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Abstract 
Model fat systems consisting of fully-hydrogenated canola oil (FHCO) and canola oil (CO) were 

shear-crystallized using a rheometer with a parallel plate geometry at various cooling rates     (0.2 

to 5.0 ºC/min) and shear rates (0, 500, 1000, and 2000 s-1) to produce spheroidal fat crystals. These 

spheroids were characterized via rheology, polarized light microscopy (PLM), differential 

scanning calorimetry (DSC), and x-ray diffraction (XRD). Crystal spheroid formation was optimal 

at 1.0 ºC/min and viscosity profiles followed a three phase sigmoidal shape. PLM analysis revealed 

that spheroid size decreased with increased shear rate while sphericity increased. A multi-step 

mechanism was proposed for the formation of these crystal spheroids.  

Subsequently, different emulsifiers were used to modify the structure of these crystal spheroids 

and it was found that the type and concentration of emulsifier had significant effects on spheroid 

microstructure. Below a critical concentration, emulsifier could be incorporated into the crystal 

matrix of FHCO while above they would crystallize independently. DSC analysis revealed 

additional melting fractions compared to the control that were attributed to emulsifier 
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incorporation and co-crystallization with FHCO. XRD showed that the crystallized spheroids were 

mainly of the βʹ polymorph regardless of the presence or type of emulsifier.  

A water phase was then introduced within these systems to study their encapsulation potential. 

Emulsifier type significantly affected crystal shell morphology and encapsulation efficacy. The 

liquid-state emulsifiers (GMO and PGPR) showed limited interaction with FHCO, with GMO 

delaying the interfacial crystallization of FHCO while PGPR excluded FHCO from the droplet 

interface completely. Of the solid-state emulsifiers (GMS, GMP, SMS, and STS), the MAGs 

produced smooth-surfaced crystal shells around the emulsion droplets while the sorbitan-based 

emulsifiers produced irregularly-shaped shells and droplet cores (SMS) or incomplete crystal shell 

formation (STS).  

The shear-crystallization of our model fat blend also resulted in the formation of cylindrical 

crystalline assemblies. The average diameter size of these crystal cylinders decreased with 

increased shear rate. A “log-rolling” mechanism was proposed for their formation. 

These results demonstrate that laminar shear may be used to modify fat crystal microstructure and 

induce the formation of spheroidal and cylindrical crystalline assemblies.   
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Introduction 

General Overview 
There is a great amount of research dedicated to the study of fat crystallization, from nucleation 

and the formation of crystal nanoplatelets at the nanoscale to crystal growth and network formation 

at the mesoscale. Processing conditions such as cooling rate, crystallization temperature, and 

agitation (shear) may affect crystallization at various length scales. The effects of shear on fat 

crystallization are still not fully-understood. This dissertation focuses on the elucidation of the 

mechanism for crystal spheroid formation and the effects of various processing conditions on the 

shear-crystallization of model fat systems.  

This dissertation begins with a review of fat crystallization and outlines the current work and 

knowledge of the effects of shear (chapter 1). Chapter 2 outlines the characterization of shear-

crystallized model fat systems consisting of FHCO and CO where the optimal cooling and shearing 

conditions for the formation of the crystal spheroids were established along with a proposed multi-

step mechanism for their formation. Subsequently, the effects of emulsifiers on the formation of 

the spheroids was studied (Chapter 3) and it was found that emulsifier type and concentration had 

significant effects on spheroid morphology. Chapter 4 examines the introduction of a water phase 

as emulsion droplets and the use of the crystal spheroids as encapsulation matrices. Finally, chapter 

5 examines the formation of fat crystal cylinders/frustums, a novel crystal microstructure, where a 

“log-rolling” mechanism was proposed for their formation. 
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Dissertation Objectives 
The overall objective of this dissertation was to characterize how processing conditions affected 

the formation of spheroidal fat crystals formed via the shear-crystallization of a model fat system 

within a narrow gap. The specific objectives were: 

I. To test how cooling and shear rates affected crystal spheroid formation. 

II. To characterize the physical properties of the spheroids. 

III. To test how emulsifiers affect crystal spheroid formation. 

IV. To apply shear-crystallization to emulsifier-containing emulsion systems for the 

encapsulation of droplets. 

V. To elucidate the mechanism(s) of formation of the fat crystal spheroids. 

 

 

Hypotheses 
The proposed hypotheses were: 

I. There would be optimal cooling and shear rates for the formation of the crystal spheroids. 

II. Higher shear rates would result in smaller crystal spheroids. 

III. The crystal spheroids would have different polymorphic, thermal, and rheological 

behaviour compared to statically-crystallized samples. 

IV. Emulsifiers would significantly affect crystallization behaviour and spheroid formation. 

V. Emulsifier-fat blends could be used to produce crystal spheroid-encapsulated water-in-oil 

emulsion droplets. 
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Chapter 1 – Influence of Shear on Fat Crystallization 
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Abstract 
Processing conditions greatly impact fat crystallization kinetics and growth mechanisms. Recently, 

there has been increased interest in elucidating the role of shear on fat crystallization. This review 

provides an overview of fat crystallization under static conditions followed by a summary of the 

current body of work pertaining to the effects of shear on fat crystallization. The role of shear on 

different aspects of fat crystallization is reviewed: its effects on nucleation and growth, crystal 

network formation, polymorphic transitions, and microstructure modification at different length 

scales. The effects of shear are usually tied to critical shear rates but shear generally enhances 

nucleation and growth, accelerates crystallization and polymorphic transition times, and can cause 

orientation and structuring of fat crystal networks. 
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1. Introduction 
Fats are important for many industries such as pharmaceutical, cosmetics, and food, and may be 

used as the chassis for products or as carrier matrices for the delivery of target compounds (Sato, 

2001). The mechanical properties (e.g., texture, firmness, and spreadability), physical stability 

(e.g., phase separation), eating properties (e.g., mouthfeel or meltability), and visual appearance 

of the products depend on their underlying three-dimensional network of fat crystals. Fat 

composition,  e.g., triacylglycerol (TAG) distribution and the presence of minor components such 

as emulsifiers, mono- and diacylglycerols (MAG and DAG, respectively) and/or non-fat 

ingredients, along with processing conditions such as cooling rate, agitation (shear), and 

processing temperature, may affect the crystallization behaviour of TAG molecules. There has 

been increased interest in elucidating the effect of shear on fat crystallization because of its 

industrial relevance, where it may be used to prevent sedimentation, aggregation, and enhance heat 

and mass transfer. Shear may also lead to the orientation of fat crystals and lead to the formation 

of new structured products. This review highlights recent research on fat crystallization with a 

focus on the effects of shear on fat structure at different length scales. 

2. Crystallization and Polymorphism of Fats 
Crystallization of fat occurs via nucleation and crystal growth. When molten fat is cooled to a 

temperature below the melting point of its highest-melting TAG, known as undercooling (usually 

at least 5-10 ºC), it will become supersaturated in the highest-melting TAG species and drive the 

system towards nucleation (Marangoni & Wesdorp, 2013). The TAGs undergo constant 

fluctuation and movement within the melt due to thermal energy and Brownian motion, leading to 

dynamic association and dissociation. Spatial and energy localization fluctuations may lead to 

interactions of the correct molecular conformations required for the formation of stable crystal 
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nuclei (Fig. 1.1). It has been postulated that there may be pre-structuring of TAG molecules into 

lamellar structures in the liquid state preceding nucleation, resulting in increased probability for 

the formation of stable nuclei (Hartel, 2001).  

 

Figure 1. Structure hierarchy and multi-step crystallization of TAG: 1) Formation of stable nuclei; 

2) Assembly into lamellae; 3) Association of lamellae to form crystal nanoplatelets (CNP); 4) 

Aggregation of  CNP; 5) Formation of CNP stacks; 6) Random assembly of CNP stacks into 

crystallites; 7) Aggregation of crystallites into crystals; 8) Formation of 3D crystal network. 

Adapted from Marangoni and Wesdorp (Marangoni & Wesdorp, 2013). 

 

Nucleation can be divided into two categories: primary and secondary. Primary nucleation occurs 

via the spontaneous formation of nuclei from the melt and may be homogeneous (rare), as in a 

pure system consisting of only one type of TAG or within highly-dispersed nano-scale droplets, 

or heterogeneous (most common), where the presence of contaminants like dust or the 

coarse/pitted surface of the container vessel may act as foreign nucleating sites and induce 

nucleation. Secondary nucleation arises when minor components such as emulsifiers like MAG or 

DAG act as templating surfaces for TAG nucleation (Hartel, 2001; Marangoni & Wesdorp, 2013; 
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Walstra, 2003). Following the formation of stable nuclei, growth and association of crystallized 

lamellae result in the formation of crystal nanoplatelets (CNPs) (Acevedo & Marangoni, 2010a, 

2010b; Acevedo, Peyronel, & Marangoni, 2011; Marangoni & Wesdorp, 2013). These CNPs 

organize into stack-like structures by means of molecular van der Waals forces which then go on 

to assemble into crystallites that cluster via colloidal van der Waals forces to form crystals. 

Aggregation and sintering (formation of solid bridges) between crystals results in the formation of 

a 3D fat crystal network (Fig. 1) (Pink, Quinn, Peyronel, & Marangoni, 2013; Tarabukina, Jego, 

Haudin, Navard, & Peuvrel-Disdier, 2009).  

The nature of the TAG [mono- or mixed fatty acids (FAs), chain length, degree of unsaturation] 

and processing conditions will affect how the TAG molecules pack and crystallize, resulting in 

different crystal polymorphs. The three main polymorphs that TAGs form, in order of increasing 

molecular organization, density, stability, and crystal size are α, β', and β. In the α-form, subcell 

packing arrangement is hexagonal (H), where each TAG molecule is surrounded by six neighbours 

that may rotate along their long axis. The subcell packing of the β' form is orthorhombic (O┴), 

where TAG chains lie perpendicularly to each other. With the β-form, the subcell is triclinic (T//), 

with TAGs packed in parallel (Fig. 2A). The subcells are characterized by characteristic repeated 

distances between FA chains, known as short spacings, and can be measured via wide-angle x-ray 

diffraction or scattering (WAX). The nature of the TAG FAs will also impact their chain length 

structure, which is the repetitive sequence in the unit cell lamellae along the long-chain axis; it can 

exist in the double chain length (2L), i.e., two FA lengths, usually formed when the three FA of 

the TAG are the same or similar, or triple (3L) chain length formed when one FA is very different, 

i.e., when one FA is much shorter than the other two or contains an unsaturated cis-bond which 

causes a bend in the FA resulting in chain sorting (Fig. 2B). Chain length structures play an 
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important role in the mixing behaviour between different TAG can be characterized via small-

angle x-ray diffraction (SAX) (Sato, 2001; Walstra, 2003).  

 

Figure 2. Common polymorphs (A) and chain length structures (B) of TAGs. Adapted from 

Marangoni and Wesdorp (Marangoni & Wesdorp, 2013) and Sato (Sato, 2001). 

 

Given that they are mixtures of varying TAGs, fats may exhibit a wide range of melting and 

crystallization temperatures and thus different polymorphs concurrently. The crystallization of a 

mixture of TAGs will usually lead to the formation of crystals that incorporate more than one type 

of TAG and are known as compound crystals. These compound crystals may form a solid solution 

but do not necessarily have to be homogeneous. That is, there may be groups of crystals with 

different TAG compositions. During crystallization, compound crystals form most easily as α 

crystals due to their high degree of freedom for molecular arrangement, minimal density 

restrictions and low relative activation energy of formation (Hartel, 2001; Marangoni & Wesdorp, 

2013; Sato, 2001). The lifespan of α crystals is typically relatively short and they will rapidly 

transition to the β', though this greatly depends on composition and processing conditions. 

Compound crystals may also form as β' crystals, but this does not occur as readily because of their 

higher packing densities and movement restrictions. β crystals are never compound crystals 
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(Walstra, 2003). Polymorphic transitions occur via the liquid state (solid-state transformations may 

occur, but typically on longer time scales) and happen most readily for mixtures of TAGs similar 

in structure (Walstra, 2003). In multicomponent fats with a wide compositional range, the lifetime 

of α crystals is much longer and β' crystals can exist almost indefinitely (Walstra, 2003). 

Once formed, fat crystals may undergo aggregation leading to the formation of a continuous 3D 

network in an oil phase. The mechanical properties of these 3D networks depend on the chemical 

composition (types of TAGs and minor components such as emulsifiers) and processing conditions 

(Herrera & Hartel, 2000). The formation of a fat crystal network usually occurs in steps: i) 

generation of a supersaturated state; ii) nucleation; iii) crystal growth;                            iv) 

recrystallization (polymorphic transformations); and v) formation of a 3D crystal network via the 

aggregation of crystals by means of diffusion-limited cluster aggregation due to van der Waals 

attractions, Brownian motion, and sintering (bridging between clusters by TAG crystals) (De 

Graef, Dewettinck, Verbeken, & Foubert, 2006; Kloek, van Vliet, & Walstra, 2005; Maleky, 

Smith, & Marangoni, 2011). The latter three steps may occur concomitantly. Crystallization 

conditions such as cooling rate and thermal history (crystallization temperature and tempering 

processes) may have significant effects on the kinetics and physical properties of these crystallized 

systems (Pérez-Martínez, Alvarez-Salas, Charó-Alonso, Dibildox-Alvarado, & Toro-Vazquez, 

2007). Faster cooling rates favour the formation of α crystals while slower rates promote the 

formation of β' and β polymorphs (Campos, Narine, & Marangoni, 2002; Maleky, Acevedo, & 

Marangoni, 2012). Faster cooling rates may also result in higher initial solid fat content (SFC) 

values and the formation of more numerous and smaller crystallites while slow cooling rates result 

in lower SFC and a smaller number of larger crystals (Acevedo & Marangoni, 2010b). The degree 

of supercooling [i.e., decreasing the temperature below the crystallization temperature (Tc) of the 
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TAG] may also influence the polymorphs of crystals formed. Isothermally crystallizing at lower 

temperatures increases the driving force for nucleation and promotes the formation of less-stable 

polymorphs such as the α form whereas isothermal crystallization at higher temperatures may 

result in solidification directly into more stable forms (β' and β) (De Graef et al., 2006; Malssen, 

Peschar, & Schenk, 1996; D. Rousseau, Hodge, Nickerson, & Paulson, 2005).  

The macroscopic properties of fat crystal networks such as mechanical strength and rheological 

properties (yield stress, viscosity, storage and loss moduli, etc.) depend on SFC and the 

morphology and interaction of crystals but not on crystal polymorph (Marangoni & Rousseau, 

1996; Narine & Marangoni, 1999). Using fractal analysis of model fat systems, Marangoni et al. 

developed a model to relate the microscopic sub-unit building blocks of fat crystal networks, CNP, 

to their macroscopic mechanical properties (Marangoni et al., 2012; Tang & Marangoni, 2006, 

2007). They showed that fat crystals, with microstructures traditionally in the range of 1-200 μm, 

are comprised of fractal aggregates of mesoscale CNP with typical dimensions in the hundred 

nanometer range (Acevedo & Marangoni, 2010a, 2010b). The model approximates fat crystals as 

flocs of close-packed nearly-spherical clusters (spherulites) where the interaction between 

spherulites is stronger than the interaction between the relatively hard flocs         (“weak-link” 

regime) and dictates the system’s yield strength (Marangoni et al., 2012).  
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3. Influence of Shear on Fat Crystallization 
The development of fat crystal networks may be affected by shear (agitation), which can be applied 

in a number of ways such as mixing via an impeller or as laminar flow generated by Couette shear 

cells (Maleky et al., 2011), shear-processing cells (MacMillan & Roberts, 2002), or the geometry 

attachments of a rheometer (Ghosh, Tran, & Rousseau, 2011) (Fig. 3). Couette shear cells consist 

of two concentric cylinders between which a sample is deposited. The inner cylinder then rotates 

to generate shear. Shear processing cells operate in a similar fashion to parallel plate geometries 

used for rheometers: a sample is deposited between a stationary plate or stage and another plate 

that can rotate to generate shear. Understanding the effects of shear on nucleation and 

crystallization is relevant to industrial applications, where ingredients are usually sheared/mixed 

during processing to improve mass and heat transfer and enhance product homogeneity, and may 

improve process optimization and can lead to the development of novel products, e.g., tempering 

of chocolate to induce desired crystal polymorphs of cocoa butter to improve bloom resistance 

(Campos & Marangoni, 2014; Stapley, Tewkesbury, & Fryer, 1999) or the shear-processing of 

lipid shortenings to alter organoleptic properties such as hardness (Narine & Humphrey, 2004). 

