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Abstract 

ANALYSIS OF HOURLY DET\1AND, COST, AND EMISSION FACTOR FROM THE 

ELECTRICITY SECTOR - A TOOL FOR RENEWABLE ENERGY ASSESSMENT 

Christian Gordon 

T\1ASc, Mechanical Engineering, Ryerson University, 2008 

In this study, seasonal greenhouse gas (GHG) emission factors were developed to realize the 

true CO2 reduction potential of a small scale renewable energy technology. The new hourly 

greenhouse gas emission factors based on hour-by-hour demand of electricity in Ontario, 

and the average Greenhouse Gas Intensity Factor (GHGIF J were estimated by creating a 

series of emission factors and their corresponding profiles that could be easily incorporated 

into simulation software. The use of regionally specific climate-modeled factors, such as 

those identified, allowed for a more accurate representation of the benefits associated with 

GHG reducing technologies, such as photovoltaic, wind, etc. It was determined that using 

Time Dependent Valuation (TDV) emission factors provided an upper limit 'while using 

hourly emission factors provided a lower limit. In addition, since there is a correlation 

between the electricity generated and emissions from utilities, several neural network (NN) 

models were developed in order to predict the hourly emission factor for the province of 

Ontario. Two methodologies were explored and resulted in good predictions. However, 

methodology 2 proved to be more accllrate in predicting the hourly emission factor for the 

Province of Ontario. 
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1 Introduction 

1.1 Historical Energy Supply and Demand 

The increase in electricity demand in the Province of Ontario in recent years has caused 

some concerns about the potential of an electricity supply shortage in the near future. The 

dilemma regarding the supply and demand of electricity in Ontario is of major concern not 

only to the province, but also to the country. Ontario's economy as a whole will not be 

sustainable without a secure and affordable source of energy (RWE, 2006). Currently, 

Ontario is able to meet their domestic electricity demand on their own; however, it has been 

projected that Ontario faces a looming electricity supply shortfall in the years ahead as coal­

fIred plants are taken out of service and existing nuclear plants approach the end of their 

planned operating lives. Current projections suggest that, without new supply and substantial 

conservation efforts, Ontario could have insuffIcient power to meet its peak requirements by 

2006. By 2014, the province would have only half the generation capacity it needs to ensure 

adequate and reliable electricity service (IESO, 2006). 

The Independent Electricity System Operators (IESO) medium growth projection shows 

that annual peak demand will rise to almost 27,000 MW in 2013. Including reserve 

requirements for the same time span, the figures rise from 28,000 MW to over 30,00O:M\V 

(IESO, 2006a). At the same pace of growth, peak demand would reach 32,000 MW in 2020 

and, with required reserves; Ontario would require nearly 37,000 MW of capacity as shown 

in Figure 1-1. ,The IMO is responsible for the administration of the market rules! and 

procedures and for the development of amendments and replacements to each. 

In recent years, energy consumption and the associated Greenhouse Gas (GHG) emissions 

and their potential effects on the global climate change have been of worldwide concern. 

Climate change and global warming has been the subject of intensive investigation 

! The IESO uses a consultative process to develop amendments to the Market Rules. Any individual with an 

interest in the operation of the electricity market can request an amendment to the Market Rules or comment 

on a rule amendment under consideration. 
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provincially, nationally, and internationally for a number of years. While the complexity of 

the global climate change remains difficult to predict, one must attempt to develop a system 

to measure the amount of GHG released into the environment. Thus, for this reason it is 

important to have an accurate method to look at the true impact of GHG on the earth. 

Existing Generation VS. Peak Demand 
40.OCO..---------------------------------.. 

10,0(1) 

