
INDIRECT ESTIMATION OF DISTRIBUTION ALGORITHMS

FOR THE EVOLUTION OF TREE-SHAPED STRUCTURES

by

Elmira Ghoulbeigi

B.Sc. Azad University, 2007

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Canada, 2010

c© Elmira Ghoulbeigi 2010





Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose

of scholarly research.

Signed:

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total

or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Signed:

iii



INDIRECT ESTIMATION OF DISTRIBUTION ALGORITHMS FOR THE

EVOLUTION OF TREE-SHAPED STRUCTURES

Elmira Ghoulbeigi

M. Sc. in Computer Science, 2010

Ryerson University, Toronto, Canada

Abstract

This thesis explores indirect estimation of distribution algorithms (IEDAs) for the evolution of tree

structured expressions. Unlike conventional estimation of distribution algorithms, IEDAs main-

tain a distribution of the genotype space and indirectly search the solution space by performing a

genotype-to-phenotype mapping.

In this work we introduce two IEDAs named PDPE and N-gram GEP. PDPE induces a population

of programs, encoded as fixed-length gene expression programming (GEP) chromosomes, by iter-

atively refining and randomly sampling a probability distribution of program instructions. N-gram

GEP attempts to capture regularities in GEP chromosomes by sampling the probability distribution

of triplet of instructions (3-grams).

We tested the performance of these systems using a variety of non-trivial test problems, such as

symbolic regression and the lawn-mower problem. We compared PDPE and N-gram GEP with

their predecessors, probabilistic incremental program evolution (PIPE) and N-gram GP, and the

canonical GEP algorithm. The results proved that our methodology is more efficient than PIPE

and the canonical GEP algorithm.

iv



Acknowledgements

I would like to offer my sincerest gratitude to the following people who have helped and inspired

me throughout my master studies:

My supervisor, Dr. Marcus Vinicius dos Santos for his invaluable guidance and for being the role

model of supervision. He spent countless hours editing this document and shaping my ideas. In

addition, his enthusiasm, constructive criticism and, intellectual perfectionism contributed to my

growth as a student and, a future researcher. Thank you Marcus, I am indebted to you more than

you know.

My father and my mother, without whom this thesis would not have been possible. I am forever

grateful to them for being a constant source of unconditional support and for empowering my goals

at each turn of the road. Mom and dad I am honoured to have you as my parents.

The committee members, Dr. Eric Harley, Dr. Alireza Sadeghian and, Dr. Saeed Zolfaghari

whose reviews helped improve this dissertation. I specially would like to thank Dr. Harley for

his insightful comments on my writings and for patiently helping me whenever I barged into his

office. I am also grateful to the department of Computer Science, chaired by Dr. Sadeghian,

for generously supporting my trip to Switzerland where I attended ACM SAC’10 and presented

“Probabilistic Developmental Program Evolution”.

My aunt and colleague Shahnaz Sadeghian Rizi and my friend Delnavaz Mobedpour, for their

precious assistance when it was most required. Shahnaz and Delnavaz I cannot thank you enough!

In conclusion, I deeply thank God for making this academic journey unforgettable by surrounding

me with all these amazing people.

v



Dedication

For my father Abbas Gholbeigi, my mother Elahe Sadeghian Rizi, and my sister Elnaz.

vi



Table of Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 A Few Words on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 7
2.1 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Gene Expression Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Handling of Numerical Constants . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Estimation of Distribution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology and Implementation 17
3.1 Probabilistic Developmental Program Evolution . . . . . . . . . . . . . . . . . . . 17

3.1.1 Individual Representation & Generation . . . . . . . . . . . . . . . . . . . 18
3.1.2 The PDPE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 N-gram GEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Individual Representation & Generation . . . . . . . . . . . . . . . . . . . 21
3.2.2 The N-gram GEP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Comparing PDPE with PIPE and GEP . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Comparing N-gram GEP with PDPE and GEP . . . . . . . . . . . . . . . 26
3.3.3 Pattern Learning Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Parameter Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results and Discussion 35
4.1 PDPE versus PIPE and GEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 N-gram GEP versus PDPE and GEP . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Pattern Learning Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion and Future Work 45
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Glossary 49

vii



List of Tables

3.1 Parameters for the function regression (SR) and 6-bit parity (6-BP) problems . . . 26
3.2 Parameters for the Polynomial (Pol) problem . . . . . . . . . . . . . . . . . . . . 30
3.3 Parameters for the Lawn-Mower problem . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Parameters for the Polynomial (Pol) problem . . . . . . . . . . . . . . . . . . . . 31
3.5 Parameters for the Lawn-Mower (LM) problem . . . . . . . . . . . . . . . . . . . 32
3.6 Parameters for the Polynomial (Pol) problem . . . . . . . . . . . . . . . . . . . . 32
3.7 Parameters for the Lawn-Mower (LM) problem . . . . . . . . . . . . . . . . . . . 33

4.1 Results for the 6-bit parity problem . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



List of Figures

2.1 GP as a system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 A sample chromosome and its expression tree . . . . . . . . . . . . . . . . . . . . 11

3.1 PPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 PPC with a single gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Schematic view of M(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Schematic view of M(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Results for the function regression problem . . . . . . . . . . . . . . . . . . . . . 36
4.2 The correlation of chromosome length with variance and fitness . . . . . . . . . . 36
4.3 Performance of N-gram GEP on the function regression problem. . . . . . . . . . . 38
4.4 Success rate of unigenic N-gram GEP and multigenic N-gram GEP. . . . . . . . . 40
4.5 Success rate of N-gram GEP and GEP algorithm using F2 function set. . . . . . . . 40
4.6 Success rate of N-gram GEP and GEP algorithm using F1 function set. . . . . . . . 41
4.7 Success rate of N-gram GEP and GEP algorithm on Lawn-Mower problem. . . . . 41
4.8 The relationship between head size, number of genes, and solution size . . . . . . 44

ix



Chapter 1

Introduction

The central hypothesis of this thesis is that an indirect estimation of distribution algorithm

(IEDA) improves the evolvability of tree-structured expressions representing solutions for a certain

class of non-trivial problems such as symbolic regression and the lawn-mower problem. The IEDA

takes advantage of a search strategy that maintains a distribution of fixed-length linear strings

encoding tree-shaped candidate solutions, and indirectly searches for the actual tree structures by

performing a string-to-tree decoding step.

1.1 Motivation

Estimation of Distribution Algorithms (EDAs) are a class of evolutionary methods which approx-

imate the probability distribution of good solutions found so far and sample that distribution to

create new candidate solutions. These probabilistic algorithms can be broadly categorized into two

classes: the first class, here called EDA genetic algorithms (EDA-GA), represents solution individ-

uals as fixed-length binary strings, like in Genetic Algorithms (GAs). The other class, here called

EDA genetic programming (EDA-GP), represents solutions as variable-sized tree structures, like

in Genetic Programming (GP).

GAs use fixed-length binary strings to encode candidate individuals. More specifically, this

methodology implicitly searches for solution individuals by using biologically inspired search op-

erators, called genetic operators, that explicitly explore all the possible binary strings that encode

1



the actual solutions. In GP, genetic operators directly explore the tree-shaped structures of the

solution individuals. Moreover, in both GAs and GP there is a one-to-one mapping relationship

between the encoding of a solution individual–an expression which is in turn evaluated in light

of a fitness function–and the encoding of the structures on which the genetic operators operate.

Similar to GA and GP, both EDA-GA and EDA-GP also rely on direct mappings for representa-

tions. It has been shown, however, that evolutionary systems which use a many-to-one mapping

between representations offer more flexibility for finding better solutions [2]. Many-to-one map-

ping is also commonly found in the DNA/Protein translation. In effect, there are two major types of

code sequences in the DNA: coding sequences which are transformed to proteins and non-coding

sequences (introns) which are not transformed to proteins. Since DNA contains various combina-

tions of coding and non-coding sequences, different sequences of codes might be translated to the

same protein, yielding a many-to-one mapping between the DNA and proteins.

The one-to-one mapping used in both EDA-GA and EDA-GP imposes one of the following lim-

itations on these types of systems: In EDA-GA, the fixed-length structure of individuals is easy to

manipulate, but it limits the variety of functions that these entities are able to represent; in EDA-GP,

variable-length trees incorporate the desired amount of functional complexity, but the hierarchical

structure of these individuals is difficult to reproduce via genetic operators. In this work we aim to

overcome the above limitation of traditional probabilistic algorithms by emulating the many-to-one

representation mapping used in natural evolution. Therefore, we explore indirect EDA techniques

which advance their search procedure by directly searching for fixed-length strings and indirectly

exploring the tree structures through the application of a string-to-tree mapping step.

1.2 Methodology

To achieve this goal, in a pilot study we first explored the capabilities of a univariate EDA using an

indirect solution representation. Specifically, we integrated the PIPE probabilistic algorithm [30]

2



with the indirect encoding used in Gene Expression Programming (GEP). The new algorithm,

called Probabilistic Developmental Program Evolution (PDPE) [9], induces a population of pro-

grams, encoded as GEP individuals, by iteratively refining and randomly sampling a probability

distribution of program instructions stored in an array of probabilities, called PPC. As in PIPE, we

refine the probabilities stored in PPC by increasing the probabilities of the best members of the

population. In addition, to efficiently explore the search space we mutate single probabilities in the

PPC.

We compared PDPE with PIPE and the canonical GEP algorithm on a function regression and

on the 6-bit parity problem. We assessed the performance of the PDPE algorithm in terms of fitness

variance and solution quality: PDPE outperformed PIPE in terms of fitness variance and solution

quality. It also outperformed GEP in terms of solution quality but not fitness variance.