 

Figure 3. Instruments used for generating laminar shear: A) Couette shear cell [adapted from 

(Maleky et al., 2011)]; B) shear processing cell [adapted from (MacMillan & Roberts, 2002)]; C) 

Parallel plate geometry of a rheometer 
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Shear may increase the rate of primary nucleation by providing enough energy to overcome 

activation energy barriers for nucleation (Hartel, 2001). Increased nucleation results in a larger 

number of smaller crystals which typically translates into fat crystal networks with higher 

mechanical strength, though this depends on the aggregation behaviour of the component fat 

crystals (Marangoni & Narine, 2002; Narine & Marangoni, 1999). Additionally, shear may 

accelerate crystallization rates resulting in higher initial SFC values but over time, SFC will reach 

equilibrium values similar for statically-crystallized samples (Kaufmann, De Graef, Dewettinck, 

& Wiking, 2012; Kaufmann, Kirkensgaard, Andersen, & Wiking, 2013; Maleky & Marangoni, 

2008). Shear may also enhance secondary nucleation by fracturing newly-formed crystals and 

distributing them throughout the melt, providing increased seeds/interfaces for nucleation (Kloek 

et al., 2005; Maleky & Marangoni, 2008). These effects are dependent on shear rate where, above 

a critical rate, the average size of crystals is reduced either through the breakage of larger crystals 

or inhibition of growth and aggregation of clusters (Kloek et al., 2005; Maleky et al., 2011). Below 

the critical shear rate, shear may increase the frequency of collision and contact time between 

crystallites, resulting in larger crystals (Tarabukina et al., 2009). Maleky et al., working on the 

shear-crystallization of cocoa butter, showed that shear can affect the nanostructure of CNPs with 

higher shear rates resulting in decreased CNP lengths and widths and a narrower size distribution 

compared to statically-crystallized samples (Maleky et al., 2012, 2011). Shear may affect CNP 

size at the nanoscale and crystal size on the meso-structural levels differently and a direct 

relationship between the different length scales is not readily apparent. That is, reduction in CNP 

size does not necessarily result in the reduction of meso crystals and vice versa (Acevedo & 

Marangoni, 2014).  
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Shear can greatly accelerate phase transitions to more stable polymorphs (Dhonsi & Stapley, 2006; 

Sonwai & Mackley, 2006), which MacMillan and Roberts hypothesized was due to the shear 

breaking weak van der Waals forces of lower polymorphs to allow restructuring into higher 

polymorphs (MacMillan & Roberts, 2002). Mazzanti et al. postulated that shear forces provided 

enough energy to cause the melting of most of the crystal mass of lower polymorphs, leaving 

behind nuclei that could act as templates for growth into higher polymorphs (Mazzanti, Guthrie, 

Sirota, Marangoni, & Idziak, 2003). In a different study, Mazzanti et al. suggested that shear may 

result in viscous heat generation that could produce enough heat to melt smaller, less-stable 

crystals but not larger crystals (Mazzanti, Li, Marangoni, & Idziak, 2011). The accelerated 

polymorphic transitions may also be due to shear-structuring of the nanoplatelets formed upon 

nucleation which then act as templates for higher, more-organized polymorphs (Maleky et al., 

2011). Kaufmann et al. studied the effect of shear and rapeseed oil addition on the polymorphic 

behaviour of milk fat via x-ray diffraction and showed that for isothermal crystallization, 

polymorphic transition times were accelerated by dilution with the oil with the explanation that 

the liquid oil increased gaps in the crystal network which allowed for conformational changes to 

occur more readily. Addition of oil also increased lamellar long-spacings and scaled with 

concentration. An interesting observation was that β' long spacings appeared before short spacings 

which indicated that the lamellar ordering preceded packing into the transverse crystalline form 

with increased dilution delaying this effect. The presence of shear accelerated polymorphic 

transitions to earlier times with effects being synergistic with oil dilution. Another notable finding 

during this study was that shear affected long spacings: statically-crystallized samples showed 2L 

and 3L packing but higher shear rates destroyed 3L packing and left only 2L packing. This shear 

effect was observed for oil-diluted blends but not pure AMF. Kaufmann et al. hypothesized that 
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the addition of oil potentially changed the composition in the crystals which changed the average 

TAG chain length in the crystallizing fat (Kaufmann et al., 2013).  

Mazzanti et al. found that shear can induce orientation of crystallites for a variety of fats (cocoa 

butter, milk fat, stripped milk fat and palm oil) (Mazzanti et al., 2003). Comparing the 

crystallization of native milk fat and stripped milk fat (no minor polar lipids), it was concluded 

that the minor polar lipids acted as impurities, which hindered crystallization events, stabilized the 

α form, and delayed polymorphic transformation to the more stable β' phase. Shear caused a 

reduction in crystal cluster sizes, but the extent was system-dependent. Low shear rates (90 s-1) 

resulted in little or no orientation while higher shear rates (1440 s-1) caused an appreciable degree 

of orientation in milk fat and cocoa butter but not palm oil. Instead of becoming oriented, the palm 

oil crystals formed spherical clusters that moved and tumbled in the shear field (Mazzanti et al., 

2003). In a flowing system, the orientation of suspended particles depends on the interplay between 

shear, inter-particle, and Brownian forces. At low volume fractions, such as at the onset of 

nucleation and the early stages of crystallization, particles are separated by relatively large 

distances and inter-particle forces are negligible. The orientation of these particles may occur if 

the particles are above a critical size and if shear forces, which induce ordering, dominate over 

disorder-inducing Brownian forces (Kloek et al., 2005; Mazzanti et al., 2003). Mazzanti et al. also 

found that larger crystals are more readily-oriented than smaller ones and that higher shear rates 

resulted in increased thickness of nanoplatelets (Mazzanti et al., 2011). The introduction of a shear 

step, where the low initial shear rate of 90 s-1 was followed by an increase to 1440 s-1, increased 

nanoplatelet thickness further. It was postulated that the jump in shear rate caused melting of 

smaller platelets via a burst of viscous heating and allowed the larger platelets to grow via ripening 

(Mazzanti et al., 2011). 
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The mode of shear application, such as turbulent flow delivered by impeller mixers and scraped 

surface heat exchangers (SSHE) or laminar flow by Couette-type cells and parallel plate shear 

cells, may have an impact on crystal microstructure and therefore fat plasticity. Acevedo and 

Marangoni tested the use of different methods of shear application using a SSHE, which provided 

turbulent flow and a Couette-type laminar shear cell on the crystallization of hydrogenated soy fat 

and soy oil blends (Acevedo & Marangoni, 2014). Statically-crystallized samples showed expected 

spherulite microstructures while shear-crystallized samples, regardless of shear type, inhibited the 

formation of spherulites and promoted spherical clusters of needle-like crystals. Shearing caused 

an increase in nanoplatelet length with SSHE crystallization having greater impact than laminar 

shear-crystallization, which was contradictory to previously-reported results that shear decreased 

CNP size. This was attributed to the differences in shear rate between the studies and implied a 

critical shear rate below which CNP growth was enhanced whereas above this value crystal 

breakage and secondary nucleation were promoted (Acevedo & Marangoni, 2014). Contrary to 

reports by Mazzanti that shear increases the thickness of nanoplatelets (Mazzanti et al., 2011), 

Acevedo and Marangoni did not find any correlation between shear and CNP thickness. Since 

Mazzanti et al. used the same Couette laminar shear cell, differences in the type of shear could be 

ruled out. Therefore, the differences in CNP thickness behaviour was probably due to the different 

shear rates used in the two studies:      1440 s-1 by Mazzanti et al. and 240 s-1 by Acevedo and 

Marangoni, which suggested that there is a critical shear rate for the generation of viscous heating. 

Mudge et al. examined the crystallization of cocoa butter under laminar shear using a Couette-type 

shear cell and found a critical shear rate for viscous heat generation (between 360 and 720 s-1) 

above which SFC decreased and polymorphic transitions were suppressed with effects being 

composition-dependent (i.e., samples with higher amounts of lower-melting TAGs were more 
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susceptible to viscous heat-mediated melting) (Mudge & Mazzanti, 2009). Also in their 2014 

study, Acevedo and Marangoni reported decreased elastic modulus (G’) and yield stress (σ*) for 

sheared samples that had smaller crystal sizes, regardless of shear type, compared to statically-

crystallized samples, which was contradictory to reports that smaller crystals lead to higher 

mechanical strength (Campos et al., 2002; Narine & Marangoni, 1999; Pérez-Martínez et al., 

2007). They attributed the behaviour to differences in crystal growth mechanisms during storage, 

with the network growth of the sheared samples being inhibited by the confined flat 2D space of 

the microscope slide and cover slip vessel which was absent for previous studies (Acevedo & 

Marangoni, 2014). 

The combination of crystallization temperature, cooling rate, and shear can have significant 

impacts on crystal morphology and microstructure. Ghosh and Rousseau, while studying the effect 

of different surfactants on the interfacial crystallization of a model fat system [fully-hydrogenated 

canola oil (FHCO)] in canola oil (CO)], discovered that crystallizing the fat in the narrow gap (<1 

mm) between the parallel plates of a rheometer while applying laminar shear led to the formation 

of spheroidal crystal structures, which they dubbed “crystal cocoons” (Ghosh & Rousseau, 2012). 

Acevedo et al. studied the effects of laminar shear on the structuring of fully-hydrogenated soybean 

oil as a function of shear rate and crystallization temperature and reported similar findings 

(Acevedo, Block, & Marangoni, 2012). Shear-crystallization of this fat in the narrow gap (2.5 mm) 

of a Couette cell led to the formation of spheroidal crystal structures they referred to as “solid lipid 

meso-particles” (SLMs). It was found that SLM size was a function of shear rate: at an intermediate 

shear rate (30 s-1), larger SLMs formed while shearing at higher rates (240 s-1) resulted in smaller 

SLMs. This supported the existence of a critical shear rate, below which crystal aggregation and 

growth were promoted, possibly due to surface damage which led to their more rapid surface 
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integration and enhanced crystal growth whereas shear rates above the critical value inhibited 

aggregation and even broke down crystals (Chaiseri & Dimick, 1995; Garside & Davey, 1980). 

There have been other incidental reports of shear-induced spheroidal TAG crystal assemblies. 

Herrera and Hartel used a paddle type mixer to study the crystallization behaviour of milk fat 

blends under agitation and revealed spheroidal crystal aggregates but only referred to them as 

crystals (Herrera & Hartel, 2000). Lupi et al. studied the rheology of water-in-olive oil emulsions 

sheared via a rotor-stator setup and structured via MAGs and DAGs in combination with cocoa 

butter showed globular spherulitic aggregates with smoothed surfaces were generated at a shear 

rate of 100 s-1 (Lupi, Gabriele, De Cindio, Sánchez, & Gallegos, 2011). De Graef et al. reported 

globular crystal structures of cocoa butter formed when sheared with a Couette-type shear cell at 

rates of 10 and 100 s-1 (De Graef, Van Puyvelde, Goderis, & Dewettinck, 2009). Tarabukina et al. 

studied the crystallization and rheology of palm oil sheared via a rheometer with cone and plate as 

well as parallel plate geometries and demonstrated that shear rates of 10 and 100 s-1 could 

significantly impact microstructure and caused crystals to aggregate into nearly-spherical entities 

with higher density compared to statically-crystallized samples (Tarabukina et al., 2009).  

Tran et al. worked to characterize and elucidate the mechanism of formation of these spheroidal 

crystals (Tran et al., 2014). Using a model fat system consisting of FHCO and CO and laminar 

shear generated using a rheometer with parallel plate geometry (500, 1000, and 2000 s-1), it was 

found that crystal spheroid formation was dependent on cooling rate, where an optimum/critical 

value was observed (1.0 ºC/min) above which spheroid formation was hindered due to the rapid 

crystallization of the fat resulting in less time for shear-induced organization and below which 

spheroid formation was also hindered due to crystal growth into higher polymorphs (β' and/or β) 

being favoured, which presumably were not as susceptible to shear-induced aggregation compared 
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to α crystals formed at slower cooling rates. Crystal spheroid size and viscosity decreased with 

higher shear rate, demonstrating that crystal size and morphology significantly impacted 

rheological properties, although these results may be counter-intuitive to the idea that more 

numerous smaller crystals would result in higher viscosity due to greater inter-particle interactions. 

A possible explanation would be that at the highest shear rate (2000 s-1) there was increased viscous 

heat generation that caused melting and polymorphic transitions at the solid spheroid-oil interfaces, 

leading to smoother surfaces and decreased surface area that decreased inter-particle contact and 

friction which resulted in lower viscosity. To elucidate the mechanism of crystal spheroid 

formation, shear crystallization was halted at various temperature and time points during 

development. Crystal microstructure was dependent on shearing time and crystallization 

temperature with spheroid development being a multistep process. The proposed mechanism for 

spheroid formation was: i) potential shear-induced pre-structuring of TAG in the melt; ii) 

nucleation and formation of nanoplatelets and subsequent CNP stacks; iii) orientation of CNP 

stacks parallel to the shear flow field below a critical shear rate or above which tumbling and 

rotation of nanoplatelet stacks occurred; iv) crystallization into bundles or clusters of α crystals; 

v) shear-accelerated polymorphic transitions to β'/β; and vi) smoothing of spheroid surfaces due 

to viscous heat generation (Fig. 4) (Tran et al., 2014).  
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Figure 4. Proposed mechanism for crystal spheroid formation: A) CNP stack approximated by 

cylinders; B) Rotation of CNP cylinders and orientation parallel to shear field; C) Association of 

CNP cylinders; d) Formation of CNP cylinder bundles and breakage along weak points; E) 

Tumbling of CNP bundles and epitaxial growth; F) High shear-induced aggregation of CNP stacks 

into spherical clusters; G) Aggregation of spherical CNP clusters; H) Epitaxial crystal growth. 

Adapted from Tran et al. (Tran et al., 2014). 

 

4. Conclusion      
There have been a great number of studies on the crystallization of fats in an effort to understand 

the relationship between microstructural elements and macroscopic properties such as mechanical 

strength and organoleptic properties, all of which are dependent on the crystal networks which are 

susceptible to processing conditions such as cooling rate, temperature and agitation.  

Recently, there have been increased efforts in elucidating the role of shear on fat crystallization 

with some general trends becoming apparent:  

i. Shear greatly accelerates nucleation resulting in higher crystallization rates and an 

increased number of smaller crystals, which typically results in increased fat crystal 

network strength; 
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ii. There exist system-dependent critical shear rates above which crystal growth is hindered 

due to the fracturing of larger crystals and inhibition of aggregation and clustering and 

below which crystallite aggregation is promoted, leading to larger crystals; 

iii. Shear accelerates polymorphic transitions, possibly due to shear-induced viscous heat 

generation that melts lower polymorphs while leaving behind higher-ordered seeds; 

iv. Shear affects crystallization at the nanoscale, causing decreased crystal nanoplatelet size at 

higher shear rates; 

v. Crystals above a critical size may become oriented in the direction of the imposed shear 

field, and; 

vi. Shear crystallization may be used to form new spheroidal crystal microstructures. 

In closing, the effects of shear on fat crystallization are still not fully-understood and more work 

is required. Recent developments in instruments capable of concurrent shear and x-ray diffraction 

may be used in combination with electron microscopy techniques to elucidate crystal 

nanostructures and their shear-induced orientation with the goal of relating all of the different 

length scales. Understanding these properties will foster improvement of current fat-containing 

products and lead to the innovative new processed foods. 
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Chapter 2 – Spheroidal Fat Crystal Microstructures Formed with 

Confined Gap Shearing 
 

 

 

 

 

 

 

 

 

 

 
                           

 

 Confined gap shear-cooling used to generate spheroidal fat crystal assemblies 

 Simultaneous action of cooling and shear required for spheroid formation  

 Mechanism of formation is a multi-scale, multiple step process 

 Novel morphology may be used to control fat crystal network microstructure and 

rheology. 

  

Shear 
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Abstract 

Confined gap shear-cooling was used to structure a model solid fat/liquid oil system consisting of 

fully-hydrogenated canola oil (FHCO) and canola oil (CO). Samples were cooled at various 

cooling rates (0.2 to 5.0 ºC/min) and shear rates (0, 500, 1000, and 2000 s-1) and characterized via 

polarized light microscopy and rheology. In the absence of shear (0 s-1), FHCO crystallized into 

an aggregated network of spherulites. Upon shearing, HCO crystallized into distinct spheroids 

whose size and structure were dependent on the cooling and shear rates used as well as 

crystallization duration and temperature. Lower shear rates resulted in larger, more irregularly-

shaped spheroids whereas with higher shear rates these were more numerous and smaller. The 

simultaneous action of cooling and shear were required for spheroid formation, with shear having 

a greater impact. A mechanism was proposed to identify the multiple steps involved in the 

formation of the spheroids. Overall, these results demonstrated that it is possible to tailor the 

aggregation behaviour of individual fat crystals towards novel morphologies that may be used to 

control fat crystal network microstructure and rheology. 
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1. Introduction 
The mechanical properties (e.g., firmness and spreadability), eating properties (e.g., mouthfeel or 

meltability), physical stability (e.g., phase separation) and visual appearance of processed foods 

such as margarine and confectionery fillings are highly dependent on the underlying 

microstructure of their three-dimensional (3D) fat crystal network. Fat composition [i.e., 

triacylglycerol (TAG) make-up, presence of surfactants and non-fat ingredients, etc.] and 

processing conditions (cooling rate, crystallization temperature, time and shear) affect how TAG 

molecules crystallize and aggregate. In order of increasing stability, the three common crystal 

polymorphs in which TAGs exist are the α, β', and β. The former has the lowest packing density 

and melting point whereas the latter have higher packing densities, stability, and melting points 

(Sato, 2001; Walstra, 2003).  

The formation of a fat crystal network is a multi-step process. At temperatures below their 

crystallization temperature (Tc), TAGs nucleate to form nanoplatelets that grow in size (Mazzanti 

et al., 2003). Under quiescent conditions, these nascent crystals aggregate via van der Waals 

attractions, Brownian motion, and sintering (formation of solid bridges between crystals) to form 

a 3D network via diffusion-limited cluster-cluster aggregation (De Graef et al., 2006; Kloek et al., 

2005; Maleky et al., 2011). 

Thermal history plays a significant role on the microstructure of crystallized fats (Pérez-Martínez 

et al., 2007). Faster cooling rates and greater supercooling often favour the formation of less-

ordered crystals (typically α crystals) whereas at slower rates, the formation of β' and β crystals is 

typically promoted, given the lower driving force for crystallization (R. Campos et al., 2002; 

Maleky et al., 2012). Faster cooling rates may also result in a higher initial solid fat content (SFC) 
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and the formation of more numerous, smaller crystallites with slower cooling rates yielding the 

opposite (Acevedo & Marangoni, 2010b; Campos et al., 2002).  

Mixing forces can greatly affect fat crystallization and network formation. Mixing as applied with 

an impeller-type arrangement may alter the aggregation behaviour as well as the structural and 

rheological properties of the resulting fat crystal network. The laminar flow generated within a 

narrow, confined gap [e.g., Couette shear cells (Maleky et al., 2011), shear-processing cells 

(MacMillan & Roberts, 2002), or within the parallel plate geometry of a rheometer (Ghosh & 

Rousseau, 2012)] may result in alteration of crystallization at smaller length scales, resulting in 

accelerated polymorphic phase transitions to more stable polymorphs (MacMillan & Roberts, 

2002). Mazzanti et al. found that sufficiently high shear forces provided enough viscous heat to 

melt lower-melting crystals, leaving behind nuclei that could act as templates for growth into 

higher-order polymorphs (Mazzanti et al., 2003). Such heating also reduced the overall size of 

crystal clusters, either through the fracturing of larger crystals or by enhancing nucleation while 

inhibiting cluster growth and aggregation (Acevedo et al., 2012; Kloek et al., 2005; Maleky et al., 

2011). Mazzanti et al. also found that shear induced orientation of crystallites in a variety of fats 

(cocoa butter, milk fat, and palm oil), with shear at 90 s-1 resulting in little or no orientation whereas 

shear at 1400 s-1 caused an appreciable degree of orientation (Mazzanti et al., 2003).  

Phenomenologically, the orientation of suspended particles in a flowing system depends on 

numerous factors, including the presence of shear, inter-particle interactions and Brownian motion. 

At low volume fractions, such as during nucleation onset, inter-particle forces are negligible given 

the low number-concentration of nuclei. Therefore, particle orientation depends on the interplay 

of order-inducing (shear) and disorder-inducing (Brownian) forces. Shear causes particles to rotate 

slowly when they are oriented nearly parallel to the direction of flow and faster when perpendicular 
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to the flow, resulting in preferential orientation parallel to the flow field with time. In the context 

of fat crystallization, larger crystals would be more readily oriented than smaller ones, given they 

are more affected by the flow field and experience greater shear effects (Mazzanti et al., 2011). 

