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Abstract

ANALYSIS OF HOURLY DEMAND, COST, AND EMISSION FACTOR FROM THE
ELECTRICITY SECTOR - A TOOL FOR RENEWABLE ENERGY ASSESSMENT

Christtan Gordon

MASc, Mechanical Engineering, Ryerson University, 2008

In this study, seasonal greenhouse gas (GHG) emission factors were developed to realize the
true CO, reduction potential of a small scale renewable energy technology. The new hourly
greenhouse gas emission factors based on hour-by-hour demand of electricity in Ontario,
and the average Greenhouse Gas Intensity Factor (GHGIF,) were estimated by creating a
series of emission factors and their corresponding profiles that could be easily incorporated
into simulation software. The use of regionally specific climate-modeled factors, such as
those identified, allowed for a more accurate representation of the benefits associated with
GHG reducing technologies, such as photovoltaic, wind, etc. It was determined that using
Time Dependent Valuation (ITDV) emission factors provided an upper limit while using
hourly emission factors provided a lower limit. In addition, since there is a correlation
between the electricity generated and emissions from utilities, several neural network (NN)
models were developed in order to predict the hourly emission factor for the province of
Ontario. Two methodologies were exploted and resulted in good predictions. However,
methodology 2 Proved to be more accurate in predicting the hourly emission factor for the

Province of Ontatio.
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1 Introduction

1.1 Historical Energy Supply and Demand

The increase in electricity demand in the Province of Ontario in recent years has caused
some concerns about the potential of an electricity supply shortage in the near future. The
dilemma regarding the supply and demand of electricity in Ontatio is of major concern not
only to the province, but also to the country. Ontario’s economy as a whole will not be
sustainable without a secure and affordable source of energy (RWE, 2006). Cutrently,
Ontario is able to meet their domestic electricity demand on their own; however, it has been
projected that Ontario faces a looming electricity supply shortfall in the years ahead as coal-
fired plants are taken out of service and existing nuclear plants approach the end of their
planned operating lives. Current projections suggest that, without new supply and substantial
consetvation efforts, Ontario could have insufficient power to meet its peak requirements by
2006. By 2014, the province would have only half the generation capacity it needs to ensure
adequate and teliable electricity service (IESO, 2000).

The Independent Electricity System Operators (IESO) medium growth projection shows
that annual peak demand will rise to almost 27,000 MW in 2013. Including teserve
requirements for the same time span, the figures rise from 28,000 MW to over 30,000MW
(IESO, 2006a). At the same pace of growth, peak demand would reach 32,000 MW in 2020
and, with required resetves; Ontario would require nearly 37,000 MW of capacity as shown
in Figure 1-1. The IMO is responsible for the administration of the matket rules' and

procedures and for the development of amendments and replacements to each.

In recent years, energy consumption and the associated Greenhouse Gas (GHG) emissions
and their potential effects on the global climate change have been of wotldwide concern.

Climate change and global warming has been the subject of intensive investigation

1 The IESO uses 2 consultative process to develop amendments to the Market Rules. Any individual with an
interest in the operation of the electricity market can request an amendment to the Market Rules or comment

on a rule amendment under consideration.



provincially, nationally, and internationally for a number of years. While the complexity o
the global climate change remains difficult to predict, one must attempt to develop a systen
to measure the amount of GHG released into the environment. Thus, for this reason it 1

mmportant to have an accurate method to look at the true impact of GHG on the earth.
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Figure 1-1: Ontario supply and demand projections (IESO, 2006)
1.2 Environmental Concerns of Pollution and GHG

Throughout history, out civilization has been using energy from its earliest, most basic form
to its technologically advanced state. Prior to the industrial revolution, the sun was the mai
source for heat. However, solar energy could not always be used for the production of hea
due to its restriction of use duting the day, therefore, organic matter available on a renewabl
basis was used (agricultural crops, and wastes, animal wastes, etc.) in order to generate heat
Animal and wind power wete also used as means to produce energy for transportatior
where water was used to operate simple machines. However, after the industrial revolutior
the release of massive clouds of smoke and soot from factories burning coal as a means t
generate power created the beginning era of GHG emissions. As the pollution continuec
mankind did not realize the seriousness of the matter in hand until 1911, when 1,15
Londoners died from respiratory problems due to the smog in the air. It was not until th
early 80’s that scientists started to notice that both the air and the ozone layer were changing

This change was the result of the use of chemicals and other pollutants such 2



chlorofluorocarbons (CFC’s) throughout the years. Consequently, these pollutants were
destroying the ozone layer and contaminating the air. Figure 1-2 shows the global
greenhouse gas emissions distribution for 1999 (UNFCCC, 1999).

GHG Emissions in 1999 - Worldwide
In millions of tons (% of total GHG emissions)

United States
5,666 (26%)

Rest of the World
7,734 (34%)

European Union
3,308 (14%)

/_Canada
726 (2%)

Russia \ Japan
1,430 (6%) 1,233 (5%)

China
3,051 (13%)

Figure 1-2: GHG emissions in 1999 - worldwide
1.3 Kjyoto Protocol

The recent climate changes and future damage predictions, as well as the constant increase
of demand of électricity in Ontario, whether they are conservative or extreme, have served
to capture the awareness of the seriousness of our current lifestyle. Climate change is a
global concern and it requires a global response. Global warming is arguably the single
greatest environmental challenge facing the world today. Due to the scope of the concern,
the response must be shared between the federal, provincial, and municipal levels of
government - creating an even economic commitment to environmental technologies. This
is the initiative behind the Kyoto Protocol - an agreement that does not sacrifice the
competitiveness of any particular country. Negotiated in 1997 and signed by 180 countries,

the Kyoto Protocol is an international agreement addressing climate change produced by the



rising concentration of atmospheric greenhouse gases (GHG). Much of the world
population live and work in cities that are built on an economic and social network which
depend on day-to-day energy production and consumption. It would be unrealistic to
propose a tesponse that stopped our consumption, so the reaction must be technical in

nature and aimed at reducing consumption or increasing efficiency.

1.3.1 Protocol Requirements

The Kyoto Protocol is an international agreement negotiated in Kyoto, Japan during the
1997 environmental summit. It is a product of a decade of international negotiations starting
with the United Nations Framework Convention on Climate Change (UNFCCC) negotiated
during the earth summit in Rio de Janeiro in 1992 (UNFCCC, 1999). The Kyoto protocol is
a subset to the UNFCCC that seeks to apply a binding international agreement for GHG
reduction. Under the Kyoto Protocol, developed countries are committed to collectively
reduce greenhouse gas emissions by 5.2% below 1990 levels by the period 2008-2012. The
federal government decided to ratify the accord i 2003, and as a result, Canada’s share of

this burden will be by 6% (CME, 2003).

1.3.2 Protocol Aims

Although the protocol deals with environmental issues, it is not directly concerned with air
or water quality. Instead, its main target is to reduce six specific greenhouse gases to curb the
global warming trend. The six gases are carbon dioxide (CO,), nitrous oxide (N,O), methane
(CH,), sulfur hexafluoride (SF), hydrofluorocarbons (HFCs), and perfluorocarbons (PFCs).
Although there is some uncertainty among scientists as to the extent of the human
contribution to global warming; it is clear that the greenhouse gas concentrations have risen
sharply since the industrial revolution. Ice core samples indicate that the level of atmospheric
CO, has risen by 30% since the start of the 19" century. Unless there is a reduction in our
dependence on fossil fuel as the prime source of energy production, the small changes in

overall climate temperatures could dramatically influence global weather patterns.

1.3.3 Current International Response

Currently 97 countries have ratified the Kyoto accord. However, the participating parties
only account for 37.4% of the global greenhouse gas emissions (KPT, 2003). Canada

represents 2% of the global greenhouse gases produced. This may not seem like a large



contribution, but when we consider our relatively small population, 2% is substantial. In fact,
Canadians are the 3rd largest producers of greenhouse gases petr capita. One of the most
influential parties currently onboard the Kyoto movement is the European Union. In some
ways, Burope is the ideal test case because it involves a number of countties all committing
to the same goal, creating an even playing field for economic stability. Canada’s ratification
did further increase the credibility of the accord, howevet, it failed to put political pressure to
our closest trading partner, the United States. The US accounts for 26% of the global
greenhouse gas production that is by far the largest globally (UNFCCC, 1999). In 2003, the
US government decided to pull out of the agreement over fears of severe economic
repercussions. Many worried that because Canada has close economic ties to our southerly
neighbours, ratifying the accord will push industry south to escape the stricter environmental
regulations. However, this does not account for the fact that many states already have GHG
emission regulations in place. However, the current government has decided that it will not

be able to meet the terms of the Kyoto protocol in the near future.

1.4 Canadian Proposal

1.4.1 Actual GHG Reduction

Although the requirement of a 6% reduction of greenhouse gas emissions may seem small,
recall that the baseline year is 1990. Estimates by the government indicate that the emission
levels were 13.5% higher in 2000 than in 1990. Given current trends, the actual reduction

necessary will be 33% above 1990 levels by 2010 as shown in Figure 1-3 (Wojczynsk, 2002).
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Figure 1-3: Actual GHG Reduction (Wojczynsk, 2002)

Canada is a sprawling country with a low population density, making the average commuter
highly vehicle dependent. In addition, our cold climate forces us to consume a lot of energy
in heating alone. These two facts, along with the required Kyoto reductions, make meeting

the requirements a significant national challenge.

1.4.2 Draft Plan

In 2003 the Canadian government released a climate change draft plan addressing the
necessary reduction in the form of a three-step process. Referring to Table 1-1 (GOC, 2002),
the breakdown of each step proposed provides a GHG reduction goal in mega tonnes (MT)
for a total reduction of 240 MT by 2010.



Table 1-1: Three Steps Draft Plan (GOC, 2002)

Overview of the Three Steps

Btep I: Step i: Actions | Srep Hi: Options
Actions 1o date | in this Step for the Remainder
Canadians and Government Action 15 MY 15-20 M7
Transportation and buildings
Industrial Emitters 25 MT SSNMT
Other Industrial Emissions: 1587
Technology. infrastructure and About
afficiency gains 60 MY
{See page 18)
Agriculture, Forestry and 40 MT Offsets’
Municipalities
Internationat Market min 10 MT
TOTAL About 80 MY About 100 MT

* Estimated at 20 to 28 MT

Since 1998, the federal government has allocated $1.6 billion for climate change programs.
These iitiatives are considered to be the first step and are expected to account for a 50 MT
GHG reduction. An additional 30 MT will be credited to carbon sinks such as forestry and
agriculture locations. Step two involves a 100 MT reduction of greenhouse gases through a
number of ateas of action. A large portion of these reductions is expected to come from
large industrial emitters. The draft plan does not give many specifics concerning the final 60
MT allocated to the third step. This final reduction will be a result of decisions and policies
made in the future and will likely be left open until new technologies become available

(GOC, 2002).

Between 1990 and 2002 secondary energy use in Canada increased 18 percent, resulting in an
18 percent increase in greenhouse gas (GHG) emissions (NRCan, 2004). In addition, energy
use in the building sector rose by 30 percent, resulting in a 35 percent increase in GHG
emissions (NRCan, 2004). The current trends will only make it harder for Canada to reach
its goal to reduce emissions unless conservation strategies and implementation of renewable
energy technologies are employed. In recent yeats, energy consumption and the assoctated
GHG emissions and their potential effects on the global climate change have been of
wotldwide concern. While the complexity of the global climate change remains difficult to
predict, it has been observed that there is a relationship between time of use of electricity
and GHG emissions (MacCracken, 2006). Thus, it is necessary to develop an accurate

method to predict the amount of GHGs released into the environment.




Solar energy is a renewable resoutce that is environmentally friendly. Unlike fossil fuels, solat
energy is available just about everywhere on earth. Solar energy is also free, immune to rising
energy prices and can be used in many ways such as: providing heat, lighting, mechanical

power and electricity.

Photovoltaic technology has experienced a phenomenal 20% annual growth rate during the
past decade. In a photovoltaic system, sunlight is converted to electricity using photovoltaic
or solar cells. Photovoltaic (PV) cells are semiconductor devices, usually made of silicon,
which contain no liquids, corrosive chemicals or moving parts. Sun waves ate absorbed by a
PV cell and as a result excitation of the electrons within the material begins. Figure 1-4

shows a PV system installation on a house.

inverter
ACIDC

Figure 1-4: Photovoltaic system house installation (Sunpowered, 2007)

The excited electrons create a potential, in the form of electricity which is captured by wires
connected to the PV cells. The wires transmit the electricity to the load of a home through
an inverter. The inverter converts direct current (DC) from the PV cells to alternating
current (AC) for the purpose of supplying electricity to appliances in a house. Solar cells
require little maintenance, they do not pollute and operate silently, making PV energy the

cleanest and safest method of power generation.



1.5 Objective

1.5.1 Emission Factors

In recent years, energy consumption and associated Greenhouse Gas (GHG) emissions and
their potential effects on the global climate change have been increasing steadily. Climate
change and global warming has been the subject of intensive investigation provincially,
nationally, and internationally for a number of years. While the complexity of the global
climate change remains difficult to predict, one must attempt to develop a system to measure
the amount of GHG released into the environment. Thus, the purpose of this thesis is to
develop a better method to estimate the true GHG emission reduction potential from
renewable technologies. The research proposed in this thesis will help to achieve the goals
set out by the Kyoto Protocol - reducing fuel consumption and related GHG emissions,
promoting decentralization of electricity supply, and encouraging the use of renewable

energy technologies.

There are several methods in estimating emission factors from facilities: direct measurement,
mass balance, and engineering estimates. Direct measurement involves continuous emission
monitoring throughout a given petiod. Mass balance methods involve the application of
conservation equations to a facility, process, or piece of equipment. Emissions are
determined from input/output differences as well as from the accumulation and depletion of
substances. The engineering method involves the use of engineering principles and
knowledge of chemical and physical processes (EnvCan, 2007). In Guler (2000) the method
used to estimate emission factors considers only the total amount of fuel and electricity
produced from power plants. This method does not take into consideration the offset
cyclical relationship, daily and yearly, between electricity generated by renewable
technologies. It should be noted that none of the methods mentioned above include

seasonal/daily adjustments to annual emission factors.

Specifically, the proposed research would include analyzing existing methods in calculating
emission factors and attempt to estimate new emission factors based on the hourly electricity
demand for the Province of Ontario. The hourly data would be divided into six categories

technologies: nuclear, coal, hydro, imported, exported and other (includes natural gas, oil,
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and wood waste). In addition, in order to determine the emission factors for the years 2004,
2005, and 2006 an in-depth analysis of the electricity supply and demand for Ontario for

those years would have to be conducted.

1.5.2 Neural Networks

Another aspect of this thesis would be to develop a Neural Network (NN) model using
external variables that can estimate the electricity demand in Ontatio using 2005 data. In
addition, several NN models would be created in order to predict what percentage of
Ontario’s enetgy mix is produced by each source (nuclear, hydro, etc.) using houtly

electricity demand values for 2005.

There is a relationship between the electricity produced by a photovoltaic (PV) system and
the availability of solar energy. These changes occur throughout the period of a day, and
throughout the period of one year. Due to the divergence between when electricity can be
generated via PV cells, and when it is required, there are several undetermined factors such
as the economic savings attached to the use of a PV system. First, during times of low
electricity demand and high solar availability, the excess electricity generated from the PV
cell would be primarily used to generate income. The government of Ontario has offered to
pay residents 42 cents/kWh for PV generated electricity, the excess electricity from PV
would be used to help create income for the residents as well as reducing the load of
electricity supplied by Ontario generators. Consequently, the purpose of this section would
be to determine the economic potential for Ontario residents by selling electricity to the
government via PV cells. Moreover, a NN model would be created in order to predict the
hourly price for electricity that Ontario residents would pay based on environmental factors

and time of use data.

Once the emission factor and economic analysis has been conducted several simulations
would be run. Employing the model of the representative Canadian house from the
Canadian Center for Housing Technology (CCHT) m conjunction with the PV model, CO,
reduction potential and economic analyses would be performed. Utilizing the CCHT model,

a comprehensive residential model that details the energy consumption in an average newly
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constructed energy efficient (R-2000) Canadian house, would provide valuable data on the

benefits and applicability of this system across Canada.

The purpose of this report will be to perform an hour-by-hour analysis of the electricity

supply and demand and its associated emissions in Ontario for 2004, 2005 and 2006. In

addition, several NN models will be developed in order to predict houtly information

needed to demonstrate the true reduction potential of renewable and other new emerging

technologies. The analysis performed in this thesis is based on hour-by-hour data acquired

from the IESO, as well as simulation results from ESP-t for electricity produced by micro-

wind and PV installed in the different house archetypes. The objectives of this study are as

follows:

To develop potential ways in better estimating the true GHG emission reduction
potentials with sustainable integrated building energy systems.

To evaluate hourly electricity supply and demand from Ontatio for the years of 2004,
2005, and 2006.

To develop different GHG emission factors in order to represent the true potential
for CO, reduction using renewable energy technologies.

To analyze the economic and GHG reduction potential from ESP-r simulations
from photovoltaic and micro-wind turbine technologies using different house
archetypes.

To determine the envitonmental impact of PV and micro-wind by using the different
GHG emission factors. Analyses on the GHG emissions will be conducted and
conclusions drawn about the environmental impacts using different GHG emission
factors.

To determine the economic feasibility of PV and micro-wind in Ontario by using
both wholesale price and government incentive of 42 cents/kWh for electricity. The
GHG reduction potential from these technologies will be examined by employing a
test-case model house for Toronto and Ottawa.

To develop Neural Network models for the prediction of the hour-by-hour
electricity demand, associated greenhouse gases, and percent mix from the different

generating technologies for the Province of Ontatio.
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2 Literature Review
2.1 Electricity Sector in Ontatio

2.1.1  Electricity Market

Ontario’s population has 12.5 million Canadians making it the country’s most populous
province and largest provincial economy (Statcan, 2006). The Ontario electricity system is
one of the largest in North America accounting for 28% of the total electricity consumed in

Canada, which is second only to Quebec’s 35% share.

In Canada, most policy decisions in the electricity sector are under the jurisdiction of the
provinces. The Ontario government’s Ministty of Energy (MOE) oversees the electricity
system in Ontario by employing institutional levers to carry out its objectives. Before 1998,
the government owned and operated the utility, Ontario Hydro (OH). Howevet, in 1998, the
Ontario Electricity Act reorganized the electricity sector. Ontario Hydro was divided into
three parts. Ontario Power Generation (OPG) became a crown corporation tesponsible for
generating and operating plants. Hydro One became a commercial entity responsible for
transmitting and distributing electricity, and the Independent Electricity System Operator
(IESO), which became a non-profit organization responsible for controlling the electricity

market, as well as producing electricity demand forecasts.

2.1.2  Dispatching Mechanisms

Before 1998, the electricity purchased by the end-user came from a distributor, such as
Toronto Hydro, and generator, such as Ontario Hydro. Any additional electricity was
purchased by OH from other utilities. After 1998, the electricity market has become a little
bit more complicated. As a consumer, the electricity is distributed the same way as before;
however, the generator might not be the same, and therefore, the IESO i1s responsible for

operating the market and dealing with settlement issues.

In the new market, the IESO directs the physical flow of all electricity in the province by

balancing demand with supply. This is accomplished by operating as a wholesale electricity
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“spot” market. In the spot market, the IESO collects offers from suppliers and bids from
purchasers and through a coordinated auction, settlements based on market clearing prices

are determined.

The wholesale price is determined by a bidding process that is driven by supply and demand.
Offers from generators in Ontatio and other jurisdictions that are connected to the Ontario
gtid are ranked for each hour of the day from the cheapest to the most expensive. A “market
clearing price” is determined for each house which reflects the offer of the last generator
accepted (i.e., the price of the highest offer that is accepted), regardless of their original bid.
The market clearing price is used to determine the Hourly Ontario Energy Price (HOEP)
(see Figure 2-1), which is the hourly price that is charged to local distributing companies and
other non-dispatchable loads. The HOEP is calculated by averaging the price set every five
minutes in a particular hour IESO, 20062)

Hourly Ontario Energy Price ¢/kWh Pre-dispatch Actual

84

1 )
3 6 9 12 15 18 21
Thursday August 23 2007

Figure 2-1: Electricity price for a typical summer day (IESO, 2007)

The wholesale price fluctuates throughout the day to reflect incremental chgnges m demand
and supply. In petiods of increased demand (on-peak), higher rates must b\e\‘accepted from
generators. Conversely, in periods of decreased demand, the price of electricity degreases,
thus more expensive generators are not required. In the short term, demand is affected by
several variables such as seasonal variations and time-of-day consumption patterns (IESO,
2006). The IESO must compensate for seasonal variations, and thus a reserve of electricity
must be present at all times. The IESO must have sufficient 10 minute operating reserve to

cover the largest single contingency. If the largest generator on the grid 1s 750 MW, there
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must be 750 MW of operating reserve whose energy can be made available within 10
minutes of the loss of that unit to restore the supply/demand balance. Normally, 25% of
this ten-minute capacity must be spinning or synchronized. Spinning operating reserve is
generation that is already synchronized to the grid. This spinning reserve helps reduce the
impact of the contingency on system frequency before any of the energy associated with the
operating reserve is activated. Only generatots can provide ten-minute spinning reserve. The
IESO must also maintain 30 minute operating reserve over and above the ten-minute
requirement. There must be sufficient thirty-minute reserve to cover one-half of the second
largest single contingency on the IESO-controlled grid. Dispatchable loads/generators,
imports and exports can be used to satisfy 30 minute operating reserve requirements.
Typically, this results in an operating resetve requirement of approximately 1,400 MW with
the largest and second largest single contingency being a Darlington nuclear unit (which is

approximately ~900 MW).
2.2 Emissions in Canada

In 2004, the electricity generation sector contributed 17% (130 Mt) of CO, equivalent of
Canada’s total GHG emissions for 2004 as shown in Table 2-1. In addition, GHG reporting
in Ontario is done mostly by Ontario Power Generation since it owns and operates most of
the electricity generating facilities. Thus it should be noted that Ontario Power Generation’s
GHG emission factors only include CO,, SO,, and NO due to the negligible contribution
from CH, and N,O (OPG, 2004).

Table 2-1: GHG Trends in the Electricity Generation Sector, 1990 — 2004, Mt CO, eq

Sector 1990 1199111992 1 1993 ;1994 1 1995 11996 { 1997 1998 : 1999 1 2000 ; 2001 ; 2002 : 2003 2004

Electricity Generation! {94.6 1 96 {1102 1933 9541997 19861 110 | 122 { 120 | 131 | 132 ; 128 | 138 | 128

Source: Canada’s Greenhouse Gas Inventory 1990 — 2004, (EnvCan, 2004)

Between 1990 and 2004, emissions from the electricity generation sector increased by almost
22% of the total emissions growth. The electricity generation sector has increased more than

any other category in the national inventory. Overall, emissions increased 37% since 1990

(EnvCan, 2004).
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2.3 Tradittonal Ways to Estimate Pollutant and GHG Emissions from the
Building and Electricity Generation Sectors

One of the objectives of this thesis is to estimate GHG emission factors from the electricity
generation sector. There are different methods to estimate GHG emissions. Direct
measurement is typically the most accurate method that can be used. Normally, these data
are not readily available and, historically, the majortity of GHG emissions from fossil fuel and
process-related activities have been estimated. Estimation is the method used by many
countries when preparing their national GHG inventories (IPCC, 1997). Guler (2000)
calculated the amount of GHG emissions from the electricity generation by using the
Average GHG Intensity Factor (GHGIF,), which assumes that the reduction in electricity
consumption is uniformly distributed amongst all types of electricity generation. GHGIF, is
the amount of GHG emissions produced as a result of generating one kWh of electricity.
The GHGIF, in 1993 for the Province of Ontatio was estimated to be 136 g/kWh using the

methodology mentioned above.

In Canada, electricity is primarily produced from three sources: fossil, nuclear, and hydro.
Recently, there has been a small addition to the mix from alternative power generation

(wind).

The combustion of fossil fuels produces several major greenhouse gases: catbon dioxide
(CO,), methane (CH,), sulphide dioxide (SO,), nitrogen oxide (NO), nitrous oxide (N,0),
etc. The amount of emissions from CO,, CH,, SO,, NO, and N,O varies from one fuel to
another, and they ate calculated using emission factors. Emission factors are commonly

expressed in tons of CO, per MWh or grams per kWh of electricity produced.
2.4 Identification of Potential Problems in Estimating Pollutant and GHG
Emissions from the Building and Electricity Generation Sectots

Butt et al. (2006) stated that the simplest way to reduce emissions is through modifying
behaviour. Awareness programmes, especially those supported with information on current

energy usage, are very effective at reducing electricity demand which help reduce emissions.
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Time of use of electricity is strongly related to emissions since they both vary throughout the
day (MacCracken, 2006). Therefore, before these programmes can be implemented, it is
necessary to develop a better method to accurately estimate GHG emissions from fossil

plants.

Ontario has a unique mix of electricity producing technologies. Generally, hydro and nuclear
are considered to be base load power (IESO, 2006), because they are operated at constant
load all the time. Fluctuations in electricity demand are generally handled by fossil fuel fired
(FFF) plants. As a result, it can be argued that the GHGIF, calculated using the
methodology in the previous section would result in estimates of GHG emission reductions
based on the generation mix for the Province of Ontatio, which comes from different
sources (nuclear, hydro, coal, and other). In order to replace fossil plants completely, a
different emission factor has to be used instead of the GHGIF,. In response to this, a
second GHG intensity factor (GHGIF,) was developed by Guler (2000), in which the
GHGIF was calculated by dividing the net FFF plant electricity production, transmission
and distribution losses by the total equivalent CO, emissions. The GHGIF,, calculated for
the Province of Ontario was 903.7 t/GWh in 1993 (Guler, 2000). The latter emission factor
assumes that all of the electricity consumed by a residence comes from fossil, which could
be used if trying to replace fossil plants with renewable technologies. Both of these methods
neglect to show changes in emission factors throughout the day. It should be noted that

GHGIF, estimates would reflect Ontario’s electricity supply mix.

2.5 Potential Ways of Better Estimating the True GHG Emission Reduction
Potentials with Sustainable Integrated Building Energy Systems

Renewable technologies are used to generate electricity and heat from renewable energy
sources such as the sun, rivers, wind, and the earth’s core temperatures. When sunlight hits a
photovoltaic cell, electricity is produced. Similarly, when wind flows through a turbine, it
provides rotational energy which in turn produces electricity through a generator. There are
many advantages in using solar and wind energy. Some of these are: a free energy source, an
abundant amount of energy, and an effective method in reducing GHG emissions. However,

the electricity produced by a renewable technology, such as a photovoltaic (PV), or micro-
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wind turbine and the availability of solar and wind energy, changes throughout the period of
a day. Due to the divergence between when electricity can be generated and when it is
required, an hourly GHG emission analysis is needed to truly understand the impact that

renewable technologies have on emissions.

