting quadrotor UAV study is the OS4 project [15], started in 2003 at Swiss 

Federal Institute of Technology. Focusing on design and control of a quadrotor, intensive 

designs and various control methods have been tried, compared and evaluated, including 

Sliding Mode Control, Backstepping Control, LQR and PID control. Then full control was 

achieved in 2007. The model weighed 520g and was able to take-off, land and avoid collision 
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automatically using PID control combined with backstepping control and more detailed 

aerodynamic effects were taken into account. The OS4 quadrotor is shown in Fig. 2-15[16].  

 

Fig. 2-15 OS4 quadrotor of Swiss Federal Institute of Technology 

In summary, many research and studies have independently implemented various control 

algorithms for full control. A number of them were structurally based on commercial 

quadrotor R/C toys while others designed their own, ranging from as light as a few grams to 

6kg. All the aforementioned projects are listed in Table 2-1.  

Table 2-1 List of quadrotor projects 

Project Institute Testbed Total weight Goal 

The Mesicopter 
Stanford 

University 

self- 

developed 
3-15g 

centimeter-scale 

UAV 

STARMAC I, 

II 

Stanford 

University 

Draganflyer 

III 
0.7kg Multi-agent testbed 

X-4 MkI, MkII 

Australian 

National 

University 

self- 

developed 

2kg (MkI) 

4kg (MkII) 

full design and 

control 

OS4 Swiss self- 0.52kg full design and 
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Federal 

Institute of 

Technology 

developed control 

E. Altug’s 

thesis 

Pennsylvania 

State 

University 

HMX-4 0.7kg visual control 

E.B. Nice’s 

thesis 

Cornell 

University 

self- 

developed 
6.2kg 

full design and 

control 

M. Chen and 

M. Huzmezan’s 

research 

University of 

British 

Columbia 

Draganflyer 

III 
0.7kg 

MBPC and H∞ 

implementation 

    

2.3 Quadrotor UAVs Control Algorithm 

Quadrotor UAVs have been studied for years. Many control algorithms were tried out and 

implemented in order to stabilize, maneuver and ultimately perform various missions. Some 

have different advantages and disadvantages over others. This section devotes to list and 

summarize major controlling schemes for a quadrotor, which are PID control, linear and 

nonlinear state-feedback control, sliding mode control (SMC), backstepping control, fuzzy 

control and neural network control.   

 

Table 2-2 lists some control methods used in for controlling quadrotor UAVs. Detailed 

discussions are shown in the following sections.  
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Table 2-2 List of studies on quadrotor UAV control systems 

Source Control Method Objectives 
Model 

Type 
Remarks 

[17] Adaptive-Fuzzy 
attitude 

stabilization 
Nonlinear 

- w/ disturbance 

- gradually back to 

equilibrium 

- simulation 

[18] LQR 

trajectory 

optimization and 

path following 

Nonlinear 

- perform various 

maneuverings 

- simulation 

[19] PID 
trajectory 

tracking 
Nonlinear 

- 10-50cm tracking 

accuracy 

- indoor and outdoor 

experiment 

[13] SMC+LQR 
attitude and 

altitude control 
Linearized 

- SMC for altitude 

control and LQR for 

attitude control 

- outdoor experiment 

[15] Backstepping, SMC full control Nonlinear 

- w/o disturbance 

- simulation and 

experiment on test-

bench 

[20] Backstepping+PID full control Nonlinear 

- w/ disturbance 

- experiment and 

simulation 
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- full control attained 

[21] Backstepping, SMC full control Nonlinear 

- simulation and 

experiment 

- SMC robust against 

uncertainty 

[22] SDRE 
attitude and 

velocity control 
Nonlinear 

- w/o disturbance 

- simulation 

[23] 

Feedback 

Linearization, PD and 

PD w/ partial diff. 

attitude 

stabilization 
Nonlinear 

- w/o disturbance 

- simulation and 

experiment 

- compare the methods 

[24] 
Neural Network + 

PID 
full control Nonlinear 

- w/ disturbance 

- simulation 

- NN trained by PID 

[25] 
Neural Network 

(CMAC method) 
full control Nonlinear 

- w/ disturbance 

- simulation 

[26] 
Output Feedback 

Neural Network 
full control Nonlinear - theoretical proof only 

[27] 
Output Feedback 

Neural Network 
full control Nonlinear 

- w/ disturbance 

- simulation 

- NN for observer and 

controller 
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2.3.1 Classic PID Control 

One of the simplest ways to control a system is to utilize the classic control theory, i.e., 

Proportional, Integral and Differential (PID) Control. It is easy to implement in the sense that 

the control law is a function of output errors so that the designer can choose and tune the 

control gains according to the desired output. This results in a simple system model but in 

some cases it might be too sensitive to uncertainties and disturbances, ending up with poor 

stabilization. PIDs have been widely used in many quadrotor developments. For example, a 

PID controller was implemented in the quadrotor work called STARMAC [19]. In the paper, 

PID and angular acceleration feedback were used in attitude control. For path tracking 

controller, PI was used for the along tracking direction and PID for the cross tracking 

direction. The result was so accurate that the path tracking errors were less than 10 cm for 

indoor flight and 50 cm for outdoor.  

2.3.2 State-feedback and LQR Control 

State-feedback control schemes were also utilized in many quadrotor UAV researches.  This 

is done by forming state-space model of the system then calculating system’s poles and thus 

control gains from the required performance, in the case of linear systems. For a nonlinear 

system, feedback-linearization method might be used as shown in [23]. In that paper, classic 

PD, PD with partial differential and feedback-linearization were evaluated in simulation and 

testing of attitude stabilization. The classic PD control failed to stabilize the quadrotor in the 

real test based on the linearized model. The proposed feedback-linearization outperformed 

the others. In addition to the previous method, Linear Quadratic Regulators (LQRs) were 

widely studied. Based on linear state-space models, LQRs try to minimize the tracking error 

by minimizing a cost function. Simulations of a quadrotor path following using LQR for 

various maneuver missions were conducted in [18]. The results showed accurate path 

following in three different maneuvering without violating control input saturation. A more 

complex method of LQR scheme is State-dependent Riccati Equation (SDRE) controller that 

can be applied to a nonlinear model. It realizes the model as a linear one at any fixed state 

and thus requires intense calculation. An example of SDRE appears in [22]. The paper made 

use of SDRE for attitude control and simple state-feedback for velocity control.  
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2.3.3 Sliding Mode and Backstepping Control 

Sliding Mode Control (SMC) and Backstepping control were heavily studied and compared 

in many papers. In a SMC, the system’s states are controlled to move along sliding surface, 

s=0, in phase plane which makes the system stable. The control inputs always switch at high 

frequency between two values and thus said to be non-continuous functions. In contrast, 

backstepping control has a recursive structure in which an initial control input is not the real 

control input for the system but rather a ‘virtual control input’ acting as another state and 

eventually the scheme relates to the real control law. Both SMC and backstepping can be 

effectively applied to nonlinear systems.The two aforementioned methods were compared in 

[21] and [15]. They illustrated both simulation and experimental results for both attitude and 

altitude control. In [21], it was shown that SMC and backstepping outperform feedback 

control under disturbances and both are approximately identical, while a better performance 

of backstepping over SMC was shown in [15], which sometimes caused chattering, in the 

condition of no disturbances. In [13], an SMC technique was proposed for altitude control 

and used ordinary LQR for attitude control but many problems occurred due to motor 

vibration at high thrust and chattering from SMC. A full control of a quadrotor was proposed 

in [20], i.e., attitude control, position control, take-off and landing, using their new technique 

of Integral Backstepping (IB) which combined the backstepping method with an integral term 

of PID. The test results showed that errors in the pitch and roll angles were very small despite 

various disturbances and the quadrotor could take-off, land and avoid obstacle smoothly.          

2.3.4 Adaptive-Fuzzy and Neural Network Control 

Adaptive-Fuzzy control was proposed in [17] to stabilize a quadrotor at hovering using a new 

adaptive method that prevents fuzzy membership function center drift without decreasing 

performance. This control method does not require an accurate system model and was shown 

robust against disturbances in the simulation. Neural network control methods were proposed 

in many papers. They are considered a type of learning control which, in many cases, can be 

done online or on-board with the real applications. Although intense computing is required, 

the method was proved to have robustness against noises and disturbances. In [26], the 

availability of a neural network control was mathematically proved and later the simulation 

results were revealed in [27]. Using neural network output feedback, the paper showed 
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effective tracking performance. A neural-adaptive control which utilized adaptive method to 

train the neural network online was introduced in [25]. Stability achievement was confirmed 

by simulation results. A more simple neural network trained by PID control was proposed in 

[24] and stability was proved in the simulations.      

2.4 Iterative Learning Control (ILC) 

Iterative learning control adopts the idea of human learning by doing the same task repeatedly 

and performing better as one learns each time, so this scheme is popularly used in systems 

that perform repetitive tasks, such as robot manipulators, owing to its simple structure and 

straightforward implementation. ILC was first proposed by S. Arimoto in [28]. Based on 

information from previous learning cycles, the system’s performance improves as iteration 

number increases, reducing trajectory tracking error and leading to convergence. One of the 

key advantages of an ILC is that the system’s dynamic model is not fully required, making it 

simple and widely applicable. Since a quadrotor UAV may perform some specific missions 

repeatedly, ILCs are then considered potential control methods in this research.  There are 

mainly three types of ILCs: offline ILC (open loop), online ILC (closed loop) and 

combination of both (online-offline ILC). In this section, online ILC and online-offline ILC 

are merged into one discussion because, in most cases, they yield almost the same result, as 

shown in [29]. 

2.4.1 Offline ILC  

Offline ILCs use only information from previous iteration. One can implement the classic 

proportional, integral and differential (PID) controller to ILCs; this includes their subtype 

such as P, PD, D, PI and PID. The original one from [28] was D-type ILC, only differential 

term is used in the control law. Implementing the idea of learning scheme, his work resulted 

in precise trajectory tracking of a linear time-invariant (LTI) system within just a few 

iterations of learning. Another open loop D-type ILC was proposed in [30]. The paper 

presented a new way to implementation of D-type ILC for nonlinear systems with unknown 

relative degree. As a D-type ILC is complicated to use with high relative degree systems, 

applying dummy model turns any system into a first-order one, making it easy to control and 

resulting in perfect trajectory tracking performance and monotonic convergence of the 
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controlled system. However, it’s shown in [31] that D-type ILC is more sensitive to noise 

measurement than P-type. In [32], they proposed P-type ILC for a discrete-time system by 

mathematically proving necessary and sufficient condition for monotonic convergence. A 

study in P-type ILC with systems that contain resonance was done in [33]. It was shown that 

typical learning schemes could result in growing error amplitude, which could ultimately lead 

to instability of the system. Aliasing and some filtering methods were compared and aliasing 

was shown to outperform other methods. Another solution in learning behavior was presented 

in [34] by down-sampling and applying low-pass filter in frequency domain of the system, 

due to the fact that errors are accumulated in high frequency band. The result was a 

monotonic convergence and a high accuracy in tracking performance. 

The combination among P, I and D is also widely seen in ILCs. A PD-type ILC for a 

pneumatic system with disturbances was proposed in [35]. The system was analyzed in 

discrete-time and then compared among P-type ILCs, PD-type ILCs and pre-saved control 

laws from a system that already converges, and the simulation result showed a better 

performance of PD-type ILCs. In [36], the optimal design for a monotonic convergent 

discrete-time system was proposed. Using averaged difference instead of one step backward 

difference proved to reduce high frequency noise. The paper mathematically showed the 

trade-off between noise reduction and the monotonic convergence rate. PD-type ILCs with 

anticipatory approach was presented in [37] by time shifting ahead and sampling data. A 

more intriguing scheme implemented to a LTI system was proposed in [38]. Instead of using 

information from previous adjacent iteration, the controller used all the previous iterations 

and averaged them, rendering it effective against initial state error. PI-type ILCs were also 

studied and proposed in [39] with the purpose of pointing out the effect of the integral term. It 

showed that the integral term increased convergence rate but would be useless when 

simulation time is short.  A PID-type ILC was studied in [40] in the sense of robustness 

against initial state error by comparing among sets of learning gains. In [41], they also 

studied PID-type and proposed optimal gains for discrete-time SISO LTI systems. The result 

showed monotonic and increased rate of convergence comparing to non-optimal gains. 
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2.4.2 Online ILC & Offline-Online ILC 

A more effective way to track system’s desired output trajectory is to use online ILC scheme 

since it makes use of current iteration’s error information, which is more up to date. In other 

words, it’s a feedback control scheme applied to ILC, which is known and shown to have 

better performance in terms of error tracking, monotonic convergence speed and robustness 

as shown in [29][42]. A P-type online ILC for nonlinear system was proposed in [43] by 

proving error bound in each iteration, implying that the system converges. The paper also 

adopted the idea of forgetting factor, aiming to overcome uncertainties and disturbances by 

controlling priority of previous iteration’s information. Aside from P-type, a D-type online 

ILC was proposed in [44] with the purpose to eliminate the requirement of known initial 

state. The paper showed the solution of iterating initial states for each iteration so that one 

can choose the initial state in the first iteration arbitrarily. The result was impressing that it 

solved the problem and could precisely track the desired trajectory. PD-type online ILC was 

proposed in [45]. The paper aimed to design a controller that is robust against state 

uncertainties and measurement disturbances. Not only it could perform the task well but also 

provided the controller a wide range of learning gains choices, making it very flexible to 

apply. Another form of PD-type was proposed in [46] by applying switching gain thus it’s so 

called Adaptive Switching Gain ILC or ASL-PD ILC. Here the learning gains were not fixed 

but increased monotonically every iteration, resulting in monotonic convergence at a very 

fast rate. A PID-type was proposed in [47] for electro-hydraulic servo systems, which are 

very nonlinear, showing versatilities of ILCs.   

Offline-online ILCs were also developed. They typically provide a better-quality result from 

online ones as the effect of an online scheme overwhelms that of an offline one. Presented in 

[48] was the sufficient conditions for a convergent PID open-closed-loop. The conditions 

were more relaxed than those in other papers and the proportional gain was shown to be 

independent of the conditions. A PD-type ILC was proposed in [49] for discrete-time 

systems. The paper pointed out that D-type component in any ILC cannot be directly used 

unless the output is predicted, thus conditions for convergence were given and proved 

through inductive method. In that paper, P-type feedback was used in closed-loop and D-type 

ILC was used in open-loop and consequently showed that P component is applicable to 

improve precision. PD-PD ILCs were proposed in [42] by applying PD-type to both the 
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closed-loop and open-loop, which could improve tracking error, attain a monotonic 

convergence rate and easily choose learning gains. A more complicated yet powerful idea of 

ILC was proposed in [50]. The paper applied switching gains scheme to a PD-PD ILC by 

adding switching gains to closed loop part, thus called a SPD-PD ILC. The key reasons of 

adding switching gains were to increase the convergence rate as most ILCs tend to converge 

more slowly and to avoid vibration of actuators in the applied systems. Also it was shown to 

reduce tracking error significantly. A comparison of ILCs was presented in [29]. The paper 

summarized performances of each ILC scheme and showed that SPD-PD outperforms other 

schemes despite the presence of state uncertainty and disturbances, both repetitive and 

varying noise. It also illustrated the monotonic convergence rate and small difference 

between online and offline-online ILCs. 