When combined, the processing conditions discussed above clearly impact crystal morphology 

and microstructure.  

There have been incidental reports of sphere-like TAG crystalline assemblies formed as a result of 

cooling under stirring. Herrera and Hartel (2000) studied the bulk crystallization of milkfat blends 

under agitation, and revealed the presence of fat crystal spheroidal aggregates, though they only 

referred to them as crystals (Herrera & Hartel, 2000). Lupi et al. (2011) studied the rheology of 

water-in-olive oil emulsions structured via crystallization of partial acylglycerols and cocoa butter 

and showed that smoothed spherulitic aggregates were generated at a shear rate of 100 s-1 (Lupi et 

al., 2011). De Graef et al. (2008) found that shear enhanced the primary nucleation and 

crystallization of palm oil, with shear rates of 10-1 and 100 s-1 leading to the formation of globular 

‘crystal structures’ (De Graef et al., 2009). Tarabukina et al. (2009) investigated the impact of 

shear on palm oil crystallization during cooling (Tarabukina et al., 2009). Shear significantly 

influenced spherulite size and growth rate of the palm oil with steady-state structures consisting of 

aggregated spherulites, demonstrating the importance of thermo-mechanical history on fat crystal 

aggregation. More recently, Acevedo et al. found that shear-cooling fully hydrogenated soybean 

oil in the narrow gap (2.5 mm) of a Couette cell led to the formation of spheroid crystal structures 

whose size was a function of shear rate (30 vs. 240 s-1)  (Acevedo et al., 2012). Temperature had a 

more pronounced effect at 30 s-1 than at 240 s-1 with larger structures formed at higher 

temperatures. They suggested that below a critical shear rate, crystal aggregation was promoted 

while shear rates above this critical value inhibited aggregation and potentially broke down crystal 
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assemblies. Finally, Ghosh and Rousseau found that shear-crystallizing fat-stabilized water-in-oil 

emulsions in the narrow gap (<1 mm) between the parallel plates of a rheometer led to the 

formation of spheroidal crystal structures that encapsulated the dispersed aqueous droplets (Ghosh 

& Rousseau, 2012).  

The literature indicates that the factors and mechanisms required to form spheroidal structures are 

not yet fully understood. In this study, we explored the juxtaposition between cooling and shear 

rate on spheroid formation and elaborated on existing mechanisms possibly responsible for their 

formation. To do so, confined gap shear-cooling was used to structure mixtures of solid fat and 

liquid oil at various cooling and shear rates. We show that the simultaneous action of cooling and 

shear were required to form fat crystal spheroids, with shear having a greater impact. 
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2. Materials and Methods 

2.1 Materials 

Canola oil (acid value ~ 0.2%) was purchased from a local grocery store and stored at room 

temperature. Fully-hydrogenated canola oil (FHCO) was purchased from Bunge (Oakville, ON, 

Canada). It had a capillary melting point of 69.5 ºC (AOCS official method Cc 1-25) and a free 

fatty acid content of 0.018% (AOCS Society, 1998). The predominant TAG species in FHCO were 

C52 (13.3%), C54 (73.6%), and C56 (5.0%). 

 

2.2 Shear-Crystallization 

A 10 wt% FHCO solution in canola oil was heated to 70 °C with continuous stirring to ensure 

complete melting of the FHCO. Aliquots were deposited between the parallel plates (PP25,       25 

mm diameter, 0.5 mm gap) of a rheometer (Physica MCR301, Anton Paar, Ville St-Laurent, QC, 

Canada). Samples were then maintained at 70 °C for 20 min and then cooled at                 0.2-5.0 

ºC/min while being sheared at a constant rate ranging from 0-2000 s-1. The apparent viscosity of 

the samples was measured using the rheometer and measurements were recorded as samples were 

sheared and cooled. All experiments were performed at least in triplicate. 

 

2.3 Microscopy 

The microstructure of samples was observed via polarized light microscopy (PLM). Samples were 

placed on viewing slides at room temperature (~25 °C) (Fisher Scientific, Ottawa, ON, Canada), 

covered with a cover slip (Fisher Scientific, Nepean, ON, Canada) and analyzed with an inverted 

light microscope (Axiovert 200M, Zeiss Inc., Toronto, ON, Canada) equipped with a CCD camera 
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(Q Imaging, RETIGA 32-0012B-105, Surrey, BC, Canada) using Northern Eclipse imaging 

software (Version 7.0, Empix Imaging Inc., Mississauga, ON, Canada). 

 

2.4 Data Analysis: All results reported are the arithmetic mean ± standard deviation of triplicate 

experiments. Statistical analysis was performed using either a two-tailed student’s t-test (for single 

pair comparisons) or one-way ANOVA with single-step Tukey’s multiple comparison post-hoc 

test for multiple groups. Differences were considered statistically significant at P≤0.05. 
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3. Results and Discussion 

3.1 Cooling Rate 

Fig. 1 reports the apparent viscosity of the FHCO/CO blends sheared at 2000 s-1 as a function of 

temperature (70 to 20 °C) at 5 cooling rates ranging from 0.2-5 °C/min. A three-phase viscosity 

profile (I-III) was apparent at all cooling rates. From a molecular perspective, the increase in TAG 

melt shear viscosity (phase I) was attributed to the increased interaction between neighbouring 

TAGs as the temperature was reduced. Dibildox-Alvarado et al. found evidence of van der Waals-

mediated interactions responsible for pre-structuring and microviscosity changes in liquid-state 

TAG blends (Dibildox-Alvarado, Laredo, Toro-Vazquez, & Marangoni, 2010). Higher cooling 

rates resulted in faster increases in apparent viscosity. The temperatures at the end of phase I 

decreased with increasing cooling rate (P≤0.05), suggesting an effect on pre-nucleation liquid-

state TAG-TAG interactions. At slower cooling rates (e.g., 0.2 ºC/min), with more time for TAGs 

to organize in the melt, there would be a lower driving force for nucleation and a higher drive for 

crystal growth likely resulting in the formation of higher-order polymorphs (β/β') and eventually 

spherulites. At faster cooling rates, the TAGs presumably formed less-dense α crystals that formed 

clusters more susceptible to shear-induced tumbling, resulting in the formation of crystal 

spheroids. 
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Figure 1. Viscosity profiles of 10 wt% FHCO and 90 wt% CO blends sheared at 2000 s-1 and 

crystallized at different cooling rates. Error bars removed for clarity (n=3). 

 

The second phase of crystallization (II), shown as the sharp increase in apparent viscosity within 

a narrow temperature range, resulted from the initial crystallization of FHCO. The rate of increase 

in viscosity for this second phase significantly differed with cooling rate (Table 1) (P≤0.05). There 

were also significant differences in crystallization temperature (Tc) (the temperature at the end of 

phase I) between the different cooling rates (Table 1) (P≤0.05), which was also attributed to 

increased supercooling effects. The apparent viscosity at the end of phase II increased with faster 

cooling rates, presumably due to decreased induction times which resulted in a higher fraction of 

the FHCO crystallizing.  
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Table 1. Rates of increase in viscosity and changes in crystallization temperature (Tc) at different 

cooling rates (units of Pa·s/°C). Rates have been multiplied by a factor of 100 for formatting and 

are reported as means ± standard deviations (n=3). 

Cooling rate 

(°C/min) 

Phase I Phase II Phase III Tc  

(ºC) 

0.2 0.06 ± 0.00  2.02 ± 0.60 0.37 ± 0.05 42.4 ± 0.0 

0.5 0.06 ± 0.01 1.37 ± 0.19 0.49 ± 0.03 41.2 ± 1.1 

1.0 0.06 ± 0.00 1.45 ± 0.05 0.49 ± 0.02 38.9 ± 0.0 

1.5 0.06 ± 0.00 1.90 ± 0.10 0.45 ± 0.14 37.2 ± 0.0 

2.0 0.06 ± 0.01 2.47 ± 0.26 0.42 ± 0.04 35.4 ± 0.0 

5.0 0.06 ± 0.01 2.42 ± 0.83 0.38 ± 0.03 36.2 ± 1.3 

 

 

The phase III viscosity profile was attributed to the combination of continued crystal growth and 

the αβ' or β polymorphic transition of the FHCO (Mazzanti, Marangoni, & Idziak, 2005). De 

Graef et al. reported similar increases in apparent viscosity for the crystallization of palm oil under 

shear and attributed it to polymorphic transitions, crystal growth as well as direct melt-to-β' crystal 

formation (De Graef et al., 2009). The duration of phase III decreased with faster cooling rates 

given the higher proportions of FHCO crystallizing during phase II and the consequent reduction 

in FHCO remaining in the melt. The clear break between phases II and III implied that after first 

crystallizing into lower polymorphs, there was structural reorganization of TAG molecules into 

higher polymorphs. 

Although all cooling rates showed similar three-phase crystallization patterns, the resulting 

microstructure drastically differed (Fig. 2). An optimal cooling rate of 1.0 °C/min resulted in the 

highest number of spheroids formed whereas at 1.5 °C/min, there was also evidence of non-

spheroid crystals. The spheroids generated at these two cooling rates bore the smoothest surfaces. 

At higher cooling rates, no spheroidal assemblies were observed, i.e., at 5 °C/min, the FHCO 

crystallized and aggregated to form a 3D network whereas at 2 °C/min, crystal-crystal clustering 
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was observed but did not lead to spheroid formation. Samples cooled at 0.5 °C/min also showed 

evidence of spheroidal shapes; however there was concurrent crystallization in the continuous 

phase, indicating simultaneous spheroid/non-spheroid formation. At 0.2 °C/min, FHCO strictly 

crystallized as spherulites.  

The possibility that these morphological differences were due to unequal processing conditions 

resulting from different cooling rate-dependent shearing times was rejected as experiments with 

matched shearing durations did not yield such disparities. This suggested that once the FHCO had 

crystallized as spherulites, it was not possible to transform them into spheroids by imposing further 

shear. 
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Figure 2. Microstructure of FHCO crystallized (shear rate = 2000 s-1 and gap size = 0.5 mm) at 

different cooling rates: A) 5.0 ˚C/min, B) 2.0 ˚C/min, C) 1.5 ˚C/min, D) 1.0 ̊ C/min, E) 0.5 ˚C/min, 

F) 0.2 ˚C/min. Size bar represents 25 μm. 
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3.2 Shear Rate 

Fig. 3 shows that for samples cooled at 1.0 °C/min using three shear rates (500, 1000, and     2000 

s-1), there were no significant effects on the viscosity profile rate constants for phases I and II 

(P>0.05). However, the different shear rates had a significant effect on the phase III rate constants 

and final apparent viscosities (P≤0.05). Hence, shear likely did not affect pre-nucleation inter-

molecular TAG interactions and α-form crystallization, but did affect the polymorphic transitions 

and continued growth thought to occur during phase III. Similar shear rate-dependent results were 

found for samples cooled at 0.5 and 1.5 °C/min. Notably, at lower shear rates (0.5 °C/min and 500 

s-1), the spheroids were larger and more irregularly-shaped (Fig. 4A) whereas at higher shear rates, 

they were smaller and more spherical (Figs. 4B and C).  

 

 

Figure 3. Viscosity profiles of 10 wt% FHCO and 90 wt% CO blends at a cooling rate of           1.0 

°C/min as a function of shear rate. Error bars removed for clarity (n=3). 
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Figure 4. Microstructure of crystallized FHCO as a function of shear rate: A) 500 s-1;                B) 

1000 s-1; C) 2000 s-1 (cooling rate = 1 ˚C/min and gap size = 0.5 mm). Size bar represents    25 

μm. 

 

The rates of increase in viscosity differed significantly depending on the cooling and shear rates 

used (Table 2) (P≤0.05). Those cooled at 0.5 °C/min showed decreasing rates of viscosity buildup 

with higher shear rates whereas samples cooled at 1.0 and 1.5 ºC/min showed significantly higher 

rates of viscosity increase only for samples sheared at 500 s-1 with no differences between samples 

sheared at 1000 and 2000 s-1 (P>0.05). 
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Table 2. Rates of increase in viscosity (units of Pa·s/°C) at different cooling and shear rates (results 

have been multiplied by a factor of 10-6 for formatting). 

 

Cooling rate (°C/min) 

 

Shear rate (s-1) Phase I Phase II Phase III 

0.5 500 0.06 1.50 0.46 

1000 0.06 1.39 0.40 

2000 0.06 1.59 0.34 

1.0 500 0.07 2.91 0.74 

1000 0.07 1.72 0.50 

2000 0.07 2.06 0.48 

1.5 500 0.07 2.46 0.69 

1000 0.07 2.89 0.59 

2000 0.07 2.69 0.55 

 

Size measurements revealed no significant differences in spheroid aspect ratios between samples 

sheared at 500, 1000, and 2000 s-1 (Table 3) (P>0.05). However, smaller standard deviations in 

average long and short axis values with increments in shear rate suggested a narrowing in spheroid 

size distribution. Overall, it is clear that spheroid size and shape were responsible for the 

differences in final apparent viscosity, i.e., larger, irregularly-shaped spheroids resulted in higher 

viscosities than smaller, more-spherical spheroids, as has been previously noted (Acevedo et al., 

2012; Kloek et al., 2005; Maleky et al., 2011; Mazzanti et al., 2003).  

 

Table 3. Average length of the long and short axes of the crystal spheroids (cooling rate = 1.0 

ºC/min). 

Shear rate (s-1) Average long axis (μm) Average short axis (μm) Aspect ratio 

500 42.86 ± 21.2 32.93 ± 16.6 1.32 ± 0.2 

1000 29.08 ± 13.1 21.60 ± 8.0 1.34 ± 0.2 

2000 31.04 ± 10.2 24.89 ± 7.9 1.26 ± 0.2 
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3.3 Effect of a Shear Step 

Whether TAG blends exhibit structuring in the liquid state is debatable, with some studies arguing 

against (Cebula, McClements, Povey, & Smith, 1992; Cebula, McClements, & Povey, 1990; 

Kellens, Meeussen, Hammersley, & Reynaers, 1991) and others finding otherwise (Callaghan & 

Jolley, 1977; Dibildox-Alvarado et al., 2010; Ueno, Minato, Seto, Amemiya, & Sato, 1997). To 

examine whether there existed any liquid-state ordering, samples were subjected to a shear step at 

70 °C before they were cooled and crystallized. The rationale was that if shear could induce 

measurable ordering or orientation of TAG molecules in the liquid phase, these could act as 

nucleation sites. The present results showed that pre-shearing did not have any effect on crystal 

spheroid formation, morphology, or viscosity profile. These results were in contrast to those of De 

Graef et al. (2009), who found that a shear step had significant effects on palm oil crystallization 

(De Graef et al., 2009). This was likely related to the extent of pre-shear applied which was 

lengthier in the work of De Graef et al. (2009). Alternatively, it is likely that pre-shear temperature 

may be an important contributor worthy of further consideration. At 70 °C, the thermal energy of 

the individual TAGs may have been too high to permit any sufficiently long shear-modified self-

assembly. 

 

3.4 Mechanism of Formation 

Apparent viscosity and microstructure were characterized as a function of time to elucidate the 

mechanism of spheroid formation (Figs. 5 and 6). To do so, samples were shear-crystallized for 

set periods of time until a pre-determined temperature was reached after which viscosity and 

microstructure were measured.  
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Figure 5. Viscosity profile of FHCO crystallized at 2000 s-1 and 1.0 ˚C/min (0.5 mm gap size) as 

a function of time and temperature (n = 3). 

 

Fig. 5 shows the apparent viscosity vs. time curve for FHCO crystallized at 2000 s-1 and           1.0 

°C/min as a function of time. Crystallization was halted at the various time/temperatures within 

phase II. There were no significant differences in the apparent viscosity profiles since the only 

parameter varied was crystallization time. However, there were significant differences in 

microstructure (Fig. 6).  
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Figure 6. Microstructure of crystallized FHCO under 2000 s-1 shear rate (0.5 mm gap size) as a 

function of crystallization temperature. A) 37.5 °C; B) 37 °C) 36 °C; D) 20 °C; Size bar represents 

25 µm. 

 

When shear was halted at 37.5 °C (t ≈ 3230 s, Fig. 6A), no crystal spheroids were observed. 

Instead, the crystals had a spherulite-like morphology and were randomly-oriented. Although it 

appeared that the crystals formed a 3D network, this was not the case as there were no significant 

differences in sample fluidity or viscosity between these samples and those cooled to lower 

temperatures. Samples cooled to 37 °C (t ≈ 3280 s) showed a higher degree of structuring as 

evidenced by the spheroidal morphology (Fig. 6B). These rough aggregates were potentially the 

core for ensuing smooth-surfaced spheroids or a different type of spheroid altogether where 

crystallization at a higher temperature (i.e., less under-cooling) resulted in larger constituent 

crystals within the spheroids and therefore a rougher surface. Examining the microstructure of 
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samples cooled to 36 °C (t ≈ 3300 s) revealed fully-formed crystal spheroids (Fig. 6C). 

Interestingly, this time/temperature point was associated with the sharp increase in apparent 

viscosity in Fig. 5. These images suggested that crystal spheroids may form directly from the melt, 

with no evidence of precursor structures. Perhaps the action of shear promoted the clustering of α 

crystallites/nuclei that, under a tumbling action in the shear field, crystallized together as a globular 

mass. At this temperature, the spheroids had smooth surfaces which may have resulted from either 

shear-induced heating or viscous heat generation (Eisenmann, Kim, Mattsson, & Weitz, 2010). In 

this context, the imposed shear produced enough heat at the spheroid surface to cause melting of 

less-dense or loosely-associated crystals leaving behind nuclei as templates for the growth of β' 

and more likely β-crystals with their higher density and degree of organization.  

Upon visual inspection, there were no distinguishable differences in crystal morphology between 

samples cooled to 36 °C or 20 °C (Figure 6D, t ≈ 4250 s), implying that once the spheroids have 

formed, increased shearing time did not impact their morphology. Based on these results,        36-

37 °C was the optimal temperature range for FHCO spheroid formation. To probe this critical zone 

further, samples were subjected to extra shearing time while being held isothermally at     37 °C 

(Fig. 7).  
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Figure 7. Viscosity profiles of FHCO crystallized at 2000 s-1 at 1.0 °C/min (0.5 mm gap size) as 

a function of shearing time. 

 

 

Figure 8. Microstructure of FHCO crystallized at 2000 s-1 (0.5 mm gap size) and at 37 °C as a 

function of extra shearing time: A) no extra shear; B) 5 min; C) 8 min; D) 20 min. Size bar 

represents 25 μm. 