Technologies for incorporating renewable energy into the residential area include,
photovoltaic, micro-wind turbines, ground source heat pumps, and advance solar thermal
technologies. These technologies are continuously being improved and are responsible for
the emergence of hybrid homes. By combining renewable energy sources with
complementing residential technologies, further end-use energy savings and emission
reductions can be obtained. However, before employing a renewable energy technology, a
better estimation of the true GHG emission factors must be developed in order to get a

clear picture of the saving potentials for the various renewable energy technologies.

Currently, the most common method used by Environment Canada to estimate emissions is
based on fuel consumption calculations from the electricity sector. This method can be too
simplistic, time-consuming and errors may occur because of the many unit conversions that
are required, as well as the difficulty in obtaining certain types of data. Fuel based methods
only estimate an annual average and do not reflect the cyclic behaviour of emission factors
throughout the day. MacCracken (2006) introduced a time dependent valuation (TDV)
model for electricity and, in October 2005, TDV was adopted by the California energy
efficiency standards for residential and non-residential buildings. TDV views energy demand
differently depending on the time of use (MacCracken, 2006). In MacCracken (20006), it is
shown that California has devised a means to determine the societal impacts on when energy
is consumed. As a result, this method of analysis would allow for a more accurate

representation of the potential reduction of GHGs by using renewable technologies.

2.6 Forecasting Methods

There is an immediate demand for precision in load forecasting. Electricity-supply planning
is a crucial component in energy management, where decisions concerning additional
capacity must be precise. Demand prediction is an important aspect in the development of

any model for electricity planning. Long-term forecasts address future capacity and short-
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term forecasts ate required for the control and scheduling of electricity supply. Predictions
are required as inputs to scheduling algorithms for the generation and transmission of
electricity. Short-term forecasts, in particular, have become increasingly important since the
rise of competitive energy markets. Many countties have recently privatised and deregulated
their power systems, and electricity has been turned into a commodity. Forecasting can help
determine which devices to operate in a given period, so as to minimize costs and secure
demand. In short-term modeling, the load is mainly influenced by weather conditions,
seasonal effects (daily and weekly cycles, holidays) and special events. Weather related
variation is certainly critical in predicting the electricity demand for lead times beyond a day-
ahead (Chow and Leung, 1996; Taylor and Buizza, 2003). Many researchers have considered
the forecasting of electricity demand using a variety of modeling techniques. Some of these
methods range from manual methods which rely on operator experience (Lonergan and
Ringwood, 1995) to mathematical approaches, such as structural techniques (Bruce et al.,
1994), multiple regression (Perry, 1999), exponential smoothing (Christiaanse, 1971), time
series (Arnjady, 2001), and intelligent methods, such as neural networks (Patk et al., 1991). A
review of these methods was conducted by Alfares and Nazeeruddin (1999) and it was
concluded that new load forecasting methods based on neural networks have been the most
active. Over the past few years, neural network modeling has been proposed as a substitute
for statistical approaches for forecasting. The comparison of the results from NNs and

statistical approaches indicates that neural networks offer an accurate alternative to classical

methods (Feuston and Thurtell, 1994 and Alfuhaid et al., 1997).
2.7 Review of Neural Network Modeling

In this section, a brief background of neural network modeling is presented and followed by

a literature review on the use of NN in load forecasting.

2.7.1 Background

A neural network (NN), also commonly referred to as an artificial neural network, is an
information-processing model densely interconnected and with a parallel structure to that of
the human brain. In other words, NNs are simplified mathematical models mimicking
biological neural networks. A neural network is an information processing system composed

of a large number of highly interconnected processing elements that are analogous to
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neurons, and tied together with weighted connections that are analogous to synapses. Neural
networks are capable of finding internal representations of interrelations within raw data.
The key element of NN is that they learn by example and not by following programming
rules. This typical characteristic, together with the simplicity of building and training NN,
has encouraged their application to the task of prediction. Because of their inherent non-
linearity, neural networks are able to identify complex interactions between independent
variables without the need for complex functional models to describe the relationships

between dependent and independent variables as stated in Alfuhaid et al. (1997).

2.7.2 Neural Networks in Energy Modeling

Neural networks have been widely used in electricity load forecasting. There are many papers
in the literature on the application of NN for utility forecasting. It is clear that NN modeling
has a superior capability over conventional methods (such as regression analysis). One of the
first team of researchers to use NN for load forecasting was Park et al. (1991). The authors
used a multi-layer NN model to forecast the electrical load in the Seattle area. The NN
model could predict 1-hour and 24 hours ahead of time with 2% and 4% absolute error
respectively. Using electricity load and environmental factors, their NN model could predict
the future load with an absolute error of approximately 2% for 1 hour intervals. Lee and
Park (1992) proposéd a non-linear model and several NN structures which included past
load data. Lee and Park demonstrated that the NN model could forecast loads for a given
day with accepted accuracy. Kiartzis et al. (1995) also used a multi-layer NN model that
could forecast the next 24-hour load profile on an hourly basis with an average absolute
error of 2.66%. The authors concluded that incorporation of additional weather information

such as humidity, rainfall, etc., would improve predicting performance.

Ho et al. (1992) also used a multilayer NN model to predict electricity demand with a new
adaptive learning algorithm. The momentum’ in this learning algorithm automatically
adapted in the training process. Stinivasan et al. (1991) used an NN model based on back
propagation for load forecasting and showed superiority to traditional methods. Asar and

Mcdonald (1994) trained a variety of NNs and demonstrated via examples the learning

2 the momentum amplifies the learning rate causing a faster convergence
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ability of a neural net to predict half-hourly and daily peak loads in England and Wales. The
authors used actual load data from a power utility and trained the NN using a back

propagation algorithm and obtained an avetage absolute error of 1.96%.

As this literature review indicates, neural network modeling has been widely used for load
forecasting. Different NN models and architectures have been studied. However, NNs have
not yet been used to model Ontario’s houtly electricity demand and percent output by

source.

2.7.3 Overview of the NN Model

Neural networks use simple processing units, called neurons, to combine data, and store
relationships between dependent and independent variables. The NN model consists of
several layers of neurons that are connected to each other. This connection is referred to the

information transport link from one sending to one receiving neuron.

A widely used NN model called the multi-layer perceptron (MLP) NN is shown in Figure
2-2. This type of NN consists of one input layer, one or more hidden layers, and one output
layer. Each layer has several neurons, and each neuron in a layer is interconnected to the

neurons in the adjacent layer with different weights.

Signals enter the input layer, which can have several inputs (independent variables), pass
through the hidden layer(s), and arrive at the output layer (dependent varable) as shown in
Figure 2-2. It should be noted that with the exception of the input layer, each neuron
receives signals from the neurons of the previous layer. The incoming signals (x3) are
multiplied by the weights (#) and summed up with the bias (4) contribution (Anstett and
Kreider, 1993).

The output of a neuron is evaluated by applying an activation function to the total input (#ez)
calculated using Equation 2.1. The output of a neuron is determined by applying an
activation function to the total input (vef). The bias (4) has the effect of increasing or

decreasing the total input to the activation function, depending on whether it has a positive
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or negative value, respectively, and can be evaluated similar to the intercept term in a linear

regression model.

Where,

Input Layer Hidden Layer Output Layer

Figure 2-2: Architectural graph of a MLP with one hidden layer

net; = Zx,.vij +b, [2.1]
i=1

net; = total input of the hidden layer neuron
x, = input to the hidden layer neuron j from input layet neuron i
v, = weight between the input layer neuron i and hidden layer neuron j

b, = bias of the hidden layer neuron j

» = number of neurons in the input layer
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In order to develop a NN two things are needed: input data and output data. The input data

consists of independent variables and the output data consists of dependent variables

Equation 2.2 shows the relationship between dependent and independent variables:

v, =cl(x)) +c2(x,) +c3(x,) + cd(x,) +... [2.2]

Where,

y; = dependent variable
X, ,X,,%;,X, = independent variables

cl, ¢2, c3, c4 = coefficients

Since the number of input and output units are decided based on the available data and the
desired output, respectively, only the number of units in the hidden layer(s) is left to be
determined. However, there are no rules to establish the number of hidden layers and the

number of neurons for each hidden layer for a particular application as stated in Anslett and

Kreider (1993).

Once the architecture type has been determined the training of the Neural Network can
begin by selecting the appropriate activation function. There are several training functions
each with its own mathematical characteristic such as quick propagation, quasi-Newton, back
propagation, etc., these, as well as assessing the prediction performance of neural networks

are presented in Appendix A
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3  Electricity Demand and GHG Emission Factors

3.1 Houtly Electricity Demand and Percentage Share of Supply from

Different Generation Mix

The total supply and demand of electricity in Ontatio was estimated for the years 2004, 2005
and 2006 by dividing the hour-by-hour data obtained from the IESO into the categories
mentioned in section 3.2. These data were compared to published values by the following
companies:

¢ Ontario Power Generation (nuclear, coal, hydro, gas and oil)

¢ Bruce Power (nuclear)

¢ Other Power Companies (TransCanada Energy Limited, Great Lakes Power Limited,

etc.)

The total electricity demand, as well as the percentage share of supply from the different

generating technologies was calculated and tabulated in graphs.

The hourly data from the IESO for 2004, 2005, and 2006 wete analyzed and divided into
seasonal periods (wintet, spring, summer, and fall) in order to determine their inherent
characteristics, thus focusing on houtly trends of the supply and demand of electricity for

Ontario.

3.2 Electricity Generation Technologies and their Fuel and Emission

Characteristics

Electricity generation in Ontatio comes from three major sources: nuclear, coal, and hydro.
Nuclear and hydro are generally considered to be base load power, because they are operated
at constant power. However, coal plants are generally used when there are fluctuations in
electricity demand. Nuclear plants produce very little CO, from non-reactor processes and
from the transportation of materials within the plant. On the other hand, fossil fuels fired
(FFF) plants produce large amounts of pollutants and are the major contributors of CO, in

the electricity generation sector. Conversely, hydro produces zero air pollutants.
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The data obtained from the IESO was divided into the following categories:
e Nuclear
e Coal
e Hydro
e Other (natural gas, oil, and wood waste)
¢ Wind (only for 2006)

e Imported and exported

3.3 Data Classification for Estimating Houtly Pollutant and GHG Emissions

from Power Generation

The hour-by-hour supply and demand of electricity data for Ontario used in this thesis was
obtained from the Independent Electricity System Operators (IESO). The IESO is
responsible for operating the wholesale electricity market and forecasting the demand as well
as ensuring that the supply of electricity is available to meet that demand. In other words, all

electricity producing companies in Ontario must repott to the IESO.

The use of hour-by-hour data helps to provide a more accurate picture of the true potential
of CO, reductions using renewable energy technologies such as photovoltaic, wind,
geothermal, etc. The scope of this thesis will be to look at the true estimate of CO,
emissions, as well as the electricity supply and demand markets for the years 2004, 2005 and

2006 for the Province of Ontario by using hour-by-hour data’.

3.4 Estimation of Houtly Pollutants and GHG Emission Factor per kWh of
Electricity Supplied

The amount of GHG emissions from the electricity generation sector was calculated using

the “Average GHG Intensity Factor” (GHGIF,) (Guler, 2000). The GHGIF, represents the

? Note: The IESO has not included the Lennox plant under the coal section. As a result, the Lennox plant was
removed from the OPG Sustainable report (OPG, 2006a) for the purpose of comparative analysis of
greenhouse gas intensity factors. Also, hourly data for natural gas and oil plants is classified as “other” by the
IESO
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amount of GHG emissions produced as a result of generating one kWh of electricity. The
GHGIF, in 1993 for the Province of Ontario was estimated to be 136 g CO,/kWh (Guler,
2000). The GHGIF, for 2004, 2005, and 2006 was estimated using the methodology

mentioned above in conjunction with the electricity output information (IESO, 2006a). It
should be noted that the emission factor for CO, does not take into consideration CH, and
N,O because Ontario Power Generation and Bruce Power do not show this data in their
sustainable reports mainly due to their negligible effect in comparison to CO,, SO,, and NO

(OPG, 2006).

The GHG emissions due to coal fired and natural gas plants were determined using

Equations 3.1, 3.2 and 3.3.

HCO, = (HECOAL) (i) + (HEOTHER) () [3.1]

HSO,= (HECOAL) (k) [3.2]

HNO = (HECOAL) (I) [3.3]
Where,

HCO, = Houtly CO, production (kg)

HSO, = Houtly SO, production (kg)

HNO = Houtly NO production (kg)

HECOAL = Hourly Electricity generated by Coal plants

HEOTHER = Houtly Electricity generated by Other (natural gas, etc.)
i= OPG CO, emission factor (1.001745 kg CO,/kWh for the year 2004) (OPG,

2004)
j = Environment Canada natural gas emission factor (0.447 kg CO,/kWh for the

year 2004) (Environment Canada (2005))
k = OPG SO, emission factor (0.00433 kg SO,/kWh for the year 2004) (OPG,
2004)
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= OPG NO emission factor (0.00096 kg NO/kWh for the year 2004) (OPG,
2004)

The new houtly greenhouse gas emission factors (NHGHGIF,) model was based on the
hour-by-hour demand of electricity in Ontario from the following sources: nuclear, fossil,
hydro, other (natural gas, etc) (IESO, 2006a). The estimation of the new hourly greenhouse
gas intensity factors NHGHGIF, was accomplished by dividing the hout-by-hour emissions
from CO, SO,, and NO by the hour-by-hour total electricity generated from the sources
mentioned above. Consequently the new greenhouse gas intensity factor (NGHGIF,) was
estimated by taking the average of the hourly emission factors for each season. The values
obtained for the NGHGIF, were compared to the GHGIF, values using the methodology

outlined in the literature.

The NGHGIF, was determined using Equatdons 3.4 and 3.5.

HCO,

NHGHGIF, = ——— [3.4]
HEGTOTAL
X NHGHGIF,,
NGHGIF, =) ———— 4 35
4 Z 8760 -]
Where,

NHGHGIF, = New Houtly Greenhouse Gas Intensity Factor {g CO, /kWh)
NGHGIF, = New Greenhouse Gas Intensity Factor (g CO, /kWh)

HCO, = Hourly CO, producton (g)
HEGTOTAL = Hourly Electricity Gencrated Total (kWh)

i = hour

The value obtained for the NGHGIF, was compared to the GHGIF from Environment

Canada (20006) for the vears 2004, 2005, and 2006.



3.5 Peak Day Analysis

A seasonal peak day analysis was performed for the years 2004, 2005, and 2006 in order to
demonstrate the variability of the emission factor and electricity demand in a 24 hour period.
In addition, a comparison of the peak days for the time petiod indicated above will help to
determine a trend for the shifting of electricity demand in Ontario which in turn is
associated with GHG emission factors. This will show a clear representation of the benefits
associated with the use of houtly data during peak hours in order to reflect the true potential

of GHG reduction by using renewable technologies.
3.6 Time Dependent Valuation Analysis (TDVA) for Greenhouse Gases

3.6.1 Introduction

Currently, there is no TDV profile for greenhouse gases for the Province of Ontatio in the
public domain. Hourly GHG emissions data based on provincial location are not readily
available, and it has been shown that emission factors vary with electricity demand
(MacCracken, 2006). In addition, the shape and magnitude of GHGIF profiles also vary with
factors such as time of day, time of year, geographical location, and climate. Due to the
inaccessibility to emission data from the power generating sector, rather than using one
GHGHIF value for the entire year, seasonal GHGIF profiles based on the electricity demand
for the Province of Ontario were developed. The approach detailed below was used in order
to provide a better method to propetly estimate greenhouse gases within the Province of

Ontario.

3.6.2 TDV GHGIF Profile Methodology

Hourly electricity consumption data from the IESO and hourly GHG emission factors
estimated in section 3.4 were used to determine Hourly Average NGHGIF profiles for the
years 2004, 2005, and 2006. These profiles were calculated using Equation 3.6 for each hour

in a day.

N
> NGHGIF ,(h;)

TDV NGHGIF, =+ 7 (3-6]

27

ARTWARERA N ABABMERAIICIL TACIICE B ALY
L TP P e Y T



Where,
IDV NGHGIF, = Time Dependent Valuation New Greenhouse Gas Intensity

Factor (g CO, /kWh)

N = number of days in the season
i = day number

J = hour number

The hourly averaged values obtained for the TDV NGHGIF, were compared for the yeats
2004, 2005, and 2006.

3.7 Time Dependent Valuation FEconomic Analysis (TDVEA) for

Greenhouse Gases

3.7.1 Introduction

Currently in the Province of Ontario there is no economic profile placing a value on
emissions in the power generation sector. Electricity costs do not account for seasonal or
time-of-use (TOU) patterns for emissions. Thus, it is necessary to develop a profile in order
to place a monetary value and quantify the effects of greenhouse gases for Ontatio. The
price Ontarians pay for energy and the cost of delivering energy is dependant on the time-of-
use and location. This section will attempt to develop a more accurate energy costing
analysis for time dependent valuation, which accounts for variations related to time of day,

season, and geography.

The use of TDV criteria would place a higher value on energy savings during peak cost times
and encourage more energy and cost efficient design and construction of buildings which as
a result would reduce peak demands on the energy system in Ontario. Over time, this would
lead to significant cost savings for both building owners and for the electricity supply and

demand system, along with improved reliability for utilities, customers and society.

3.7.2 Greenhouse Gas Cost Factor (GHGCF) Methodology

The development of hourly TDV factors for the cost of electricity includes several

components. The estimation included the generating price for electricity obtained from the
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IESO, which varies by time-of-use. Then the transmission and distribution costs (T&D)
were added and finally, an environmental component was applied, which reflected the cost

of emissions from fossil plants in Ontatio.

Using the electricity cost data and emission factors from the previous section the GHGCF

was calculated shown in the following sections.

3.7.2.1 Electricity Cost

The cost of electricity generation represents the minimum amount that society is willing to
pay. However, this cost does not include external costs associated with health and
environmental damages. The total costs of generation are sensitive to the methodology used
to estimate these additional costs. When these costs are included into the equation, the total
cost of fossil-fired generation rises dramatically. This additional cost will be shown in the
following sections. In the past the total cost of electricity was estimated by using a flat rate
pricing structure for Ontario, however, recently Ontario has adopted a time-of-use (TOU)
pricing scenario, assigning different prices depending on the time of day the electricity is
used (OEB, 2006) whete the final price is paid by the customer including delivery charges,
etc.. However, most provinces in Canada still use the flat rate pricing scheme with the
exception of Ontatio and Nova Scotia. In this thesis understanding how the pricing scheme

affects the emission cost is explored.

3.7.2.2  Flat Rate Electricity Cost Analysis
The flat rate electricity price for Ontario is $0.10/kWh (Toronto Hydro, 2006). To

determine the cost of electricity using the flat rate price, the number of kilowatt-hours (kWh)

is multiplied by the flat rate price of electricity according to Equation 3.7.

Cost, pu = P, flat (Demand ;) [3.7]

Where,

Cost,; 5, = cost of electricity using a flat rate electricity price (§)

P, 4. = flat rate price of electricity ($/kWh)
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Demand ;= electricity demand (kWh)

3.7.2.3 Time-of-Use Electricity Cost Analysis
The TOU scenario implemented in Ontatio on May 1, 2006 is detailed in Table 3-1, Table

3-2, and Table 3-3 showing the retail electricity prices for the winter, summer, and weekends.
It should be noted this is how much consumers pay for electricity and are different from
what the government pays generators for their electricity produced. This distinction will help
demonstrate that by having an emission cost factor added to the price of electricity for

consumers and generators will have different effects.

Table 3-1: Time-of-Use Pricing for Winter Months (OEB, 2006)

Table 3-2: Time-of-Use Pricing for Summer Months (OEB, 2006)

Table 3-3: Time-of-Use Pricing for Weekends (OEB, 2006)

The houtly price paid by the customers for electricity at each hour for the entire year is

defined in Equation 3.8.

Final
Hours Time Period Price
(8/kWh)

1-6 Off-Peak 0.077
7-10 On-Peak 0.147
11-16 Mid-Peak 0.117
17-19 On-Peak 0.147
20-21 Mid-Peak 0.117
22-24 Off-Peak 0.077

Final
Hours Time Period Price
($/kWh)
1-6 Off-Peak 0.077
7-10 Mid-Peak 0.117
11-16 On-Peak 0.147
17-21 Mid-Peak 0.117
22-24 Off-Peak 0.077

Final

Hours Time Period Price
($/kWh)

1-24 Off-Peak 0.077
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P, o0 = Opoy +T + D+ DRC + RPPAC + WMOC [3.8]

Where,
P, 7oy = Price of electricity using TOU pricing scheme ($/kWh)
Orpy = Ontario time-of-use electricity price (§/kWh)
T’ = Transmission charge (0.0102 $/kWh)
D = Distribution charge (0.0186 $/kWh)
DRC = Debt Retirement Charge (0.007 $/kWh)

RPPAC = Regulated Price Plan Administration Charge (0.00000347 $/kWh)
WMOC = Wholesale Matket Operation Charge (0.0062 $/kWh)

The price of electricity for customers and generators for the Province of Ontatio will be

used in order to estimate a monetary value for emissions.

3.7.2.4 Wholesale Electricity Price for Generatots

The wholesale electricity price that the government pays for electricity to generators varies
every hour throughout the day. For example, an electricity generator might received
anywhere between $0.04/kWh up to $1.6/kWh depending on when they ate providing the
electricity (i.e. duting peak times). Usually fossil plants receive a higher rate than nuclear due

to capacity limitations and fluctuations.

3.7.2.5 Emission Cost

The hourly emission cost was estimated using both the houtly retail price for electricity
estimated in section 3.7.2 and the hourly emission factors developed in section 3.4. There
were three emission cost factors determined in order to show the different impact on
customers and generators. The houtly emission costs for the different electricity pricing

schemes were estitnated using Equations 3.9, 3.10, and 3.11.
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3.7.25.1  TDV GHGCEF ustng flat rate pricing scheme

GHGCF, | —rm | = Lt 39
/| 2ofCO, | NHGHGIF,

Where,

GHGCF,, ;,= Greenhouse Gas Cost Factor for electricity using flat rate pricing

scheme

P, 4 = Price of electricity using flat rate pricing scheme ($/kWh)

NHGHGIF, = New Houtly Greenhouse Gas Intensity Factor (g of CO,/kWh)

3.7.25.2  TDV GHGCEF using TOU pricing scheme

$ — ])el ,TOU
gofCO, | NHGHGIF,

GHGCFE,_TOU[ [3.10]

Where,
GHGCF,, ;py = Greenhouse Gas Cost Factor using TOU pricing scheme (g of

CO,/kWh)
P, oy = Price of electricity using TOU pricing scheme ($/kWh)

NHGHGIF ;= New Houtly Greenhouse Gas Intensity Factor (g of CO,/kWh)

3.7.2.5.3  TDV GHGCF using wholesale pricing scheme

GHG CI:’el wholesale $ = HEP [31 l]
' gofCO, NHGHGIF,
Where,
GHGCF,, y01esae. = Greenhouse Gas Cost Factor using wholesale electricity pricing
scheme

HEP = Houtly Electricity Price paid to generators (§/kWh)
NHGHGIF, = New Hourly Greenhouse Gas Intensity Factor (g of CO,/kWh)

32




Similarly to section 3.6 the Houtly Average GHGCF profiles were determined for the years
2004, 2005, and 2006. The GHGCEF for either consumers ot generators should be included

in the electricity cost value in order to have a true representation of the impact of

greenhouse gases from the power generation sector in Ontatio.
3.8 ESP-r Simulations

3.8.1 Inttoduction

ESP-r 1s a building energy simulation software that can be used to perform highly complex
thermal analysis, HVAC analysis and electrical power flow simulations. In simple terms,
ESP-r attempts to simulate real world scenatios to a level that is consistent with current best
practices in the international building simulation community. The use of calculation methods
like ray tracing and computational fluid dynamics (CFD) make ESP-r useful for a wide range
of projects.

Simulations in ESP-r were run for the city of Toronto by Syed et al. (2007). This location is
the largest city for which weather files were available in ESP-r for the Province of Ontario. It
should be noted that thete are several smaller cities for which weather files are not available.
The simulation cities were chosen mainly due to houtly electricity data only available for the

Province of Ontario. The year of assessment for these cities was done for 2005.

3.8.2 Test Case House and Year of Assessment

Syed et al. (2007) performed simulations, using ESP-1, which included the use Photovoltaic
(PV) and micro-wind turbine energy systems on the computational model for the Canadian
Centre for Housing Technology (CCHT) tesearch house located in Ottawa. The CCHT
research house was built in 1998 based on R-2000 building standards. Identical twin houses
were built in order for one house to be used as a reference while the twin house is tested
with advance technologies to assess the energy petformance of novel energy systems and

materials (NRCan 2007).
The ESP-r model for the CCHT house is shown in Figure 3.1 and is composed of two

above-ground storeys and a fully conditioned basement. It has a conditioned floor area

(excluding the basement) of 240 m”
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Figure 3-1: ESP-r model for CCHT house

Three sets of simulations were analysed in this thesis:

Case Study 1: CCHT research house with both a 5 kW PV and a micto-wind turbine of 1 kW
obtained from Syed et al. (2007) for Toronto.

Case Study 2: CCHT research house with a 5 kW PV system for Ottawa for only one week in

the summer and one week in the winter for the year 2004 obtained from Good et al. (2006).

Case Study 3: The unit chosen was the end unit on the south east side of a townhouse
complex in Toronto. Simulations were conducted by Tse et al. (2008) in TRNSYS in order

to model the use of renewable technologies in a townhouse.

3.8.3 Economic Analysis of Building Integrated Renewable Technologies

3.8.3.1 Introduction

One of the objectives of this thesis was to estimate a New Greenhouse Gas Intensity Factor
based on the hout-by-hour demand of electricity in Ontario. The hourly data allows for a
better estimate of the true impact of the potential GHG reductions by using PV and micro-

wind turbine technologies. In addition, an economic analysis was performed to estimate the
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income produced by PV and hypothetical micro-wind turbine system with the recent

government initiative to pay 42 cents per kWh of electricity produced by PV systems.
3.8.3.2 Case Study Simulations

3.83.21  CaseStudy 1

A PV array of 5 kW and a micro-wind turbine of 1 kW capacities were installed in the house
and hourly annual simulations were run to assess the potential electricity contribution,
revenue generated, and GHG reduction due to these technologies. In addition, electricity
generated from PV and micro-wind during peak days was analysed using greenhouse gas

emission factors developed in the previous sections.