Table 2-3 List of ILC studies 

Source Scheme Type Objective/ Application Remarks 

[28] D Offline robot learning --- 

[30] D Offline unknown degree systems 
use dummy model to 

reduce to 1st order 

[33] P Offline system w/resonance use aliasing technique 

[31] P, D Offline 
optimal design, 

comparison 
--- 

[34] P Offline 
eliminate bad learning 

behavior 
pseudo-downsampling

[32] P Offline 
monotonic convergence 

for discrete-time systems 
mathematical proof 

[35] PD Offline 
discrete-time pneumatic 

system 
--- 
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[38] PD Offline 
variable initial state error 

(LTI) 
use average operator 

[37] PD Offline 
continuous nonlinear 

systems 

use causal pair and 

time shift 

[36] PD Offline 

optimal design of 

monotonic convergence 

for discrete-time systems 

use average operator 

[39] PI Offline effect of integral part --- 

[40] PID Offline 
variable initial state error 

(LTI) 
--- 

[41] PID Offline 
optimal design for SISO 

LTI 
mathematical proof 

[43] P Online 
initial state error for 

nonlinear systems 
use forgetting factor 

[44] D Online 

nonlinear systems 

w/unknown initial states 

and inputs 

use initial state 

iteration 

[47] PID Online 
nonlinear electrohydraulic 

systems 

feedback control 

added 

[45] PD Online 
robustness for nonlinear 

time varying systems 
--- 

[46] ASL-PD Online 

fast monotonic 

convergence for nonlinear 

time varying systems 

use switching gain 

[48] PID 
ON-

OFF 

convergence for nonlinear 

time varying systems 
mathematical proof 
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2.5 Concluding Remarks 

This chapter presented history, basic principles and advantages of quadrotor UAVs, previous 

research and development in quadrotor UAVs, major control methods for quadrotor UAVs 

and some basic ideas and studies in ILCs which consequently used in this work. From the 

literature reviews discussed earlier, it implies that studies in applications for full control of 

quadrotor UAVs are still in need to exploit their various missions precisely, which is the main 

objective of this research. Due to major concerns in control system, structural designs will not 

be taken into account in the following discussion. 

From previously studied quadrotor UAV control methods’ point of view, as shown earlier, 

full control, positioning accuracy and robustness are important for survivability and 

capability of various missions. Basic PID control alone was mostly proved to be inefficient in 

the presence of uncertainties and disturbances. LQR method was attempted and shown to be 

useful for path tracking, nevertheless disturbances were not addressed. SDRE and Neural 

Network Control were tried and performed well but intense computation is required. The 

Adaptive-Fuzzy method was implemented and proved to be robust against disturbances but 

only the stabilization problem was addressed. SMCs were used and found controllable but 

[49] D-P 
ON-

OFF 

discrete-time linear 

systems w/o U in output 

equation 

D for online 

P for offline 

[42] PD-PD 
ON-

OFF 

robustness for nonlinear 

time varying systems 
--- 

[50] SPD-PD 
ON-

OFF 

fast monotonic 

convergence and 

robustness for nonlinear 

time varying systems 

switching gain added 

in online part 

[29] --- 
ON-

OFF 
comparison study --- 
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might cause chattering which leads to control failure in some cases. The backstepping method 

was also tried and seemed very promising when combined with Integral term in PID control, 

at the expense of a little more complicated computation.   

For ILCs, simplicity, in terms of implementation and plant model, is one of the main 

characteristics. In addition, they seem to fit well in applications in which tasks are done 

repeatedly and also robust against uncertainties and disturbances. Many types of ILCs were 

developed; mainly categorized as Offline, Online and Online-offline. Offline ILCs rely solely 

on errors occurred in past iterations, yielding very slow convergence rate, if not unstable, in 

the presence of uncertainties and disturbances and even initial state errors in many cases. 

Online ILCs depend only on current iteration, forming a feedback control instead of feed-

forward as in Offline, dramatically increasing the convergence rate. Also when switching 

gain is used, monotonic convergence is then certainly assured. However, when feedback 

gains are chosen too high, the system might response poorly. Online-offline ILCs simply add 

both type together but results are not much different from Online type ILCs. 

Although mainly implemented in industrial robotic manipulator applications, ILCs’ 

advantages of simplicity, self-learning and robustness are appealing for quadrotor control, 

where automatic positioning and maneuvering are significant. In addition, many missions 

may be performed repeatedly, making it even more reasonable to exploit the advantages of 

ILCs for quadrotor UAVs. 
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Chapter 3 Quadrotor UAV Modeling 

In this chapter, detailed discussions of a quadrotor UAV model are presented. The 

organization of this chapter is as follows: basic concepts and assumptions used in this thesis 

are introduced in Section 3.1. Kinematics and explanation on how a quadrotor rotate and 

translate and rotation matrix are presented in Section 3.2. Dynamics of a quadrotor including 

derivation using Newton-Euler method, the derived nonlinear equations of motion and their 

detailed analysis are shown in Section 3.3. The quadrotor model parameters used in the 

simulation are discussed in Section 3.4 and finally concluding remarks of this chapter are 

included in Section 3.5. 

3.1 Concepts and Assumptions 

As named, a quadrotor UAV contains four rotors producing thrust upward against its own 

weight and payloads. Oftentimes, payloads are place at the center of the body and rotors 

propel using DC motors, with or without gearbox. The rotors are divided into two pairs; one 

pair rotates in the opposite direction of the other pair in order to balance the angular 

momentum of the system.  Increasing thrust on one side and decreasing on the other side of 

the same pair results in rotation in the pitch or roll direction and the quadrotor UAV will tend 

to translate toward the direction that it inclines to. To rotate the yaw angle while maintaining 

position and altitude, simply equally increase thrust in a pair and decrease thrust in the other. 

In the past studies, some researches were based on a linearized model, many relied on a 

nonlinear model yet some even incorporated more complicated aerodynamic and gyroscopic 

effects. In this thesis, due to aiming to utilize robustness against model uncertainty of ILCs, 

some aerodynamic effects are neglected and the nonlinear model of the quadrotor is based on 

these assumptions: 

 Structure and rotors are assumedly rigid bodies 

 Structure is approximately symmetric and the center of gravity is located at 

the center of the body, dividing the two arms equally in length 
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 Thrust and drag moment from a propeller are approximately proportional to 

the square of the rotor speed. This assumption was proved in real 

measurements in many researches 

 Hub forces or resultant of horizontal forces acting on blade elements are 

neglected 

 Rolling moment or blade flapping, in which the advancing blade generates 

more thrust than the retreating one in translational flight, is neglected 

 Air friction in translational flight and ground effect are neglected 

 Actuator and sensor delay time are not taken into account 

3.2 Kinematics of Quadrotor UAV 

The quadrotor configuration used in this model is illustrated in Fig. 3-1. As seen in the figure, 

three successive rotations, based on right hand rules, are 

 Roll ሺ߶ሻ - rotation about X-body axis  

 Pitch ሺߠሻ - rotation about Y-body axis 

 Yaw ሺ߰ሻ - rotation about Z-body axis 

Numbering of rotor shown in Fig. 3-1 also states that rotor 1 and 3 rotate in the -߰ direction 

while rotor 2 and 4 rotate in the +߰ direction. Considering the Earth frame (E) and the Body 

frame (B), body orientation can be described in the Earth frame by rotation ࣬ from B to E 

where ࣬ א ܱܵ3 is the rotation matrix from the Body frame to the Earth frame. In some 

studies, the commonly used  ࣬௓௒௑ are adopted due to orientation of readily available sensors. 

In this thesis, since there is no sensors consideration involved in the simulation, the rotation 
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matrix ࣬௭௫௬  is employed instead, which simplifies the equations of motion in X and Y 

directions as will be shown later. 

 

Fig. 3-1 Quadrotor configuration in this thesis 

3.2.1 Rotation Matrix 

As aforementioned, ࣬௭௫௬is adopted in the model, which means the order of orientation is 

rotation about the Z-body axis, the X-body axis and the Y-body axis, respectively. Each 

rotation can be separately described as 

 ࣬௫ሺ߶ሻ - rotation about X-body axis 

 ࣬௬ሺߠሻ - rotation about Y-body axis 

 ࣬௭ሺ߰ሻ - rotation about Z-body axis 
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࣬௭௫௬ is then the multiplication of all three rotation matrices and described as 
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(3.1) 

3.2.2 Quadrotor UAV Motion 

Z-direction Translation 

Moving vertically for a quadrotor UAV is very easy and simple, which is a major advantage 

of VTOL aircrafts. To translate in the +Z direction, from hovering, simply increase rotor 

speed equally to each rotor and vice versa in the -Z direction. Changes in rotor angular 

momentum in each pairs are equal and thus be canceled out. Fig. 3-2 illustrates the concept of 

a vertical translation. 
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Fig. 3-2 Z-direction Translation 

X-direction Translation and Pitching Motion 

Since quadrotors are highly coupled, rotation in certain angles results in translation in a 

direction and that is fundamentally how a quadrotor UAV translates. This is also true to the 

pitching motion. Starting from hover, increasing rotor speed in rotor 3 and decreasing in rotor 

1 while maintaining speeds in rotor 2 and 4 results in rotation in the ൅ߠ  direction and 

translation in the +X direction of Earth frame and vice versa. Note that at this point the 

quadrotor UAV tilts in a small angle and thrust are approximately equal to weight, thus no 

translation in the Z direction. This is illustrated in Fig. 3-3. 

 

Fig. 3-3 X-direction Translation and Pitch 
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Y-direction Translation and Rolling Motion 

Similar to pitching, rolling is coupled with the Y direction translation. In this case, starting 

from hover, increasing the rotor speed in rotor 4 and decreasing in rotor 2 while maintaining 

speeds in rotor 1 and 3 results in rotation in ൅߶ direction and translation in -Y direction of 

the Earth frame and vice versa. This is also depicted in Fig. 3-4. 

 

Fig. 3-4 Y-direction Translation and Roll 

Yaw Rotation 

Yawing is similar to vertical translation in that the motion is not coupled. Instead of 

cancelling out rotor angular momentum, thrust is balanced to maintain altitude in this case. 

To perform a pure yaw motion, starting from hover, simply equally increases speed in a pair 

of the same direction of propeller rotation and decreases in the other. Increasing the speed in 

rotor 2 and 4 while decreasing speeds in rotor 1 and 3 results in body rotation in ൅߰ direction 

and vice versa. See Fig. 3-5 for more details. 
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Fig. 3-5 Yaw 

 

3.3 Dynamics of Quadrotor UAV 

3.3.1 External Forces and Moments 

In this model, the quadrotor UAV experiences several forces and moments from external 

sources. Free-body diagram of the quadrotor is presented in Fig. 3-6. Vectors marked in red 

are external forces and moments. All the considered external forces and moments are listed 

subsequently. 

 

Fig. 3-6 Free-body Diagram of the quadrotor 
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Thrust/ Lift 

Unlike any fixed-wing aircraft, a quadrotor relies on thrust ሺܶሻ for both lifting its own weight 

and moving forward or backward. Thrust is generated upward by the four rotors and 

sometimes tilted toward the intended direction of translation. Thrust generated by each rotor 

relates to rotor speed via   

 ௜ܶ ൌ ܾΩ௜
ଶ, ݎ݋݂ ݅ ൌ 1,2,3,4 (3.2) 

where ܾ is the thrust coefficient and Ω௜ is a rotor speed. 

Weight 

Weight is one of the most concerns for any aircrafts, no exception for a quadrotor. In many 

designs, most of overall weight is contributed by batteries. Necessary payloads such as 

sensors and mission-oriented payloads also add up the total weight. As stated earlier, a 

quadrotor generates thrust in the opposite direction of weight, hence requires high thrust 

propellers. Weight can also be reduced with a good design and appropriate materials as done 

in [16].  

Drag Moment 

Drag moment is caused by drag forces acting on propeller blade elements which are assumed 

to be equal on both blades but in opposite direction and thus generate pure moment about the 

rotor axis. Based on the aforementioned assumptions, yawing moment is mainly caused by 

drag moment. In each rotor, Drag moment is expressed as [16] 

 ܳ௜ ൌ ݀Ω௜
ଶ, ݎ݋݂ ݅ ൌ 1,2,3,4 (3.3) 

where ݀ is the drag coefficient. 
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Rolling and Pitching Moment due to Actuators 

Rolling and pitching moment are mainly generated by thrust from a certain pair of propellers. 

In this design, according to Fig. 3-6, rolling moment can be achieve by equally increasing and 

decreasing thrust in rotor 2 and 4 while pitching moment from rotor 1 and 3. These moments 

are not shown in Fig. 3-6 because they are caused by thrust, which is already included in the 

free-body diagram. Both moments relate to thrust as 

 
ቊ
݈݈݃݊݅݋ܴ :ݐ݊݁݉݋݉ ߬థ ൌ ݈ሺെ ଶܶ ൅ ସܶሻ

݄݃݊݅ܿݐ݅ܲ :ݐ݊݁݉݋݉ ߬ఏ ൌ ݈ሺ ଵܶ െ ଷܶሻ
 

(3.4) 

where  ݈ is the quadrotor arm length. 

3.3.2 Newton-Euler Formalism 

To establish a nonlinear dynamic model for the quadrotor, in this thesis, the Newton-Euler 

method is utilized for both the main body and rotors.  A general form of Newton-Euler 

equation is expressed as [51] 

 ቂ݉ࡵ૜ൈ૜ 0
0 ࡵ

ቃ ൜ࢂ
ሶ
ሶ࣓
ൠ ൅ ቄ࣓ ൈ݉ࢂ

࣓ ൈ ࣓ࡵ
ቅ ൌ ቄࡲ

࣎
ቅ (3.5) 

Note that eq. (3.5) is a general form of equations of motion which can be applied in any 

position in the coordinate system. In this case, the point of interest is the center of mass of the 

quadrotor and considering the body frame (B), eq.(3.5) reduces to 

 ቂ݉ࡵ૜ൈ૜ 0
0 ࡵ

ቃ ൜ࢂ
ሶ
ሶ࣓
ൠ ൅ ቄ ૙

࣓ ൈ ࣓ࡵ
ቅ ൌ ቄࡲ

࣎
ቅ (3.6) 
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3.3.3 Body’s Dynamics 

Considering the main body of the quadrotor UAV (Fig. 3-6) and eq.(3.6), one can describe 

translational dynamics of the quadrotor in the body frame (B) as 

݉൞

ሷܺ
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ሷܼ

ൢ

஻
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ە
ۖ
۔

ۖ
ۓ
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0
݉݃

ൡ 

which can then be described in the earth frame (E) through eq. (3.1) as 
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 (3.7) 

From eq.(3.6), the main body rotational dynamics can be described in the body frame (B) as 

        ቎
௫௫ܫ 0 0
0 ௬௬ܫ 0
0 0 ௭௭ܫ

቏ ቐ
߶ሷ

ሷߠ
ሷ߰
ቑ ൅ ቐ
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ሶߠ
ሶ߰
ቑ ൈ ቎

௫௫ܫ 0 0
0 ௬௬ܫ 0
0 0 ௭௭ܫ

቏ ቐ
߶ሶ
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                ቐ
௫௫߶ሷܫ

ሷߠ௬௬ܫ

௭௭ܫ ሷ߰
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߬௬
߬௭
ൡ
௥

 (3.8) 

where subscripts ݁ and ݎ refer to moments due to external forces, which ultimately caused by 

thrust and drag from rotors, and moments due to rotor gyro effect, respectively.  

3.3.4 Rotor’s Dynamics 

Similarly, the dynamics of each rotor can be described using eq.(3.6) by considering 

coordinate system of each rotor, which is simply in the same plane as the body frame for X 

and Y axes while Z axis coincides with rotation of the rotor. Note that rotors do not translate 

relative to the body and, as aforementioned, hub forces and rolling moments are neglected, 

hence translational dynamics of the rotors is negligible. Considering rotational dynamics of 

each rotor in the form of Newton-Euler: 
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for ݅ ൌ 1,2,3,4 and denotes ݅௧௛ rotor. Since the rotors always rotate about their Z-axes at the 

rate of Ω with the moment of inertia about Z-axis of ܬ௥ and have very low masses, ܫ௫௫ and ܫ௬௬ 

can then be omitted and the dynamics of each rotor reduces to 
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 (3.9) 

Note that eq. (3.9) is a function of rotor speed Ω. Since rotor 1 and 3 rotate in the opposite 

direction of rotor 2 and 4, one can define the total rotor speed as: 

 
Ω௥ ൌ Ωଵ െ Ωଶ ൅ Ωଷ െ Ωସ 

(3.10) 

From eq.(3.9) and (3.10), the total moment due to gyro effect from all rotors can be expressed 

as: 
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ቑ (3.11) 

 

3.3.5 Equations of Motion 

Now that all necessary dynamics of the entire model has been established, one can write the 

complete equations of motion of the quadrotor. Combining eq. (3.2), (3.3), (3.4), (3.7), (3.8) 

and (3.11) yields 
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As seen from all the previous derivations, various effects from various sources affect the 

dynamic model. Summary of all considered internal and external forces and moments, their 

effects and sources is shown in Table 3-1. 