44 

 

With no extra shear (Fig. 8A), samples showed crystal clusters with a rough globular structure. 

Samples sheared for an extra 5 min (Fig. 8B) showed fully-formed crystal spheroids with smooth 

surfaces, which implied that spheroid formation not only depended on shear rate, cooling rate, and 

crystallization temperature, but also on shearing time. There was a critical value for shearing time 

as shown by the decrease in viscosity after 8 min of extra shear (Fig. 7) and corresponding 

breakdown of the spheroids (Fig. 8C). Similar results were visible upon shearing for an extra 20 

min, where fractured spheroids surrounded by fragmented crystals dominated (Fig. 8D). Samples 

crystallized to lower temperatures (e.g., 20 °C, Fig. 6D) did not exhibit this behaviour even though 

the samples were sheared for longer times, implying that spheroid breakage resulted from the 

different crystallization temperatures. 

With the application of 8 or 20 min of extra shear vs. 5 min at 37 °C, the dismembered spheroids 

demonstrated a higher degree of crystallinity, supporting the transition from α to β'/β crystals. 

Generally speaking, crystal size increases in the order of α < β' < β, with α being characterized as 

‘wispy’, β' more fine-grained, and β as larger (AOCS, 1991). Speculatively, evolution from smaller 

α crystals to larger β' or β crystals in a short time span may be the reason for the structural 

breakdown observed for the crystal spheroids, i.e., as the spheroids’ internal α crystals underwent 

transformation and growth, their volume increased beyond the initial volume of the spheroids 

which could no longer contain them leading to breakage.  

Significant insights regarding fat crystal spheroid formation may be gleaned from efforts in 

polymer and colloid research. In polymer systems, the presence of shear may have significant 

effects on crystal microstructure. Below a critical shear rate, polymers often crystallize into 

spherulites. Above a critical shear rate, polymer chains may become disentangled and oriented, 

resulting in crystallization into unique-looking structures such as “shish-kebabs” (Zhang et al., 
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2008). These structures then act as a cylindrical core and undergo epitaxial growth, resulting in 

fibrillar/tubular structures. We postulate that a similar mechanism may have led to spheroid 

formation. It has been shown that shear forces can affect TAG nucleation, causing nanoplatelets 

to elongate and orient in the flow direction (Acevedo & Marangoni, 2014b; Mazzanti et al., 2003). 

Maleky and Marangoni found that shear caused preferential orientation of TAG crystals in the 

direction of shear flow but not in the normal plane (Maleky & Marangoni, 2008). Recent research 

based on computer simulations to model TAG crystal nanoplatelet aggregation showed that under 

quiescent conditions, the nanoplatelets aggregated into elongated stacks with “sandwich”-like 

structures (Marangoni et al., 2012; Peyronel, Ilavsky, Mazzanti, Marangoni, & Pink, 2013; Pink 

et al., 2013). These stacks then went on to form random clusters that eventually resulted in a 3D 

network. We believe that shear would have a significant effect on the aggregation behaviour 

of these nanoplatelet stacks (Fig. 9A), i.e., below a critical shear rate, the stacks would become 

oriented in the direction of shear, resulting in greater inter-stack interactions leading to 

bundle/cylindrical structures (Fig. 9B). These cylindrical structures would then grow lengthwise 

until they would break along weak points resulting in free-floating cylinders that tumble under 

shear (Fig. 9C and D). These cylinders could then act as seeds for further epitaxial crystal growth 

(Fig. 9E). Above a critical shear rate, TAG stacks would tumble faster and have less time to 

interact, leading to more globular structures and less cylinder formation (Fig. 9F). These crystallite 

aggregates may then act as seeds for further epitaxial growth into spheroids (Fig. 9G). 
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Figure 9. Proposed mechanism for the formation of crystal spheroids. 
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The proposed mechanism of crystal spheroid formation is thus multi-step: i) potential shear-

induced pre-structuring of TAGs in the melt; ii) nucleation and formation of nanoplatelets 

(relatively large distances between nanoplatelets and thus low degree of inter-particle interactions); 

iii) rotation and tumbling of platelets due to shear in the flow field; iv) nanoplatelet aggregation 

into extended stack-like structures; v) clustering of the nanoplatelet stacks into globular aggregates 

or bundles, depending on the shear rate; vi) crystallization into clusters of α crystals while 

tumbling, forming crystal spheroids; vi) shear acceleration of the αβ' (or β)  polymorphic 

transition and finally vii) viscous heat generation causing melting of loosely-associated α crystals 

at the spheroid surface, leaving behind nuclei that act as templates for the formation of more-

organized β' (or β) crystals, resulting in smoother surfaces. Tarabukina et al., observing the 

crystallization of palm oil under shear via optical microscopy and small-angle light scattering, 

found that palm oil crystallized in a similar stepwise fashion: i) nanoscopic crystallites formed 

needle-like crystals; ii) needle clustering to form spherulites; and iii) aggregation of the spherulites 

to form large masses with globular domains or networks (Tarabukina et al., 2009).  Chen and Doi 

modeled the interaction of hard spheres in the presence of shear and found that over time, the 

spheres would aggregate into globular clusters (Doi & Chen, 1989). It was also found that the 

viscosity profiles of the sheared hard spheres were sigmoidal in shape (first increasing slowly, then 

steeply, and finally leveling off) – much like the viscosity profiles observed for the formation of 

the present crystal spheroids (Fig. 1). They also observed that viscosity decreased with increasing 

shear rate, correlating well with our data (Fig. 3). 

Classical nucleation theory (CNT) models the free energy requirements for nucleation and crystal 

growth. While the crystalline phase is usually more stable and favoured energetically, there is 

usually an energy barrier that suppresses formation of smaller nuclei below a critical nucleus size 
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(Lander, Seifert, & Speck, 2013). Subjecting a colloidal system to shear flow drives the system 

out of thermal equilibrium which changes the concept of free energy and renders the CNT 

inapplicable. Sheared colloidal suspensions may still crystallize, but with nucleation and growth 

kinetics that differ significantly from those under static conditions. In a numerical study on 

crystallization in a supersaturated suspension of repulsive colloidal particles, Lander et al. found 

that shear suppressed nuclei formation via disruption of pre-nucleation-structuring in the melt but 

enhanced growth once a critical nucleus had formed (Lander et al., 2013). This suggested the 

possibility of competing mechanisms in regards to the nucleation and growth under shear. In this 

light, the application of shear likely altered TAG nucleation and growth kinetics of systems in an 

incipient state of crystallization. 

Cerda et al. studied the effects of shear on crystal nucleation in colloidal suspensions via two-

dimensional Langevin dynamics simulations (Cerdà, Sintes, Holm, Sorensen, & Chakrabarti, 

2008). Though colloid self-assembly clearly differs from that of TAGs, this study showed that 

shear may exert mechanical stress that either pulls particles apart, weakening effective attractive 

interactions between them or enhances the rate of collisions between particles, increasing the 

probability of forming stable nuclei. Shear promoted compaction of crystal clusters, whereby 

cluster size increased until a critical value above which it caused their breakdown. As well, at high 

shear rates, surface erosion of smaller particles limited cluster size. Finally, shear in combination 

with friction forces mediated cluster rotation, with the kinetic energy gained via shear-flow 

tumbling responsible for eventual breaking of the cluster into smaller fragments. 

In summary, the crystallization of TAGs is still not fully understood let alone within a shear field. 

Using other model systems may help to further elucidate mechanisms where it has been shown 
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that shear modulates particle-particle interactions and ensuing morphology via selection of 

different processing conditions. 

 

3.5 Crystal Spheroid Stability 

The initial structure of the crystal spheroids (Fig. 10A) became more crystalline internally with 

time, which was accompanied by crystal growth in the continuous phase (Fig. 10B). As the 

spheroids aged, they broke down (Fig. 10C) and resembled samples sheared isothermally (e.g., 

Figs. 8C and D), corroborating that shear accelerated polymorphic transitions and crystal growth. 

 

Figure 10. Evolution of crystal ovoid microstructure over time (2000 s-1, 1.0 °C/min, 0.5 mm gap): 

A) Day 0; B) Day 7; C) Day 7 at 630 X magnification. Bar in A and B represents 100 μm. Bar in 

C represents 20 μm. 

 

Fig. 11 shows the microstructure of samples taken immediately after formation (day 0) and after 

7 days of storage. On day 0, those sheared at 500 s-1 showed the lowest crystallinity in the 

continuous phase whereas those sheared at 2000 s-1 showed the highest proportion. This indicated 

that a higher proportion of FHCO was incorporated into the spheroidal structures at lower shear 

rates. Higher shear rates may have inhibited the interaction between TAG nanocrystal clusters, 

resulting in an overall reduction in the breadth of the spheroid size distribution but an increase in 

the number of crystals in the continuous phase. Overall, the spheroids became more crystalline 
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over time and the number of continuous phase crystals increased but these did not increase in size. 

Hence, the proportion of FHCO that crystallized into spheroids vs. bulk crystals affected sample 

viscosity and rheology over time. 

 

Figure 11. Partially-polarized images of crystal growth from day 0 [A) 500 s-1; C) 1000 s-1; E) 

2000 s-1] to day 7 [B) 500 s-1; D) 1000 s-1; F) 2000 s-1]. Size bar represents 30 μm. 
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4. Conclusion 
We explored the formation of spheroidal fat crystal assemblies and elaborated on existing 

mechanisms to develop a new model possibly responsible for their formation. This work 

demonstrated that processing conditions can have a profound impact on the crystallization of a 

model fat blend. Both cooling and shearing were required for the formation of crystal spheroids 

with the latter having a greater impact. Optimized processing conditions resulted in spheroids with 

a smoothened exterior and minimal internal crystallization. With age, the spheroids eventually 

broke down due to the continued growth of internal crystals. Future investigations are underway 

to further characterize spheroid stability and the fat crystal polymorphs present upon spheroid 

formation during ageing. Overall, the present study has shown that it is possible to tailor fat crystal 

aggregation and possibly rheological behaviour. 
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Chapter 3 – Spheroidal Fat Crystals: Structure Modification via use of 

Emulsifiers 
 

 

 

 

 

 

                                               

 

 

 

 We examine the effect of emulsifiers on the shear-crystallization of model fat systems 

 The type and concentration of emulsifier significantly affects fat crystal morphology 

 Shear affects fat polymorphism 

 Shear affects emulsifier incorporation into fat crystals 

  

Addition of emulsifier 
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Abstract 
Emulsifiers were used to modify the kinetics of formation and morphology of spheroidal fat crystal 

assemblies generated via the confined gap shear-cooling of model fat systems consisting of fully-

hydrogenated canola oil (FHCO), canola oil (CO), and glycerol monostearate (GMS), glycerol 

monopalmitate (GMP), sorbitan monostearate (SMS), or sorbitan tristearate (STS). The presence 

and morphology of spheroidal fat crystals were dependent on emulsifier type and concentration, 

with GMS, GMP and SMS significantly reducing spheroid size at lower concentrations and 

causing deformation of the crystals into irregular and elongated shapes at higher concentrations. 

STS significantly hindered the formation of spheroidal crystals and instead promoted globular 

crystalline assemblies. Thermal analysis and X-ray diffraction revealed that samples crystallized 

primarily into the β' polymorph along with a smaller amount of α polymorph. The ratio of α to β' 

polymorphs generally increased with emulsifier concentration and imposition of higher laminar 

shear rates, suggesting the importance of two phenomena: i) shear may influence the interactions 

between triacylglycerols at a molecular level, affecting the type of nanoplatelets formed and their 

interactions to form crystallites and subsequent crystals, and ii) the extent of shear (rate/duration) 

may affect the rate and/or amount of emulsifier incorporation into triacylglycerol crystal lattices. 

Overall, these results demonstrated that fat crystal structures may be tailored with the combined 

use of emulsifiers and laminar shear. 
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1. Introduction 
Many characteristics of fat-containing processed food products, including their mechanical 

properties (e.g. firmness and spreadability), eating properties (e.g. mouthfeel or meltability), 

physical stability (e.g. phase separation) and visual appearance depend on the composition of the 

fat phase [i.e. triacylglycerol (TAG) make up, presence of emulsifiers and minor components, etc.] 

and processing conditions (e.g., cooling rate, crystallization temperature, time and shear). 

Together, these parameters affect the rate and extent of TAG crystallization and polymorphic 

behaviour as well as aggregation into 3D fat crystal networks ultimately responsible for product 

functionality (Peyronel, Pink, & Marangoni, 2014; Sato, 2001; Walstra, 2003).  

The use of emulsifiers and shear-cooling are two means to modify fat crystal structure and kinetic 

stability. Emulsifiers are surface-active compounds that consist of hydrophilic and hydrophobic 

moieties, with the relative size, volume fraction, and composition of each dictating whether the 

molecule will be oil or water-tending. The focus of this research was on oil-tending emulsifiers 

that, as previously shown, may prevent or promote TAG nucleation, crystal growth, and/or 

polymorphic transitions, depending on their type, concentration, molecular similarity with the 

crystallizing TAG species and mode of action (Acevedo & Marangoni, 2014a; Aronhime, Sarig, 

& Garti, 1990; Shimamura, Ueno, Miyamoto, & Sato, 2013; Smith, Bhaggan, Talbot, & van 

Malssen, 2011). By manipulating processing conditions such as mixing, fat crystal morphology 

and aggregation behaviour can be extensively tailored, resulting in products with very different 

textures. Additionally, shear-cooling plays a significant role on the fat crystal morphology and 

polymorphism obtained during a prescribed cooling regime (Campos et al., 2002; Herrera & 

Hartel, 2000; Rousseau et al., 2005). Faster cooling typically leads to less stable structures (e.g., 

the α or β' form vs. the β with slower cooling) whereas imposition of shear usually promotes fat 
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crystal aggregation into larger microstructures and accelerates polymorphic transitions towards 

higher stability form(s) (e.g., the β' or β-forms vs. the α form) (MacMillan & Roberts, 2002; 

Maleky & Marangoni, 2008; Mazzanti et al., 2003). 

The last few years have seen the exploration of laminar shear as a tool to induce TAG crystal 

orientation and alignment at the nanoscale (Maleky & Marangoni, 2011; Maleky et al., 2011) 

whereas at the microscale, such confined gap shear may produce novel ovoid-shaped crystals due 

to a tumbling action (Acevedo et al., 2012; Tran et al., 2014). In this study, we expand on previous 

work studying the formation of spheroidal fat crystals and examine the effects of different 

emulsifiers on the formation and microstructure of fat crystal spheroids. Four emulsifiers were 

used to alter spheroid formation: glycerol monostearate (GMS) and monopalmitate (GMP) to 

evaluate the effect of monoacylglycerol (MAG) chain length and sorbitan monostearate (SMS) 

and tristearate (STS) to compare the impact of polar group size (i.e., sorbitan vs. glycerol). Though 

strong evidence has shown the impact of such emulsifiers on bulk fat crystallization (Verstringe, 

Danthine, Blecker, Depypere, & Dewettinck, 2013; Verstringe, Danthine, Blecker, & Dewettinck, 

2014; Verstringe, Dewettinck, Ueno, & Sato, 2014), their impact on spheroid formation has never 

been reported. 
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2. Materials and Methods 

2.1 Materials 

Canola oil (CO) (acid value ~ 0.2%) was purchased from a local grocery store and stored at room 

temperature. Fully-hydrogenated canola oil (FHCO) was purchased from Bunge (Oakville, ON, 

Canada) and had a capillary melting point of 69.5 ºC (AOCS official method Cc 1-25) and a free 

fatty acid content of 0.018% (AOCS Society, 1998). The predominant TAG species in FHCO were 

C52 (13.3%), C54 (73.6%), and C56 (5.0%). Distilled glycerol monostearate (Alphadim 90 SBK) 

and glycerol monopalmitate (DIMODAN® HP K-A) were obtained from DANISCO USA INC. 

(Madison, WI, USA). Distilled sorbitan monostearate (Span 60) and sorbitan tristearate (Span 65) 

were purchased from Sigma-Aldrich (Saint Louis, MO, USA). All components were used as 

received from suppliers without further purification. 

2.2 Shear-Crystallization 

FHCO and emulsifiers were mixed to give a 10 wt% solution in CO and heated to 70 °C with 

stirring to melt the FHCO and emulsifiers. Aliquots were withdrawn and deposited between the 

parallel plates (PP25, 25 mm diameter, 0.5 mm gap) of a rheometer (Physica MCR301, Anton 

Paar, Ville St-Laurent, QC, Canada). Samples were kept at 70 °C for 20 min and then cooled at 

1.0 ºC/min while being sheared at 500, 1000 or 2000 s-1. Apparent viscosity was measured as the 

samples were sheared and cooled. All experiments were performed at least in triplicate. 

2.3 Microscopy 

Microstructure was observed via polarized light microscopy (PLM). Immediately upon completion 

of shear-crystallization, samples were placed on viewing slides at room temperature (~25 °C) 

(Fisher Scientific, Ottawa, ON, Canada), covered with a cover slip (Fisher Scientific, Nepean, ON, 

Canada) and analyzed with an inverted light microscope (Axiovert 200M, Zeiss Inc., Toronto, ON, 

Canada) equipped with a CCD camera (QImaging, Inc., RETIGA 4000R, Surrey, BC, Canada) 
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using QImaging Q-Capture Pro 7 software (Version 7.0.5 Build 4325, QImaging, Inc., Surrey, BC, 

Canada).  

2.4 Differential Scanning Calorimetry 

Upon completion of shear-crystallization, approximately 7-10 mg of sample was sealed 

hermetically in aluminum pans (PerkinElmer, Woodbridge, ON, Canada) and analyzed using a 

differential scanning calorimeter (DSC) (Pyris Diamond DSC, PerkinElmer, Woodbridge, ON, 

Canada). An empty aluminum pan was used as reference and the DSC was calibrated using an 

Indium standard. Samples were held isothermally at 20 ºC for 5 min and then heated to 90 ºC at 

10 ºC/min. Thermograms were analyzed using Pyris Diamond DSC software (v.7, PerkinElmer, 

Woodbridge, ON, Canada). 