3.83.22 CaseStudy 2

The electricity produced by the PV system was obtained from Good et al. (2005). The
capacity of the PV system selected was 5 kW and the location selected for the simulation was
Ottawa. The simulation was performed during the weeks of January 9 — 15 (winter) and July
11 - 17 (summer) for the year 2004. The hourly electricity production for both weeks was
obtained from the IESO.

The estimation of the hourly CO, emissions (grams) was calculated by multiplying hour-by-
hour emission factors from section 3.4 by the hour-by-hour electricity produced by the PV
system for both the winter and summer weeks. The total CO, emissions for each week were
divided by the sum of their corresponding houtly electricity production. The different
emission factors such as those described in the previous sections were applied to the data in

order to demonstrate both the reduction potential and monetary value on emissions.

3.8.3.2.3  CaseStudy 3

Tse et al. (2008) used TRNSYS to simulate and help optimize the performance of the net-
zero energy townhouse, as well as the different systems that will be implemented in the
home. The systems that were analyzed consist of a solar domestic hot water system, a
photovoltaic system, and a ground soutce heat pump. Emissions were developed by using
houtly data and compated to TDV NGHGIF, values as well as performing TDV GHGCF

analysis of the townhouse.
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4  Neural Network Modeling

4.1 Predictive Models using Neural Network Modeling

This chapter presents the processes used in the development of the Neural Network (INN)
models in order to develop several predictive models for the Province of Ontario. In this
section the development of the NN models is presented, followed by detailed development
of the input and output units, testing, and training patameters, and network architectures.
This will entail a description of the methodology used, as well as a detailed overview of the

model approach and information requirements of the models developed.
4.2 Development of Artificial Neural Network Architecture and Training

4.2.1 Overview of Neural Network Modeling

The second part of this thesis was to use Neural Network (NN) modeling using weather data
for the city of Toronto obtained from Environment Canada (2006) due to its large
population of 2.48 million people and 5 million in the Greater Toronto Area (GTA)
according to the City of Toronto (2005). Some of these variables included windspeed,
temperature, visibility, month, day, hour, relative humidity, dew point temperature, and
weekend/weekday. This chapter contributes to a practical method for forecasting a wide
range of outputs. These values were used to predict the hourly electricity demand, the
percent of electricity produced from each soutce of the generation mix, and the price of
wholesale electricity paid to generators for the Province of Ontario. The NN models were
developed using the Neurolntelligence modeling software (Alyuda, 2007). The models were
refined based on a comparison with their initial target outputs. Figure 4-1 illustrates the

relationship between input and output values.
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Figure 4-1: Flowchart diagram depicting the methodology used for the development of the NN model

4.3 Selection of Input Parameters

One of the key factors in the development of a successful predictive tool is the selection of
appropriate input patameters (or independent variables), thus it is important to include only
those parameters that have a significant influence on the value of the predicted result. To
develop the NN model, the data was first obtained from Environment Canada. The data
consisted of hourly weather conditions for the year 2004 and 2005. Ten soutces were
selected for the development of the input layer of the NN model. The output layer of the
model was the actual hourly electricity demand for Ontario in 2004 obtained from the IESO

(2004).

The selection process of the relevant variables for inputs was determined by conducting an
exhaustive simulation on all the possible combinations of the variables. These simulations
identified the relevant inputs and discarded irrelevant variables which did not significantly
contribute to the performance of the NN model. It was determined that insignificant inputs
were to be removed, thus improving the generalization petformance of the model, in spite of

loosing some input data.
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4.4 Data Pre-Processing

Before the data was ready to be used as input to a NN, it had to be subjected to some form
of pre-processing, which was intended to make the forecasting more manageable. Pre-
processing was needed to reduce the dimension of the input vector. This was required in
order to avoid the exponential growth in the complexity of the problem that would result
from an increase in the number of dimensions. Pre-processing was also needed to “clean”
the data, by removing outliers, missing values or any itregularities, since NNs are sensitive to

such defective data and the Neurolntelligence software assisted with this task.

4.5 Development of the Artificial Neural Network Architecture

The data was divided into three sections: 68% of the data was for the training, 16% for the
validation, and 16% for the test set, these were the default conditions selected by the
software and were similar to the suggested data partition percentages by Anstett and Kreider
(1993). Selection of suitable artificial neural network architectures is probably the hardest
part of the problem, and critical to obtaining a useful artificial neural network. It is analogous
to selecting the form and independent variables of a regression equation. The architecture of
the model was determined by performing a heutistic search methodology for determining
the number of hidden layers required for the NN. The number of units in the hidden layer
of the network and the learning algorithm resulting in the highest prediction performance
was chosen as the network architecture for the NN Model. After determining the number of
neuron units and the learning algorithm resulting in the highest prediction performance,
different networks were trained with the chosen learning algorithm to determine the best

network architecture. In other words, the number of hidden layers needed.

4.6 NN Model Testing and Training

The activation function or training algorithm used to train the NN was found to have quite
an important influence on its accuracy and the speed with which the training converged (or
whether it converged at all). In general, the NN starts with random weights and the training
process adjusts these weights with the aim of producing an accurate prediction of the
training data. Because this is a semi-random process, it is important to retrain the NN several
times with different activation function. It is also important to allow sufficient iterations of

the training regime to allow the NN to converge. Sufficient time and computational power
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was available to conduct an exhaustive search. In order to train the model an activation
" function had to be selected. As a result, all the activation functions included in the NN
software package (Neurointelligence) where tested and it was determined that the online
backward propagation function was the most suitable due to its high R-squared value,

simplicity, and speed.
4.6.1 Development of the Neural Network Input Parameters

4.6.1.1 Hourly Electricity Demand for Ontatio

In this section an hourly NN load forecasting model for Ontatio was developed. First an
exhaustive simulation was conducted in order to determine the relevant input variables.
There wete 510 simulations performed and it was determined that the best configuration of

inputs with their ranges of value was the following:

e Month (1 - 12)

o Day(1-31)

e Temperature (-24.2 — 31.3 C%)

e Hour (1-24)

e Relative humidity (26 — 100%)

e Dew point temperature (-31.6 — 23.8 C°)
¢ Windspeed (0 — 50 km/h)

e Visibility (0 — 24.1 km)

o Weekend=0/Weekday=1

The electricity demand NN dataset was divided into subsets. The subsets wete used for
training, validation, and testing of the networks. The training set contained 5921 weather
data points (68% of all data), the testing and validation sets each contained 1392 weather

data points. The weather data in each subset was chosen randomly.

4.6.1.2 Hourly Percentage Mix from Sources

The input parameters for nuclear, hydro, coal, and other were determined by conducting

input combination simulations as in Section 4.6.1.1. Table 4-1 shows simulation results in
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order to determine the relevant inputs for each of the generation sources. It should be noted
that since the percent mix from nuclear is constant throughout the year and it is used for the
determination of subsequent percentage mix from coal, hydro and other sources, it was

decided to skip the input selection simulations for nuclear.

Table 4-1: Input parameters for the hourly percentage mix NN models

Input Column Name Nuclear Hydro Coal Other
Month X X
Hour
Day
Temp
Dew Point Temp X
Visibility (km)
Relative Humidity (%) X
Windspeed (km/h)
Weekend=0/Weekday=1
Elec. Gen. X
% Nuclear X
% Hydro

XX X [ X
X X X [ X

XXX IX XXX ]|X|X

The percentage mix NN dataset for all generation types was divided into subsets. The
subsets were used for training, validation, and testing of the networks. The training set
contained 5848 data points (68% of all data), the testing and validation sets each contained
1376 (16% each) weather data points. The input data in each subset was chosen randomly.
Noise i the dataset was automatically determined by the software. Furthermore, there
should not be too much noise since the inputs are all true values obtained from

Environment Canada and the IESO.

4.6.1.3 Houtly Emission Factor

The input parameters for the hourly emission factor network were determined by
conducting an input combination simulation as in Section 4.6.1.1. There were 1023
simulations petformed and it was determined that the best configuration of inputs was the

following;:
e Electricity Demand
e Month (1 - 12)
e Day(1-31)
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e Temperature (-24 — 34.7 C°)
e Hour (1-24)
¢ Dew point temperature (-30.5 — 23.6 C°)

The hourly emission factor NN dataset was divided into subsets. The subsets were used for
training, validation, and testing of the networks. The training set contained 5848 data points
(68% of all data), the testing and validation sets each contained 1376 data points. The

electricity demand and weather data in each subset was chosen randomly.

4.6.2 Development of the NN Architecture

The initial test network architectures were constrained to three layers, one for input, hidden
and output layers respectively. This architecture was chosen as previous research indicated
that multiple hidden layers are rarely effective in terms of both accuracy and training speed,

Neocleous and Schizas (1995).

A search was performed in order to determine the NN architecture for all the NN models
developed. This was accomplished by conducting different architecture simulations. This
allowed multiple networks to be trained with different numbers of hidden layer neurons and

the results collated to display the optimum network.

Neural networks trained with large numbers of hidden layer neurons tend to suffer from
overfitting. This overfitting cannot always be determined from the minimum validation set
error if the dataset is small. In order to minimize the risk of overfitting the network
architecture selection process was based on a criterion that balances minimum error again
network complexity. One such measure is Akaike’s Information Criterion (AIC), Akaike
(1974), which has been widely used for model selection for both conventional statistical

models and neural networks.

Of the measures available for comparing the accuracy of the neural networks, Akaike’s
ctiterion was found to be a useful quantity for comparing NN architectures with a single
hidden layer and both R-squared and the correlation tended to be maximized for the neural

networks with the highest fitness scores based on test etror and Akaike’s criterion. It should
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be noted that the accuracy of the predicted results from the NNs was also assessed in a
qualitative mannet by visual inspection of the performance of the NN architecture.
Once the network architecture was selected, different learning algorithms were applied to the

networks in order to determine the best predicting algorithm.

4.6.2.1 Houtly Electricity Demand Network

It is important that both training and test set error be in broad agreement with the validation
set error, and it can be seen from Figure 4-2 that the three sets of values correlate well as the

number of hidden layer neurons increases.
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Figure 4-2: Minimum error values for the hourly electricity demand NN

To determine the netwotk architecture that produces the best prediction performance,
different network architectures with 1 to 32 hidden layers was analyzed for each NN model.
The prediction petformances and Akaike’s criterion for the trained network are given in
Figure 4-3. The R-squated and correlation data are presented in Table B-1 in Appendix B. It
can be observed from Figure 4-3 that the minimum points at 18 and 31 neurons for the |
netwotk architecture is a reasonable compromise between error values and network

complexity. Thus, the configuration that consisted of 31 neurons in one hidden layer (9-31-
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1) was found to be the most suitable network architecture to predict the hourly electricity

demand for the Province of Ontario due to its higher R* value.
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Figure 4-3: Akaike's Information Criterion for the hourly electricity demand NN

As seen from Table 4-2, the learning algorithms produced good predictions within the range
of R? of 0.793 to 0.960. The network trained with the Quick Propagation learning algorithm
with 31 neurons resulted in the lowest Akaike value and highest R’ indicating that this

network has the highest prediction performance.

Table 4-2: Performance of the elec. demand network trained using five different learning algorithms

Architecture Training algorithm AIC Correlation R?
[9-31-1] Quick Propagation -15901 0.981 0.960
[9-31-1] Quasi-Newton -13169 0.953 0.908
[9-31-1] Conjugate Gradient Descent | -11698 0.925 0.855
[9-31-1] Levenberg-Marquardt -12924 0.954 0.908
[9-31-1] Online Back Propagation -10534 0.891 0.793
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4.6.2.2 Percentage Mix from Source NN

4.6.2.2.1  Percentage Mix from Nuclear

For the percentage mix from nuclear network Figure 4-4 illustrates that the three sets of

values cortelate well as the number of hidden layer neurons increases.

|—e—Training Error ——Validation Error -~ Test Eror |
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Figure 4-4: Minimum error values for the percentage from nuclear NN

Different network architectures with 1 to 32 hidden layers were analyzed for each NN
model. The prediction performances and Akaike’s criterion for the trained network are given
in Figure 4-5. The R-squared and correlation data are presented in Table B-2 in Appendix B.
It can be obsetved from Figure 4-5 that the minimum points at 25 and 29 neurons for the
network architecture is a reasonable compromise between error values and network
complexity. Thus, the configuration that consisted of 29 neurons in one hidden layer (6-29-
1) was found to be the most suitable network architecture to predict the hourly electricity

demand for the Province of Ontario.
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Figure 4-5: Akaike's Information Criterion for the percentage from nuclear NN

As seen from Table 4-3, the learning algorithms produced good predictions within the range
of R? of 0.854 to 0.967. The network trained with the Quick Propagation learning algorithm
with 29 neurons resulted in the lowest Akaike value and highest R? indicating that this

network has the highest prediction performance.

Table 4-3: Performance of the nuclear network trained using five different learning algorithms

Architecture Training algorithm AlC Correlation R?
[6-29-1] Quick Propagation -50522 0.984 0.967
[6-29-1] Conjugate Gradient Descent | -45007 0.900 0.809
{6-29-1) Quasi-Newton -48264 0.966 0.933
[6-29-1] Levenberg-Marquardt -47187 0.959 0.920
[6-29-1] Online Back Propagation -41518 0.898 0.854

Similar to the nuclear network, the minimum error, AIC, and Performance results for the
other percentage mix networks are presented in Figures B-1 to B-6, Tables B-3 to B-5, and
B-7 to B-9 in Appendix B.
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4.6.2.3 Hourly Emission Factor Network

It is important that both training and test set error be in broad agreement with the validation
set error, and it can be seen from Figure 4-6 that the three sets of values somewhat correlate

well as the number of hidden layer neurons increases.
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Figure 4-6: Minimum error values for the hourly emission factor NN

To determine the network architecture that produces the best prediction performance,
different network architectures with 1 to 40 hidden layers was analyzed for each NN model.
The prediction performances and Akaike’s criterion for the trained network ate given in
Figure 4-7. The R-squared and correlation data The R-squated and correlation data are
presented in Table B-6 in Appendix B. It can be observed from Figure 4-7 that the
minimum points at 23 and 32 neurons for the network architecture is a reasonable
compromise between error values and network complexity. Thus, the configuration that
consisted of 32 neurons in one hidden layer (6-32-1) was found to be the most suitable
network architecture to predict the hourly electricity demand for the Province of Ontario

due to its higher R? value.
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Figure 4-7: Akaike's Information Criterion for the hourly emission factor NN

As seen from Table 4-4, the learning algorithms produced good predictions within the range
of R? of 0.691 to 0.837. The network trained with the Levenberg-Marquardt learning
algorithm with 32 neurons resulted in the lowest Akaike value and highest R?, indicating that

this network has the highest prediction performance.

Table 4-4: Performance of emission factor network trained using five different learning algorithms

Architecture Training algorithm AIC Correlation R?
[6-32-1] Quick Propagation -34267 0.912 0.832
[6-32-1] Conjugate Gradient Descent | -32450 0.831 0.691
[6-32-1] Quasi-Newton -33144 0.864 0.747
[6-32-1] Levenberg-Marquardt -34167 0.915 0.837
[6-32-1] Online Back Propagation -33136 0.872 0.753

Table 4-5 displays the results of the architecture search process with both the correlation and
R-squared values for each of the pre-training NN models in this thesis. The learning
algorithms produced good predictions within a range of R* of 0.837 to 0.967. Most of the

netwotks wete trained using the Quick Propagation learning algorithm with the exception of
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the hourly emission factor network which performed better using the Levenberg-Marquardt

algorithm.

Table 4-5: Performance of selected NN architectures

NN Models Architecture AlIC Correlation R?
Hourly Electricity Demand [9-31-1] -15901 0.981 0.960
% Nuclear [6-29-1] -50522 0.984 0.967
% Hydro [10-31-1] -49748 0.968 0.933
% Coal [8-21-1] -51510 0.97 0.936
% Other [7-36-1] -51286 0.928 0.862
Hourly Emission Factor [6-32-1] -34167 0.915 0.837

In this chapter, the network architectures were determined for the predictive models. In

Chapter 8, the training results of the neural network models are presented.
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5  Houtly Supply and Demand of Electricity for Ontario

5.1 Overview

One of the objectives of this study was to analyze the houtly supply and demand trends of
electricity in the Province of Ontario. The houtly electricity demand was divided into

seasons and different generation technologies. The limit for each season is shown in Table

5-1.

Table 5-1: Season definition

Season Limit
Winter December 21 - March 20
Spring March 21 - June 20
Summer June 21 - September 20
Fall September 21 - December 20

In addition, in order to better understand the terminology used in figures and tables in this

section the following terms should be defined:

Percentage Capability of a particular source is the amount of electricity that source is able

to produce as a percentage of the total capability of all sources combined.

Percentage Output of a particular source is the amount of electricity consumed from a
source as a percentage of the total amount of electricity consumed from all sources

combined.

5.2 Winter 2004, 2005, and 2006

The hourly supply and demand of electricity illustrating the different generating technologies
for Ontario is shown in Figure 5-1 for winter 2004. In geﬁeral, there is a trend to use all the
electricity produced by nuclear and coal sources rather than hydro or other sources. This
may be due to the fact the processes that enable electricity production from nuclear cannot

be easily paused or stopped.
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Figure 5-1: Hourly electricity supply and demand for Ontario winter 2004

The houtly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-2 for winter 2005.

—ea— Nuclear - - - Coal —*—dero —— Other — Import/Export —O—Ca;aﬁﬁﬂ
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Time (hr)

Figure 5-2: Hourly electricity supply and demand for Ontario winter 2005
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The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-3 for winter 2006.

—a— Nuclear Coal —a—Hydro —%— Other —— import/Export —e— Total Capabilit?]

December January February March

1 96 191 286 381 476 571 666 761 856 951 1046 1141 1236 1331 1426 1521 1616 1711 1806 1901 1996 2091
Time (hr)

Figure 5-3: Hourly electricity supply and demand for Ontario winter 2006

Table 5-2 shows the capability and output of each generating source for the winters of 2004,
2005, and 2006. It can be observed that nuclear output and capability generation has been
increasing for the last three years. In contrast, coal and hydro output and capability
generation has been decreasing slowly by approximately 1% between 2004 and 2006, and

other output generation has decreased by 2%.

Table 5-2: Output and capability generation comparison for winter 2004-2006

Winter
% 2004 2005 2006
Capability | Output | Capability | OQutput | Capability | Output
Nuclear 36 48 38 51 39 55
Coal 20 21 20 20 18 17
Hydro 29 23 27 21 26 22
Other 15 8 16 8 16 6
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Table 5-3 shows the electricity demand by generati;)n type for the winters of 2004, 2005, and
2006. The total electricity demand for the Province of Ontario increased in 2005, but
decreased in 2006 below 2004 levels. This might be as a result of weather fluctuations or
unplanned outages throughout the year. Imported electricity has been decreasing while
exported electricity numbers have been on the rise increasing by 37% between 2004 and

2005 and 9% between 2005 and 2006.

Table 5-3: Electricity demand by generation type comparison for winter 2004-2006

Winter
) Electricity Demand (GWh)

Generation Type =504 | 2005 | 2006
Nuclear 18668 | 20686 21858
Coal 8511 8401 7062

Hydro 9262 8704 9016
Other 3275 3318 2385
Imported 2654 2534 2040
Exported 1914 3026 3337
Total 40457 | 40617 39025

52.1 Peak Day Electricity Analysis for Winter 2004, 2005, and 2006

Table 5-4 and Figure 5-4 show the electricity demand for winter peak days for 2004, 2005,
and 2006. Electricity demand was the highest during the winter of 2004.

Table 5-4: Electricity demand comparison for winter peak days 2004-2006

Winter
Year | Peak Day Electricity Demand (GWh)
2004 | 26-Jan-04 518
2005 | 18-Jan-05 515
2006 | 21-Dec-05 482
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Figure 5-4: Electricity demand during peak winter weekday 2004-2006

5.3 Spring 2004, 2005, and 2006

The houtly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-5 for spring 2004.
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Figure 5-5: Hourly electricity supply and demand for Ontario Spring 2004
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The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-6 for spring 2005.

r+ Nuclear - - Coal ~#— Hydro —a— Other —lmpoﬁ/Expon —e— Total Capability]
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Figure 5-6: Hourly electricity supply and demand for Ontario Spring 2005

The hourly supply and demand of electricity illustrating the different generating technologies
for Ontario is shown in Figure 5-7 for spring 2006. It should be noted that wind generation

was introduced in the spring of 2006.
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Figure 5-7: Hourly electricity supply and demand for Ontario spring 2006
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Table 5-5 shows the capability and output of each generating source for the springs of 2004,
2005, and 2006. It can be observed that nuclear output and capability generation decreased
in 2005 but increased in 2006 back to 2004 levels. Coal and hydro output and capability
generation increased in 2005 but decreased in 2006. Other output generation has decreased

by 1% and wind generated 0.26% while having a capability of 1%.

Table 5-5: Output and capability generation comparison for spring 2004-2006

Spring
% 2004 2005 2006
Capability | Output | Capability | Output | Capability | Output

Nuclear 39 53 35 48 39 54

Coal 17 13 18 17 15 13

Hydro 29 26 31 27 28 25

Other 15 7 17 8 17 7

Wind N/A N/A N/A N/A 1 0.26

Table 5-6 shows the electricity demand by generation type for the springs of 2004, 2005 and
2006. The total electricity demand for the Province of Ontario increased in 2005, but
decreased in 2006 by 1.3%. Imported electricity numbers increased in 2005 by 45% but
decreased in 2006 back to 2004 levels while exported electricity numbers decreased by 26%
between 2004 and 2005 but increased by 34% between 2005 and 2006. It should be noted
that nuclear generation dropped considerably during the spring of 2005. This might support
the idea that there was an outage, thus increasing coal generation in order to compensate for

the shortfall.

Table 5-6: Electricity demand by generation type comparison for spring 2004-2006

Spring
Generation Type Electricity Demand (GWh)
2004 | 2005 2006
Nuclear 19470 | 16910 20354
Coal 5054 | 6374 5230
Hydro 9763 | 9547 9621
Other 2728 | 2993 2642
Wind N/A N/A 103
Imported 1519 2795 1308
Exported 2889 | 2130 3242
Total 35645 | 36489 36017
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5.3.1 Peak Day Electricity Analysis for Spring 2004, 2005, and 2006

Table 5-7 and Figure 5-8 show the electricity demand for spring peak days for 2004, 2005,
and 2006. Electricity demand was the highest during the spring of 2006.

Table 5-7: Electricity demand comparison for spring peak days 2004-2006

Spring
Year | Peak Day Electricity Demand (GWh)
2004 | 9-Jun-04 471
2005 | 14-Jun-05 495
2006 | 29-May-06 509
——9-Jun-04 —8— 14-Jun-05 29-May-06
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Figure 5-8: Electricity demand during peak spring weekday 2004-2006

5.4 Summer 2004, 2005, and 2006

The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-9 for summer 2004.

56



.

B

-~

32500

[j-— Nuclear Coal —s— Hydro —»— Other —— Import/Export —e~ Capabiit?]

30000 A

27500

June July

August September

25000 #8

22500 -

20000 -

Energy (MWh)

10000 -

17500 Fiiif-
15000 45 £4 5

12500 4% £ *§

7500

5000

2500

0

4129 4225 4321 4417 4513 4609 4705 4801 4897 4993 5089 5185 5281 5377 5473 5569 5665 5761 5857 5953 6049 6145 6241

The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-10 for summer 2005.
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Figure 5-9: Hourly electricity supply and demand for Ontario summer 2004
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Figure 5-10 Hourly electricity supply and demand for Ontario summer 2005
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The houtly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-11 for summer 2006.
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Figure 5-11: Hourly electricity supply and demand for Ontario summer 2006

Table 5-8 shows the capability and output of each generating source for the summers of
2004, 2005, and 2006. It can be observed that nuclear output and capability generation
slightly decreased in 2005 but increased in 2006 back to 2004 levels. Coal output generation
increased in 2005 but decreased in 2006 and hydro decreased in 2005 and remained the same
for 2006. Other output generation increased by 2% in 2005 and wind generated 0.20% while
having a capability of 0.89%.

Table 5-8: Output and capability generation comparison for summer 2004-2006

Summer
% 2004 2005 2006
Capability | Output | Capability | Output | Capability | Output

Nuclear 38 56 39 53 39 57

Coal 20 14 19 21 17 18

Hydro 27 23 26 17 25 17

Other 16 7 17 9 17 8
Wind N/A N/A N/A N/A 0.89 0.20

Table 5-9 shows the electricity demand by generation type for the summers of 2004, 2005
and 2006. The total electricity demand for the Province of Ontario increased in 2005 by
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8.5%, but decreased in 2006 by 4.4%. Imported electricity numbers increased in 2005 by
26% but decreased in 2006 by 50% while exported electricity numbers decreased by 27%
between 2004 and 2005 but increased by 26% between 2005 and 2006. Usually hydro is
mostly used during the summer months. However, there was a substantial decrease in hydro
generation during the summer of 2005, probably due to an outage. This shortage in hydro

generation had to be compensated by coal power plants.

Table 5-9: Electricity demand by generation type comparison for summer 2004-2006

Summer
. Electricity Demand (GWh)

Generation Type 2004 2005 2006
Nuclear 21017 | 21016 22573
Coal 5736 8328 7452
Hydro 8739 6766 7142
Other 2597 3879 3193

Wind N/A N/A 77
Imported 2192 2978 1497
Exported 3003 2204 2963
Total 37277 | 40762 38971

5.4.1 Peak Day Electricity Analysis for Summer 2004, 2005, and 2006

Table 5-10 and Figure 5-12 show the electricity demand for summer peak days for 2004,
2005, and 2006. Electricity demand was the highest during the summer of 2006.
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Table 5-10: Electricity demand comparison for summer peak days 2004-2006

Summer
Year Peak Day Electricity Demand (GWh)
2004 22-Jul-04 484
2005 9-Aug-05 517
2006 1-Aug-06 561
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Figure 5-12: Electricity demand during peak summer weekday 2004-2006

5.5 Fall 2004, 2005, and 2006

The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-13 for fall 2004.
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Figure 5-13: Hourly electricity supply and demand for Ontario fall 2004
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The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-14 for fall 2005.
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Figure 5-14: Hourly electricity supply and demand for Ontario fall 2005
The houtly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-15 for fall 2006.

[—B-Nuclear -+ Coal —a— Hydro ~—— Other ~——Wind — Import/Export —e— Total Capability

30000
September October November December
27500

25000

22500 $%%

20000
17500 -

15000 Fes!

Energy (MWh)

12500 7

10000 - -

7500

5000

2500 A

o]
6577 6671 6765 6859 6953 7047 7141 7235 7329 7423 7517 7611 7705 7799 7893 7987 8081 8175 8269 8363 8457 8551 8645 8739

Time (hr)

Figure 5-15: Hourly electricity supply and demand for Ontario fall 2006
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Table 5-11 shows the capability and output of each generating source for the falls of 2004,
2005, and 2006. It can be observed that nuclear output and capability generation increased in
2005 but slightly decreased in 2006. Coal and hydro output and capability generation
decreased in 2005 and coal continued to decrease in 2006 while hydro increased back to

2004 levels. Other output generation decreased by 2% in 2005 and wind generated 0.66%
while having a capability of 2.23%.