Our next step was to extend the above approach to a multivariate EDA that also takes advantage

of an indirect solution representation. In this case, inspired by the N-gram GP algorithm introduced

in [26], we generate GEP individuals using an N-gram [20, p. 192–195] as our probabilistic model.

This prototype holds the probabilistic dependencies amongst triplets of elements and is adapted

overtime according to the elite members of the current population as described in [26].

We compared the new methodology, called N-gram GEP, with the PDPE algorithm on the

function regression and the 6-bit parity problems. The N-gram GEP methodology outperformed

PDPE both in terms of variance and solution quality. We then compared the N-gram GEP algorithm

against the canonical GEP methodology on the polynomial and the lawn-mower problems. In this

case to, N-gram GEP showed a better performance than the GEP algorithm in terms of solution

quality and scalability. Finally we measured the performance of N-gram GEP against the N-gram

GP algorithm in terms of pattern preservation. Our results, in this case, did not show any clear

evidence of substantial performance difference.

The rest of this thesis is organized as follows: In the next section we briefly introduce the

terminology pertaining to this thesis. In Chapter 2 we review the literature pertinent to this work

3



and describe our methodology in Chapter 3. We then present our experimental results and analyze

them in Chapter 4. Finally, we conclude this document in Chapter 5, where we also present our

future research directions.

1.3 A Few Words on Terminology

Broadly speaking, Evolutionary Computation (EC) emerges from the application of evolutionary

biology in Computer Science. For this reason, the terminology used in EC owes to each of these

fields.

In the above paragraphs, we have purposely used terms from the computer science jargon.

We mentioned strings when referring to encoded problem solutions; we mentioned trees when

referring to data structures that emulate a hierarchical tree structure denoting an expression; and we

mentioned string-to-tree mapping when referring to the decoding from string to tree representation.

In the following, we introduce the basic EC terminology used in this work.

EC is a machine learning methodology that searches a problem space consisting of a set of

candidate problem solutions called a population. An element of this set is called an individual. In

EC, genotype or genome refers to the encoding used to represent an individual. Genotype struc-

ture may vary depending on the EC methodology. For example, genetic algorithms (GAs) [14]

represent individuals as binary strings, while GP [17] uses LISP [22] expressions, GEP [7] uses

strings over a finite alphabet, and cartesian genetic programming [21] uses arrays of integer num-

bers. Phenotype or phenome, in evolutionary computation, is the structure that undergoes fitness

evaluation. Some EC methodologies have distinguished genotypes and phenotypes: in GAs, for

example, the genome is the fixed-length binary string which encodes the phenotype while the phe-

nome is the structure which represents a candidate solution, e.g., a mathematical expression, a

multidimensional array, a graph, and the like. This is also the case in GEP where the genome is a

fixed-length chromosome while the phenotype is a variable-size tree structure denoting an expres-

4



sion tree. Other EC methodologies, such as GP, use a unique structure as both the genotype and

phenotype; in GP, LISP expressions represent both the genome and the phenome of an individual.

Similar to biological systems the genome, also called chromosome, maintains the genetic ma-

terial of an individual and is directly subject to genetic variation. In addition, the transformation of

the genotype to the phenotype is often obtained via a genotype-to-phenotype mapping also called

chromosome expression.

The search space (genotypic space) in EC is define as the set of structures which encode the

feasible solutions. The solution space (phenotypic space), on the other hand, is composed of the

actual solution individuals. In EC methodologies such as GP the search space and the solution

space are equivalent. In GAs and GEP, however, the search space is composed of all genotypes

and the solution space contains the corresponding phenotypes.

5





Chapter 2

Background and Related Work

This work concerns estimation of distribution algorithms (EDA) for genetic programming (GP).

The study presented here focuses on approaches that maintain a probability distribution of the

search space and indirectly search the solution space via a genotype-to-phenotype mapping. This

chapter reviews the following EC methodologies on which this thesis is built: Genetic Program-

ming (GP), the forefather of EC methodologies that evolve tree-shaped solutions of problems;

Gene Expression Programming (GEP), an evolutionary technique which manipulates linear genomes

and indirectly searches for tree-shaped solutions via a decoding of the genotype; and EDAs for GP

methodologies.

2.1 Evolutionary Computation

Since this work is about exploring evolutionary computation (EC) techniques for inducing tree-

shaped, program-like structures, we deem appropriate to start this chapter with a brief historical

overview of EC.

The idea of considering evolution as a computational process was initially formed in the 1930s

[16]. Only in the 1960s, however, empowered by the availability of inexpensive digital computers

as a modelling tool, work in the field actually flourished. The following are some prominent works

of that period: Rechenberg and Schwefel [28], Fogel [8] and, Holland [15]. These initial studies

on evolutionary algorithms (EAs), unearthed two main issues: how to effectively represent the

characteristics of implementable systems, and how such systems might be used to solve problems.

7



As a result, much of the EA research in the upcoming years focused on gaining additional insight

into these issues by implementing new techniques or extending the existing methodologies.

In 1966, Fogel et al. [8] introduced Evolutionary Programming (EP), a methodology for de-

veloping artificial intelligence using an evolutionary process. The individual representations used

in evolutionary programming are usually tailored according to the problem domain. For exam-

ple, in real-valued optimization problems, individuals consist of fixed-length real-valued vectors;

whereas in the traveling salesman problem the individuals are composed of ordered lists. A dis-

tinguishing characteristic of EP from other evolutionary approaches such as Evolution Strategies

(ES) and GP, is that in this methodology there is usually no exchange of genetic material between

individuals and thus the main genetic operator used is mutation. The main purpose of ES, devel-

oped by Rechenberg [29] in the early 70’s, was to solve hydrodynamic optimization problems. For

this reason, individuals in this paradigm were represented as vectors of real numbers. Unlike EP,

in ES both recombination and mutation operators are used.

In 1975, Holland proposed Genetic Algorithms (GA) as an alternative evolutionary search

methodology [14]. The main individual representation used in GA is a fixed-length bit-string.

Even though both mutation and recombination are used in GA, the recombination operator is often

considered as the primary operator in this algorithm.

Up to early late 1980s the research and development of EA methodologies was done without

much interaction among various groups. In early 1990s, however, communication among various

EA groups during conferences improved the understanding of different paradigms, their similari-

ties and differences. In addition, scientists from EA communities decided to unify their view by

choosing the term “evolutionary computation” as the name of the field. Crossbreading of ideas was

another effect of such interactions which contributed to the improvement of existing issues and the

creation of new EA categories, such as the ones described in the next sections of this chapter [16].

8



Figure 2.1: GP as a system

2.2 Genetic Programming

Genetic Programming is an evolutionary computation methodology which evolves tree-structured

computer programs and mathematical expressions [17]. Seen as a system, GP gets a user-defined

problem description and produces a tree-structured computer program or mathematical expression

that solves the problem (Figure 2.1 [17]). The 5 inputs that a user is required to provide to a

GP system are as follows: The terminal set includes the independent variables of a problem; the

function set contains the primitive functions for each branch of the to-be-evolved program; the

fitness measure reflects how well an individual is able to solve a given problem while the control

parameters, such as the population size, control the runs; the termination criterion determines

when the evolutionary algorithm ends; and in most cases the best individual found so far is also

designated as the result of the run.

The main genetic operators used in GP are reproduction, mutation and crossover. The repro-

duction operator simply duplicates an individual and inserts it into the new population. Like in

reproduction, the mutation operator is applied on one individual. Specifically, given an individual

selected by some selection method, this operator changes a node or a subtree in the parent indi-

vidual to another node or subtree. The crossover operator combines the genetic materials of two

selected parents by exchanging certain parts from both parents.

In canonical GP the search space (genotypic space) and solution space (phenotypic space) are

9



considered equivalent. Developmental approaches, on the other hand, distinguish between the

search and solution space. Developmental Genetic Programming (DGP) was initially introduced

as an EC methodology which mapped binary strings (genotypes) to more complex structures (phe-

notypes) [2]. Throughout the years DGP has expanded to include other techniques which use this

concept in different EC methodologies.

In [2], Banzhaf states that Developmental Genetic Programming outperforms the canonical

GP methodology. There he argues that the genotype-to-phenotype mapping in this approach pro-

vides the unrestricted application of the genetic operators and guarantees feasible solutions in the

phenotypic space.

2.3 Gene Expression Programming

Gene Expression Programming (GEP) [7] is a developmental genetic programming methodology,

i.e., it uses an indirect representation for encoding tree expressions into fixed-length strings of sym-

bols. In addition, the translation from the linear genotype (genome) to the hierarchical phenotype

(expression trees) allows GEP to maintain the advantages of a modifiable, unconstrained genome

while preserving the benefits of adaptable phenotype structures for more complex behaviours.

In GEP, each chromosome is composed of one or more fixed-length genes. Each gene is divided

into two consecutive regions: head and a tail (see Figure 2.2). The head may contain symbols

that represent both functions or terminals (variables and constants), whereas the tail contains only

terminals. For each problem, the length of the head (H) is decided by the user, whereas the length

of the tail (T ) is a function of H and the number of arguments of the function with more arguments

(N) and can be calculated as T = H ∗ (N − 1) + 1. The head-tail structure of a gene ensures

that every function has the required number of arguments available, thus ensuring the syntactical

correctness of the expressed tree.