Table 3-1 Summary of effects on the quadrotor dynamic model 

Forces/Moments Source Effect Terms 

Thrust/Lift Rotor rotation Aerodynamic ෍ሾܾΩ௜
ଶሿ

ସ

௜ୀଵ

 

Weight Center of mass Gravitational ݉݃ 

Drag moment Rotor rotation Aerodynamic ෍ൣሺെ1ሻ௜݀Ω௜
ଶ൧

ସ

௜ୀଵ

 

Rotating moment 
rotor rotation/arm 

length 
Aerodynamic ൜

݈ܾሺെΩଶ
ଶ ൅ Ωସ

ଶሻ
݈ܾሺΩଵ

ଶ െ Ωଷ
ଶሻ

 

Body coupling 

moment 
Body rotation Gyroscopic ൞

ሶߠ ሶ߰ ൫ܫ௬௬ െ ௭௭൯ܫ

߶ሶ ሶ߰ ሺܫ௭௭ െ ௫௫ሻܫ
ሶ߶ሶߠ ൫ܫ௫௫ െ ௬௬൯ܫ
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Rotor coupling 

moment 

Rotor and body 

rotation 
Gyroscopic/Aerodynamic ቐ

௥ܬሶΩ୰ߠ
߶ሶΩ୰ܬ௥
Ωሶ ௥ܬ௥

 

 

3.4 Model Parameters  

In this work, the chosen parameters for simulation solely rely on the study conducted in [16]. 

The quadrotor developed in that paper (OS4) was carefully and well designed, resulting in a 

light-weight model, relatively high thrust and a reasonably compact size. In addition, the 

quadrotor information was quite accessible and much detailed. Hence the OS4 model seems 

very promising to use as a model for the simulations in this research. Necessary parameters of 

the quadrotor are presented in Table 3-2. Also note that ܫ௫௫   and ܫ௬௬  are approximately 

identical, implying X-Y plane symmetry, which is in accordance with the assumptions in this 

work. 

Table 3-2 Parameters of a quadrotor UAV 

Parameters Description Value 

݈ quadrotor arm length 0.232 ݉ 

ܾ rotor thrust coefficient 3.13 ൈ 10ିହ ܰ ·  ଶݏ

݀ rotor drag coefficient 7.5 ൈ 10ି଻݉  ·  ଶݏ

݉ total quadrotor mass 0.52 ݇݃ 

௫௫ moment of inertia about X axis 6.228ܫ ൈ 10ିଷ݇݃ · ݉ଶ 

௬௬ moment of inertia about Y axis 6.225ܫ ൈ 10ିଷ݇݃ · ݉ଶ 

௭௭ moment of inertia about Z axis 1.121ܫ ൈ 10ିଶ݇݃ · ݉ଶ 
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௥ rotor inertia 6ܬ ൈ 10ିହ݇݃ · ݉ଶ 

௠௔௫ maximum rotor speed 279ߗ  ݏ/݀ܽݎ

3.5 Concluding Remarks 

This chapter discussed about quadrotor modeling which includes basic and detailed concepts 

of quadrotor UAVs, rotation matrix, kinemics and dynamics and their derivations along with 

model parameters chosen in this thesis. The quadrotor UAV model in this thesis is based on 

basic aerodynamic and gyroscopic effects in order to make use of robustness of ILCs while 

considering it as a nonlinear system for the sake of accuracy. The rotation matrix adopted in 

this thesis is ࣬௭௫௬ due to the fact that it simplifies the dynamic model. Analysis on external 

forces and moments were intensely discussed and classified for clarification. The dynamic 

model derived in this chapter will be carried on and modified into state-space form in Chapter 

4 and model parameters will be used in the simulations in Chapter 5.   
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Chapter 4 Control System Design 

This chapter mainly presents detailed features of ILCs, including some derivations, and their 

utilization on the quadrotor model as done in this work. Firstly, detailed concepts, basic 

assumptions and uses of Offline, Online and Online-offline ILCs are presented in Section 4.1. 

Convergence analyses of PD-PD and SPD-PD ILCs are shown in Section 4.2. Comparison 

studies cited from [52] are partly illustrates in Section 4.3. Implementation of ILCs on 

quadrotor model is described in Section 4.4. Trajectory generation used by ILCs in this work 

is shown in Section 4.5, ending with remarks for this chapter in Section 4.6. 

4.1 ILCs: Concepts and Principles 

4.1.1 Problem Description 

As stated earlier, Iterative Learning Control (ILC) can improve tracking performance each 

time a specific task is performed repeatedly. This self-learning characteristic also helps make 

it an easy and robust way to control a plant where the accurate detailed model is not available 

or exposed to relatively large model uncertainties and disturbances, which in most cases are 

nonlinear systems. To gain more insight in ILCs, consider a nonlinear time-varying system in 

the general form of 

 ቊ
ሶݔ ݇ሺݐሻ ൌ ݂ሺ݇ݔሺݐሻ, ሻݐ ൅ ሻݐሺ݇ݑሻݐሺܤ ൅ ሻݐሺ݇ߟ

ሻݐሺ݇ݕ ൌ ሻݐሺ݇ݔሻݐሺܥ ൅ ሻݐሺ݇ߦ
 (4.1) 

where subscription ݇  denotes iteration number, ݔ א Ը௡, ݕ א Ը௥  and ݑ א Ը௠ are the state, 

control input and output of the system, respectively. The function ߟ௞ሺݐሻ א Ը௡ represents both 

the deterministic and random disturbances of the system, and ߦ௞ሺݐሻ א Ը௠ is the measurement 

noise of the system. According to the aforementioned assumptions, it concludes that 

݂ሺݔ௞ሺݐሻ, ሻݐ א Ը௡, ሻݐሺܤ א Ը௡ൈ௥and ܥሺݐሻ א Ը௠ൈ௡. 

To control the system mentioned above, one can use ILCs. A general form of control law of 

ILCs implemented to the system can be written as  
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௧

଴
൅ ௗ௢௙௙ܭ

݀݁௞ሺݐሻ
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(4.2) 

where ݁ሺݐሻ ൌ ሻݐௗሺݕ െ ሻݐሺݕ  and ሶ݁ ሺݐሻ ൌ ሶௗݕ െ ሶݕ ,௣ܭ . ௗܭ ݀݊ܽ ௜ܭ  are PID control gains and 

subscription ݊݋ and ݂݂݋ represent online(feedback, using errors from current iteration) and 

offline(feed-forward, using errors from previous iteration) learning gains, respectively. In 

most studies, integral part is not utilized as ILCs themselves have integration characteristic 

and thus makes not much improvement comparing to those without integral part. For ILCs, 

convergence condition and convergence rate are two main concerns and vary with types of 

ILC. Regardless of variations in each type, ILCs can be mainly divided into offline, online 

and online-offline.  

Before moving on to detailed information on ILCs, it is safer to first establish norms used in 

this thesis for the sake of convergence analysis as follow: 

ԡ݂ԡ ൌ max
௟ஸ௜ஸ௡

| ௜݂|

ԡ݄ሺݐሻԡఒ ൌ ݌ݑݏ
௧אሾ଴,்ሿ

݁ିఒ௧ԡ݄ሺݐሻԡ , ߣ ൐ 0

ԡܯሺݐሻԡ ൌ max
௟ஸ௜ஸ௠

ቌ෍ ห݉௜,௝ห

௡

௝ୀଵ

ቍ

 

where ݂ ൌ ሾ ଵ݂, … , ௡݂ሿ் is a vector, ܯ ൌ ൣ݉௜,௝൧ א Ը௠ൈ௡ is a matrix,  and ݄ሺݐሻሺݐ א ሾ0, ܶሿሻ is a 

real function where T is the time duration.  

 To restrict discussions, the following assumptions are introduced. 

(A1) The desired trajectory ( )dy t  is first-order continuity for [0, ]t TÎ . 

(A2) The control input matrix ( )B t is first-order continuity for [0, ]t TÎ . 
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(A3) The function ( ( ), )f x t t  is globally uniformly Lipschitz in x  for [0, ]t TÎ . That means 

1 1( ( ), ) ( ( ), ) ( ) ( )k k f k kf x t t f x t t c x t x t+ +- £ -  where k is the iteration number and 0fc >  is 

a constant. 

(A4) The uncertainty and disturbance terms ( )k th and ( )k tx  are bounded as follows, 

[0, ]t T" Î  and k" , ( )k t bhh £  and ( )i t bxx £  

The assumptions can be explained as follows. A1 is a fundamental requirement for the 

designed control as the derivation of the output as a feedback signal is needed; A2 is for the 

purpose of the continuity of the controlled system; A3 is a basic requirement for the nonlinear 

system (1). In fact, the function ( , )f x t  may be structurally unknown; A4 restricts the 

disturbance and noise to be bounded that is a reasonable assumption for real applications. 

4.1.2 Types of ILCs 

Offline ILCs 

Traditional ILCs such as the one proposed in[28] are considered offline, where only errors 

from previous iteration have effects on the control law. In the case that only proportional part 

is utilized (P-ILCs), the control law reduces to 

௞ାଵݑ  ൌ ሻݐ௞ሺݑ ൅  ሻ (4.3)ݐ௣௢௙௙݁௞ሺܭ

and formed up in the similar way for PD, PI, PID and so on. The convergence condition of P-

type offline ILC can be derived as[53] 

௣௢௙௙ߩ  ൌ ฮܫ െ ฮܤܥ௣௢௙௙ܭ ൏ 1 (4.4) 

Whenever derivative part is involved, including D-ILC, PD-ILC and PID-ILC, the 

convergence rate becomes[28] 
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ௗ௢௙௙ߩ  ൌ ฮܫ െ ฮܤܥௗ௢௙௙ܭ ൏ 1 (4.5) 

The two aforementioned convergence conditions imply that offline learning gains are upper 

bounded, which means only a certain range of control gain is valid, reducing choice of 

designs. Furthermore, because this type of ILCs relies only on past iterations, their 

convergence rate thus seems to be much slower comparing to other types and in some cases 

cannot reject disturbances. Oftentimes, they also experience ‘bad-good-bad’ learning 

problem, where errors decrease and increase repeatedly, taking much more iterations to reach 

acceptable range of error. In many real experiments, D type tends to perform better than P 

type in terms of convergence rate. Some papers, however, combined both together to achieve 

a better result. Although not used in this thesis, derivation of convergence conditions for 

offline ILCs are presented in section 4.1.2. A simplified control diagram of offline ILCs is 

depicted in Fig. 4-1. 

 

Fig. 4-1 General Offline ILC control diagram 
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Online ILCs 

In contrary to offline ILCs, online ILCs rely on current iteration errors, making it simple like 

classic PID control while maintaining the self-learning feature. The convergence conditions 

are [54],[55] 

 

௣௢௡ߩ ൌ ቛ൫ܫ ൅ ൯ܤܥ௣௢௡ܭ
ିଵ
ቛ ൏ 1     (P-type only) 

௣௢௡ߩ ൌ ԡሺܫ ൅ ሻିଵԡܤܥௗ௢௡ܭ ൏ 1      (D-type involved) 

(4.6) 

It is noticeable that, for online ILCs, the learning gains are unbounded; making it very 

flexible to choose control gains and the larger control gains, the faster the system converges. 

In the same way as offline ILCs, using D-type yield faster convergence rate than P-type alone 

plus P-type cannot reject disturbances well as shown in comparison study in [52]. However, 

relying only on derivative part might not be a wise choice when high noise level appears, thus 

combining both type seems to be a better option that they compensate each other drawbacks. 

Derivation of online PD ILCs convergence conditions are detailed subsequently. General 

control diagram of online ILCs can be demonstrated as seen in Fig. 4-2 

In addition to ordinary online ILCs, one might utilize adaptive switching learning control, 

which dramatically improve convergence rate by increasing online learning gains every 

cycle, in this case, as a function of iteration index. The convergence conditions then 

become[56] 

 

ቛ൫ܫ ൅ ൯ܤܥ௣௢௡ሺ0ሻܭ
ିଵ
ቛ ൏ 1           (P-type only) 

ԡሺܫ ൅ ሻିଵԡܤܥௗ௢௡ሺ0ሻܭ ൏ 1            (D-type involved) 

(4.7) 

Similar to offline ILCs presented earlier, proof of convergence is presented in section 4.1.2 

which covers all types of ILCs mentioned in this thesis.  
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Fig. 4-2 General Online ILC control diagram 

Online-offline ILCs 

When online and offline ILCs are used simultaneously, it simply turns into online-offline 

ILCs. Convergence conditions are then simply combination of both types and can be 

expressed as [42] 

 

൜
௣௢௙௙ߩ ൏ 1
௣௢௡ߩ ൏ 1         (P-type only) 

or 

൜
ௗ௢௙௙ߩ ൏ 1
ௗ௢௡ߩ   ൏ 1

         (D-type involved) 

(4.8) 
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4.2 Convergence Analysis 

The convergence analyses shown subsequently are of PD online-offline ILCs (PD-PD) and 

switching gain PD online-offline ILCs (SPD-PD), which are also shown in [42] and [56]. 

Both of them cover all types of ILCs discussed in previous section. In the following analyses, 

the l –norm is used to examine the convergence of the tracking error. First of all, a relation 

between norm and l –norm is represented by Lemma 1. 

Lemma 1:  Suppose that 1 2( ) [ ( ), ( ), , ( )]T
nx t x t x t x t=   is defined in [0, ]t TÎ . Then  

 
0

1
( ) ( )

t
tx d e x tl

l
t t

l
-æ ö÷ç £÷ç ÷çè øò        for l >0 (4.9) 

Proof: 

{ }

{ }

( )

0 0

( )

0[0, ]

[0, ]

( ) ( )

( )

1
( )

1
( )

t t
t t

t
t t

t T

t
t

t T

x d e x e e d

sup x t e e d

e
sup x t e

x t

l lt l t

l l t

l
l

l

t t t t

t

l

l

- - - -

- - -

Î

-
-

Î

æ ö÷ç =÷ç ÷è ø

£

-
£

£

ò ò

ò
 

[End of proof]. 
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4.2.1 PD-PD Convergence Analysis 

PD-PD control law is expressed as: 

 ( ) ( ) ( ) ( )1 1 1 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )k k p k d k p k d ku t u t K t e t K t e t K t e t K t e t+ + += + + + +   (4.10) 

 

Some notations are introduced first for the briefness of discussions: 

1 1 2 2
[0, ] [0, ]

max ( ) ( ) , max ( ) ( )d d d d
t T t T

B B t K t B B t K t
 

   

   1 2
1 1 2 2

[0, ] [0, ]

( ) ( ) ( ) ( )
max ( ) ( ) , max ( ) ( )d d

pd p pd p
t T t T

d B t K t d B t K t
B B t K t B B t K t

dt dt 
     

1 fc
a l= -  , 

[0, ]
max ( )c
t T

B C t


 ,  1 1
1

d pd
x

f

B B
K

cl

l

l

+
=

-
, 2 2

2
d pd

x
f

B B
K

cl

l

l

+
=

-
 

( ) 1

1 1
[0, ]

max ( ) ( ) ( )m d
t T

I C t B t K tr -

Î
= + , 2 2

[0, ]
max ( ) ( ) ( )m d
t T

I C t B t K tr
Î

= -  

( )
1

1
1 11 f x pd cc K B Bl

r
r

r
l

=
- +

,  2 2
2

c pd c f xB B B c K lb r
l

æ ö+ ÷ç ÷= +ç ÷ç ÷çè ø
 

For each iteration, the repeatability of the initial state setting is satisfied within an admissible 

deviation level, i.e., 

 0(0) (0)k xx x e- £  for  1, 2,...k =  (4.11) 
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where xe  is a small positive constant that represents the acceptable accuracy of the designed 

state vector, and 0 (0)x  represents the desired initial state value. From eqn. (4.1), we have 

 0( ) ( ) ( )dy t C t x t=  (4.12) 

Remark 1: The constraint in (4.11) is more flexible than the requirement of zero initialization 

error in most ILC studies. It can be seen that the zero initialization error is only a special case 

where 0xe = . 