o 

~~~~~~~~~~~~~~~~~~ 
nat 

_ TC".<ollnS:3.::I Ca;:·acit)' ("A .... l Anull'ing EXlt'''ll c;..,.r.Jlon Aue:s and Planned Plan1 life 

- - ?uk c.mand • It.!O },Itdum Growth Fore,:,ls: 1M""') 

Figure 1-1: Ontario supply and demand projections (IESO, 2006) 

1.2 Environmental Concerns of Pollution and GHG 

Throughout history, our civilization has been using energy from its earliest, most basic form 

to its technologically advanced state. Prior to the industrial revolution, the sun was the mail 

source for heat. However, solar energy could not always be used for the production of hea 

due to its restriction of use during the day, therefore, organic matter available on a renewabl 

basis was used (agricultural crops, and wastes, animal wastes, etc.) in order to generate heal 

Animal and wind power were also used as means to produce energy for transportatior 

where water was used to operate simple machines. However, after the industrial revolutior 

the release of massive clouds of smoke and soot from factories burning coal as a means tl 

generate power created the beginning era of GHG emissions. As the pollution continuec 

mankind did not realize the seriousness of the matter in hand until 1911, when 1,15 

Londoners died from respiratory problems due to the smog in the air. It was not until th 

early 80's that scientists started to notice that both the air and the ozone layer were changin~ 

This change was the result of the use of chemicals and other pollutants such :l 
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chlorofluorocarbons (CFC's) throughout the years. Consequently, these pollutants were 

destroying the ozone layer and contaminating the air. Figure 1-2 shows the global 

greenhouse gas emissions distribution for 1999 (UNFCCC, 1999). 

GHG Emissions in 1999 - Worldwide 
In millions of tons (% of total GHG emissions) 

United States 
5,666 (26%) 

Rest of the World 
7,734 (34%) 

1.3 Kyoto Protocol 

China 
3,051 (13%) 

Russia 
1,430 (6%) 

Japan 
1,233 (5%) 

European Union 
3,308 (14%) 

Figure 1-2: GHG emissions in 1999 - worldwide 

The recent climate changes and future damage predictions, as well as the constant increase 

of demand of ~lectricity in Ontario, whether they are conservative or extreme, have served 

to capture the awareness of the seriousness of our current lifestyle. Climate change is a 

global concern and it requires a global response. Global warming is arguably the single 

greatest environmental challenge facing the world today. Due to the scope of the concern, 

the response must be shared between the federal, provincial, and municipal levels of 

government - creating an even economic commitment to environmental technologies. This 

is the initiative behind the Kyoto Protocol - an agreement that does not sacrifice the 

competitiveness of any particular country. Negotiated in 1997 and signed by 180 countries, 

the Kyoto Protocol is an international agreement addressing climate change produced by the 
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nsmg concentration of atmospheric greenhouse gases (GHG). Much of the world 

population live and work in cities that are built on an economic and social network which 

depend on day-to-day energy production and consumption. It would be unrealistic to 

propose a response that stopped our consumption, so the reaction must be technical in 

nature and aimed at reducing consumption or increasing efficiency. 

1.3.1 Protocol Requirements 

The Kyoto Protocol is an international agreement negotiated in Kyoto, Japan during the 

1997 environmental summit. It is a product of a decade of international negotiations starting 

with the United Nations Framework Convention on Climate Change (UNFCCC) negotiated 

during the earth summit in Rio de Janeiro in 1992 (UNFCCC, 1999). The Kyoto protocol is 

a subset to the UNFCCC that seeks to apply a binding international agreement for GHG 

reduction. Under the Kyoto Protocol, developed countries are committed to collectively 

reduce greenhouse gas emissions by 5.2% below 1990 levels by the period 2008-2012. The 

federal government decided to ratify the accord in 2003, and as a result, Canada's share of 

this burden will be by 6% (CME, 2003). 

1.3.2 Protocol Aims 

Although the protocol deals with environmental issues, it is not directly concerned with air 

or water quality. Instead, its main target is to reduce six specific greenhouse gases to curb the 

global warming trend. The six gases are carbon dioxide (COz), nitrous oxide (N20), methane 

(CH4), sulfur hexafluoride (SF6), hydro fluorocarbons (HFCs), and per fluorocarbons (PFCs). 

Although there is some uncertainty among scientists as to the extent of the human 

contribution to global warming, it is clear that the greenhouse gas concentrations have risen 

sharply since the industrial revolution. Ice core samples indicate that the level of atmospheric 

CO2 has risen by 30% since the start of the 19th century. Unless there is a reduction in our 

dependence on fossil fuel as the prime source of energy production, the small changes in 

overall climate temperatures could dramatically influence global weather patterns. 

1.3.3 Current International Response 

Currently 97 countries have ratified the Kyoto accord. However, the participating parties 

only account for 37.4% of the global greenhouse gas emissions (KPT, 2003). Canada 

represents 2% of the global greenhouse gases produced. This may not seem like a large 
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contribution, but when we consider our relatively small population, 2% is substantial. In fact, 

Canadians are the 3rd largest producers of greenhouse gases per capita. One of the most 

influential parties currently onboard the Kyoto movement is the European Union. In some 

ways, Europe is the ideal test case because it involves a number of countries all committing 

to the same goal, creating an even playing field for economic stability. Canada's ratification 

did further increase the credibility of the accord, however, it failed to put political pressure to 

our closest trading partner, the United States. The US accounts for 26% of the global 

greenhouse gas production that is by far the largest globally (UNFCCC, 1999). In 2003, the 

US government decided to pull out of the agreement over fears of severe economic 

repercussions. Many worried that because Canada has close economic ties to our southerly 

neighbours, ratifying the accord will push industry south to escape the stricter environmental 

regulations. However, this does not account for the fact that many states already have GHG 

emission regulations in place. However, the current government has decided that it will not 

be able to meet the terms of the Kyoto protocol in the near future. 

1.4 Canadian Proposal 

1.4.1 Actual GHG Reduction 

Although the requirement of a 6% reduction of greenhouse gas emissions may seem small, 

recall that the baseline year is 1990. Estimates by the government indicate that the emission 

levels were 13.5% higher in 2000 than in 1990. Given current trends, the actual reduction 

necessary will be 33% above 1990 levels by 2010 as shown in Figure 1-3 (W'ojczynsk, 2002). 
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Figure 1-3: Actual GHG Reduction (Wojczynsk, 2002) 

Canada is a sprawling country with a low population density, making the average commuter 

highly vehicle dependent. In addition, our cold climate forces us to consume a lot of energy 

in heating alone. These two facts, along with the required Kyoto reductions, make meeting 

the requirements a significant national challenge. 

1.4.2 Draft Plan 

In 2003 the Canadian government released a climate change draft plan addressing the 

necessary reduction in the form of a three-step process. Referring to Table 1-1 (GOC, 2002), 

the breakdown of each step proposed provides a GHG reduction goal in mega tonnes (MT) 

for a total reduction of240 MT by 2010. 
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Table 1-1: Three Steps Draft Plan (GOC, 2002) 

Overview of the Three Steps 
Step I: Step II: A<:\Jons Step HI, Option. 
Actions to date in this Sl<)p for !he Rema inder 

Clln.adlans and Governmenl Actio! 15MT 15-20 M1 
Tt.nspotlltion.nd building. 

Industrial Emillers 25M1 55MT 

Olher Industrial Emis$ioM! lSUT 
rKhnology. infra .... uct __ 

About 60 MT .tfK:iency gan. 
CSHpage19) 

Agricullute. Fo .. stryand .. Q M1 Offsel.' 
Municipalities 

lnternalinn.al Markel min 10 MT 

TOTAL About 80 M1 About 100 MT 

• Eahmaled at 20 10 £8 MT 

Since 1998, the federal government has allocated $1.6 billion for climate change programs. 

These initiatives are considered to be the flrst step and are expected to account for a 50 MT 

GHG reduction. An additional 30 MT will be credited to carbon sinks such as forestry and 

agriculture locations. Step two involves a 100 MT reduction of greenhouse gases through a 

number of areas of action. A large portion of these reductions is expected to come from 

large industrial emitters. The draft plan does not give many speciflcs concerning the flnal 60 

MT allocated to the third step. This flnal reduction will be a result of decisions and policies 

made in the future and will likely be left open until new technologies become available 

(GOC, 2002). 

Between 1990 and 2002 secondary energy use in Canada increased 18 percent, resulting in an 

18 percent increase in greenhouse gas (GHG) emissions (NRCan, 2004). In addition, energy 

use in the building sector rose by 30 percent, resulting in a 35 percent increase in GHG 

emissions (NRC an, 2004). The current trends will only make it harder for Canada to reach 

its goal to reduce emissions unless conservation strategies and implementation of renewable 

energy technologies are employed. In recent years, energy consumption and the associated 

GHG emissions and their potential effects on the global climate change have been of 

worldwide concern. While the complexity of the global climate change remains difflcult to 

predict, it has been observed that there is a relationship between time of use of electricity 

and GHG emissions (MacCracken, 2006). Thus, it is necessary to develop an accurate 

method to predict the amount of GHGs released into the environment. 
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Solar energy is a renewable resource that is environmentally friendly. Unlike fossil fuels, solar 

energy is available just about everywhere on earth. Solar energy is also free, immune to rising 

energy prices and can be used in many ways such as: providing heat, lighting, mechanical 

power and electricity. 

Photovoltaic technology has experienced a phenomenal 20% annual growth rate during the 

past decade. In a photovoltaic system, sunlight is converted to electricity using photovoltaic 

or solar cells. Photovoltaic (PV) cells are semiconductor devices, usually made of silicon, 

which contain no liquids, corrosive chemicals or moving parts. Sun waves are absorbed by a 

PV cell and as a result excitation of the electrons within the material begins. Figure 1-4 

shows a PV system installation on a house. 

EE. EE. 

Figure 1-4: Photovoltaic system house installation (Sunpowered, 2007) 

The excited electrons create a potential, in the form of electricity which is captured by wires 

connected to the PV cells. The wires transmit the electricity to the load of a home through 

an inverter. The inverter converts direct current (DC) from the PV cells to alternating 

current CAC) for the purpose of supplying electricity to appliances in a house. Solar cells 

require little maintenance, they do not pollute and operate silently, making PV energy the 

cleanest and safest method of power generation. 
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1.5 Objective 

1.5.1 Emission Factors 

In recent years, energy consumption and associated Greenhouse Gas (GHG) emissions and 

their potential effects on the global climate change have been increasing steadily. Climate 

change and global warming has been the subject of intensive investigation provincially, 

nationally, and internationally for a number of years. While the complexity of the global 

climate change remains difficult to predict, one must attempt to develop a system to measure 

the amount of GHG released into the environment. Thus, the purpose of this thesis is to 

develop a better method to estimate the true GHG emission reduction potential from 

renewable technologies. The research proposed in this thesis will help to achieve the goals 

set out by the Kyoto Protocol - reducing fuel consumption and related GHG emissions, 

promoting decentralization of electricity supply, and encouraging the use of renewable 

energy technologies. 

There are several methods in estimating emission factors from facilities: direct measurement, 

mass balance, and engineering estimates. Direct measurement involves continuous emission 

monitoring throughout a given period. Mass balance methods involve the application of 

conservation equations to a facility, process, or piece of equipment. Emissions are 

determined from input/output differences as well as from the accumulation and depletion of 

substances. The engineering method involves the use of engineering principles and 

knowledge of chemical and physical processes (EnvCan, 2007). In Guler (2000) the method 

used to estimate emission factors considers only the total amount of fuel and electricity 

produced from power plants. This method does not take into consideration the offset 

cyclical relationship, daily and yearly, between electricity generated by renewable 

technologies. It should be noted that none of the methods mentioned above include 

seasonal/ daily adjustments to annual emission factors. 

Specifically, the proposed research would include analyzing existing methods in calculating 

emission factors and attempt to estimate new emission factors based on the hourly electricity 

demand for the Province of Ontario. The hourly data would be divided into six categories 

technologies: nuclear, coal, hydro, imported, exported and other (includes natural gas, oil, 
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and wood waste). In addition, in order to determine the emission factors for the years 2004, 

2005, and 2006 an in-depth analysis of the electricity supply and demand for Ontario for 

those years would have to be conducted. 

1.5.2 Neural Networks 

Another aspect of this thesis would be to develop a Neural Network (NN) model using 

external variables that can estimate the electricity demand in Ontario using 2005 data. In 

addition, several NN models would be created in order to predict what percentage of 

Ontario's energy mix is produced by each source (nuclear, hydro, etc.) using hourly 

electricity demand values for 2005. 

There is a relationship between the electricity produced by a photovoltaic (PV) system and 

the availability of solar energy. These changes occur throughout the period of a day, and 

throughout the period of one year. Due to the divergence between when electricity can be 

generated via PV cells, and when it is required, there are several undetermined factors such 

as the economic savings attached to the use of a PV system. First, during times of low 

electricity demand and high solar availability, the excess electricity generated from the PV 

cell would be primarily used to generate income. The government of Ontario has offered to 

pay residents 42 cents/kWh for PV generated electricity, the excess electricity from PV 

would be used to help create income for the residents as well as reducing the load of 

electricity supplied by Ontario generators. Consequently, the purpose of this section would 

be to determine the economic potential for Ontario residents by selling electricity to the 

government via PV cells. Moreover, a NN model would be created in order to predict the 

hourly price for electricity that Ontario residents would pay based on environmental factors 

and time of use data. 

Once the emission factor and economic analysis has been conducted several simulations 

would be run. Employing the model of the representative Canadian house from the 

Canadian Center for Housing Technology (CCH1) in conjunction with the PV model, CO2 

reduction potential and economic analyses would be performed. Utilizing the CCHT model, 

a comprehensive residential model that details the energy consumption in an average newly 
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constructed energy efficient (R-2000) Canadian house, would provide valuable data on the 

benefits and applicability of this system across Canada. 

The purpose of this report will be to perform an hour-by-hour analysis of the electricity 

supply and demand and its associated emissions in Ontario for 2004, 2005 and 2006. In 

addition, several NN models will be developed in order to predict hourly information 

needed to demonstrate the true reduction potential of renewable and other new emerging 

technologies. The analysis performed in this thesis is based on hour-by-hour data acquired 

from the IESO, as well as simulation results from ESP-r for electricity produced by micro­

wind and PV installed in the different house archetypes. The objectives of this study are as 

follows: 

• To develop potential ways in better estimating the true GHG emission reduction 

potentials with sustainable integrated building energy systems. 

• To evaluate hourly electricity supply and demand from Ontario for the years of 2004, 

2005, and 2006. 

• To develop different GHG emission factors in order to represent the true potential 

for CO2 reduction using renewable energy technologies. 

• To analyze the economic and GHG reduction potential from ESP-r simulations 

from photovoltaic and micro-wind turbine technologies using different house 

archetypes. 

• To determine the environmental impact ofPV and micro-wind by using the different 

GHG emission factors. Analyses on the GHG emissions will be conducted and 

conclusions drawn about the environmental impacts using different GHG emission 

factors. 

• To determine the economic feasibility of PV and micro-wind in Ontario by using 

both wholesale price and government incentive of 42 cents/kWh for electricity. The 

GHG reduction potential from these technologies will be examined by employing a 

test-case model house for Toronto and Ottawa. 

• To develop Neural Network models for the prediction of the hour-by-hour 

electricity demand, associated greenhouse gases, and percent mix from the different 

generating technologies for the Province of Ontario. 
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2 Literature Review 

2.1 Electricity Sector in Ontario 

2.1.1 Electricity Market 

Ontario's population has 12.5 million Canadians making it the country's most populous 

province and largest provincial economy (Statcan, 2006). The Ontario electricity system is 

one of the largest in North Amerlca accounting for 28% of the total electricity consumed in 

Canada, which is second only to Quebec's 35% share. 

In Canada, most policy decisions in the electricity sector are under the jurisdiction of the 

provinces. The Ontario government's Ministry of Energy (MOE) oversees the electricity 

system in Ontario by employing institutional levers to carry out its objectives. Before 1998, 

the government owned and operated the utility, Ontario Hydro (OH). However, in 1998, the 

Ontario Electriciry Act reorganized the electricity sector. Ontario Hydro was divided into 

three parts. Ontario Power Generation (OPG) became a crown corporation responsible for 

generating and operating plants. Hydro One became a commercial entity responsible for 

transmitting and distributing electricity, and the Independent Electricity System Operator 

(IESO), which became a non-profit organization responsible for controlling the electricity 

market, as well as producing electricity demand forecasts. 

2.1.2 Dispatching Mechanisms 

Before 1998, the electricity purchased by the end-user came from a distributor, such as 

Toronto Hydro, and generator, such as Ontario Hydro. Any additional electricity was 

purchased by OH from other utilities. After 1998, the electricity market has become a lit de 

bit more complicated. As a consumer, the electricity is distributed the same way as before; 

however, the generator might not be the same, and therefore, the IESO is responsible for 

operating the market and dealing with setdement issues. 

In the new market, the IESO directs the physical flow of all electricity in the province by 

balancing demand with supply. This is accomplished by operating as a wholesale electricity 
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"spot" market. In the spot market, the IESO collects offers from suppliers and bids from 

purchasers and through a coordinated auction, settlements based on market clearing prices 

are determined. 

The wholesale price is determined by a bidding process that is driven by supply and demand. 

Offers from generators in Ontario and other jurisdictions that are connected to the Ontario 

grid are ranked for each hour of the day from the cheapest to the most expensive. A "market 

clearing price" is determined for each house which reflects the offer of the last generator 

accepted (i.e., the price of the highest offer that is accepted), regardless of their original bid. 

The market clearing price is used to determine the Hourly Ontario Energy Price (HOEP) 

(see Figure 2-1), which is the hourly price that is charged to local distributing companies and 

other non-dispatchable loads. The HOEP is calculated by averaging the price set every five 

minutes in a particular hour (IESO, 2006a) 
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Figure 2-1: Electricity price for a typical summer day (IESO, 2007) 

The wholesale price fluctuates throughout the day to reflect incremental-changes in demand 

and supply. In periods of increased demand (on-peak), higher rates must be'accepted from 

generators. Conversely, in periods of decreased demand, the price of electricity decreases, 

thus more expensive generators are not required. In the short term, demand is affected by 

several variables such as seasonal variations and time-of-day consumption patterns (IESO, 

2006). The IESO must compensate for seasonal variations, and thus a reserve of electricity 

must be present at all times. The IESO must have sufficient 10 minute operating reserve to 

cover the largest single contingency. If the largest generator on the grid is 750 M\X', there 
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must be 750 .MW of operating reserve whose energy can be made available within 10 

minutes of the loss of that unit to restore the supply/demand balance. Normally, 25% of 

this ten-minute capacity must be spinning or synchronized. Spinning operating reserve is 

generation that is already synchronized to the grid. This spinning reserve helps reduce the 

impact of the contingency on system frequency before any of the energy associated with the 

operating reserve is activated. Only generators can provide ten-minute spinning reserve. The 

IESO must also maintain 30 minute operating reserve over and above the ten-minute 

requirement. There must be sufficient thirty-minute reserve to cover one-half of the second 

largest single contingency on the IESO-controlled grid. Dispatchable loads/generators, 

imports and exports can be used to satisfy 30 minute operating reserve requirements. 

Typically, tllls results in an operating reserve requirement of approximately 1,400 MW with 

the largest and second largest single contingency being a Darlington nuclear unit (which is 

approximately -900 1f\Xl). 

2.2 Emissions in Canada 

In 2004, the electricity generation sector contributed 17% (130 Mt) of COz equivalent of 

Canada's total GHG emissions for 2004 as shown in Table 2-1. In addition, GHG reporting 

in Ontario is done mostly by Ontario Power Generation since it owns and operates most of 

the electricity generating facilities. Thus it should be noted that Ontario Power Generation's 

GHG emission factors only includl~ COz, SOz, and NO due to the negligible contribution 

from CH4 and NzO (OPG, 2004). 

Table 2-1: GlIG Trends in the Electricity Generation Sector, 1990 - 2004, Mt CO2 eq 

Between 1990 and 2004, emissions from the electricity generation sector increased by almost 

22% of the total emissions growth. The electricity generation sector has increased more than 

any other category in the national inventory. Overall, emissions increased 37% since 1990 

(EnvCan, 2004). 
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2.3 Traditional Ways to Estimate Pollutant and GHG Emissions from the 

Building and Electricity Generation Sectors 

One of the objectives of this thesis is to estimate GHG emission factors from the electricity 

generation sector. There are different methods to estimate GHG emissions. Direct 

measurement is typically the most accurate method that can be used. Normally, these data 

are not readily available and, historically, the majority of GHG emissions from fossil fuel and 

process-related activities have been estimated. Estimation is the method used by many 

countries when preparing their national GHG inventories (IPCC, 1997). Guler (2000) 

calculated the amount of GHG emissions from the electricity generation by using the 