2.5 X-ray Diffraction 

Small (SAXD) and wide-angle (WAXD) X-ray diffraction of the fats was performed on a Hecus 

S3-MICROcaliX (Hecus X-ray Systems GmbH, Graz, Austria). The unit uses a low-power      (50 

W), high brilliance GeniX microfocus source and customized FOX-3D multilayer point focusing 

optics (Xenocs SA, Grenoble, France). The X-ray beam was generated by a 50 kV,       1 mA Cu 

Kα anode. The spectra were captured using Hecus 1-D position-sensitive detectors (model PSD-

50M). An integrated calorimeter (Setaram Instrumentation, Caluire, France) allowed for in situ 

crystallization and melting of static samples. Approximately 20 μL of melted sample were placed 

within 1.0 mm O.D. quartz capillary tubes (Charles Supper Company, Inc., Natick, MA, USA) 

using a 90 mm needle and syringe and characterized at room temperature. Sheared samples were 

analyzed at 25 ºC immediately following crystallization. Statically-cooled samples were subjected 

to a similar cooling protocol as sheared samples: held at 90ºC for 15 min, then cooled to 10 ºC at 
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1 ºC/min. Scans were collected each minute to capture the polymorphic form of the evolving 

system. 

2.6 Statistical Analyses 

All numerical data are reported as mean ± standard deviation (SD) and were analyzed by one-way 

ANOVA. P < 0.05 was considered significant. 
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3. Results and Discussion 

3.1 Viscosity Profiles 

The presence of emulsifiers had a significant impact on viscosity profiles (Fig. 1). At 0.5 and   1.5 

wt% emulsifier concentrations, the viscosity profiles generally followed the three-phase sigmoidal 

pattern seen in control FHCO-CO blends (Tran et al., 2014). At low emulsifier concentrations, the 

first phase saw slight increases in viscosity due to increased interaction between TAG molecules 

as the temperature was reduced (Dibildox-Alvarado et al., 2010; Tarabukina et al., 2009). The 

second phase, marked by a sharp increase in viscosity, was attributed to the initial crystallization 

of the fat (FHCO) into α crystals based on work by De Graef et al., who studied the crystallization 

of palm oil under constant shear via time-resolved   x-ray analysis (De Graef et al., 2009) and work 

by Mazzanti et al. (Mazzanti et al., 2005). The third phase was attributed to continued 

crystallization of FHCO directly from the melt as well as α → β' or β polymorphic transitions (De 

Graef et al., 2009; Mazzanti et al., 2005).  
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Figure 1. Viscosity profiles of samples sheared at 1000 s-1: A) GMS; B) GMP; C) SMS; D) STS 

at varying concentrations: □) Control (0 wt%); ) 0.5 wt%; ) 1.5 wt%; ○) 2.5 wt%; +) 5.0 wt%. 

Error bars removed for clarity (n = 3). 

 

At 0.5 wt%, GMS and GMP showed similar rates of viscosity increase compared to the control 

although they delayed crystallization to slightly later times and lower temperatures. In comparison, 

SMS did not delay crystallization but did decrease the rate of viscosity increase while STS showed 

a delay in crystallization but similar rates of viscosity increase compared to the control. At 1.5 

wt%, GMS and GMP showed a continued trend of slightly delaying crystallization while not 

affecting the rates of viscosity increase whereas SMS and STS showed decreased crystallization 

temperatures as well as rates of viscosity increase. At 2.5 wt% emulsifier, GMS and GMP showed 

higher crystallization temperatures compared to the control. Viscosity profiles began to deviate 
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from the three-phase regime described previously with crystallization now appearing to occur in 

an increased number of steps. This resulted from the MAG concentration crossing a critical 

threshold above which the crystal lattice of FHCO became saturated with emulsifier and the MAG 

independently crystallized. This trend continued at 5.0 wt% MAG, with GMS crystallizing at 

higher temperatures while showing reduced rates of crystallization (Fig. 1A crosses) and even less 

distinction between the different phases in the crystallization regime. This was attributed to GMS 

having a higher degree of molecular similarity to the tristearin in FHCO compared to GMP with 

its 16 carbon chain. Aronhime et al. showed that for selected emulsifiers, 10 wt% could be 

incorporated into the crystal lattice of tristearin without affecting its polymorphic structure 

(Aronhime, Sarig, & Garti, 1988). The present results showed effects at 2.5 and 5.0 wt% (25 and 

50 wt% relative to FHCO), suggesting that up to 15 wt% GMS or GMP could be incorporated into 

the crystal lattice of FHCO without significantly affecting its structure or viscosity profile. At ≤ 

1.5 wt%, the presence of GMS and GMP initially decreased the primary crystallization 

temperatures (P < 0.05) (Table 1). This suggested incorporation of the emulsifiers within the 

FHCO crystal lattice and slight suppression of crystal seed formation or lattice organization. 

However, at ≥ 2.5 wt%, both emulsifiers significantly increased the crystallization onset 

temperature, with the GMS increasing this temperature more so than the GMP (P < 0.05). Beyond 

the mere presence of more material available for crystallization, this further suggested that the 

FHCO and MAG were independently crystallizing. Studying the effects of different polyglycerine 

fatty acid ester (PGFE) emulsifiers on the crystallization of palm stearin (PS), Shimamura et al. 

showed that below a critical concentration, the PGFEs inhibited crystallization of PS while above 

it, crystallization was enhanced via templating effects (Shimamura et al., 2013).  
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Table 1. Primary crystallization temperatures (ºC) of various emulsifier-FHCO-CO blends 

cooled at 1 ºC/min while being sheared at 1000 s-1 (n = 3). All standard deviations = 0. 

Concentration 0.5 wt% 1.5 wt% 2.5 wt% 5.0 wt% 

GMS 37.6 36.6 43.2 51.8 

GMP 36.6 36.1 40.2 47.2 

SMS 38.6 38.1 36.6 54.8 

STS 36.6 35.6 35.6 - 

Control 38.1    

 

Different crystallization and viscosity trends were apparent with SMS and STS vs. the MAGs in 

large part due to the different polar group (i.e., sorbitan vs. glycerol, respectively). Crystallization 

onset temperatures and the rates at which viscosity increased were reduced with ≤ 2.5 wt% SMS 

and STS (P < 0.05) (Table 1). As per the MAGs, this suggested incorporation of the emulsifiers 

within the FHCO crystal lattice and slight suppression of crystal seed formation or lattice 

organization, which we attributed to the sorbitan moiety’s ability to prevent molecular 

rearrangements via hydrogen bonding between its hydroxyl groups and the glycerol groups on 

neighbouring tristearin molecules (Aronhime et al., 1988). This was most apparent with STS, 

where the rates of viscosity increase were reduced with emulsifier concentration and the three-

phase crystallization regime disappeared completely at 5.0 wt%, suggesting inhibition of the       α 

→ β'/β transition and the inability of the β'/β crystals to form directly from the melt. However, 

presence of 5 wt% SMS resulted in a crystallization event at ~55 ºC, suggesting independent 

crystallization of SMS first followed by FHCO at ~ 37 ºC. 
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Generally speaking, final viscosity values were not significantly affected by emulsifier 

concentration for GMS and GMP, which had similar values to those of the control (Fig. 1 squares), 

suggesting similar degrees of crystallization and solid fat contents (SFC). Thus, the     2-carbon 

difference in fatty acid chain length had no significant effects. This is in agreement with work by 

Wright et al., who found that minor components did not affect the equilibrium SFC of crystallized 

milk fat (Wright, Hartel, Narine, & Marangoni, 2000). By contrast, samples with SMS and STS 

had lower final viscosity values than the control, perhaps due to their ability to retard the α → β'/β 

transition of tristearin (Elisabettini, Desmedt, & Durant, 1996). 

3.2 Microscopy 

The control consisting of FHCO and CO displayed now-familiar spheroidal crystalline assemblies 

(Fig. 2) (Tran et al., 2014). The microstructure of the sheared crystals was significantly affected 

by emulsifier type and concentration (Fig. 3). Compared to the control, samples with 0.5 wt% 

glycerol-based emulsifiers (GMS and GMP) consisted of similar, smaller spheroidal structures 

with larger irregularly-shaped crystals also visible (Fig. 3A and E). The emulsifier-containing 

spheroids had visible globular crystal cores surrounded by near-transparent shells whereas the 

control spheroids were more uniform in structure, lacked distinct crystalline cores and usually 

displayed Maltese cross patterns. At 1.5 wt%, the average crystal spheroid size decreased abruptly 

and became more uniform in size (Fig. 3B and F), where the spheroids displayed distinct 

crystalline cores surrounded by less-dense shells. This, along with corroborating DSC data, 

indicated that the emulsifiers nucleated before FHCO and acted as seeds for crystal growth and 

spheroid formation (Basso et al., 2010). With 2.5 wt% GMS or GMP, there was less distinction 

between the crystal cores and outer shells and the size distribution broadened with some crystals 

elongating into sausage-like shapes while others were larger in size, globular, and had jagged 
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surfaces (Fig. 3C and G). Samples with GMS contained a greater number of elongated structures 

compared to GMP-based structures that were more ovoid-shaped. This result indicated that the 

shape of the core (e.g., needle-like with GMS vs. ovoidal with GMP) played a significant role on 

the shape of the surrounding spheroid, which adopted the form of the central structure. At 5.0 wt% 

GMS, there was increased presence of elongated crystals and spheroids with rough surfaces, likely 

due to the concurrent crystallization and association of the MAGs and FHCO, resulting in different 

crystal types that annealed under the action of shear-cooling (Fig. 3D and H). The elongated 

crystals displayed a high degree of crystallinity while the globular roughened spheroids were less-

crystalline compared to the control and were almost transparent. 

 

Figure 2. Crystal spheroids formed via shear-crystallization of a 10 wt% FHCO and 90 wt% CO 

blend at a cooling rate of 1.0 ºC/min and a shear rate of 1000 s-1. Bar represents 50 μm. 
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Figure 3. Crystal microstructure of emulsifier-FHCO-CO blends cooled at 1.0 ºC/min and sheared 

at 1000 s-1. Bar represents 50 μm. 

 



66 

 

The sorbitan-based emulsifiers (SMS and STS) significantly curtailed crystal formation, with their 

effects scaling as a function of emulsifier concentration. At 0.5 wt% SMS (Fig. 3I), the crystal 

spheroids formed were similar to the control whereas at 1.5 and 2.5 wt%, smaller, clustered 

spheroids formed (Figs. 3J and K). The microstructure at 5.0 wt% SMS was completely different, 

with most crystal spheroids having needle-like crystal cores (and some with globular crystalline 

cores) surrounded by semi-transparent crystal shells (Fig. 3L). Such behaviour resulted from the 

increased SMS:FHCO ratio causing the SMS to crystallize first, suggesting nucleation and 

epitaxial growth at the SMS crystal surface through interaction of FHCO fatty acid chains with the 

SMS stearic acid residues and/or sorbitan-hydroxyl groups.  

In contrast to the other emulsifiers, STS significantly affected FHCO fat crystal spheroid 

morphology at all concentrations. Even at 0.5 wt%, small, globular assemblies with minimal outer 

crystalline shells were visible (Fig. 3M). Similar crystal morphologies were observed at  1.5 wt% 

and 2.5 wt% STS and there was no further decrease in average crystal size (Fig. 3N and O). At 5.0 

wt% STS, the crystals completely lacked a smoothed outer shell and appeared as globular clusters 

with Maltese cross patterns (Fig. 3P). This was probably due to the molecular similarity between 

STS and tristearin, which allowed them to co-crystallize into uniform crystals as evidenced by the 

lack of distinct crystallization events in the corresponding viscosity profile (Fig. 1D) and DSC 

crystallization thermogram where only a single crystallization peak was observed (data not 

shown). Although the action of shear promoted the formation of globular crystals, they were 

unable to form spheroids. These results suggested that not all fat mixtures may readily form well-

defined spheroids under the imposition of shear.  
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3.3 Thermal Analysis 

Table 2 shows the crystallization temperatures of the FHCO, the 10 wt% FHCO-CO blend as well 

as the emulsifiers. Shear crystallization had a significant effect on the melting behaviour of the 

FHCO spheroids (Fig. 4). When crystallized at 1.0 ºC/min statically (0 s-1), melting peaks occurred 

at ~58 ºC and a slight peak at ~69 ºC, indicating the presence of β′ and some                  β polymorph 

(Table 3). All sheared samples showed two major endothermic peaks at ~49 ºC and ~60 ºC which 

were attributed to the α and β′ polymorphs, respectively, with the lesser peak at ~71.5 ºC indicating 

the presence of a minimal amount of β crystals (Table 3).  

Table 2. Bulk crystallization temperatures (ºC) of FHCO, the 10 wt% FHCO-CO blend and 

emulsifiers measured via DSC (n = 3). 

Component(s) Crystallization Temperature (ºC) 

FHCO (100 wt%) 74.6 ± 0.1 

FHCO (10 wt%) in CO (90 wt%) 59.8 ± 0.3 

GMS (100 wt%) 75.2 ± 0.1, 36.9 ± 0.1 

GMP (100 wt%) 78.3 ± 0.3 

SMS (100 wt%) 60.9 ± 0.1 

STS (100 wt%) 61.5 ± 0.4 
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Figure 4. Melting thermograms of 10 wt% FHCO in CO blends crystallized at different shear 

rates. 

 

Table 3. Average melting temperatures of 10 wt% FHCO in CO blends crystallized at different 

shear rates (n=3). 

Shear rate (s-1) Number of peaks Peak temperatures (ºC) 

0 2 57.9 ± 0.1, 69.0 ± 0.2 

500 3 48.9 ± 0.3, 61.0 ± 0.2, 69.5 ± 0.3 

1000 3 48.2 ± 1.7, 59.8 ± 1.3, 70.9 ± 0.7 

2000 3 48.6 ± 1.1, 57.9 ± 0.4, 64.4 ± 0.1 

 

Wide-angle x-ray diffraction studies of shear-crystallized control blends showed short spacing 

peaks at 4.24 and 3.80 Å at room temperature, indicating the β′ polymorph. Literature values list 
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the α, β′, and β-form melting points of pure tristearin at 54, 64, and 73 ºC, respectively (Lutton, 

1945), which differ significantly from the melting points determined in this work. This was due to 

the use of FHCO instead of tristearin, which contained other TAGs species (notably ~13% C52 

species with lower melting points) and/or the volume fraction used (10 wt% FHCO in 90 wt% CO 

vs. 100 wt% tristearin), where solubilization of high-melting TAGs in CO occurred (Zhou & 

Hartel, 2006). Still, shear caused the formation of at least two different melting fractions compared 

to the single peak in the bulk blend, clearly demonstrating that shear induced the formation of 

lower-stability polymorphs, most likely as a consequence of increased nucleation resulting in a 

larger number of smaller α crystals (Hartel, 2001). Shear rate, however, did not affect melting 

temperatures but did change the ratio of the lower-melting α fraction to the higher-melting β′ 

fraction with higher shear rates resulting in an increased amount of α polymorph. This suggested 

that shear may influence the interactions between TAGs at a molecular level, affecting the type of 

nanoplatelets formed and their interactions to form crystallites and subsequent crystals (Acevedo 

& Marangoni, 2014b; MacMillan & Roberts, 2002; Maleky & Marangoni, 2008). 
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Figure 5. DSC melting profiles of emulsifier-FHCO-CO blends at different concentrations: A) 

GMS; B) GMP; C) SMS; D) STS. Samples were sheared at 1000 s-1. 

 

Presence and concentration of the emulsifiers greatly affected sheared FHCO melting profiles (Fig. 

5). Besides the lower melting temperatures of the two fractions, there were no notable differences 

in melting behaviour with 0.5 and 1.5 wt% GMS or GMP. At 2.5 wt%, melting behaviour changed 

significantly, with the endotherm of both fractions decreasing and the lower-melting fraction 

becoming less distinct with both MAGs. We attributed this to emulsifier concentration effects 

where co-crystallization at lower weight fractions evolved towards separate emulsifier and TAG 

crystallization events resulting from emulsifier saturation of the FHCO crystal lattice, as noted 

with the viscosity and microscopy results. The lower-melting fraction was attributed to crystallized 
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MAG based on DSC melting profiles of 5 wt% MAG in 95% CO blends (data not shown) and the 

higher melting portion was to co-crystallized MAG and FHCO. At the highest emulsifier 

concentration (5.0 wt%), the GMS-containing fat blend exhibited four distinct melting peaks at: i) 

~41 ºC (GMS crystals), ii) ~49.5 ºC (mixed GMS-FHCO α-crystals), iii) ~55 ºC (GMS-FHCO β′-

mixed crystals) and iv) ~64 ºC (GMS-FHCO β-mixed crystals). These suppositions were based on 

microscopy and DSC data, which showed at least two distinct types of crystals at 5.0 wt% GMS 

(Fig. 3D). The behaviour of 5.0 wt% GMP differed from GMS, with three melting fractions at 

~47.2, ~55, and ~61 ºC attributed to GMP crystals, mixed GMP-FHCO α-crystals and mixed 

GMP-FHCO β′ crystals, respectively.  

The difference in the number of melting fractions observed may be due to differences in chain 

length between GMS and GMP. As GMS has the same chain length as tristearin (the main 

component of FHCO) it was better-incorporated into the FHCO crystal lattice due to increased van 

der Waals interactions between alkyl chains. GMP, having a shorter chain length, caused vacancies 

in the FHCO crystal lattice when incorporated, which allowed for a higher degree of freedom of 

movement of the methyl end groups in FHCO’s fatty acid chains. This favoured orthorhombic 

packing resulting in the stabilization of lower-melting crystal polymorphs (Aronhime et al., 1988; 

Garti, Aronhime, & Sarig, 1989). 

With SMS, two melting fractions were present at all concentrations, with the ratio of the lower-

melting to higher-melting fractions dramatically shifting towards the former even at 0.5 wt% 

emulsifier (Fig. 5C). This trend scaled with increased SMS concentration with the higher-melting 

fraction disappearing completely at 5.0 wt%. Such behaviour was attributed to the sorbitan groups 

hydrogen-bonding with neighbouring TAG molecules, thus preventing their molecular 
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reorganization and polymorphic transitions, resulting in the stabilization of lower-melting mixed 

SMS-FHCO crystals (Aronhime, Sarig, & Garti, 1987; Aronhime et al., 1988). 

A shift towards the lower-melting fraction also occurred with increased STS concentration, 

although there were still two distinct melting fractions even at 5.0 wt% (Fig. 5D). Polarized light 

microscopy only revealed one type of crystal morphology, so it was not possible to attribute the 

different melting fractions to different crystal types. The lower-melting fraction was likely due to 

mixed STS-FHCO α-crystals and the higher one consisted of mixed STS-FHCO β′ -crystals.  

3.4 Shear-Crystallization of Emulsifier-CO Blends 

To elucidate the identity of these different melting fractions, mixtures of emulsifier-CO (no 

FHCO) were subjected to the same shear-cooling treatments as the FHCO-containing blends. 