From (4.1), if the uncertainty and disturbance are bounded, then the following holds:  

 (0) (0) (0)d k x c xy y C b B bx xe e- £ + £ +  for  1, 2,...k =  (4.13) 

Define:   

 ( )( )1 22 2 2 c d d xb b T B B Bx hf e= + + + +  (4.14) 

Based on the above preparations, we have the following theorem. 

Theorem: For the nonlinear time-varying system (4.1), if the PD-PD ILC law (4.10) is used 

and the initial state in each iteration follows (4.11), then the final output tracking error is 

bounded given by 

 
( )( )1 / 2

lim ( )
1

c f

k
k

B c b
e t

x

l

r la f r

rb¥

+ +
£

-
     for all [0, ]t TÎ  (4.15) 

Provided the control gain 1( )dK t  and the learning gain 2 ( )dK t  are selected such that 

1( ) ( ) ( )m dI C t B t K t+  is non-singular, and  
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 ( ) 1

1 2
[0, ] [0, ]

max ( ) ( ) ( ) max ( ) ( ) ( ) 1d d
t T t T

I C t B t K t I C t B t K t
-

Î Î
+ - <  (4.16) 

For the kth iteration, the state vector can be obtained from (4.1) 

 ( )( )
0 0

( ) (0) ( ), ( ) ( ) ( )
t t

k k k k kx t x f x B u d t dt t t t t h t= + + +ò ò  (4.17) 

For the k+1th iteration, from (4.1) we have 

 ( )( )1 1 1 1 1
0 0

( ) (0) ( ), ( ) ( ) ( )
t t

k k k k kx t x f x B u d t dt t t t t h t+ + + + += + + +ò ò  (4.18) 

Submitting control law (4.10)  into (4.18) yields: 

 
( )1 1 1 1

0 0 0

1 1 1 1 2 2
0

( ) (0) ( ), ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t t t

k k k k k

t

p k d k p k d k

x t x f x d B u d d

B K e K e K e K e d

t t t t t t h t t

t t t t t t t t t t

+ + + +

+ +

= + + +

é ù+ + + +ê úë û

ò ò ò

ò  
 (4.19) 

Submitting (4.19) from (4.17), we get 

( ) ( )1 1 1 1
0 0

1 1 1 1 2 2
0

( ) ( ) (0) (0) ( ), ( ), ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t t

k k k k k k k k

t

p k d k p k d k

x t x t x x f x f x d d

B K e K e K e K e d

t t t t t h t h t t

t t t t t t t t t t

+ + + +

+ +

é ù é ù- = - + - + -ë ûë û

é ù+ + + +ê úë û

ò ò

ò  

 
  (4.20) 

Using the partial integration equation, we have 

( )

( )

1
1 1 1 1 1 1 1

0 0

2
2 2 2

0 0

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (0) (0) (0) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (0) (0) (0) ( )

t t
d

d k d k d k k

t t
d

d k d k d k k

d B K
B K e d B t K t e t B K e e d

d
d B K

B K e d B t K t e t B K e e d
d

t t
t t t t t t

t
t t

t t t t t t
t

+ + + +

ìïï = - -ïïïíïïï = - -ïïî

ò ò

ò ò




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  (4.21) 

Submitting (4.21) into (4.20), we get 

 

( ) ( )

( )

1 1 1 1 2

1 1 2

1 1
0 0

1
1 1

0

2

( ) ( ) (0) (0) (0) (0) (0) (0) (0) (0)

( ) ( ) ( ) ( ) ( ) ( )

( ), ( ), ( ) ( )

( ) ( )
( ) ( ) ( )

( )

k k k k d k d k

d k d k

t t

k k k k

t
d

p k

p

x t x t x x B K e B K e

B t K t e t B t K t e t

f x f x d d

d B K
B K e d

d

B K

t t t t t h t h t t

t t
t t t t

t

t

+ + +

+

+ +

+

- = - - -

+ +

é ù é ù+ - + -ë ûë û
é ù
ê ú+ -ê ú
ë û

+

ò ò

ò

( )2

0

( ) ( )
( ) ( )

t
d

k

d B K
e d

d

t t
t t t

t

é ù
ê ú-ê ú
ë û

ò

 

(4.22) 

From (4.11), we have  

 ( ) ( )1 0 0 2k k xx x e+ - £  (4.23) 

From assumption A3, we can get 

1 1
0 0 0

( ) ( ) ( ) ( ) 2 2
t t t

k k k kd d d b t b Th hh t h t t h t t h t t+ +
é ù- £ + £ £ë ûò ò ò  

where T is the integral interval. Applying assumptions A3 and A4, and submitting (4.13), 

(4.23) into (4.22), we get 
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( ) ( )

( )

( )

1 1 2

1 1 2

1
1 1

0

2
2

0

1

( ) ( ) 2 2 1 (0) (0) (0) 1 (0) (0) (0)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )

k k d x d x

d k d k

t
d

p k

t
d

p k

f k

x t x t b b T B K C B K C

B t K t e t B t K t e t

d B K
B K e d

d

d B K
B K e d

d

c x

x h e e

t t
t t t t

t

t t
t t t t

t

t

+

+

+

+

- £ + + + + +

+ +

æ ö÷ç ÷+ -ç ÷ç ÷çè ø

æ ö÷ç ÷+ -ç ÷ç ÷çè ø

+

ò

ò

0

1 1 2 1 1
0

2 1
0 0

( )

( ) ( ) ( )

( ) ( ) ( )

t

k

t

d k d k pd k

t t

pd k f k k

x d

B e t B e t B e d

B e d c x x d

t t

f t t

t t t t t

+ +

+

-

£ + + +

+ + -

ò

ò

ò ò

(4.24)

    

Multiplying (4.24) by te l-  where 1l>  and fcl> , we have 

 

1 1 1 2

1 1 2
0 0

1
0

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

t
k k d k d k

t t
t t

pd k pd k

t
t

f k k

x t x t e B e t B e t

B e e d B e e d

c e x x d

l
ll l

l l

l

f

t t t t

t t t

-
+ +

- -
+

-
+

- £ + ++

+ +

+ -

ò ò

ò

 (4.25) 

Applying Lemma 1 to (4.25), we can get the following inequality         

 
1 2

1 1 1 21 ( ) ( ) ( ) ( )f pd pd
k k d k d k

c B B
x t x t B e B e

ll l
f t t

l l l+ +

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷- - £ + + + +ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
 (4.26) 

According to the notions introduced in Section 2, (4.26) can be rewritten as: 

 1 1 1 2( ) ( ) ( ) ( ) /k k x k x kx t x t K e t K e tl l ll l
f a+ +- £ + +  (4.27) 

So far, we build the relationship between the differences of state variables and the tracking 

errors in two sequential iterations. Now, we want to calculate the tracking errors from 

iteration to iteration. From (4.1), the tracking error at the k+1th iteration can be expressed as: 
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 ( )
( ) ( )

1 1

1

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

k d k

k k k

k k k k k

e t y t y t

e t y t y t

e t C t x t x t t tx x

+ +

+

+ +

= -

= - -

= - - - -

 (4.28) 

Replacing (4.22) into (4.28), we have 

( ) ( )( ) ( )

( )

( )

1 1 1
0

1
1 1 1 1

0

2
2 2

0

( ) ( ) ( ) ( ), ( ), ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

k k k k k k

t
d

d k p k

t
d

d k p k

e t e t C t f x f x d t t

d B K
C t B t K t e t C t B K e d

d

d B K
C t B t K t e t C t B K e

d

t t t t t x x

t t
t t t t

t

t t
t t t

t

+ + +

+ +

= - - - -

æ ö÷ç ÷- - -ç ÷ç ÷çè ø
æ ö÷ç ÷- - -ç ÷ç ÷çè ø

ò

ò

ò

( )1 1 1 2( ) (0) (0) (0) (0) (0) (0) (0) (0)k k d k d k

d

C t x x B K e B K e

t

+ +
é ù+ - - -ë û

 

  (4.29) 

Reorganizing (4.29) gets 

[ ] [ ] ( ) ( )( )
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( )

( )

1 1 2 1
0

1
1 1

0

2
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1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ( ),
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d k d k k k
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t
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I C t B t K t e t I C t B t K t e t C t f x f x d
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C t B K e d
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C t B K e d
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C t x x B
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+ = - - -

æ ö÷ç ÷- -ç ÷ç ÷çè ø
æ ö÷ç ÷- -ç ÷ç ÷çè ø

+ - -
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( )
1 1 2

1

) (0) (0) (0) (0) (0)

( ) ( )

d k d k

k k

K e B K e

t tx x

+

+

é ù-ë û
- -

 
  (4.30) 

From (4.30) we have 
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{

}

1 1 2 1
0

1 1 2
0 0

( ) ( ) ( ) ( )

( ) ( )

2

t

k k f c k k

t t

c pd k c pd k

c

e t e t c B x x d

B B e d B B e d

B bx

r r t t t

t t t t

f

+ +

+

£ + -

+ +

+ +

ò

ò ò  (4.31) 

Multiplying (4.31) by te l-  where fcl> , and using Lemma 1, we get 

 

}

1 1 2 1

1 1 2

( ) ( ) ( ) ( )

1 1
( ) ( )

2

f
k k c k k

c pd k c pd k

c

c
e t e t B x t x t

B B e t B B e t

B b

ll l
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x

r r
l

l l
f

+ +

+

ìïï£ + -íïïî

+ +

+ +

 
(4.32) 

Reorganizing (4.32) gets 

1 1 2 1
1 1 2 1 1 11 ( ) ( ) ( ) ( ) 2c pd c pd f c

k k k k c

B B B B c B
e t e t x t x t B bxll l

r r
r r r f r

l l l+ +

æ ö æ ö÷ ÷ç ç÷ ÷- £ + + - + +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 
  (4.33) 

Submitting (4.27) into (4.33) and doing some simplification, we can get 

 

( )

1 1 2
1 1 2 1 1

1
1 1 2

1 ( ) ( ) 2

( ) ( ) /

c pd c pd
k k c

f c
x k x k

B B B B
e t e t B b

c B
K e t K e t

xll

l l ll

r
r r r f r

l l

r
f a

l

+

+

æ ö æ ö÷ ÷ç ç÷ ÷- £ + + +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

+ + +

 (4.34) 

Simplifying (4.34) obtains: 
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 1( ) ( ) 1 2f
k k c

c
e t e t B bxll

rb r f r
la+

æ ö÷ç ÷£ + + +ç ÷ç ÷çè ø
 (4.35) 

where 
( )

1

1
1 11 c

f x pd

B
c K Bl

r
r

r
l

=
- +

, 
( )2 2

2

c pd f xB B c K lb r
l

+
= +  

From (4.16), we have 

 ( ) 1

1 2 1 2
[0, ] [0, ]

max ( ) ( ) ( ) max ( ) ( ) ( ) 1d d
t T t T

I C t B t K t I C t B t K tr r -

Î Î
= + - <  (4.36) 

If l  is set large enough, then the following relationship holds: 

 ( )( )1
1 2 1 2

1 21
c

f x x pd pd

B
c K K B Bl l

r
l

r r
> + + +

-
 (4.37) 

Then, we can guarantee 

 ( )1
1 11 0c

f x pd

B
c K Bl

r
l

- + >  (4.38) 

Finally, we can assure  

 1rb <  (4.39) 

From (4.39) and (4.35), we can guarantee that the final tracking error is bounded as 

 
( )( )1 / 2

lim ( )
1

c f

kk

B c b
e t

x

l

r la f r

rb¥

+ +
£

-
    for all [0, ]t TÎ  (4.40) 
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To increase the convergence rate in (4.40), we can reduce 1pdB
 
and 2pdB in (4.35) by properly 

choosing the proportional control gains. According to (4.24), the optimal gains 1pK  and 2pK  

can be chosen as follows: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

11
1

21
2

d
p

d
p

d B t K t
K t B t

dt

d B t K t
K t B t

dt

-

-

ì é ùïï ë ûï =ïïïíï é ùï ë ûï =ïïïî

 (4.41) 

From (4.16), the optimal learning gain 2dK
 
is: 

 ( ) ( ) ( )1 1
2dK t B t C t- -=  (4.42) 

Remark 2:  If the following initial state updating law is used  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
1

1 1 1 2(0) 1 0 0 0 (0) 0 0 (0) 0 0 (0) (0)k d k d d d d kx B K C x B K y B K y y
-

+
é ù= + + + -ë û       

  (4.43) 

then we have  

 (0) 0lim k
k

x
¥

=  (4.44) 

In such a way, we can get 0xe = . Therefore,  

 
( )( )( )1 / 2 2 2

lim ( )
1

c f

k
k

B c b b T b
e t

x h x

l

r la r

rb¥

+ + +
£

-
 (4.45) 
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Remark 3: If the uncertainty and disturbance are repeatable at every iteration, i.e., they are 

the same at every iteration. In this case, from (16) and (24), the final tracking error bound 

becomes: 

 
( )( ) ( )( )1 21 / 2

lim ( )
1

c f c d d x

k
k

B c B B B
e t

l

r la e

rb¥

+ + +
£

-
 (4.46) 

Remark 4: If the initial state updating law (4.43) is applied, and the uncertainty and 

disturbance are repeatable, then the final tracking error bound is lim ( ) 0kk
e t

l¥
= . Such a 

conclusion can be derived directly from Remark 2 and Remark 3. 

4.2.2 SPD-PD Convergence Analysis 

PD-PD control law is expressed in the form of (4.10) with  

 

( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

0

0

( 1) ( )

p p

d d

K k s k K

K k s k K

with s k s k

ìï =ïïíï =ïïî
+ >

 (4.47) 

The control law then becomes 

 
( ) ( )

( ) ( )
1 1 1 1 1

2 2

( ) ( ) 1 ( ) 1 ( )

( ) ( )

k k p k d k

p k d k

u t u t K k e t K k e t

K t e t K t e t

+ + += + + + +

+ +



  (4.48) 

Following notations are used in this analysis for the sake of briefness: 

1 1 2 2
[0, ] [0, ]

max (0) ( ) , max ( )d d d d
t T t T

B K C t B K C t
 

    

   1 1 1
[0, ]

max 0 0pd p d
t T

B K C K C


    ,  2 2 2
[0, ]

maxpd p d
t T

B K C K C


    
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 1 1 2 2
[0, ] [0, ]

max 0 , maxKp p Kp p
t T t T

B K B K
 

 
 

 1 1 2 2
[0, ] [0, ]

max 0 , maxKd d Kd d
t T t T

B K B K
 

   

[0, ]
max ( )B
t T

B B t


 ,  
[0, ]

max ( )C
t T

B C t


 ,  max ( )sB s k  

1 1
1

d f pd
B

f

B c B
K

cl

+
=

- , 
2 2

2
d f pd

B
f

B c B
K

cl

+
=

-  

( ) 1

1 1
[0, ]

max (0)d
t T

I K CBr -

Î
= +

, 
2 2

[0, ]
max m d
t T

I K CBr
Î

= -
 

1

1 11 s B BB B K

r
r

r
=

- ,  2 2B BB Kb r= +
 

Theorem: For the nonlinear time-varying system (4.1), if the SPD-PD type iterative learning 

control law (4.48) is applied and the switching gain algorithm (4.47) is adopted, then the final 

state error and the output tracking error are bounded and the boundednesses are given by 

 

( )

( )

1
lim

1

lim
1

k x
k

f

C

k x
k

f

x t Tb
c

B
e t Tb b

c

hl

h xl

r
d e

l rb

r
e

l rb

¥

¥

F
£ + +

- -

F
£ + + +

- -

ì æ öï ÷ï ç ÷ï ç ÷çï è øïïíï æ öï ÷çï ÷ç ÷ï çè øïïî

 
(4.49) 

where ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2 1 2s B B s d d s Kp Kp s Kd Kd s B B x

B K K B B B b B B B b B B B b B K K
h x x

eF= + + + + + + + + + . 