Table 5-11: Output and capability generation comparison for fall 2004-2006

Fall
% 2004 2005 2006
Capability | Output | Capability | Output | Capability | Output
Nuclear 34 47 40 54 38 53
Coal 20 20 17 18 15 15
Hydro 29 24 27 21 28 23
Other 17 9 16 7 18 8
Wind N/A N/A N/A N/A 2.23 0.66

Table 5-12 shows the electricity demand by generation type for the falls of 2004, 2005 and
2006. The total electricity demand for the Province of Ontario did not increase in 2005, but
decreased in 2006 by 4%. Imported electricity numbers decreased in 2005 by 23% and
decreased in 2006 by another 40% while exported electricity numbers increased by 44%
between 2004 and 2005 but decreased by 27% between 2005 and 2006.

Table 5-12: Electricity demand by generation type comparison for fall 2004-2006

Fall
Generation Type Electricity Demand (GWh)

2004 | 2005 2006

Nuclear 16878 | 19872 19172
Coal 7402 7038 5747
Hydro 8511 8186 8511
Other 3127 | 2729 2949

Wind N/A N/A 241

Imported 3379 2615 1564
Exported 1572 2797 2040
Total 37726 | 37644 36144
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5.5.1 Peak Day Electricity Analysis for Fall 2004, 2005, and 2006

Table 5-13 and Figure 5-16 show the electricity demand for fall peak days for 2004, 2005,
and 2006. Electricity demand was the highest duting the fall of 2005.

Table 5-13: Electricity demand comparison for fall peak days 2004-2006

Fall
Year | Peak Day Electricity Demand (GWh)
2004 | 1-Dec-04 453
2005 | 12-Dec-05 478
2006 | 7-Dec-06 457
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Figure 5-16: Electricity demand during peak fall weekday 2004-2006

5.6 Years 2004, 2005, and 2006

The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-17 for 2004.
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Figure 5-17: Hourly electricity supply and demand for Ontario 2004

As indicated in Figure 5-18, the difference between the capability and the output electricity
for Ontario is approximately 15% in accordance with IESO regulations. In addition, a
portion of the additional electricity generated in the Province is sold to the United States

and/or to provinces bordering Ontatio.
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Figure 5-18: Hourly electricity Capability and OQutput — 2004

Table 5-14 and Figure 5-19 show the electricity demand for seasonal peak days for 2004.

Electricity demand was the highest during the winter.

Table 5-14: Electricity demand comparison for seasonal peak days for 2004

2004
Season | Peak Day | Electricity Demand (GWh)
Winter | 26-Jan-04 518
Spring 9-Jun-04 471
Summer | 22-Jul-04 484
Fall 1-Dec-04 453
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Figure 5-19: Electricity demand during seasonal peak days for 2004

The houtly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-20 for 2005.
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Figure 5-20: Hourly electricity supply and demand for Ontario 2005
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As indicated in Figure 5-21, the difference between the capability and the output electricity

for Ontario is very small the during the summer months.
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Figure 5-21: Hourly electricity Capability and Output — 2005

Table 5-15 and Figure 5-22 show the electricity demand for seasonal peak days for 2005.

Electricity demand was the highest during the summer.

Table 5-15: Electricity demand comparison for seasonal peak days for 2005

2005
Season | Peak Day | Electricity Demand (GWh)
Winter | 18-Jan-05 515
Spring | 14-Jun-05 495
Summer | 9-Aug-05 517
Fall 12-Dec-05 478
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Figure 5-22: Electricity demand during seasonal peak days for 2005
The hourly supply and demand of electricity illustrating the different generating technologies

for Ontario is shown in Figure 5-23 for 2006.
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Figure 5-23: Hourly electricity supply and demand for Ontario 2006
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As indicated in Figure 5-24, the difference between the capability and the output electricity

for Ontario is constant throughout the year.
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Figure 5-24: Hourly electricity Capability and Output — 2006

Table 5-16 and Figure 5-25 show the electricity demand for seasonal peak days for 2006.

Electricity demand was the highest during the summer.

Table 5-16: Electricity demand comparison for seasonal peak days for 2006

2006
Season | Peak Day Electricity Demand (GWh
Winter 21-Dec-05 482
Spring | 29-May-06 509
Summer | 1-Aug-06 561
Fall 7-Dec-06 457
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Figure 5-25: Electricity demand during seasonal peak days for 2006

Table 5-17 shows the capability and output of each generating source for 2004, 2005, and
2006. It can be observed that nuclear output and capability generation remained the same in
2005 but increased by 4% in 2006. Coal output generation increased in 2005 by 1% but
decreased in 2006 by 3%. Hydro output generation decreased in 2005 by 2% and remained
the same in 2006. Other output generation remained unchanged while wind generated 0.30%

while having a capability of 1.33%.

Table 5-17: Output and capability generation comparison for 2004-2006

Annual Total
% 2004 2005 2006
Capability | Output | Capability | Output | Capability [ Output
Nuclear 37 51 38 51 39 55
Coal 19 18 18 19 16 16
Hydro 28 24 28 22 27 22
Other 15 8 17 8 17 7
Wind N/A N/A N/A N/A 1.33 0.30
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Table 5-18 shows the electricity demand by generation type for 2004, 2005 and 2006. The
total electricity demand for the Province of Ontario increased in 2005 by 2.3%, but
decreased in 2006 by 3.5%. Imported electricity numbers increased in 2005 by 11% but
decreased in 2006 by 43% while exported electricity numbers increased by 7% and 11% in
2005 and 2006, respectively.

Table 5-18: Electricity demand by generation type comparison for 2004-2006

Annual

. Electricity Demand (GWh)
Generation Type =704 T 2005 | 2006
Nuclear 76483 | 78343 | 83954
Coal 26898 | 30084 | 25095
Hydro 36199 | 33226 34354
Other 11764 | 12835 11212

Wind N/A N/A 456

Imported 9774 | 10953 6189
Exported 9490 | 10182 11388

Total 151628 | 155259 | 149873

It appears that the total electricity demand for the Province of Ontatio increased in 2005,
but decreased in 2006 which can be attributed to either unplanned outages of certain power
plants or weather pattern changes. Nuclear generation continued to grow between 2004 and
2006, and coal increased in 2005, but returned back to 2004 levels in 2006. Nuclear
generation was the highest duting the summer months. In general, there is a norm to
conduct planned outages duting the spring and fall months in order to have all available
nuclear generation for high peak demand during the summer. Clearly, without considering
the year 2005 due to unforeseeable events, electricity generation from coal and other (natural
gas, oil, etc) has been decreasing which could be explained as a result of the provincial
government’s initiative to shut down fossil plants by 2014. In general, electricity generation
from coal was the highest during the winter months due to weather restrictions on hydro
and other was the highest during the winter in 2004, and during the summer months in 2005
and 2006. In addition, it was observed that the expotting of electricity to other provinces has
been increasing between 2004 and 2006. Conversely, there has been a reduction in
consumption of imported electricity over the years due to lower electricity demand by the
Province of Ontario. On the other hand, wind generation increased by almost 57% in 2006

and hydro has slightly decreased between 2004 and 2006. Hydro generation was the highest
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during the spring months due to warmer temperatures in the Province of Ontatio. It was
also observed that the highest consumption of electricity for the Province of Ontario
occurred during the winters of 2004 and 2006. It should be noted that in 2005, the electricity

demand during the summer surpassed the winter.

In the next chapter, the hourly electricity supply and demand data explored in this chapter

will be utilized to develop GHG emission factors.
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6 GHG Analysis

6.1 Winter 2004, 2005, and 2006 Emissions

It has been shown that GHG emission factors are related to provincial electricity generation.
These factors are at their highest during peak hours as utilities rely on fossil based generation
plants due to their ability to be turned on rapidly in comparison to other generation types. In
this study, houtly GHG emission factors were developed to realize the true GHG reduction
potential for the Province of Ontario, as well as to help determine the shifting of energy
demand from peak hours to off-peak hours, thus help lowering emissions. Figure 6-1, Figure
6-2, and Figure 6-3 show hourly GHG emissions for the winters of 2004, 2005, and 2006.
The highest GHG emissions occurred during January, most likely due to weather conditions
that limit the use of hydro generated electricity during the winter, thus relying on fossil

plants to compensate for this shortfall. The following profiles use the data from Chapter 5.
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Figure 6-1: Hourly CO, emissions - winter 2004
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Figure 6-2: Hourly CO; emissions - winter 2005
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Figure 6-3: Hourly CO,; emissions - winter 2006
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Table 6-1 shows the total amount of GHG emissions for the winters of 2004, 2005, and
2006. Tt can be observed that CO, emissions were the highest in 2004, and have been
decreasing in subsequent years, most likely due to the provincial government’s initiative to
phase out Coal plants by 2014. However, SO, emissions increased by 10% in 2005, but
decreased by 37% in 2006. NO emissions increased slightly in 2005, and remained slightly
the same 1n 2006.

Table 6-1: GHG emissions from the power generation sector - winter 2004-2006

Winter
Year Emissions (kt) Electricity Demand
CO, SO, NO (GWh)
2004 | 10023 | 36.99 | 9.11 40457
2005 | 9616 | 41.16 | 9.49 40617
2006 | 8049 | 25.79 | 9.39 39025

6.1.1 Winter Emission Factors

The heart of the TDV proposal is a methodology for deriving hourly valuations for
greenhouse gas emissions. The seasonal variability in emissions is due to different power
generation mix and electricity demand throughout the year. The methodology for GHG
emission valuation includes both seasonal averages and profile models. The resulting
seasonal average and hourly valuations reward GHG emission reduction strategies and
building energy efficiency dependent on time-of-use. In addition, TDV models for GHG
costs will be developed in order to place a monetary value on emissions paid by either the
customer or generator. Table 6-2 shows the average NGHGIF, values for the winters of
2004, 2005, and 2006. The highest CO, emission factor was in 2004 and has been slowly

decreasing in subsequent years.

Table 6-2: Average Emission factors for winter 2004-2006

Winter
NGHGIF , (z/kWh)
Year ¢o, S0, NO
2004 | 243 0.91 0.23
2005 | 231 0.99 0.23
2006 | 196 0.63 0.23
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Table 6-3 and Figure 6-4 show TDV emission factors for the winters of 2004, 2005, and

2006. Emission factors are highest during the afternoon and evening hours.

Table 6-3: TDV emission factor comparison for winter 2004-2006

Winter
TDV NGHGIF, (g of CO2/kWh)
Hour 2004 2005 2006
1 254.9 241.8 200.7
2 254.8 234.8 1914
3 252.9 229.3 183.1
4 2509 226.8 179.8
5 252.4 227.5 183.8
6 255.3 231.9 186.5
7 258.8 234.7 196.6
8 262.5 240.9 208.5
9 265.6 2471 216.3
10 266.8 250.5 219.7
11 268.8 253.1 225.7
12 270.9 254.8 228.5
13 272.8 256.5 229.0
14 272.8 256.5 227.8
15 271.3 252.8 224.8
16 268.8 246.5 219.2
17 268.6 2449 218.8
18 270.9 250.3 224.4
19 274.6 257.5 233.3
20 273.4 258.5 235.3
21 273.3 260.1 234.2
22 271.4 259.2 229.1
23 265.4 253.5 217.6
24 255.3 243.3 207.8

The TDV methodology assigns a value (g of CO,/kWh) to evety hour of the year for a
particular season. Table 6-3 shows that during the winter of 2006 at 4 p.m., for one kWh
produced or reduced the emissions will be 219.2 g of CO,, while at 4 a.m. it would be 179.8
g of CO,, which shows a difference of 18% in just 12 houts. In addition, the maximum TDV
values for the years 2004, 2005, and 2006 occurred at 7 p.m., 9 p.m., and 8 p.m., tespectively.
The corresponding 95% confidence interval was determined to be for each TDV hour

+3.14, £4.19, and +7.01 for the years 2004, 2005, and 20006, respectively.
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Figure 6-4: TDV emission factor profile comparison for winter 2004-2006

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat
rate, TOU, and wholesale pricing schemes as illustrated in Table 6-4, Table 6-5, and Table

6-6. These factors place a monetary value on GHG emissions. Cost factors have been

increasing over the last three years and usually March has the highest value.

Table 6-4: Average GHG cost factors using flat rate pricing scheme 2004-2006

NGHGCF,¢lec, fiat ($/kg of CO2)
Month 2004 2005 2006
Jan 0.372 0.467 0.494
Feb 0.397 0.452 0.523
Mar 0.495 0.443 0.587
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Table 6-5: Average GHG cost factors using TOU pricing scheme 2004-2006

NGHGCF.elec, Tou ($/kg of CO2)

Month 2004 2005 2006
Jan 0.363 0.448 0.481
Feb 0.391 0.446 0.522
Mar 0.490 0.439 0.579

Table 6-6: Average GHG cost factors using wholesale pricing scheme 2004-2006

NGHGCF . elec, wholesale ($/kg of CO2)
Month 2004 2005 2006
Jan 0.233 0.245 0.259
Feb 0.203 0.219 0.242
Mar 0.228 0.262 0.274

6.1.2 Peak Day GHG Analysis for Winter 2004, 2005, and 2006

GHG emissions were analyzed for all seasons and years. Figure 6-5 shows the CO,
emissions for the winter peak days for 2004, 2005, and 2006. CO, emissions were highest

during the afternoon hours.
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Figure 6-5: Hourly emissions during winter peak days for 2004, 2005, and 2006
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As illustrated in Table 6-7 CO, emissions wete the highest in 2004, and have decteased by
20% in 2005, and 4.3% in 2006. The decrease in emissions is most likely due to higher than
normal temperatures for the Province of Ontario. As a tesult, the electricity demand for the

province would decrease because less peak generated electricity would be required, which is

usually provided by fossil plants.

Table 6-7: CO, emissions during winter peak day for 2004, 2005, and 2006

Winter
Year Peak Day Emissions (kt)
2004 26-Jan-04 171
2005 18-Jan-05 137
2006 21-Dec-05 131

Figure 6-6 shows the CO, emission factor profile for the winter peak days for 2004, 2005,
and 2006. CO, emission factors did not very much throughout the day.
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Figure 6-6: Hourly CO,; emission factors during peak winter day 2004-2006
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As illustrated in Table 6-8 average emission factors for the peak winter day were the highest

in 2004, and decreased by 21% in 2005, but increased by 3.2% in 2006.

Table 6-8: Average emission factors during peak winter day 2004-2006

Winter
Year | Peak Day | NGHGIF, (g of CO2/kWh)
2004 | 26-Jan-04 337
2005 | 18-Jan-05 266
2006 | 21-Dec-05 275

6.2 Spring 2004, 2005, and 2006 Emissions

Figure 6-7, Figure 6-8, and Figure 6-9 show houtly GHG emissions for the springs of 2004,
2005, and 2006. The highest GHG emissions occurred during June.
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Figure 6-7: Hourly CO; emissions - spring 2004
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Figure 6-9: Hourly CO; emissions - spring 2006
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Table 6-9 shows the total amount of GHG emissions for the springs of 2004, 2005, and
2006. It can be observed that CO, emissions increased by 16% in 2005, but decreased in
2006 back to approximately 2004 levels. SO, emissions increased by 34% in 2005, but
decreased in 2006 below 2004 levels. NO emissions increased by 25% in 2005, and remained
unchanged for 2006. It appears that an abnormal event during 2005 such as a change in

weather patterns, or unplanned power generation outage could have caused this increase in

2005.

Table 6-9: GHG emissions from the power generation sector - spring 2004-2006

Spring
Year Emissions (kt) Electricity Demand
CO, SO, NO (GWh)
2004 | 6309 22 5.64 35645
2005 | 7501 | 33.15 | 7.59 36489
2006 | 6416 | 18.34 | 7.41 36017

6.2.1 Spring Emission Factors

Table 6-10 shows the average NGHGIF, values for the springs of 2004, 2005, and 2006.
The highest CO, emission factor was in 2005, but decteased back to 2004 levels in 2006.

Table 6-10: Average Emission factors for spring 2004-2006

Spring
Year NGHGIF, (g/kWh)
CO, SO, NO
2004 164 0.57 0.15
2005 205 0.90 0.21
2006 164 0.47 0.19

Table 6-11 and Figure 6-10 show TDV emission factors for the winters of 2004, 2005, and

2006. Emission factors are highest during the afternoon hours.
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Table 6-11: TDV emission factor comparison for spring 2004-2006

Spring
TDV NGHGIF, (g of CO2kWh)
Hour 2004 2005 2006
1 133.3 192.3 147.0
2 129.1 188.5 138.9
3 126.6 180.0 132.9
4 125.6 179.0 130.8
5 130.7 186.8 140.2
6 148.2 201.2 153.0
7 171.0 213.2 171.3
8 192.4 228.5 189.7
9 203.0 234.2 194.5
10 208.7 237.0 198.7
11 213.2 239.8 202.8
12 214.8 241.8 204.5
13 2155 244.3 204.4
14 215.2 244 1 203.4
15 212.3 2420 201.3
16 2124 240.8 200.7
17 212.4 240.5 2011
18 205.0 234.4 195.9
19 198.5 224.8 190.5
20 204.2 228.6 198.7
21 206.5 238.3 203.1
22 190.3 231.9 187.3
23 161.5 218.2 170.4
24 138.8 206.0 155.6

The TDV methodology assigns a value (g of CO,/kWh) to every hour of the year for a
particular season. Table 6-11 shows that during the spring of 2006 at 4 p.m., for one kWh
produced or reduced the emissions will be 200.7 g of CO,, while at 4 a.m. it would be 130.8
g of CO,, which shows a difference of 35% in just 12 hours. In addition, the maximum TDV
values for both years 2004, and 2005, occutred at 1 p.m., and at 12 p.m,, for the year 2006.
The cotresponding 95% confidence interval was determined to be for each TDV hour

+13.63, £8.72, and % 10.33 for the years 2004, 2005, and 2006, respectively.
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Figure 6-10: TDV emission factor profile comparison for spring 2004-2006
Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat
rate, TOU, and wholesale pricing schemes as illustrated in Table 6-12, Table 6-13, and Table

6-14. These factors place a monetary value on GHG emissions. Cost factors increased in

May, but decreased in June.

Table 6-12: Average GHG cost factors using flat rate pricing scheme 2004-2006

NGHGCF, ¢elec, fiat ($/kg of CO2)
Month 2004 2005 2006
Apr 0.660 0.497 1.037
May 0.916 0.606 0.686
Jun 0.811 0.464 0.482
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Table 6-13: Average GHG cost factors using TOU pricing scheme 2004-2006

NGHGCF,elec, Tou ($/kg of CO2)
Month 2004 2005 2006
Apr 0.613 0.492 0.974
May 0.818 0.571 0.646
Jun 0.748 0.451 0.453

Table 6-14: Average GHG cost factors using wholesale pricing scheme 2004-2006

NGHGCF, ¢lec, wholesale ($/kg of CO2)
Month 2004 2005 2006
Apr 0.274 0.294 0.353
May 0.349 0.296 0.286
Jun 0.312 0.272 0.210

6.2.2 Peak Day GHG Analysis for Spring 2004, 2005, and 2006

Figure 6-11 shows the CO, emissions for the spring peak days for 2004, 2005, and 2006.

CO, emissions were highest during the afternoon and beginning evening hours.
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Figure 6-11: Hourly emissions during spring peak days for 2004, 2005, and 2006
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As illustrated in Table 6-15 CO, emissions were the highest in 2005. CO, emissions increased
by 26% in 2005, but decreased by 33% in 2006.

Table 6-15: CO; emissions during spring peak day for 2004, 2005, and 2006

Spring
Year Peak Day Emissions (kt)
2004 9-Jun-04 106
2005 14-Jun-05 143
2006 29-May-06 96

Figure 6-12 shows the CO, emission factor profile for the spring peak days for 2004, 2005,

and 2006. CO, emission factors were highest during the afternoon hours.
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Figure 6-12: Hourly CO; emission factors during peak spring day 2004-2006

As illustrated in Table 6-16 average emission factors for the peak spring day were the highest
mn 2005, and decreased by 34% in 2006.
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Table 6-16: Average emission factors during peak spring day 2004-2006

Spring
Year | Peak Day NGHGIF, (g of CO2/kWh)
2004 | 9-Jun-04 224
2005 | 14-Jun-05 295
2006 | 29-May-06 194

6.3 Summer 2004, 2005, and 2006 Emissions

Figure 6-13, Figure 6-14, and Figure 6-15 show houtly GHG emissions for the summers of
2004, 2005, and 2006. The highest GHG emissions occurred during July and beginning of

August.
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Figure 6-13: Hourly CO; emissions - summer 2004
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Figure 6-14: Hourly CO; emissions - summer 2005
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Figure 6-15: Hourly CO; emissions - summer 2006
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Table 6-17 shows the total amount of GHG emissions for the summers of 2004, 2005, and
2006. It can be observed that CO, emissions increased by 29% in 2005, but decreased by 9%
in 2006. SO, emissions increased by 43% in 2005, but decreased in 2006 back to 2004 levels.
NO emissions increased by 38% in 2005, and remained unchanged for 2006. It appears that

during 2005 more coal plants were utilized due to weather changes or unplanned outages.

Table 6-17: GHG emissions from the power generation sector - summer 2004-2006

Summer
Year Emissions (kt) Electricity Demand
co, SO, NO {(GWh)
2004 | 6933 | 2495 | 6.25 37277
2005 | 9787 44 10.07 40762
2006 | 8881 | 26.12 | 10.34 38971

6.3.1 Summer Emission Factots

Table 6-18 shows the average NGHGIF, values for the summers of 2004, 2005, and 2006.
The highest CO, emission factor was in 2005, but decreased by 11.2% in 2006.

Table 6-18: Average Emission factors for summer 2004-2006

Summer
NGHGIF, (g/kWh)
Year
CO, SO, NO
2004 174 0.62 0.16
2005 241 1.08 0.25
2006 214 0.63 0.25

Table 6-19 and Figure 6-16 show TDV emission factors for the summers of 2004, 2005, and

2006. Emission factors are highest during the afternoon hours.
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Table 6-19: TDV emission factor comparison for summer 2004-2006

Summer
TDV NGHGIF, (g of CO2/kWh)
Hour 2004 2005 2006
1 129.4 2449 199.8
2 119.8 236.6 186.5
3 112.5 227.6 175.2
4 109.9 2241 173.2
5 114.3 2256 181.9
6 134.7 2291 189.5
7 159.5 2324 2021
8 187.5 2511 227.3
9 205.0 262.4 2431
10 220.1 268.1 250.7
11 228.3 270.4 254.0
12 234.5 2734 256.3
13 237.8 276.7 256.3
14 236.6 276.4 254.6
15 234.1 2753 251.0
16 2347 273.5 251.3
17 234.4 2724 252.9
18 228.5 2721 252.0
19 218.7 267.5 248.3
20 223.3 267.3 251.3
21 226.3 269.8 252.6
22 209.7 264.3 2457
23 176.2 249.8 236.9
24 146.7 248.7 2149

The TDV methodology assigns a value (g of CO,/kWh) to every hour of the year for a
particular season. Table 6-19 shows that during the summer of 2006 at 4 p.m., for one kWh
produced or reduced the emissions will be 251.3 g of CO,, while at 4 a.m. it would be 173.2
g of CO,, which shows a difference of 31% in just 12 hours. In addition, the maximum TDV
values for years 2004, 2005, and 2006 occurred at 1 p.m. The corresponding 95% confidence
interval was determined to be for each TDV hour +18.78, +7.26, and +11.73 for the years
2004, 2005, and 2006, respectively.
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Figure 6-16: TDV emission factor profile comparison for summer 2004-2006

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat
rate, TOU, and wholesale pricing schemes as illustrated in Table 6-20, Table 6-21, and Table
6-22. Cost factors were the highest during July and August of 2004 for the flat rate electricity
pricing scheme, TOU pricing scheme, and August and September of 2005 for the wholesale

pricing scheme.

Table 6-20: Average GHG cost factors using flat rate pricing scheme 2004-2006

NGHGCF.elec, fiat($/kg of CO2)
Month 2004 2005 2006
Jul 0.777 0.444 0.459
Aug 0.709 0.417 0.524
Sep 0.599 0.468 0.614
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6.3.2 Peak Day GHG Analysis for Summer 2004, 2005, and 2006

Figure 6-17 shows the CO, emissions for the summer peak days for 2004, 2005, and 2006.

CO, emissions were highest during the afternoon and eatly evening hours.
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Table 6-21: Average GHG cost factors using TOU pricing scheme 2004-2006

NGHGCF,elec, Tou ($/kg of CO2)

Month 2004 2005 2006
Jul 0.712 0.423 0.440
Aug 0.649 0.409 0.503
Sep 0.555 0.453 0.566

Table 6-22: Average GHG cost factors using wholesale pricing scheme 2004-2006

NGHGCF . elec, wholesale ($/kg of CO2)

Month 2004 2005 2006
Jul 0.294 0.315 0.210
Aug 0.260 0.347 0.251
Sep 0.256 0.408 0.191

——22-Jul-04 ——9-Aug-05 - 1-Aug-06 |

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hr)

Figure 6-17: Hourly emissions during summer peak days for 2004, 2005, and 2006
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As illustrated in Table 6-23 CO, emissions were the highest in 2006. CO, emissions increased
by 12% in 2005, and again by 12% in 2006.

Table 6-23: CO, emissions during summer peak day for 2004, 2005, and 2006

Figure 6-18 shows the CO, emission factor profile for the summer peak days for 2004, 2005,
and 2006. CO, emission factors were highest during the afternoon hours, and remained

constant throughout the day with the exception of 2004 where the emission factor varied

considerably.
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Summer
Year Peak Day Emissions (kt)
2004 22-Jul-04 119
2005 9-Aug-05 135
2006 1-Aug-06 153
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Figure 6-18: Hourly CO; emission factors during peak summer day 2004-2006

As illustrated in Table 6-24 average emission factots for the peak summer day were the

highest in 2006.
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Table 6-24: Average emission factors during peak summer day 2004-2006

Summer
Year | Peak Day | NGHGIF, (g of CO2/kWh)
2004 | 22-Jul-04 246
2005 | 9-Aug-05 279
2006 | 1-Aug-06 282

6.4 Fall 2004, 2005, and 2006 Emissions

Figure 6-19, Figure 6-20, and Figure 6-21 show houtly GHG emissions for the falls of 2004,
2005, and 2006. The highest GHG emissions occurred during December for 2005, and

October for 2004 and 2006.
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Figure 6-19: Hourly CO, emissions - fall 2004
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Figure 6-20: Hourly CO, emissions - fall 2005
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Figure 6-21: Hourly CO, emissions - fall 2006
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Table 6-25 shows the total amount of GHG emissions for the falls of 2004, 2005, and 2006.
It can be observed that CO, emissions remained the same for 2004 and 2005, and decreased
in by 20% in 2006. SO, emissions increased by 18% in 2005, but decreased by 48% in 2006.
NO emissions increased by 10% in 2005, but decreased by 9% in 2006.