Shear-crystallization of 5 wt% emulsifier + 95 wt% CO blends revealed that all of the emulsifiers 

tested were generally susceptible to shear forces (Figs. 6B, E, H and K). Samples subjected to 

shear showed smaller, globular, distinct crystals compared to statically-cooled emulsifier-oil 

blends (Figs. 6C, F, I and L). This was in agreement with work from other groups that showed that 

shear can reduce crystal size either by breaking larger crystals or by enhancing nucleation while 

inhibiting cluster growth and aggregation (Acevedo et al., 2012; Kloek et al., 2005; Maleky et al., 

2011). Shear-crystallization of the MAGs resulted in roughened globular crystals with GMS-based 

blends appearing more crystalline than GMP-based on PLM. Un-sheared GMS samples consisted 

of clustered feather-like crystalline masses whereas GMP crystallized mainly as distinct needle-

like crystals with a more uniform size distribution. Such a difference in crystallization behaviour 

may have affected the crystal aggregation behaviour during shearing, with GMS having a greater 

propensity to aggregate, thus resulting in denser, more crystalline globular crystal masses 

compared to GMP. Comparing the emulsifier + oil blends to blends also containing FHCO (Fig. 
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6A and D), we attributed the roughened crystals discussed earlier to the MAGs. This also supports 

the theory that the longer tube-like crystals observed in the blends containing FHCO were MAG-

FHCO crystal composites since they were absent in blends without FHCO.  

The sorbitan-containing emulsifiers (SMS and STS) were also susceptible to shear during 

crystallization, showing globular microstructures compared to un-sheared samples (Fig. 6H and K 

vs. Fig. 6I and L, respectively) but they did not exhibit the roughened microstructure seen in the 

MAGs. This suggested that the sorbitan group hindered formation of spheroidal crystals, perhaps 

as a result of differences in molecular packing, with the smaller glycerol group allowing the MAGs 

to more easily form lamellae/nanoplatelets. Upon comparison of the microstructures of samples 

with and without FHCO (Fig. G, H, J, K), there were similarities between the needle-like crystal 

cores of sheared SMS-FHCO-CO blends vs. the sheared SMS-CO blends as well as the sheared 

STS-FHCO-CO crystals vs sheared STS-CO blends, strongly supporting our hypothesis that the 

sorbitan emulsifiers nucleated first and acted as templates for epitaxial FHCO crystallization.  
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A) 5% GMS 5% HCO 90% CO 
(1000 s-1) 

 
 

B) 5% GMS 95% CO 
(1000 s-1) 

 

C) 5% GMS 95% CO 
(0s-1) 

 

D) 5% GMP 5% HCO 90% CO 
(1000 s-1) 

 
 

E) 5% GMP 95% CO 
(1000 s-1) 

 

F) 5% GMP 95% CO 
(0s-1) 

 

G) 5% SMS 5% HCO 90% CO 
(1000 s-1) 

 
 

H) 5% SMS 95% CO 
(1000 s-1) 

 

I) 5% SMS 95% CO 
(0s-1) 

 

J) 5% STS 5% HCO 90% CO 
(1000 s-1) 

 

K) 5% STS 95% CO 
(1000 s-1) 

 

L) 5% STS 95% CO 
(0s-1) 

 
 

Figure 6. Shear-crystallized blends of emulsifier + oil blends. Bar represents 50 μm. 
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Figure 7. Viscosity profiles of 5 wt% emulsifier 95 wt% CO blends cooled at 1.0 ºC/min while 

sheared at 1000 s-1. 

 

The viscosity profiles of sheared emulsifier-CO blends generally showed different trends 

compared to the emulsifier-FHCO-CO blends (Fig. 1 vs. Fig. 7). Based on viscosity increases, 

there were no significant differences in initial crystallization temperatures compared to the FHCO-

containing blends (Table 1) (P > 0.05), but there were differences in second-stage crystallization 

onset (P < 0.05). The GMS-FHCO-CO blends showed a slight viscosity increase at ~38 ºC and a 

more pronounced increase at ~29 ºC while GMS-CO blends (no FHCO) showed a second viscosity 

increase at ~34 ºC (Fig. 7 square). Similarly, GMP-FHCO-CO blends showed a second-stage 

viscosity increase at ~38 ºC while GMP-CO blends showed a secondary increase at ~22 ºC (Fig. 

7 circle). SMS-FHCO-CO blends showed a secondary increase in viscosity at  ~30 ºC which was 

absent in SMS-CO blends. STS blends, both with and without FHCO, showed similar 
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crystallization trends where there was a gradual increase in viscosity with time/temperature and 

with no observable jumps in viscosity, demonstrating that the STS greatly hindered FHCO 

crystallization and did not extensively crystallize alone. Control blends without emulsifier showed 

primary crystallization at ~37 ºC (Fig. 1). The higher primary crystallization temperatures for 

blends containing emulsifiers support our hypothesis that the emulsifiers crystallized before FHCO 

and acted as seeds for further epitaxial crystal growth. 

3.5 Mechanism 

In previous work, we proposed a mechanism for the formation of crystal spheroids (Tran et al., 

2014). To recap, crystal spheroid formation was defined as a multi-step process consisting of:    i) 

potential shear-induced pre-structuring of TAGs in the melt; ii) nucleation and formation of 

nanoplatelets (with relatively large distances between nanoplatelets and thus a low degree of inter-

particle interactions); iii) rotation and tumbling of platelets due to shear in the flow field; iv) 

nanoplatelet aggregation into extended stack-like structures; v) clustering of the nanoplatelet 

stacks into globular aggregates or bundles, depending on the shear rate; vi) crystallization into 

clusters of α-crystals while tumbling, forming crystal spheroids; vii) shear acceleration of the αβ' 

(or β)  polymorphic transition and finally viii) viscous heat generation causing melting of loosely-

associated fat crystals at the spheroid surface, resulting in smoother surfaces. 

Emulsifiers may promote fat crystallization via templating effects or hinder it by blocking growing 

sites on crystal surfaces during nucleation and/or crystal growth (Shimamura et al., 2013; Smith et 

al., 2011; Verstringe, Dewettinck, et al., 2014). The impact of emulsifiers on crystallization may 

be affected by concentration, cooling rate, and/or the presence of agitation (shear) (Gordon & 

Rahman, 1991; D. Rousseau et al., 2005). For the four systems in this study, the viscosity profiles 

(Fig. 1) showed reductions in crystallization onset temperature thus no independent emulsifier 
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crystallization occurring for low concentrations (≤ 1.5 wt% for MAGs, 2.5 wt% for sorbitan-

based).  

 

Figure 8. SAXD spectra of the control (10 wt% FHCO) and 1.5 wt% emulsifier + 8.5 wt% FHCO 

blends in CO at 20 ºC. 

 

SAXD results (Fig. 8) corroborate this observation; the peak position obtained from the control 

system is unchanged by the addition of 1.5 wt% emulsifier. Conversely, for the samples containing 

5.0 wt% emulsifier, the SAXD peak was clearly influenced, where peak locations shifted in the 

direction of the emulsifier-CO blend peak (Fig. 9). Shifts were more pronounced  (+ 5 Å) for the 

sorbitan-based emulsifiers; corresponding WAXD indicated the resulting crystals were likely the 

α-polymorph (data not shown), further demonstrating the ability of the sorbitan group to stabilize 

lower polymorphs. The MAGs, on the other hand, showed slightly smaller peak shifts (+ 3.5 Å), 

which we ascribed to the smaller glycerol group. Further, we used GMS and GMP to study the 

effect of chain length (18C vs 16C) on the formation of crystal spheroids. We found that GMS, 
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having the same acyl chain as tristearin (the main component of FHCO), had a greater effect on 

crystal spheroid microstructure than GMP. This was in agreement with reports that the effect of 

an emulsifier is greatest when its chain length matches that of the fat; with the effect decreasing 

rapidly for shorter chain lengths (Smith et al., 2011). WAXD further confirmed this, where GMS 

showed peak spacings for β’ whereas GMP did not (data not shown). It has also been reported that 

sorbitan esters such as SMS and STS optimally co-crystallize with a fat when their acyl chains 

match (Garbolino, Bartoccini, & Floter, 2005). While SMS and STS had significant effects on 

crystal microstructure, no further differences between the two could be ascertained from XRD. 

 

Figure 9. SAXD spectra of the control (10 wt% FHCO), blends of 5 wt% emulsifier + 5 wt% 

FHCO + 90 wt% CO, and blends of 5 wt% emulsifier + 95 wt% CO taken at 20 ºC. 

 

Shear has been shown to alter TAG nucleation at a molecular level, causing crystal nanoplatelets 

to elongate and orient in the flow direction (Acevedo & Marangoni, 2014b; MacMillan & Roberts, 
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2002; Maleky & Marangoni, 2008). This has also been supported by computer simulations 

(Marangoni et al., 2012; Peyronel et al., 2013; Pink et al., 2013). Below a critical value, shear may 

enhance crystal nucleation and growth and accelerate polymorphic transitions toward more stable 

phases while above this critical value, shear may hinder crystal growth by impeding fat crystal 

aggregation and/or breaking them down (Kloek et al., 2005; MacMillan & Roberts, 2002; 

Mazzanti et al., 2003, 2011, 2005; Mazzanti, Marangoni, & Idziak, 2008; Sonwai & Mackley, 

2006).  

In an effort to further elucidate the effects of shear in conjunction with emulsifiers, we showed the 

impact of shear (500, 1000 or 2000 s-1) on different blends (0.5, 1.5, and 2.5 wt% emulsifier mixed 

with 90 wt% CO, the remainder wt% being FHCO). For all emulsifiers, shear rate did not affect 

primary crystallization temperatures but did show decreased viscosities with higher shear rates 

(data not shown). These findings were similar to previously-reported results for FHCO-CO blends 

without emulsifier (Tran et al., 2014).  
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Figure 10. DSC melting thermograms showing the effect of shear rate on blends of                   90 

wt% CO, 7.5 wt% FHCO, and 2.5 wt% emulsifier cooled at 1.0 ºC/min. 

 

DSC analyses revealed that higher shear forces caused a change in the relative ratios of the higher 

and lower-melting ones fractions (Fig. 10) with these effects being emulsifier-dependent. The two 

MAGs showed similar susceptibilities to shear: the ratio of the lower-melting to higher-melting 

fractions increased with shear rate up to 1000 s-1 for both GMS (Fig. 10A) and GMP (Fig. 10B), 

suggesting a critical shear rate above which higher shear forces do not have significant effects on 

crystal melting behaviour. The sorbitan-based emulsifiers (SMS and STS) showed similar trends 

with shifts to lower-melting fractions with higher shear rates (Figs. 10C and D, respectively). Shear 

rate significantly enhanced the incorporation of SMS at 1000 s-1 and above, while these effects 
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were less pronounced for STS. Instead, STS exhibited more pronounced higher-melting fractions 

with increased shear rate, which could be due to possible saturation of the crystal matrix leading 

to the separate crystallization of FHCO and/or STS. Alternatively, it may be due to the opposite, 

where higher shear forces may hinder diffusion of the emulsifier to the crystal surface thus 

resulting in a shift from favouring crystal aggregation and growth to nucleation instead, where it 

is possible that partitioning of the FHCO and STS in the liquid state resulted in independent 

nucleation and crystallization instead of co-crystallization. Overall, the mechanism of crystal 

spheroid formation was not significantly affected by the incorporation of emulsifiers and followed 

the regime outlined above, although it was shown that emulsifiers that crystallize before the fat 

(FHCO) may have templating effects and affect the final morphology of the spheroids.  

4. Conclusion 
We have reported on the formation of laminar shear-induced spheroidal fat crystal assemblies and 

the impact of four common food emulsifiers on structure development. Notable results indicate 

that both cooling and shearing are required for the formation of crystal spheroids with the latter 

having a greater impact. Emulsifier incorporation within the TAG crystal lattice is a highly shear-

dependent phenomenon, with the role of emulsifier structure, concentration and crystallization 

temperature key parameters dictating incorporation as a function of laminar shear. Further work is 

continuing to elucidate the effects of both shear and emulsifiers on the formation of spheroidal fat 

crystal structures and their applications.  
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Chapter 4 – Encapsulation of Water-in-Oil Emulsion Droplets within 

Crystal Spheroids 
 

 

 

 

 

 

 

 

 Shear-crystallization of water-in-oil led to emulsion droplets encapsulated within crystal 

spheroid Pickering shells 

 Crystal spheroid shell formation was dependent on emulsifier molecular similarity and 

compatibility to the crystallizing fat 

 Introduction of a dispersed aqueous phase did not affect crystal polymorph  
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Abstract 
Model 10% (w/w) water-in-oil emulsions were shear-crystallized to produce crystal spheroid-

encapsulated droplets. The bulk oil phase was composed of canola oil (CO), fully-hydrogenated 

canola oil (FHCO), and different emulsifiers: glycerol monostearate (GMS), glycerol 

monopalmitate (GMP), glycerol monooleate (GMO), sorbitan monostearate (SMS), sorbitan 

tristearate (STS), or polyglycerol polyricinoleate (PGPR). Emulsions were prepared using a rotor-

stator and then further shear-crystallized using a rheometer with a parallel plate geometry. The 

efficacy of water droplet encapsulation was dependent on emulsifier type, with the glycerol-based 

emulsifiers (GMS, GMP, and GMO), due to their molecular similarity with the crystallizing phase 

(FHCO), producing smooth-surfaced crystal spheroid shells while the sorbitan-based emulsifiers 

produced irregularly-shaped crystal shells and droplet cores (SMS) or incomplete crystal shell 

formation (STS). PGPR-based emulsions did not exhibit droplet-encapsulation due to its large 

molecular difference to the crystallizing phase. Analysis of viscosity profiles, thermal behaviour, 

and x-ray diffraction revealed that the addition of          10% (w/w) water did not significantly 

affect crystal polymorphism. 
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1. Introduction 
Emulsions are important in many industries such as pharmaceuticals (drug delivery systems), 

cosmetics (beauty products like lipstick, and foods (butter, margarine, and tablespreads) 

(Borwankar, Frye, Blaurock, & Sasevich, 1992; Le Révérend, Taylor, & Norton, 2011; 

McClements, 2010). Emulsions can be of the oil-in-water (O/W) type, with oil dispersed in a 

continuous aqueous phase, or vice versa as water-in-oil (W/O) emulsions. The stability and 

properties of the emulsions depend on their compositions which typically includes water, liquid 

oil, and emulsifiers. In W/O emulsions, stability may be enhanced via the addition of a crystallizing 

fat, usually saturated triacylglycerols (TAGs), that may act by network stabilization, where the fat 

crystals form a sintered 3D network that prevents droplet migration, or by Pickering stabilization, 

where the fat crystals form solid shells around droplets to prevent coalescence (Ghosh & Rousseau, 

2011; Ghosh et al., 2011; Dérick Rousseau & Hodge, 2005). Processing conditions, such as 

heating/cooling rates and agitation (shear) play a major role in determining the physical properties 

of the fats, such as melting behaviour and polymorphism. The three common polymorphs of 

TAGS, in order of increasing organization, crystal size, density, and stability are α, β', and β (Sato, 

2001; Walstra, 2003). Polymorphic characterization can be carried out using a number of 

techniques, with differential scanning calorimetry (DSC) and x-ray diffraction (XRD) being most 

common (Himawan, MacNaughtan, Farhat, & Stapley, 2007; Lavigne, Bourgaux, & Ollivon, 

1993). DSC provides information about the thermal behaviour  (melting and/or crystallization) of 

a sample while XRD characterizes the spatial arrangements of TAG molecules within the crystals 

which allows for crystal polymorph identification based on characteristic melting or crystallization 

peak temperatures and spacings between TAG molecules, respectively. Shear forces may have 

significant effects on fat crystallization. Shear may enhance nucleation, the initial formation of fat 
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crystal nanoplatelets, by providing enough energy to overcome activation energy barriers (Hartel, 

2001), which typically results in increased crystallization rates and leads to mechanically-stronger 

crystal networks (Marangoni & Narine, 2002; Suresh S. Narine & Marangoni, 1999). Shear, below 

a critical rate, may promote aggregation of crystallites and enhance crystallization rates resulting 

in larger crystals whereas above the critical rate, average crystal size may be reduced due to shear 

breaking down larger crystals, which introduces surfaces for enhanced secondary nucleation, 

and/or inhibiting growth and aggregation of crystal clusters (Kloek et al., 2005; Maleky & 

Marangoni, 2008; Maleky et al., 2011; Tarabukina et al., 2009).  

Recently, a new type of Pickering stabilization was characterized by Ghosh et al., where laminar 

shear was applied to the crystallization of W/O emulsions resulting in water droplets encapsulated 

within crystal spheroid shells (Ghosh & Rousseau, 2012; Dérick Rousseau, 2013). Encapsulation 

efficacy was dependent on emulsifier similarity and compatibility with the crystallizing fat, where 

glycerol monooleate (GMO), having a higher degree of similarity to tristearin, the main component 

of their model fat [fully-hydrogenated canola oil (FHCO)], promoted interfacial crystallization of 

FHCO while polyricinoleate (PGPR), having a much higher molecular weight and highly-

branched structure dissimilar to FHCO, did not promote interfacial crystallization. In a recent 

study, Tran et al. characterized the formation of the crystal spheroids, studied the processing 

conditions for optimal spheroid crystallization, and proposed a mechanism for their formation 

(Tran et al., 2014). In a following study, Tran et al. examined the role of the monoacylglycerides 

(MAGs) glycerol monostearate (GMS) and glycerol monopalmitate (GMP) and the sorbitan-based 

emulsifiers sorbitan monostearate (SMS) and sorbitan tristearate (STS) on the shear-crystallization 

of FHCO and found that spheroid formation was significantly impacted by emulsifier type and 

concentration where GMS, GMP, and SMS significantly reduced spheroid sizes even at low 
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concentration (0.5 wt%) but caused elongation and deformation of the crystals at higher 

concentrations (up to 5.0 wt%). At 1.5 wt% and below, the MAGs co-crystallized with FHCO but 

crystallized separately at higher concentrations (2.5 and 5.0 wt%) (Tran, Green, & Rousseau, 

2015). In this study, we further investigate the effect of different emulsifier types 

(monoacylglycerides, sorbitan esters, and PGPR) on the encapsulation of water droplets within 

crystal spheroid shells and demonstrate that crystal morphology may be tailored via the choice of 

emulsifier.  
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2. Materials and Methods 

2.1 Materials 

Canola oil (CO) (acid value ~ 0.2%) was purchased from a local grocery store and stored at room 

temperature until use. Fully-hydrogenated canola oil (FHCO) was purchased from Bunge 

(Oakville, ON, Canada) and had a capillary melting point of 69.5 ºC (AOCS official method    Cc 

1-25) and a free fatty acid content of 0.018% (AOCS Society, 1998). The predominant TAG 

species in FHCO were C52 (13.3%), C54 (73.6%), and C56 (5.0%). Distilled GMS (Alphadim 90 

SBK) was kindly donated by Corbion Caravan (Mississauga, ON, Canada). Distilled GMP 

(DIMODAN® HP K-A), GMO (DIMODAN MO 90), and PGPR were obtained from DANISCO 

USA INC. (Madison, WI, USA). Distilled SMS (Span 60) and STS (Span 65) were purchased 

from Sigma Aldrich (Saint Louis, MO, USA). All components were used as received from 

suppliers without further purification. 