Provided the control gain 1(0)dK  and the learning gain 2 ( )dK t  are selected such that 

1(0) ( ) ( )m dI K B t C t+  is non-singular, and  
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( ) 1

1 1
[0, ]

2 2
[0, ]

max (0) ( ) ( ) 1

max ( ) ( ) ( ) 1

d
t T

d
t T

I K B t C t

I K t B t C t

r

r

-

Î

Î

ìï + = <ïïïíï - = <ïïïî
 (4.50) 

Also we propose the following initial state learning algorithm: 

( ) ( ) ( )( ) { ( ) ( ) ( ) ( )( )}1

1 1 1 2(0) 1 0 0 0 (0) 0 0 (0) 0 0 (0) (0)k d k d d d d kx B K C x B K y B K y y
-

+ = + + + -  

  (4.51) 

From (4.1), we can calculate the tracking errors as: 

 
 
 1 1 1

k k k

k k k

e C t x

e C t x

 

   

  


 
 (4.52) 

The derivative of the tracking errors can be represented as 

 
   
   1 1 1 1

k k k k

k k k k

e C t x C t x

e C t x C t x

  

     

   


  

  
  

 (4.53) 

From (4.48) we have: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 2 21 0 ( ) 1 0 ( ) ( ) ( )k k p k d k p k d ku u s k K e t s k K e t K t e t K t e td d+ + += - + - + - -    

  (4.54) 

Submitting (4.52) and (4.53) into (4.54) gets: 

{ } { } ( ) ( ){ }

( ) ( ){ }
1 2 2 1 1 1

1 1 1 1

1 0

1 0

k k p k k d k k k p k k

d k k k

u u K C x K C x C x s k K C x

s k K C x C x

d d d x d d x d x

d d x

+ + +

+ + +

= - - - + - - + -

- + + -

 

 
 

  (4.55) 
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Also from (4.1) we can get the following equations: 

 
1 1 1 1

k k k k

k k k k

x f B u

x f B u

   
      

  
   




 (4.56) 

Submitting (4.55) into (4.56) and reorganizing gets: 

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

1 1 2 1 1 1

2 2 1 1 1 1

2 1 1 2

1 0 1 0 0

1 0

1 0

d k d k p d k

p d k d k k k

d k k k p k p k

I s k K CB u I K CB u s k K C K C x

K C K C x s k K C f C

K C f C s k K K

d d d

d d h x

d h x x x

+ +

+ + +

+

+ + = - - + +

- + - + - -

- - - + + +



 



          

  (4.57) 

From A3 we have k f kf c xd d£ , and
  1 1k f kf c xd d+ +£ . As  1 1s k   , to choose a 

proper control gain ( )1 0pK and from (4.50) we can ensure: 

        1 1

1 1 11 0 0 1d dI s k K CB I K CB 
 

       (4.58) 

Applying (4.58), (4.57) can be rewritten in the λ-norm and simplified as: 

( ){ ( ) ( )

( ) ( ) }
1 1 2 1 1 1 2 2 1 2

1 2 1 2

k k s pd d f k pd d f k s d d

s Kp Kp s Kd Kd

u u B B B c x B B c x B B B b

B B B b B B B b

hl ll l

x x

d r r d d d+ +£ + + + + + +

+ + + + 

       

  (4.59) 

For the kth iteration, the state vector can be written as: 

 ( )( )
0 0

( ) (0) ( ), ( ) ( ) ( )
t t

k k k k kx t x f x B u d t dt t t t t h t= + + +ò ò  (4.60) 

From (4.1), we also have: 
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 ( )( )
0

( ) (0) ( ), ( ) ( )
t

d d d dx t x f x B u dt t t t t= + +ò  (4.61) 

From (4.60) and (4.61), we get: 

 ( ) ( )( ) ( )( ) ( )
0 0

( ), ( ), 0
t t

k d k k kx f x f x d B t u d xd t t t t t d h t d= - + - +ò ò  (4.62) 

Applying A3 to (4.62), we get  

 ( )( ) ( )
0 0

0
t t

k f k k k kx c x d B t u d xd d t d h t d£ + - +ò ò  (4.63) 

Eqn. (4.63) can be written in the norm form as: 

 ( )( ) ( )
0 0

0
t t

k f k k k kx c x d B t u d xd d t d h t d£ + + +ò ò  (4.64) 

According to the definition of λ-norm, for λ>cf ,  applying Lemma 1 to (4.64) obtains: 

 
xB

k k
f f f

B T
x u b

c c chl l

e
d d

l l l
£ + +

- - -  (4.65) 

For the k+1th iteration, we can get a very similar result:
 

 1 1
xB

k k
f f f

B T
x u b

c c chl l

e
d d

l l l+ +£ + +
- - -

 (4.66) 

Submitting (4.65) and (4.66) into (4.59) and simplifying it gets: 

 ( ) ( )1 1 1 1 2 2 11 s B B k B B kB B K u B K u
ll

r d r r d r+- £ + + F  (4.67) 
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Eqn. (4.67) can be simplified as 

 1k ku u
ll

d rb d r+ £ + F  (4.68) 

From (4.50) we have 1 2 1   . If we choose 

 
( )( )1 1 2 1 2

1 21

B f s pd pd s d d

f

B c B B B B B B
c

r
l

r r

+ + +
> +

-
 , then we can guarantee 1  . 

From (4.68) we can get:  

 ( )lim
1k

k
u t

l

r
d

rb¥

F
=

-
 (4.69) 

From (4.69),we can see that the control input is bounded and is close to the desired control 

input.  

Submitting (4.69)  into (4.65), we can get: 

 ( ) 1
lim

1k xk
f

x t Tb
c hl

r
d e

l rb¥

æ öF ÷ç= + + ÷ç ÷ç ÷ç- -è ø
 (4.70) 

Eqn. (4.70)  proves that the state error is bounded. 

Finally, from (4.52) we can get: 

 ( )lim
1

C
k xk

f

B
e t Tb b

c h xl

r
e

l rb¥

æ öF ÷ç ÷= + + +ç ÷ç ÷ç- -è ø
 (4.71) 

Eqn. (4.71) demonstrates that the output error is bounded.  
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Remark 1:  If the initial state updating law (4.51) is used, we will ensure 0(0) (0)lim k
k

x x
¥

= . 

In this manner, we can get lim 0xk
e

¥
= . Therefore,  

 ( )lim
1

C
k

k
f

B
e t Tb b

c h xl

r
l rb¥

æ öF ÷ç ÷= + +ç ÷ç ÷ç- -è ø
 (4.72) 

Remark 2: If there is no uncertainty and disturbance in (4.1), then the final tracking error 

bound becomes: 

 ( )lim C x
k

k
f

B
e t

cl

e
l¥

=
-

 (4.73) 

Remark 3: If the initial state updating law (4.51) is applied, and there is no uncertainty and 

disturbance, then the final tracking error is lim ( ) 0k
k

e t
l¥
= . Such a conclusion can be 

derived directly from Remark 1 and Remark 2. 

Remark 4: The convergence condition (4.50) doesn’t include the proportional gains. 

Therefore, it provides some extra freedom for the choices of  1pK
 
and 2pK in the proposed 

control law (4.48). 

4.3 Comparison Study on ILCs 

A comparison study on types of ILCs applied to a nonlinear time-varying system in the 

presence of repetitive noise (noise as a constant of iteration) and varying noise (noise as a 

function of iteration) has been well established in [52]. To generally demonstrate 

performance of online PD and SPD ILCs, some results in the paper are cited and shown 

afterward. Consider the following MIMO nonlinear system 

( )
( )

( )( ) ( )( ) ( )
( )

( )
( )

( )
( )
( )

1 2 1 1 1 0
0

2 2 2 0

sin 1 sin cos 21 0
0.5

2 cos 40 22 5 3 2

k k k k k

k k k

x t x t x t x t u t f t
k

x t x t u t f tt t

p
a

p

é ùé ù é ù é ù é ùé ù+ê úê ú ê ú ê ú ê úê ú= + + +ê úê ú ê ú ê ú ê úê ú- - - ë ûê úë û ë û ë û ë ûë û



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( )
( )

( )
( )

( )
( )
( )

1 1 0
0

2 2 0

sin 24 0
0.5

2sin 40 1
k k

k k

y t x t f t
k

y t x t f t

p
a

p

é ù é ù é ùé ù
ê ú ê ú ê úê ú= + +ê ú ê ú ê úê úë ûë û ë û ë û

 

 With ଴݂ ൌ 5 Hz, ߙ଴  is set to 0 for repetitive noise and 5 for varying noise. The desired 

tracking trajectories are set as 

( ) ( ) ( ) [ ]2
1 2 12 1 0,1d dy t y t t t for t= = - Î  

Using the general form of PD online-offline ILCs in eqn. (4.10), the chosen gains in the paper 

are 

ቐ
௣௢௙௙ܭ ൌ ௗ௢௙௙ܭ ൌ ௢௙௙ܭ ቂ

0.25 0
0 0.5

ቃ

௣௢௡ܭ ൌ ௗ௢௡ܭ ൌ ௢௡ܭ ቂ
0.5 0
0 2.5

ቃ
 

where ܭ௢௙௙ and ܭ௢௡ are control gain factor and are set to 0.5,1 and 1.5 for ܭ௢௙௙ and 1, 5 and 

10 for ܭ௢௡. Note that ܭ௢௙௙ ൌ 1 is the optimal choice for offline learning gains. 

Online ILCs: P-type vs D-type 

Comparison between pure P-type and D-type online ILCs in the presence of repetitive noises 

are clearly illustrated in Fig. 4-3. The figure shows errors of output y1 of the system. The 

blue, green and red lines indicate the value of ܭ௢௡ of 1, 5 and 10, respectively, for both P-

type and D-type ILCs.  At the same gain factor, it is obvious that D-type converges much 

faster with less maximum error in every iteration comparing to P-type. On the other hand, P-

type alone cannot achieve monotonic convergence with gains chosen too small. Note that 

both types converge faster at higher gain factor.   
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Fig. 4-3 Comparison between P-type and D-type online ILCs  

PD ILCs: offline vs online vs switching gain 

Performance of PD offline, online, online-offline and SPD are shown in Fig. 4-4. It can be 

seen that PD offline ILCs are the worst among them with highest maximum errors and lowest 

convergence speed. SPD ILCs converge fastest with smallest maximum errors while PD 

online and online-offline are approximately the same.  The figure also shows better 

performance of PD-type over P-type and D-type alone, making more sense to choose PD-type 

in this thesis. 
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Fig. 4-4 Comparison among PD ILCs 

4.4 ILCs Implementation on Quadrotor 

To design the control system for a quadrotor UAV, it is more convenient to first establish a 

state-space model. In this work, the states of the system are chosen as  

 
࢞ ൌ ሾݔଵ  ݔଶ  ݔଷ ସݔ ହݔ ଺ݔ ଻ݔ ଼ݔ ଽݔ ଵ଴ݔ ଵଵݔ ଵଶሿ்ݔ

ൌ ൣܺ  ܻ  ܼ ߶ ߠ ߰ ሶܺ ሶܻ ሶܼ ߶ሶ ሶߠ ሶ߰ ൧
்

 
(4.74) 

Recalling from dynamic model formulated in Chapter 3 along with the state vector expressed 

in (4.74), the state-space model with disturbances can then be described in the form of  
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and 

ሻݐሺ࢟  ൌ  ሻ (4.76)ݐሺ࢞ଵଶൈଵଶࡵ

where ݑଵ  ସ are virtual inputs, which simplifies the control laws shown later, and relates toݑ…

thrust generated by rotors and ultimately rotor speed via 
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and ݀ଵ …݀ସ are disturbances in the Z-direction and the three rotations. In the simulations, no 

additional disturbances are added in X and Y directions due to the fact that disturbances in 

rotation also affect position because when the quadrotor tilts, the lift force then contributes a 

horizontal force component, dragging the body to the tilt direction. The disturbances 

simulated will be discussed and presented in Chapter 5.    

In this thesis, as stated earlier, integral part of PID will be neglected as ILC itself has a 

characteristic of integration, by adding control law from previous iteration to the current one. 

Furthermore, offline and online-offline ILCs are not considered here. Only ordinary PD 

online ILCs and SPD ILCs will be tested and compared. 

4.4.1 PD ILCs 

Control inputs are calculated using iterative learning control as  

 
ሻݐ௜,௞ାଵሺݑ ൌ ሻݐ௜,௞ሺݑ ൅ ൫ܭ௣௢௡൯௜ାଶ ቀݔ௜ାଶ,ௗሺݐሻ െ ሻቁݐ௜ାଶሺݔ

௞ାଵ
 

൅ሺܭௗ௢௡ሻ௜ାଶ൫ݔ௜ା଼,ௗሺݐሻ െ  ሻ൯௞ାଵݐ௜ା଼ሺݔ
(4.78) 

for ݅ ൌ 1, … , 4. From (4.75), ݔଷ,ௗand ݔଽ,ௗ  are the only desired states in the Z-direction for 

take-off and landing missions that are determined by desired trajectories. In order to find 

proper desired states as a function of time for the rest, two dummy control inputs are 

introduced and defined as 

 
ሻݐ௬,௞ାଵሺݑ ൌ ሻݐ௬,௞ሺݑ ൅ ൫ܭ௣௢௡൯ଵ ቀݔଶ,ௗሺݐሻ െ ሻቁݐଶሺݔ

௞ାଵ

൅ሺܭௗ௢௡ሻଵ൫଼ݔ,ௗሺݐሻ െ  ሻ൯௞ାଵݐሺ଼ݔ
(4.79) 

and 
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ሻݐ௫,௞ାଵሺݑ ൌ ሻݐ௫,௞ሺݑ ൅ ൫ܭ௣௢௡൯ଶ ቀݔଵ,ௗሺݐሻ െ ሻቁݐଵሺݔ

௞ାଵ

൅ሺܭௗ௢௡ሻଶ൫ݔ଻,ௗሺݐሻ െ  ሻ൯௞ାଵݐ଻ሺݔ
(4.80) 

where ݔଵ,ௗ, ,ଶ,ௗݔ  ௗ are determined by desired trajectories in X and Y directions and,଼ݔ ଻,ௗ andݔ

their derivatives, respectively. Hence the desired angles and rates can be defined as 

 

߶ௗሺݐሻ ൌ ሻݐସ,ௗሺݔ ൌ asin൫ݑ௬൯

߶ሶௗሺݐሻ ൌ ሻݐଵ଴,ௗሺݔ ൌ
1

ඥ1 െ ௬ଶݑ
௬ሶݑ

 (4.81) 

and 

 

ሻݐௗሺߠ ൌ ሻݐହ,ௗሺݔ ൌ െasin ൬
௫ݑ

cosሺݔସሻ
൰

ሻݐሶௗሺߠ ൌ ሻݐଵଵ,ௗሺݔ ൌ െ
ሶݑ ௫ ൅ tanሺݔସሻ ௫ݑଵ଴ݔ

cosሺݔସሻඨ1 െ ൬
௫ݑ

cosሺݔସሻ
൰
ଶ

 (4.82) 

Since a quadrotor is very agile and is able to maneuver in any direction, controlling yaw 

angle is not very necessary, but it is preferable to maintain zero yaw rate to prevent  

undesirable gyroscopic and aerodynamic effects, leading to inefficiency, if not instability, and 

thus it is defined as 

 ߰ௗሺݐሻ ൌ ሻݐ଺,ௗሺݔ ൌ ሶ߰ௗሺݐሻ ൌ ሻݐଵଶ,ௗሺݔ ൌ 0 (4.83) 

4.4.2 SPD ILCs 

When a switching gain (SPD ILC) is used, online learning gains increase monotonically each 

iteration and can be written as 
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 ቐ
൫ܭ௣௢௡൯௜ሺ݇ሻ ൌ ሺ݇ሻݏ ൈ ൫ܭ௣௢௡൯௜ሺ0ሻ

ሺܭௗ௢௡ሻ௜ ሺ݇ሻ ൌ ሺ݇ሻݏ ൈ ሺܭௗ௢௡ሻ௜ሺ0ሻ
݁ݎ݄݁ݓ ሺ݇ሻݏ ൌ ݇, ݇ ൒ 1 (4.84) 

where subscript ݅ indicates learning gain corresponding to each control law. Hence control 

laws are then a function of iteration number and can be expressed as 

 
ሻݐ௜,௞ାଵሺݑ ൌ ሻݐ௜,௞ሺݑ ൅ ൫ܭ௣௢௡൯௜ାଶሺ݇ሻ ቀݔ௜ାଶ,ௗሺݐሻ െ ሻቁݐ௜ାଶሺݔ

௞ାଵ
 

൅ሺܭௗ௢௡ሻ௜ାଶሺ݇ሻ൫ݔ௜ା଼,ௗሺݐሻ െ  ሻ൯௞ାଵݐ௜ା଼ሺݔ
(4.85) 

Note that the switching here occurs in iteration domain rather than time domain for traditional 

switching control that could cause trouble in transient process of the switched system which  

does not apply to this case. 