Table 6-25: GHG emissions from the power generation sector - fall 2004-2006

Fall
Year Emissions (kt) Electricity Demand
CO, SO, NO (GWh)
2004 | 8844 | 3219 | 8.01 37726
2005 | 8879 | 39.03 | 8.93 37644
2006 | 7072 | 20.16 | 8.16 36144

6.4.1 Fall Emission Factors

Table 6-26 shows the average NGHGIF, values for the falls of 2004, 2005, and 2006. The
highest CO, emission factor was in 2004, but decreased by 16% in 2005 and by 7.3% in
2006.

Table 6-26: Average Emission factors for fall 2004-2006

Fall
NGHGIF, (g/kWh)
Year
COo, SO, NO
2004 244 0.89 0.22
2005 205 0.90 0.21
2006 190 0.54 0.22

Table 6-27 and Figure 6-22 show TDV emission factors for the falls of 2004, 2005, and

2006. Emission factors are highest during the afternoon and evening hours.
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Table 6-27: TDV emission factor comparison for fall 2004-2006

Fall
TDV NGHGIF, (g of CO2/kWh)

Hour 2004 2005 2006
1 2261 199.9 177.2
2 213.2 193.4 165.1
3 202.5 187.9 154.8
4 200.2 185.7 153.8
5 210.9 196.5 165.8
6 231.7 205.0 184.0
7 253.4 214.3 196.0
8 268.7 226.4 211.0
9 274.5 233.2 2194
10 278.8 238.4 223.4
11 282.2 2426 226.6
12 284.2 244.4 2285
13 2857 2450 230.0
14 283.5 243.8 229.1
15 281.3 241.3 2245
16 277.4 236.3 221.8
17 275.9 2354 221.8
18 281.7 241.4 227.3
19 285.5 244 .4 229.8
20 285.4 241.8 2271
21 281.5 240.2 222.2
22 274.0 2339 216.1
23 257.9 218.4 202.9
24 239.2 206.1 187.5

.3

e R e

—————— e a—

The TDV methodology assigns a value (g of CO,/kWh) to every hour of the year for a
particular season. Table 6-27 shows that during the fall of 2006 at 4 p.m., for one kWh
produced or reduced the emissions will be 221.8 g of CO,, while at 4 a.m. it would be 153.8
g of CO,, which shows a difference of 31% in just 12 hours. In addition, the maximum TDV
values for years 2004, 2005, and 2006 occurred at 1 p.m. The corresponding 95% confidence
interval was determined to be for each TDV hour + 11.63, £8.04, and % 10.20 for the years
2004, 2005, and 2006, respectively.
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Figure 6-22: TDV emission factor profile comparison for fall 2004-2006

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat
rate, TOU, and wholesale pricing schemes as illustrated in Table 6-28, Table 6-29, and Table
6-30. Cost factors were the highest during October and November of 2006 for the flat rate
electricity pricing scheme, TOU pricing scheme, and October, November, and December of

2005 for the wholesale pricing scheme.

Table 6-28 : Average GHG cost factors using flat rate pricing scheme 2004-2006

NGHGCFelec, fiat ($/kg of CO2)
Month 2004 2005 2006
Oct 0.405 0.547 0.579
Nov 0.443 0.543 0.553
Dec 0.525 0.507 0.507
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Table 6-29: Average GHG cost factors using TOU pricing scheme 2004-2006

NGHGCF,elec, Tou ($/kg of CO2)
Month 2004 2005 2006
Oct 0.383 0.507 0.540
Nov 0.437 0.535 0.543
Dec 0.526 0.495 0.497

Table 6-30: Average GHG cost factors using wholesale pricing scheme 2004-2006

NGHGCF, elec, wholesale ($/kg of CO2)
Month 2004 2005 2006
Oct 0.189 0.364 0.212
Nov 0.218 0.296 0.255
Dec 0.252 0.363 0.187

6.4.2 Peak Day GHG Analysis for Fall 2004, 2005, and 2006 !

Figure 6-23 shows the CO, emissions for the fall peak days for 2004, 2005, and 2006. CO, :

emissions were highest during the evening hours and in the morning of 2004.
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Figure 6-23; Hourly emissions during fall peak days for 2004, 2005, and 2006
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As illustrated in Table 6-31 CO, emissions were the highest in 2005. CO, emissions increased

by 31% 1n 2005, and decreased by 28% in 2006.

Table 6-31: CO; emissions during fall peak day for 2004, 2005, and 2006

Fall
Year Peak Day Emissions (kt)
2004 1-Dec-04 93
2005 12-Dec-05 134
2006 7-Dec-06 97

Figure 6-24 shows the CO, emission factor profile for the summer peak days for 2004, 2005,

and 2006. CO, emission factors were constant throughout the day with the exception of

2004 where the emission factor varied considerably.
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Figure 6-24; Hourly CO; emission factors during peak fall day 2004-2006

As illustrated in Table 6-32 average emission factors for the peak summer day were the

highest in 2005.
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Table 6-32 : Average emission factors during peak fall day 2004-2006

Fall
Year | Peak Day NGHGIF, (g of CO2/kWh)
2004 | 1-Dec-04 212
2005 | 12-Dec-05 281
2006 | 7-Dec-06 219

6.5 Annual Emissions

Figure 6-25, Figure 6-26, and Figure 6-27show hourly GHG emissions for the years 2004,
2005, and 2006. The highest GHG emissions occurred during January for 2004, and January

and the summer for 2005 and 2006.
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Figure 6-25: Hourly CO, emissions - 2004
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Figure 6-26: Hourly CO; emissions - 2005
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Figure 6-27: Hourly CO, emissions - 2006
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Table 6-33 shows the total amount of GHG emissions for 2004. It can be observed that
CO, emissions were the highest during the winter and decreased by 37% during the spring,
but increased by 9% and 22% during the summer and fall months, respectively. SO,
emissions also decreased by 41% during the spring, but increased by 12% and 22% during
the summer and fall months, respectively. NO emissions decreased by 33% during the

spring, and remained unchanged during the summet, but increased by 25% during the fall.

Table 6-33: GHG emissions from the power generation sector for 2004

2004 Emissions (kt)
Cco, S0, NO
Winter 10023 37 9
Spring 6309 22 6
Summer 6933 25 6
Fall 8844 32 8
Total 32109 116 29

Table 6-34 shows the total amount of GHG emissions for 2005. It can be observed that
CO, emissions were the highest during the summer. Emissions decreased by 22% duting the
spring, but increased by 23% during the summer and decreased by 9.3% during the fall. SO,
emissions decreased by 20% during the spring, but increased and decreased by 25% and
11.3% during the summer and fall, respectively. NO emissions decreased by 11% during the

spring, but increased by 20% during the summer, and decteased by 10% during the fall.

Table 6-34: GHG emissions from the power generation sector for 2005

Emissions (kt)

2005 CO, SO, NO
Winter 9616 41 9
Spring 7501 33 8

Summer 9787 44 10
Fall 8879 39 9
Total 35783 157 36

Table 6-35 shows the total amount of GHG emissions for 2006. It can be observed that
CO, emissions wete the highest during the summer. Emissions decreased by 20% during the
spring, but increased by 28% during the summer and decreased by 20% during the fall. SO,
emissions decreased by 31% duting the spring, but increased and decreased by 31% and 23%
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during the summer and fall, respectively. NO emissions decreased by 22% during the spring,

but increased by 30% during the summer, and decreased by 20% during the fall

Table 6-35: GHG emissions from the power generation sector for 2006

Emissions (kt)

2006 CcoO, SO, NO
Winter 8049 26 9
Spring 6416 18 7

Summer 8881 26 10
Fall 7072 20 8
Total 30418 90 35

Table 6-36 shows the total amount of GHG emissions for 2004, 2005, and 2006. It can be
observed that CO, emissions were the highest during 2005.

Table 6-36: GHG emissions from the power generation sector comparing 2004-2006

Annual
Emissions (kt)
Year
CcO, SO, NO
2004 32109 116 29
2005 35783 157 36
2006 30418 90 35

6.5.1 Annual Emission Factots

Annual and seasonal emission factors were developed for the years 2004, 2005, and 2006.
Table 6-37 shows the average annual and seasonal NGHGIF, values for 2004. The highest

emission factor was during the winter.

Table 6-37: Average Emission factors for 2004

NGHGIF, (g/kWh)

2004
CcO, SO, NO
Annual 208 0.75 0.19
Winter 248 0.91 0.23
Spring 164 0.57 0.15
Summer 174 0.62 0.16
Fall 244 0.89 0.22
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Table 6-38 shows the average annual and seasonal NGHGIF, values for 2005. The highest

emission factor was during the summer.

Table 6-38: Average Emission factors for 2005

2005 NGHGIF, (g/kWh)
CcoO, SO, NO
Annual 221 0.97 0.22
Winter 231 0.99 0.23
Spring 205 0.90 0.21
Summer 241 1.08 0.25
Fall 205 0.90 0.21

Table 6-39 shows the average annual and seasonal NGHGIF, values for 2006. The highest

emission factor was during the summer.

Table 6-39: Average Emission factors for 2006

NGHGIF, (g/kWh)

2006
Cco, SO, NO
Annual 189 0.55 0.22
Winter 196 0.63 0.23
Spring 164 0.47 0.19
Summer 214 0.63 0.25
Fall 190 0.54 0.22

Table 6-40 shows the average annual NGHGIF, values for 2004, 2005, and 2006. The

highest emission factor was in 2005.

Table 6-40: Average Emission factors comparing 2004-2006

NGHGIF, (g/kWh)
Annual
- CO, SO, NO
2004 208 0.75 0.19
2005 221 0.97 0.22
2006 189 0.55 0.22

Annual and seasonal TDV emission factors were developed for the years 2004, 2005, and
2006. Figure 6-28 shows the seasonal TDV NGHGIF, profile for 2004. The highest

105

z

A g

18]



HOSHIAY

1

A

whi

a5
3

>

Juvuan Asisy

emission factors were in the fall during the afternoon and in the winter during the eatly

morning hours.
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Figure 6-28: Seasonal TDV emission factor profile for 2004

Figure 6-29 shows the seasonal TDV NGHGIF, profile for 2005. The highest emission

factors were in the summer during the afternoon and evening hours.
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Figure 6-30 shows the seasonal TDV NGHGIF, profile for 2006. The highest emission

factors

TDV NGHGIF (g of CO2/XWh)
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Figure 6-29: Seasonal TDV emission factor profile for 2005

were In the summer during the afternoon and evening hours.
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Figure 6-30; Seasonal TDV emission factor profile for 2006
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Table 6-41 and Figure 6-31 show TDV emission factors for 2004, 2005, and 2006. Emission

factors were the highest in 2005 during the afternoon.

Table 6-41 shows the annual TDV emission factors. It can be observed that during the year
2006 at 4 p.m,, for one kWh produced or reduced the emissions will be 223.3 g of CO,,
while at 4 a.m. it would be 159.4 g of CO,, which shows a difference of 29% in just 12
hours. In addition, the maximum TDV values for years 2004, 2005, and 2006 occurred at 1
p-m. The corresponding 95% confidence interval was determined to be for each TDV hour

+11.68, £6.85, and +9.68 for the years 2004, 2005, and 2000, respectively.

Table 6-41: Annual TDV emission factor comparison for 2004-2006

Annual
TDV NGHGIF, (g of CO2/kWh)

Hour 2004 2005 2006
1 185.9 219.7 181.2
179.2 213.3 170.5

3 173.6 206.2 161.5
4 171.6 203.9 159.4
5 1771 209.1 167.9
6 192.5 216.8 178.3
7 210.7 223.7 191.5
8 227.8 236.7 2091
9 237.0 244.2 218.3
10 243.6 248.5 2231
11 248.1 251.5 227.3
12 251.1 253.6 229.5
13 253.0 255.6 229.9
14 252.0 255.2 228.7
15 249.7 2529 2254
16 248.4 249.3 223.3
17 247.8 248.3 223.7
18 246.5 249.6 224.9
19 244.3 248.6 2255
20 246.6 249.0 228.1
21 246.9 252.1 228.0
22 236.4 247.3 219.5
23 215.2 235.0 207.0
24 195.0 226.0 1914
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Figure 6-31: TDV emission factor profile comparison 2004-2006

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat
rate, TOU, and wholesale pricing schemes as illustrated in Table 6-42, Table 6-43, and Table
6-44. Cost factors were the highest during May for 2004 and 2005, and April for 2006 for the
flat rate electricity pricing scheme, TOU pricing scheme, and wholesale pricing scheme. It
should be noted that seasonal TDV cost factors did not vary as much in comparison to
monthly wvalues, thus it was determined that monthly values would give a better
representation of the cost factor potential to assign a monetary value on greenhouse gases

from the electricity generation sectot.
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Table 6-42: Average GHG cost factors using flat rate pricing scheme 2004-2006

TDV NGHGCFaelec, flat ($/kg of CO2)
Month 2004 2005 2006
Jan 0.372 0.467 0.494
Feb 0.397 0.452 0.523
Mar 0.495 0.443 0.587
Apr 0.660 0.497 1.037
May 0.916 0.606 0.686
Jun 0.811 0.464 0.482
Jul 0.777 0.444 0.459
Aug 0.709 0.417 0.524
Sep 0.599 0.468 0.614
Oct 0.405 0.547 0.579
Nov 0.443 0.543 0.553
Dec 0.525 0.507 0.507
Annual 0.592 0.488 0.587

Table 6-43: Average GHG cost factors using TOU pricing scheme 2004-2006

TDV NGHGCF, ¢jec, Tou ($/kg of CO2)
Month 2004 2005 2006
Jan 0.363 0.448 0.481
Feb 0.391 0.446 0.522
Mar 0.490 0.439 0.579
Apr 0.613 0.492 0.974
May 0.818 0.571 0.646
Jun 0.748 0.451 0.453
Jul 0.712 0.423 0.440
Aug 0.649 0.409 0.503
Sep 0.555 0.453 0.566
Oct 0.383 0.507 0.540
Nov 0.437 0.535 0.543
Dec 0.526 0.495 0.497
Annual 0.557 0.473 0.562
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Table 6-44: Average GHG cost factors using wholesale pricing scheme 2004-2006

TDV NGHGCF. elec, wholesale ($/kg of CO2)
Month 2004 2005 2006
Jan 0.233 0.245 0.259
Feb 0.203 0.219 0.242
Mar 0.228 0.262 0.274
Apr 0.274 0.294 0.353
May 0.349 0.296 0.286
Jun 0.312 0.272 0.210
Jul 0.294 0.315 0.210
Aug 0.260 0.347 0.251
Sep 0.256 0.408 0.191
Oct 0.189 0.364 0.212
Nov 0.218 0.296 0.255
Dec 0.252 0.363 0.187
Annual 0.256 0.307 0.244

6.5.2 Annual Peak Day GHG Analysis for 2004, 2005, and 2006

As illustrated in Table 6-45 CO, emissions were highest duting the peak winter day for 2004.

CO, emissions decreased by 38% in the spring, increased by 11% in the summer and

decreased by 22% in the fall.

Table 6-45: CO, Emissions during seasonal peak days for 2004

2004 Emissions (kt)
Winter 171
Spring 106

Summer 119
Fall 93

Figure 6-32 shows the seasonal emission factor profiles for 2004. Emission factors were

highest during the winter.
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Figure 6-32: Hourly seasonal emission factors during peak days for 2004

As illustrated in Table 6-46 CO, emissions were highest during the peak spring day for 2005.

CO, emissions increased by 4% in the spring, decreased by 5.6% in the summer and

PO

remained approximately the same in the fall.

Table 6-46: CO; emissions during seasonal peak days for 2005

2005 Emissions (kt)
Winter 137
Spring 143

Summer 135
Fall 134

Figure 6-33 shows the seasonal emission factor profiles for 2005. Emission factors were

highest during the spring.
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Figure 6-33: Hourly seasonal emission factors during peak days for 2005
|
As illustrated in Table 6-47 CO, emissions were highest during the peak summer day for o

2006. CO, emissions decreased by 27% in the spring, increased by 37% in the summer and

decreased by approximately the same in the fall. ;

Table 6-47: CO; emissions during seasonal peak days for 2006

2006 Emissions (kt)
Winter 131
Spring 96

Summer 153
Fall 97

Figure 6-34 shows the seasonal emission factor profiles for 2006. Emission factors were

highest during the morning in the winter and afternoon in the summer.

113




AMYUEIT ALISHIAING NOSHIAN

G w mEioe

—€—Dec 21 ——May 29

Augl —¥—Dec?7

350

300

3
o
o

TR T

,-»/)‘\"””‘X-\..;\ v X,,»X\%,/y\

g

150

Emission Factor {g of CO2/kWh)

prs
[
o

50

T e u T ™ u T T

3 4 5 6 7 8 9 10 11 12 13
Time (hr)

Y

14

15

u T T * u

6 17 18 19 20 21 22

Figure 6-34: Hourly seasonal emission factors during peak days for 2006

T

23 24

The next chapter shows three case studies using the emission factors developed in this

chapter.

114



7 Test-Case Scenarios

7.1 Introduction

In recent years, the cotrelation between increasing greenhouse gas (GHG) emissions,
resulting from humankind’s unwavering demand for energy, and global climate change has
been the subject of worldwide concern. While much of the science behind climatic shifts
remains unexplained, it has become increasingly difficult to distegard the reductions of
GHG achievable through utilization of renewable energy technologies. The offset cyclical
relationship, daily and yearly, between electricity generated by a photovoltaic (PV) system, its
solar source, and varying electrical demand is commonly considered unfavourable. However
the alignment between off-peak residential demand and high solar availability suitable for PV
generation presents a possibly lucrative opportunity. An Ontatio government initiative offers
compensation in the form of 42 cents/kWh to PV generated electricity supplied to the grid.
This thesis will investigate a residential PV and a micro-wind turbine system for compatison,
to determine both the economic feasibility and GHG reduction potential in the Province of
Ontario by employing the model of a test-case model house in Toronto, using building

energy simulation software. All test cases are described in Section 3.8.

The estimates for GHG emission reductions from three scenarios presented in this chapter
illustrate the impact on the use of the different GHG emission factors developed in Chapter
6. Depending on which emission factor is used the actual GHG emissions can vary

considerably.

7.2 Electricity Generation

7.2.1 Case Study 1

The electricity generated by the PV and micro-wind turbine simulations performed for the
entire year is shown in Figure 7-1 and Figure 7-2 (Syed et al., 2007). Cleatly PV output is the

highest during eatly summer and micro-wind during early spring.
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Figure 7-1: PV output profile for test-case study 1 in Toronto
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Figure 7-2: Micro-wind turbine output profile for test-case study 1 in Toronto
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Table 7-1 shows the total electric power generated by PV and micro-wind turbine for the
entire year. It can be observed that PV generated 76% more electricity than micro-wind
turbine. It should be noted that the installed capacities for PV (5 kW) and micro-wind

tutbine (1 kW) are different. Therefore, the results are specific to this simulation only.

Table 7-1: Annual electricity generated by PV and micro-wind turbine for test-case study 1

Electricity Generated (kWh)
Photovoltaic Micro-Wind Turbine
7047 1686

Figure 7-3 shows the total monthly electric power generated by PV and micro-wind turbine.
Electricity generation was highest during July and December for PV and micro-wind turbine,
respectively. It should be noted that the results are highly dependent on the weather datain a

given simulation yeatr.
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Figure 7-3: Monthly electricity generated by PV and micro-wind turbine for test-case study 1
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7.2.2  Case Study 2

The electricity generated by the PV simulation performed for a typical summer and winter
week is illustrated in Figure 7-4 (Good et al,, 2006). It can be observed that PV output 1s
highest during the middle of the week in the summer. The results are specific to the weeks

in study.
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Figure 7-4: PV output profile for test-case study 2 in Ottawa

Table 7-2 shows the total electric power generated by PV for a typical summer and winter
week. It can be observed that PV in the summer generated 20% more electricity than in the

winter.

Table 7-2: Annual electricity generated by PV for test-case study 2

Photovoltaic
Electricity Generated (kWh)
Winter Summer

109 136

Figure 7-5 shows the total daily electric power generated by PV. Electricity generation was

highest on Wednesday and Monday for the summer and winter, respectively.
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Figure 7-5: Daily electricity generated by PV for test-case study 2

7.2.3 Case Study 3

The electricity generated by the PV simulation petformed for 2005 is illustrated in Figure 7-6
(Tse et al., 2008). It can be observed that PV output 1s highest during the summer.
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Figure 7-6: PV output profile for test-case study 3 in Toronto

119

)

4 351 701 1051 1401 1751 2101 2451 2801 3151 3501 3851 4201 4551 4901 5251 5601 5951 6301 6651 7001 7351 7701 8051 8401 8751




AUvagr) ALISHINING NOSHIAY

Table 7-3 shows the total electric power generated by PV for the entire year. It can be
observed that PV generated 7767 kWh during 2005 for the test-case townhouse located in

the Annex patt of Toronto.

Table 7-3: Total electricity generated by PV for test-case study 3

Photovoltaic
Electricity Generated (kWh)
7767

Figure 7-7 shows the total monthly electric power generated by the PV system for the year
2005. Electricity generation was the highest during July and throughout the summer.
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Figure 7-7: Monthly electricity generated by PV for test-case study 3
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7.3 GHG Analysis

In order to calculate the CO, emission reduction for the electricity generated by PV and
micro-wind technologies, electricity emission factors were developed in chapter 6. The CO,
emission reduction potential was calculated by multiplying the houtly electricity by the
different emission factors for the province as defined in equations 7.1, 7.2, 7.3, and 7.4. Four
estimates of the GHG emissions are given using the various intensity electricity emission

factors as discussed in chapter 3.

GHG  yoncir, = 3.|Generated,,,,,,, \NHGHGIF, )| [7.1]

el hourly

Whete,

GHG , yyGucir, = Annual GHG emission reduction using the new houtly emission

factor (g of CO))

Generated = Houtly electricity generated by renewable technology for test

el hourly
case house (kWh) p
NHGHGIF, = New Houtly Greenhouse Gas Intensity Factor (g CO,/kWh)

1

GHG,, syoncre, = Y. \\Generated, ., XSANGHGIF, ) 7.2)

Whete,
GHG,; svongir, = Annual GHG emission reductions using the seasonal average
emission factor (g of CO,)
Generated, ,,,,, = Houtly electricity generated by renewable technology for test
case house (kWh)
SANGHGIF, = Seasonal Average New Greenhouse Gas Intensity Factor (g
CO,/kWh)
GHG,1 yoncir, = 3. (Generated,;,,,,, XAANGHGIF, ) [7.3)
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Where,

Where,

GHG,, yuneugir, = Annual GHG emission reductions using the annual average

emission factor (g of CO,)

Generated = Houtly electricity generated by renewable technology for test

el hourly

case house (kWh)
AANGHGIF, = Annual Average New Greenhouse Gas Intensity Factor (g

CO,/kWh)

GHG,, rpynercir, = Z [(Gener ated ;.1 XTD VNGHGIF, )] [7.4]

GHG,, ipyneucir,, = Annual GHG emission reductions using the seasonal time

dependent valuation new greenhouse gas intensity factor (g CO,/kWh)

Generated = Hourly electricity generated by renewable technology for test

el howrly —

case house (kWh)
IDVNGHGIF ;= Seasonal Time Dependent Valuation New Gteenhouse Gas

Intensity Factor (g CO,/kWh)

7.3.1 Case Study 1

The total emission reductions by PV and micro-wind turbine using the new houtly emission

factor were:

PVGHG,, yygueir, = 1657 kg of CO,

Micro-wind tutbine GHG,; yy6ueir, = 376 kg of CO,

The total emission reductions by PV and micro-wind turbine using the seasonal average

emission factor were:

PV GHG,, gunoueir, = 1559 kg of CO,
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Micro-wind tutbine GHG,, ancrcie, — 305 kg of CO,

The total emission reductions by PV and micro-wind turbine using the annual average

emission factor were:

PV GHG,, suneir, = 1557 kg of CO,

Micro-wind tutbine GHG,, , avarcir, = 313 kg of CO,

The total emission reductions by PV and micro-wind turbine using the seasonal time

dependent valuation new greenhouse gas intensity factor were:

PV GHG,,, ppywarcir, = 1767 kg of CO,

Micro-wind tutbine GHG,, rpynoucir, = 403 kg of CO,

Table 7-4 summarizes the total emission reduction results by using the different emission
factots. The upper limit of CO, emission reduction was obtained by using the TDV emission
factor for both PV and micro-wind turbine. The lower limit was obtained by using the

annual and seasonal average emission factors for PV and micro-wind turbine, respectively.

Table 7-4: Emission reduction comparison for test-case study 1

Emission Factor Type Emission Reduction Potential (kg of CO2)
Photovoltaic Micro-Wind Turbine
Hourly 1657 376
Seasonal Average 1559 365
Annual Average : 1557 373
Seasonal TDV 1767 403

The potential reductions in CO, emissions using the seasonal average, annual average and
seasonal TDV emission factors compared to using hourly emission factor is shown in Table
7-5. It can be obsetrved that higher and lower emission reductions by PV and micro-wind
tutbine are obtained by using the seasonal TDV and annual average emission factor,

respectively.
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Table 7-5: Different emission factor types vs. hourly emission factor for test-case study 1

- % Difference
Emission Factor Type PV Wind
Seasonal Average -5.93 -2.92
Annual Average -6.05 -0.79
Seasonal TDV 6.62 7.18

Figure 7-8 shows the total monthly emission reduction potential by PV and micro-wind
turbine. Emission reductions were the highest in June for PV and December for micro-wind,

respectively. Conversely, the lowest emission reductions were during December and August
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Figure 7-8: Monthly emission reductions for PV and micro-wind turbine test-case study 1

7.3.2 Case Study 2

Similarly to Case Study 1 the total emission reductions by PV using the new hourly emission

factor for a typical summer and winter week were:
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Winter PV GHG.,, e, = 30 kg of CO,

Summer PV GHG, ;iyouqr, = 26 kg of CO,

The total emission reductions by PV using the seasonal average emission factor for a typical

summer and winter week were:

Winter PV GHGeI’SANGHG,FA =25 kg of CO,

Summer PV GHG, syou6r, = 24 kg of CO,

The total emission reductions by PV using the annual average emission factor for a typical

summer and winter week were:

Winter PV GHG,, yuwonir, = 21 kg of CO,

Summer PV GHG,; 44y, = 28 kg of CO,

The total emission reductions by PV using the seasonal time dependent valuation new

greenhouse gas intensity factor for a typical summer and winter week were:

Wintet PV GHG,, rpyneucir, = 27 kg of CO,

Summer PV GHG ,; rpyngueir, = 31 kg of CO,

Table 7-6 summarizes the total emission reduction results by using the different emission
factors. The upper limit of CO, emission reduction was obtained by using the hourly and
TDV emission factor for the winter and summer, respectively. The lower limit was obtained

by using the annual and seasonal average emission factors for the winter and summer,

respectively.
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Table 7-6: Emission reduction comparison for test-case study 2

Photovoltaic
Emission Factor Type | Emjssion Reduction Potential (kg of CO2)
Winter Summer
Hourly 30 26
Seasonal Average 25 24
Annual Average 21 28
Seasonal TDV 27 31

The potential reductions in CO, emissions using the seasonal average, annual average and
seasonal TDV emission factors compared to using houtly emission factor is shown in Table
7-7. It can be observed that for the winter week emission reductions are lower in
comparison to using houtly emission factors. As for the summer, higher and lower emission
reductions are obtained by using the seasonal TDV and seasonal average emission factor,
respectively. It should also be noted that during the summer the seasonal TDV emission
factor resulted in a positive value compared to the winter. This might be attributed to the

smaller period (one week) of this case study.