Average GHG Intensity Factor (GHGIF J, which assumes that the reduction in electricity 

consumption is uniformly distributed amongst all types of electricity generation. GHGIF A is 

the amount of GHG emissions produced as a result of generating one kWh of electricity. 

The GHGIF A in 1993 for the Province of Ontario was estimated to be 136 g/kWh using the 

methodology mentioned above. 

In Canada, electricity is primarily produced from three sources: fossil, nuclear, and hydro. 

Recently, there has been a small addition to the mix from alternative power generation 

(wind). 

The combustion of fossil fuels produces several major greenhouse gases: carbon dioxide 

(CO~, methane (CH4), sulphide dioxide (SO~, nitrogen oxide (NO), nitrous oxide (N20 ), 

etc. The amount of emissions from CO2, CH4, S02, NO, and N20 varies from one fuel to 

another, and they are calculated using emission factors. Emission factors are commonly 

expressed in tons of CO2 per MWh or grams per kWh of electricity produced. 

2.4 Identification of Potential Problems in Estimating Pollutant and GHG 

Emissions from the Building and Electricity Generation Sectors 

Butt et al. (2006) stated that the simplest way to reduce emissions is through modifying 

behaviour. Awareness programmes, especially those supported with information on current 

energy usage, are very effective at reducing electricity demand which help reduce emissions. 
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Time of use of electricity is strongly related to emissions since they both vary throughout the 

day (MacCracken, 2006). Therefore, before these programmes can be implemented, it is 

necessary to develop a better method to accurately estimate GHG emissions from fossil 

plants. 

Ontario has a unique mix of electricity producing technologies. Generally, hydro and nuclear 

are considered to be base load power (IESO, 2006), because they are operated at constant 

load all the time. Fluctuations in electricity demand are generally handled by fossil fuel flred 

(FFF) plants. As a result, it can be argued that the GHGIF A calculated using the 

methodology in the previous section would result in estimates of GHG emission reductions 

based on the generation mix for the Province of Ontario, which comes from different 

sources (nuclear, hydro, coal, and other). In order to replace fossil plants completely, a 

different emission factor has to be used instead of the GHGIF A' In response to this, a 

second GHG intensity factor (GHGIFI\~ was developed by Guler (2000), in which the 

GHGIFM was calculated by dividing the net FFF plant electricity production, transmission 

and distribution losses by the total equivalent CO2 emissions. The GHGIFM calculated for 

the Province of Ontario was 903.7 t/GWh in 1993 (GuIer, 2000). The latter emission factor 

assumes that all of the electricity consumed by a residence comes from fossil, which could 

be used if trying to replace fossil plants with renewable technologies. Both of these methods 

neglect to show changes in emission factors throughout the day. It should be noted that 

GHGIF A estimates would reflect Ontario's electricity supply mix. 

2.5 Potential Ways of Better Estimating the True GHG Emission Reduction 

Potentials with Sustainable Integrated Building Energy Systems 

Renewable technologies are used to generate electricity and heat from renewable energy 

sources such as the sun, rivers, wind, and the earth's core temperatures. When sunlight hits a 

photovoltaic cell, electricity is produced. Similarly, when wind flows through a turbine, it 

provides rotational energy which in turn produces electricity through a generator. There are 

many advantages in using solar and wind energy. Some of these are: a free energy source, an 

abundant amount of energy, and an effective method in reducing GHG emissions. However, 

the electricity produced by a renewable technology, such as a photovoltaic (PV), or micro-
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wind turbine and the availability of solar and wind energy, changes throughout the period of 

a day. Due to the divergence between when electricity can be generated and when it is 

required, an hourly GHG emission analysis is needed to truly understand the impact that 

renewable technologies have on emissions. 

Technologies for incorporating renewable energy into the residential area include, 

photovoltaic, micro-wind turbines, ground source heat pumps, and advance solar thermal 

technologies. These technologies are continuously being improved and are responsible for 

the emergence of hybrid homes. By combining renewable energy sources with 

complementing residential technologies, further end-use energy savIngs and emission 

reductions can be obtained. However, before employing a renewable energy technology, a 

better estimation of the true GHG emission factors must be developed in order to get a 

clear picture of the saving potentials for the various renewable energy technologies. 

Currently, the most common method used by Environment Canada to estimate emissions is 

based on fuel consumption calculations from the electricity sector. This method can be too 

simplistic, time-consuming and errors may occur because of the many unit conversions that 

are required, as well as the difficulty in obtaining certain types of data. Fuel based methods 

only estimate an annual average and do not reflect the cyclic behaviour of emission factors 

throughout the day. MacCracken (2006) introduced a time dependent valuation (IDV) 

model for electricity and, in October 2005, TDV was adopted by the California energy 

efficiency standards for residential and non-residential buildings. TDV views energy demand 

differently depending on the time of use (MacCracken, 2006). In MacCracken (2006), it is 

shown that California has devised a means to determine the societal impacts on when energy 

is consumed. As a result, this method of analysis would allow for a more accurate 

representation of the potential reduction of GHGs by using renewable technologies. 

2.6 Forecasting l'v1ethods 

There is an immediate demand for precision in load forecasting. Electricity-supply planning 

is a crucial component in energy management, where decisions concerning additional 

capacity must be precise. Demand prediction is an important aspect in the development of 

any model for electricity planning. Long-term forecasts address future capacity and short-

17 



term forecasts are required for the control and scheduling of electricity supply. Predictions 

are required as inputs to scheduling algorithms for the generation and transmission of 

electricity. Short-term forecasts, in particular, have become increasingly important since the 

rise of competitive energy markets. Many countries have recently privatised and deregulated 

their power systems, and electricity has been turned into a commodity. Forecasting can help 

determine which devices to operate in a given period, so as to minimize costs and secure 

demand. In short-term modeling, the load is mainly influenced by weather conditions, 

seasonal effects (daily and weekly cycles, holidays) and special events. Weather related 

variation is certainly critical in predicting the electricity demand for lead times beyond a day­

ahead (Chow and Leung, 1996; Taylor and Buizza, 2003). Many researchers have considered 

the forecasting of electricity demand using a variety of modeling techniques. Some of these 

methods range from manual methods which rely on operator experience (Lonergan and 

Ringwood, 1995) to mathematical approaches, such as structural techniques (Bruce et aI., 

1994), multiple regression (perry, 1999), exponential smoothing (Christiaanse, 1971), time 

series (Arnjady, 2001), and intelligent methods, such as neural networks (park et aI., 1991). A 

review of these methods was conducted by Alfares and Nazeeruddin (1999) and it was 

concluded that new load forecasting methods based on neural networks have been the most 

active. Over the past few years, neural network modeling has been proposed as a substitute 

for statistical approaches for forecasting. The comparison of the results from NNs and 

statistical approaches indicates that neural networks offer an accurate alternative to classical 

methods (Feuston and Thurtell, 1994 and Alfuhaid et aI., 1997). 

2.7 Review of Neural Network l\fodeling 

In this section, a brief background of neural network modeling is presented and followed by 

a literature review on the use of NN in load forecasting. 

2.7.1 Background 

A neural network (NN), also commonly referred to as an artificial neural network, is an 

information-processing model densely interconnected and with a parallel structure to that of 

the human brain. In other words, NNs are simplified mathematical models mimicking 

biological neural networks. A neural network is an information processing system composed 

of a large number of highly interconnected processing elements that are analogous to 
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neurons, and tied together with weighted connections that are analogous to synapses. Neural 

networks are capable of finding internal representations of interrelations within raw data. 

The key element of NNs is that they learn by example and not by following programming 

rules. This typical characteristic, together with the simplicity of building and training NNs, 

has encouraged their application to the task of prediction. Because of their inherent non­

linearity, neural networks are able to identify complex interactions between independent 

variables without the need for complex functional models to describe the relationships 

between dependent and independent variables as stated in Alfuhaid et al. (1997). 

2.7.2 Neural Networks in Energy Modeling 

Neural networks have been widely used in electricity load forecasting. There are many papers 

in the literature on the application of NN for utility forecasting. It is clear that NN modeling 

has a superior capability over conventional methods (such as regression analysis). One of the 

first team of researchers to use NN for load forecasting was Park et al. (1991). The authors 

used a multi-layer NN model to forecast the electrical load in the Seattle area. The NN 

model could predict 1-hour and 24 hours ahead of time with 2% and 4% absolute error 

respectively. Using electricity load and environmental factors, their NN model could predict 

the future load with an absolute error of approximately 2% for 1 hour intervals. Lee and 

Park (1992) proposed a non-linear model and several NN structures which included past 

load data. Lee and Park demonstrated that the NN model could forecast loads for a given 

day with accepted accuracy. Kiartzis et al. (1995) also used a multi-layer NN model that 

could forecast the next 24-hour load profile on an hourly basis with an average absolute 

error of 2.66%. The authors concluded that incorporation of additional weather information 

such as humidity, rainfall, etc., would improve predicting performance. 

Ho et al. (1992) also used a multilayer NN model to predict electricity demand with a new 

adaptive learning algorithm. The momentum2 in this learning algorithm automatically 

adapted in the training process. Srinivasan et al. (1991) used an NN model based on back 

propagation for load forecasting and showed superiority to traditional methods. Asar and 

Mcdonald (1994) trained a variety of NN s and demonstrated via examples the learning 

2 the momentum amplifies the learning rate causing a faster convergence 
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ability of a neural net to predict half-hourly and daily peak loads in England and Wales. The 

authors used actual load data from a power utility and trained the NN using a back 

propagation algorithm and obtained an average absolute error of 1.96%. 

As this literature review indicates, neural network modeling has been widely used for load 

forecasting. Different NN models and architectures have been studied. However, NNs have 

not yet been used to model Ontario's hourly electricity demand and percent output by 

source. 

2.7.3 Overview of the NN Model 

Neural networks use simple processing units, called neurons, to combine data, and store 

relationships between dependent and independent variables. The NN model consists of 

several layers of neurons that are connected to each other. This connection is referred to the 

information transport link from one sending to one receiving neuron. 

A widely used NN model called the multi-layer perceptron (MLP) NN is shown in Figure 

2-2. This type of NN consists of one input layer, one or more hidden layers, and one output 

layer. Each layer has several neurons, and each neuron in a layer is interconnected to the 

neurons in the adjacent layer with different weights. 

Signals enter the input layer, which can have several inputs (independent variables), pass 

through the hidden layer(s), and arrive at the output layer (dependent variable) as shown in 

Figure 2-2. It should be noted that with the exception of the input layer, each neuron 

receives signals from the neurons of the previous layer. The incoming signals (Xij) are 

multiplied by the weights (V&) and summed up with the bias (b;) contribution (Anstett and 

Kreider, 1993). 

The output of a neuron is evaluated by applying an activation function to the total input (net;) 

calculated using Equation 2.1. The output of a neuron is determined by applying an 

activation function to the total input (net;). The bias (bj) has the effect of increasing or 

decreasing the total input to the activation function, depending on whether it has a positive 
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or negative value, respectively, and can be evaluated similar to the intercept term in a linear 

regression model. 
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Figure 2-2: Architectural graph of a MLP with one hidden layer S 1 

n 

net) = Lx;vij +b) [2.1] 
;=1 

Where, 

net) = total input of the hidden layer neuron j 

Xi = input to the hidden layer neuron j from input layer neuron i 

Vij = weight between the input layer neuron i and hidden layer neuron j 

b) = bias of the hidden layer neuron j 

n = number of neurons in the input layer 
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In order to develop a NN two things are needed: input data and output data. The input data 

consists of independent variables and the output data consists of dependent variables 

Equation 2.2 shows the relationship between dependent and independent variables: 

Where, 

Yi = c1(xl ) + c2(x2 ) + C3(X3) + c4(x4 ) + ... 

Yi = dependent variable 

Xl 'X2 'X3 'X4 = independent variables 

c1, c2, c3, c4 = coefficients 

[2.2] 

Since the number of input and output units are decided based on the available data and the 

desired output, respectively, only the number of units in the hidden layer(s) is left to be 

determined. However, there are no rules to establish the number of hidden layers and the 

number of neurons for each hidden layer for a particular application as stated in Anslett and 

Kreider (1993). 

Once the architecture type has been determined the training of the Neural Network can 

begin by selecting the appropriate activation function. There are several training functions 

each with its own mathematical characteristic such as quick propagation, quasi-Newton, back 

propagation, etc., these, as well as assessing the prediction performance of neural networks 

are presented in Appendix A 
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3 Electricity Demand and GHG Emission Factors 

3.1 Hourly Electricity Demand and Percentage Share of Supply from 

Different Generation I\1ix 

The total supply and demand of electricity in Ontario was estimated for the years 2004, 2005 

and 2006 by dividing the hour-by-hour data obtained from the IESO into the categories 

mentioned in section 3.2. These data were compared to published values by the following 

comparues: 

• Ontario Power Generation (nuclear, coal, hydro, gas and oil) 

• Bruce Power (nuclear) 

• Other Power Companies (Trans Canada Energy Limited, Great Lakes Power Limited, 

etc.) 

The total electricity demand, as well as the percentage share of supply from the different 

generating technologies was calculated and tabulated in graphs. 

The hourly data from the IESO for 2004, 2005, and 2006 were analyzed and divided into 

seasonal periods (winter, spring, summer, and fall) in order to determine their inherent 

characteristics, thus focusing on hourly trends of the supply and demand of electricity for 

Ontario. 

3.2 Electricity Generation Technologies and their Fuel and Emission 

Characteristics 

Electricity generation in Ontario comes from three major sources: nuclear, coal, and hydro. 

Nuclear and hydro are generally considered to be base load power, because they are operated 

at constant power. However, coal plants are generally used when there are fluctuations in 

electricity demand. Nuclear plants produce very little CO2 from non-reactor processes and 

from the transportation of materials within the plant. On the other hand, fossil fuels fIred 

(FFF) plants produce large amounts of pollutants and are the major contributors of CO2 in 

the electricity generation sector. Conversely, hydro produces zero air pollutants. 
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The data obtained from the IESO was divided into the following categories: 

• Nuclear 

• Coal 

• Hydro 

• Other (natural gas, oil, and wood waste) 

• \Vind (only for 2006) 

• Imported and exported 

3.3 Data Classification for Estimating Hourly Pollutant and GHG Emissions 

from Power Generation 

The hour-by-hour supply and demand of electricity data for Ontario used in this thesis was 

obtained from the Independent Electricity System Operators (IESO). The IESO is 

responsible for operating the wholesale electricity market and forecasting the demand as well 

as ensuring that the supply of electricity is available to meet that demand. In other words, all 

electricity producing companies in Ontario must report to the IESO. 

The use of hour-by-hour data helps to provide a more accurate picture of the true potential 

of CO2 reductions using renewable energy technologies such as photovoltaic, wind, 

geothermal, etc. The scope of this thesis will be to look at the true estimate of CO2 

emissions, as well as the electricity supply and demand markets for the years 2004, 2005 and 

2006 for the Province of Ontario by using hour-by-hour data3
• 

3.4 Estimation of Hourly Pollutants and GHG Emission Factor per kWh of 

Electricity Supplied 

The amount of GHG emissions from the electricity generation sector was calculated using 

the "Average GHG Intensity Factor" (GHGIF J (GuIer, 2000). The GHGIFA represents the 

3 Note: The IESO has not included the Lennox plant under the coal section. As a result, the Lennox plant was 
removed from the OPG Sustainable report (OPG, 2006a) for the purpose of comparative analysis of 
greenhouse gas intensity factors. Also, hourly data for natural gas and oil plants is classified as "other" by the 
IESO 
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amount of GHG emissions produced as a result of generating one kWh of electricity. The 

GHGIF A in 1993 for the Province of Ontario was estimated to be 136 g COz/kWh (GuIer, 

2000). The GHGIFA for 2004, 2005, and 2006 was estimated using the methodology 

mentioned above in conjunction with the electricity output information (IESO, 2006a). It 

should be noted that the emission factor for COz does not take into consideration CH4 and 

N zO because Ontario Power Generation and Bruce Power do not show this data in their 

sustainable reports mainly due to their negligible effect in comparison to COz, SOz, and NO 

(OPG, 2006). 

The GHG etnlSSlOnS due to coal Bred and natural gas plants were determined uSlllg 

Equations 3.1, 3.2 and 3.3. 

Where, 

HCOz = (HECOAL) (i) + (HEOTHER) (j) 

HSOz = (HECOAL) (k) 

HNO = (HECOAL) (I) 

HCOz = Hourly COz production (kg) 

HSOz = Hourly SOz production (kg) 

HNO = Hourly NO production (kg) 

HECOAL = Hourly Electricity generated by Coal plants 

[3.1] 

[3.2) 

[3.3] 

HEOTHER = Hourly Electricity generated by Other (natural gas, etc.) 

i = OPG COz emission factor (1.001745 kg COz/kWh for the year 2004) (OPG, 

2004) 

j = Environment Canada natural gas emission factor (0.447 kg COz/kWh for the 

year 2004) (Environment Canada (2005» 

k = OPG SOz emission factor (0.00433 kg SOz/kWh for the year 2004) (OPG, 

2004) 
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I = OPG NO emission factor (0.00096 kg NO/kWh for the year 2004) (OPG, 

2004) 

TIle new hourly greenhouse gas emission factors (NHGHGIF J model \vas based on the 

hour-by-hour demand of electricity in Ontario from the following sources: nuclear, fossil, 

hydro, other (natural gas, etc) (IESO, 2006a). The estin1ation of the new hourly greenhouse 

gas intensity factors NHGHGIFA was accomplished by dividing the hour-by-hour emissions 

from CO2 SO.::, and NO by dle hour-by-hour total electricity generated from the sources 

mentioned above. Consequendy dle new greenhouse gas intensity factor (NGHGIF.J was 

estin1ated by taking dle average of dle hourly emission factors for each season. The values 

obtained for dle NGHGIFA were compared to dle GHGIFA nlues using the methodology 

oudined in the literature. 

The NGHGIF .... was determined using Equations 3.4 and 3.5. 

\\11cre, 

NHGHGIFA 
HEG TO TAL 

[3.4] 

~~I>O NHGHGIF . 
}/GHGIF

A 
= L .4, 

1=1 8760 
[3.5] 

NllGHGIFA = l\:cw Hourly Greenhouse Gas Intensity Factor (g COl/kWh) 

NGHGIFA = l\:ew Greenhouse Gas Intensity Factor (g COl /k\\1l) 

IlC02 = Hourly CO2 production (~ 

HEGTOT.\L = Hourly Electricity Generated Total (k\\1l) 

i = hour 

111C \-alue obtained for the ~GHGIF~ \\'as compared to the GHGIF from Enrno!"...menr 

Canada (2006) for the years 2004, 2005, and 2006. 
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3.5 Peak Day Analysis 

A seasonal peak day analysis was performed for the years 2004, 2005, and 2006 in order to 

demonstrate the variability of the emission factor and electricity demand in a 24 hour period. 

In addition, a comparison of the peak days for the time period indicated above will help to 

determine a trend for the shifting of electricity demand in Ontario which in turn is 

associated with GHG emission factors. This will show a clear representation of the benefits 

associated with the use of hourly data during peak hours in order to reflect the true potential 

of GHG reduction by using renewable technologies. 

3.6 Time Dependent Valuation Analysis (fDV A) for Greenhouse Gases 

3.6.1 Introduction 

Currently, there is no TDV profile for greenhouse gases for the Province of Ontario in the 

public domain. Hourly GHG emissions data based on provincial location are not readily 

available, and it has been shown that emission factors vary with electricity demand 

~facCracken, 2006). In addition, the shape and magnitude of GHGIF profiles also vary with 

factors such as time of day, time of year, geographical location, and climate. Due to the 

inaccessibility to emission data from the power generating sector, rather than using one 

GHGIF value for the entire year, seasonal GHGIF profiles based on the electricity demand 

for the Province of Ontario were developed. The approach detailed below was used in order 

to provide a better method to properly estimate greenhouse gases within the Province of 

Ontario. 

3.6.2 TDV GHGIF Profile Methodology 

Hourly electricity consumption data from the IESO and hourly GHG enusslon factors 

estimated in section 3.4 were used to determine Hourly Average NGHGIF profiles for the 

years 2004,2005, and 2006. These profiles were calculated using Equation 3.6 for each hour 

in a day. 

N 

LNGHGIFA(hj ) 

TDV NGHGIF =-,-i=..:.,.1 ----­
A N 

[3.6] 
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\'Vhere, 

TDV NGHGIFA = Time Dependent Valuation New Greenhouse Gas Intensity 

Factor (g CO2 /kWh) 

N = number of days in the season 

i = day number 

j = hour number 

The hourly averaged values obtained for the TDV NGHGIF A were compared for the years 

2004, 2005, and 2006. 

3.7 Time Dependent Valuation Economic Analysis (TDVEA) for 

Greenhouse Gases 

3.7.1 Introduction 

Currently in the Province of Ontario there is no economic profile placing a value on 

emissions in the power generation sector. Electricity costs do not account for seasonal or 

time-of-use (fOU) patterns for emissions. Thus, it is necessary to develop a proflle in order 

to place a monetary value and quantify the effects of greenhouse gases for Ontario. The 

price Ontarians pay for energy and the cost of delivering energy is dependant on the time-of­

use and location. This section will attempt to develop a more accurate energy costing 

analysis for time dependent valuation, which accounts for variations related to time of day, 

season, and geography. 

The use of TDV criteria would place a higher value on energy savings during peak cost times 

and encourage more energy and cost efficient design and construction of buildings which as 

a result would reduce peak demands on the energy system in Ontario. Over time, this would 

lead to significant cost savings for both building owners and for the electricity supply and 