4.5 Trajectory Generation 

To control a plant using ILCs, trajectory tracking, where desired position varies with time, is 

considered rather than point-to-point control, which is used in some quadrotor studies such 

as[21]. In order to utilize trajectory tracking to alter to different states, one cannot simply use 

a first order velocity equation, which would require a huge input to satisfy the control rule, 

resulting in an inaccurate tracking and would damage actuators if used in a real application. 

The problem can be solved by choosing a higher order polynomial equation for trajectory 

planning. One can literally choose the order of a polynomial as high as desired in obtain a 

smooth trajectory, i.e., continuous and gradual change in position, velocity and acceleration. 

In this thesis, a 5th order polynomial function of time is proved to be sufficient and thus used 

in every mission simulation. With the boundary conditions of ݂ሺ0ሻ ൌ 0, ݂ሺܶሻ ൌ 1, ݂ᇱሺ0ሻ ൌ

݂ᇱሺܶሻ ൌ ݂ᇱᇱሺ0ሻ ൌ ݂ᇱᇱሺܶሻ ൌ 0 , a unit trajectory can be obtained as [57]  

 ݂ሺݐሻ ൌ 10 ൬
ݐ
ܶ
൰
ଷ

െ 15 ൬
ݐ
ܶ
൰
ସ

൅ 6 ൬
ݐ
ܶ
൰
ହ

 (4.86) 
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where ݂ሺݐሻ א ሾ0,1ሿ and ݐ א ሾ0, ܶሿ. It can be seen that it is a function of time within a period, 

hence can be used in any task perform repeatedly, maneuvering in the case of this work. Fig. 

4-5 demonstrates how the function results in a smooth trajectory, for position, velocity and 

acceleration. The velocity and acceleration gradually increase from zero as position starts to 

change, and then steadily decrease back to zero when reaching the destination. This is clearly 

an effective trajectory to track due to its smoothness which makes tracking more easily and 

accurately and also avoids actuator saturation. 

 

Fig. 4-5 Position, velocity and acceleration plotting of the 5th order polynomial  
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4.6 Concluding Remarks 

This chapter has described important principles of general ILCs including offline ILCs, 

online ILCs and online-offline ILCs. Convergence analysis for PD online ILC and SPD 

online ILC were conducted and proved, showing advantages, drawbacks and reasons for 

candidacy of both types of ILCs to perform simulations. Implementation of both PD and SPD 

ILCs on the quadrotor nonlinear model with disturbances was demonstrated. A summarized 

control diagram of ILC implemented in a quadrotor plant is illustrated in Fig. 4-6. Finally, an 

appropriate choice of smooth trajectory was chosen for simulations and will be carried on to 

the next chapter of Simulation Results.  

 

Fig. 4-6 Control diagram of the quadrotor model implemented with PD and SPD online 

ILCs 
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Chapter 5 Simulation Results 

This chapter mainly presents some simulation results for trajectory tracking of a quadrotor 

UAV in the presence of considerable disturbances, using PD and SPD online ILCs. All the 

simulation results are obtained solely using MATLAB programming (see Appendix for more 

detail).  The organization of this chapter is as follows: control gains and disturbances used in 

the simulations are introduced in Section 5.1. Simulation results of vertical take-off are 

shown in Section 5.2. This section also discusses the effect of changing each individual and 

the whole set of control gains and demonstrates the effectiveness of PD online and SPD-

ILCs. Simulation results of landing, horizontal smooth translation, horizontal circular 

translation and spatial circular trajectory are presented in sections 5.3, 5.4, 5.5 and 5.6, 

respectively. Finally, concluding remarks for this chapter are then summarized in Section 5.7.  

5.1 Introduction of Control Gains and Disturbances 

Throughout the simulation, a standard set of P and D online learning gains is used in all 

maneuvering and chosen as 

 

௣௢௡ܭ ൌ ቂ൫ܭ௣௢௡൯ଵ ൫ܭ௣௢௡൯ଶ ൫ܭ௣௢௡൯ଷ ൫ܭ௣௢௡൯ସ ൫ܭ௣௢௡൯ହ ൫ܭ௣௢௡൯଺ቃ 

ൌ  ሾ0.1݊݋ܭ 0.1 50 5 5 500ሿ 

ௗ௢௡ܭ ൌ  ௣௢௡ܭ1.5

(5.1) 

where ܭ௢௡ ൌ 0.5, 1, 1.5 is used to demonstrate the effect of increasing-decreasing the whole 

gain set by a factor. For most of the simulations here, ܭ௢௡ ൌ 1 unless otherwise stated. The 

control gains ൫ܭ௣௢௡൯ଵ…൫ܭ௣௢௡൯଺  correspond to ݔଵ ଺ݔ…  respectively and ܭௗ௢௡  correspond to 

଻ݔ  ଵଶ . Due to the fact that, in this thesis, the main goal is to demonstrate validity of onlineݔ…

ILCs implementation on a quadrotor model, the control gains above were found using trial 

and error with regard to high stability and trajectory tracking performance priority and 

consequently neglecting power consumption optimization. First of all, note that the first two 

control gains of ൫ܭ௣௢௡൯ଵ  and ൫ܭ௣௢௡൯ଶare chosen very small compared to others for two 

reasons: firstly, to clearly demonstrate the learning characteristics of online ILCs and how 
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much improvement obtained despite fairly large errors in X and Y directions for some 

maneuverings in the first iterations as will be shown later. Secondly, to clearly show the 

better performances of SPD ILCs over PD online ILCs as at very high gains, their differences 

are less obvious. Smaller errors in the first iterations can be obtained using larger gains. The 

gain ൫ܭ௣௢௡൯ଷ ൌ 50 was obtained through simulation and found to be the lowest gain that 

yielded a fast enough response to counter with its own weight at hover. The considerably 

large gain of 500 for ൫ܭ௣௢௡൯଺  was chosen to obtain a sensible response due to very low 

moment of inertia of rotors and their opposite direction of rotation while moment of inertia 

about the Z-axis of the quadrotor UAV ሺܫ௭௭ሻ is much larger comparing to ܫ௫௫  and ܫ௬௬(see 

section 3.4). The relation ܭௗ௢௡ ൌ  ௣௢௡ was simply chosen arbitrarily and comparison inܭ1.5

choices of this factor will be discussed later.  

Before moving on to next section, the disturbances affecting the quadrotor model in each 

direction are introduced first. Throughout the simulations in this work, as stated earlier in 

previous chapter, disturbances appear only in Z-direction and the three angles, which are 

chosen as 

 

ە
ۖ
۔

ۖ
ۓ
݀ଵ ൌ ܦ0.1

݀ଶ ൌ ܦ

݀ଷ ൌ ܦ

݀ସ ൌ ܦ0.001

 , ܦ ൌ 10 ൅ 20 sinሺ2ݐߨሻ (5.2) 

Note that, recalling from the dynamic model and its parameters in Chapter 3, maximum 

disturbance in the Z direction (3 m/s2) is fairly large comparing to maximum thrust generated 

by all propellers per total mass of 18.7 m/s2, which is approximately 16% of maximum thrust. 

In pitch and roll direction, maximum disturbances are then 30 rad/s2 which is a considerable 

amount. Finally in yaw mode, the range of disturbance is [-0.01, 0.03] rad/s2. Although this 

might seem small, it may cause significant oscillation when simultaneously occurs with large 

disturbances in pitch and roll mode. Thus the chosen disturbances are a fine proof of the 

robustness for online ILCs.   
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5.2 Take-off Tracking 

In this mission, the quadrotor UAV is commanded to smoothly take-off and ultimately hover 

at a desired height ݄ௗ ൌ 10݉ in this simulation within the time ൌ  The desired trajectory . ݏ5

is defined as: 

 
ە
ۖ
۔

ۖ
ۓ
ܺௗሺݐሻ ൌ 0

ௗܻሺݐሻ ൌ 0

ܼௗሺݐሻ ൌ ݄ௗ ቈ10 ൬
ݐ
ܶ
൰
ଷ

െ 15 ൬
ݐ
ܶ
൰
ସ

൅ 6 ൬
ݐ
ܶ
൰
ହ

቉

 

ܼௗ א ሾ0, ݄ௗሿ, ݐ א ሾ0, ܶሿ 

(5.3) 

To clarify how each control gain has effect on trajectory tracking performance in each 

direction, variation of learning gains and its trajectory tracking performance based on take-off 

mission are tested with PD online ILCs and shown in Table 5-1. Similar results can also be 

obtained  using SPD ILCs, excepted the faster convergence rates will be achieved. 

Table 5-1 Effect of each control gain on tracking errors 

Control Gains k ԡ࢞ࢋԡሺ࢓ሻ ฮ࢟ࢋฮሺ࢓ሻ ԡࢠࢋԡሺ࢓ሻ ԡࣘԡሺࢍࢋࢊሻ ԡࣂԡሺࢍࢋࢊሻ ԡ࣒ԡሺࢍࢋࢊሻ 

ሾ0.1 0.1 50 5 5 500ሿ 

௢௡ܭ ൌ 1 

1 5.4230e-1 5.4233e-1 2.2288e-2 1.2445e0 1.2443e0 6.8584e0 

3 5.8570e-2 5.8567e-2 1.1571e-5 4.6324e-1 4.6363e-1 4.7586e0 

5 1.5329e-2 1.5293e-2 1.1513e-5 3.2871e-1 3.2868e-1 3.0638e0 

9 5.2615e-3 5.2580e-3 1.1418e-5 2.4151e-1 2.4150e-1 1.3656e0 

ሾ0.01 0.01 50 5 5 500ሿ 

௢௡ܭ ൌ 1 

1 7.4726e0 7.4710e0 2.2293e-2 2.3313e0 2.3303e0 6.8584e0 

3 2.6273e0 2.6271e0 2.0997e-5 2.1019e0 2.1048e0 4.7586e0 
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5 1.2043e0 1.2045e0 1.6938e-5 1.2987e0 1.2988e0 3.0638e0 

9 5.7488e-1 5.7509e-1 1.2446e-5 1.7279e0 1.7272e0 1.3656e0 

ሾ0.1 0.1 5 5 5 500ሿ 

௢௡ܭ ൌ 1 

1 5.4294e-1 5.4296e-1 2.2143e-1 1.2439e0 1.2437e0 6.8584e0 

3 5.9510e-2 5.9508e-2 2.4145e-4 4.6384e-1 4.6422e-1 4.7586e0 

5 1.5699e-2 1.5661e-2 3.0327e-5 3.3077e-1 3.3073e-1 3.0638e0 

9 5.2814e-3 5.2783e-3 1.7845e-5 2.4423e-1 2.4423e-1 1.3656e0 

ሾ0.1 0.1 50 0.5 0.5 500ሿ 

௢௡ܭ ൌ 1 

1 5.1328e0 5.1527e0 2.2310e-2 1.2963e1 1.2887e1 6.8584e0 

3 5.9542e-1 5.9551e-1 1.2241e-4 5.5995e0 5.6874e0 4.7586e0 

5 1.4878e-1 1.4534e-1 2.5605e-5 3.9624e0 3.8798e0 3.0638e0 

9 5.1731e-2 5.1301e-2 1.2984e-5 2.9552e0 2.8919e0 1.3656e0 

ሾ0.1 0.1 50 5 5 50ሿ 

௢௡ܭ ൌ 1 

1 5.4217e-1 5.4223e-1 2.2137e-2 1.2476e0 1.2473e0 7.9413e0 

3 5.9406e-2 5.9384e-2 1.0859e-5 4.6272e-1 4.6324e-1 7.6792e0 

5 1.5774e-2 1.5685e-2 1.0623e-5 3.2723e-1 3.2732e-1 7.4223e0 

9 5.3604e-3 5.3157e-3 1.0622e-5 2.4210e-1 2.4249e-1 6.9237e0 

 

As seen in Table 5-1, reducing ൫ܭ௣௢௡൯ଵand ൫ܭ௣௢௡൯ଶby a factor of 10 significantly reduces the 

convergence rate and yields much larger errors in the first three iterations. Likewise, 

decreasing ൫ܭ௣௢௡൯ସand ൫ܭ௣௢௡൯ହ  by a factor of 10 yields the similar result. This is due to 

slower reaction in attitude control that keeps the quadrotor away from the desired position in 

the presence of disturbances. Lastly, reducing ൫ܭ௣௢௡൯଺ by a factor of 10 shows considerable 

decrease in yaw angle stability and slower convergence rates.  
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The effect of changes in ܭௗ௢௡ is illustrated in Fig. 5-1. For the X and Y directions, when 

ௗ௢௡ܭ ൌ  ௣௢௡ the system yields larger errors and tends to produce steady errors, while whenܭ

ௗ௢௡ܭ ൌ ௗ௢௡ܭ ௣௢௡ andܭ1.5 ൌ  ௣௢௡ the results are much better in terms of maximum errorsܭ3

and less steady errors, this strongly shows the importance of the derivative gains. Errors in 

the first iteration can be reduced with larger gains chosen. For the Z direction, the results are 

merely identical.  

It is also noticeable that the roll and pitch responses are not plotted in all the following 

figures. This is because responses in the X, Y and Z directions are heavily affected by attitude 

control, hence successful maneuvering results from successful attitude control and thus only 

responses in the X, Y, Z and yaw directions are plotted and illustrated. 

 

Fig. 5-1 Effect of Kd on tracking errors for online ILCs 

Fig. 5-2 shows how changing the whole set of gains by a factor affects trajectory tracking 

performance. With ܭ௢௡ ൌ 0.5, for X and Y direction, it is obvious that the control gains are 
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when ܭ௢௡ ൌ 1 and ܭ௢௡ ൌ 1.5 the system is monotonically convergent and even faster for the 

latter case. And again, the effect is hardly detected in the Z direction. This is because control 

in the Z direction depends solely on ݑଵ while X and Y directions also depend on attitude of 

the quadrotor UAV.  

 

Fig. 5-2 Effect of changing the whole set of control gains by a factor of 0.5 and 1.5 

To further demonstrate the effects of online learning gains on inner loop controller, another 

arbitrarily chosen set of learning gains of ܭ௣௢௡ ൌ ሾ0.1 0.1 35 15 2 75ሿ is compared to the 

standard set of gains and shown in Fig. 5-3. From the figure, it can be seen that in the X 

direction, the one with the standard set of gains converges faster due to a larger gain 

corresponding to the ߠ angle (5 comparing to 2). This is also true in the Y direction, where 

the one with the standard set converges slower (control gain of 5 comparing to 15), and in the 

Z direction where the one with the standard set converge faster (control gain of 50 comparing 

to 35). The trajectory tracking performances of some iterations for PD online ILCs with the 

1 2 3 4 5 6 7 8 9 10
0

2

4

Iteration number

|e
x| m

ax
(m

)

1 2 3 4 5 6 7 8 9 10
0

2

4

Iteration number

|e
y| m

ax
(m

)

 

 
Kon=0.5

Kon=1
Kon=1.5

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

Iteration number

|e
z| m

ax
(m

)



80 
 

random set of gains are shown in Fig. 5-4. Note that with this set of gains, tracking errors in 

the yaw direction are relatively large even at iteration 9. 