Table 7-7: Different emission factor types vs. hourly emission factor for test-case study 2

% Difference

Emission Factor Type | Winter | Summer
Seasonal Average -16.29 -9.11
Annual Average -31.33 8.65
Seasonal TDV -10.61 18.96

Figure 7-9 shows the total daily emission reduction potential by PV. Emission reductions
were the highest on Monday and Wednesday for winter and summer, respectively.
Conversely, the lowest emission reductions were on Saturday and Monday for winter and

summer, respectively.
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Figure 7-9: Daily emission reductions for PV test-case study 2

7.3.3 Case Study 3

Similarly to Case Study 2 the total emission reductions by PV using the new hourly emission

factor were:

PV GHG,; yorir, = 1856 kg of CO,

The total emission reductions by PV using the seasonal average emission factor were:

PVGHG,, singrcir, = 1727 kg of CO,

The total emission reductions by PV using the annual average emission factor wete:

PVGHG,; ynercir, = 1716 kg of CO,
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The total emission reductions by PV using the seasonal time dependent valuation new

greenhouse gas intensity factor were:

Winter PV GHG,,; 1pynucir, = 1974 kg of CO,

Table 7-8 summatizes the total emission reduction results by using the different emission
factors. The upper limit of CO, emission reduction was obtained by using the TDV emission

factor and the lower limit was obtained by using the annual average emission factor.

Table 7-8: Emission reduction comparison for test-case study 3

Photovoltaic

Emission Factor Type —
Emission Reduction Potential (kg of CO2)

Hourly 1856
Seasonal Average 1727
Annual Average 1716
Seasonal TDV 1974

The potential reductions in CO, emissions using the seasonal average, annual average and
seasonal TDV emission factors compared to using hourly emission factor is shown in Table
7-9. It can be observed that higher and lower emission reductions are obtained by using the

seasonal TDV and annual average emission factor, respectively.

Table 7-9: Different emission factor types vs. hourly emission factor for test-case study 3

Emission Factor Type | % Difference
Seasonal Average -6.97
Annual Average -7.54
Seasonal TDV 6.36

Figure 7-10 shows the total daily emission reduction potential by PV. Emission reductions

were the highest in June and July and the lowest in November and December.
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Figure 7-10: Monthly emission reductions for PV test-case study 3
7.4 Revenue Generated by Test-Cases

The credit of selling all of the PV and micro-wind turbine generated electricity to the local ;

grid is calculated by using the Province of Ontario initiative price plan to pay 42 cent/kWh.

; It should be noted that micro-wind turbine revenue from the above government incentive
’ was hypothetically explored in order to compare the revenue generated between the two

! technologies.

7.4.1 Case Study 1

The total revenue generated by PV and micro-wind turbine is shown in Table 7-10. It can be
observed that PV generated an additional 76% compared to micro-wind turbine. It should
be noted that the capacities for the PV (5 kW) and micro-wind turbine (1 kW) are different

and there the results are specific to this case only.

Table 7-10: Revenue generated from PV and micro-wind turbine technologies for case-study 1

Revenue Generated (CADS$)

Photovoltaic Micro-Wind Turbine

2960 708
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7.4.2 Case Study 2

The total revenue generated by PV for winter and summer weeks is shown in Table 7-11. It

can be observed that an additional 16 CAD was generated during the summer.

Table 7-11: Revenue generated from PV for case-study 2

Photovoltaic
Revenue Generated (CADS)
Winter Summer
41 57

7.4.3 Case Study 3

The total revenue generated by PV is shown in Table 7-12. It can be observed that PV
generated 3262 CAD during 2005 for the test-case townhouse located in the Annex district

of Totonto.
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Table 7-12: Revenue generated from PV for case-study 3

Photovoltaic

Revenue Generated (CAD$)

3262

7.5 Greenhouse Gas Cost Factor Analysis

Greenhouse Gas Cost Factors NGHGCF,) were developed in order to place a monetary
value on emissions from the electricity generation sector as discussed in chapter 6. The cost
of emissions was determined using a flat rate, time-of-use, and wholesale price scheme in
order to provide flexibility for the user to assign either a charge or rebate for the cost of
emissions to the appropriate sector. The cost of emissions was calculated by multiplying the
houtly emission reduction values from renewable technologies by the different emission cost
factors for the province as defined in equations 7.5, 7.6, 7.7, 7.8, 7.9, and 7.10. Two
estimates of the cost of emissions are given using the various emission cost factor

methodology as discussed in chapter 3.
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Where,

Whete,

Where,

GH GCel HGHGCF, g = z [(ERem.hourIy XH GH GCF, ele, flat )] [75]

GHGC,, HGHGCE,, ,, — ‘innual cost of emissions using the hourly emission cost factor

for the flat rate pricing scheme (CADS$)

ER,,, 0w, = Houtly emission reduction by renewable technology for test case house

(g of COy

HGHGCF,, ;, = Houtly Greenhouse Gas Cost Factor using flat rate pricing
scheme (CAD$/g of CO,)

GHGCeI,TDVGHGCF,,'ﬂ,,, = z [(ERem.hourly XTD VGHGCFeIe.ﬂat )] [76]
GHGC , ;pyenoer, . = Annual cost of emissions using the seasonal time dependent

el, flat

valuation emission cost factor for the flat rate pricing scheme (CAD$)

ER

emiourty — Floutly emission reduction by renewable technology for test case house

(g of COy)
TDVHGHGCF,, ;, = Monthly Time Dependent Valuation Houtly Greenhouse

Gas Cost Factor using flat rate pricing scheme (CAD$/g of CO,)

GHGC, yeuer, = Z [(ERem,lxourly XH GHGCF, roy )] [7.7]

el , TOU

GHGC, yorocr, ,, — Annual cost of emissions using the houtly emission cost

factor for the TOU pricing scheme (CADS)
ER

emsouny — Houtly emission reduction by renewable technology for test case house

(g of CO,)
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Where,

Where,

HGHGCF,, o, = Houtly Greenhouse Gas Cost Factor using TOU pricing scheme

(CAD$/g of CO,)
GH GCeI.TDVGHGCF,,’mU = Z [(ERem.hourly XTD VGHGCF,, 1oy )] [7.8]
GHGC,, 1pyeracr, ,,, = AAnnual cost of emissions using the seasonal time dependent

valuation emission cost factor for the TOU pricing scheme (CADS$)

ER

emiowy = Houtly emission reduction by renewable technology for test case house

(g of COy)
TDVHGHGCF,, ;,, = Monthly Time Dependent Valuation Greenhouse Gas Cost

Factor using TOU pricing scheme (CAD$/g of CO,)

GH GCeI,HGHGCF,,,W,n,m,, = Z[(ERem,hourly XHGHGCF ele Wholesale )] [79]
GHGC.,, yenocr = Annual cost of emissions using the houtly emission cost

el Wholesale

factor for the wholesale pricing scheme (CAD$)

ER,, ;ou, = Houtly emission reduction by renewable technology for test case house
(g of COy)
HGHGCEF,,, ,joiesae = Houtly Greenhouse Gas Cost Factor using wholesale pricing

scheme (CAD$/g of CO)

GH GCeI,TDVGHGCFe,M,m‘, = Z [(ERem,hourIy XTD VGHGCF,, yhotesate )] [7.10]
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Where,

GHGCe,‘TD,,GHGCFd,Wm = Annual cost of emissions using the seasonal time

dependent valuation emission cost factor for the wholesale pricing scheme (CADS$)
ER,, 00y = Houtly emission reduction by renewable technology for test case house
(g of COy

TDVHGHGCF,,, s = Monthly Time Dependent Valuation Greenhouse Gas

Cost Factor using wholesale pricing scheme (CAD$/g of CO,)

7.5.1 Case Study 1

The total emission costs by PV and micro-wind turbine using the hourly emission cost factor

for the flat rate pricing scheme were:

PVGHGC, yoroer, ,, = 705 CADS

Micto-wind turbine GHGC, yopqcr, , = 169 CADS

The total emission costs by PV and micro-wind turbine using the monthly time dependent :

valuation greenhouse gas cost factor for the flat rate pricing scheme were: i

PV GHGC, rpyenoer, ,, = 729 CADS

Micro-wind turbine GHGC.,, rpyenocr. . = 178 CADS

el, flat

The total emission costs by PV and micro-wind turbine using the houtly emission cost factor

for the TOU pricing scheme were:

PVGHGC,, yancer, , = 805 CADS

Micro-wind tutbine GHGC,; HGHGCEy roy — 179 CADS$

The total emission costs by PV and micro-wind turbine using the monthly time dependent

valuation greenhouse gas cost factor for the TOU pricing scheme were:
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PV GHGC,, rpyencer. ... = 818 CADS

el ,TOU

Micro-wind turbine GHGC,, rpy616cr, ,,, = 181 CAD$

The total emission costs by PV and micro-wind turbine using the houtly emission cost factor

for the wholesale pricing scheme were:

PV GHGC, yorocr, . = 583 CADS

Micro-wind turbine GHGC,,, ,;c6cr =117 CADS$

el ,Wholesale

The total emission costs by PV and micro-wind turbine using the monthly time dependent

valuation greenhouse gas cost factor for the wholesale pricing scheme were:

PVGHGC,; mpygrcer, e — 085 CADS
Micro-wind turbine GHGC,, pyeueer, .., = 117 CAD$

Table 7-13 and Table 7-14 summarize the total emission cost results by using the different
pricing schemes and emission cost factors. Since PV and micro-wind turbine are renewable
technologies, the emission cost becomes an emission rebate. Depending on which pricing
scheme is used the rebate may vary. The maximum emission rebate was obtained by using
the TOU pricing scheme for both PV and micro-wind tutbine. The minimum emission
rebate was obtained by using the wholesale pricing scheme for electricity. It should be noted

that using TDV emission cost factor resulted in a higher emission rebate.

Table 7-13: Hourly emissions cost comparison using the different pricing schemes test-case study 1

Hourly NGHGCF,(CADS$)
Technology Type
elec, flat | elec, TOU | elec, wholesale
PV 705 805 583
Micro-Wind Turbine 169 179 117
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Table 7-14: TDV emissions cost comparison using the different pricing schemes test-case study 1

TDV NGH
Technology Type GCF4(CADS)
elec, flat | elec, TOU elec, wholesale
PV 729 818 585
Micro-Wind-Turbine 178 181 117

Figure 7-11 shows the total monthly emission rebate by PV and micro-wind turbine using
the TOU pricing scheme. Emission rebates wete the highest in June for PV and December
for micro-wind turbine, respectively. Conversely, the lowest emission rebates were during
December and August for PV and micro-wind turbine, respectively.

|
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Figure 7-11: Monthly emission cost for PV and micro-wind turbine test-case study 1

7.5.2 Case Study 2

The total emission costs by PV using the houtly emission cost factor for the flat rate pricing

scheme were:

Winter PV GHGC, yapacr, ,, = 9-86 CADS

Summer PV GHGC, yopqcr, ,, = 13-58 CADS
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The total emission costs by PV using the monthly time dependent valuation greenhouse gas

cost factor for the flat rate pricing scheme were:

Wintet PV GHGC,, mygnger, ,, = 11.01 CADS§

Summer PV GHGC,, rpyopger, ,, = 1414 CADS

The total emission costs by PV using the hourly emission cost factor for the TOU pricing

scheme were:

Winter PV GHGC,, yonocr, ., = 11.06 CADS$

Summer PVGHGC,, youger, ,,, = 15-01 CAD$

The total emission costs by PV using the monthly time dependent valuation greenhouse gas

cost factor for the TOU pricing scheme were:

Winter PV GHGC,,, rpyenocr. . = 11.41 CADS

el, TOU

Summer PV GHGC,; rpypger, ,,, = 1480 CAD$

The total emission costs by PV using the hourly emission cost factor for the wholesale

pricing scheme were:

Winter PV GHGC,, yoecr, ... = 1-87 CADS
Summer PV GHGCe,’HGHGCFd e = 7.63 CADS$

The total emission costs by PV using the monthly time dependent valuation greenhouse gas

cost factor for the wholesale pricing scheme were:

Wintet PV GHGC,, 1py66er, ..., = 1-85 CAD$
Summet PV GHGC,; rpyeacr, .. = 1-56 CADS
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Table 7-15 and Table 7-14 summarize the total emission cost results by using the different
pricing schemes and emission cost factors. Since PV is a renewable technology, the emission
cost becomes an emission rebate. Depending on which pricing scheme is used the rebate
may vary. The maximum emission rebate was obtained by using the TOU pricing scheme.
The minimum emission rebate was obtained by using the wholesale pricing scheme for
electricity. It should be noted that using TDV emission cost factor resulted in a higher
emission rebate and that since the simulation results were for one week only the difference

between pricing schemes is smaller in compatison to total yeatly values.

Table 7-15: Hourly emissions cost comparison using the different pricing schemes test-case study 2

Hourly NGHGCF,(CAD$)
Technology Type
elec, flat elec, TOU elec, wholesale
Jan9-15 0.86 11.06 7.87
July 11 -17 13.58 15.01 7.63

Table 7-16: TDV emissions cost comparison using the different pricing schemes test-case study 2

Technology Type TDV NGHGCF,(CADS$)
elec, flat elec, TOU elec, wholesale
Jan9-15 11.01 11.41 7.85
July 11-17 14.14 14.80 7.56

Figure 7-12 shows the total daily emission rebate by PV using the TOU pricing scheme.
Emission rebates were the highest on Monday and Thursday during the winter and on
Wednesday during the summer. Conversely, the lowest emission rebates were on Saturday

and Monday during the winter and summer weeks, respectively.
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Figure 7-12: Daily emission cost for PV test-case study 2

7.5.3 Case Study 3

The total emission costs by PV using the hourly emission cost factor for the flat rate pricing

scheme were:

PV GHGC,, ypqcr, ,, = 777 CADS

The total emission costs by PV using the monthly time dependent valuation greenhouse gas

cost factor for the flat rate pricing scheme were:

PV GHGC , mpyener, ,, = 800 CADS

The total emission costs by PV using the hourly emission cost factor for the TOU pricing

scheme were:

PV GHGC,, yonocr, ., = 898 CADS
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The total emission costs by PV using the monthly time dependent valuation greenhouse gas

cost factor for the TOU pricing scheme were:

PV GHGC, yerccr, , = 908 CADS

The total emission costs by PV using the hourly emission cost factor for the wholesale

pricing scheme were:

PVGHGC,, yoccr, .., = 685 CAD$

The total emission costs by PV using the monthly time dependent valuation greenhouse gas

cost factor for the wholesale pricing scheme were:

PVGHGC, yoacr, . = 677 CADS

Table 7-17 and Table 7-18 summarize the total emission cost results by using the different
pricing schemes and emission cost factors. Since PV is a renewable technology and does not
emit any emissions, the emission cost becomes an emission rebate. Depending on which
pricing scheme is used the rebate may vary. The maximum emission rebate was again
obtained by using the TOU pricing scheme for PV. The minimum emission rebate was again
obtained by using the wholesale pricing scheme for electricity. It should be noted that using

TDYV emission cost factor resulted in a higher emission rebate.

Table 7-17: Hourly emissions cost comparison using the different pricing schemes test-case study 3

Hourly NGHGCF,(CADS$)
Technology Type
elec, flat | elec, TOU | elec, wholesale
PV 777 898 685

Table 7-18: TDV emissions cost comparison using the different pricing schemes test-case study 3

. . TDV NGHGCF,(CADS$)
hnol e
ec ey yp elec, flat | elec, TOU | elec, wholesale
=Y, 800 908 677

139



Figure 7-13 shows the total monthly emission rebate by PV using the TOU pricing scheme.
Emission rebates wete the highest in June for PV. Conversely, the lowest emission rebates

were during December.
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Figure 7-13: Monthly emission cost for PV and micro-wind turbine test-case study 3
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In conclusion, all three case studies demonstrated that the TDV emission cost factor placed
a higher monetary value on emissions and that the wholesale emission cost placed a lower
monetary value. Depending on whether the emissions are generated or reduced the emission
cost value can be either a levy on emitters or a rebate for reducers of greenhouse gases. It
should be noted that by employing the aforementioned methodology more people will invest

in renewable technologies for their homes.

The next chapter will show the results associated with the neural network models.
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8 Neural Network Results

8.1 Overview

In this chapter, an evaluation of the NN models developed in this study will be conducted
by comparing their predicting performance with actual data, as well as comparing their

estimates with each other. Compatrisons are carried out for the following networks:

¢ Hourly electricity demand
® DPercentage mix from generation type (methodology 1)

¢ Hourly Emission Factor (methodology 2)

8.2 Houtly Electricity Demand Forecasting

The performance of the developed NN model for load forecasting has been tested using the
actual load (IESO, 2006) and weather data (Environment Canada, 2004) (for the year 2004)
for Toronto. The results are presented in Table 8-1. The R? and correlation values for the
training, validation, and testing data are close to 1 which is a good performance indicator of

the network.

Table 8-1: Prediction performance of NN model - load forecasting

Subset R? Correlation
Training 0.962 0.981
Validation | 0.952 0.977
Testing 0.954 0.978

The correlation of a network is a statistical measure of strength of the relationship between
the actual values and network outputs. The correlation coefficient can range from -1 to +1.
The closer it is to 1, the stronger the positive relationship, and the closer it is to -1, the
stronger the negative relationship. It should be noted that when the correlation coefficient is

near 0 there is no relationship.
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The estimates for the NN models are plotted along with the actual electricity demand data
for Ontario as shown in Figures C-1 to C-3 in Appendix C. The NN model was able to
predict the houtly electricity demand of most hours for 2004. When the inputs were
examined, it was found that most of the predicted values where close to their corresponding

values in the testing dataset.

The etror distribution for the network is shown in Figure 8-1. It can be observed that the
majority of the errors are lower than 1300 MWh. These errors are small when compared to

the electricity demand for a typical day in the Province of Ontario is 23000 MWh.

Error Digtribution
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Figure 8-1: Error distribution for the load forecasting NN

The importance of the types of inputs for the network is illustrated in Figure 8-2. Several
input categories have a significant effect on the electricity demand for the Province of
Ontario. It can be observed that the electricity demand is heavily dependent on the month

which 1s directly related to weather.
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Figure 8-2: Input importance percentage for the load forecasting NN

The statistical results are presented in Table 8-2 for the training, validation and testing
subsets. Given the MAPE values, the factors affecting the electricity demand are closely
represented by the inputs selected in Chapter 4. The validation and testing subsets have the
highest value of MAPE with 2.37%, whereas the training subset has the lowest with 2.12%.
The definition of MAPE can be found in Appendix A.

Table 8-2: NN load forecasting statistics

MAPE (%)
Training Validation | Testing
Mean 2.12 2.37 2.37
Std Dev 1.83 2.08 2.01
Min 0.00002 0.00030 0.00004
Max 22.40 18.19 20.76

8.2.1 Test Case Using Load Forecasting NN Model
In this case, the target is to predict the hourly peak load for each season for 2005. The NN

model was developed using data from 2004 and as shown above it could predict the hourly
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electricity demand accurately with an average MAPE of 2.12%. Load and weather data for
2005 was divided into winter, spring, summer, and fall in order to compare the NN
predictive performance across the seasons. Table 8-3 shows the average MAPE values for
2005. The highest MAPE value occurred in the summer which indicates loads during the
summer fluctuate a lot more than the other seasons. The lowest MAPE values occurred
during the winter and fall which demonstrates that there is less fluctuation in temperature
during the winter and fall. The seasonal MAPE profiles for the test case are presented in

Figures C-4 to C-7 in Appendix C.

Table 8-3: Average MAPE values for test case - 2005

2005
Season MAPE (%)
Winter 3.24
Spring 4.83
Summer 7.27
Fall 3.26
Average 4.65

The NN model which was trained using 2004 load and weather data continued to be quite
accurate for 2005. It was observed that the winter months were easier to predict and summer
months were the hardest. Yearly retraining of the NN should improve the predictive

performance.

8.3 Houtly Percentage Mix from Generation Sources NN Model

The houtly percentage mix NN was developed by creating four models due to the

complexity and difficulty in developing a multiple output model and software limitations.

8.3.1 Percentage Nuclear NN

The performance of the developed NN model for percentage nuclear forecasting is
presented in Table 8-4. The R? and correlation values for the training, validation, and testing

data were close to 1 which is a good performance indicator of the network.
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Table 8-4: Prediction performance of NN model - % nuclear

Subset R* | Correlation
Training 0.967 0.984
Validation | 0.967 0.984
Testing 0.966 0.984

The estimates for the NN models are plotted along with the percentage nuclear data for
Ontario as shown in Figures C-8 to C-10 in Appendix C. The NN model was able to predict
the percentage share from nuclear most hours for the year 2005. When the inputs were
examined, it was found that most of the predicted values where close to their corresponding

values in the testing dataset.

The error distribution for the network is shown in Figure 8-3. It can be observed that the
majotity of the errors are lower than 3.5%. These errors are small when compared to the

petcentage share from nuclear for a typical day in the Province of Ontario which is

approximately 50%.
Error Distrbution
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Figure 8-3: Error distribution for the % nuclear NN

The importance of the types of iniauts for the network is illustrated in Figure 8-4. Several
input categoties have a significant effect on the percentage share of nuclear. It can be
observed that the percentage share from nuclear is heavily dependent on the dew point
temperature on the far right of the figure, as well as the month, temperature and the

electricity generated in the province. It should be noted that the hour had no significant

effect on the network. This was identified in Chapter 4.
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Figure 8-4: Input importance percentage for the % nuclear NN

The statistical results are presented in Table 8-5 for the training, validation and testing
subsets. This NN model is very accurate given the MAPE values, the factors affecting the
percentage share from nuclear ate closely represented by the inputs selected in Chapter 4.
The validation and testing subsets have the highest values for the MAPE of 1.95% and
1.92%, respectively, whereas the training subset has the lowest value of 1.90%. The

maximum MAPE value was the highest in the validation subset.

Table 8-5: NN % nuclear training statistics

MAPE (%)
Training Validation | Testing
Mean 1.90 1.95 1.92
Std Dev 1.78 1.77 1.83
Min 0.0007 0.001 0.0008
Max 23.65 14.90 14.51
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8.3.1.1 Test Case Using Percent Nuclear NN Model

In this case, the target is to predict the percent share from nuclear for each season for 2006.
The NN model was developed using data from 2005 and as shown above it could predict
the percent share from nuclear accurately with an average MAPE of 1.90%. Percent share
from power generation and weather data for 2006 was divided into winter, spting, summet,
and fall in order to compare the NN predictive petformance across the seasons for the year
2006. Table 8-6 shows the average MAPE values for 2006. The highest MAPE value
occurred in the spring which indicates that the percent shate from nuclear during the spring
fluctuates considerably in comparison to the other seasons. The lowest MAPE values
occurred during the winter, summer and fall. The high MAPE value for the spring could be
attributed to either weather variability or inability to predict within accuracy during that
season. The seasonal MAPE profiles for the test case are presented in Figures C-11 to C14
in Appendix C.

Table 8-6: Average MAPE values for test case - 2006

2006
Season MAPE (%)
Winter 8.60
Spring 21.38
Summer 8.50
Fall 8.14
Average 11.66

The NN model which was trained using 2005 data was not as accurate for 2006. It was
observed that the winter, summer, and fall months were easier to predict with a ‘MAPE of
approximately 8% and the spring was considered to be the hardest season to predict due to
its high MAPE value of 21.38%. This high MAPE could be explained by unusual
temperature changes. However the average MAPE for the entire year was 11.66%. Yearly

retraining of the NN should improve the predictive performance.

8.3.2 Percentage Hydro NN

The petformance of the developed NN model for percentage hydro forecasting is presented
in Table 8-7. The R? and correlation values for the training, validation, and testing data were

really close to 1 which is a good performance indicator of the network.
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Table 8-7: Prediction performance of NN model - % hydro

Subset R? Correlation

Training 0.933 0.968
Validation | 0.915 0.959

Testing 0.920 0.962

The estimates for the NN models are plotted along with the percentage hydro data for
Ontario as shown in Figure C-15 to C-17 in Appendix C. The NN model was able to predict
the percentage share from hydro for most hours for the year 2005. When the inputs were
examined, it was found that most of the predicted values where close to their corresponding

values 1n the testing dataset.

The error distribution for the network is shown in Figure 8-5. It can be observed that the

majority of the errors are lower than 3.5%.
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Figure 8-5: Error distribution for the % hydro NN

The importance of the types of inputs for the network is illustrated in Figure 8-6. Several
input categoties have a significant effect on the percentage share of hydro. It can be
observed that the percentage share from hydro is heavily dependent on the dew point
temperature, the month, and the relative humidity on the left of the figure. It should be
noted that the other inputs had a relatively smaller effect on the predicting power of the

network. This clearly indicates that hydro is highly dependent on the weather.
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Figure 8-6: Input importance percentage for the % hydro NN

The statistical results are presented in Table 8-8 for the training, validation and testing
subsets. This NN model is very accurate given the MAPE values, the factors affecting the
petcentage share from hydro are closely represented by the inputs selected in Chapter 4. The
validation and testing subsets have the highest values for the MAPE of 5.81% and 5.78%,

respectively, whereas the training subset has the lowest value of 5.23%. The maximum

MAPE value was the highest in the validation subset.