demand system, along with improved reliability for utilities, customers and society. 

3.7.2 Greenhouse Gas Cost Factor (GHGCF) Methodology 

The development of hourly TDV factors for the cost of electricity includes several 

components. The estimation included the generating price for electricity obtained from the 
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IESO, which varies by time-of-use. Then the transmission and distribution costs (T&D) 

were added and fInally, an environmental component was applied, which reflected the cost 

of emissions from fossil plants in Ontario. 

Using the electricity cost data and emission factors from the previous section the GHGCF 

was calculated shown in the following sections. 

3.7.2.1 Electricity Cost 

The cost of electricity generation represents the minimum amount that society is willing to 

pay. However, this cost does not include external costs associated with health and 

environmental damages. The total costs of generation are sensitive to the methodology used 

to estimate these additional costs. When these costs are included into the equation, the total 

cost of fossil-fIred generation rises dramatically. This additional cost will be shown in the 

following sections. In the past the total cost of electricity was estimated by using a flat rate 

pricing structure for Ontario, however, recently Ontario has adopted a time-of-use (TOU) 

pricing scenario, assigning different prices depending on the time of day the electricity is 

used (OEB, 2006) where the fInal price is paid by the customer including delivery charges, 

etc .. However, most provinces in Canada still use the flat rate pricing scheme with the 

exception of Ontario and Nova Scotia. In this thesis understanding how the pricing scheme 

affects the emission cost is explored. 

3.7.2.2 Flat Rate Electricity Cost Analysis 

The flat rate electricity price for Ontario IS $O.lO/kWh (Toronto Hydro, 2006). To 

determine the cost of electricity using the flat rate price, the number of kilowatt-hours (kWh) 

is multiplied by the flat rate price of electricity according to Equation 3.7. 

Where, 

Cost el,Jlat = P"1.Jlat (Demand el ) 

Costel,flat = cost of electricity using a flat rate electricity price ($) 

P.,I,flat = flat rate price of electricity ($/kWh) 
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Demandel = electricity demand (kWh) 

3.7.2.3 Time-of-Use Electricity Cost Analysis 

The TOU scenario implemented in Ontario on May 1, 2006 is detailed in Table 3-1, Table 

3-2, and Table 3-3 showing the retail electricity prices for the winter, summer, and weekends. 

It should be noted this is how much consumers pay for electricity and are different from 

what the government pays generators for their electricity produced. This distinction will help 

demonstrate that by having an emission cost factor added to the price of electricity for 

consumers and generators will have different effects. 

Table 3-1: Time-or-Use Pricing for Winter Months (DEB, 2006) 

Final 
Hours Time Period Price 

($/kWhl 
1 - 6 Off-Peak 0.077 

7 -10 On-Peak 0.147 

11 - 16 1fid-Peak 0.117 

17 - 19 On-Peak 0.147 

20 - 21 1fid-Peak 0.117 

22 - 24 Off-Peak 0.077 

Table 3-2: Time-of-Use Pricing for Summer Months (DEB, 2006) 

Final 
Hours Time Period Price 

($/kWh) 

1-6 Off-Peak 0.077 

7 - 10 1fid-Peak 0.117 

11 - 16 On-Peak 0.147 

17 - 21 Mid-Peak 0.117 

22 - 24 Off-Peak 0.077 

Table 3-3: Time-or-Use Pricing for Weekends (DEB, 2006) 

Final 
Hours Time Period Price 

($/kWh) 

1 - 24 Off-Peak 0.077 

The hourly price paid by the customers for electricity at each hour for the entire year is 

deflned in Equation 3.8. 
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Where, 

~/,roU = 0TOU + T + D + DRC + RPPAC + WMOC 

~/,TOU = Price of electricity using TOU pricing scheme ($/kWh) 

Orou = Ontario time-of-use electricity price ($/kWh) 

T = Transmission charge (0.0102 $/kWh) 

D = Distribution charge (0.0186 $/kWh) 

DRC = Debt Retirement Charge (0.007 $/kWh) 

[3.8] 

RPPAC = Regulated Price Plan Administration Charge (0.00000347 $/kWh) 

WMOC = Wholesale Market Operation Charge (0.0062 $/kWb) 

The price of electricity for customers and generators for the Province of Ontario will be 

used in order to estimate a monetary value for emissions. 

3.7.2.4 Wholesale Electricity Price for Generators 

The wholesale electricity price that the government pays for electricity to generators varies 

every hour throughout the day. For example, an electricity generator might received 

anywhere between $0.04/kWh up to $1.6/kWh depending on when they are providing the 

electricity (i.e. during peak times). Usually fossil plants receive a higher rate than nuclear due 

to capacity limitations and fluctuations. 

3.7.2.5 Emission Cost 

The hourly emission cost was estimated using both the hourly retail price for electricity 

estimated in section 3.7.2 and the hourly emission factors developed in section 3.4. There 

were three emission cost factors determined in order to show the different impact on 

customers and generators. The hourly emission costs for the different electricity pricing 

schemes were estimated using Equations 3.9,3.10, and 3.11. 
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3.7.2.5.1 rov GHGCF tlsingjlat rate pridng scheme 

GHGCF [ $ ] = P el,flat 
el,}lat go/C0

2 
NHGHGIF

A 

[3.9] 

Where, 

GHGCFel,}lat = Greenhouse Gas Cost Factor for electricity using flat rate pricing 

scheme 

~/,flat = Price of electricity using flat rate pricing scheme ($/kWh) 

NHGHGIF A = New Hourly Greenhouse Gas Intensity Factor (g of CO2/kWh) 

3.7.2.5.2 rov GHGCF using TOU pridng scheme 

GHGCF [ $ ] - ~/,TOU 
el,TOU go/C0

2 
- NHGHGIF

A 

[3.10] 

Where, 

GHGCFel,TOU = Greenhouse Gas Cost Factor using TOU pricing scheme (g of 

~/,TOU = Price of electricity using TOU pricing scheme ($/kWh) 

NHGHGIFA = New Hourly Greenhouse Gas Intensity Factor (g of CO2/kWh) 

3.7.2.5.3 rov GHGCF using wholesale pridng scheme 

GHGCF [$]_ HEP 
el,wholesale go/C0

2 
- NHGHGIF

A 

[3.11 ] 

Where, 

GHGCFel,W!lOlesale = Greenhouse Gas Cost Factor using wholesale electricity pricing 

scheme 

HEP = Hourly Electricity Price paid to generators ($/kWh) 

NHGHGIFA = New Hourly Greenhouse Gas Intensity Factor (g of CO2/kWh) 
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Similarly to section 3.6 the Hourly Average GHGCF profIles were determined for the years 

2004,2005, and 2006. The GHGCF for either consumers or generators should be included 

in the electricity cost value in order to have a true representation of the impact of 

greenhouse gases from the power generation sector in Ontario. 

3.8 ESP-r Simulations 

3.8.1 Introduction 

ESP-r is a building energy simulation software that can be used to perform highly complex 

thermal analysis, HV AC analysis and electrical power flow simulations. In simple terms, 

ESP-r attempts to simulate real world scenarios to a level that is consistent with current best 

practices in the international building simulation community. The use of calculation methods 

like ray tracing and computational fluid dynamics (CFD) make ESP-r useful for a wide range 

of projects. 

Simulations in ESP-r were run for the city of Toronto by Syed et al. (2007). This location is 

the largest city for which weather fIles were available in ESP-r for the Province of Ontario. It 

should be noted that there are several smaller cities for which weather fIles are not available. 

The simulation cities were chosen mainly due to hourly electricity data only available for the 

Province of Ontario. The year of assessment for these cities was done for 2005. 

3.8.2 Test Case House and Year of Assessment 

Syed et al. (2007) performed simulations, using ESP-r, which included the use Photovoltaic 

(PV) and micro-wind turbine energy systems on the computational model for the Canadian 

Centre for Housing Technology (CCH1) research house located in Ottawa. The CCHT 

research house was built in 1998 based on R-2000 building standards. Identical twin houses 

were built in order for one house to be used as a reference while the twin house is tested 

with advance technologies to assess the energy performance of novel energy systems and 

materials (NRCan 2007). 

The ESP-r model for the CCHT house is shown in Figure 3.1 and is composed of two 

above-ground storeys and a fully conditioned basement. It has a conditioned floor area 

(excluding the basement) of 240 m2
• 
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Figure 3-1: ESP-r model for CCHT house 

Three sets of simulations were analysed in this thesis: 

Case Stucfy 1: CCHT research house with both a 5 kW PV and a micro-wind turbine of 1 kW 

obtained from Syed et al. (2007) for Toronto. 

Case Stucfy 2: CCHT research house with a 5 kW PV system for Ottawa for only one week in 

the summer and one week in the winter for the year 2004 obtained from Good et al. (2006). 

Case Stucfy 3: The unit chosen was the end unit on the south east side of a townhouse 

complex in Toronto. Simulations were conducted by Tse et al. (2008) in TRNSYS in order 

to model the use of renewable technologies in a townhouse. 

3.8.3 Economic Analysis of Building Integrated Renewable Technologies 

3.8.3.1 Introduction 

One of the objectives of this thesis was to estimate a New Greenhouse Gas Intensity Factor 

based on the hour-by-hour demand of electricity in Ontario. The hourly data allows for a 

better estimate of the true impact of the potential GHG reductions by using PV and micro­

wind turbine technologies. In addition, an economic analysis was performed to estimate the 
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mcome produced by PV and hypothetical micro-wind turbine system with the recent 

government initiative to pay 42 cents per kWh of electricity produced by PV systems. 

3.8.3.2 Case Study Simulations 

3.8.3.2.1 Case Stucjy 1 

A PV array of 5 kW and a micro-wind turbine of 1 kW capacities were installed in the house 

and hourly annual simulations were run to assess the potential electricity contribution, 

revenue generated, and GHG reduction due to these technologies. In addition, electricity 

generated from PV and micro-wind during peak days was analysed using greenhouse gas 

emission factors developed in the previous sections. 

3.8.3.2.2 Case Stucjy 2 

The electricity produced by the PV system was obtained from Good et al. (2005). The 

capacity of the PV system selected was 5 kW and the location selected for the simulation was 

Ottawa. The simulation was performed during the weeks of January 9 - 15 (winter) and July 

11 - 17 (summer) for the year 2004. The hourly electricity production for both weeks was 

obtained from the IESO. 

The estimation of the hourly CO2 emissions (grams) was calculated by multiplying hour-by­

hour emission factors from section 3.4 by the hour-by-hour electricity produced by the PV 

system for both the winter and summer weeks. The total CO2 emissions for each week were 

divided by the sum of their corresponding hourly electricity production. The different 

emission factors such as those described in the previous sections were applied to the data in 

order to demonstrate both the reduction potential and monetary value on emissions. 

3.8.3.2.3 Case Stu4J 3 

Tse et al. (2008) used TRNSYS to simulate and help optimize the performance of the net­

zero energy townhouse, as well as the different systems that will be implemented in the 

home. The systems that were analyzed consist of a solar domestic hot water system, a 

photovoltaic system, and a ground source heat pump. Emissions were developed by using 

hourly data and compared to TDV NGHGIF A values as well as performing TDV GHGCF 

analysis of the townhouse. 
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4 Neural Network Modeling 

4.1 Predictive :Models using Neural Network ~1odeling 

This chapter presents the processes used in the development of the Neural Network (NN) 

models in order to develop several predictive models for the Province of Ontario. In this 

section the development of the NN models is presented, followed by detailed development 

of the input and output units, testing, and training parameters, and network architectures. 

This will entail a description of the methodology used, as well as a detailed overview of the 

model approach and information requirements of the models developed. 

4.2 Development of Artificial Neural Network Architecture and Training 

4.2.1 Overview of Neural Network Modeling 

The second part of this thesis was to use Neural Network (NN) modeling using weather data 

for the city of Toronto obtained from Environment Canada (2006) due to its large 

population of 2.48 million people and 5 million in the Greater Toronto Area (GTA) 

according to the City of Toronto (2005). Some of these variables included windspeed, 

temperature, visibility, month, day, hour, relative humidity, dew point temperature, and 

weekend/weekday. This chapter contributes to a practical method for forecasting a wide 

range of outputs. These values were used to predict the hourly electricity demand, the 

percent of electricity produced from each source of the generation mix, and the price of 

wholesale electricity paid to generators for the Province of Ontario. The NN models were 

developed using the NeuroIntelligence modeling software (Alyuda, 2007). The models were 

refined based on a comparison with their initial target outputs. Figure 4-1 illustrates the 

relationship between input and output values. 
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Figure 4-1: Flowchart diagram depicting the methodology used for the development of the NN model 

4.3 Selection of Input Parameters 

One of the key factors in the development of a successful predictive tool is the selection of 

appropriate input parameters (or independent variables), thus it is important to include only 

those parameters that have a significant influence on the value of the predicted result. To 

develop the NN model, the data was fIrst obtained from Environment Canada. The data 

consisted of hourly weather conditions for the year 2004 and 2005. Ten sources were 

selected for the development of the input layer of the NN model. The output layer of the 

model was the actual hourly electricity demand for Ontario in 2004 obtained from the IESO 

(2004). 

The selection process of the relevant variables for inputs was detennined by conducting an 

exhaustive simulation on all the possible combinations of the variables. These simulations 

identified the relevant inputs and discarded irrelevant variables which did not significantly 

contribute to the performance of the NN model. It was detennined that insignificant inputs 

were to be removed, thus improving the generalization performance of the model, in spite of 

loosing some input data. 
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4.4 Data Pre-Processing 

Before the data was ready to be used as input to a NN, it had to be subjected to some form 

of pre-processing, which was intended to make the forecasting more manageable. Pre­

processing was needed to reduce the dimension of the input vector. This was required in 

order to avoid the exponential growth in the complexity of the problem that would result 

from an increase in the number of dimensions. Pre-processing was also needed to "clean" 

the data, by removing outliers, missing values or any irregularities, since NNs are sensitive to 

such defective data and the NeuroIntelligence software assisted with this task. 

4.5 Development of the Artificial Neural Network Architecture 

The data was divided into three sections: 68% of the data was for the training, 16% for the 

validation, and 16% for the test set, these were the default conditions selected by the 

software and were similar to the suggested data partition percentages by Anstett and Kreider 

(1993). Selection of suitable artificial neural network architectures is probably the hardest 

part of the problem, and critical to obtaining a useful artificial neural network. It is analogous 

to selecting the form and independent variables of a regression equation. The architecture of 

the model was determined by performing a heuristic search methodology for determining 

the number of hidden layers required for the NN. The number of units in the hidden layer 

of the network and the learning algorithm resulting in the highest prediction performance 

was chosen as the network architecture for the NN Model. After determining the number of 

neuron units and the learning algorithm resulting in the highest prediction performance, 

different networks were trained with the chosen learning algorithm to determine the best 

network architecture. In other words, the number of hidden layers needed. 

4.6 NN Model Testing and Training 

The activation function or training algorithm used to train the NN was found to have quite 

an important influence on its accuracy and the speed with which the training converged (or 

whether it converged at all). In general, the NN starts with random weights and the training 

process adjusts these weights with the aim of producing an accurate prediction of the 

training data. Because this is a semi-random process, it is important to retrain the NN several 

times with different activation function. It is also important to allow sufficient iterations of 

the training regime to allow the NN to converge. Sufficient time and computational power 
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was available to conduct an exhaustive search. In order to train the model an activation 

function had to be selected. As a result, all the activation functions included in the NN 

software package (Neurointelligence) where tested and it was determined that the online 

backward propagation function was the most suitable due to its high R-squared value, 

simplicity, and speed. 

4.6.1 Development of the Neural Network Input Parameters 

4.6.1.1 Hourly Electricity Demand for Ontario 

In this section an hourly NN load forecasting model for Ontario was developed. First an 

exhaustive simulation was conducted in order to determine the relevant input variables. 

There were 510 simulations performed and it was determined that the best configuration of 

inputs with their ranges of value was the following: 

• Month (1 - 12) 

• Day (1 - 31) 

• Temperature (-24.2 - 31.3 CD) 

• Hour (1- 24) 

• Relative humidity (26 - 100%) 

• Dew point temperature (-31.6 - 23.8 CO) 

• Windspeed (0 - 50 km/h) 

• Visibility (0 - 24.1 km) 

• Weekend=O/Weekday=l 

The electricity demand NN dataset was divided into subsets. The subsets were used for 

training, validation, and testing of the networks. The training set contained 5921 weather 

data points (68% of all data), the testing and validation sets each contained 1392 weather 

data points. The weather data in each subset was chosen randomly. 

4.6.1.2 Hourly Percentage Mix from Sources 

The input parameters for nuclear, hydro, coal, and other were determined by conducting 

input combination simulations as in Section 4.6.1.1. Table 4-1 shows simulation results in 
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order to determine the relevant inputs for each of the generation sources. It should be noted 

that since the percent mix from nuclear is constant throughout the year and it is used for the 

determination of subsequent percentage mix from coal, hydro and other sources, it was 

decided to skip the input selection simulations for nuclear. 

Table 4-1: Input parameters for the hourly percentage mix NN models 

Input Column Name Nuclear Hydro Coal Other 

Month x x x x 

Hour x x x 
Day x x x x 
Temp x x x x 
Dew Point Temp x x x x 
Visibility (km) x 
Relative Humidity (%) x x 
Windspeed (km/h) x 
Weekend=O/Weekday=1 x x x 

Elec. Gen. x x x 
% Nuclear x 

% Hydro x 

The percentage tn1X NN dataset for all generation types was divided into subsets. The 

subsets were used for training, validation, and testing of the networks. The training set 

contained 5848 data points (68% of all data), the testing and validation sets each contained 

1376 (16% each) weather data points. The input data in each subset was chosen randomly. 

Noise in the dataset was automatically determined by the software. Furthermore, there 

should not be too much noise since the inputs are all true values obtained from 

Environment Canada and the IESO. 

4.6.1.3 Hourly Emission Factor 

The input parameters for the hourly etnlSS10n factor network were determined by 

conducting an input combination simulation as in Section 4.6.1.1. There were 1023 

simulations performed and it was determined that the best configuration of inputs was the 

following: 

• Electricity Demand 

• Month (1 - 12) 

• Day (1 - 31) 
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• Temperature (-24 - 34.7 CO) 

• Hour (1 - 24) 

• Dew point temperature (-30.5 - 23.6 CO) 

The hourly emission factor NN dataset was divided into subsets. The subsets were used for 

training, validation, and testing of the networks. The training set contained 5848 data points 

(68% of all data), the testing and validation sets each contained 1376 data points. The 

electricity demand and weather data in each subset was chosen randomly. 

4.6.2 Development of the NN Architecture 

The initial test network architectures were constrained to three layers, one for input, hidden 

and output layers respectively. This architecture was chosen as previous research indicated 

that multiple hidden layers are rarely effective in terms of both accuracy and training speed, 

Neocleous and Schizas (1995). 

A search was performed in order to determine the NN architecture for all the NN models 

developed. This was accomplished by conducting different architecture simulations. This 

allowed multiple networks to be trained with different numbers of hidden layer neurons and 

the results collated to display the optimum network. 

Neural networks trained with large numbers of hidden layer neurons tend to suffer from 

overfitting. This over fitting cannot always be determined from the minimum validation set 

error if the dataset is small. In order to minimize the risk of over fitting the network 

architecture selection process was based on a criterion that balances minimum error again 

network complexity. One such measure is Akaike's Information Criterion (AIC), Akaike 

(1974), which has been widely used for model selection for both conventional statistical 

models and neural networks. 

Of the measures available for comparing the accuracy of the neural networks, Akaike's 

criterion was found to be a useful quantity for comparing NN architectures with a single 

hidden layer and both R-squared and the correlation tended to be maximized for the neural 

networks with the highest fitness scores based on test error and Akaike's criterion. It should 
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be noted that the accuracy of the predicted results from the NN s was also assessed in a 

qualitative manner by visual inspection of the performance of the NN architecture. 

Once the network architecture was selected, different learning algorithms were applied to the 

networks in order to determine the best predicting algorithm. 

4.6.2.1 Hourly Electricity Demand Network 

It is important that both training and test set error be in broad agreement with the validation 

set error, and it can be seen from Figure 4-2 that the three sets of values correlate well as the 

number of hidden layer neurons increases. 
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Figure 4-2: Minimum error values for the hourly electricity demand NN 

To determine the network architecture that produces the best prediction performance, 

different network architectures with 1 to 32 hidden layers was analyzed for each NN model. 

The prediction performances and Akaike's criterion for the trained network are given in 

Figure 4-3. The R-squared and correlation data are presented in Table B-1 in Appendix B. It 

can be observed from Figure 4-3 that the minimum points at 18 and 31 neurons for the 

network architecture is a reasonable compromise between error values and network 

complexity. Thus, the configuration that consisted of 31 neurons in one hidden layer (9-31-
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1) was found to be the most suitable network architecture to predict the hourly electricity 

demand for the Province of Ontario due to its higher R2 value. 
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Figure 4-3: Akaike's Information Criterion for the hourly electricity demand NN 

As seen from Table 4-2, the learning algorithms produced good predictions within the range 

of R2 of 0.793 to 0.960. The network trained with the Quick Propagation learning algorithm 

with 31 neurons resulted in the lowest Akaike value and highest R2, indicating that this 

network has the highest prediction performance. 

Table 4-2: Performance of the elee. demand network trained using five different learning algorithms 

Architecture Training algorithm AIC Correlation R2 

[9-31-1J Quick Propagation -15901 0.981 0.960 

[9-31-1 J Quasi-Newton -13169 0.953 0.908 

[9-31-1 J Conjugate Gradient Descent -11698 0.925 0.855 

[9-31-1 J Levenberg-Marquardt -12924 0.954 0.908 

[9-31-1 J Online Back Propagation -10534 0.891 0.793 