In GEP, the genome representation codes for an expression tree. Each GEP gene codes for

10



Figure 2.2: A sample chromosome and its expression tree

a tree, expressed by traversing the gene from left to right and building the tree in a breadth-first

manner. In multigenic chromosomes, the expressed trees (for each gene) are connected by a linking

function, which is also an input parameter of the algorithm. For example, Figure 2.2 shows a

GEP multi-genic chromosome and the respective tree it codes for, representing the mathematical

expression a2/b+b2−a.

The genetic operators mostly used by GEP are mutation, transposition and recombination.

The mutation operator randomly changes an element of a chromosome into another element. In

the head of the gene a function can be changed into another function or terminal and vice versa,

while in the tail, a terminal can be only replaced by another terminal. The transposition operator

(there are, in fact, three kinds of transposition operators in GEP [7]) randomly moves a segment

of the chromosome to another location in the same chromosome. The recombination operator

exchanges segments of genetic material between two parent chromosomes. There are three kinds

of recombination operators in GEP: One-point recombination, two-point recombination and gene

recombination [7].

2.3.1 Handling of Numerical Constants

Solutions to many problems may consist of expressions that contain numerical constants. GP

solves the problem of constant creation using a special terminal called ephemeral random constant,

11



as follows: For each random constant used in the trees of the initial population, a random number

of a special data type in a specific range is generated. Further, these numerical constants are moved

around from tree to tree by the application of the crossover operator.

In [7], Ferreira introduced two techniques for handling numerical constants. One uses an extra

terminal “?” and an additional domain Dc composed of the symbols chosen to represent ephemeral

random constants. The Dc domain comes after the tail and has a length equal to T . The random

constants of each gene are created during the generation of the initial population and kept in an

array. The value of each random constant is assigned during gene expression. The other technique

directly manipulates the numerical constants and does not include the special facilities proposed in

the first technique. In our approach we do not handle random constant as in GEP. Instead, as will

be shown in Chapter 3, we draw on the approach introduced in [30] to instantiate the ephemeral

random constants.

2.4 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are population based evolutionary methods which

replace genetic operators, the means for exploring the search space, with probabilistic models of

promising solutions, and sample that model to create new candidate solutions. The procedure of

a typical EDA is as follows: At first, a random population of solutions individuals is generated.

Then, better solutions are selected from the initial population and the distribution of this set of

individuals is estimated. Finally, new solutions are generated according to this estimate and added

to the population. This process is repeated until the termination criterion is met [24].

Early EDAs such as Population Based Incremental Learning (PBIL) [1] and Compact Genetic

Algorithm (cGA) [12] assume no interactions among variables in a problem. PBIL uses binary

strings of fixed length to encode the solution individuals and replaces the population of solutions

with a so-called probability vector which is updated according to a simple incremental rule after

12



performing selection on a set of candidate solutions. Like in PBIL, in cGA the solution popu-

lation is represented by a single probability vector but it uses a different selection scheme and

update rule. This group of EDAs which do not consider any interdependencies among variables

work very well for linear problems, nevertheless they experience great difficulty solving problems

with strong interactions [24]. The Mutual Information-Maximizing Input Clustering (MIMIC) [3]

and the Bivariate Marginal Distribution Algorithm (BMDA) [25] algorithms are examples of early

attempts to consider pairwise interactions among variables in a problem. To estimate the distribu-

tion of the selected solutions the MIMIC algorithm takes advantage of a simple chain distribution

while BMDA uses a set of mutually independent dependency trees for the same purpose. Later ap-

proaches address problems that involve higher order interactions amongst variables. The Extended

Compact Genetic Algorithm (ECGA) [11], for example, generates new solutions according to the

marginal distribution of mutually independent variable sets, whereas the Bayesian Optimization

Algorithm (BOA) [23] technique uses a bayesian network to describe the dependency relationship

of variables.

From a representational point of view, the above methods work on problems defined on fixed-

length strings over a finite alphabet. On the other hand, the class of estimation distribution tech-

niques known as Probabilistic Model-Building Genetic programming (PMBGP) uses methods able

to tackle problems where the solutions are computer programs [30]. The Probabilistic Incremen-

tal Program Evolution (PIPE) learning algorithm [30] is an earlier PMBGP technique that uses

a probabilistic tree to evolve GP-style computer programs. The PIPE methodology accounts only

for univariate interactions. Estimation of Distribution Programming (EDP) [37], on the other hand,

takes into account interactions among the parent and child nodes in the explicit tree-like structure

of GP chromosomes.

Similar to PIPE, the Extended Compact Genetic Programming (ECGP) [31] algorithm gener-

ates parse trees. To estimate the marginal distribution of disjoint tree-node clusters, it uses the

marginal product models introduced in ECGA [11].

13



The BOA Programming (BOAP) [19] is an extension of BOA for the evolution of programs

trees. To be able to model hierarchical programs through BOA, this algorithm represents program

trees in curried form. Although BOAP is capable of capturing multivariate interactions among

variables, this approach has two shortcomes: it may generate syntactically invalid programs, and

produce a large conditional probability table (CPT) [13].

Since GP uses many types of nodes (e.g. functions and terminals), PMBGPs such as ECGP

and EDP suffer from the problem of huge CPT size. A large CPT not only consumes a lot of

memory but also requires many samples to construct a proper network model and CPT. In Program

Optimization with Linkage Estimation (POLE) [13] bayesian networks were used to estimate the

distribution of promising solutions. This approach uses a special type of hierarchical structure

called expanded parse tree to overcome the problem of large CPT size of prior PMBGPs. An

extended parse tree is a full tree, i.e., all terminals (leaf nodes) are at the same depth (or level).

This property of the expanded parse tree reduces the CPT size, as one does not have to take into

account the possibility of both function and terminal sets at different depths of the tree.

Another novel EDA is the Probabilistically Guided Gene Expression Programming [6] which

uses the differential evolution to evolve the numerical parameters of Hidden Markov Models

(HMM). The evolved HMMs are used to generate the candidate solutions in form of Prefix Gene

Expression Programming (PGEP) chromosomes. This approach indirectly introduces chromoso-

mal variation by applying the genetic operators directly to the underlying probabilistic model.

Therefore, the probabilistic model is considered the genotype while the PGEP chromosome and its

associated tree structure play a phenotypic role.

N-gram GP [26] is a recently proposed EDA which evolves linear-GP-type [5] computer pro-

grams. This algorithm applies the concept of n-grams from natural language processing to capture

regularities in the language necessary to solve a problem. This application yields a smaller model

space in which good patterns can be identified with less sampling. Also a higher degree of regu-

larity can be observed in the evolved solution population. Another distinct feature of N-gram GP

14



is that it explicitly models the program length distribution to be used during the search space. This

approach intuitively limits the search to programs of manageable size without using any predefined

program length limitation.

Grammar model-based EDA-GP is an indirect EDA-GP approach based on Grammar Guided

Genetic Programming (GGGP) [34]. The main search mechanism in GGGP is the conventional

genetic search. In addition, this method uses a grammar as a formal model to limit the search

space. Grammar model-based EDA-GP, on the other hand, uses grammar as a probabilistic model.

Grammars were originally proposed to sample the hierarchical structure of natural or formal lan-

guages [34].

There are two different variants of the Grammar model-based EDA-GP. The first category

of models, which includes algorithms such as Stochastic Grammar-based Genetic Programming

(SG-GP) [27], only learns the probability associated with a grammar structure. The second cat-

egory of models, which includes Bosman’s work [4], Program Evolution with Explicit Learn-

ing (PEEL) [33], and Grammar Model-based Program Evolution (GMPE) [32], learns both the

grammar structure and the probability associated with the grammar. SG-GP [27] is the earliest

Grammar model-based EDA-GP. SG-GP uses a distribution model based on stochastic grammars

to overcome bloat1. Since in this method the overall structure of the grammar is fixed and does

not change with the progress of the search, this algorithm is either very slow or stops quickly.

PEEL [33] addresses this shortcome by introducing a change of grammar structure during the

search procedure. GMPE [32] replaces the conventional genetic operators with a probabilistic

model called Stochastic Context Free Grammar (SCFG) [20]. The stochastic grammar model in

GMPE is updated according to the best individuals in the current population; the new population is

then generated by sampling this grammar. GMPE is a highly flexible model and is able to represent

various forms of building blocks studied in GP. This algorithm, however, is computationally very

expensive.

1Bloat, in GP, involves the rapid growth in size of individuals without any fitness improvement.

15



The work presented in this thesis introduces an indirect EDA approach for evolving tree-

structured expressions. Our method combines the developmental representation of GEP with the

PIPE and the N-gram GP paradigms and creates two new algorithms called repectively PDPE

and N-gram GEP. The new algorithms generate GEP chromosomes using a probabilistic model.

This model is an abstract structure which represents the statistical distribution of the population of

solution and is updated according to the best solution individuals.

16



Chapter 3

Methodology and Implementation

As discussed in Chapter 1, the central hypothesis of this work is that the evolution of tree-

structured expressions can be improved by an Estimation of Distribution Algorithm (EDA) that

takes advantage of an indirect search strategy: the EDA maintains a distribution of the genotype

space and indirectly searches the solution space via the genotype-to-phenotype decoding.

To verify this hypothesis, first we developed a univariate IEDA named PDPE [9]; this method-

ology integrates GEP’s indirect solution representation with PIPE’s learning algorithm [30]. Next

we explored the capabilities of an IEDA that employs the same genome representation, but uses an

n-gram model for sampling a multivariate probability distribution. The proposed approach, here

named N-gram GEP, draws on the N-gram GP evolutionary algorithm introduced in [26] to main-

tain a probabilistic model of a population of GEP individuals. The next two sections provide a

detailed description of these new systems.