Table 8-8: NN % hydro training statistics

MAPE (%)
Training Validation | Testing
Mean 5.23 5.81 5.78
Std Dev 4.79 5.51 5.29
Min 0.0013 0.0031 0.0060
Max 53.74 52.63 45.28
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8.3.2.1 Test Case Using Percent Hydro NN Model

In this case, the target is to predict the percent share from hydro for each season for 2006.
The NN model was developed using data from 2005 and as shown above it could predict
the percent share from hydro accurately with an average MAPE of 5.23%. Percent share
from power generation and weather data for 2006 was divided into winter, spring, summer,
and fall in order to compare the NN predictive performance across the seasons for the year
2006. Table 8-9 shows the average MAPE values for 2006. The highest MAPE value
occurred in the fall which indicates that the percent share from hydro during the fall
fluctuates considerably in comparison to the other seasons. The lowest MAPE value
occurred during the winter. The seasonal MAPE profiles for the test case are presented in

Figures C-18 to C-21 in Appendix C.

Table 8-9: Average MAPE values for % hydro test case - 2006

2006
Season MAPE (%)
Winter 8.67
Spring 9.62
Summer 11.03
Fall 12.23
Average 10.39

The NN model which was trained using 2005 data was not as accurate for 2006. The NN
models developed are for short term forecasting only. However, it was observed that long
term forecasting for the winter had the lowest MAPE of 8.67% in 2006. In addition, the
spring and summer months tesulted in 2 MAPE of 9.62% and 11.03%, respectively. In
addition, the fall was considered to be the hardest season to predict due to its high MAPE
value of 12.23%. However the average MAPE for the entite year was 10.39%. Yeatly

retraining of the NN should improve the predictive performance.

8.3.3 DPercentage Coal NN

The performance of the developed NN model for percentage coal forecasting is presented in
Table 8-10. The R* and cotrelation values for the training, validation, and testing data were

really close to 1 which is a good petformance indicator of the network.
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Table 8-10: Prediction performance of NN model - % coal

Subset R? | Correlation
Training 0.938 0.970
Validation | 0.934 0.968
Testing 0.931 0.966

The estimates for the NN models are plotted along with the percentage coal data for
Ontatio as shown in Figures C-22 to C-24 in Appendix C. The NN model was able to
predict the percentage share from coal most hours for the year 2005. When the inputs were
examined, it was found that most of the predicted values where close to their corresponding

values in the testing dataset.

The error distribution for the network is shown in Figure 8-7. It can be observed that the

majority of the errors are lower than 4.6%.
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Figure 8-7: Error distribution for the % coal NN

The importance of the types of inputs for the network is illustrated in Figure 8-8. Several
input categories have a significant effect on the percentage share of coal. It can be observed
that the percentage share from coal is heavily dependent on the percentage share from
Hydro on the far left of the figure, as well as percentage share from nuclear. It should be
noted that the other inputs had little effect on the predicting power of the network. This

clearly indicates that the electricity market regulators attempt to use hydro and nuclear

before using coal.
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Figure 8-8: Input importance percentage for the % coal NN

The statistical results are presented in Table 8-11 for the training, validation and testing
subsets. This NN model is very accurate given the MAPE values, the factors affecting the
percentage share from coal are closely represented by the inputs selected in Chapter 4. The
validation and testing subsets have the highest values for the MAPE of 4.71% and 4.64%,
respectively, whereas the training subset has the lowest value of 4.45%. The maximum

MAPE value was the highest in the validation subset.

Table 8-11: NN % coal training statistics

MAPE (%)
Training Validation | Testing
Mean 4.45 4.71 4.64
Std Dev 4.15 4.35 4.29
Min 0.0005 0.0027 0.0043
Max 48.91 40.23 37.51
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8.3.3.1 Test Case Using Percent Coal NN Model

In this case, the target is to predict the percent share from coal for each season for 2006.
The NN model was developed using data from 2005 and as shown above it could predict
the percent share from coal accurately with an average MAPE of 4.45%. Petcent share from
power generation and weather data for 2006 was divided into winter, spring, summer, and
fall in order to compare the NN predictive performance across the seasons for the year
2006. Table 8-12 shows the average MAPE values for 2006. The highest MAPE value
occurred in the winter which indicates that the percent share from coal during the winter
fluctuates considerably in compatison to the other seasons. The lowest MAPE value
occurred during the summer. The seasonal MAPE profiles for the test case are presented in

Figures C-25 to C-28 in Appendix C.

Table 8-12: Average MAPE values for % coal test case - 2006

2006
Season MAPE (%)
Winter 13.53
Spring 12.84
Summer 7.23
Fall 12.87
Average 11.62

The NN model which was trained using 2005 data was not as accurate for 2006. The NN
models developed are for short term forecasting only. However, it was observed that long
term forecasting for the summer had the highest MAPE of 7.23% in 2006. In addition, the
spring and fall months resulted in a2 MAPE of approximately 12.8% and the winter was
considered to be the hardest season to predict due to its high MAPE value of 13.53%.
However the average MAPE for the entire year was 11.62%. Yearly retraining of the NN

should improve the predictive performance.

8.3.4 Percentage Other NN

The performance of the developed NN model for percentage other forecasting is presented
in Table 8-13. The R? and correlation values for the training, validation, and testing data were
approximately 80% and 90%, respectively. It should be recognized that the percent share

from “other” is difficult to predict since it is dependent on the market.
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8.3.3.1 Test Case Using Percent Coal NN Model

In this case, the target is to predict the percent share from coal for each season for 2006.
The NN model was developed using data from 2005 and as shown above it could predict
the percent share from coal accurately with an average MAPE of 4.45%. Petcent share from
power generation and weather data for 2006 was divided into winter, spring, summer, and
fall in order to compare the NN predictive performance across the seasons for the year
2006. Table 8-12 shows the average MAPE values for 2006. The highest MAPE value
occurred in the winter which indicates that the percent share from coal during the winter
fluctuates considerably in comparison to the other seasons. The lowest MAPE value
occurred during the summer. The seasonal MAPE profiles for the test case are presented in

Figures C-25 to C-28 in Appendix C.

Table 8-12: Average MAPE values for % coal test case - 2006

2006
Season MAPE (%)
Winter 13.53
Spring 12.84
Summer 7.23
Fall 12.87
Average 11.62

The NN model which was trained using 2005 data was not as accurate for 2006. The NN
models developed ate for short term forecasting only. Howevet, it was observed that long
term forecasting for the summer had the highest MAPE of 7.23% in 2006. In addition, the
spring and fall months resulted in 2 MAPE of approximately 12.8% and the winter was
considered to be the hardest season to predict due to its high MAPE value of 13.53%.
However the average MAPE for the entre year was 11.62%. Yeatly retraining of the NN

should improve the predictive petformance.

8.3.4 Percentage Other NN

The performance of the developed NN model for percentage other forecasting is presented
in Table 8-13. The R? and correlation values fot the training, validation, and testing data were
approximately 80% and 90%, respectively. It should be recognized that the percent share

from “other” is difficult to predict since it is dependent on the market.
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Table 8-13: Prediction performance of NN model - % other

Subset R? | Correlation
Training 0.839 0.928
Validation | 0.814 0.912
Testing | 0.797 0.909

The estimates for the NN models are plotted along with the percentage “other” data for
Ontario as shown in Figures C-29 to C-31 in Appendix C. The NN model was able to
predict the percentage share from “other” for the year 2005. When the inputs were
examined, it was found that some of the predicted values whete close to their corresponding

values 1n the testing dataset.

The error distribution for the network is shown in Figure 8-9. It can be observed that the

majority of the errors are lower than 3.2%.

Error Distribution
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Figure 8-9: Error distribution for the % other NN

The importance of the types of inputs for the network is illustrated in Figure 8-10. Several
input categories have a significant effect on the percentage share of “other”. It can be
observed that the percentage share from “other” is heavily dependent on the day of the
week, the electricity generated in the Province of Ontario, the month, and the temperature.
It should be noted that the other inputs had a relatively smaller effect on the predicting
power of the network. This cleatly indicates that other is highly dependent on day of the

week.

154

0065556 0.436859 0.852183 1.245497 1.635811 2.U3é124 2.425438 2.816752 3.212065 3605379 3.9986%3 4.39é006 4.76532 5.175634




40

30

2ol

Importance (%)

Figure 8-10: Input importance percentage for the % other NN

The statistical results are presented in Table 8-14 for the training, validation and testing
subsets. This NN model is less accurate than the other networks, the factors affecting the
percentage share from “other” are somewhat represented by the inputs selected in Chapter
4. The validation and testing subsets have the highest values for the MAPE of 11.86% and
12.17%, respectively, wheteas the training subset has the lowest value of 10.89%. The

maximum MAPE value was the highest in the testing subset.

Table 8-14: NN % other training statistics

MAPE (%)
Training Validation | Testing
Mean 10.89 11.86 12.17
Std Dev 10.06 10.35 11.13
Min 0.0002 0.0012 0.0042
Max 109.09 89.74 114.31
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8.3.4.1 Test Case Using Percent Other NN Model

In this case, the target is to predict the petcent share from “other” for each season for 2006.
The NN model was developed using data from 2005 and as shown above it could predict
the percent share from “other” somewhat accurately with an average MAPE of 10.89%.
Percent share from power generation and weather data for 2006 was divided into winter,
spring, summer, and fall in order to compare the NN predictive petformance across the
seasons for the year 2006. Table 8-15 shows the average MAPE values for 2006. The highest
MAPE value occurred in the fall and the lowest MAPE value occurred during the winter.
Given the high MAPE values the predictive performance of the “other” network is not valid
for 2006. The seasonal MAPE profiles for the test case are presented in Figures C-32 to C-
35 in Appendix C.

Table 8-15: Average MAPE values for % other test case - 2006

2006
Season MAPE (%)
Winter 27.70
Spring 21.24
Summer 23.52
Fall - 28.05
Average 25.13

The NN model which was trained using 2005 data was not as accurate for 2006. The NN
models developed are for short term forecasting only. However, it was observed that long
term forecasting for the fall had the highest MAPE of 28.05% in 2006. In addition, the
spring and summer months resulted in a MAPE of 21.24% and 23.52%, tespectively. In
addition, the fall was considered to be the hardest season to predict due to its high MAPE
value of 28.05% and average MAPE for the entire year was 25.13%. This network is the
most difficult to predict due to the electricity market regulations and fuel costs. Other mainly
uses natural gas, and wood chips to produce electricity. However, the nuclear, coal and
hydro networks were quite accurate and since they produce approximately 94% of the
electricity, the less accurate network such as “other” does not have a huge impact on the

total percentage share predictions.
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8.4 Emission Factor Forecasting using Neural Networks

This section presents the use of neural networks developed in previous sections to predict
the NGHGIF, for the Province of Ontario. Two methodologies were explored, one that
uses the neural networks developed in previous sections and another one that has its own

NN to predict the hourly emission factor.

8.4.1 Methodology 1

In order to predict the emission factor for the first case, the total houtly electricity generated,
and the houtly electricity generated by coal and “other” for the Province of Ontario had to
be predicted for the year 2005 using the networks developed in Sections 8.2, and 8.3. The
following process is defined in Equations 8.1, 8.2, 8.3, 8.4 and 8.5

HPElecGen,,,, = HPElecDemand y, + HElec,, .., — HElec, .., [81]

Where,
HPElecGen,,, = Houtly Predicted Total Electricity Generated by the Province of
Ontario (kWh)

HPElecDemand,, = Houly Predicted Electricity Demand by NN for the

Province of Ontario (kWh)

HElec, = Hourly Electricity imported by the Province of Ontario (kWh)

imported

HElec = Houtly Electricity exported by the Province of Ontario (kWh)

exported

HP%Coal,,, x HPElecGen,,, J 8.2]

HPElec,,, = ( 100

Where,

HPElec., = Houtly Predicted Electricity generated by coal for the Province of

coal

Ontario (kWh)
HP%Coal,, = Houtly Predicted Percentage from Coal by NN for the Province of

Ontatio (kWh)
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Where,

Where,

HPElecGen

= Houtrly Predicted Total Electricity Generated by the Province of

total

Ontario (kWh)

8.3]

0
HPElec,, = (HP %Other,,, x HPElecGen,,, ]

100

HPElec,,, = Houtly Predicted Electricity generated by other for the Province of

other
Ontario (kWh)

HP%Other,, = Houtly Predicted Petcentage from Other by NN for the Province
of Ontario (kWh)

HPElecGen,,, = Houtly Predicted Total Electticity Generated by the Province of
Ontario (kWh)

HPCO, = (i)(HPElec,,,)+ (j)HPElec,,, ) (8.4]

coal

HPCO, = Houtly Predicted CO, production €=3)

HPElec,,,, = Houtly Predicted Electricity generated by other for the Province of

coal

Ontario (kWh)

HPElec = Hourly Predicted Electricity generated by coal for the Province of

other
Ontario (kWh)

i = OPG CO, emission factor (0.974 g of CO,/kWh for the year 2005)

J = Environment Canada natural gas emission factor (0.432 g of CO,/kWh for the

year 2005) (Environment Canada (2005))

HPCO,
HPElecGen

HPNGHGIF, = [8.5]

total
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Where,

HPNGHGIF, = Hourly Predicted New Greenhouse Gas Intensity Factor (g of
CO,/KWh)

HPCO, = Houtly Predicted CO, production (g)

HPElecGen,,,, = Houtly Predicted Total Electricity Generated by the Province of
Ontario (kWh)

8.4.1.1 Test Case Using Methodology 1

In this case, the target is to predict the NGHGIF, for each season for 2005. The model was
developed using data from 2005. As described in the previous section, NN predictions for
the electricity generated and percent share from power generation for Ontario data for 2005
was divided into winter, spting, summer, and fall in order to compare the predicted and
actual emission factor. Table 8-16 shows the average MAPE values for 2005. The highest
MAPE value occurted in the summer and the lowest MAPE value occurred during the
spring. The MAPE values were not as low as desired, however the predictive performance of
the emission factor network is still valid for 2005. The seasonal MAPE profiles for the test
case presented in Figures C-36 to C-39 in Appendix C cotrespond to the initial methodology

and not to the alternate method.

Table 8-16: Average seasonal MAPE values comparing actual and predicted NGHGIF, - 2005

2005
Season MAPE (%)
Winter 13.58
Spring 12.94
Summer 15.72
Fall 15.06
Average 14.32

It should be noted that the predicted emission factor is dependent on the predicted
electricity demand for the Province of Ontario. An alternate method was explored by using
the actual electricity demand instead of the predicted electricity demand in the predicted

percentage mix values. However, the predicted electricity demand was still used to calculate
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the emission factor as show in Equation 8.5. Table 8-17 shows the average MAPE values for

2005 using the alternative methodology which is beyond the scope of this thesis.

Table 8-17: Average seasonal MAPE values comparing actual and predicted NGHGIF, using
alternate methodology - 2005

2005
Season MAPE (%)
Winter 6.27
Spring 8.04
Summer 547
Fail 7.35
Average 6.78

The NN model which was trained using 2005 data was not as accurate as expected. This
might be due to cartied etrors from the other predictive models. The NN models developed
are for short term forecasting only. However, it was observed that long term forecasting for
the spring had the lowest MAPE of 12.94% and the winter and fall months resulted in a
MAPE of 13.58% and 15.06%, respectively. The summer had the highest MAPE of 15.72%
and was considered to be the hardest season to predict due to grid fluctuations related to
weather change in the city of Toronto. In addition, the overall average MAPE for the entire
year was 14.32% which is a good performance indicator for this methodology. This

methodology will be compated to methodology 2 in the next section.

8.4.2 Methodology 2

For the second case a neural network model was developed to estimate the hourly emission

factor based on the total electricity demand and weather for the Province of Ontario.
The performance of the developed NN model for emission factor (EF) forecasting is

presented in Table 8-18. The R* and correlation values for the training, validation, and

testing data were close to 1 which is a good performance indicator of the network.
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Table 8-18: Prediction performance of NN model - emission factor

Subset R? Correlation

Training 0.806 0.915
Validation | 0.782 0.906

Testing 0.790 0.912

The estimates for the NN models are plotted along with the EF data for Ontario as shown
in Figures C-40 to C-42 in Appendix C. The NN model was able to predict the EF for the
year 2005. When the inputs were examined, it was found that most of the predicted values

where close to their corresponding values in the testing dataset.

The etror distribution for the network is shown in Figure 8-11. It can be observed that the
errors for the network are lower than 53 g of CO,/kWh, and that the majority of these
errots corresponding to the predicted EF are within 0.848277 and 15 g of CO,/kWh from
the actual EF value.

Error Distribution
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Figure 8-11: Error distribution for the EF NN

The importance of the types of inputs for the network is illustrated in Figure 8-12. Several
input categories have a significant effect on the emission factor for the Province of Ontario.

It can be observed that the emission factor is heavily dependent on the electricity demand.
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Figure 8-12: Input importance percentage for the EF NN

The statistical results are presented in Table 8-19 for the training, validation and testing
subsets. Given the MAPE values, the factors affecting the emission factor are closely
represented by the inputs selected in Chapter 4. The validation and testing subsets have the
highest values of MAPE with 8.09% and 8.31%, iespectively, whereas the training subset has
the lowest with 7.85%.

Table 8-19: NN EF training statistics

MAPE (%)
Training Validation | Testing
Mean 7.85 8.09 8.31
Std Dev 7.55 8.39 8.20
Min 0.002 0.016 0.0126
Max 87.63 77.96 69.25

8.4.3 Comparison of Emission Factor Methodologies

Two methodologies were developed in order to estimate the emission factor for the
Province of Ontatio. It is clear that methodology 1 is more complex due to the several
inputs and steps that are required in order to estimate the emission factor, whereas

methodology 2 is simpler and is highly dependent on the electricity demand and does not
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subsets. Given the MAPE values, the factors affecting the emission factor are closely
represented by the inputs selected in Chapter 4. The validation and testing subsets have the
highest values of MAPE with 8.09% and 8.31%, iespectively, whereas the training subset has
the lowest with 7.85%.

Table 8-19: NN EF training statistics

MAPE (%)
Training Validation | Testing
Mean 7.85 8.09 8.31
Std Dev 7.55 8.39 8.20
Min 0.002 0.016 0.0126
Max 87.63 77.96 69.25

8.4.3 Comparison of Emission Factor Methodologies

Two methodologies were developed in order to estimate the emission factor for the
Province of Ontatio. It is clear that methodology 1 is more complex due to the several
inputs and steps that are required in order to estimate the emission factor, whereas

methodology 2 is simpler and is highly dependent on the electricity demand and does not
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take into consideration the percentage mix from the different sources that make up the
electricity generation sectot. It should be noted that methodology 2 resulted in a lower
MAPE. However, the alternate methodology 1 petformed better than methodology 2
because it did not use the predicted electticity value developed in Section 8.2, but instead
used the actual value. Also, methodology 1 used the predicted electricity values for 2005
developed by the electricity demand network based on 2004 data, which was not as accurate
for 2005. This might have been one of the contributing factors to the lower performance of

the netwotk developed by the first methodology.
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9

Conclusions and Recommendations

9.1 Conclusions

As stated in Section 1.5, the objectives of this work were: firstly, to study the supply and

demand of electricity and associated GHG emissions for the Province of Ontario and to

develop GHG emission factors for the years 2004, 2005, and 2006; secondly, to develop

seasonal Time Dependent Valuation (TDV) emission and monthly cost factors in order to

estimate and place a monetary value on emissions produced by the electricity generation

sector; thirdly, these emission and cost factors wete applied to simulation results from ESP-r

for the different archetypes and cities; lastly, NN models were developed to predict the

electricity demand, emissions, and emission factor for the Province of Ontario. The

aforementioned objectives were successfully achieved as follows:

Emissions from the eclectricity generation sector were analyzed and different
emission factors were developed in order to tepresent the true reduction potential of
CO, by using renewable energy technologies. CO, emissions were the highest during
the winter in 2004, but were higher during the summer months in 2005 and 2006.
The year with the highest emissions was 2005. Howevet, emissions in 2006 were the
lowest between 2004 and 2006. Once again, electricity generated by coal plants is
being reduced unless some unplanned event affects the other generating plants.

Several emission factors were developed for the years 2004, 2005, and 2006. The
hourly emission factor proved to be the most accurate. In addition, depending on the
type of analysis conducted it might be practical but not as accurate to employ
seasonal, time dependent valuation (TDV), and annual averages emission factors to
estimate CO, emissions. It was observed that TDV and seasonal average emission
factors were motre accurate than using the annual average value. It should also be
mentioned, that monthly TDV emission factors might prove to be as accurate as
using houtly values. However, it should be noted that TDV values for 2005 were
quite different from those of the years 2004 and 2006. This difference might be
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attributed to unexpected events for 2005 due to either unplanned outages for plants

or variability in temperature.

Greenhouse Gas Cost Factors (GHGCF) wete developed in order to place a
monetary value on emissions from fossil plants. The cost factors were developed for
three pricing schemes: flat rate, time-of-use (TOU), and wholesale. It was determined
that the flat rate pricing scheme placed a higher monetary value on emissions
compared to using a TOU pricing scheme. In addition, the cost factor based on the
wholesale pricing scheme was developed to charge generators a price for the amount
of emissions produced from fossil plants. Clearly, the money collected from
generators could be used as a rebate for customers using renewable technologies
emitting zero operating emissions.

The potential reduction of GHG emissions using the different emission factors was
petformed on each of the test case house models. Using the houtly, seasonal average,
annual average and TDV emission factors for the Province of Ontario, the total CO,
emission reduction potential for each test case was estimated and compared to using
the hourly emission factor. For all test cases, the highest and lowest emission
reduction potential was obtained by using the seasonal TDV and annual average
emission factor, respectively. The hourly emission factor is usually in between the
two limits. It is clear that there is a need for houtly emission factors in order to
accurately estimate the true potential reduction in greenhouse gases. The use of
regionally specific climate-modeled factors, such as those identified, allows for a
more accurate representation of the benefits associated with GHG reducing
technologies.

The development of NN models was conducted in order to speed up the process in
estimating emission factors. Initially, a neural network model was developed in order
to predict the electricity demand and percentage mix from each generating source for
the Province of Ontario by using hourly data obtained from the IESO and weather
data from Environment Canada. Two methodologies were developed in this thesis:
1) using the aforementioned networks to predict the emission factor or 2) developing
a specific neural network that could predict the emission factor in one step. It was
determined that both methodologies are accurate, but the second method proved to

be better at estimating the emission factor with 2 MAPE of 7.85% compated to a
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MAPE of 14.32% using the first methodology. Two things were discovered during
the simulations: Firstly, it was determined that by using the actual electricity demand
data instead of the predicted values increased the MAPE value by almost 45%.
Secondly, the predicted electricity demand network was developed using data from
2004 to predict the electricity demand for 2005. Both of these factors contributed to
lower MAPE values. This approach could be used in other provinces where
electricity generation data are not readily available. However, it should be noted that
the NN model is limited to changes in both the environment and electricity

consumption; thus, it should be updated petiodically.

9.2 Recommendations

In this thesis, average hourly, seasonal and annual emission factors were developed in order
to show the time of day and time of year variations of the electricity generation sector.
However, monthly emission factors could be developed to provide better accuracy. It should
be noted that the emission factors developed were based on the total electricity generated
from all sources in the Province of Ontario. Perhaps peak and marginal emission factors
could be developed in order to have a middle and upper limit reduction potential of
emissions. However, these emission factors should not be used to estimate the reduction

potential of CO, by using renewable technologies in the residential sector due to their

overestimating quality.
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In addition, an NN model was developed using the learning algorithms and activation
functions of the Neurolntelligence software. Other NN software with different learning
algorithms and activation functions could be tested to increase the prediction performance
of the model in order to reduce training time. Another potential improvement to the NN
model would be to increase the database size of the environmental factors and electricity
demand values. Fuel based methods only estimate an annual average and do not reflect the
cyclic behaviour of emission factors throughout the day. The modecl can determine the
environmental impacts on when energy is consumed. Thus, the NN model can predict the
hour-by-hour electricity demand for the Province of Ontario which can then be used to
estimate GHG emission factors. This method of analysis would allow for a more accurate
representation of the potental reduction of GHGs by using renewable technologies.
However, it was determined that all the neural network models should be trained for the

same year due to their short term predictive power.
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Appendix A: Neural Network Algorithms and Performance

A.1 Learning Algorithms

This section will explain the most common leatning algorithms used for the training of

neural networks.

Levenberg-Marquardt

Levenberg-Marquardt (Roweis, 2001) is an advanced non-linear optimization algorithm. It is
the fastest algorithm available for multi-layer perceptrons. However, it has the following
restrictions:

e It can only be used on networks with a single output unit.

e It can only be used with small networks (a few hundred weights) because its memory
requirements are proportional to the square of the number of weights in the
network.

It is only defined for the sum of squared error function and therefore it is only appropriate

for regression problems.

Quasi-Newton

The network training algorithm based on Newton's method (Bertsekas, 1995) is an
approximate Hessian matrix that is computed for each iteration of the algorithm based on

the gradients.

Conjugate Gradient Descent

This is an advanced method for training multi-layer neural networks (Shewchuk, 1994). It is
based on the linear search usage in the line of an optimal network weights' change. The
correction of weights is conducted once per iteration. In most cases, this method works

faster than Back Propagation and provides more precise forecasting results.

Back-Propagation Algorithms

The back-propagation algorithm was introduced by Rumelhart and McClelland (1986) and is
the most commonly used learning algorithm. Back-propagation is the best known training
algorithm for multi-layer neural networks. It defines rules of propagating the network error

back from network output to network input units and adjusting network weights along with
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this back-propagation. It requires lower memory resources than most learning algorithms

and usually gets an acceptable result, although it can be too slow to reach the error

minimum.

There is no single best training algorithm for neural networks. You need to choose 2 training

algorithm based on the characteristics of the problem. The following simple rules proved to

be quite effective for most practical purposes (Alyuda, 2007):

If the network has a small number of weights (usually, up to 300), Levenberg-
Marquardt algorithm is efficient. Levenberg-Marquardt often performs considerably
faster than other algorithms and finds better optima than other algorithms. But its
memoty requirements are proportional to the square of the number of weights.
Another Levenberg-Marquardt limitation is that it is specifically designed to
minimize the sum of square errors and cannot be used for other types of network
error.

If the network has a moderate number of weights, Quasi-Newton and Limited
Memory Quasi-Newton algorithms are efficient. But their memory requirements are
also proportional to the square of the number of weights.

If the network has a large number of weights, it is recommended that a Conjugate
Gradient Descent algorithm be used. Conjugate Gradient Descent has nearly the
convergence speed of second-order methods, while avoiding the need to compute
and store the Hessian matrix. Its memory requirements are proportional to the
number of weights.

Conjugate Gradient Descent and Quick Propagation are general-purpose training
algorithms of choice.