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4.6.2.2 Percentage Mix from Source NN 

4.6.2.2.1 Percentage Mix from Nuclear 

For the percentage mix from nuclear network Figure 4-4 illustrates that the three sets of 

values correlate well as the number of hidden layer neurons increases. 
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Figure 4-4: Minimum error values for the percentage from nuclear NN 

Different network architectures with 1 to 32 hidden layers were analyzed for each NN 

model. The prediction performances and Akaike's criterion for the trained network are given 

in Figure 4-5. The R-squared and correlation data are presented in Table B-2 in Appendix B. 

It can be observed from Figure 4-5 that the minimum points at 25 and 29 neurons for the 

network architecture is a reasonable compromise between error values and network 

complexity. Thus, the configuration that consisted of 29 neurons in one hidden layer (6-29-

1) was found to be the most suitable network architecture to predict the hourly electricity 

demand for the Province of Ontario. 
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Figure 4-5: Akaike's Information Criterion for the percentage from nuclear NN 

As seen from Table 4-3, the learning algorithms produced good predictions within the range 

of R2 of 0.854 to 0.967. The network trained with the Quick Propagation learning algorithm 

with 29 neurons resulted in the lowest Akaike value and highest R2, indicating that this 

network has the highest prediction performance. 

Table 4-3: Performance of the nuclear network trained using five different learning algorithms 

Architecture Training algorithm AIC Correlation R2 

[6-29-1] Quick Propagation -50522 0.984 0.967 

[6-29-1] Conjugate Gradient Descent -45007 0.900 0.809 

[6-29-1] Quasi-Newton -48264 0.966 0.933 

[6-29-1] Levenberg-Marquardt -47187 0.959 0.920 

[6-29-1] Online Back Propagation -41518 0.898 0.854 

Similar to the nuclear network, the minimum error, Ale, and Performance results for the 

other percentage mix networks are presented in Figures B-1 to B-6, Tables B-3 to B-5, and 

B-7 to B-9 in Appendix B. 
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4.6.2.3 Hourly Emission Factor Network 

It is important that both training and test set error be in broad agreement with the validation 

set error, and it can be seen from Figure 4-6 that the three sets of values somewhat correlate 

well as the number of hidden layer neurons increases. 
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Figure 4-6: Minimum error values for the hourly emission factor NN 

To determine the network architecture that produces the best prediction performance, 

different network architectures with 1 to 40 hidden layers was analyzed for each NN model. 

The prediction performances and Akaike's criterion for the trained network are given in 

Figure 4-7. The R-squared and correlation data The R-squared and correlation data are 

presented in Table B-6 in Appendix B. It can be observed from Figure 4-7 that the 

nurumum points at 23 and 32 neurons for the network architecture is a reasonable 

compromise between error values and network complexity. Thus, the configuration that 

consisted of 32 neurons in one hidden layer (6-32-1) was found to be the most suitable 

network architecture to predict the hourly electricity demand for the Province of Ontario 

due to its higher R2 value. 
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Figure 4-7: Akaike's Information Criterion for the hourly emission factor NN 

As seen from Table 4-4, the learning algorithms produced good predictions within the range 

of R2 of 0.691 to 0.837. The network trained with the Levenberg-Marquardt learning 

algorithm with 32 neurons resulted in the lowest Akaike value and highest R2, indicating that 

this network has the highest prediction performance. 

Table 4-4: Performance of emission factor network trained using five different learning algorithms 

Architecture Training algorithm AIC Correlation R2 

[6-32-1] Quick Propagation -34267 0.912 0.832 

[6-32-1] Conjugate Gradient Descent -32450 0.831 0.691 

[6-32-1] Quasi-Newton -33144 0.864 0.747 

[6-32-1] Levenberg-Marquardt -34167 0.915 0.837 

[6-32-1 ] Online Back Propagation -33136 0.872 0.753 

Table 4-5 displays the results of the architecture search process with both the correlation and 

R-squared values for each of the pre-training NN models in this thesis. The learning 

algorithms produced good predictions within a range of R2 of 0.837 to 0.967. Most of the 

networks were trained using the Quick Propagation learning algorithm with the exception of 
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the hourly emission factor network which performed better using the Levenberg-Marquardt 

algorithm. 

Table 4-5: Performance of selected NN architectures 

NN Models Architecture AIC Correlation R2 

Hourly Electricity Demand [9-31-1 ] -15901 0.981 0.960 

% Nuclear [6-29-1] -50522 0.984 0.967 

% Hydro [10-31-1 ] -49748 0.968 0.933 

% Coal [8-21-1 ] -51510 0.97 0.936 

% Other [7-36-1] -51286 0.928 0.862 

Hourly Emission Factor [6-32-1] -34167 0.915 0.837 

In this chapter, the network architectures were determined for the predictive models. In 

Chapter 8, the training results of the neural network models are presented. 
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5 Hourly Supply and Demand of Electricity for Ontario 

5.1 Overview 

One of the objectives of this study was to analyze the hourly supply and demand trends of 

electricity in the Province of Ontario. The hourly electricity demand was divided into 

seasons and different generation technologies. The limit for each season is shown in Table 

5-1. 

Table 5-1: Season definition 

Season Limit 
Winter December 21 - March 20 
Spring March 21 - June 20 

Summer June 21 - September 20 
Fall September 21 - December 20 

In addition, in order to better understand the terminology used in figures and tables in this 

section the following terms should be defined: 

Percentage Capability of a particular source is the amount of electricity that source is able 

to produce as a percentage of the total capability of all sources combined. 

Percentage Output of a particular source is the amount of electricity consumed from a 

source as a percentage of the total amount of electricity consumed from all sources 

combined. 

5.2 Winter 2004, 2005, and 2006 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-1 for winter 2004. In general, there is a trend to use all the 

electricity produced by nuclear and coal sources rather than hydro or other sources. This 

may be due to the fact the processes that enable electricity production from nuclear cannot 

be easily paused or stopped. 
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Figure 5-1: Hourly electricity supply and demand for Ontario winter 2004 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-2 for winter 2005. 
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Figure 5-2: Hourly electricity supply and demand for Ontario winter 2005 
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The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-3 for winter 2006. 
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Figure 5-3: Hourly electricity supply and demand for Ontario winter 2006 

Table 5-2 shows the capability and output of each generating source for the winters of 2004, 

2005, and 2006. It can be observed that nuclear output and capability generation has been 

increasing for the last three years. In contrast, coal and hydro output and capability 

generation has been decreasing slowly by approximately 1 % between 2004 and 2006, and 

other output generation has decreased by 2%. 

Table 5-2: Output and capability generation comparison for winter 2004-2006 

Winter 
2004 2005 2006 

% 
Capability Output Capability Output Capability Output 

Nuclear 36 48 38 51 39 55 
Coal 20 21 20 20 18 17 

Hydro 29 23 27 21 26 22 
Other 15 8 16 8 16 6 
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Table 5-3 shows the electricity demand by generation type for the winters of 2004, 2005, and 

2006. The total electricity demand for the Province of Ontario increased in 2005, but 

decreased in 2006 below 2004 levels. This might be as a result of weather fluctuations or 

unplanned outages throughout the year. Imported electricity has been decreasing while 

exported electricity numbers have been on the rise increasing by 37% between 2004 and 

2005 and 9% between 2005 and 2006. 

Table 5-3: Electricity demand by generation type comparison for winter 2004-2006 

Winter 

Generation Type 
Electricity Demand (GWh) 
2004 2005 2006 

Nuclear 18668 20686 21858 
Coal 8511 8401 7062 

Hydro 9262 8704 9016 
Other 3275 3318 2385 

Imported 2654 2534 2040 
Exported 1914 3026 3337 

Total 40457 40617 39025 

5.2.1 Peak Day Electricity Analysis for Winter 2004, 2005, and 2006 

Table 5-4 and Figure 5-4 show the electricity demand for winter peak days for 2004, 2005, 

and 2006. Electricity demand was the highest during the winter of 2004. 

Table 5-4: Electricity demand comparison for winter peak days 2004-2006 

Winter 
Year Peak Day Electricity Demand (GWh) 
2004 26-Jan-04 518 
2005 18-Jan-05 515 
2006 21-0ec-05 482 
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Figure 5-4: Electricity demand during peak winter weekday 2004-2006 

5.3 Spring 2004, 2005, and 2006 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-5 for spring 2004. 
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Figure 5-5: Hourly electricity supply and demand for Ontario Spring 2004 
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The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-6 for spring 2005. 
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Figure 5-6: Hourly electricity supply and demand for Ontario Spring 2005 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-7 for spring 2006. It should be noted that wind generation 

was introduced in the spring of 2006. 
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Figure 5-7: Hourly electricity supply and demand for Ontario spring 2006 
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Table 5-5 shows the capability and output of each generating source for the springs of 2004, 

2005, and 2006. It can be observed that nuclear output and capability generation decreased 

in 2005 but increased in 2006 back to 2004 levels. Coal and hydro output and capability 

generation increased in 2005 but decreased in 2006. Other output generation has decreased 

by 1 % and wind generated 0.26% while having a capability of 1 %. 

Table 5-5: Output and capability generation comparison for spring 2004-2006 

Spring 

% 
2004 2005 2006 

Capability Output Capability Output Capability Output 
Nuclear 39 53 35 48 39 54 

Coal 17 13 18 17 15 13 
Hydro 29 26 31 27 28 25 
Other 15 7 17 8 17 7 
Wind N/A N/A N/A N/A 1 0.26 

Table 5-6 shows the electricity demand by generation type for the springs of 2004, 2005 and 

2006. The total electricity demand for the Province of Ontario increased in 2005, but 

decreased in 2006 by 1.3%. Imported electricity numbers increased in 2005 by 45% but 

decreased in 2006 back to 2004 levels while exported electricity numbers decreased by 26% 

between 2004 and 2005 but increased by 34% between 2005 and 2006. It should be noted 

that nuclear generation dropped considerably during the spring of 2005. This might support 

the idea that there was an outage, thus increasing coal generation in order to compensate for 

the shortfall. 

Table 5-6: Electricity demand by generation type comparison for spring 2004-2006 

Spring 

Generation Type 
Electricity Demand (GWh) 

2004 2005 2006 

Nuclear 19470 16910 20354 
Coal 5054 6374 5230 

Hydro 9763 9547 9621 
Other 2728 2993 2642 
Wind N/A N/A 103 

Imported 1519 2795 1308 
Exported 2889 2130 3242 

Total 35645 36489 36017 
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5.3.1 Peak Day Electricity Analysis for Spring 2004, 2005, and 2006 

Table 5-7 and Figure 5-8 show the electricity demand for spring peak days for 2004, 2005, 

and 2006. Electricity demand was the highest during the spring of 2006. 

Table 5-7: Electricity demand comparison for spring peak days 2004-2006 

Spring 

Year Peak Day Electricity Demand (GWh) 

2004 9-Jun-04 471 

2005 14-Jun-05 495 

2006 29-May-06 509 

1 __ 9-Jun-04 ___ 14~Jun-05 29-May-061 

30000,-----------------------------------------------------------~ 

25000 +--------- - - - - - -------1 _i"'!----------
20000+-------------~~~~------------------~~~~~--

I i 15000 

! 
10000 +------------------------------------------------------/ 

5000 t------------------------------ ------1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Time (hr) 

Figure 5-8: Electricity demand during peak spring weekday 2004-2006 

5.4 Summer 2004,2005, and 2006 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-9 for summer 2004. 
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Figure 5-9: Hourly electricity supply and demand for Ontario summer 2004 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-10 for summer 2005. 
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Figure 5-10 Hourly electricity supply and demand for Ontario summer 2005 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-11 for summer 2006. 
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Figure 5-11: Hourly electricity supply and demand for Ontario summer 2006 

Table 5-8 shows the capability and output of each generating source for the summers of 

2004, 2005, and 2006. It can be observed that nuclear output and capability generation 

slightly decreased in 2005 but increased in 2006 back to 2004 levels. Coal output generation 

increased in 2005 but decreased in 2006 and hydro decreased in 2005 and remained the same 

for 2006. Other output generation increased by 2% in 2005 and wind generated 0.20% while 

having a capability of 0.89%. 

Table 5-8: Output and capability generation comparison for summer 2004-2006 

Summer 

% 
2004 2005 2006 

Capability Output Capability Output Capability Output 
Nuclear 38 56 39 53 39 57 

Coal 20 14 19 21 17 18 
Hydro 27 23 26 17 25 17 
Other 16 7 17 9 17 8 
Wind N/A N/A N/A N/A 0.89 0.20 

Table 5-9 shows the electricity demand by generation type for the summers of 2004, 2005 

and 2006. The total electricity demand for the Province of Ontario increased in 2005 by 

58 



- T I IE j 1Wmr !lEREr rrnrrrwn"M" EVE 

8.5%, but decreased in 2006 by 4.4%. Imported electricity numbers increased in 2005 by 

26% but decreased in 2006 by 50% while exported electricity numbers decreased by 27% 

between 2004 and 2005 but increased by 26% between 2005 and 2006. Usually hydro is 

mostly used during the summer months. However, there was a substantial decrease in hydro 

generation during the summer of 2005, probably due to an outage. This shortage in hydro 

generation had to be compensated by coal power plants. 

Table 5-9: Electricity demand by generation type comparison for summer 2004-2006 

Summer 

Generation Type 
Electricity Demand (GWh) 
2004 2005 2006 

Nuclear 21017 21016 22573 
Coal 5736 8328 7452 
Hydro 8739 6766 7142 

Other 2597 3879 3193 
Wind N/A N/A 77 

Imported 2192 2978 1497 
Exported 3003 2204 2963 

Total 37277 40762 38971 

5.4.1 Peak Day Electricity Analysis for Summer 2004, 2005, and 2006 

Table 5-10 and Figure 5-12 show the electricity demand for summer peak days for 2004, 

2005, and 2006. Electricity demand was the highest during the summer of 2006. 

Table 5-10: Electricity demand comparison for summer peak days 2004-2006 

Summer 
Year Peak Day Electricity Demand (GWh) 

2004 22-Jul-04 484 

2005 9-Aug-05 517 

2006 1-Aug-06 561 
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Figure 5-12: Electricity demand during peak summer weekday 2004-2006 

5.5 Fall 2004, 2005, and 2006 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-13 for fall 2004. 
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Figure 5-13: Hourly electricity supply and demand for Ontario fall 2004 
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The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-14 for fall 2005. 
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Figure 5-14: Hourly electricity supply and demand for Ontario fall 2005 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-15 for fall 2006. 
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Figure 5-15: Hourly electricity supply and demand for Ontario fall 2006 
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Table 5-11 shows the capability and output of each generating source for the falls of 2004, 

2005, and 2006. It can be observed that nuclear output and capability generation increased in 

2005 but slightly decreased in 2006. Coal and hydro output and capability generation 

decreased in 2005 and coal continued to decrease in 2006 while hydro increased back to 

2004 levels. Other output generation decreased by 2% in 2005 and wind generated 0.66% 

while having a capability of 2.23%. 

Table 5-11: Output and capability generation comparison for fall 2004-2006 

Fall 

% 
2004 2005 2006 

Capability Output Capability Output Capability Output 
Nuclear 34 47 40 54 38 53 

Coal 20 20 17 18 15 15 
Hydro 29 24 27 21 28 23 
Other 17 9 16 7 18 8 
Wind N/A N/A N/A N/A 2.23 0.66 

Table 5-12 shows the electricity demand by generation type for the falls of 2004, 2005 and 

2006. The total electricity demand for the Province of Ontario did not increase in 2005, but 

decreased in 2006 by 4%. Imported electricity numbers decreased in 2005 by 23% and 

decreased in 2006 by another 40% while exported electricity numbers increased by 44% 

between 2004 and 2005 but decreased by 27% between 2005 and 2006. 

Table 5-12: Electricity demand by generation type comparison for fall 2004-2006 

Fall 

Generation Type 
Electricity Demand (GWh) 
2004 2005 2006 

Nuclear 16878 19872 19172 
Coal 7402 7038 5747 
Hydro 8511 8186 8511 
Other 3127 2729 2949 
Wind N/A N/A 241 

Imported 3379 2615 1564 
Exported 1572 2797 2040 

Total 37726 37644 36144 
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5.5.1 Peak Day Electricity Analysis for Fall 2004, 2005, and 2006 

Table 5-13 and Figure 5-16 show the electricity demand for fall peak days for 2004, 2005, 

and 2006. Electricity demand was the highest during the fall of 2005. 

Table 5-13: Electricity demand comparison for fall peak days 2004-2006 

Fall 
Year Peak Day Electricity Demand (GWh) 
2004 1-0ec-04 453 
2005 12-0ec-05 478 
2006 7-0ec-06 457 
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Figure 5-16: Electricity demand during peak fall weekday 2004-2006 

5.6 Years 2004, 2005, and 2006 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-17 for 2004. 
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Figure 5-17: Hourly electricity supply and demand for Ontario 2004 

As indicated in Figure 5-18, the difference between the capability and the output electricity 

for Ontario is approximately 15% in accordance with IESO regulations. In addition, a 

portion of the additional electricity generated in the Province is sold to the United States 

and/ or to provinces bordering Ontario. 
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Figure 5-18: Hourly electricity Capability and Output - 2004 

Table 5-14 and Figure 5-19 show the electricity demand for seasonal peak days for 2004. 

Electricity demand was the highest during the winter. 

Table 5-14: Electricity demand comparison for seasonal peak days for 2004 

2004 
Season Peak Day Electricity Demand (GWh) 
Winter 26-Jan-04 518 
Spring 9-Jun-04 471 

Summer 22-Jul-04 484 
Fall 1-Dec-04 453 
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Figure 5-19: Electricity demand during seasonal peak days for 2004 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-20 for 2005. 
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Figure 5-20: Hourly electricity supply and demand for Ontario 2005 
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As indicated in Figure 5-21, the difference between the capability and the output electricity 

for Ontario is very small the during the summer months. 
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Figure 5-21: Hourly electricity Capability and Output - 2005 

Table 5-15 and Figure 5-22 show the electricity demand for seasonal peak days for 2005. 

Electricity demand was the highest during the summer. 

Table 5-15: Electricity demand comparison for seasonal peak days for 2005 

2005 
Season Peak Day Electricity Demand (GWht 
Winter 18-Jan-05 515 
Spring 14-Jun-05 495 

Summer 9-Aug-05 517 
Fall 12-Dec-05 478 
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Figure 5-22: Electricity demand during seasonal peak days for 2005 

The hourly supply and demand of electricity illustrating the different generating technologies 

for Ontario is shown in Figure 5-23 for 2006. 
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Figure 5-23: Hourly electricity supply and demand for Ontario 2006 
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As indicated in Figure 5-24, the difference between the capability and the output electricity 

for Ontario is constant throughout the year. 
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Figure 5-24: Hourly electricity Capability and Output - 2006 

Table 5-16 and Figure 5-25 show the electricity demand for seasonal peak days for 2006. 

Electricity demand was the highest during the summer. 

Table 5-16: Electricity demand comparison for seasonal peak days for 2006 

2006 
Season Peak Day Electricity Demand (GWh) 
Winter 21-0ec-05 482 
Spring 29-May-06 509 

Summer 1-Auq-06 561 
Fall 7-0ec-06 457 
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Figure 5-25: Electricity demand during seasonal peak days for 2006 

Table 5-17 shows the capability and output of each generating source for 2004, 2005, and 

2006. It can be observed that nuclear output and capability generation remained the same in 

2005 but increased by 4% in 2006. Coal output generation increased in 2005 by 1 % but 

decreased in 2006 by 3%. Hydro output generation decreased in 2005 by 2% and remained 

the same in 2006. Other output generation remained unchanged while wind generated 0.30% 

while having a capability of 1.33%. 

Table 5-17: Output and capability generation comparison for 2004-2006 

Annual Total 

% 
2004 2005 2006 

Capability Output Capability Output Capability Output 

Nuclear 37 51 38 51 39 55 
Coal 19 18 18 19 16 16 
Hydro 28 24 28 22 27 22 
Other 15 8 17 8 17 7 
Wind N/A N/A N/A N/A 1.33 0.30 
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Table 5-18 shows the electricity demand by generation type for 2004, 2005 and 2006. The 

total electricity demand for the Province of Ontario increased in 2005 by 2.3%, but 

decreased in 2006 by 3.5%. Imported electricity numbers increased in 2005 by 11 % but 

decreased in 2006 by 43% while exported electricity numbers increased by 7% and 11 % in 

2005 and 2006, respectively. 

Table 5-18: Electricity demand by generation type comparison for 2004-2006 

Annual 

Generation Type 
Electricity Demand (GWh) 
2004 2005 2006 

Nuclear 76483 78343 83954 
Coal 26898 30084 25095 

Hydro 36199 33226 34354 
Other 11764 12835 11212 
Wind N/A N/A 456 

Imported 9774 10953 6189 
Exported 9490 10182 11388 

Total 151628 155259 149873 

It appears that the total electricity demand for the Province of Ontario increased in 2005, 

but decreased in 2006 which can be attributed to either unplanned outages of certain power 

plants or weather pattern changes. Nuclear generation continued to grow between 2004 and 

2006, and coal increased in 2005, but returned back to 2004 levels in 2006. Nuclear 

generation was the highest during the summer months. In general, there is a norm to 

conduct planned outages during the spring and fall months in order to have all available 

nuclear generation for high peak demand during the summer. Clearly, without considering 

the year 2005 due to unforeseeable events, electricity generation from coal and other (natural 

gas, oil, etc) has been decreasing which could be explained as a result of the provincial 

government's initiative to shut downfossil plants by 2014. In general, electricity generation 

from coal was the highest during the winter months due to weather restrictions on hydro 

and other was the highest during the winter in 2004, and during the summer months in 2005 

and 2006. In addition, it was observed that the exporting of electricity to other provinces has 

been increasing between 2004 and 2006. Conversely, there has been a reduction in 

consumption of imported electricity over the years due to lower electricity demand by the 

Province of Ontario. On the other hand, wind generation increased by almost 57% in 2006 

and hydro has slightly decreased between 2004 and 2006. Hydro generation was the highest 
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during the spring months due to warmer temperatures in the Province of Ontario. It was 

also observed that the highest consumption of electricity for the Province of Ontario 

occurred during the winters of 2004 and 2006. It should be noted that in 2005, the electricity 

demand during the summer sutpassed the winter. 

In the next chapter, the hourly electricity supply and demand data explored in this chapter 

will be utilized to develop GHG emission factors. 