3.1 Probabilistic Developmental Program Evolution

PDPE is a novel IEDA which follows PIPE’s learning algorithm but uses a different encoding.

More specifically, in PDPE population individuals are represented by GEP chromosomes which

are transformed into expression trees for fitness calculations. In addition, instead of using the

probabilistic tree structure (PPT) (Figure 3.1) presented in [30], PDPE stores the distribution of

promising solutions in a fixed-length probabilistic prototype chromosome (PPC) (Figure 3.2). Each

position in the PPC contains a probability distribution over the instruction set, as well as a random

17



Figure 3.1: PPT

Figure 3.2: PPC with a single gene

constant.

Unlike PIPE, which grows and shrinks the PPT to deal with programs of varying sizes, PDPE

does not need to prune the PPC, as it uses the same fixed-length structure of a GEP chromosome.

Furthermore, because of its fixed-sized structure, the PPC elements are initialized all at once, rather

than “on demand” as in PPT nodes.

3.1.1 Individual Representation & Generation

This section introduces PDPE’s problem representation and describes how new individuals are

created according to the PPC.

Individual Instructions. Chromosome instructions belong to two disjoint subsets, a function

set F = { f1, f2, ..., fk} containing k functions of arity equal or greater than 1, and a terminal set

T = {t1, t2, ..., tl} with l terminals of arity 0.

18



Generic Random Constants. A generic random constant is a terminal which accessed during

program creation is instantiated to a random value from a set of predefined constants, or a value

previously stored in PPC.

Individual Representation. Individuals are represented in fixed-sized GEP chromosomes of

length n. The head section of an individual contains functions or terminals from FUT while the

tail section contains terminals from T .

Individual Generation. To create a chromosome Chr, PPC elements are accessed from left

to right starting from C0. For each position Cn of the PPC, an instruction I is selected as follows:

if Cn is in the head, then I ∈ F ∪T is selected; if Cn is in the tail, then I ∈ T is selected. In both

cases, I is selected with probability Pn(I). This instruction is denoted In. If In = R, then the random

ephemeral is instantiated as described in [30]. This process is repeated for all genes of the PPC.

3.1.2 The PDPE Algorithm

PIPE’s basic learning algorithm (shown in Algorithm 1) combines two forms of learning: Generation-

Based Learning (GBL) and Elitist Learning (EL). GBL is PIPE’s main learning algorithm and it is

composed of 5 distinct phases: (1) creation of program population, (2) population evaluation, (3)

learning from population, (4) mutation of PPT, and (5) PPT pruning. EL is used to make the best

Individual found so far an attractor.

Algorithm 1: PIPE’s learning algorithm
begin

GBL
repeat

with probability Pel do EL
otherwise do GBL

until termination criterion is reached;

Based on PIPE’s GBL, we proposed the modified learning methodology shown in Algorithm 2,

which integrates PIPE’s learning strategy according to GEP’s individual representation as follows:

19



It starts by generating a population of multigenic GEP genomes from the PPC as explained in

Section 3.1.1. After that, it expresses each chromosome and evaluates the respective expression

tree. In the next step, the algorithm updates the probabilistic structure; first it indexes the best

chromosome of the current generation as Chrb, then it modifies the probabilities of PPC such that

the probability of creating Chrb increases. The details of this adaptation is similar to the adapt-

ppt-towards procedure presented in [30]. Further, to explore the solution area “around” Chrb,

Algorithm 2 mutates the prototype chromosome, as described in the original PIPE algorithm. In

the final step, the algorithm indexes, the best chromosome found so far as Chrel , and during elitist

learning it adapts PPC towards Chrel , as proposed in [30].

Algorithm 2: PDPE EL and GBL
begin

GBL:
Population Initialization
Evaluate fitness of individuals
Chrb= best of generation chromosome
Chrel= best of all chromosome
PPC adaption towards Chrb
Mutate PPC
EL:
PPC adaption towards Chrel

3.2 N-gram GEP

N-gram GEP is a multivariate estimation of distribution algorithm with an indirect solution rep-

resentation. This methodology borrows the N-gram GP algorithm [26] and draws on the idea

of n-grams for representing the dependencies among elements of an individual. Unlike N-gram

GP, which represents solutions as variable-length linear GP programs, N-gram GEP uses GEP’s

indirect encoding for representing candidate solutions. More specifically, this algorithm gener-

ates fixed-length GEP chromosomes according to a probabilistic model and transforms them to

20



variable-length tree structures for fitness evaluations. Similar to the EDA proposed in [26], the

probabilistic model used here is a 3-gram model. It is also worth to remark that, due to the fixed-

length nature of GEP chromosomes, in our approach we do not use the length distribution as

proposed in [26].

3.2.1 Individual Representation & Generation

This section provides a description of the structures used in N-gram GEP. Specifically, it covers the

primitive elements of an individual and explains how the underlying probabilistic model is used to

create a new offspring.

Individual Instructions. An individual in our algorithm is a GEP chromosome. The elements

of this chromosome are chosen from the defined function and terminal sets. As shown in Section

3.1.1, the function set contains operators of arity equal or greater than 1 while the terminal set

consists of independent variables which have an arity equal to 0.

M(3) . As in [26], our probabilistic model is a 3-gram model, represented as a 3-dimensional

matrix M(3) = (ml,m,n) in which the indices l,m, and n range over the instruction set {I1, ..., IN}.

Each matrix entry ml,m,n represents the probability of indexed instruction n appearing in a position,

say i, in a chromosome, given that indexed instructions l and m appeared in positions i−2 and i−1,

respectively. From M(3), two matrices M(2) = (ml,m) (2-dimensional) and M(1) = (ml) (a vector)

are obtained. The elements of these matrices are ml,m = ∑n ml,m,n and ml = ∑m ml,m, respectively.

Note that M(1) and M(2) denote the marginal probability mass functions of the joint probability

function represented by M3.

Individual generation. Inspired by the approach introduced in [26], the routine genChromo-

some (Algorithm 3) presents our method for sampling the probabilistic model M(3). To obtain the

first leftmost element, say r, located in position i−2 of the head region of a GEP gene, we select

an element from the instruction set based on the probabilities stored in M(1). To obtain the second

21



Figure 3.3: Schematic view of M(2)

Figure 3.4: Schematic view of M(3)

element, say s, located in position i− 1 of a gene, we select an element of the instruction set ac-

cording to the probabilities prescribed by the row of M(2) indexed by r, i.e., the element located

in position i−2 (see Figure 3.3). To obtain the third element, say t, (and all subsequent elements

located in position i of the head of a gene), we select an element of the instruction set according

to the probabilities stored in M(3)’s r row (i.e., the matrix row indexed by the element located in

position i− 2 of the gene), of M(3)’s s page (i.e., the matrix slice indexed by the element located

in position i− 1 of the gene). Figure 3.4 schematically shows the portions of M(3) used in the

determination of t.

To obtain elements of the tail region, we use a procedure similar to the one described above.

22



The difference is that, since the tail domain only includes terminals, we cannot select the terminal

based on all the probabilities stored in the respective row of M(3). Instead, for each element of the

tail we normalize the probabilities corresponding to the terminals indexing that row based on the

probabilities of the whole instruction set, then select the terminal using roulette wheel selection.

Algorithm 3: genChromosome pseudocode

genChromosome(M(1),M(2),M(3))
begin

/* Head starts */

Select the first instruction x1, based on the probabilities stored in M(1) via roulette
selection
Select the second instruction x2, based on the probabilities stored in the x1-th row of
M(2) via roulette selection
for i=3 to Head length do

Select xi based on M(3)
xi−2,xi−1 /* via roulette selection */

/* Tail starts */
for i=Head length+1 to Gene length do

Select xi based on Norm(M(3)
xi−2,xi−1) /* via roulette selection */

3.2.2 The N-gram GEP Algorithm

N-gram GEP (Algorithm 4) draws on the N-gram GP algorithm proposed in [26]. The EDA in

Algorithm 4: N-gram GEP main loop
N-gram GEP
begin

Initialise the distributions M(3)

repeat
Compute marginals of M(3) to obtain M(1) and M(2)

for i = 1... popsize do do
With probability 1/popsize, pop[i]= elitist
With probability 1-1/popsize, pop[i]= mutate(genChromosome(M(3), M(1), M(2))

elite=truncationSelection (pop)
updateProbabilities (M(3), elite)

until Solution found or max number of iterations exhausted;
return best individual found

23



N-gram GEP starts by initializing M(3) using a uniform distribution, i.e., if we consider the total

number of instruction as N, all the entries of M(3) are initialised to 1/N3. Then the algorithm

proceeds to generate a new population mostly by sampling M(3). Occasionally, on average once

per generation, the best individual found in the current run is re-inserted into the population. To

make sure that diversity is maintained, a point mutation is applied on the individual returned by

genChromosome. In the next step, similar to other EDAs, a truncation selection is used to select

the best individuals of the current generation which are then stored in the elite set. This set is then

used to update the entries of the probabilistic model. Following [26], we set the top 1/5 of the

population as elite members.

We update M(3) using an additive update rule as shown in Algorithm 5. The arrays in this

algorithm are not explicitly zeroed before they are updated. In this way the model used to create

the upcoming generation will also depend on the good individuals created in previous generations.

In addition, the learning rate ηM determines how much the current elite members influence the

probabilistic model.