It is also possible to use incremental and batch-back propagation for networks of any
size. Back-propagation algorithm is the most popular algorithm for training of
multilayer perceptrons and is often used by researchers and practitioners. The main
drawbacks of back-propagation ate: slow convergence, need to adjust the learning
rate and momentum parameters, and high probability of getting caught in local

minima. Incremental back-propagation can be efficient for large datasets if learning

rate properly selected.
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A.2 Assessing the Prediction Performance of Neural Networks

To judge the prediction performance of a network, several performance measures are used.
In electricity load forecasting, the prediction accuracy is generally evaluated using the mean
average percentage error (MAPE) and the absolute error (AE) mean average as indicated in Ortiz-

Arroyo et al. (2001). The MAPE is computed using Equation A.1.

x100 [A.1]

Where,
P, = Actual value

P, = Forecasted value

N = Number of data points

In addition, the training of a NN is an iterative procedure, which follows the steps described

below:

(a) Initialization of weights and biases:
All weights and biases are set to small random values between -1 and 1 (or some other

suitable interval).

(b) Feed-forward propagation:

Each input unit receives an input signal and sends the signal to all units in the hidden layer.
Each hidden unit sums its weighted input signals with the bias contribution, applies its
activation function to compute its output signal and sends this signal to the output unit. The
output unit sums its weighted input signals with the bias contribution, and applies its

activation function to compute the output of the network.

176




(c) Error calculation:

The output of the network, Ze. its prediction, and the output (target) parameter are used to
compute the networtk error. The error is used to compute the necessary changes of the

weights and biases to minimize the error of the network.

(d) Online backward propagation:

The weights and biases are adjusted in a way that minimizes the error, and steps from (a) to
(d) are repeated until the desired R-squared error is achieved, at which point the slope of the
testing dataset will become constant. However, if the testing and training datasets begin to
diverge this is an indication that the network has been overtrained. The R-squared value is
the relative predictive power of a model, and it is a descriptive measure between 0 and 1.
The closer it is to one, the better the model’s predicting ability. In addition, the correlation
value is also considered since it is a statistical measure of strength of the relationship
between the actual values and network outputs. The correlation coefficient can range from -
1 to +1. The closer it is to 1, the stronger the positive linear relationship, and the closer it is
to -1, the stronger the negative linear relationship. Once the network is complete, it is used

to predict the desired output.
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Appendix B: Neural Network Model Development

Figures B-1 — B-3 show the minimum error values for the networks developed in this thesis.
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Figure B-1: Minimum error values for the percentage from hydro NN
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Figures B-4 — B-6 show the AIC for the trained networks.
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Figure B-4: Akaike's Information Criterion for the percentage from hydro NN
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Tables B-1 — B-6 show the architectural performance results for the networks.

Table B-1: Performance of the hourly electricity demand network with different architectures

Architecture | Train Error | Validation Error | Test Error AlC Correlation R?
[9-1-1] 1329 1341 1327 -8822 0.728 0.531
[9-2-1] 1060 1063 1058 -10141 0.834 0.691
[9-3-1] 820 812 810 -11635 0.902 0.813
[9-4-1] 664 661 662 -12867 0.933 0.871
[9-5-1] 785 806 804 -11855 0.908 0.825
[9-6-1] 679 686 685 -12689 0.929 0.864
[9-7-1] 618 627 623 -13225 0.943 0.890
[9-8-1] 652 666 658 -12889 0.939 0.881
[9-9-1] 602 622 615 -13337 0.948 0.898

[9-10-1] 614 636 617 -13194 0.945 0.893
[9-11-1] 600 612 619 -13313 0.946 0.896
[9-12-1] 600 616 609 -13293 0.948 0.899
[9-13-1] 591 604 604 -13360 0.949 0.901
[9-14-1] 582 596 587 -13423 0.951 0.904
[9-15-1] 581 602 593 -13411 0.951 0.905
[9-16-1] 605 625 611 -13155 0.947 0.896
[9-17-1] 562 583 585 -13567 0.955 0.911
[9-18-1] 540 554 546 -13776 0.957 0.916
19-19-1] 619 633 625 -12951 0.945 0.893
[9-20-1] 557 579 563 -13554 0.955 0.911
[9-21-1] 559 574 575 -13513 0.955 0.911
[9-22-1] 578 596 589 -13289 0.952 0.907
[9-23-1] 576 602 588 -13292 0.952 0.907
[9-24-1] 561 591 572 -13421 0.955 0.912
[9-25-1] 554 577 562 -13479 0.956 0913
[9-26-1] 552 577 559 -13480 0.957 0.915
[9-27-1] 569 585 580 -13277 0.954 0.910
[9-28-1] 576 586 583 -13183 0.952 0.906
[9-29-1] 588 606 598 -13033 0.951 0.905
[9-30-1] 565 598 583 -13253 0.955 0.911
[9-31-1] 531 555 542 -13597 0.959 0.919
[9-32-1] 552 585 568 -13338 0.956 0.915
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Table B-2: Performance of the percentage from nuclear network with different architectures

Architecture | Train Error | Validation Error | Test Error AlIC Correlation R’
[6-1-1] 3.888 3.869 3.791 -42782 0.726 0.527
[6-2-1] 3.095 3.083 3.089 -44101 0.846 0.715
[6-3-1] 2.952 2.951 2.961 -44362 0.864 0.746
[6-4-1] 2.406 2.416 2428 -45541 0.912 0.831
[6-5-1] 2.076 2.079 2.068 -46390 0.934 0.872
[6-6-1] 2.334 2.351 2.379 -45688 0.917 0.840
6-7-1] 2.126 2.123 2.162 -46218 0.928 0.861
[6-8-1] 2.510 2522 2.523 -45231 0.896 0.803
[6-9-1] 2.083 2.103 2.114 -46305 0.933 0.871

[6-10-1] 2.010 2.021 2.028 -46497 0.939 0.881
[6-11-1] 1.959 1.958 1.957 -46633 0.939 0.881
[6-12-1] 2.093 2.091 2112 -46229 0.928 0.861
[6-13-1] 1.986 1.889 1.985 -46521 0.938 0.879
[6-14-1] 1.930 1.946 1.953 -46673 0.941 0.885
[6-15-1] 1.834 1.837 1.848 -46953 0.948 0.899
[6-16-1] 1.886 1.891 1.902 -46774 0.944 0.891
[6-17-1] 1.801 1.790 1.796 -47028 0.949 0.901
[6-18-1] 1.942 1.943 1.948 -46572 0.939 0.881
[6-19-1] 1.867 1.877 1.887 -46785 0.942 0.888
[6-20-1] 2.040 2.053 2.059 -46251 0.933 0.871
[6-21-1] 1.914 1.932 1.929 -46608 0.942 0.887
[6-22-1] 1.811 1.831 1.821 -46917 0.945 0.893
[6-23-1] 1.807 1.815 1.824 -46912 0.947 0.896
[6-24-1] 2.069 2.088 2.089 -46106 0.933 0.870
[6-25-1] 1.719 1.737 1.739 -47171 0.952 0.906
[6-26-1] 1.862 1.866 1.873 -46689 0.945 0.893
[6-27-1] 2.005 2.025 2.009 -46240 0.938 0.879
[6-28-1] 1.719 1.703 1.732 -47126 0.951 0.903
[6-29-1] 1.720 1.723 1.731 -47106 0.953 0.907
6-30-1] 1.916 1.922 1.898 -46459 0.941 0.885
[6-31-1] 1.834 1.813 1.825 -46699 0.948 0.899
[6-32-1] 1.979 1.976 1.980 -46236 0.941 0.884
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Table B-3: Performance of the percentage from hydro network with different architectures

Architecture | Train Error | Validation Error | Test Error AlC Correlation R*
[10-1-1] 3.251 3.099 3.236 -43821 0.612 0.375
[10-2-1] 2.986 2.987 2.978 -44294 0.710 0.503
[10-3-1] 2.221 2.204 2.196 -46002 0.849 0.721
[10-4-1] 2.106 2.085 2.101 -46288 0.863 0.744
[10-5-1] 1.998 1.964 2.009 -46573 0.871 0.759
[10-6-1] 1.641 1.632 1.593 -47702 0.922 0.850
[10-7-1] 1.609 1.605 1.594 -47791 0.924 0.854
[10-8-1] 1.536 1.522 1.504 -48039 0.932 0.869
[10-9-1] 1.593 1.590 1.578 -47804 0.927 0.859
[10-10-1] 1.734 1.754 1.733 -47281 0.909 0.827
[10-11-1] 1.482 1.488 1.447 -48177 0.937 0.878
[10-12-1] 1.503 1.509 1.510 -48072 0.935 0.874
[10-13-1] 1.442 1.481 1.444 -48289 0.940 0.884
[10-14-1] 1.513 1.529 1.476 -47983 0.933 0.871
[10-15-1] 1.454 1.472 1.441 -48192 0.938 0.880
[10-16-1] 1.435 1.462 1.468 -48246 0.941 0.884
[10-17-1] 1.476 1.504 1.510 -48057 0.936 0.876
[10-18-1] 1.403 1.436 1.407 -48330 0.943 0.888
[10-19-1] 1.395 1.437 1.387 -48338 0.943 0.889
[10-20-1] 1.471 1.5624 1.502 -48003 0.937 0.877
[10-21-1] 1.363 1.404 1.369 -48426 0.946 0.894
[10-22-1] 1.353 1.390 1.366 -48445 0.947 0.896
[10-23-1] 1.377 1.438 1.408 -48320 0.944 0.891
[10-24-1] 1.417 1.468 1.458 -48129 0.942 0.886
[10-25-1] 1.426 1.467 1.451 -48064 0.941 0.886
[10-26-1] 1.361 1.410 1.388 -48317 0.946 0.895
[10-27-1] 1.404 1.444 1.423 -48109 0.943 0.888
[10-28-1] 1.385 1.432 1.395 -48163 0.944 0.891
[10-29-1] 1.383 1.427 1.388 -48150 0.944 0.891
[10-30-1] 1.398 1.438 1.414 -48060 0.943 0.889
[10-31-1] 1.322 1.376 1.351 -48366 0.949 0.901
[10-32-1] 1.398 1.445 1.421 -48014 0.944 0.891
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Table B-4: Performance of the percentage from coal network with different architectures

Architecture | Train Error | Validation Error | Test Error AlC Correlation R’

[8-1-1] 1.247 1.210 1.248 -49429 0.928 0.861
[8-2-1] 1.105 1.093 1.135 -50118 0.942 0.888
[8-3-1] 1.072 1.057 1.082 -50277 0.945 0.892
[8-4-1] 1.056 1.039 1.059 -50345 0.947 0.897
[8-5-1] 1.045 1.035 1.049 -50384 0.950 0.903
[8-6-1] 1.020 1.017 1.030 -50506 0.951 0.905
[8-7-1] 1.023 1.008 1.021 -50471 0.951 0.904
[8-8-1] 1.006 0.998 1.007 -50546 0.953 0.907
[8-9-1] 1.005 0.999 1.006 -50532 0.953 0.908
[8-10-1] 0.981 0.979 0.989 -50653 0.956 0.913
[8-11-1] 0.958 0.953 0.963 -50770 0.957 0.915
[8-12-1] 0.983 0.960 0.980 -50599 0.955 0.912
[8-13-1] 0.985 0.976 0.981 -50571 0.956 0914
[8-14-1] 0.961 0.958 0.966 -50695 0.957 0.915
[8-15-1] 0.966 0.959 0.963 -50643 0.957 0.915
[8-16-1] 0.958 0.949 0.961 -50670 0.957 0.916
[8-17-1] 0.949 0.949 0.967 -50708 0.958 0.918
[8-18-1] 0.937 0.941 0.941 -50762 0.959 0.919
[8-19-1] 0.951 0.948 0.956 -50654 0.958 0.917
[8-20-1] 0.967 0.965 0.965 -50537 0.957 0.916
[8-21-1] 0.883 0.886 0.903 -51051 0.964 0.928
[8-22-1] 0.940 0.936 0.933 -50662 0.959 0.919
[8-23-1] 0.942 0.942 0.938 -50631 0.959 0.919
[8-24-1] 0.893 0.896 0.921 -50923 0.964 0.928
[8-25-1] 0.952 0.951 0.958 -50532 0.958 0.917
[8-26-1] 0.963 0.955 0.967 -50444 0.957 0.916
[8-27-1] 0.912 0.907 0.927 -50744 0.962 0.925
[8-28-1] 0.898 0.890 0.912 -50813 0.963 0.927
[8-29-1] 0.915 0.910 0.932 -50682 0.961 0.924
[8-30-1] 0.909 0.904 0.925 -50700 0.962 0.925
[8-31-1] 0.958 0.942 0.952 -50376 0.957 0.916
[8-32-1] 0.906 0.899 0.923 -50681 0.962 0.925

184




e s — — e ———— e e e

}.—__—.__., —— e ———————— e e~ a4y —

Table B-5: Performance of the percentage from other network with different architectures

Architecture | Train Error | Validation Error | Test Error AlC Correlation R?
[7-1-1] 1.372 1.387 1.397 -48873 0.780 0.607
[7-2-1] 1.321 1.352 1.373 -49077 0.794 0.631
[7-3-1] 1.290 1.319 1.336 -49200 0.808 0.653
[7-4-1] 1.222 1.236 1.269 -49499 0.829 0.687
[7-5-1] 1.140 1.158 1.188 -49887 0.848 0.719
[7-6-1] 1.168 1.177 1.209 -49726 0.839 0.704
{7-7-1} 1.098 1.122 1.139 -50069 0.857 0.735
[7-8-1] 1.110 1.118 1.132 -49989 0.855 0.730
[7-9-1] 1.043 1.043 1.080 -50332 0.867 0.751

[7-10-1] 1.123 1.145 1.184 -49883 0.854 0.729
[7-11-1] 1.048 1.071 1.082 -50269 0.870 0.757
[7-12-1] 1.090 1.106 1.137 -50023 0.869 0.755
[7-13-1] 1.020 1.041 1.056 -50392 0.877 0.770
[7-14-1] 1.019 1.027 1.059 -50382 0.879 0.772
[7-15-1] 1.057 1.083 1.115 -50148 0.873 0.761
[7-16-1] 1.037 1.058 1.080 -50240 0.877 0.768
[7-17-1] 1.024 1.046 1.087 -50300 0.880 0.774
[7-18-1] 0.980 0972 1.020 -50534 0.889 0.791
[7-19-1] 1.011 1.040 1.083 -50334 0.883 0.779
[7-20-1] 1.005 1.031 1.061 -50350 0.882 0.777
[7-21-1) 1.025 1.049 1.070 -50222 0.881 0.775
[7-22-1] 1.011 1.026 1.071 -50280 0.886 0.785
[7-23-1] 1.052 1.081 1.105 -50031 0.874 0.763
[7-24-1] 0.995 1.014 1.051 -50342 0.887 0.786
[7-25-1] 1.025 1.053 1.075 -50149 0.880 0.774
[7-26-1] 1.076 1.094 1.129 -49845 0.868 0.753
[7-27-1] 1.036 1.054 1.098 -50051 0.878 0.770
[7-28-1] 1.018 1.045 1.065 -50131 0.882 0.778
[7-29-1] 0.994 1.008 1.034 -50253 0.890 0.791
[7-30-1] 1.040 1.074 1.100 -49970 0.876 0.767
[7-31-1] 1.037 1.042 1.087 -49969 0.878 0.771
[7-32-1] 1.024 1.036 1.064 -50026 0.880 0.774
[7-33-1] 0.996 1.020 1.041 -50170 0.886 0.784
[7-34-1] 1.004 1.020 1.048 -50105 0.885 0.784
[7-35-1] 1.036 1.043 1.089 -49903 0.875 0.766
[7-36-1] 0.969 0.992 1.012 -50276 0.893 0.797
[7-37-1] 1.012 1.040 1.070 -50008 0.884 0.781
[7-38-1] 0.971 0.999 1.021 -50230 0.893 0.797
[7-39-1] 1.030 1.045 1.087 -49864 0.879 0.772
[7-40-1] 1.036 1.075 1.109 -49814 0.877 0.769
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Architecture { Train Error | Validation Error | Test Error AlIC Correlation R?
[6-1-1] 25 25 26 -31883 0.736 0.542
[6-2-1] 24 24 25 -32039 0.749 0.561
[6-3-1] 24 24 25 -32045 0.753 0.567
[6-4-1] 24 24 24 -32122 0.766 0.587
[6-5-1] 23 23 24 -32237 0.780 0.608
[6-6-1] 22 22 23 -32521 0.804 0.646
[6-7-1] 22 22 22 -32552 0.808 0.653
[6-8-1] 22 23 23 -32461 0.801 0.641
[6-9-1] 21 22 22 -32650 0.815 0.664

[6-10-1] 21 22 22 -32717 0.821 0.673
[6-11-1] 20 21 21 -32933 0.840 0.705
[6-12-1] 21 22 22 -32715 0.828 0.686
[6-13-1] 21 22 22 -32633 0.820 0.671
[6-14-1] 21 22 22 -32694 0.825 0.681
[6-15-1] 20 20 20 -32904 0.835 0.697
[6-16-1] 21 22 22 -32617 0.819 0.671
[6-17-1] 21 22 21 -32693 0.829 0.686
[6-18-1] 20 21 21 -32825 0.835 0.696
[6-19-1] 20 21 20 -32906 0.842 0.708
[6-20-1] 20 21 21 -32778 0.838 0.703
[6-21-1] 21 21 21 -32549 0.825 0.680
[6-22-1] 21 22 22 -32522 0.820 0.672
[6-23-1] 19 20 20 -33062 0.856 0.732
[6-24-1] 20 21 21 -32696 0.833 0.694
[6-25-1] 19 20 20 -33005 0.856 0.732
[6-26-1] 20 20 20 -32935 0.850 0.722
[6-27-1] 21 21 22 -32471 0.824 0.679
[6-28-1] 21 21 21 -32600 0.833 0.694
[6-29-1] 20 21 21 -32620 0.832 0.691
[6-30-1] 20 21 21 -32703 0.842 0.709
[6-31-1] 20 20 21 -32724 0.841 0.707
[6-32-1] 19 19 19 -33102 0.864 0.745
[6-33-1] 20 20 20 -32694 0.843 0.711
[6-34-1] 20 21 21 -32563 0.834 0.696
[6-35-1] 20 20 20 -32635 0.839 0.704
[6-36-1] 19 20 20 -32831 0.852 0.726
[6-37-1] 20 20 21 -32570 0.839 0.704
[6-38-1] 20 21 21 -32501 0.834 0.696
[6-39-1] 21 21 22 -32362 0.830 0.689
[6-40-1] 20 21 21 -32492 0.837 0.700
186




Tables B-7 — B-10 show the architectural performance results for the networks.

Table B-7: Performance of hydro network trained using five different learning algorithms

Architecture Training algorithm AIC Correlation R?
{10-31-1] Quick Propagation -49748 0.968 0.933
l [10-31-1] Conjugate Gradient Descent | -46220 . 0.891 0.794
[10-31-1] Quasi-Newton -47094 0.921 0.849
[10-31-1] Levenberg-Marquardt -48068 0.947 0.896
( [10-31-1] Online Back Propagation -41929 0.271 0.007

Table B-8: Performance of the coal network trained using five different learning algorithms

[ Architecture Training algorithm AlC Correlation R?

( [8-21-1] Quick Propagation -51510 0.970 0.936
[8-21-1] Conjugate Gradient Descent | -50147 0.949 0.900
[8-21-1] Quasi-Newton -50117 0.949 0.901
[8-21-1] Levenberg-Marquardt -50164 0.956 0.913
8-21-1] Online Back Propagation -50019 0.947 0.897

S —

Table B-9: Performance of other network trained using five different learning algorithms

Architecture Training algorithm AlC Correlation R?
[7-36-1] Quick Propagation -51286 0.928 0.862
[7-36-1] Conjugate Gradient Descent | -48869 0.819 0.671
[7-36-1] Quasi-Newton -49799 0.872 0.761
[7-36-1] Levenberg-Marquardt -49070 0.851 0.720
[7-36-1] Online Back Propagation -49253 0.846 0.712
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Appendix C: Neural Network Model Results

C.1 Load Forecasting NN
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Figure C-1: Scatter plot comparing actual vs. predictéd values for the training of the network
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Figure C-2: Scatter plot comparing actual vs, predicted values for the validation of the network
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Figure C-3: Scatter plot comparing actual vs. predicted values for the testing of the network

Test Case Result

Figure C-4 shows the MAPE profile for the winter of 2005. The MAPE was the highest
during January.
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Figure C-4: MAPE profile for winter test case —load forecasting network
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Figure C-5 shows the MAPE profile for the spring of 2005. The MAPE was the highest

during April and June.
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Figure C-5: MAPE profile for spring test case — load forecasting network
Figure C-6 shows the MAPE profile for the summer of 2005. The MAPE fluctuated

throughout the summer.

—e— Summer

30

;
25
20

10

0 g
4105 4194 4283 4372 4461 4550 4639 4728 4817 4906 4995 5084 5173 5262 5351 5440 5529 5618 5707 5796 5885 5974 6063 6152 6241

Time (br)

Figure C-6: MAPE profile for summer test case — load forecasting network
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Figure C-7 shows the MAPE profile for the fall of 2005. The MAPE was the highest during

October. However fluctuations were visible during the fall.

20

18

12

MAPE (%)
3

6313 6401 6489 6577 6665 6753 6841 6929 7017 7105 7193 7281 7369 7457 7545 7633 7721 7809 7897 7985 8073 8161 8249 8337 8425
Time (hr)

Figure C-7: MAPE profile for fall test case — load forecasting network

C.2 Percentage Mix from Nuclear Network
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Figure C-8: Scatter plot comparing actual vs. predicted values for the training of the % nuclear NN
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Figure C-9: Scatter plot comparing actual vs. predicted values for the validation of the % nuclear

NN
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Figure C-10: Scatter plot comparing actual vs. predicted values for the testing of the % nuclear NN
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Test Case Results

Figure C-11 shows the

fluctuating in sync.

MAPE profile for the winter of 2006. The MAPE is shown
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C-11: MAPE profile for winter % nuclear test case

Figure C-12 shows the MAPE profile for the spring of 2006. The MAPE was the highest

during April and early May.
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C-12: MAPE profile for spring % nuclear test case
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Figure C-13 shows the MAPE profile for the summer of 2006. The MAPE fluctuated

throughout the summer.
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Figure C-13: MAPE profile for summer % nuclear test case

Figure C-14 shows the MAPE profile for the fall of 2006. The MAPE was the highest during

October. In addition, the second highest point occurred near the end of December.
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Figure C-14: MAPE profile for fall % nuclear test case
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C.3 Percentage Mix from Hydro Network

10 12 14 16 18 20 2 24 26 28 30 k-3 34 3% 38
Teorget

[ Torget + Ouput " Sclectedtarget_©_ Seiected oulput

Scatter Pot i

3 % »

i 10 32 14 16 18 20 22 24 26 28 30 32 |
i Target |
: " Target — " Oupd____ Seectedtargel G Selected output ] i

Figure C-16: Scatter plot comparing actual vs. predicted values for the validation of the % hydro NN
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Figure C-17: Scatter plot comparing actual vs. predicted values for the testing of the % hydro NN

Test Case Results

Figure C-18 shows the MAPE profile for the winter of 2006. The MAPE fluctuated the

most during February.
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Figure C-18: MAPE profile for winter % hydro test case
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Figure C-19 shows the MAPE profile for the spring of 2006. The MAPE was the highest
during late May and eatly June.
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Figure C-19: MAPE profile for spring % hydro test case
Figure C-20 shows the MAPE profile for the summer of 2006. The MAPE was highest in

early July and in mid September.
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Figure C-20: MAPE profile for summer % hydro test case
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Figure C-21 shows the MAPE profile for the fall of 2006. The MAPE was the highest during

early November.
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Figure C-21: MAPE profile for fall % hydro test case

C.4 Percentage Mix from Coal Network
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Figure C-22: Scatter plot comparing actual vs. predicted values for the training of the % coal NN
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Figure C-23: Scatter plot comparing actual vs. predicted values for the validation of the % coal NN
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Figure C-24: Scatter plot comparing actual vs. predicted values for the testing of the % coal NN
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Test Case Results

Figure C-25 shows the MAPE profile for the winter of 2006. The MAPE fluctuated the

most during mid-winter.
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Figure C-25: MAPE profile for winter % coal test case

Figure C-26 shows the MAPE profile for the spring of 2006. The MAPE was the highest

during April and eatly May.
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Figure C-26: MAPE profile for spring % coal test case
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Figure C-27 shows the MAPE profile for the summer of 2006. The MAPE was highest in

August.
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Figure C-27: MAPE profile for summer % coal test case
Figure C-28 shows the MAPE profile for the fall of 2006. The MAPE was the highest during

December and October.
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Figure C-28: MAPE profile for fall % coal test case
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Figure C-29: Scatter plot comparing actual vs. predicted values for the training of the % other NN

1
1
i

Scatter Piot

Figure C-30: Scatter plot comparing actual vs. predicted values for the validation of the % other NN
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Figure C-31: Scatter plot comparing actual vs. predicted values for the testing of the % other NN

Test Case Result

Figure C-32 shows the MAPE profile for the winter of 2006. The MAPE fluctuated
throughout the entire season with its highest value in early February.
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Figure C-32: MAPE profile for winter % other test case
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Figure C-33 shows the MAPE profile for the spring of 2006. The MAPE was the highest

during late May and early June.
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Figure C-33: MAPE profile for spring % other test case

Figure C-34 shows the MAPE profile for the summer of 2006. The MAPE was highest in

late September.
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Figure C-34: MAPE profile for summer % other test case
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Figure C-35 shows the MAPE profile for the fall of 2006. The MAPE was the highest in

i November.
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Figure C-35: MAPE profile for fall % other test case
C.6 Emission Factor NN Methodology 1

i Figure C-36 shows the MAPE profile for the predicted NGHGIF, during the winter of

2005. The MAPE was constant throughout the entire season with its highest value in early

January due to unexpected fluctuations in the grid
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Figure C-36: MAPE profile for NGHGIF, - winter test case

Figure C-37 shows the MAPE profile for the predicted NGHGIF, during the spring of

2005. The MAPE was not as low throughout the entire season with its highest value in April

and late May. The peak MAPE values are due to grid fluctuations in Ontario.
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Figure C-37: MAPE profile for NGHGIF, - spring test case
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Figure C-38 shows the MAPE profile for the predicted NGHGIF, during the summer of
2005. The MAPE fluctuated throughout the entire season with its highest value in July.
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‘ Figure C-38: MAPE profile for NGHGIF, - summer test case
] Figure C-39 shows the MAPE profile for the predicted NGHGIF, during the fall of 2005.

The MAPE was constant throughout the entire season with its highest value in October.
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] Figure C-39: MAPE profile for NGHGIF, - fall test case
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Figure C-42: Scatter plot comparing actual vs. predicted values for the testing of the EF NN
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