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6 GHG Analysis 

6.1 Winter 2004, 2005, and 2006 Emissions 

It has been shown that GHG emission factors are related to provincial electricity generation. 

These factors are at their highest during peak hours as utilities rely on fossil based generation 

plants due to their ability to be turned on rapidly in comparison to other generation types. In 

this study, hourly GHG emission factors were developed to realize the true GHG reduction 

potential for the Province of Ontario, as well as to help determine the shifting of energy 

demand from peak hours to off-peak hours, thus help lowering emissions. Figure 6-1, Figure 

6-2, and Figure 6-3 show hourly GHG emissions for the winters of 2004, 2005, and 2006. 

The highest GHG emissions occurred during January, most likely due to weather conditions 

that limit the use of hydro generated electricity during the winter, thus relying on fossil 

plants to compensate for this shortfall. The following profUes use the data from Chapter 5. 
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Figure 6-1: Hourly CO2 emissions - winter 2004 
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Figure 6-2: Hourly CO2 emissions - winter 2005 
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Figure 6-3: Hourly CO2 emissions - winter 2006 
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Table 6-1 shows the total amount of GHG emissions for the winters of 2004 2005 and , , 

2006. It can be observed that CO2 emissions were the highest in 2004, and have been 

decreasing in subsequent years, most likely due to the provincial government's initiative to 

phase out Coal plants by 2014. However, S02 emissions increased by 10% in 2005, but 

decreased by 37% in 2006. NO emissions increased slightly in 2005, and remained slightly 

the same in 2006. 

Table 6-1: GHG emissions from the power generation sector - winter 2004-2006 

Winter 

Year 
Emissions (kt) Electricity Demand 

COl S02 NO (GWh) 
2004 10023 36.99 9.11 40457 
2005 9616 41.16 9.49 40617 
2006 8049 25.79 9.39 39025 

6.1.1 Winter Emission Factors 

The heart of the TDV proposal is a methodology for deriving hourly valuations for 

greenhouse gas emissions. The seasonal variability in emissions is due to different power 

generation mix and electricity demand throughout the year. The methodology for GHG 

emission valuation includes both seasonal averages and proflle models. The resulting 

seasonal average and hourly valuations reward GHG emission reduction strategies and 

building energy efficiency dependent on time-of-use. In addition, mv models for GHG 

costs will be developed in order to place a monetary value on emissions paid by either the 

customer or generator. Table 6-2 shows the average NGHGIF A values for the winters of 

2004, 2005, and 2006. The highest CO2 emission factor was in 2004 and has been slowly 

decreasing in subsequent years. 

Table 6-2: Average Emission factors for winter 2004-2006 

Winter 

Year 
NGHGIF A (g/kWh) 

CO2 S02 NO 

2004 248 0.91 0.23 
2005 231 0.99 0.23 
2006 196 0.63 0.23 
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Table 6-3 and Figure 6-4 show TDV emission factors for the winters of 2004, 2005, and 

2006. Emission factors are highest during the afternoon and evening hours. 

Table 6-3: TDV emission factor comparison for winter 2004-2006 

Winter 

TDV NGHGIFA (g Ofe02/kWh) 

Hour 2004 2005 2006 
1 254.9 241.8 200.7 
2 254.8 234.8 191.4 
3 252.9 229.3 183.1 

4 250.9 226.8 179.8 

5 252.4 227.5 183.8 

6 255.3 231.9 186.5 
7 258.8 234.7 196.6 
8 262.5 240.9 208.5 

9 265.6 247.1 216.3 
10 266.8 250.5 219.7 
11 268.8 253.1 225.7 
12 270.9 254.8 228.5 
13 272.8 256.5 229.0 
14 272.8 256.5 227.8 

15 271.3 252.8 224.8 

16 268.8 246.5 219.2 

17 268.6 244.9 218.8 
18 270.9 250.3 224.4 
19 274.6 257.5 233.3 

20 273.4 258.5 235.3 

21 273.3 260.1 234.2 

22 271.4 259.2 229.1 

23 265.4 253.5 217.6 

24 255.3 243.3 207.8 

The TDV methodology assigns a value (g of CO2/kWh) to every hour of the year for a 

particular season. Table 6-3 shows that during the winter of 2006 at 4 p.m., for one kWh 

produced or reduced the emissions will be 219.2 g of CO2, while at 4 a.m. it would be 179.8 

g of CO2, which shows a difference of 18% in just 12 hours. In addition, the maximum TDV 

values for the years 2004, 2005, and 2006 occurred at 7 p.m., 9 p.m., and 8 p.m., respectively. 

The corresponding 95% confidence interval was determined to be for each TDV hour 

± 3.14, ± 4.19, and ± 7.01 for the years 2004, 2005, and 2006, respectively. 
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Figure 6-4: TDV emission factor profile comparison for winter 2004-2006 

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat 

rate, TOU, and wholesale pricing schemes as illustrated in Table 6-4, Table 6-5, and Table 

6-6. These factors place a monetary value on GHG emissions. Cost factors have been 

increasing over the last three years and usually March has the highest value. 

Table 6-4: Average GHG cost factors using flat rate pricing scheme 2004-2006 

NGHGCFAelec, flat{$/kg of CO2) 

Month 2004 2005 2006 

Jan 0.372 0.467 0.494 

Feb 0.397 0.452 0.523 

Mar 0.495 0.443 0.587 
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Table 6-5: Average GHG cost factors using TOU pricing scheme 2004-2006 

NGHGCFAelec, Tou($/kg of CO2) 

Month 2004 2005 2006 

Jan 0.363 0.448 0.481 

Feb 0.391 0.446 0.522 

Mar 0.490 0.439 0.579 

Table 6-6: Average GIIG cost factors using wholesale pricing scheme 2004-2006 

NGHGCFAelec, wholesale ($/kg of CO2) 

Month 2004 2005 2006 

Jan 0.233 0.245 0.259 

Feb 0.203 0.219 0.242 

Mar 0.228 0.262 0.274 

6.1.2 Peak Day GHG Analysis for Winter 2004, 2005, and 2006 

GHG etnlSSl0nS were analyzed for all seasons and years. Figure 6-5 shows the CO2 

emissions for the winter peak days for 2004, 2005, and 2006. CO2 emissions were highest 

during the afternoon hours. 
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Figure 6-5: Hourly emissions during winter peak days for 2004, 2005, and 2006 
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As illustrated in Table 6-7 CO2 emissions were the highest in 2004, and have decreased by 

20% in 2005, and 4.3% in 2006. The decrease in emissions is most likely due to higher than 

normal temperatures for the Province of Ontario. As a result, the electricity demand for the 

province would decrease because less peak generated electricity would be required, which is 

usually provided by fossil plants. 

Table 6-7: CO2 emissions during winter peak day for 2004, 2005, and 2006 

Winter 
Year Peak Day Emissions (kt) 
2004 26-Jan-04 171 
2005 18-Jan-05 137 
2006 21-0ec-05 131 

Figure 6-6 shows the CO2 emission factor profile for the winter peak days for 2004, 2005, 

and 2006. CO2 emission factors did not very much throughout the day. 
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Figure 6-6: Hourly CO2 emission factors during peak winter day 2004-2006 
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As illustrated in Table 6-8 average emission factors for the peak winter day were the highest 

in 2004, and decreased by 21 % in 2005, but increased by 3.2% in 2006. 

Table 6-8: Average emission factors during peak winter day 2004-2006 

Winter 

Year Peak Day NGHGIF A (g of C02/kWh) 
2004 26-Jan-04 337 
2005 18-Jan-05 266 
2006 21-0ec-05 275 

6.2 Spring 2004, 2005, and 2006 Emissions 

Figure 6-7, Figure 6-8, and Figure 6-9 show hourly GHG emissions for the springs of 2004, 

2005, and 2006. The highest GHG emissions occurred during June. 
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Figure 6-7: Hourly CO2 emissions - spring 2004 
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Figure 6-8: Hourly CO2 emissions - spring 2005 
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Figure 6-9: Hourly CO2 emissions - spring 2006 
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Table 6-9 shows the total amount of GHG emissions for the springs of 2004, 2005, and 

2006. It can be observed dlat CO2 emissions increased by 16% in 2005, but decreased in 

2006 back to approximately 2004 levels. S02 emissions increased by 34% in 2005, but 

decreased in 2006 below 2004 levels. NO emissions increased by 25% in 2005, and remained 

unchanged for 2006. It appears that an abnormal event during 2005 such as a change in 

weather patterns, or unplanned power generation outage could have caused this increase in 

2005. 

Table 6-9: GIIG emissions from the power generation sector - spring 2004-2006 

Spring 

Year 
Emissions (kt) Electricity Demand 

CO2 502 NO (GWh) 

2004 6309 22 5.64 35645 
2005 7501 33.15 7.59 36489 
2006 6416 18.34 7.41 36017 

6.2.1 Spring Emission Factors 

Table 6-10 shows the average NGHGIFA values for the springs of 2004, 2005, and 2006. 

The highest CO2 emission factor was in 2005, but decreased back to 2004 levels in 2006. 

Table 6-10: Average Emission factors for spring 2004-2006 

Spring 

Year NGHGIF A1g/kWhl 

CO2 502 NO 
2004 164 0.57 0.15 
2005 205 0.90 0.21 
2006 164 0.47 0.19 

Table 6-11 and Figure 6-10 show TDV emission factors for the winters of 2004, 2005, and 

2006. Emission factors are highest during the afternoon hours. 
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Table 6-11: TDV emission factor comparison for spring 2004-2006 

Spring 

TDV NGHGIFA (g of CO 21 kWh) 

Hour 2004 2005 2006 
1 133.3 192.3 147.0 
2 129.1 188.5 138.9 
3 126.6 180.0 132.9 
4 125.6 179.0 130.8 

5 130.7 186.8 140.2 

6 148.2 201.2 153.0 
7 171.0 213.2 171.3 

8 192.4 228.5 189.7 

9 203.0 234.2 194.5 
10 208.7 237.0 198.7 

11 213.2 239.8 202.8 

12 214.8 241.8 204.5 

13 215.5 244.3 204.4 

14 215.2 244.1 203.4 

15 212.3 242.0 201.3 

16 212.4 240.8 200.7 

17 212.4 240.5 201.1 

18 205.0 234.4 195.9 

19 198.5 224.8 190.5 

20 204.2 228.6 198.7 

21 206.5 238.3 203.1 

22 190.3 231.9 187.3 

23 161.5 218.2 170.4 

24 138.8 206.0 155.6 

The TDV methodology assigns a value (g of CO2/kWh) to every hour of the year for a 

particular season. Table 6-11 shows that during the spring of 2006 at 4 p.m., for one kWh 

produced or reduced the emissions will be 200.7 g of CO2, while at 4 a.m. it would be 130.8 

g of CO2, which shows a difference of 35% in just 12 hours. In addition, the maximum TDV 

values for both years 2004, and 2005, occurred at 1 p.m., and at 12 p.m., for the year 2006. 

The corresponding 95% confidence interval was determined to be for each TDV hour 

± 13.63, ± 8.72, and ± 10.33 for the years 2004, 2005, and 2006, respectively. 

83 



.. 

,I 
:1 ,,'. 

,,,'1 

F2004~2oo5--2iioll 

3oo.---------------------------------------------------------------~ 

250~--------------------------------------------------------------~ 

r ~-----------; .. -- .-.-~\l 

~150+-------------~------------------------------------------------~. j 
(5 
J: 
C> 
Z 
> g 100~--------------------------------------------------------------~ 

50~--------------------------------------------------------------~ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Time (hr) 

Figure 6-10: TDV emission factor profile comparison for spring 2004-2006 

Monthly average GHG cost factors were developed for 2004,2005, and 2006 based on flat 

rate, TOU, and wholesale pricing schemes as illustrated in Table 6-12, Table 6-13, and Table 

6-14. These factors place a monetary value on GHG emissions. Cost factors increased in 

May, but decreased in June. 

Table 6-12: Average GHG cost factors using flat rate pricing scheme 2004-2006 

NGHGCFAelec, flad$/kg of CO2) 

Month 2004 2005 2006 

Apr 0.660 0.497 1.037 

May 0.916 0.606 0.686 

Jun 0.811 0.464 0.482 
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Table 6-13: Average GHG cost factors using TOU pricing scheme 2004-2006 

NGHGCFAelec, Tou($/kg of CO2) 

Month 2004 2005 2006 
Apr 0.613 0.492 0.974 

May 0.818 0.571 0.646 

Jun 0.748 0.451 0.453 

Table 6-14: Average GHG cost factors using wholesale pricing scheme 2004-2006 

NGHGCFAelec, wholesale ($/kg of CO2) 

Month 2004 2005 2006 

Apr 0.274 0.294 0.353 

May 0.349 0.296 0.286 

Jun 0.312 0.272 0.210 

6.2.2 Peak Day GHG Analysis for Spring 2004,2005, and 2006 

Figure 6-11 shows the CO2 emissions for the spring peak days for 2004, 2005, and 2006. 

CO2 emissions were highest during the afternoon and beginning evening hours. 
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Figure 6-11: Hourly emissions during spring peak days for 2004, 2005, and 2006 
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As illustrated in Table 6-15 CO2 emissions were the highest in 2005. CO2 emissions increased 

by 26% in 2005, but decreased by 33% in 2006. 

Table 6-15: CO2 emissions during spring peak day for 2004, 2005, and 2006 

Spring 
Year Peak Day Emissions (kt) 
2004 9-Jun-04 106 
2005 14-Jun-05 143 
2006 29-May-06 96 

Figure 6-12 shows the CO2 emission factor proflle for the spring peak days for 2004, 2005, 

and 2006. CO2 emission factors were highest during the afternoon hours. 
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Figure 6-12: Hourly CO2 emission factors during peak spring day 2004-2006 

As illustrated in Table 6-16 average emission factors for the peak spring day were the highest 

in 2005, and decreased by 34% in 2006. 
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Table 6-16: Average emission factors during peak spring day 2004-2006 

Spring 

Year Peak Day NGHGIF A (g of C02/kWh) 
2004 9-Jun-04 224 
2005 14-Jun-05 295 
2006 29-May-06 194 

6.3 Summer 2004, 2005, and 2006 Emissions 

Figure 6-13, Figure 6-14, and Figure 6-15 show hourly GHG emissions for the summers of 

2004,2005, and 2006. The highest GHG emissions occurred during July and beginning of 

August. 
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Figure 6-13: Hourly CO2 emissions - summer 2004 
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Figure 6-14: Hourly CO2 emissions - summer 2005 
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Figure 6-15: Hourly CO2 emissions - summer 2006 
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Table 6-17 shows the total amount of GHG emissions for the summers of 2004,2005, and 

2006. It can be observed that CO2 emissions increased by 29% in 2005, but decreased by 9% 

in 2006. S02 emissions increased by 43% in 2005, but decreased in 2006 back to 2004 levels. 

NO emissions increased by 38% in 2005, and remained unchanged for 2006. It appears that 

during 2005 more coal plants were utilized due to weather changes or unplanned outages. 

Table 6-17: GIIG emissions from the power generation sector - summer 2004-2006 

Summer 

Year 
Emissions (kt) Electricity Demand 

CO2 S02 NO (GWh) 
2004 6933 24.95 6.25 37277 
2005 9787 44 10.07 40762 
2006 8881 26.12 10.34 38971 

6.3.1 Summer Emission Factors 

Table 6-18 shows the average NGHGIFA values for the summers of 2004,2005, and 2006. 

The highest CO2 emission factor was in 2005, but decreased by 11.2% in 2006. 

Table 6-18: Average Emission factors for summer 2004-2006 

Summer 

Year 
NGHGIF A (g/kWh) 

CO2 S02 NO 

2004 174 0.62 0.16 

2005 241 1.08 0.25 

2006 214 0.63 0.25 

Table 6-19 and Figure 6-16 show TDV emission factors for the summers of 2004,2005, and 

2006. Emission factors are highest during the afternoon hours. 
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Table 6-19: TDV emission factor comparison for summer 2004-2006 

Summer 

TDV NGHGIF A (g of C02/kWh) 

Hour 2004 2005 2006 
1 129.4 244.9 199.8 

2 119.8 236.6 186.5 

3 112.5 227.6 175.2 

4 109.9 224.1 173.2 

5 114.3 225.6 181.9 

6 134.7 229.1 189.5 

7 159.5 232.4 202.1 

8 187.5 251.1 227.3 

9 205.0 262.4 243.1 

10 220.1 268.1 250.7 

11 228.3 270.4 254.0 

12 234.5 273.4 256.3 

13 237.8 276.7 256.3 

14 236.6 276.4 254.6 

15 234.1 275.3 251.0 

16 234.7 273.5 251.3 

17 234.4 272.4 252.9 

18 228.5 272.1 252.0 

19 218.7 267.5 248.3 

20 223.3 267.3 251.3 

21 226.3 269.8 252.6 

22 209.7 264.3 245.7 

23 176.2 249.8 236.9 

24 146.7 248.7 214.9 

The TDV methodology assigns a value (g of COz/kWh) to every hour of the year for a 

particular season. Table 6-19 shows that during the summer of 2006 at 4 p.m., for one kWh 

produced or reduced the emissions will be 251.3 g of CO2, while at 4 a.m. it would be 173.2 

g of CO2, which shows a difference of 31 % in just 12 hours. In addition, the maximum TDV 

values for years 2004, 2005, and 2006 occurred at 1 p.m. The corresponding 95% confidence 

interval was determined to be for each TDV hour ± 18.78, ± 7.26, and ± 11.73 for the years 

2004,2005, and 2006, respectively. 
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Figure 6-16: TDV emission factor profile comparison for summer 2004-2006 

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat 

rate, TOU, and wholesale pricing schemes as illustrated in Table 6-20, Table 6-21, and Table 

6-22. Cost factors were the highest during July and August of 2004 for the flat rate electricity 

pricing scheme, TOU pricing scheme, and August and September of 2005 for the wholesale 

pricing scheme. 

Table 6-20: Average GHG cost factors using flat rate pricing scheme 2004-2006 

NGHGCFAelec, flat ($/kg of CO2) 

Month 2004 2005 2006 

Jul 0.777 0.444 0.459 

Aug 0.709 0.417 0.524 

Sep 0.599 0.468 0.614 
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Table 6-21: Average GUG cost factors using TOU pricing scheme 2004-2006 

NGHGCFAelec, Tou($/kg of CO2) 

Month 2004 2005 2006 

Jul 0.712 0.423 0.440 

Aug 0.649 0.409 0.503 

Sep 0.555 0.453 0.566 

Table 6-22: Average GUG cost factors using wholesale pricing scheme 2004-2006 

NGHGCF A elec, wholesale ($/kg of CO2) 

Month 2004 2005 2006 

Jul 0.294 0.315 0.210 

Aug 0.260 0.347 0.251 

Sep 0.256 0.408 0.191 

6.3.2 Peak Day GHG Analysis for Summer 2004, 2005, and 2006 

Figure 6-17 shows the CO2 emissions for the summer peak days for 2004, 2005, and 2006. 

CO2 emissions were highest during the afternoon and early evening hours. 
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Figure 6-17: Hourly emissions during summer peak days for 2004, 2005, and 2006 
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As illustrated in Table 6-23 CO2 emissions were the highest in 2006. CO2 emissions increased 

by 12% in 2005, and again by 12% in 2006. 

Table 6-23: CO2 emissions during summer peak day for 2004, 2005, and 2006 

Summer 
Year Peak Day Emissions (kt) 
2004 22-Jul-04 119 
2005 9-AuQ-05 135 
2006 1-Aug-06 153 

Figure 6-18 shows the CO2 emission factor proftle for the summer peak days for 2004, 2005, 

and 2006. CO2 emission factors were highest during the afternoon hours, and remained 

constant throughout the day with the exception of 2004 where the emission factor varied 

considerably. 
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Figure 6-18: Hourly CO2 emission factors during peak summer day 2004-2006 

As illustrated in Table 6-24 average emission factors for the peak summer day were the 

highest in 2006. 
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Table 6-24: Average emission factors during peak summer day 2004-2006 

Summer 

Year Peak Day NGHGIF A (g of C02/kWh) 
2004 22-Jul-04 246 
2005 9-Aug-05 279 
2006 1-Aug-06 282 

6.4 Fall 2004, 2005, and 2006 Emissions 

Figure 6-19, Figure 6-20, and Figure 6-21 show hourly GHG emissions for the falls of 2004, 

2005, and 2006. The highest GHG emissions occurred during December for 2005, and 

October for 2004 and 2006. 
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Figure 6-19: Hourly CO2 emissions - fall 2004 

94 



( 

, 
i 
I 

I 
i 

r 

7000 

September October November December 

6000 

5000 

., .. 
c: 

g 4000 
c: 
0 

"iii 
co 
"e 3000 L-w 

0 
u 

2000 f---

1000 

0 

6577 6669 676168536945703771297221731374057497758976817773 7865 7957 8049 8141823383258417 8509 86018693 

Time (hr) 

6000 

5000 

_ 4000 
co .. 
c: 
c: g 
c: 
.~ 3000 
en 
"e 
w 

o 
u 2000 

1000 

o 

September 

- -

- -

Figure 6-20: Hourly CO2 emissions - fall 2005 
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Figure 6-21: Hourly CO2 emissions - fall 2006 
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Table 6-25 shows the total amount of GHG emissions for the falls of 2004,2005, and 2006. 

It can be observed that CO2 emissions remained the same for 2004 and 2005, and decreased 

in by 20% in 2006. SOz emissions increased by 18% in 2005, but decreased by 48% in 2006. 

NO emissions increased by 10% in 2005, but decreased by 9% in 2006. 

Table 6-25: GRG emissions from the power generation sector - fall 2004-2006 

Fall 

Year 
Emissions (kt) Electricity Demand 

CO2 502 NO (GWh) 
2004 8844 32.19 8.01 37726 
2005 8879 39.03 8.93 37644 
2006 7072 20.16 8.16 36144 

6.4.1 Fall Emission Factors 

Table 6-26 shows the average NGHGIF A values for the falls of 2004, 2005, and 2006. The 

highest COz emission factor was in 2004, but decreased by 16% in 2005 and by 7.3% in 

2006. 

Table 6-26: Average Emission factors for fall 2004-2006 

Fall 

Year 
NGHGIF A (g/kWb) 

CO2 502 NO 

2004 244 0.89 0.22 

2005 205 0.90 0.21 

2006 190 0.54 0.22 

Table 6-27 and Figure 6-22 show TDV emission factors for the falls of 2004, 2005, and 

2006. Emission factors are highest during the afternoon and evening hours. 
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Table 6-27: TDV emission factor comparison for fall 2004-2006 

Fall 

TDV NGHGIF A (g of COl/kWh) 

Hour 2004 2005 2006 
1 226.1 199.9 177.2 
2 213.2 193.4 165.1 
3 202.5 187.9 154.8 
4 200.2 185.7 153.8 
5 210.9 196.5 165.8 
6 231.7 205.0 184.0 
7 253.4 214.3 196.0 
8 268.7 226.4 211.0 
9 274.5 233.2 219.4 
10 278.8 238.4 223.4 
11 282.2 242.6 226.6 
12 284.2 244.4 228.5 
13 285.7 245.0 230.0 
14 283.5 243.8 229.1 

15 281.3 241.3 224.5 

16 277.4 236.3 221.8 

17 275.9 235.4 221.8 

18 281.7 241.4 227.3 

19 285.5 244.4 229.8 

20 285.4 241.8 227.1 

21 281.5 240.2 222.2 

22 274.0 233.9 216.1 

23 257.9 218.4 202.9 

24 239.2 206.1 187.5 

The TDV methodology assigns a value (g of CO2/kWh) to every hour of the year for a 

particular season. Table 6-27 shows that during the fall of 2006 at 4 p.m., for one kWh 

produced or reduced the emissions will be 221.8 g of CO2, while at 4 a.m. it would be 153.8 

g of CO2, which shows a difference of 31 % in just 12 hours. In addition, the maximum TDV 

values for years 2004,2005, and 2006 occurred at 1 p.m. The corresponding 95% confidence 

interval was determined to be for each TDV hour ± 11.63, ± 8.04, and ± 10.20 for the years 

2004, 2005, and 2006, respectively. 
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Figure 6-22: TDV emission factor profile comparison for fall 2004-2006 

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat 

rate, TOU, and wholesale pricing schemes as illustrated in Table 6-28, Table 6-29, and Table 

6-30. Cost factors were the highest during October and November of 2006 for the flat rate 

electricity pricing scheme, TOU pricing scheme, and October, November, and December of 

2005 for the wholesale pricing scheme. 

Table 6-28 : Average GHG cost factors using flat rate pricing scheme 2004-2006 

NGHGCFAelec• flat ($/kg of CO2) 

Month 2004 2005 2006 

Oct 0.405 0.547 0.579 

Nov 0.443 0.543 0.553 

Dec 0.525 0.507 0.507 
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Table 6-29: Average GHG cost factors using TOU pricing scheme 2004-2006 

NGHGCFAelec, Tou($/kg of CO2) 

Month 2004 2005 2006 

Oct 0.383 0.507 0.540 

Nov 0.437 0.535 0.543 

Dec 0.526 0.495 0.497 

Table 6-30: Average GHG cost factors using wholesale pricing scheme 2004-2006 

NGHGCFAelec, wholesale ($/kg of CO2) 

Month 2004 2005 2006 

Oct 0.189 0.364 0.212 

Nov 0.218 0.296 0.255 

Dec 0.252 0.363 0.187 

6.4.2 Peak Day GHG Analysis for Fall 2004, 2005, and 2006 

Figure 6-23 shows the CO2 emissions for the fall peak days for 2004, 2005, and 2006. CO2 

emissions were highest during the evening hours and in the morning of 2004. 
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Figure 6-23: Hourly emissions during fall peak days for 2004, 2005, and 2006 
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As illustrated in Table 6-31 CO2 emissions were the highest in 2005. CO2 emissions increased 

by 31 % in 2005, and decreased by 28% in 2006. 

Table 6-31: CO2 emissions during fall peak day for 2004, 2005, and 2006 

Fall 

Year Peak Day Emissions (kt) 
2004 1-Dec-04 93 
2005 12-Dec-05 134 
2006 7-Dec-06 97 

Figure 6-24 shows the CO2 emission factor profile for the summer peak days for 2004, 2005, 

and 2006. CO2 emission factors were constant throughout the day with the exception of 

2004 where the emission factor varied considerably. 
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Figure 6-24: Hourly CO2 emission factors during peak fall day 2004-2006 

As illustrated in Table 6-32 average emission factors for the peak summer day were the 

highest in 2005. 
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Table 6-32 : Average emission factors during peak fall day 2004-2006 

Fall 
Year Peak Day NGHGIF A (g of C02/kWh) 
2004 1-0ec-04 212 
2005 12-0ec-05 281 
2006 7-0ec-06 219 

6.5 Annual Emissions 

Figure 6-25, Figure 6-26, and Figure 6-27show hourly GHG emissions for the years 2004, 

2005, and 2006. The highest GHG emissions occurred during January for 2004, and January 

and the summer for 2005 and 2006. 
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Figure 6-25: Hourly CO2 emissions - 2004 
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Figure 6-26: Hourly CO2 emissions - 2005 