Algorithm 5: Learning in N-gram GEP

updateProbabilities (M(3), elite)
begin

for all x in elite do
for all genes g in chromosome do

for j=3...geneLength do
M(3)

x j−2,x j−1,x j = M(3)
x j−2,x j−1,x j +ηM/N3

M(3) = M(3)/∑l,m,n M(3)
l,m,n

3.3 Experimental Setup

This section presents the experimental settings used to test the performance of PDPE and N-gram

GEP.

24



3.3.1 Comparing PDPE with PIPE and GEP

To compare PDPE and GEP with PIPE, we used the same experimental setup proposed in [30].

Here, for all the experimental setups, F = {+,−,∗,%,sin,cos,exp,rlog}. For the function regres-

sion problem, T = {x,R}, and for the 6-bit parity problem, T = {x0,x1,x2,x3,x4,x5,R}, where xi,

0≤ i≤ 5, and R denotes the input variables and the generic random constant in [0;1). To determine

a suitable value for H, we ran a set of test experiments to examine which head/tail combination

would yield acceptable results in terms of solution quality and fitness variance.

Function Regression: The function regression to be approximated is:

f (x) = x3 ∗ e−x ∗ cos(x)∗ sin(x)∗ (sin2(x)∗ cos(x)−1)

The training (test) data set Dtr (Dte) is composed of 101 equally distant points in the interval

[0;10] ([0.05;10.05]). Dtr is used to calculate fitness during the creation of the population, and

Dte is used to test how well the best evolved individuals generalize. The fitness value of each

solution individual S is F (S) = ∑∀x∈Dtr | f (x)− S(x)|. The generalization performance, G(S) =

∑∀x∈Dte | f (x)− S(x)|, is the fitness measure of the individuals when considering the test set Dte.

The settings used to run the experiments for PDPE and GEP are presented in Table 3.1; for PIPE,

the same settings presented in [30] are applied. To statistically evaluate the results, we conducted

50 independent runs for each algorithm and time constrained each run to 100,000 chromosome

evaluations (CE) as in [30].

6-Bit Parity Problem: The 6-bit parity function has six boolean input variables which are

either 1 or 0. The output of this function is 1 (0) when the number of its non-zero inputs are odd

(even). We used 64 training instances for this problem. The fitness of a solution is the number of

instances it classifies incorrectly. As a result, the best (worst) fitness is 0 (64) for classifying all

(no) instances correctly. Because of the Boolean nature of the problem the real-valued output of a

solution is mapped to zero (negative) or 1 (positive). Table 3.1 presents the parameters used to run

25



Parameters GEP PDPE N-gram GEP
S.R. 6-B.P. S.R. 6-B.P. S.R. 6-B.P

Population Size 150 30 150 25 50 20
Head Length 9 7 7 7 8 7
Number of genes 5 3 7 3 7 4
Linking function + * + * + *
Chromosome Length 95 45 105 45 119 60
Mutation rate 0.044 0.044 - - 1 1
1-pnt. recomb. rate 0.3 0.3 - - - -
2-pnt. recomb. rate 0.3 0.3 - - - -
Gene recomb. rate 0.1 0.1 - - - -
Gene transp. rate 0.1 0.1 - - - -
IS transposition rate 0.1 0.1 - - - -
IS elements length 1,2,3 1,2,3 - - - -
RIS transp. rate 0.1 0.1 - - - -
RIS elements length 1,2,3 1,2,3 - - - -
Truncation selection ratio - - - - 5 5
ηM Learning rate - - - - 8 8

Table 3.1: Parameters for the function regression (SR) and 6-bit parity (6-BP) problems

the experiments for the PDPE and GEP algorithms. In regards to PIPE, we used the same settings

described in [30]. We conducted 100 runs for each algorithm and set CE=500,000 for each run.

3.3.2 Comparing N-gram GEP with PDPE and GEP

We first compared N-gram GEP with the PDPE algorithm on the function regression and the 6-bit

parity problems using the same setting introduced in Section 3.3.1. The parameters used to run

this set of experiments are presented in Table 3.1. To compare N-gram GEP against the canonical

GEP algorithm, we adopted the same experimental settings and problems used in [26], namely the

Polynomial and the Lawn-Mower problems:

Polynomial: This problem consists of a set of symbolic regression functions where the goal is

to evolve a mathematical expression which fits a polynomial of form x + x2 + ...+ xd , where 5 ≤
d ≤ 12, is the degree of the polynomial, and x ∈ [−1,1] reflects the input variable. We specifically

sampled the polynomial at 21 equidistant points x ∈ {−1.0,−0.9, ...,0.9,1.0}. The goal is to

26



minimize the fitness and the fitness measure was the sum of absolute differences between the

target polynomial and the output produced by the candidate solution over the 21 fitness cases.

Following [26], we implemented the polynomial problem using two function sets: F1 = {+,∗} and

F2 ={+,−,∗,/}. In both cases the terminal set was T = {x}.

Lawn-Mower: This problem was presented in [26] and is a variation of the Lawn Mower

problem introduced in [18]. In the original Lawn Mower problem, the goal is to evolve a program

which guides a robotic lawnmower to mow all the grass in a tiled square lawn. In this case, we

considered lawns of size d ∗ d where 5 ≤ d ≤ 12. In this version of the problem, the lawnmower

performs one of the following three actions: moves forward and mow the tile it lands on (Mow ),

turns left by 90 degrees (Left ), turns right by 90 degrees (Right ). In the original problem, the

fitness measure is equal to the number of non-mowed tiles at the end of the execution of the

program. In [26], to make the problem more difficult, two more constraints are introduced: (1) the

length of a candidate program is limited to 4∗d2, and (2) the lawnmower must be energy efficient.

To implement the second constraint, the fitness function shown in Equation 3.1 is corrected in a

way that it promotes the evolution of programs which mow the whole lawn with least number of

moves, and that stop immediately after having mowed the last tile.

fitness =





0.0001∗n, if all tiles are mowed

0.1∗ l + t, otherwise
(3.1)

In Equation 3.1, n, l, and t respectively denote the number of extra moves, the program length,

and the number of un-mowed tiles. Based on the above, we used F={Mow,Progn } and

T={Left,Right } as the function and terminal sets, respectively. Note that Progn is a two argu-

ment function which evaluates its arguments, returning the value of the second (rightmost) argu-

ment; progn ’s structure allows for the creation of lawn-mowing programs of variable length. Since

N-gram GP uses fixed-length programs, the Progn operator was not used in [26]. Tables 3.2 to 3.5

present the parameters used to run the experiments for the polynomial and the Lawn-Mower test

27



problems. The results presented in [26] does not quantitatively show the performance of N-gram

GP in the aforementioned experiments. Therefore, we were not able to compare N-gram GP and

N-gram GEP in terms of performance. In the following, we compare these two approaches in terms

of pattern preservation.

3.3.3 Pattern Learning Analysis

To explore the type of learning that is happening in N-gram GEP and to be able to compare this

system with the N-gram GP algorithm, we used a set of experiments to find satisfactory answers

to the following research questions : (1) Does N-gram GEP learn longer patterns based on the

correlations acquired from the occurrence of triplet of instructions? For example if the triplets abc

and bcd have both high probabilities, then the 4-tuple abcd might be the result of a sequence which

starts with ab (2) How often does N-gram GEP take advantage of such correlations and how long

are the patterns that it learns? (3) What is the role of repetition in the found patterns? (4) What is

the relationship between length of the found solutions the number of genes and the chromosome

length?

To answer these questions, we used the polynomial and lawn-mower problems mentioned ear-

lier in this section; The settings used to run these experiments are listed in Tables 3.6 and 3.7.

Note that in these experiments we have chosen longer head sizes and smaller number of genes; this

technique allowed us to easily detect repeating patterns in the solution population that we were

verifying. We took the following approach for analyzing pattern occurrence: after running one of

the above experiments, we randomly chose one run in which an individual with the best fitness was

created. We stored the M(3) matrix pertaining to that run and created 100 individuals based on the

probabilities stored M(3). Finally, we analyzed the preservation of patterns based on the common

frequencies seen in the generated individuals.

28



3.3.4 Parameter Guidelines

In our experiments for PDPE, GEP, and N-gram GEP we chose the direct parameters (head size

and number of genes) by trying different chromosome combinations before running the actual

experiments. For example, for the polynomial of degree 5, in case of N-gram GEP, we set the

population size to 50, number of generations to 100, and number of runs to 10; we then tested

this system using head sizes equal or greater than 3 and changed the number of genes. In each

case we chose the chromosome setting which optimally yielded an individual with the desired

fitness (0) and minimum solution size. For the lawn-mower problem we also had a maximum

length constraint. In that case, we first found the approximate head size according to the imposed

constraint ( 4∗d2 = (H +T )∗N) by setting the number of genes (N) to 1. Then we tested the system

using different combinations of head sizes and number of genes which met the maximum length

and selected the setting which had the individual with the best fitness and minimum solution size

to run our main experiments. Thus, the best method for selecting the proper chromosome setting

while tackling other problems would be to test the system with a set H and N combinations.

Specifically, trying different head sizes (small to large) with various number of genes helps the

user to select a suitable (H, N) pair according to the best fitness measure and solution size.