 

Fig. 5-3 Comparison between maximum errors in each iteration of PD online ILCs with 
a random set of gains and the standard set of gains  
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depicted in Fig. 5-8, showing that all four rotors operate in the range of maximum 279 rad/s 

constrained by motor speed and propellers.  

 

Fig. 5-4 Trajectory tracking performance of PD online ILCs with the random set of 
gains of ࢔࢕࢖ࡷ ൌ[0.1 0.1 35 15 2 75] 
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Fig. 5-5 Trajectory tracking performance comparison between PD Online ILCs and 

SPD ILCs for take-off 

A similar simulation in take-off trajectory was performed in [18]. In that paper, a trajectory 

generation method was proposed and controlled by the LQR method and obtained a similar 

result for this kind of trajectory. However, no disturbances were addressed in that simulation. 

In addition, the results of the first iterations for both PD and SPD simply are classic PD 

control. Hence superior performance of online ILCs over classic PD control and LQR 

method, at least in this example, are proved here. 

 

Fig. 5-6 Trajectory tracking performance of PD Online ILCs in iteration 1, 3, 6 and 9 

for take-off 
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Fig. 5-7 Trajectory tracking performance of SPD ILCs in iteration 1, 3 and 6 for take-

off 

 

Fig. 5-8 Rotor speed at iteration 10 of PD Online ILCs for take-off 
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5.3 Landing Tracking  

As opposed to take-off, here the quadrotor UAV descends from initial height ܼ଴ of 10m to 

0m within 5s. The desired trajectories, modified from eq. (4.86), are    

 
ە
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۔
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ܺௗሺݐሻ ൌ 0

ௗܻሺݐሻ ൌ 0

ܼௗሺݐሻ ൌ ܼ଴ ൥1 െ ቈ10 ൬
ݐ
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൰
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൰
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቉൩

 

ܼௗ א ሾ0, ܼ଴ሿ, ݐ א ሾ0, ܶሿ 

(5.4) 

As seen in Fig. 5-9 Trajectory tracking performance comparison between PD Online ILCs 

and SPD ILCs for landing, convergence rates are similar to those of take-off. Fig. 5-10 and 

Fig. 5-11 show tracking performances of both types of ILCs, the quadrotor can land smoothly 

and again, SPD ILCs outperform PD online ILCs in terms of X-Y and yaw angle errors. Fig. 

5-12 confirms that the rotors operate in the limited range.  
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Fig. 5-9 Trajectory tracking performance comparison between PD Online ILCs and 
SPD ILCs for landing 

 

Fig. 5-10 Trajectory tracking performance of PD Online ILCs in iteration 1, 3, 6 and 9 
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Fig. 5-11 Trajectory tracking performance of SPD ILCs in iteration 1, 3 and 6 for 

landing 

  

Fig. 5-12 Rotor speed at iteration 10 of PD Online ILCs for landing 
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In a similar way to the two previous maneuverings, to demonstrate smooth trajectory tracking 

performance in X-Y plane translation, the desired trajectories in X and Y direction are chosen 

as:  
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(5.5) 

Two sets of simulations are performed here. First simulation shows short range translation 

with ܵ ൌ 10m and ܶ ൌ 5s and the second shows long range translation at higher speed with 

ܵ ൌ 100m and ܶ ൌ 15s. For the first set, convergence rates are shown in Fig. 5-13. Here, PD 

online ILCs tend to take more iterations, as many as 10, to converge to approximate zero 

errors in X and Y directions while SPD ILCs take 3 iterations and no differences in the Z 

direction. Trajectory tracking performances for some iteration are shown in Fig. 5-14 and Fig. 

5-15, for PD online ILCs and SPD ILCs, respectively. Note that there are relatively large 

errors in X and Y directions in the first iteration then rapidly converge for both PD online 

ILCs and SPD ILCs. 
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Fig. 5-13 Trajectory tracking performance comparison between PD Online ILCs and 

SPD ILCs for X-Y translation(S=10m, T=5s) 
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Fig. 5-14 Trajectory tracking performance of PD Online ILCs in iteration 1, 3, 6 and 9 

for X-Y translation(S=10m, T=5s) 

 

Fig. 5-15 Trajectory tracking performance of SPD ILCs in iteration 1, 3 and 6 for X-Y 
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For the second set, PD online ILCs converge faster and track better than those in the first set 

while SPD ILCs still perform even better, as seen in Fig. 5-16. Although the errors in the first 

iteration are a bit larger than those in the first set, they are relatively in small comparing to 

the distance traveled as seen in Fig. 5-17 and Fig. 5-18. Hence the control gains are 

reasonable for long range translation but increases might be preferable for a short range one. 

Fig. 5-19 shows rotor speeds for the long range simulation.  For both short and long range 

translation, it is clearly shown that, after a few iterations, the quadrotor UAV can smoothly 

and perfectly move from point to point in a straight line. 

 

Fig. 5-16 Trajectory tracking performance comparison between PD Online ILCs and 

SPD ILCs for X-Y translation(S=100m, T=15s) 
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Fig. 5-17 Trajectory tracking performance of PD Online ILCs in iteration 1, 3, 6 and 9 

for X-Y translation(S=100m, T=15s) 

 

Fig. 5-18 Trajectory tracking performance of SPD ILCs in iteration 1, 3 and 6 for X-Y 

translation(S=100m, T=15s) 
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Fig. 5-19 Rotor speed at iteration 6 of SPD ILCs (S=100m, T=15s) 
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track the trajectory well through iterations, SPD ILCs converge to approximate zero errors at 

iteration 3 while PD online ILCs take 6 iterations and SPDs perform much better in yaw 

angle.  

 

Fig. 5-20 Trajectory tracking performance comparisons between PD Online ILCs and 

SPD ILCs for horizontal circular trajectory 
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Fig. 5-21 Trajectory tracking performance of PD Online ILCs in iteration 1, 3, 6 and 9 

for horizontal circular trajectory 

 

Fig. 5-22 Trajectory tracking performance of SPD ILCs in iteration 1, 3 and 6 for 

horizontal circular trajectory 
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Fig. 5-23 Rotor speed at iteration 6 of SPD ILCs for horizontal circular trajectory 
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(5.7) 

Note that, from eq. (5.7), the radius of translation in the Z direction is half of those in X and 

Y directions in order to keep the rotor speeds within limit constrained by the model parameter 

while proving the capability of this mission. Furthermore, since it is assumed that the 

0 5 10 15 20
190

200

210

220

230

240

250

Time (sec.)

R
ot

or
 s

pe
ed

(r
ad

/s
)

 

 

rotor1

rotor2
rotor3

rotor4



96 
 

quadrotor UAV perform this mission starting from hover, the lower bound of altitude is 

chosen as 0.5ܴ to keep the quadrotor off the ground.  

Comparison between trajectory tracking errors of PD online ILCs and SPD ILCs for the 

spatial circular trajectory are shown in Fig. 5-24. In the same way as in the horizontal circular 

trajectory, maximum errors in X and Y directions in the first iteration are relatively large and 

then converge quickly from iteration 2. Again, SPD ILCs show a faster convergence rate than 

that of PD online ILCs. Tracking errors in the Z direction are very small, which are similar to 

those of previous mission despite the circular motion in the Z direction. 

Fig. 5-25 and Fig. 5-26 show trajectory tracking for at some iterations for PD online ILCs and 

SPD ILCs, respectively. The results of both ILCs are very similar in X and Y directions and 

are almost identical in the Z direction. However, as in previous mission, SPD ILCs 

outperform PD online ILCs in terms of convergence rates in the yaw direction. Proof of 

operation within rotor speed limit is shown in Fig. 5-27. 

 

Fig. 5-24 Trajectory tracking performance comparisons between PD Online ILCs and 
SPD ILCs for spatial circular trajectory 
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Fig. 5-25 Trajectory tracking performance of PD Online ILCs in iteration 1, 3, 6 and 9 
for spatial circular trajectory 

 

Fig. 5-26 Trajectory tracking performance of SPD ILCs in iteration 1, 3 and 6 for 
spatial circular trajectory 
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Fig. 5-27 Rotor speed at iteration 6 of SPD ILCs for spatial circular trajectory 
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Chapter 6 Conclusion & Discussion 

This chapter simply generalizes and summarized concepts, studies and the obtained 

simulation results. This chapter is organized as beginning with general review of this thesis in 

Section 6.1, followed by main contributions of the work done in Section 6.2 and finally future 

development, which could possibly be further investigated, in Section 6.3.  

6.1 General Review 

Since advancement in technology decades ago, numerous applications became available. 

Significant development in UAVs occurred and led to exploitation of studies in VTOL UAVs 

including quadrotors which are known to be very agile and simple and therefore capable of 

various missions. However, their agility result in low stability and under-actuated system and 

hence stabilization and control are needed.     

This thesis aims to propose a quadrotor UAV trajectory tracking control using online learning 

approach for its simplicity and robustness against uncertainties and disturbances then verified 

the developed control system simulation based on a nonlinear dynamic model. In Chapter 2, 

literature reviews are presented. This includes general concepts of UAVs, introduction of 

quadrotors, investigation in past studies on quadrotor UAVs, control design of UAVs, and 

development of ILCs.  

Chapter 3 presents quadrotor modeling and its detailed analysis along with fundamental 

assumptions. An appropriate rotation matrix is adopted to simplify the dynamic model. 

Analysis on quadrotor motions implies coupling behaviors of the model. The dynamic model 

is then derived using the Newton-Euler method with basic aerodynamic and gyroscopic 

effects considered. The model parameters are based on a well-designed real quadrotor UAV.  

In Chapter 4, detailed concepts, utilization and analyses are established for ILCs. Various 

types of ILCs are introduced along with convergence analysis. P-type, D-type, PD-type, 

offline, online, online-offline and SPD ILCs comparisons are also shown. PD online and SPD 

ILCs are chosen to be implemented to the quadrotor model. The control gains correspond to 
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six control laws for three translational and three rotational direction motions. A 5th order 

polynomial function is used to generate trajectory for all maneuver missions. 

Chapter 5 presents simulation results and cites some simulations performed in other papers. 

Disturbances and standard control gains derived from trial and error are used. Four missions 

are tested which includes take-off, landing, horizontal translations in straight line and circle 

and spatial circular trajectory. Variation in control gains showing effect on each control gain 

is also presented. The simulation results showed the robustness of trajectory tracking 

performance for both PD online and SPD ILCs. Incredibly fast convergence rates can be 

obtained using SPD ILCs. Both types show better performance and robustness, through 

learning, over some control methods tested in other studies.  

6.2 Main Contributions 

Quadrotor UAV controlling has been tested and tried with various methods in literatures, 

successfully and unsuccessfully. However, most studies did not address disturbance rejection 

and only a few dealt with full control of the system. So far this thesis is the first to utilize the 

ILC method for trajectory tracking control for a quadrotor UAV. Although unexposed to such 

an application, ILCs have been widely known for their simplicities and robustness and fit 

well in repeating tasks such as robotic manipulations. Main contribution of this work can be 

summarized as 

 opening doors for further development in ILC-implemented quadrotor UAV control 

 proposing a simple alternative method of quadrotor UAV control where model 

uncertainties or lack of complicated aerodynamic effects consideration are primary 

concern  

 proving robustness and fast convergence rates of online ILCs in harsh conditions 

 increasing versatilities of ILCs, i.e., not limited only to traditional applications 
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6.3 Future Development 

The work done in this thesis is considered a preliminary step toward complete 

implementation on a real application for quadrotor UAVs. It shows the possibility of 

controlling a quadrotor UAV using the simple and robust online ILCs and proved to be 

promising via simulations based on parameters of a real well-designed application. Yet, some 

issues for future development can be summed up as follows: 

 Since ILCs deal with trajectory tracking problems, they are not very efficient when it 

comes to point control. That means ILCs are not a good alternative to stabilize a 

quadrotor and to maintain position (although they can but with some errors). The 

solution could be applying readily studied stabilization methods investigated in many 

researches such as state-feedback control or LQR control, etc. This could be a good 

compensation of each other’s advantages and drawbacks. 

 The simulation results here were done based on certain trajectories, which means the 

quadrotor can perform various, but limited, missions. Adding more trajectory 

tracking might increase the capability of more missions. However, utilizing online 

optimal trajectory generation seems to be the best way to achieve full autonomy that 

the quadrotor can choose its own path of traveling. This has been already done in 

some researches.  

 SPD ILCs were proved to yield very fast convergence rates and small errors. 

However, as they iterate to a certain cycle where errors are very small, noises are 

then easily detected and largely amplified, resulting in instability. This can be easily 

solved by shutting down switching behavior when errors are very small and turn it on 

again when disturbances are vast. 
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Appendix: MATLAB Code for Simulation 

In this thesis, there are two separate MATLAB codes for simulation. One is the main 

program that calls another program for calculating errors, choosing simulation modes, 

entering and calling current iteration data needed in next iteration. The other one is a function 

that mainly contains dynamic model and disturbances. The two programs are shown 

subsequently. 

A1. Main Program 

clear all 
global kp 
global kd 
global torque 
global iter 
global noise_level 
global g 
global a1 a2 a3 a4 a5 a11 a22 a33 m b 
global Om_r x0 zd k R w 
global duration  
global t_mode d_mode 
  
%% MODEL PARAMETERS 
par_store = [0.232 0.52 7.5e-7 3.13e-5 6.228e-3 6.228e-3 1.121e-2 6e-5]; 
%sets of parameters 
  
par = par_store(1,:); %select parameter set 
l = par(1); 
m = par(2); 
d = par(3); 
b = par(4); 
Ix = par(5); 
Iy = par(6); 
Iz = par(7); 
Jr = par(8); 
  
a1 = (Iy-Iz)/Ix; 
a2 = Jr/Ix; 
a3 = (Iz-Ix)/Iy; 
a4 = Jr/Iy; 
a5 = (Ix-Iy)/Iz; 
a11 = l/Ix; 
a22 = l/Iy; 
a33 = d/Iz; 
  