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Figure 6-27: Hourly CO2 emissions - 2006 
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Table 6-33 shows the total amount of GHG emissions for 2004. It can be observed that 

CO2 emissions were the highest during the winter and decreased by 37% during the spring, 

but increased by 9% and 22% during the summer and fall months, respectively. S02 

emissions also decreased by 41 % during the spring, but increased by 12% and 22% during 

the summer and fall months, respectively. NO emissions decreased by 33% during the 

spring, and remained unchanged during the summer, but increased by 25% during the fall. 

Table 6-33: GHG emissions from the power generation sector for 2004 

2004 
Emissions (kt) 

CO2 502 NO 

Winter 10023 37 9 
Spring 6309 22 6 

Summer 6933 25 6 
Fall 8844 32 8 

Total 32109 116 29 

Table 6-34 shows the total amount of GHG emissions for 2005. It can be observed that 

CO2 emissions were the highest during the summer. Emissions decreased by 22% during the 

spring, but increased by 23% during the summer and decreased by 9.3% during the fall. S02 

emissions decreased by 20% during the spring, but increased and decreased by 25% and 

11.3% during the summer and fall, respectively. NO emissions decreased by 11 % during the 

spring, but increased by 20% during the summer, and decreased by 10% during the fall. 

Table 6-34: GHG emissions from the power generation sector for 2005 

2005 
Emissions (kt) 

CO2 502 NO 

Winter 9616 41 9 
Spring 7501 33 8 

Summer 9787 44 10 
Fall 8879 39 9 

Total 35783 157 36 

Table 6-35 shows the total amount of GHG emissions for 2006. It can be observed that 

CO2 emissions were the highest during the summer. Emissions decreased by 20% during the 

spring, but increased by 28% during the summer and decreased by 20% during the fall. S02 

emissions decreased by 31 % during the spring, but increased and decreased by 31 % and 23% 
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during the summer and fall, respectively. NO emissions decreased by 22% during the spring, 

but increased by 30% during the summer, and decreased by 20% during the fall 

Table 6-35: GHG emissions from the power generation sector for 2006 

2006 
Emissions (kt) 

CO2 S02 NO 

Winter 8049 26 9 
Spring 6416 18 7 

Summer 8881 26 10 
Fall 7072 20 8 

Total 30418 90 35 

Table 6-36 shows the total amount of GHG emissions for 2004, 2005, and 2006. It can be 

observed that CO2 emissions were the highest during 2005. 

Table 6-36: GHG emissions from the power generation sector comparing 2004-2006 

Annual 

Year 
Emissions (kt) 

CO2 S02 NO 

2004 32109 116 29 

2005 35783 157 36 

2006 30418 90 35 

6.5.1 Annual Emission Factors 

Annual and seasonal emission factors were developed for the years 2004, 2005, and 2006. 

Table 6-37 shows the average annual and seasonal NGHGIFA values for 2004. The highest 

emission factor was during the winter. 

Table 6-37: Average Emission factors for 2004 

2004 
NGHGIF A (g/kWh) 

CO2 S02 NO 

Annual 208 0.75 0.19 
Winter 248 0.91 0.23 
Spring 164 0.57 0.15 

Summer 174 0.62 0.16 
Fall 244 0.89 0.22 
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Table 6-38 shows the average annual and seasonal NGHGIF A values for 2005. The highest 

emission factor was during the summer. 

Table 6-38: Average Emission factors for 2005 

2005 
NGHGIF A (g/kWh) 

CO2 S02 NO 

Annual 221 0.97 0.22 
Winter 231 0.99 0.23 
Spring 205 0.90 0.21 

Summer 241 1.08 0.25 
Fall 205 0.90 0.21 

Table 6-39 shows the average annual and seasonal NGHGIF A values for 2006. The highest 

emission factor was during the summer. 

Table 6-39: Average Emission factors for 2006 

2006 
NGHGIF A (g/kWh) 

CO2 S02 NO 

Annual 189 0.55 0.22 
Winter 196 0.63 0.23 
Spring 164 0.47 0.19 

Summer 214 0.63 0.25 

Fall 190 0.54 0.22 

Table 6-40 shows the average annual NGHGIF A values for 2004, 2005, and 2006. The 

highest emission factor was in 2005. 

Table 6-40: Average Emission factors comparing 2004-2006 

Annual 
NGHGIF A (g/kWh) 

. CO2 S02 NO 

2004 208 0.75 0.19 

2005 221 0.97 0.22 

2006 189 0.55 0.22 

Annual and seasonal IDV emission factors were developed for the years 2004, 2005, and 

2006. Figure 6-28 shows the seasonal TDV NGHGIFA profile for 2004. The highest 
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etnlSSlon factors were ill the fall during the afternoon and in the winter during the early 

morning hours. 
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Figure 6-28: Seasonal TDV emission factor profile for 2004 

Figure 6-29 shows the seasonal TDV NGHGIF A profile for 2005. The highest emission 

factors were in the summer during the afternoon and evening hours. 

106 



'5 
~ 150t---------------------------------------------------------------------l' 

~ 
C) 
Z 
> 
~ l00t-----------------------------__________________________________ __ 

I 

)

' 

50t---------------------------------__________________________________ ~ 

I 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Hour 

Figure 6-29: Seasonal TDV emission factor profile for 2005 

Figure 6-30 shows the seasonal TDV NGHGIF A profile for 2006. The highest errusslon 

factors were in the summer during the afternoon and evening hours. 
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Figure 6-30: Seasonal TDV emission factor profile for 2006 
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Table 6-41 and Figure 6-31 show TDV emission factors for 2004,2005, and 2006. Emission 

factors were the highest in 2005 during the afternoon. 

Table 6-41 shows the annual TDV emission factors. It can be observed that during the year 

2006 at 4 p.m., for one kWh produced or reduced the emissions will be 223.3 g of CO2, 

while at 4 a.m. it would be 159.4 g of CO2, which shows a difference of 29% in just 12 

hours. In addition, the maximum TDV values for years 2004, 2005, and 2006 occurred at 1 

p.m. The corresponding 95% confidence interval was determined to be for each TDV hour 

± 11.68, ± 6.85, and ± 9.68 for the years 2004, 2005, and 2006, respectively. 

Table 6-41: Annual TDV emission factor comparison for 2004-2006 

Annual 

TDV NGHGIFA (g of CO 21 kWh) 

Hour 2004 2005 2006 

1 185.9 219.7 181.2 

2 179.2 213.3 170.5 
3 173.6 206.2 161.5 
4 171.6 203.9 159.4 

5 177.1 209.1 167.9 

6 192.5 216.8 178.3 

7 210.7 223.7 191.5 

8 227.8 236.7 209.1 

9 237.0 244.2 218.3 

10 243.6 248.5 223.1 

11 248.1 251.5 227.3 

12 251.1 253.6 229.5 

13 253.0 255.6 229.9 

14 252.0 255.2 228.7 

15 249.7 252.9 225.4 

16 248.4 249.3 223.3 

17 247.8 248.3 223.7 

18 246.5 249.6 224.9 

19 244.3 248.6 225.5 

20 246.6 249.0 228.1 
21 246.9 252.1 228.0 

22 236.4 247.3 219.5 

23 215.2 235.0 207.0 

24 195.0 226.0 191.4 
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Figure 6-31: TDV emission factor profile comparison 2004-2006 

Monthly average GHG cost factors were developed for 2004, 2005, and 2006 based on flat 

rate, TOU, and wholesale pricing schemes as illustrated in Table 6-42, Table 6-43, and Table 

6-44. Cost factors were the highest during May for 2004 and 2005, and April for 2006 for the 

flat rate electricity pricing scheme, TOU pricing scheme, and wholesale pricing scheme. It 

should be noted that seasonal TDV cost factors did not vary as much in comparison to 

monthly values, thus it was determined that monthly values would give a better 

representation of the cost factor potential to assign a monetary value on greenhouse gases 

from the electricity generation sector. 
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Table 6-42: Average GIIG cost factors using flat rate pricing scheme 2004-2006 

TDV NGHGCFAelec, flat ($/kg of CO2) 

Month 2004 2005 2006 

Jan 0.372 0.467 0.494 

Feb 0.397 0.452 0.523 

Mar 0.495 0.443 0.587 

Apr 0.660 0.497 1.037 

May 0.916 0.606 0.686 

Jun 0.811 0.464 0.482 

Jul 0.777 0.444 0.459 

Aug 0.709 0.417 0.524 

Sep 0.599 0.468 0.614 

Oct 0.405 0.547 0.579 

Nov 0.443 0.543 0.553 

Dec 0.525 0.507 0.507 

Annual 0.592 0.488 0.587 
:c 
-< rn 
~ 
fI; 
Cl 

Table 6-43: Average GHG cost factors using TOU pricing scheme 2004-2006 
:2 
c:: 
:it: 

TDV NGHGCFAelec, Tou($/kg of CO2) 

~ Month 2004 2005 2006 
::r: I, 
tit I, - I 

:l I, 
!: 
tt; 

, 

t 
'--c 

Jan 0.363 0.448 0.481 

Feb 0.391 0.446 0.522 

Mar 0.490 0.439 0.579 

Apr 0.613 0.492 0.974 

May 0.818 0.571 0.646 

Jun 0.748 0.451 0.453 

Jul 0.712 0.423 0.440 

Aug 0.649 0.409 0.503 

Sep 0.555 0.453 0.566 

Oct 0.383 0.507 0.540 

Nov 0.437 0.535 0.543 

Dec 0.526 0.495 0.497 

Annual 0.557 0.473 0.562 
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Table 6-44: Average GHG cost factors using wholesale pricing scheme 2004-2006 

TDV NGHGCFAelec wholesale ($/kg of CO2) 
Month 2004 2005 2006 

Jan 0.233 0.245 0.259 
Feb 0.203 0.219 0.242 
Mar 0.228 0.262 0.274 
Apr 0.274 0.294 0.353 
May 0.349 0.296 0.286 
Jun 0.312 0.272 0.210 
Jul 0.294 0.315 0.210 
Aug 0.260 0.347 0.251 
Sep 0.256 0.408 0.191 
Oct 0.189 0.364 0.212 
Nov 0.218 0.296 0.255 
Dec 0.252 0.363 0.187 

Annual 0.256 0.307 0.244 

6.5.2 Annual Peak Day GHG Analysis for 2004,2005, and 2006 

As illustrated in Table 6-45 CO2 emissions were highest during the peak winter day for 2004. 

CO2 emissions decreased by 38% in the spring, increased by 11 % in the summer and 

decreased by 22% in the fall. 

Table 6-45: CO2 Emissions during seasonal peak days for 2004 

2004 Emissions (kt) 

Winter 171 
Spring 106 

Summer 119 
Fall 93 

Figure 6-32 shows the seasonal emission factor profiles for 2004. Emission factors were 

highest during the winter. 
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Figure 6-32: Hourly seasonal emission factors during peak days for 2004 

As illustrated in Table 6-46 CO2 emissions were highest during the peak spring day for 2005. 

CO2 emissions increased by 4% in the spring, decreased by 5.6% in the summer and 

remained approximately the same in the fall. 

Table 6-46: CO2 emissions during seasonal peak days for 2005 

2005 Emissions (kt) 

Winter 137 
Spring 143 

Summer 135 
Fall 134 

Figure 6-33 shows the seasonal emission factor profiles for 2005. Emission factors were 

highest during the spring. 
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Figure 6-33: Hourly seasonal emission factors during peak days for 2005 

As illustrated in Table 6-47 CO2 emissions were highest during the peak summer day for 

2006. CO2 emissions decreased by 27% in the spring, increased by 37% in the summer and 

decreased by approximately the same in the fall. 

Table 6-47: CO2 emissions during seasonal peak days for 2006 

2006 Emissions (kt) 

Winter 131 
Spring 96 

Summer 153 
Fall 97 

Figure 6-34 shows the seasonal emission factor proftles for 2006. Emission factors were 

highest during the morning in the winter and afternoon in the summer. 
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Figure 6-34: Hourly seasonal emission factors during peak days for 2006 

The next chapter shows three case studies using the enusslon factors developed ill this 

chapter. 
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7 Test-Case Scenarios 

7.1 Introduction 

In recent years, the correlation between increasing greenhouse gas (GHG) emlSSlOnS, 

resulting from humankind's unwavering demand for energy, and global climate change has 

been the subject of worldwide concern. While much of the science behind climatic shifts 

remains unexplained, it has become increasingly difficult to disregard the reductions of 

GHG achievable through utilization of renewable energy technologies. The offset cyclical 

relationship, daily and yearly, between electricity generated by a photovoltaic (PV) system, its 

solar source, and varying electrical demand is commonly considered unfavourable. However 

the alignment between off-peak residential demand and high solar availability suitable for PV 

generation presents a possibly lucrative opportunity. An Ontario government initiative offers 

compensation in the form of 42 cents/kWh to PV generated electricity supplied to the grid. 

This thesis will investigate a residential PV and a micro-wind turbine system for comparison, 

to determine both the economic feasibility and GHG reduction potential in the Province of 

Ontario by employing the model of a test-case model house in Toronto, using building 

energy simulation software. All test cases are described in Section 3.8. 

The estimates for GHG emission reductions from three scenarios presented in this chapter 

illustrate the impact on the use of the different GHG emission factors developed in Chapter 

6. Depending on which emission factor is used the actual GHG emissions can vary 

considerably. 

7.2 Electricity Generation 

7.2.1 Case Study 1 

The electricity generated by the PV and micro-wind turbine simulations performed for the 

entire year is shown in Figure 7-1 and Figure 7-2 (Syed et aI., 2007). Clearly PV output is the 

highest during early summer and micro-wind during early spring. 
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Figure 7-1: PV output profile for test-case study 1 in Toronto 
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Figure 7-2: Micro-wind turbine output profile for test-case study 1 in Toronto 
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Table 7-1 shows the total electric power generated by PV and micro-wind turbine for the 

entire year. It can be observed that PV generated 76% more electricity than micro-wind 

turbine. It should be noted that the installed capacities for PV (5 kW) and micro-wind 

turbine (1 kW) are different. Therefore, the results are specific to this simulation only. 

Table 7-1: Annual electricity generated by PV and micro-wind turbine for test-case study 1 

Electricity Generated (kWh) 
Photovoltaic I Micro-Wind Turbine 

7047 I 1686 

Figure 7-3 shows the total monthly electric power generated by PV and micro-wind turbine. 

Electricity generation was highest during July and December for PV and micro-wind turbine, 

respectively. It should be noted that the results are highly dependent on the weather data in a 

given simulation year. 
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Figure 7-3: Monthly electricity generated by PV and micro-wind turbine for test-case study 1 
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7.2.2 Case Study 2 

The electricity generated by the PV simulation performed for a typical summer and winter 

week is illustrated in Figure 7-4 (Good et al., 2006). It can be observed that PV output is 

highest during the middle of the week in the summer. The results are specific to the weeks 

in study. 
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Figure 7-4: PV output profile for test-case study 2 in Ottawa 

Table 7-2 shows the total electric power generated by PV for a typical summer and winter 

week. It can be observed that PV in the summer generated 20% more electricity than in the 

winter. 

Table 7-2: Annual electricity generated by PV for test-case study 2 

Photovoltaic 
Electricity Generated (kWh) 

Winter Summer 

109 136 

Figure 7-5 shows the total daily electric power generated by PV. Electricity generation was 

highest on Wednesday and Monday for the summer and winter, respectively. 
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Figure 7-5: Daily electricity generated by PV for test-case study 2 

7.2.3 Case Study 3 

The electricity generated by the PV simulation perfonned for 2005 is illustrated in Figure 7-6 

(Tse et aI., 2008). It can be observed that PV output is highest during the summer. 
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Figure 7-6: PV output profile for test-case study 3 in Toronto 
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Table 7-3 shows the total electric power generated by PV for the entire year. It can be 

observed that PV generated 7767 kWh during 2005 for the test-case townhouse located in 

the Annex part of Toronto. 

Table 7-3: Total electricity generated by PV for test-case study 3 

Photovoltaic 

Electricity Generated (kWh) 

7767 

Figure 7-7 shows the total monthly electric power generated by the PV system for the year 

2005. Electricity generation was the highest during July and throughout the summer. 
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Figure 7-7: Monthly electricity generated by PV for test-case study 3 
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7.3 GHG Analysis 

In order to calculate the CO2 emission reduction for the electricity generated by PV and 

micro-wind technologies, electricity emission factors were developed in chapter 6. The CO2 

emission reduction potential was calculated by multiplying the hourly electricity by the 

different emission factors for the province as defmed in equations 7.1, 7.2, 7.3, and 7.4. Four 

estimates of the GHG emissions are given using the various intensity electricity emission 

factors as discussed in chapter 3. 

Where, 

Where, 

GHGel.HNGHGIF,j = I [(Generatedel.hOllrlY XNHGHGIFA )] [7.1] 

GHGel.HNGHGIF,j = Annual GHG emission reduction using the new hourly emission 

factor (g of CO~ 

Generated el.hollrly Hourly electricity generated by renewable technology for test 

case house (kWh) 

NHGHGIFA = New Hourly Greenhouse Gas Intensity Factor (g CO2/kWh) 

GHG el.SNGHGIF,j I [(Generatedel.//Ollr/y XSANGHGIFA )] [7.2] 

GHG = Annual GHG emission reductions using the seasonal average el.SANGHGIF,j 

emission factor (g of CO~ 

Generated = Hourly' electricity generated bv renewable technology for test el.hollrly • 

case house (kWh) 

SANGHGIFA 

COzlkWh) 

GHGel.AANGHGIF,j 

Seasonal Average New Greenhouse Gas Intensity Factor (g 

I [(Generatedel.//Ollr/y XAANGHGIFA )] [7.3] 
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Where, 

Where, 

GHGel.AANGHGIFA = Annual GHG errusslon reductions usmg the annual average 

emission factor (g of CO:;) 

Generatedel.ilollrly = Hourly electricity generated by renewable technology for test 

case house (kWh) 

AANGHGIFA 

CO2/kWh) 

Annual Average New Greenhouse Gas Intensity Factor (g 

GHGel,TDVNGHGIF
A 

= I [(Generatedel.ilolU'IY XTDVNGHGIFA )] [7.4] 

GHGel,TDVNGHGIFA = Annual GHG emission reductions usmg the seasonal time 

dependent valuation new greenhouse gas intensity factor (g CO2/kWh) 

Generated el.//ollrly = Hourly electricity generated by renewable technology for test 

case house (kWh) 

TDVNGHGIFA = Seasonal Time Dependent Valuation New Greenhouse Gas 

Intensity Factor (g CO2/kWh) 

7.3.1 Case Study 1 

The total emission reductions by PV and micro-wind turbine using the new hourly emission 

factor were: 

PV GHGel,HNGHGIF
A 

= 1657 kg of CO2 

Micro-wind turbine GHGel,HNGHGIF
A 

= 376 kg of CO2 

The total emission reductions by PV and micro-wind turbine using the seasonal average 

emission factor were: 

PV GHGel.SANGHGIFA = 1559 kg of CO2 
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Micro-wind turbine GHGe[,SANGHGIF
A 

= 365 kg of CO
2 

The total errusslOn reductions by PV and micro-wind turbine using the annual average 

emission factor were: 

PV GHGe[,AANGHGIF
A 

= 1557 kg of CO2 

Micro-wind turbine GHGe[,AANGHGIF
A 

= 373 kg of CO2 

The total errusslOn reductions by PV and micro-wind turbine usmg the seasonal time 

dependent valuation new greenhouse gas intensity factor were: 

PV GHGe[,TDVNGHGIF
A 

= 1767 kg of CO2 

Micro-wind turbine GHGe[,TDVNGHGIF
A 

= 403 kg of CO2 

Table 7-4 summarizes the total emission reduction results by using the different emission 

factors. The upper limit of CO2 emission reduction was obtained by using the TDV emission 

factor for both PV and micro-wind turbine. The lower limit was obtained by using the 

annual and seasonal average emission factors for PV and micro-wind turbine, respectively. 

Table 7-4: Emission reduction comparison for test-case study 1 

Emission Factor Type 
Emission Reduction Potential (kg of CO2) 

Photovoltaic Micro-Wind Turbine 

Hourly 1657 376 
Seasonal Average 1559 365 
Annual Average 1557 373 
Seasonal TDV 1767 403 

The potential reductions in CO2 emissions using the seasonal average, annual average and 

seasonal TDV emission factors compared to using hourly emission factor is shown in Table 

7 -5. It can be observed that higher and lower emission reductions by PV and micro-wind 

turbine are obtained by using the seasonal TDV and annual average emission factor, 

respectively. 
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Table 7-5: Different emission factor types vs. hourly emission factor for test-case study 1 

Emission Factor Type 
% Difference 

PV Wind 
Seasonal Average -5.93 -2.92 
Annual Average -6.05 -0.79 
Seasonal TDV 6.62 7.18 

Figure 7-8 shows the total monthly emission reduction potential by PV and micro-wind 

turbine. Emission reductions were the highest in June for PV and December for micro-wind, 

respectively. Conversely, the lowest emission reductions were during December and August 

for PV and micro-wind, respectively. 
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Figure 7-8: Monthly emission reductions for PV and micro-wind turbine test-case study 1 

7.3.2 Case Study 2 

Similarly to Case Study 1 the total emission reductions by PV using the new hourly emission 

factor for a typical summer and winter week were: 
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Winter PV GHGel,HNGHGfF
A 

= 30 kg of CO2 

Summer PV GHGel,HNGHGIF
A 

= 26 kg of CO2 

The total emission reductions by PV using the seasonal average emission factor for a typical 

summer and win ter week were: 

Winter PV GHGel,SANGHGIF
A 

= 25 kg of CO2 

Summer PV GHGel,SANGHGfF
A 

= 24 kg of CO2 

The total emission reductions by PV using the annual average emission factor for a typical 

summer and winter week were: 

Winter PV GHG el,AANGHGIF
A 

= 21 kg of CO2 

Summer PV GHGel,AANGHGfF
A 

= 28 kg of CO2 

The total etnlSSlon reductions by PV using the seasonal time dependent valuation new 

greenhouse gas intensity factor for a typical summer and winter week were: 

Winter PV GHGel,TDVNGHGIF
A 

= 27 kg of CO2 

Summer PV GHGel,TDVNGHGIF
A 

= 31 kg of CO2 

Table 7-6 summarizes the total emission reduction results by using the different emission 

factors. The upper limit of CO2 emission reduction was obtained by using the hourly and 

TDV emission factor for the winter and summer, respectively. The lower limit was obtained 

by using the annual and seasonal average emission factors for the winter and summer, 

respectively. 
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Table 7-6: Emission reduction comparison for test-case study 2 

Photovoltaic 
Emission Factor Type Emission Reduction Potential (kg of CO2) 

Winter Summer 

Hourly 30 26 
Seasonal Average 25 24 
Annual Average 21 28 
Seasonal TDV 27 31 

The potential reductions in CO2 emissions using the seasonal average, annual average and 

seasonal TDV emission factors compared to using hourly emission factor is shown in Table 

7-7. It can be observed that for the winter week emission reductions are lower in 

comparison to using hourly emission factors. As for the summer, higher and lower emission 

reductions are obtained by using the seasonal TDV and seasonal average emission factor, 

respectively. It should also be noted that during the summer the seasonal TDV emission 

factor resulted in a positive value compared to the winter. This might be attributed to the 

smaller period (one week) of this case study. 

Table 7-7: Different emission factor types vs. hourly emission factor for test-case study 2 

% Difference 
Emission Factor Type Winter Summer 

Seasonal Average -16.29 -9.11 
Annual Average -31.33 8.65 
Seasonal TDV -10.61 18.96 

Figure 7-9 shows the total daily emission reduction potential by PV. Emission reductions 

were the highest on Monday and Wednesday for winter and summer, respectively. 

Conversely, the lowest emission reductions were on Saturday and Monday for winter and 

summer, respectively. 
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Figure 7-9: Daily emission reductions for PV test-case study 2 

7.3.3 Case Study 3 

Thu 

Similarly to Case Study 2 the total emission reductions by PV using the new hourly emission 

factor were: 

PV GHG el.HNGHGIF,f = 1856 kg of COz 

The total emission reductions by PV using the seasonal average emission factor were: 

PV GHGel,SANGHGIF,f = 1727 kg of C()z 

The total emission reductions by PV using the annual average emission factor were: 

PVGHGel,AANGHGIF,f = 1716 kg ofCOz 

127 



.r¥ TV m ME ijr 53'''3 5 IJ .. ra 7 -~GO 

The total effilSS!On reductions by PV usmg the seasonal time dependent valuation new 

greenhouse gas intensity factor were: 

\X'inter PV GHGel.TDVNGHGlFA = 1974 kg of CO2 

Table 7-8 summarizes the total emission reduction results by using the different emission 

factors. The upper limit of CO2 emission reduction was obtained by using the TDV emission 

factor and the lower limit was obtained by using the annual average emission factor. 

Table 7-8: Emission reduction comparison for test-case study 3 

Photovoltaic 
Emission Factor Type 

Emission Reduction Potential (kg of CO2) 

Hourly 1856 

Seasonal Average 1727 

Annual Average 1716 

Seasonal TDV 1974 

The potential reductions in CO2 emissions using the seasonal average, annual average and 

seasonal TDV emission factors compared to using hourly emission factor is shown in Table 

7-9. It can be observed that higher and lower emission reductions are obtained by using the 