29



Parameters GEP (Polynomial Problem)

Polynomial Pol.5 Pol.6 Pol.7 Pol.8 Pol.9 Pol.10 Pol.11 Pol.12
Fitness Evaluations 20000 20000 20000 20000 20000 20000 20000 20000
Independent runs 1000 1000 1000 1000 1000 1000 1000 1000
Generations 2000 2000 2000 2000 2000 2000 2000 2000
Population Size 10 10 10 10 10 10 10 10
Head Length 4 5 6 8 7 10 6 25
Number of genes 6 5 5 5 7 6 11 7
Linking function + + + + + + + +
Chromosome Length 54 55 65 85 105 126 143 175
Mutation rate 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
1-pnt. recomb. rate 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
2-pnt. recomb. rate 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Gene recomb. rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Gene transp. rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
IS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
IS elements length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3
RIS transp. rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
RIS elements length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Table 3.2: Parameters for the Polynomial (Pol) problem

30



Parameters GEP (Lawn-Mower Problem)

Lawn Size Size.5 Size.6 Size.7 Size.8 Size.9 Size.10 Size.11 Size.12
Fitness Evaluations 20000 20000 20000 20000 20000 20000 20000 20000
Independent runs 1000 1000 1000 1000 1000 1000 1000 1000
Generations 2000 2000 2000 2000 2000 2000 2000 2000
Population Size 10 10 10 10 10 10 10 10
Head Length 3 4 9 11 11 14 17 21
Number of genes 7 8 6 7 9 8 8 8
Linking function progn progn progn progn progn progn progn progn
Chromosome Length 49 72 114 161 207 232 280 344
Mutation rate 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
1-pnt. recomb. rate 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
2-pnt. recomb. rate 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Gene recomb. rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Gene transp. rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
IS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
IS elements length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3
RIS transp. rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
RIS elements length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Table 3.3: Parameters for the Lawn-Mower problem

Parameters N-gram GEP (Polynomial Problem)

Polynomial Pol.5 Pol.6 Pol.7 Pol.8 Pol.9 Pol.10 Pol.11 pol.12
Fitness Evaluations 20000 20000 20000 20000 20000 20000 20000 20000
Independent runs 1000 1000 1000 1000 1000 1000 1000 1000
Generations 2000 2000 2000 2000 2000 2000 2000 2000
Population Size 10 10 10 10 10 10 10 10
Head Length 4 6 4 6 8 8 10 10
Number of genes 5 4 8 7 6 7 7 8
Linking function + + + + + + + +
Chromosome Length 45 52 72 91 102 119 147 168
Mutation rate 1 1 1 1 1 1 1 1
Truncation selection ratio 5 5 5 5 5 5 5 5
ηM Learning rate 8 8 8 8 8 8 8 8

Table 3.4: Parameters for the Polynomial (Pol) problem

31



Parameters N-gram GEP (Lawn-Mower Problem)

Lawn Size Size.5 Size.6 Size.7 Size.8 Size.9 Size.10 Size.11 Size.12
Fitness Evaluations 20000 20000 20000 20000 20000 20000 20000 20000
Independent runs 1000 1000 1000 1000 1000 1000 1000 1000
Generations 2000 2000 2000 2000 2000 2000 2000 2000
Population Size 10 10 10 10 10 10 10 10
Head Length 3 4 9 10 11 15 16 22
Number of genes 6 7 5 7 8 7 8 7
Linking function progn progn progn progn progn progn progn progn
Chromosome Length 42 63 95 147 184 217 264 315
Mutation rate 1 1 1 1 1 1 1 1
Truncation selection ratio 5 5 5 5 5 5 5 5
ηM Learning rate 8 8 8 8 8 8 8 8

Table 3.5: Parameters for the Lawn-Mower (LM) problem

Parameters N-gram GEP- Pattern Analysis (Polynomial Problem)

Polynomial Pol.5 Pol.6 Pol.7 Pol.8 Pol.9 Pol.10 Pol.11 pol.12
Fitness Evaluations 20000 20000 20000 20000 20000 20000 20000 20000
Independent runs 1000 1000 1000 1000 1000 1000 1000 1000
Generations 200 200 200 200 200 200 200 200
Population Size 100 100 100 100 100 100 100 100
Head Length 11 10 12 11 12 12 14 16
Number of genes 2 3 3 4 4 5 5 5
Linking function + + + + + + + +
Chromosome Length 46 63 75 92 100 125 145 165
Mutation rate 1 1 1 1 1 1 1 1
Truncation selection ratio 5 5 5 5 5 5 5 5
ηM Learning rate 8 8 8 8 8 8 8 8

Table 3.6: Parameters for the Polynomial (Pol) problem

32



Parameters N-gram GEP- Pattern Analysis (Lawn-Mower Problem)

Lawn Size Size.5 Size.6 Size.7 Size.8 Size.9 Size.10 Size.11 Size.12
Fitness Evaluations 20000 20000 20000 20000 20000 20000 20000 20000
Independent runs 1000 1000 1000 1000 1000 1000 1000 1000
Generations 200 200 200 200 200 200 200 200
Population Size 100 100 100 100 100 100 100 100
Head Length 10 11 11 10 11 15 16 22
Number of genes 2 3 4 7 8 7 8 7
Linking function progn progn progn progn progn progn progn progn
Chromosome Length 42 63 92 147 184 217 264 315
Mutation rate 1 1 1 1 1 1 1 1
Truncation selection ratio 5 5 5 5 5 5 5 5
ηM Learning rate 8 8 8 8 8 8 8 8

Table 3.7: Parameters for the Lawn-Mower (LM) problem

33





Chapter 4

Results and Discussion

This chapter presents, analyzes, and discusses the results of the experiments introduced in Chapter 3.

4.1 PDPE versus PIPE and GEP

Function Regression. Figure 4.1 illustrates the performance of the PDPE, GEP, and PIPE al-

gorithms on the test data set (Dte) defined in Chapter 3. The graph shows performance υ against

number of solution individuals with F (S) ≤ υ and G(S) ≤ υ [30]. Figure 4.2 depicts PDPE’s

(true) variance for different chromosome sizes, and also shows how fitness of the best individual

changes for different chromosome sizes.

In regards to GEP vs. PIPE, the best 19% (16%) of all GEP runs found solution individuals

with a better performance than all the PIPE runs on the test (training) data sets. Furthermore,

only the worst 26% (15%) of all GEP runs only found chromosome that perform worse on the test

(training) data sets than the top program individuals found by all PIPE runs. GEP thus shows a

better performance than PIPE on the function regression problem. Moreover, PIPE shows twice

more variance than GEP (fitness values of GEP solutions range from 0.76 to 8.47, whereas PIPE’s

range from 1.18 to 16.64). This is expected because GEP’s genetic operators search the genotype

space more effectively than PIPE’s random sampling of the probability of distribution stored in the

PPT [38].

In regards to PDPE vs. PIPE, the top 26% (20%) of all PDPE runs found chromosomes that

35



Figure 4.1: Results for the function regression problem

Figure 4.2: The correlation between chromosome length and variance (a), and chromosome length
and fitness (b).

36



performed better on the test (training) data sets Dtr (Dte) than all PIPE runs. In addition, the worst

24% (26%) of all PDPE runs only found chromosomes that perform worse on the test (training)

data sets than the best programs found by all PIPE runs. Thus, the best PDPE’s solution individuals

perform better than PIPE’s best programs. Also, PDPE showed 15% less variance than PIPE.

The graphs in Figure 4.2 show the performance of our algorithm for different chromosome

settings. The results show that for a wide range of chromosome sizes PDPE shows better fitness

values with smaller variance than PIPE (15.46). However, as shown in Figure 4.2, increasing

genome size in PDPE affects negatively both variance and fitness. We conjecture such bigger

variance in PIPE stems from the way its tree shaping operators operate; growing trees that are too

small in the early stages of evolution, and later pruning trees that are already too big. PDPE, on the

other hand, represents the probability distribution in the fixed-length structure of the PPC, which

seems to provide a more appropriate window into the search space, thus increasing the chances of

the mutation operator finding promising solutions more often.

In regards to PDPE vs. GEP, the best 12% (11%) of all PDPE runs found chromosomes that

outperformed all GEP runs on the test (training) data sets. On the other hand, the worst 27% (30%)

of all PDPE runs found chromosomes that performed worse on the test (training) data sets than the

top chromosomes found by all GEP runs. Therefore, we can conclude that the top chromosomes

generated by PDPE outperform GEP’s best solutions. In this case, PDPE’s variance is 41% higher

than GEP’s.

6-Bit Parity Problem. Table 4.1 summarizes the results from the application of each algo-

rithm (PIPE, GEP, and PDPE) for classifying the 64 training instances used in the experiment; the

number of nodes in this table denotes the average number of nodes in the expression trees of the

found solutions.

As the 6-bit parity results in Table 4.1 demonstrate the PDPE algorithm is the best among the

three algorithms. In fact, it solves the problem more often (higher percentage) with less complex

solutions (smaller number of nodes on average).

37



Algorithm Solved Nodes (median)
PDPE 94% 50
PIPE 70% 61
GEP 91% 55

Table 4.1: Results for the 6-bit parity problem

Figure 4.3: Performance of N-gram GEP on the function regression problem.

4.2 N-gram GEP versus PDPE and GEP

Function regression and 6-bit parity problem. We first compared the N-gram GEP algorithm

with the PDPE learning methodology on the function regression and the 6-bit parity problem. Fig-

ure 4.3 illustrates the performance of N-gram GEP on the test data set (Dte). As far as performance

is concerned the, top 9% (7%) of all N-gram GEP runs found chromosomes that performed better

on the test (training) data sets Dtr (Dte) than all PDPE runs. Furthermore, the worst 17 % (13%)

of all N-gram GEP runs found chromosomes that performed worse on the test (training) data sets

than the top chromosomes found by all PDPE runs. Thus, the best individuals in N-gram GEP

outperform the best individuals in PDPE. In terms of variance, N-gram GEP is 31.25% less variant

than the PDPE algorithm. In the 6-bit parity problem N-gram GEP solved 97% of the cases with

52 nodes on average.