C = [1 1 1 1;0 -1 0 1;1 0 -1 0;1 -1 1 -1]; 
invC = inv(C); 
g = 9.81; 
%% INITIAL SETTINGS 
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s_mode = [0 1 0]; %simulation mode [offline online spd] : 0 = OFF, 1 = ON 
  
t_mode = 2; %trajectory mode : 1 = X-Y, 2 = take-off, 3 = landing, 5 = 3D 
circular, 6 = 2D circular 
  
d_mode = 1; %disturbance mode : 0 = no noise, 1 = repetitive noise, 2 = 
random noise  
  
noise_level = 1;% 0 = no noise, 1 = normal noise 
  
k_off = [0.05 0.05 5 0.5 0.5 0]; 
kp_off = 0.001*s_mode(1)*k_off; 
kd_off = 0.005*s_mode(1)*k_off; 
  
k_on = [0.1 0.1 35 15 2 75];%online learning gain : ux uy u1...u4 
kp = s_mode(2)*k_on;  
kd = 1.5*kp; 
K = 1; 
kp = K*kp; 
kd = K*kd; 
  
iter_no = 9; %number of iterations 
duration = 5;  
samp = 0.01; %sampling time  
  
x3i = 0; 
x7i = 0; 
  
k = 100; %for t_mode =1 
R = 20; %radius for t_mode =5 and 6 
w = 2*pi; %omega for t_mode =5 and 6 
  
if t_mode == 2   
    zd = 10; %desired height 
elseif t_mode == 3 
    x3i = 10;     
elseif t_mode == 4 
    x7i = -12.5; 
elseif t_mode == 5 
    x3i = 2.5*R/2;  
end 
  
x0 = [0 0 x3i 0 0 0 0 x7i 0 0 0 0]; %initial states 
Om_r = 0; %initial omega_r  
  
%% SIMULATION COMMENCING 
  
tp = 0:samp:duration; %simulation time 
num = length(tp); 
torque = zeros(num,9); 
torque(:,1)=tp'; 
x = zeros(num,12); 
xd = x; 
dx7 = zeros(num,1); 
dx8 = dx7; 
dx7d = dx7; 
dx8d = dx7; 
  
file3=fopen('max_QR','w'); 
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file4=fopen('x_xd_QR','w'); 
  
for iter=1:iter_no  
    if iter == 1 
        torque(1,2) = g*m/b; 
        kp = K*k_on; 
        kd = K*1.5*kp; 
    else 
        if s_mode(1) == 1 
            kp = s_mode(2)*kp; 
            kd = s_mode(2)*kd; 
        end 
        if s_mode(3) == 1 
            s = iter*[1 1]; %switching gain 
            kp = s(1)*kp; 
            kd = s(2)*kd; 
        end 
        file1=fopen('t_QR','r');% read the torque data from the data file 
        aa=fscanf(file1,'%f %e %e %e %e %e %e %e %e',[9,inf]); 
        fclose(file1); 
        torque=aa'; 
    end 
  
    options=odeset('RelTol', 1e-5, 'AbsTol', 1e-5*[1 1 1 1 1 1 1 1 1 1 1 
1]); 
    [tp,x]=ode23tb('ilc_QR_model',tp,x0,options); 
  
    for i=1:num 
        t=tp(i); 
%% TRAJECTORIES   
  
        if t_mode == 1 
            tr = t/duration; 
            xd(i,1) = k*(10*tr^3-15*tr^4+6*tr^5); %Xd 
            xd(i,2) = k*(10*tr^3-15*tr^4+6*tr^5); %Yd 
            xd(i,3) = 0; %Zd 
            xd(i,7) = k*(30*tr^2-60*tr^3+30*tr^4)/duration; %dXd 
            xd(i,8) = k*(30*tr^2-60*tr^3+30*tr^4)/duration; %dYd 
            xd(i,9) = 0; %dZd 
            dx7d(i) = k*(60*tr-180*tr^2+120*tr^3)/duration^2;  %ddXd; 
            dx8d(i) = k*(60*tr-180*tr^2+120*tr^3)/duration^2;  %ddYd; 
        elseif t_mode == 2          
            tr = t/duration; 
            xd(i,1) = 0; 
            xd(i,2) = 0; 
            xd(i,3) = zd*(10*tr^3-15*tr^4+6*tr^5); 
            xd(i,7) = 0; 
            xd(i,8) = 0; 
            xd(i,9) = zd*(30*tr^2-60*tr^3+30*tr^4)/duration; 
            dx7d(i) = 0; 
            dx8d(i) = 0;           
        elseif t_mode == 3 
            z0 = x0(3); 
            tr = t/duration; 
            xd(i,1) = 0; 
            xd(i,2) = 0; 
            xd(i,3) = z0*(1-(10*tr^3-15*tr^4+6*tr^5)); 
            xd(i,7) = 0; 
            xd(i,8) = 0; 
            xd(i,9) = -z0*(30*tr^2-60*tr^3+30*tr^4)/duration; 
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            dx7d(i) = 0; 
            dx8d(i) = 0; 
        elseif t_mode == 5 
            tr = t/duration; 
            k = 10*tr^3-15*tr^4+6*tr^5; 
            kdot = (30*tr^2-60*tr^3+30*tr^4)/duration; 
            kddot = (60*tr-180*tr^2+120*tr^3)/duration^2; 
            ang = w*k+pi; 
            xd(i,1) = R*cos(ang)+R; 
            xd(i,2) = R*sin(ang); 
            xd(i,3) = R/2*cos(w*k)+1.5*R/2; 
            xd(i,7) = -w*R*sin(ang)*kdot; 
            xd(i,8) = w*R*cos(ang)*kdot; 
            xd(i,9) = -w*R/2*sin(w*k)*kdot;             
            dx7d(i) = -R*((w*kdot)^2*cos(ang)+w*kddot*sin(ang));  %ddXd; 
            dx8d(i) = -R*((w*kdot)^2*sin(ang)-w*kddot*cos(ang));  %ddYd; 
        elseif t_mode == 6 
            tr = t/duration; 
            k = 10*tr^3-15*tr^4+6*tr^5; 
            kdot = (30*tr^2-60*tr^3+30*tr^4)/duration; 
            kddot = (60*tr-180*tr^2+120*tr^3)/duration^2; 
            ang = w*k+pi; 
            xd(i,1) = R*cos(ang)+R; 
            xd(i,2) = R*sin(ang); 
            xd(i,3) = 0; %Zd 
            xd(i,7) = -w*R*sin(ang)*kdot; 
            xd(i,8) = w*R*cos(ang)*kdot; 
            xd(i,9) = 0; %dZd             
            dx7d(i) = -R*((w*kdot)^2*cos(ang)+w*kddot*sin(ang));  %ddXd; 
            dx8d(i) = -R*((w*kdot)^2*sin(ang)-w*kddot*cos(ang));  %ddYd; 
        end 
%% CONTROL LAWS ASSIGNING 
  
        u1 = torque(i,2)+g*m/b*(kp(3)*(xd(i,3)-x(i,3))+kd(3)*(xd(i,9)-
x(i,9))); %u1 
        dx7(i) = -sin(x(i,5))*cos(x(i,4))*b/m*u1; %x_dd 
        dx8(i) = sin(x(i,4))*b/m*u1;  %y_dd 
  
        ux = torque(i,6)+kp(1)*(xd(i,1)-x(i,1))+kd(1)*(xd(i,7)-x(i,7)); 
        uy = torque(i,7)+kp(2)*(xd(i,2)-x(i,2))+kd(2)*(xd(i,8)-x(i,8)); 
        dux = torque(i,8)+kp(1)*(xd(i,7)-x(i,7))+kd(1)*(dx7d(i)-dx7(i)); 
        duy = torque(i,9)+kp(2)*(xd(i,8)-x(i,8))+kd(2)*(dx8d(i)-dx8(i)); 
        
        lim_uy = 0.95; 
        if uy > lim_uy 
            uy = lim_uy; 
        elseif uy < -lim_uy 
            uy = -lim_uy; 
        end      
        Cx4 = cos(x(i,4)); 
        Tx4 = tan(x(i,4));         
        uxCx4 = ux/Cx4; 
        
        lim_uxCx4 = 0.95; 
        if uxCx4 > lim_uxCx4 
            uxCx4 = lim_uxCx4; 
        elseif uxCx4 <-lim_uxCx4 
            uxCx4 = -lim_uxCx4; 
        end 
        xd(i,4) = asin(uy); %desired phi 
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        xd(i,5) = -asin(uxCx4);%desired theta 
        xd(i,6) = 0; %desired psi 
        xd(i,10) = 1/sqrt(1-uy^2)*duy; %desired phi_dot 
        xd(i,11) = -1/sqrt(1-uxCx4^2)*(dux+Tx4*x(i,10)*ux)/Cx4;%desired 
theta_dot 
        xd(i,12) = 0; %desired psi_dot 
  
        torque(i,2)= u1+g*m/b*(kp_off(3)*(xd(i,3)-
x(i,3))+kd_off(3)*(xd(i,9)-x(i,9))); 
        u(1,1) = u1; 
        for j = 3:5 
            torque(i,j)=((kp(j+1)+kp_off(j+1))*(xd(i,j+1)-
x(i,j+1))+(kd(j+1)+kd_off(j+1))*(xd(i,j+7)-x(i,j+7)))+torque(i,j); %u1...u4 
            u(j-1,1) = torque(i,j); 
        end 
        torque(i,6) = ux+kp_off(1)*(xd(i,1)-x(i,1))+kd_off(1)*(xd(i,7)-
x(i,7)); 
        torque(i,7) = uy+kp_off(2)*(xd(i,2)-x(i,2))+kd_off(2)*(xd(i,8)-
x(i,8)); 
        torque(i,8) = dux+kp_off(1)*(xd(i,7)-x(i,7))+kd_off(1)*(dx7d(i)-
dx7(i)); 
        torque(i,9) = duy+kp_off(2)*(xd(i,8)-x(i,8))+kd_off(2)*(dx8d(i)-
dx8(i)); 
        Om(:,i) = sqrt(inv(C)*u); 
        Om_r = Om(1,i)-Om(2,i)+Om(3,i)-Om(4,i); 
    end 
    z(:,1)=tp'; 
    for i = 2:4 
        z(:,i) = xd(:,i-1)-x(:,i-1); %ex ey ez 
        z(:,i+3) = x(:,i+2)*180/pi; %phi theta psi (deg) 
    end 
    for i = 1:4 
        z(:,i+7) = Om(i,:); %rotor speed 1-4 
    end 
    
    max_par=max(abs(z)); 
     
    file2=fopen('t_QR','w'); 
    for i = 1:9 
        tor1(i,:)=torque(:,i)'; 
    end 
    fprintf(file2,'%7.4f %7.4e %7.4e %7.4e %7.4e %7.4e %7.4e %7.4e 
%7.4e\n',tor1); 
    fclose(file2); 
    fprintf(file3,'%5d %7.4f %7.4e %7.4e %7.4e %7.4e %7.4e %7.4e %7.4e 
%7.4e %7.4e %7.4e\n',iter, max_par); 
    zz = [iter*ones(num,1),z(:,1),x(:,1:6),xd(:,1:6)]; 
    if iter ==1 || mod(iter,3) ==0 
        fprintf(file4,'%5d %7.2f %7.4e %7.4e %7.4e %7.4e %7.4e %7.4e %7.4e 
%7.4e %7.4e %7.4e %7.4e %7.4e\n',zz'); 
    end     
 
    iter 
end 
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A2. Called Function 

function dx=ilc_QR_model(t,x) 
  
global kp 
global kd 
global torque 
global g 
global a1 a2 a3 a4 a5 a11 a22 a33 m b 
global Om_r x0 zd k R w 
global duration 
global noise_level 
global t_mode d_mode 
  
dx=zeros(12,1); 
xd = dx; 
du = zeros(4,1); 
nt=size(torque,1); 
for i=1:nt 
    if torque(i,1)>=t  
        break 
    end 
end 
  
if d_mode == 0 
    d1 = 0; 
    d2 = 0; 
    d3 = 0; 
    d4 = 0; 
elseif d_mode == 1 
    f = 2*pi; 
    D = noise_level*(10+20*sin(f*t)); 
    d1 = 0.1*D; 
    d2 = D; 
    d3 = d2; 
    d4 = 0.001*D; 
else 
    d1 = 10e-9*2*noise_level*(rand-0.5);  
    d2 = 0; 
    d3 = 0; 
    d4 = 0; 
end 
  
for j =1:8 
    du(j)=torque(i,j+1); %u1...u4,ux,uy,dux,duy 
end 
  
if t_mode == 1 
    tr = t/duration; 
    xd(1) = k*(10*tr^3-15*tr^4+6*tr^5); %Xd 
    xd(2) = k*(10*tr^3-15*tr^4+6*tr^5); %Yd 
    xd(3) = 0; %Zd 
    xd(7) = k*(30*tr^2-60*tr^3+30*tr^4)/duration; %dXd 
    xd(8) = k*(30*tr^2-60*tr^3+30*tr^4)/duration; %dYd 
    xd(9) = 0; %dZd 
    dx7d = k*(60*tr-180*tr^2+120*tr^3)/duration^2;  %ddXd; 
    dx8d = k*(60*tr-180*tr^2+120*tr^3)/duration^2;  %ddYd; 
elseif t_mode == 2 
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    tr = t/duration; 
    xd(1) = 0; 
    xd(2) = 0; 
    xd(3) = zd*(10*tr^3-15*tr^4+6*tr^5); 
    xd(7) = 0; 
    xd(8) = 0; 
    xd(9) = zd*(30*tr^2-60*tr^3+30*tr^4)/duration; 
    dx7d = 0; 
    dx8d = 0; 
elseif t_mode == 3 
    z0 = x0(3); 
    tr = t/duration; 
    xd(1) = 0; 
    xd(2) = 0; 
    xd(3) = z0*(1-(10*tr^3-15*tr^4+6*tr^5)); 
    xd(7) = 0; 
    xd(8) = 0; 
    xd(9) = -z0*(30*tr^2-60*tr^3+30*tr^4)/duration; 
    dx7d = 0; 
    dx8d = 0; 
elseif t_mode == 5  
    tr = t/duration; 
    k = 10*tr^3-15*tr^4+6*tr^5; 
    kdot = (30*tr^2-60*tr^3+30*tr^4)/duration; 
    kddot = (60*tr-180*tr^2+120*tr^3)/duration^2; 
    ang = w*k+pi; 
    xd(1) = R*cos(ang)+R; 
    xd(2) = R*sin(ang); 
    xd(3) = R/2*cos(w*k)+1.5*R/2; 
    xd(7) = -w*R*sin(ang)*kdot; 
    xd(8) = w*R*cos(ang)*kdot; 
    xd(9) = -w*R/2*sin(w*k)*kdot; 
    dx7d = -R*((w*kdot)^2*cos(ang)+w*kddot*sin(ang));  %ddXd; 
    dx8d =  -R*((w*kdot)^2*sin(ang)-w*kddot*cos(ang));  %ddYd; 
elseif t_mode == 6 
    tr = t/duration; 
    k = 10*tr^3-15*tr^4+6*tr^5; 
    kdot = (30*tr^2-60*tr^3+30*tr^4)/duration; 
    kddot = (60*tr-180*tr^2+120*tr^3)/duration^2; 
    ang = w*k+pi; 
    xd(1) = R*cos(ang)+R; 
    xd(2) = R*sin(ang); 
    xd(3) = 0; %Zd 
    xd(7) = -w*R*sin(ang)*kdot; 
    xd(8) = w*R*cos(ang)*kdot; 
    xd(9) = 0; %dZd 
    dx7d = -R*((w*kdot)^2*cos(ang)+w*kddot*sin(ang));  %ddXd; 
    dx8d =  -R*((w*kdot)^2*sin(ang)-w*kddot*cos(ang));  %ddYd; 
end 
  
u1 = du(1)+g*m/b*(kp(3)*(xd(3)-x(3))+kd(3)*(xd(9)-x(9))); 
dx(7) = -sin(x(5))*cos(x(4))*b/m*u1; %x_dd 
dx(8) = sin(x(4))*b/m*u1;  %y_dd 
dx(9) = -d1-g+cos(x(5))*cos(x(4))*b/m*u1; %z_dd 
  
ux = du(5)+kp(1)*(xd(1)-x(1))+kd(1)*(xd(7)-x(7)); 
uy = du(6)+kp(2)*(xd(2)-x(2))+kd(2)*(xd(8)-x(8)); 
dux = du(7)+kp(1)*(xd(7)-x(7))+kd(1)*(dx7d-dx(7)); 
duy = du(8)+kp(2)*(xd(8)-x(8))+kd(2)*(dx8d-dx(8)); 
  
lim_uy = 0.95; 
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if uy > lim_uy 
    uy = lim_uy; 
elseif uy < -lim_uy 
    uy = -lim_uy; 
end 
  
Cx4 = cos(x(4)); 
Tx4 = tan(x(4)); 
uxCx4 = ux/Cx4; 
lim_uxCx4 = 0.95; 
if uxCx4 > lim_uxCx4 
    uxCx4 = lim_uxCx4; 
elseif uxCx4 <-lim_uxCx4 
    uxCx4 = -lim_uxCx4; 
end 
  
xd(4) = asin(uy); %desired phi 
xd(5) = -asin(uxCx4);%desired theta 
xd(6) = 0; %desired psi 
xd(10) = 1/sqrt(1-uy^2)*duy; %desired phi_dot 
xd(11) = -1/sqrt(1-(uxCx4)^2)*(dux+Tx4*x(10)*ux)/Cx4;%desired theta_dot 
xd(12) = 0; %desired psi_dot 
  
for j = 1:6 
    dx(j) = x(j+6); %dx1...dx6 
end 
dx(10) = -d2+a1*x(11)*x(12)-a2*Om_r*x(11)+a11*(du(2)+kp(4)*(xd(4)-
x(4))+kd(4)*(xd(10)-x(10))); %phi_dd 
dx(11) = -d3+a3*x(10)*x(12)+a4*Om_r*x(10)+a22*(du(3)+kp(5)*(xd(5)-
x(5))+kd(5)*(xd(11)-x(11))); %theta_dd 
dx(12) = -d4+a5*x(10)*x(11)+a33*(du(4)+kp(6)*(xd(6)-x(6))+kd(6)*(xd(12)-
x(12))); %psi_dd 
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