2.2 Emulsion Preparation and Shear-Crystallization 

The oil phase of the emulsions was prepared by mixing CO (90 wt%), FHCO (8.5 wt%), and 

emulsifier (1.5 wt%). The blends were heated to 70 °C with stirring to melt the FHCO and 

emulsifiers. Water was heated to 70 ºC and then added to the oil phase resulting in a 10 wt% 

aqueous phase and 90 wt% oil phase mixtures. The mixtures, while hot, were sheared with a rotor-

stator mixer (PT 10/35, Kinematica Inc., Bohemia, NY, USA) at 27,000 RPM for 1 minute to 

produce the emulsions. Aliquots were then withdrawn and deposited between the parallel plates 

(PP25, 25 mm diameter, 0.5 mm gap) of a rheometer (Physica MCR301, Anton Paar, Ville St-

Laurent, QC, Canada). Samples were kept at 70 °C for 20 min and then cooled at 1.0 ºC/min while 

being simultaneously sheared at 1000 s-1. Apparent viscosity was measured as the samples were 

sheared and cooled. All experiments were performed at least in triplicate. 
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2.3 Microscopy 

Microstructure was observed via polarized light microscopy (PLM). Immediately upon completion 

of shear-crystallization, samples were placed on viewing slides at room temperature (~25 °C) 

(Fisher Scientific, Ottawa, ON, Canada), covered with a cover slip (Fisher Scientific, Nepean, ON, 

Canada) and analyzed with an inverted light microscope (Axiovert 200M, Zeiss Inc., Toronto, ON, 

Canada) equipped with a CCD camera (QImaging, Inc., RETIGA 4000R, Surrey, BC, Canada) 

using QImaging Q-Capture Pro 7 software (Version 7.0.5 Build 4325, QImaging, Inc., Surrey, BC, 

Canada).  

2.4 Differential Scanning Calorimetry 

Upon completion of shear-crystallization, approximately 7-10 mg of sample was sealed 

hermetically in aluminum pans (PerkinElmer, Woodbridge, ON, Canada) and analyzed using a 

differential scanning calorimeter (DSC) (Pyris Diamond DSC, PerkinElmer, Woodbridge, ON, 

Canada). An empty aluminum pan was used as reference and the DSC was calibrated using an 

Indium standard. Samples were held isothermally at 20 ºC for 5 min and then heated to 90 ºC at 

10 ºC/min. Thermograms were analyzed using Pyris Diamond DSC software (v.7, PerkinElmer, 

Woodbridge, ON, Canada). 

2.5 X-ray Diffraction 

Small (SAXD) and wide-angle (WAXD) X-ray diffraction of the fats was performed on a Hecus 

S3-MICROcaliX (Hecus X-ray Systems GmbH, Graz, Austria). The unit uses a low-power (50 

W), high brilliance GeniX microfocus source and customized FOX-3D multilayer point focusing 

optics (Xenocs SA, Grenoble, France). The X-ray beam was generated by a 50 kV, 1 mA Cu Kα 

anode. The spectra were captured using Hecus 1-D position-sensitive detectors (model         PSD-

50M). An integrated calorimeter (Setaram Instrumentation, Caluire, France) allowed for in situ 

crystallization and melting of static samples. Approximately 20 μL of melted sample were placed 
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within 1.0 mm O.D. quartz capillary tubes (Charles Supper Company, Inc., Natick, MA, USA) 

using a 90 mm needle and syringe and characterized at room temperature. Sheared samples were 

analyzed at 25 ºC immediately following crystallization. Statically-cooled samples were subjected 

to a similar cooling protocol as sheared samples: held at 90ºC for 15 min, then cooled to 10 ºC at 

1 ºC/min. Scans were collected each minute to capture the polymorphic form of the evolving 

system. 

2.6 Statistical Analysis 

All numerical data are reported as mean ± standard deviation SD and were analyzed by one-way 

ANOVA. P < 0.05 was considered significant. 

 

Table 1. Emulsion oil phase compositions and primary crystallization temperatures (Tc). 

Emulsifier Emulsifier (wt %) 
FHCO 

(wt %) 

CO 

(wt %) 

Tc 

(ºC) 

Control 0 10.0 90.0 38.2 ± 0.1 

Glycerol monostearate (GMS) 1.5 8.5 90.0 36.2 ± 0.4 

Glycerol monopalmitate (GMP) 1.5 8.5 90.0 36.0 ± 0.1 

Glycerol monooleate (GMO) 1.5 8.5 90.0 37.8 ± 0.2 

Sorbitan monostearate (SMS) 1.5 8.5 90.0 37.4 ± 0.3 

Sorbitan tristearate (STS) 1.5 8.5 90.0 35.9 ± 0.1 

Polyglycerol polyricinoleate (PGPR) 0.25 10.0 89.75 37.8 ± 0.7 
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3. Results and Discussion 

3.1 Viscosity Profiles 

The viscosity profiles of the shear-crystallized emulsions followed a three-phase sigmoidal pattern 

(Fig. 1) (Tran et al., 2014). Phase I was characterized by a slight increase in viscosity with 

decreasing temperature and resulted from enhanced interaction between triacylglycerol (TAG) 

molecules and/or emulsifiers in the molten state due to reduced thermal energy (Dibildox-

Alvarado et al., 2010; Tarabukina et al., 2009). Phase II, marked by the sharp increase in viscosity, 

was due to primary crystallization of the TAG and emulsifiers based on time-resolved x-ray 

diffraction studies of palm oil under shear by De Graef et al. and work by Mazzanti et al. (De Graef 

et al., 2009; Mazzanti et al., 2005). Phase III was visible as the continued, though reduced, increase 

in viscosity resulting from FHCO polymorphic transitions  (α → β' or β) and direct crystallization 

of the FHCO and emulsifiers likely into the β'/β-forms (De Graef et al., 2009; Mazzanti et al., 

2005). In a previous study, it was found that at a concentration of 1.5% (w/w) the emulsifiers could 

co-crystallize with FHCO and be incorporated into its crystal lattice (Tran et al., 2015). This led 

to disrupted packing efficiency and resulted in shifts to lower crystallization temperatures 

compared to the control (Table 1). The emulsifiers that remained liquid at 20 ºC (PGPR and GMO) 

did not significantly affect crystallization temperature. The other two monoacylglycerides 

(MAGs), GMS and GMP, showed similar viscosity profiles, with an additional crystallization 

phase (phase IV) at 25.0 ± 0.7 ºC for GMS and 26.8 ± 0.1 ºC for GMP.  The sorbitan-based 

emulsifiers, SMS and STS, also decreased primary crystallization temperatures with the STS 

having a greater effect due to its higher degree of molecular similarity to FHCO (three stearic acid 

residues) compared to SMS (one stearic acid residue) (Smith et al., 2011).  
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Figure 1. Viscosity profiles of sheared 10% (w/w) water-in-oil emulsions using various 

emulsifiers (n=3). 

 

Comparison of the viscosity profiles of the sheared emulsions with their respective bulk oil phase 

blends showed that incorporation of a 10% (w/w) dispersed aqueous phase did not have 

significant effects on crystallization temperatures, viscosity profiles, or final viscosity at 20 ºC, 

contrary to reports that the introduction of a dispersed phase tends to increase viscosity (data not 

shown) (Borwankar et al., 1992; Farah, Oliveira, Caldas, & Rajagopal, 2005). This was probably 

because the action of shear caused the fat to crystallize into spheroids and spheroid-encapsulated 

droplets rather than a typical 3D network of sintered fat crystals with entrapped droplets (Ghosh 

et al., 2011).  
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3.2 Emulsion Microstructure 

The efficacy of Pickering droplet encapsulation within crystal spheroids was significantly 

impacted by emulsifier type. The control, not having any added emulsifier, showed mostly free 

water droplets and only a small number of encapsulated droplets, probably due to the limited 

emulsification capacity of the minor components in the FHCO (Fig. 2A). The MAGs showed 

higher encapsulation efficacy where the solid MAGs (GMS and GMP) showed uniform, highly-

crystalline shells (Fig. 2B and C) whereas the GMO-based emulsions droplets’ crystal shells 

appeared less-uniform, most likely due to the higher degree of encapsulation of smaller water 

droplets (Fig. 2D). There was also a difference in average encapsulated droplet size between the 

solid and liquid-state MAGs where GMS and GMP-based emulsions had an observed narrower 

size distribution of larger droplets while the GMO-based emulsions had a wider size distribution 

with many small droplets that were not encapsulated within crystal spheroid shells. Regardless of 

MAG type, there were many instances of multi-droplet encapsulation within irregularly-shaped 

crystal shells attributed to the crystallization of aggregates of spheroids during cooling (Fig. 2I). 

This was most apparent for GMS and GMP-based emulsions, where the solid MAGs have been 

shown to produce irregular shapes upon incorporation into the crystal matrix of FHCO (Tran et 

al., 2015). The high degree of crystallinity of GMS and GMP-based spheroids also caused some 

deformation of the water droplets which resulted in reduced droplet sphericity. It was also observed 

that GMO promoted the nucleation and crystal growth of FHCO spherulites at the oil-water 

interface of the droplets (Fig. 2H). This phenomenon was absent for the other emulsifiers and could 

be due to the kink in GMO’s oleic residue delaying and disrupting the crystallization of FHCO, 

causing it to form spherulitic crystals rather than the highly-birefringent crystal shells as seen for 

GMS and GMP.  
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The sorbitan-based emulsifiers showed poor encapsulation efficacy with incomplete crystal shell 

formation (Fig. 2E and F). The crystal shells of SMS-encapsulated droplets were large, irregularly-

shaped, and took the shape of the aqueous cores, implying ineffective stabilization against 

coalescence compared to the solid-state MAGs, where droplets retained sphericity even when in 

encapsulated in close proximity (Fig. 2I). The crystal shells appeared to have a high degree of 

crystallinity but contained pores which allowed for the loss of aqueous droplets and/or the inward 

diffusion of CO (Fig. 2E red arrows). Smaller droplets could be seen within the water cores (Fig. 

2E blue arrow) and could have been water droplets stabilized solely by SMS rather than SMS-

FHCO like the outer shells although this was unlikely due SMS’ apparently poor ability to prevent 

coalescence. Irrespective, SMS was a poor emulsifier for the encapsulation of stable water droplets 

within crystal spheroid shells. Similarly, emulsions with STS also had poor crystal spheroid shell 

stability where the majority of shells were incompletely-formed (Fig. 2F). The water inside the 

crystal shells appeared crescent-shaped due to its tendency to minimize contact with the 

hydrophobic oil phase while maximizing its contact with the hydrophilic inner surfaces of the 

shells which were presumably lined with the sorbitan moieties of STS. Unlike the SMS emulsions, 

the crystal shells of STS emulsions were spherical, more uniform, and were thinner relative to the 

size of the droplets which suggested that although STS was effective at preventing coalescence 

during crystallization that would result in irregularly-shaped water cores, as seen for SMS, it 

lacked the mechanical strength to form complete shells due to its relative thinness. Based on its 

viscosity profile (Fig. 1), STS had the greatest effect on crystallization of FHCO due to its 

molecular similarity and propensity to stabilize the less-stable α polymorph which led to the 

formation of thinner and weaker Pickering crystal shells (Aronhime et al., 1987, 1988). PGPR, 

although highly effective at emulsifying and reducing droplet size, did not exhibit droplet 
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encapsulation. We suspect this is due to the molecular structure of PGPR lacking complementarity 

with FHCO. The crystallizing FHCO was not able to template onto the ricinoleate chains of PGPR 

and thus was incapable of encapsulating the PGPR-stabilized emulsified droplets.   

A) Control 

 

B) GMS 

 
C) GMP 

 

D) GMO 
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50 μm 
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E) SMS 

 

F) STS 

 
 

G) PGPR 

 

H) GMO-mediated interfacial 
crystallization of FHCO 

 
  

50 μm 50 μm 

50 μm 50 μm 



96 

 

I) Multi-droplet encapsulation 

 
Figure 2. Microstructure of shear-crystallized 10% (w/w) emulsions. Bar represents 50 μm. 

 

3.3 Thermal Analysis 

Thermal analysis of shear-crystallized bulk fat blends and their emulsion counterparts revealed 

that the introduction of 10% (w/w) aqueous phase did not affect melting behaviour for systems 

prepared with liquid-state emulsifiers (GMO and PGPR) (Fig. 3). This indicated that there was 

little interaction between the emulsifiers and FHCO at the interface causing FHCO to preferentially 

crystallize separately in the continuous phase as spheroids due to shear, resulting in purer crystals 

with higher melting temperatures (Douaire et al., 2014). The solid-state emulsifiers (GMS, GMP, 

SMS, and STS) showed peak shifts to higher temperatures with the introduction of an aqueous 

phase which suggested the occurrence of emulsifier-mediated templating effects for FHCO 

crystallization at the droplets’ oil-water interfaces. The greatest shifts in peak temperature were 

observed for the solid-state MAGs with shifts of ~4 ºC compared to shifts of ~2 ºC for the sorbitan-

based SMS and STS which implied a greater templating effect by the glycerol-based emulsifiers, 

most likely because their polar moiety was identical to the glycerol-based TAGs in FHCO (Table 

2). The larger sorbitan moiety in SMS and STS would more likely disrupt the packing efficiency 

50 μm 
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of FHCO molecules thus resulting in reduced density and the stabilization of the α form while 

inhibiting polymorphic transformations to β'/β, shown by the larger peaks of lower-melting 

fractions compared to the solid-state MAGs (Fig. 3). This would be a possible explanation for their 

ineffectiveness at crystal spheroid encapsulation observed via PLM, where the sorbitan-based 

emulsifiers showed incomplete shell formation (Fig. 2). These results are in line with findings by 

Wassell et al., who studied the effects of PGPR and monobehenoylglycerol (MB), a saturated 

MAG, on the crystallization behaviour of palm stearin-based W/O emulsions and found that MB 

promoted interfacial fat crystallization via templating effects while PGPR did not due to molecular 

dissimilarity (Wassell et al., 2012). Similarly, Shimamura et al. examined the effect of 

polyglycerine fatty acid esters (PGFEs) on the crystallization of palm stearin and found that PGFEs 

rich in palmitic acid moieties promoted interfacial crystallization of palm stearin while PGFEs 

containing oleic acid retarded it (Shimamura et al., 2013). The results of our study demonstrate 

that the type of emulsifier and the degree of molecular compatibility with the crystallizing phase 

may have significant effects on the efficacy of crystal spheroid shell formation and encapsulation 

of emulsion droplets.  
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Figure 3. Differential scanning calorimetry melting thermograms of sheared oil phase blends 

(solid lines) vs. sheared 10% (w/w) water-in-oil emulsions (dotted lines). 
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Table 2. Peak melting temperatures for bulk FHCO-emulsifier blends and 10% (w/w) emulsions 

sheared at 1000 s-1 (ºC) (�̅� ± SD).  

 Bulk Emulsion 

Control 59.8 ± 1.3, 48.2 ± 1.7 62.1 ± 1.7, 51.9 ± 1.5 

GMS 56.7 ± 0.5, 40.9 ± 0.5 61.2 ± 0.4, 43.4 ± 0.0 

GMP 57.2 ± 0.0, 39.9 ± 0.4 61.5 ± 0.5, 46.5 ± 0.3 

GMO 62.2 ± 0.6, 31.3 ± 1.7 60.4 ± 0.1, 29.9 ± 1.6 

SMS 60.1 ± 0.7, 52.6 ± 0.1 62.3 ± 0.3, 52.3 ± 1.3 

STS 54.7 ± 1.1, 45.3 ± 1.4 57.5 ± 1.4, 52.2 ± 1.2 

PGPR 62.8 ± 1.1, 50.7 ± 0.0 61.7 ± 1.0, 30.6 ± 1.4 

   
 

3.4 X-ray Diffraction 

X-ray diffraction measurements taken at 20 ºC revealed that, regardless of the presence or type of 

emulsifier, FHCO tended to crystallize mainly into the β' polymorph along with some α-form (Fig. 

4). This was similar to previous findings that incorporation of 1.5% (w/w) emulsifier did not affect 

crystal spheroid polymorph (Tran et al., 2015). The (001) SAXD peak was located between 44 – 

48 Å for all samples, indicating that TAGs were arranged in the 2L chain length conformation. A 

general trend observed was a decrease in peak position as temperature increased, indicative of 

greater subcell ordering. The type of emulsifier had an effect on the resulting peak positions, 

provided that the emulsifier interacted with the crystallizing FHCO. PGPR consistently yielded 

similar peak locations and polymorphic forms to the control samples, which showed that it had 

little to no effect on FHCO crystallization. These results were in agreement with the thermal 

analysis data (Fig. 3) and microscopy (Fig. 2), where PGPR did not show encapsulation due to 

molecular dissimilarity, corroborating previous findings by Ghosh et al. (Ghosh & Rousseau, 

2012). The incorporation of bulkier emulsifiers (STS, SMS) caused SAXD peak locations to shift 

to higher values relative to the control and delayed β'β polymorphic transitions to higher 

temperatures which suggested reduced packing efficiency and stabilization of the α polymorph. 
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The glycerol-based emulsifiers showed different behaviours between the liquid-state MAG 

(GMO) and solid-state MAGs (GMS and GMP), where GMO showed a similar SAXD peak 

location to those of PGPR and the control which indicated little emulsifier-FHCO interaction. In 

contrast, GMS and GMP exhibited relatively smaller shifts in long spacings compared to the 

sorbitan-based emulsifiers (SMS and STS) due to the smaller polar glycerol core relative to 

sorbitan.   

Wide-angle x-ray diffraction produced weak signals given the low solids content. However, some 

general trends could be observed: the control emulsion, without any emulsifier, crystallized 

primarily into the β' polymorph with peaks at 4.21 and 3.81 Å while the incorporation of emulsifier 

(except PGPR) resulted in shifts to larger spacings (Table 3). This indicated that the emulsifiers 

altered the crystal packing of the FHCO lamellae. 

 

Figure 4. Small-angle x-ray diffraction of shear-crystallized emulsions at 20 ºC. 
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Table 3. Short and long spacings of shear-crystallized emulsions. 