Polynomial. For the polynomial problem we compared the N-gram GEP algorithm with the

canonical GEP methodology1 based on their success rate. In evolutionary computation, success

rate can be defined as the number of individuals having the desired fitness over all number of fitness

1The term canonical GEP refers to the original GEP algorithm introduced by Candida Ferreira in [7].

38



evaluations. For our experiments the acceptable error (desired fitness) was set to 1.05.

For the polynomial problem we first tested the unigenic version of N-gram GEP methodology

against the multigenic version of this system. As explained in Chapter 3, our probabilistic model is

a three-dimensional matrix (M(3)) and holds the probability distributions pertaining to the elements

of one gene. In the unigenic version of N-gram GEP individuals consist of one gene which has

an M(3) associated with it. In the multigenic version of this system individuals are composed of

multiple genes; each gene has its corresponding M(3). To make these two systems comparable

the chromosome length in the unigenic N-gram GEP (H + T ) is set equal to (H + T ) ∗N in the

mutigenic version of this system. Figure 4.4 shows the success rate of the multigenic N-gram

GEP and the unigenic N-gram GEP on polynomials of degrees 5 to 12 for the function set F2

={+,−,∗,/}. Notice that the success rate for the multigenic N-gram GEP over all degrees of

the polynomial problem outperforms the unigenic version of this system. Also, the multigenic

N-gram GEP proves to be more scalable. In fact, as d (the degree of the polynomial) increases the

performance of this version drops slower than the unigenic system. We conjecture that having a

chromosome with multiple genes contributes in searching for more varied candidate solutions. In

addition, because there is an M(3) associated with each gene, the pattern preserved in these blocks

are represented more accurately by the individual M(3) matrices.

From this point onwards we used the multigenic N-gram GEP system to perform our experi-

ments; thus, this algorithm is simply called N-gram GEP.

Figure 4.5 illustrates the success rate of N-gram GEP algorithm and the canonical GEP algo-

rithm on the F2 ={+,−,∗,/} function set for the polynomials 5 to 12. Notice that for polynomials

5 and 6 GEP has a better performance. However, as d (the degree of the polynomial) increases the

performance of this algorithm drops substantially whereas N-gram GEP shows more scalability.

In another experiment we compared the performance of N-gram GEP algorithm and the canon-

ical GEP methodology on the function set F1 = {+,∗} for polynomials 5 to 12. As the result in

Figure 4.6 demonstrates, a smaller function set makes this polynomial problem much easier to be

39



Figure 4.4: Success rate of unigenic N-gram GEP and multigenic N-gram GEP.

Figure 4.5: Success rate of N-gram GEP and GEP algorithm using F2 function set.

40



Figure 4.6: Success rate of N-gram GEP and GEP algorithm using F1 function set.

Figure 4.7: Success rate of N-gram GEP and GEP algorithm on Lawn-Mower problem.

solved. Also, similar to the results presented in Figure 4.5 for simpler polynomials of degree 5

and 6 the GEP algorithm outperforms N-gram GEP, but for polynomials of degree 7 and higher

N-gram GEP shows to be more scalable and also exceeds canonical GEP in terms of performance.

Lawn-Mower. Figure 4.7 illustrates the success rate for the Lawn-Mower problem for lawn

sizes 5 ∗ 5 to 12 ∗ 12 for the N-gram GEP algorithm and the canonical GEP methodology. In the

diagram it can be seen that for smaller lawn sizes, i.e., 5 to 7, GEP proves to be a better problem

sover. Nevertheless, as the lawn sizes increases N-gram GEP demonstrates more scalability, and

thus outperforms the GEP algorithm.

41



4.3 Pattern Learning Analysis

Polynomial. To better understand the importance of pattern regularities in the polynomial problem,

we first focused on common patterns in the solution population. In the next step, we analyzed how

these sequences contributed in creating a better offspring population. We also studied the M3

matrix which was used to create the solution individuals, and assessed how the information stored

in this probabilistic model guided the search for finding highly fit patterns.

Poli and McPhee reported in [26] that the N-gram GP algorithm was able to solve the polyno-

mial problem in a highly patterned way when the function set F1 = {+,∗} was used. In N-gram

GEP, however, we did not detect highly patterned sequences. Instead, there were certain sequences

that proved to be effective in terms of fitness enhancement and could be found either in one gene

or in several genes. We conjecture that the difference in the method of finding common sequences

and repeating patterns in N-gram GP and N-gram GEP lies in their different individual represen-

tation and solution organization. For the case of N-gram GEP, let us analyze the patterns seen in

the polynomial of degree 7 (x7 + x6 + x5 + x4 + x3 + x2 + x). In the solution population pertaining

to this polynomial we found two occurring triplets in more than one gene of the 100 individuals

that we verified: ∗ ∗ ∗,∗ ∗ x. The triplet ∗ ∗ ∗ is necessary for creating xd; for example x4 would

be ∗∗∗xx... and x6 would ∗∗∗∗∗xx... . The sequence ∗∗ x could be seen more frequently in two

cases: (1) in the transition from the head to the tail section of genes, (2) at the beginning of those

genes encoding the expressions of the kind xd , where d was odd; for example x5 would be encoded

in such gene as ∗∗ x ∗∗xx... . This triplet is also useful for creating different xds where d is even.

Note that the two first elements of triplets ∗∗∗ and ∗∗x are the same; if during the search the third

element would be wrongly chosen then the fitness of the individual could substantially change. We

looked at the probabilities of the associated M3 of a gene which contained both triplets to see how

the probabilities reflected this fact. We observed that the probability of ∗∗ being proceeded by a

∗ was 90.61% while the probability of this sequence being proceeded by an x was 3.01%. This

42



shows that the system has learned over time that ∗∗ should be mostly followed by ∗.

As far as learning longer sequences is concerned, in our experiments N-gram GEP did not

clearly show that it is able to capture longer sequences based on the information acquired from

triplet of instructions. We believe that testing this system with more complex polynomials will

demonstrate the true performance of N-gram GEP from this point of view.

We also tested the relationship among the chromosome length, number of genes and pattern

repetition for polynomial of degree 7 in the same problem. As Figure 4.8 shows, in the first

scenario we increased the head size and did not change the number of genes. The results proved

that the longer the head size (chromosome length) of an individual, the shorter the solution size.

In the second scenario, we tested the effect of increasing the number of genes while maintaining

the same head size. In this case, increasing the number of genes negatively affected the solution

size; in fact, the more the number of genes, the longer the solution size. We conjecture the reason

behind these results is the GEP’s individual representation: the head part contains both functions

and terminals while the tail part contains only terminals and therefore there is less pattern variety

in the tail. Thus, the longer the head part is the better repeating patterns will be preserved and the

shorter the solution size will get.

Lawn-Mower. Similar to [26], in the lawn-mower problem we did not notice substantial

matrix convergence for any specific triplet. This is because the function set of this problem contains

only two function which are progn and Mow . Nevertheless, in this problem, we observed a different

type of pattern preservation: The head part of the genes were almost all filled with the Mow function.

In the M3 related to a particular gene we observed that there was a high probably (85%) of starting

the gene with the Mow function; also, the probability the first Mow function being proceeded with a

second Mow function was equal (80%). These probabilities were reported respectively (74%) and

(75%) in [26]. We also observed that function combinations such as prognprognmow appeared

more likely to occur (30%-50%), whereas function/terminal sequences such as prognleftright

had quite low probabilities (7%-15%). Thus, our observations show that the lawn-mower problem

43



Figure 4.8: The relationship between head size, number of genes, and solution size

has not learned any specific pattern sequences. Instead, as in N-gram GP, it has acquired techniques

to mow the square lawns in a more efficient manner.

44



Chapter 5

Conclusion and Future Work

This work introduced an indirect estimation of distribution algorithm for improving the induction

of tree structured computer programs and mathematical expressions. Our methodology maintains

a distribution of the genotypic space and searches for better and better solutions in the phenotypic

space by performing a genotype-to-phenotype decoding step.

To verify the validity of our approach, we first developed a univariate IEDA named PDPE

which combines GEP’s indirect representation with PIPE’s learning algorithm. This algorithm

replaces the population of solution individuals with a probabilistic prototype GEP chromosome

(PPC). Similar to PIPE’s prototype tree (PPT), PPC probabilities are shifted towards the best found

chromosome solutions in the current population.

We compared PDPE with the conventional GEP algorithm and the PIPE methodology on a

function regression problem and the 6-bit parity problem. On the function regression problem,

PDPE’s best (worst) solutions were better (worse) than GEP’s best (worst) solutions. Also, PDPE’s

best (worst) solutions were better (better) than PIPE’s best (worst) solutions on the same problem.

On the 6-bit parity problem, PDPE found more reliable and less complex solutions than both GEP

and PIPE algorithms.

It is also worth mentioning that the PPC does not require operations, like in PIPE, for properly

shaping the structure of the probability distribution. In PDPE a suitably chosen chromosome size

ensures a parsimonious use of memory for the PPC. The choice of chromosome size is, however,

problem dependent. Therefore, finding an appropriate value for this parameter would require other

heuristics or expert knowledge on the problem domain. Alas, since there is no such a thing as a

45



free lunch, that is the price one has to pay for better solution quality, smaller variance, and a more

parsimonious use of memory.

In the next step, we developed a multivariate IEDA named N-gram GEP. This learning method-

ology borrows the idea of n-grams from the approach presented in [26] and uses a 3-gram as a prob-

abilistic model for capturing the intra-dependencies amongst the elements of GEP chromosomes.

Unlike N-gram GP, our system does not use an explicit length distribution; instead, this algorithm

generates fixed length GEP chromosomes which translated to variable-length tree structures for

fitness evaluation.

In our approach, first we compared N-gram GEP with the PDPE algorithm on the symbolic re-

gression and the 6-bit parity problem. On the function regression problem N-gram GEP’s best

(worst) solutions were better (better) than PDPE’s best (worst) solutions. On the 6-bit parity

problem N-gram GEP solved the problem with a higher percentage and more nodes on average.

Then we compared N-gram GEP with the canonical GEP algorithm on the Polynomial and the

lawn-mower problems. On both problems our system outperformed the canonical GEP algorithm

in terms of success rate and scalability. We then analyzed the pattern learning capabilities of N-

gram GEP on the same problems and compared that with the N-gram GP methodology. On the

Polynomial problem, our system did not find specific sequences. Instead, it found some major

“building block” triplets for improving the overall fitness of individuals in different genes of the

chromosome. On the lawn-mower problem, similar to [26], this algorithm did not find problem

solving pattern sequences. Instead, N-gram GEP learned techniques for optimally mowing the

squared lawns. A far as time efficiency is concerned, we did not notice any remarkable difference

between PDPE, N-gram GEP, GEP and, the PIPE methodology.

Also, it is worth mentioning that in terms of features the work presented in this thesis has two

main contributions: first, it extends univariate and multivariate EDAs to take advantage of an indi-

rect search strategy by using Gene Expression Programming representations. Second, other EDAs

such as PIPE [30] and N-gram GP [26] often need extra operations for controlling the solution

46



sizes. In our approach, however, because of the fixed-length nature of GEP individuals we do not

use any additional length-controlling strategy. This feature has its downside: for each experiment,

the user chooses the optimum solution size, by testing different combinations of chromosome

(head) sizes and number of genes.

5.1 Future Work

The experimental results presented in this work proved the effectiveness of our indirect probabilis-

tic approach. Nevertheless, there are several points in this thesis which would be worthwhile of

further investigations:

One limitation of the PDPE algorithm is its inability to capture multivariate dependencies

amongst variables. Exploring ways for extending this methodology to overcome this limitation

would be an interesting topic for future work. It would be also beneficial to test PDPE (and its

extensions) on other problems, such as classification and neuroevolution.

This thesis presented a new EDA with an indirect search strategy by using the GEP’s individual

representation. It would be interesting to explore the capability of the N-gram GEP algorithm with

other developmental approaches of evolutionary computation in which there is a mapping between

the genotype and the phenotype; for example grammar guided genetic programming approaches

such as the ones presented in [10, 35, 36].

In the N-gram GEP algorithm, we were successful in capturing intra-dependencies amongst

triplets of instructions (3-grams) in each chromosome. A potential future investigation would be to

extend the M(3) matrix to capture the dependencies of shorter and longer sequence of instructions

(i.e. 2-grams and 4-grams) and test the extended version of this system with more complicated

problems where a higher degree of dependency is needed amongst the solutions’ components.

Although capturing longer sequences is computationally expensive, it would allow us to observe

how these sequences would affect the learning capabilities of the N-gram GEP algorithm. We also

47



intend to test the influence of different parameter settings, e.g. population size, on the PDPE and

N-gram GEP algorithms.

Also, its worth to remark that EDAs are successful evolutionary methods which use the global

information about the search space to produce offspring. It is known, however, that these al-

gorithms lack the ability to gather information about the locations of the solutions in the search

space [38]. An interesting future work would be to investigate methods that explore the population

probability distribution to guide the genetic operators used in GEP.

48



Glossary

EA Evolutionary Algorithm

EC Evolutionary Computation

EDA Estimation of Distribution Algorithms

GA Genetic Algorithm

GEP Gene expression Programming

GP Genetic Programming

IEDA Indirect Estimation of Distribution Algorithms

PDPE Probabilistic Developmental Program Evolution

PIPE Probabilistic Incremental Program Evolution

PMBGP Probabilistic Model Building Genetic Program-

ming

PPC Probabilistic Prototype Chromosome

PPT Probabilistic Prototype Tree

49





Bibliography

[1] S. Baluja. Population based incremental learning: A method for integrating genetic search

based function optimisation and competitive learning. Tech.Rep.No.CMU-CS-94-163, 1994.

[2] W. Banzhaf. Genotype-phenotype-mapping and neutral variation - a case study in genetic

programming. In Proceedings of PPSN III, 1994.

[3] J. S. D. Bonet, C. L. Isbell, and P. Viola. Mimic: Finding optima by estimating probability

densities. In Advances in Neural Information Processing Systems, 1996.

[4] d. J. E. Bosman, P.A.N. Grammar transformations in an EDA for genetic programming. Spe-

cial Session: OBUPM - Optimization By Building and Using Probabilistic Models, GECCO,

2004.

[5] M. Brameier and W. Banzhaf. A comparison of linear genetic programming and neural

networks in medical data mining. IEEE TRANSACTIONS ON EVOLUTIONARY COMPU-

TATION, 5:17–26, 2000.

[6] B. M. Cerny, C. Zhou, W. Xiao, and P. C. Nelson. Probabilistically guided prefix gene

expression programming. In NICSO, pages 15–26. 2007.

[7] C. Ferreira. Gene Expression Programming: Mathematical Modeling by an Artificial Intelli-

gence (Studies in Computational Intelligence). Springer-Verlag, 2006.

[8] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated Evolution.

John Wiley, 1966.

[9] E. Ghoulbeigi and M. V. dos Santos. Probabilistic developmental program evolution. In

Proceedings of ACM-SAC, pages 1138–1142, 2010.

51



[10] F. Gruau. On using syntactic constraints with genetic programming. Advances in Genetic

Programming, 2:377–394, 1996.

[11] G. Harik. Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No.

99010, 1999.

[12] G. Harik, F. Lobo, and D. Goldberg. The compact genetic algorithm. In Proceedings of

ICEC, 1998.

[13] Y. Hasegawa and H. Iba. Optimizing programs with estimation of bayesian network. In

Proceedings of CEC, pages 1378–1385, 2006.

[14] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

[15] J. H. Holland. J. ACM, 9(3):297–314, 1962.

[16] D. J. Kenneth A. Evolutionary Computation: a unified approach. MIT press, 2006.

[17] J. Koza. Genetic programming: On the programming of computers by means of natural

selection. MIT Press, 1992.

[18] J. R. Koza. Genetic programming II automatic discovery of reusable programs. The MIT

Press, 1994.

[19] M. Looks, B. Goertzel, and C. Pennachin. Learning computer programs with the bayesian

optimization algorithm. In Proceedings of GECCO, pages 747–748, 2005.

[20] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.

MIT Press, 1999.

[21] J. F. Miller and P. Thomson. Aspects of digital evolution: Geometry and learning. In Pro-

ceedings of ICES’98, Lecture Notes in Computer Science, pages 25–35, 1998.

52



[22] A. Narayanan and N. Sharkey. An introduction to LISP. John Wiley & Sons Inc., 1986.

[23] G. D. Pelikan, M. and E. Cantú-Paz. BOA: The bayesian optimization algorithm. Proceedings

of GECCO, pages 525–532, 1999.

[24] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by building and using

probabilistic models. Computational Optimization and Applications, 21(1):5–20, 2002.

[25] M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm. In Advances

in Soft Computing - Engineering Design and Manufacturing, 1999.

[26] R. Poli and N. F. McPhee. A linear estimation-of-distribution GP system. In Proceedings of

EuroGP, LNCS4971, 2008.

[27] S. M. Ratle, A. Avoiding the bloat with probabilistic grammar-guided genetic programming.

Proceedings of EA, 2310:255–266, 2001.

[28] I. Rechenberg. Cybernetic solution path of an experimental problem. Technical report, Royal

Air Force Establishment, 1965.

[29] I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach prinzipien der

biologischen evolution. Frommann-Holzboog, 1973.

[30] R. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evolution-

ary computation, pages 123–141, 1997.

[31] K. Sastry and D. E. Goldberg. Probabilistic model building and competent genetic program-

ming. Genetic Programming Theory and Practice, pages 205–220, 2003.

[32] Y. Shan, R. McKay, R. Baxter, H. Abbass, D. Essam, and H. Nguyen. Grammar model-based

program evolution. Proceedings of CEC, pages 478–485, 2004.

53



[33] Y. Shan, R. I. Mckay, H. A. Abbass, and D. Essam. Program evolution with explicit learning:

A new framework for program automatic synthesis. Proceedings of CEC, pages 1639–1646,

2003.

[34] Y. Shan, R. I. McKay, D. Essam, and H. A. Abbass. A survey of probabilistic model building

genetic programming. In Scalable Optimization via Probabilistic Modeling, pages 121–160.

2006.

[35] P. Whigham. Grammatically-based genetic programming. Proceedings of the Workshop on

Genetic Programming: From Theory to Real-World Applications, pages 33–41, 1995.

[36] L. K. S. Wong, Man Leung. Inducing logic programs with genetic algorithms: the genetic

logic programming system. IEEE expert, 10(5):68–76, 1995.

[37] K. Yanai and H. Iba. Estimation of distribution programming based on bayesian network. In

Proceedings of CEC, pages 1618–1625, 2003.

[38] Q. Zhang, J. Sun, and E. P. K. Tsang. An evolutionary algorithm with guided mutation for

the maximum clique problem. IEEE Trans. Evolutionary Computation, 9(2):192–200, 2005.

54