Emulsion Short spacings [WAXS] (Å) Long spacings [SAXS] (Å) 

Control 4.21, 3.81 45.8 

GMS 4.25 46.4 

GMP 4.3, 4.22 46.7 

GMO 4.38 45.8 

SMS 4.54, 4.42, 4.24 47.0 

STS 4.54, 4.34, 4.23 (broad, weak) 46.7 

PGPR 4.21 (broad, weak), 3.81 46.4 

 

3.5 Mechanism 

The proposed mechanism for laminar shear-induced crystal spheroid formation is multi-step:      i) 

potential shear-induced pre-structuring of TAGs in the melt; ii) nucleation and formation of 

nanoplatelets (with relatively large distances between nanoplatelets and thus a low degree of inter-

particle interactions); iii) rotation and tumbling of platelets due to shear in the flow field; iv) 

nanoplatelet aggregation into extended stack-like structures; v) clustering of the nanoplatelet 

stacks into globular aggregates or bundles, depending on the shear rate; vi) crystallization into 

clusters of α-crystals while tumbling, forming crystal spheroids; vii) shear acceleration of the αβ' 

(or β)  polymorphic transition and finally viii) viscous heat generation causing melting of loosely-

associated fat crystals at the spheroid surface, resulting in smoother surfaces (Tran et al., 2014). 

The presence and concentration of emulsifiers may have significant impacts on crystal spheroid 

formation and morphology, where a emulsifiers with a high degree of molecular similarity to the 

crystallizing fat, such as saturated MAGs, may act as seeds and surfaces for epitaxial TAG crystal 

growth whereas less-similar emulsifiers, such as sorbitan esters, may hinder spheroid formation 

by stabilizing lower metastable polymorphs (Tran et al., 2015).  
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The introduction of an aqueous phase and thus an oil-water interface was shown to affect 

interfacial crystallization of a model fat (FHCO) where emulsifier similarity had significant effects 

on shear-induced crystal spheroid shell formation with both the polar moiety and non-polar chains 

playing important roles. When both the polar and non-polar groups were similar to the crystallizing 

fat, as for GMS and GMP, templating effects were observed and resulted in highly-ordered 

crystalline shells. If the emulsifier’s fatty acid (FA) residue was different to the fat, as for GMO 

with its bent chain, templating effects were reduced and crystallization of the fat was delayed. 

Differences in polar moiety had greater impact on crystal spheroid shell formation than FA chain 

similarity, as shown for SMS and STS, where templating effects were observed but crystal shell 

integrity was compromised. When both the polar and non-polar moieties were dissimilar to the fat, 

as for PGPR, no templating effects were observed.   
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4. Conclusion 
Shear-crystallization of a bulk fat blend within a narrow gap may produce spheroidal crystals. The 

microstructure and physical properties of these crystal spheroids can be tailored via selection of 

processing conditions, such as shear and cooling rates, or by the addition of emulsifiers.  

Results from the present study suggest that for crystal spheroid droplet encapsulation to occur, the 

emulsifier must be molecularly-compatible with the fat in order to promote interfacial 

crystallization via templating effects. The liquid-state emulsifiers (GMO and PGPR) hindered 

crystallization at the oil-water interface, where GMO delayed crystallization while PGPR 

prevented fat-emulsifier interactions and instead promoted crystallization in the continuous oil 

phase. The solid-state emulsifiers showed templating effects with the MAGs being more effective 

than the sorbitan esters. Encapsulation efficacy could be further tuned by studying the effect of the 

emulsification process, to assess whether initial droplet size affects crystal spheroid shell 

formation, the effect of volume fraction of dispersed phase and/or emulsifier concentration, or by 

varying cooling and shear rates. Further work is required to better-understand the effects of shear-

crystallization on Pickering encapsulation. 
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Chapter 5 – The Use of Shear to Produce Novel Crystal Microstructures 
 

 

 

 

 

 

 

 

 

 

 Laminar shear may be used to produce spheroidal and cylindrical crystal structures 

 Mechanisms proposed for their formation  
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Abstract 
A model fat system composed of 10% (w/w) fully-hydrogenated canola oil (FHCO) in canola oil 

(CO) was subjected to shear-crystallization within the confined gap between two parallel plates of 

a rheometer. The resulting spheroidal and cylindrical crystalline assemblies were characterized via 

polarized light microscopy (PLM). The formation of fat crystal spheroids and cylinders was 

significantly affected by shear rate with higher shear rates producing more numerous, smaller 

spheroids but fewer crystal cylinders with smaller diameters. A “log-rolling” crystallization 

mechanism was proposed for the formation of the observed fat crystal cylinders. These results 

demonstrated that shear-crystallization within a confined gap may produce novel cylindrical 

microstructures.  
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1. Introduction 
Fats, which are typically blends of triacylglycerols (TAGs), are employed in many industries such 

as the pharmaceutical, cosmetics, and food industries usually as the chassis for products or as 

carriers for the delivery of target compounds (Sato, 2001). Their mechanical properties (e.g. 

texture, firmness, and spreadability), physical stability (e.g. phase separation), and organoleptic 

properties (e.g. mouthfeel or meltability) depend on the underlying structure of the fat crystals and 

their interactions which typically results in three-dimensional networks of sintered crystals. The 

composition of the fat (i.e. types and distributions of TAGs along with minor components such as 

emulsifiers (e.g. mono- and diglycerides) or non-fat ingredients may impact crystallization 

behaviour (Smith et al., 2011). Processing conditions such as cooling rate, crystallization 

temperature, and mixing/agitation (shear) may also affect crystallization and result in different 

crystal types, known as polymorphism. The three main polymorphs that TAGs form, in order of 

increasing molecular organization, density, and stability, are α, β', and β. Faster cooling rates 

and/or lower crystallization temperatures typically result in the formation of the α polymorph while 

slower cooling and/or higher crystallization temperatures result in the more stable β' and/or β 

polymorph(s). Once formed, lower polymorphs may undergo transformations to higher 

polymorphs via molecular arrangements usually by way of a liquid phase                 (e.g. α → β' 

→ β). Polymorphic transitions from higher-to-lower polymorphs never occur (Hartel, 2001; 

Marangoni & Wesdorp, 2013; Walstra, 2003). 

Recently there has been increased interest in understanding the role of shear on fat crystallization. 

Shear is often used in industry to improve mass and heat transfer resulting in improved product 

homogeneity (Campos & Marangoni, 2014; Stapley et al., 1999). Shear may enhance TAG 

nucleation by providing enough energy to overcome activation energy barriers (Hartel, 2001) 
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and/or by breaking down larger crystals into fragments which may act as seed surfaces for further 

nucleation (Kloek et al., 2005; Maleky & Marangoni, 2008). This ordinarily leads to enhanced 

crystallization and crystal networks with increased mechanical strength (Marangoni & Narine, 

2002; Suresh S. Narine & Marangoni, 1999). 

Laminar shear flow, which may be generated via Couette-type shear cells (rotating concentric 

cylinder apparatuses) (Maleky & Marangoni, 2008) or between a system of parallel plates, such as 

those of a rheometer (Ghosh & Rousseau, 2012), has been shown to affect fat crystallization at the 

nanoscale, impacting the size and morphology of resulting crystal nanoplatelets (Maleky et al., 

2012, 2011). Laminar shear may also cause fat crystals to orient themselves in the direction of 

shear flow, with results depending on crystal size and shear rate (Mazzanti et al., 2003). Recent 

studies have shown that laminar shear, above a critical rate, may shape crystallizing fats into 

spheroidal microstructures (Acevedo et al., 2012; Ghosh & Rousseau, 2012). In an effort to 

elucidate the processing conditions responsible for the formation of these spheroids, Tran et al. 

studied the crystallization of a model fat system [a blend of fully-hydrogenated canola oil (FHCO) 

and canola oil (CO)] under various shearing and cooling conditions and proposed a mechanism for 

their formation (Tran et al., 2014). In this study we expand on the role of shear on fat 

crystallization, characterize a novel cylindrical crystal microstructure, and propose a mechanism 

of formation. 
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2. Materials and Methods 

2.1 Materials 

Canola oil (CO) (acid value ~ 0.2%) was purchased from a local grocery store and stored at room 

temperature until use. Fully-hydrogenated canola oil (FHCO) was purchased from Bunge 

(Oakville, ON, Canada) and had a capillary melting point of 69.5 ºC (AOCS official method Cc 

1-25) and a free fatty acid content of 0.018% (AOCS Society, 1998). The predominant TAG 

species in FHCO were C52 (13.3%), C54 (73.6%), and C56 (5.0%). 

2.2 Shear-Crystallization 

FHCO was mixed with CO to produce a 10% (w/w) blend and then heated to 70 °C with continuous 

stirring for at least 30 minutes to ensure complete melting of the fat. Aliquots were then deposited 

between the parallel plates (PP25, 25 mm diameter, 0.5 mm gap) of a rheometer (Physica 

MCR301, Anton Paar, Ville St-Laurent, QC, Canada). Samples were maintained at     70 °C for 

20 min and then cooled at 1.0 ºC/min while being sheared at a constant rate ranging from 0-2000 

s-1. The apparent viscosity of the samples was measured using the rheometer and measurements 

were recorded as samples were sheared and cooled. All experiments were performed at least in 

triplicate. 

2.3 Microscopy 

The microstructure of samples was observed via polarized light microscopy (PLM). Samples were 

placed on viewing slides at room temperature (~25 °C) (Fisher Scientific, Ottawa, ON, Canada), 

covered with a cover slip (Fisher Scientific, Nepean, ON, Canada) and analyzed with an inverted 

light microscope (Axiovert 200M, Zeiss Inc., Toronto, ON, Canada) equipped with a CCD camera 

(Q Imaging, RETIGA 32-0012B-105, Surrey, BC, Canada) using QImaging Q-Capture Pro 7 

software (Version 7.0.5 Build 4325, QImaging, Inc., Surrey, BC, Canada). 
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3. Results and Discussion 
The shear-crystallization of FHCO-CO blends resulted in the formation of mostly spheroidal fat 

crystal microstructures (Fig. 1). The size and morphology of these crystal spheroids were 

dependent on both cooling and shear rates with shear having greater impact. Higher shear rates 

resulted in decreased spheroid sizes and increased sphericity. A mechanism for their formation has 

been proposed in a previous study (Tran et al., 2014). To recap, the formation of spheroidal fat 

crystals is multi-step: i) potential shear-induced pre-structuring of TAG in the melt;              ii) 

nucleation and formation of nanoplatelets and subsequent CNP stacks; iii) orientation of CNP 

stacks parallel to the shear flow field below a critical shear rate or above which tumbling and 

rotation of nanoplatelet stacks occured; iv) crystallization into bundles or clusters of α crystals; v) 

shear-accelerated polymorphic transitions to β'/β; and vi) smoothening of spheroid surfaces due to 

viscous heat generation (Fig. 2). 
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Figure 1. PLM image of fat crystal spheroids formed via the shear-crystallization of 10% (w/w) 

FHCO-CO blends at a cooling rate of 1.0 ºC/min and a shear rate of 2000 s-1. A) 100X 

magnification where the bar represents 100 μm. B) 400X magnification where the bar represents 

50 μm. 

 

 

 

Figure 2. Proposed mechanism for the shear-crystallization formation of crystal spheroids and 

cylinders. 

 

A B 

50 μm 50 μm 
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In addition to spheroidal fat crystals, shear-crystallization of the fat within the narrow gap of a 

parallel plate geometry also resulted in the formation of cylindrical crystalline assemblies (Fig. 1 

red arrow and Fig. 3). These crystal cylinders represented only a small fraction of the total number 

of crystal assemblies and varied in both diameter size and height. Some of these structures were 

cylindrical, with two faces of approximately the same diameter, while most were shaped more like 

conical frustums, with one face having a smaller diameter than the other. Additionally, the wider 

ends of these frustum-shaped assembles were usually rounded (highlighted by arrows in Fig. 3A). 

The surfaces of these crystal cylinders/conical frustums displayed high brightness intensities under 

polarized light which indicated a high degree of crystallinity most likely of β’ or β polymorph. The 

edges of the flat faces were sometimes concave in shape (Fig. 3B) and other times flat with well-

defined edges (Fig. 3C). These cylinders exhibited a distribution of sizes for a given shear rate and 

represented only a small fraction of crystalline assemblies, where most of the fat crystallized into 

spheroids, with an increased number of cylinders/frustums observed at lower shear rates. The 

minimum shear rate threshold for the formation of these crystal cylinders/frustums was 400 s-1. 

Increased shear rates resulted in fewer cylinders formed and decreased diameters due to reduced 

contact times between TAG molecules at the crystal interface resulting in inhibition of crystal 

growth. The proposed mechanism for the formation of these cylinders/frustums follows the same 

pathway outlined in Figure 2 (A to E) but without further epitaxial growth that would result in 

spheroidal crystal shells. Based on the high degree of surface crystallinity observed, perhaps the 

degree of TAG molecular orientation required for successful surface integration was higher for 

cylindrical growth compared to spheroidal growth, which led to relatively fewer cylinders formed.  
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Figure 3. PLM images of fat crystal cylinders formed via the shear-crystallization of 10% (w/w) 

FHCO-CO blends. 

 

An alternate mechanism for cylinder formation could be a “log-rolling” action induced by the 

laminar shear, with the cylinders being oriented perpendicularly to the direction of shear flow 

forming from crystallizing fat trapped within vortices in the flow field (Fig. 4). The frustum-like 

structures could be a product of the radial velocity gradients generated by the parallel plate 

geometry caused by the high rotational velocity of the plate edge relative to the center.  
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Figure 4. Schematic of “log-rolling” crystallization mechanism. 

 

A “log-rolling” flow-alignment regime has been observed for the crystallization of liquid 

crystalline systems when shear was below a critical rate (Arya & Panagiotopoulos, 2005; Hao et 

al., 2010; Li et al., 2014; RomoUribe & Windle, 1996). Romo-Uribe and Windle studied the 

alignment of main-chain liquid polymer melts (1,4-hydroxybenzoic acid and                            2,6-

hydroxynapthoic acid) under rotational shear and found that below a critical shear rate        (10 s-

1), a log-rolling regime was observed, where the polymers aligned with the vorticity axis normal 

to the shear-flow (RomoUribe & Windle, 1996). Additionally, they observed that low molecular 

weight polymers (4600 g/mol) were more susceptible to the log-rolling alignment while larger 

molecules tended to align in the direction of shear flow. It would therefore be a reasonable 

assumption that tristearin, the main crystallizing TAG component of FHCO         (~890 g/mol), 

could be susceptible to a log-rolling regime. Arya and Panagiotopoulos reported similar findings 

for molecular dynamics simulations of amphiphilic molecules under shear in a confined gap, where 

it was shown that the molecules formed cylindrical micelles that oriented themselves perpendicular 

to the shearing direction, rolling about their axes via a log-rolling regime (Arya & 
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Panagiotopoulos, 2005). Further work examining the structuring-effects of shear and the 

optimization of processing conditions for the formation of these crystal cylinders is required. 

4. Conclusion 
Shear may have significant impacts on fat crystallization, affecting processes from the nano- to the 

mesoscale. Above a critical rate, shear may induce the tumbling of fat crystals in the flow field, 

resulting in the formation of spheroidal morphologies. Cylindrical crystalline assemblies may also 

be formed, possibly via a “log-rolling” mechanism where the crystallizing fat becomes trapped 

within vortices perpendicular to the flow field causing them to roll along their axes. The 

structuring-effects of shear on fat crystallization are still not fully understood and further work is 

required for its elucidation.  
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General Conclusions and Future Work 
Processing conditions may have significant effects on fat crystallization and the resulting crystal 

microstructures. Laminar shear can be used to induce the formation of spheroidal and cylindrical 

crystalline assemblies whose properties depend on shear and cooling rates. Higher shear rates 

resulted in increased crystal sphericity and decreased average crystal spheroid and cylinder size 

due to breakage of larger crystals and decreased interaction times between TAG molecules in the 

melt and crystal surfaces. Lower shear rates promoted interaction between TAG molecules and 

resulted in larger, more irregularly-shaped crystal spheroids. Crystal spheroid morphology may be 

further controlled by crystallizing at an optimal cooling rate. The presence of emulsifiers 

significantly affects the formation and morphology of crystal spheroids with effects being most 

substantial when there is a high degree of molecular similarity between the emulsifier and the 

crystallizing fat. The crystal spheroids have potential for the encapsulation of dispersed emulsion 

droplets where the efficacy of Pickering-type crystal shell formation depends on compatibility 

between the emulsifier and fat. Emulsifiers with molecular structures significantly different from 

the crystallizing fat may delay or even prevent interfacial crystallization and thus spheroidal crystal 

shell formation while molecularly-similar emulsifiers may promote interfacial crystallization via 

templating effects, resulting in crystal spheroid-encapsulated droplets.  

The effects of shear on fat crystallization are still not fully understood and more research is 

required for elucidation. Possible areas for further research may include using time-resolved      x-

ray diffraction during shearing to observe polymorphism and transformations during 

crystallization. Synchrotron radiation x-ray diffraction may be a suitable technique for the high-

resolution characterization of crystal spheroid polymorphism and possible shear-induced 

orientation effects within the crystal spheroids (i.e. is there a difference in crystal 
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arrangement/polymorph between the center of the spheroids and the outer shells? Does the 

tumbling action during crystallization produce radially-organized crystal lamellae? How does fat 

crystal organization at the nano- and/or mesoscale affect the Maltese cross birefringence patterns 

observed?). Cryo-transmission electron microscopy may be used to image crystal lamellae at the 

nanoscale to provide insight on molecular organization within the crystal spheroids and cylinders. 

Further work on the effects of emulsifiers and their use in crystal spheroid-based encapsulation of 

emulsion droplets may be expanded to different types and concentrations of emulsifiers, the effect 

of droplet size and volume fraction of dispersed phase, or emulsification regime (e.g. high-pressure 

valve homogenization vs shear produced via a rotor-stator). In contrast to studying the effect of 

emulsifiers and minor components, one could study and compare the shear-crystallization of pure 

systems consisting of only one type TAG (i.e. are minor components required for crystal spheroid 

formation? Are there specific TAG properties such as chain length or saturation/unsaturation that 

are required?). Additionally, target molecules could be loaded into the spheroid-encapsulated 

droplets and their release conditions and profiles could be characterized. The crystal spheroids 

could possibly be incorporated into food, cosmetic, or pharmaceutical products to assess their 

effects on rheological and organoleptic properties such as viscosity and mouthfeel, respectively. 

Because these fat crystal microstructures have only recently been discovered and characterized, 

there is great potential for further research.    
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