seasonal TDV and annual average emission factor, respectively. 

Table 7-9: Different emission factor types vs. hourly emission factor for test-case study 3 

Emission Factor Type % Difference 

Seasonal Average -6.97 
Annual Average -7.54 
Seasonal TDV 6.36 

Figure 7-10 shows the total daily emission reduction potential by PV. Emission reductions 

were the highest in June and July and the lowest in November and December. 
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Figure 7-10: Monthly emission reductions for PV test-case study 3 

7.4 Revenue Generated by Test-Cases 

The credit of selling all of the PV and micro-wind turbine generated electricity to the local 

grid is calculated by using the Province of Ontario initiative price plan to pay 42 cent/kWh. 

It should be noted that micro-wind turbine revenue from the above government incentive 

was hypothetically explored in order to compare the revenue generated between the two 

technologies. 

7.4.1 Case Study 1 

The total revenue generated by PV and micro-wind turbine is shown in Table 7-10. It can be 

observed that PV generated an additional 76% compared to micro-wind turbine. It should 

be noted that the capacities for the PV (5 kW) and micro-wind turbine (1 kW) are different 

and there the results are specific to this case only. 

Table 7-10: Revenue generated from PV and micro-wind turbine technologies for case-study 1 

Revenue Generated (CAD$) 

Photovoltaic Micro-Wind Turbine 

2960 708 
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7.4.2 Case Study 2 

The total revenue generated by PV for winter and summer weeks is shown in Table 7-11. It 

can be observed that an additional 16 CAD was generated during the summer. 

Table 7-11: Revenue generated from PV for case-study 2 

Photovoltaic 

Revenue Generated (CAD$) 

Winter Summer 

41 57 

7.4.3 Case Study 3 

The total revenue generated by PV is shown in Table 7-12. It can be observed that PV 

generated 3262 CAD during 2005 for the test-case townhouse located in the Annex district 

of Toronto. 

Table 7-12: Revenue generated from PV for case-study 3 

Photovoltaic 

Revenue Generated (CAD$) 

3262 

7.5 Greenhouse Gas Cost Factor Analysis 

Greenhouse Gas Cost Factors (NGHGCF J were developed in order to place a monetary 

value on emissions from the electricity generation sector as discussed in chapter 6. The cost 

of emissions was determined using a flat rate, time-of-use, and wholesale price scheme in 

order to provide flexibility for the user to assign either a charge or rebate for the cost of 

emissions to the appropriate sector. The cost of emissions was calculated by multiplying the 

hourly emission reduction values from renewable technologies by the different emission cost 

factors for the province as deflned in equations 7.5, 7.6, 7.7, 7.8, 7.9, and 7.10. Two 

estimates of the cost of emissions are given using the various emission cost factor 

methodology as discussed in chapter 3. 
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Where, 

Where, 

Where, 

GHGC el.HGHGCF",flat L [(ERem.hollrIY XHGHGCFele.flat )] [7.5] 

GHGCel.HGHGCF",flat = Annual cost of emissions using the hourly emission cost factor 

for the flat rate pricing scheme (CAD$) 

ERem.hollrly = Hourly emission reduction by renewable technology for test case house 

(gofCO~ 

HGHGCFele.flat = Hourly Greenhouse Gas Cost Factor usmg flat rate prlcmg 

scheme (CAD $ / g of CO~ 

GHGCe/.TDVGHGCF".flat = L [(ERem.hourIY XTDVGHGCFele.flat)] [7.6] 

GHGCel,TDVGHGCFe/,flat = Annual cost of emissions using the seasonal time dependent 

valuation emission cost factor for the flat rate pricing scheme (CAD$) 

ERem.hollrly = Hourly emission reduction by renewable technology for test case house 

(gofCO~ 

TDVHGHGCFe1e,flat = Monthly Time Dependent Valuation Hourly Greenhouse 

Gas Cost Factor using flat rate pricing scheme (CAD$/g of CO~ 

GHGC el.HGHGCFe/,TOU L [(ERem.hollrlY XHGHGCFe1e,TOu )] [7.7] 

GHGC = Annual cost of emissions usmg the hourly emlSS10n cost el,HGHGCFe/.TOU 

factor for the TOU pricing scheme (CAD$) 

ER = Hourly emission reduction by renewable technology for test case house em,hollrly 

(gofCO~ 
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HGHGCFele.TOU = Hourly Greenhouse Gas Cost Factor using TOU pricing scheme 

(CAD$/g ofCO~ 

GHGC el.TDVGHGCFe/,TOu L [(ERem.hOllrlY XTDVGHGCFete,TOU )] [7.8] 

Where, 

GHGCel,TDVGHGCFel,TOU = Annual cost of emissions using the seasonal time dependent 

valuation emission cost factor for the TOU pricing scheme (CAD$) 

ERem.hollrly = Hourly emission reduction by renewable technology for test case house 

(gofCO~ 

TD VHGHGCFete.TOU = Monthly Time Dependent Valuation Greenhouse Gas Cost 

Factor using TOU pricing scheme (CAD$/g of CO~ 

GHGC el,HGHGCFe/ ,WholeS<lIe L [(ERemJlOllrIY XHGHGCFe1e,wholesale)] [7.9] 

Where, 

GHGCel ,HGHGCFel, WholeS<lIe = Annual cost of emissions using the hourly emission cost 

factor for the wholesale pricing scheme (CAD$) 

ERem.hollr/y = Hourly emiss.ion reduction by renewable technology for test case house 

(gofCO~ 

HGHGCFe1e,whoiesaie = Hourly Greenhouse Gas Cost Factor using wholesale pricing 

scheme (CAD $ / g of CO~ 

GHGC el.TDVGHGCFel,WholeS<lIe L [(ERem,hOllrIY XTD VGHGCFe1e,whoiesaie )] [7.10] 
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Where, 

mm Z7"#i(W at tUe' 

GHGC 
el.TDVGHGCFe/,who/eso!e = Annual cost of enusslons usmg the seasonal time 

dependent valuation emission cost factor for the wholesale pricing scheme (CAD$) 

ERem.hollrly = Hourly emission reduction by renewable technology for test case house 

(gofCO~ 

TD VHGHGCFele.wllOlesale = Monthly Time Dependent Valuation Greenhouse Gas 

Cost Factor using wholesale pricing scheme (CAD$/g of CO~ 

7.5.1 Case Study 1 

The total emission costs by PV and micro-wind turbine using the hourly emission cost factor 

for the flat rate pricing scheme were: 

PV GHGCel HGHGCF = 705 CAD$ 
, el,flat 

Micro-wind turbineGHGCel,HGHGCF.',f/al = 169 CAD$ 

The total emission costs by PV and micro-wind turbine using the monthly time dependent 

valuation greenhouse gas cost factor for the flat rate pricing scheme were: 

PV GHGCel TDVGHGCF = 729 CAD$ 
~ el,jlal 

Micro-wind turbine GHGCel TDVGHGCF = 178 CAD$ 
• el,jlot 

The total emission costs by PV and micro-wind turbine using the hourly emission cost factor 

for the TOU pricing scheme were: 

PV GHGCel.HGHGCF.1 TOU = 805 CAD$ 

Micro-wind turbine GHGCel.HGHGCFel,TOu = 179 CAD$ 

The total emission costs by PV and micro-wind turbine using the monthly time dependent 

valuation greenhouse gas cost factor for the TOU pricing scheme were: 
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PV GHGCel TDVGHGCF. = 818 CAD$ 
, e/,1OU 

Micro-wind turbine GHGCeI.TDVGHGCF",TUU = 181 CAD$ 

The total emission costs by PV and micro-wind turbine using the hourly emission cost factor 

for the wholesale pricing scheme were: 

PV GHGCel HGHGCF = 583 CAD$ 
, el,Whole.mk 

Micro-wind turbine GHGCel HGHGCF = 117 CAD$ 
, c>/,Wholesolt 

The total emission costs by PV and micro-wind turbine using the monthly time dependent 

valuation greenhouse gas cost factor for the wholesale pricing scheme were: 

PV GHGCel TDVGHGCF = 585 CAD$ 
, el,Wholesa/e 

Micro-wind turbine GHGCel TDVGHGCF = 117 CAD$ 
, el, Wholesale 

Table 7-13 and Table 7-14 summarize the total emission cost results by using the different 

pricing schemes and emission cost factors. Since PV and micro-wind turbine are renewable 

technologies, the emission cost becomes an emission rebate. Depending on which pricing 

scheme is used the rebate may vary. The maximum emission rebate was obtained by using 

the TOU pricing scheme for both PV and micro-wind turbine. The minimum emission 

rebate was obtained by using the wholesale pricing scheme for electricity. It should be noted 

that using TDV emission cost factor resulted in a higher emission rebate. 

Table 7-13: Hourly emissions cost comparison using the different pricing schemes test-case study 1 

Technology Type 
Hourly NGHGCFA(CAD$) 

elec, flat elec, TOU elec, wholesale 

PV 705 805 583 

Micro-Wind Turbine 169 179 117 
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Table 7-14: TDV emissions cost comparison using the different pricing schemes test-case study 1 

Technology Type 
TDV NGHGCFA(CAD$) 

elect flat elect TOU elect wholesale 

PV 729 818 585 

Micro-Wind-Turbine 178 181 117 

Figure 7-11 shows the total monthly emission rebate by PV and micro-wind turbine using 

the TOU pricing scheme. Emission rebates were the highest in June for PV and December 

for micro-wind turbine, respectively. Conversely, the lowest emission rebates were during 

December and August for PV and micro-wind turbine, respectively. 
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Figure 7-11: Monthly emission cost for PV and micro-wind turbine test-case study 1 

7.5.2 Case Study 2 

The total emission costs by PV using the hourly emission cost factor for the flat rate pricing 

scheme were: 

Winter PVGHGCe/,HGHGCFel,!kJ' = 9.86 CAD$ 

Summer PVGHGCel ,HGHGCF.I,f1Q' = 13.58 CAD$ 
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The total emission costs by PV using the monthly time dependent valuation greenhouse gas 

cost factor for the flat rate pricing scheme were: 

Winter PV GHGCel TDVGHGCF = 11.01 CAD$ 
• el,j1ar 

Summer PV GHGCe/ TDVGHGCF = 14.14 CAD$ 
• e/,flal 

The total emission costs by PV using the hourly emission cost factor for the TOU pricing 

scheme were: 

Winter PV GHGCel HGHGCF = 11.06 CAD$ 
, el,TOU 

Summer PV GHGCel HGHGCF = 15.01 CAD$ 
• eI,TOU 

The total emission costs by PV using the monthly time dependent valuation greenhouse gas 

cost factor for the TOU pricing scheme were: 

Winter PV GHGCel TDVGHGCF = 11.41 CAD$ 
, el,TOU 

Summer PV GHGCel TDVGHGCF = 14.80 CAD$ 
, el,TOU 

The total emission costs by PV using the hourly emission cost factor for the wholesale 

pricing scheme were: 

Winter PV GHGC I HGHGCF = 7.87 CAD$ e , eJ, Wholesale 

Summer PV GHGCel HGHGCF = 7.63 CAD$ 
, el,Whofeso/e 

The total emission costs by PV using the monthly time dependent valuation greenhouse gas 

cost factor for the wholesale pricing scheme were: 

Winter PV GHGCel TDVGHGCF = 7.85 CAD$ 
, eI,Wholesale 

Summer PV GHGCel TDVGHGCF = 7.56 CAD$ 
• eI.Wholesale 
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Table 7-15 and Table 7-14 summarize the total emission cost results by using the different 

pricing schemes and emission cost factors. Since PV is a renewable technology, the emission 

cost becomes an emission rebate. Depending on which pricing scheme is used the rebate 

may vary. The maximum emission rebate was obtained by using the TOU pricing scheme. 

The minimum emission rebate was obtained by using the wholesale pricing scheme for 

electricity. It should be noted that using TDV emission cost factor resulted in a higher 

emission rebate and that since the simulation results were for one week only the difference 

between pricing schemes is smaller in comparison to total yearly values. 

Table 7-15: Hourly emissions cost comparison using the different pricing schemes test-case study 2 

Technology Type 
Hourly NGHGCFA(CAD$) 

elec, flat elec, TOU elec, wholesale 

Jan 9 - 15 9.86 11.06 7.87 

July 11 - 17 13.58 15.01 7.63 

Table 7-16: TDV emissions cost comparison using the different pricing schemes test-case study 2 

Technology Type 
TDV NGHGCFA(CAD$) 

elec, flat elec, TOU elec, wholesale 

Jan 9 - 15 11.01 11.41 7.85 

July 11 - 17 14.14 14.80 7.56 

Figure 7-12 shows the total daily emission rebate by PV using the TOU pricing scheme. 

Emission rebates were the highest on Monday and Thursday during the winter and on 

Wednesday during the summer. Conversely, the lowest emission rebates were on Saturday 

and Monday during the winter and summer weeks, respectively. 
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Figure 7-12: Daily emission cost for PV test-case study 2 

7.5.3 Case Study 3 

The total emission costs by PV using the hourly emission cost factor for the flat rate pricing 

scheme were: 

PV GHGCel HGHGCF = 777 CAD$ 
, ei,j1aJ 

The total emission costs by PV using the monthly time dependent valuation greenhouse gas 

cost factor for the flat rate pricing scheme were: 

PV GHGCel TDVGHGCF = 800 CAD$ 
, el,jlal 

The total emission costs by PV using the hourly emission cost factor for the TOU pricing 

scheme were: 

PV GHGCel HGHGCF = 898 CAD$ 
, el,TOU 
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The total emission costs by PV using the monthly time dependent valuation greenhouse gas 

cost factor for the TOU pricing scheme were: 

PV GHGCel TDVGHGCF = 908 CAD$ 
, ,I,TOU 

The total emission costs by PV using the hourly emission cost factor for the wholesale 

pricing scheme were: 

PV GHGCe, HGHGCF = 685 CAD$ 
, eJ,W1IOJe.itl/e 

The total emission costs by PV using the monthly time dependent valuation greenhouse gas 

cost factor for the wholesale pricing scheme were: 

PV GHGCel TDVGHGCF = 677 CADS 
• ei,WholesaJe 

Table 7-17 and Table 7-18 summarize the total emission cost results by using the different 

pricing schemes and emission cost factors. Since PV is a renewable technology and does not 

emit any emissions, the emission cost becomes an emission rebate. Depending on which 

pricing scheme is used the rebate may vary. The maximum emission rebate was again 

obtained by using the TOU pricing scheme for PV. The minimum emission rebate was again 

obtained by using the wholesale pricing scheme for electricity. It should be noted that using 

TDV emission cost factor resulted in a higher emission rebate. 

Table 7-17: Hourly emissions cost comparison using the different pricing schemes test-case study 3 

Hourly NGHGCFA(CAD$) 
Technology Type 

elec, flat elec, TOU elec, wholesale 

PV 777 898 685 

Table 7-18: TDV emissions cost comparison using the different pricing schemes test-case study 3 

TDV NGHGCFA(CAD$) 
Technology Type 

elec, flat elec, TOU elec, wholesale 

PV 800 908 677 

139 



Figure 7-13 shows the total monthly emission rebate by PV using the TOU pricing scheme. 

Emission rebates were the highest in June for PV. Conversely, the lowest emission rebates 

were during December. 
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Figure 7-13: Monthly emission cost for PV and micro-wind turbine test-case study 3 

In conclusion, all three case studies demonstrated that the TDV emission cost factor placed 

a higher monetary value on emissions and that the wholesale emission cost placed a lower 

monetary value. Depending on whether the emissions are generated or reduced the emission 

cost value can be either a levy on emitters or a rebate for reducers of greenhouse gases. It 

should be noted that by employing the aforementioned methodology more people will invest 

in renewable technologies for their homes. 

The next chapter will show the results associated with the neural network models. 
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8 Neural Network Results 

8.1 Overview 

In this chapter, an evaluation of the NN models developed in this study will be conducted 

by comparing their predicting performance with actual data, as well as comparing their 

estimates with each other. Comparisons are carried out for the following networks: 

• Hourly electricity demand 

• Percentage mix from generation type (methodology 1) 

• Hourly Emission Factor (methodology 2) 

8.2 Hourly Electricity Demand Forecasting 

The performance of the developed NN model for load forecasting has been tested using the 

actual load (IESO, 2006) and weather data (Environment Canada, 2004) (for the year 2004) 

for Toronto. The results are presented in Table 8-1. The R2 and correlation values for the 

training, validation, and testing data are close to 1 which is a good performance indicator of 

the network. 

Table 8-1: Prediction performance ofNN model-load forecasting 

Subset R2 Correlation 

Training 0.962 0.981 

Validation 0.952 0.977 

Testing 0.954 0.978 

The correlation of a network is a statistical measure of strength of the relationship between 

the actual values and network outputs. The correlation coefficient can range from -1 to + 1. 

The closer it is to 1, the stronger the positive relationship, and the closer it is to -1, the 

stronger the negative relationship. It should be noted that when the correlation coefficient is 

near 0 there is no relationship. 
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The estimates for the NN models are plotted along with the actual electricity demand data 

for Ontario as shown in Figures C-1 to C-3 in Appendix C. The NN model was able to 

predict the hourly electricity demand of most hours for 2004. When the inputs were 

examined, it was found that most of the predicted values where close to their corresponding 

values in the testing dataset. 

The error distribution for the network is shown in Figure 8-1. It can be observed that the 

majority of the errors are lower than 1300 MWh. These errors are small when compared to 

the electricity demand for a typical day in the Province of Ontario is 23000 MWh. 
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Figure 8-1: Error distribution for the load forecasting NN 

The importance of the types of inputs for the network is illustrated in Figure 8-2. Several 

input categories have a significant effect on the electricity demand for the Province of 

Ontario. It can be observed that the electricity demand is heavily dependent on the month 

which is direcdy related to weather. 
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Figure 8-2: Input importance percentage for the load forecasting NN 

-
~'1>'" 

The statistical results are presented in Table 8-2 for the training, validation and testing 

subsets. Given the MAPE values, the factors affecting the electricity demand are closely 

represented by the inputs selected in Chapter 4. The validation and testing subsets have the 

highest value of MAPE with 2.37%, whereas the training subset has the lowest with 2.12%. 

The defmition of 1fAPE can be found in Appendix A. 

Table 8-2: NN load forecasting statistics 

MAPE (%) 

Training Validation Testing 

Mean 2.12 2.37 2.37 

Std Dev 1.83 2.08 2.01 

Min 0.00002 0.00030 0.00004 

Max 22.40 18.19 20.76 

8.2.1 Test Case Using Load Forecasting NN Model 

In this case, the target is to predict the hourly peak load for each season for 2005. The NN 

model was developed using data from 2004 and as shown above it could predict the hourly 
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electricity demand accurately with an average MAPE of 2.12%. Load and weather data for 

2005 was divided into winter, spring, summer, and fall in order to compare the NN 

predictive performance across the seasons. Table 8-3 shows the average MAPE values for 

2005. The highest 1-:fAPE value occurred in the summer which indicates loads during the 

summer fluctuate a lot more than the other seasons. The lowest 1-:fAPE values occurred 

during the winter and fall which demonstrates that there is less fluctuation in temperature 

during the winter and fall. The seasonal 1-:fAPE prof.tles for the test case are presented in 

Figures C-4 to C-7 in Appendix C. 

Table 8-3: Average MAPE values for test case - 2005 

2005 
Season MAPE (%) 
Winter 3.24 
Spring 4.83 

Summer 7.27 
Fall 3.26 

Average 4.65 

The NN model which was trained using 2004 load and weather data continued to be quite 

accurate for 2005. It was observed that the winter months were easier to predict and summer 

months were the hardest. Yearly retraining of the NN should improve the predictive 

performance. 

8.3 Hourly Percentage .Mix from Generation Sources NN :Model 

The hourly percentage mix NN was developed by creating four models due to the 

complexity and difficulty in developing a multiple output model and software limitations. 

8.3.1 Percentage Nuclear NN 

The performance of the developed NN model for percentage nuclear forecasting is 

presented in Table 8-4. The R2 and correlation values for the training, validation, and testing 

data were close to 1 which is a good performance indicator of the network. 
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Table 8-4: Prediction performance ofNN model- % nuclear 

Subset R2 Correlation 

Training 0.967 0.984 

Validation 0.967 0.984 

Testing 0.966 0.984 

The estimates for the NN models are plotted along with the percentage nuclear data for 

Ontario as shown in Figures C-8 to C-10 in Appendix C. The NN model was able to predict 

the percentage share from nuclear most hours for the year 2005. When the inputs were 

examined, it was found that most of the predicted values where close to their corresponding 

values in the testing dataset. 

The error distribution for the network is shown in Figure 8-3. It can be observed that the 

majority of the errors are lower than 3.5%. These errors are small when compared to the 

percentage share from nuclear for a typical day in the Province of Ontario which is 

approximately 50%. 
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Figure 8-3: Error distribution for the % nuclear NN 

The importance of the types of inputs for the network is illustrated in Figure 8-4. Several 

input categories have a significant effect on the percentage share of nuclear. It can be 

observed that the percentage share from nuclear is heavily dependent on the dew point 

temperature on the far right of the figure, as well as the month, temperature and the 

electricity generated in the province. It should be noted that the hour had no significant 

effect on the network. This was identified in Chapter 4. 
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Figure 8-4: Input importance percentage for the % nuclear NN 

The statistical results are presented in Table 8-5 for the training, validation and testing 

subsets. This NN model is very accurate given the MAPE values, the factors affecting the 

percentage share from nuclear are closely represented by the inputs selected in Chapter 4. 

The validation and testing subsets have the highest values for the MAPE of 1.95% and 

1.92%, respectively, whereas the training subset has the lowest value of 1.90%. The 

maximum MAPE value was the highest in the validation subset. 

Table 8-5: NN % nuclear training statistics 

MAPE (%) 
Training Validation Testing 

Mean 1.90 1.95 1.92 
Std Dev 1.78 1.77 1.83 

Min 0.0007 0.001 0.0008 
Max 23.65 14.90 14.51 
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8.3.1.1 Test Case Using Percent Nuclear NN Model 

In this case, the target is to predict the percent share from nuclear for each season for 2006. 

The NN model was developed using data from 2005 and as shown above it could predict 

the percent share from nuclear accurately with an average 1-1APE of 1.90%. Percent share 

from power generation and weather data for 2006 was divided into winter, spring, summer, 

and fall in order to compare the NN predictive performance across the seasons for the year 

2006. Table 8-6 shows the average MAPE values for 2006. The highest 1-1APE value 

occurred in the spring which indicates that the percent share from nuclear during the spring 

fluctuates considerably in comparison to the other seasons. The lowest MAPE values 

occurred during the winter, summer and fall. The high MAPE value for the spring could be 

attributed to either weather variability or inability to predict within accuracy during that 

season. The seasonal1-1APE profiles for the test case are presented in Figures C-ll to C14 

in Appendix C. 

Table 8-6: Average MAPE values for test case - 2006 

2006 

Season MAPE (%) 

Winter 8.60 

Spring 21.38 

Summer 8.50 

Fall 8.14 

Average 11.66 

The NN model which was trained using 2005 data was not as accurate for 2006. It was 

observed that the winter, summer, and fall months were easier to predict with a MAPE of 

approximately 8% and the spring was considered to be the hardest season to predict due to 

its high MAPE value of 21.38%. This high MAPE could be explained by unusual 

temperature changes. However the average MAPE for the entire year was 11.66%. Yearly 

retraining of the NN should improve the predictive performance. 

8.3.2 Percentage Hydro NN 

The performance of the developed NN model for percentage hydro forecasting is presented 

in Table 8-7. The R2 and correlation values for the training, validation, and testing data were 

really close to 1 which is a good performance indicator of the network. 
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Table 8-7: Prediction performance of NN model- % hydro 

Subset R2 Correlation 

Training 0.933 0.968 

Validation 0.915 0.959 

Testing 0.920 0.962 

The estimates for the NN models are plotted along with the percentage hydro data for 

Ontario as shown in Figure C-15 to C-17 in Appendix C. The NN model was able to predict 

the percentage share from hydro for most hours for the year 2005. When the inputs were 

examined, it was found that most of the predicted values where close to their corresponding 

values in the testing dataset. 

The error distribution for the network is shown in Figure 8-5. It can be observed that the 

majority of the errors are lower than 3.5%. 
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Figure 8-5: Error distribution for the % hydro NN 

The importance of the types of inputs for the network is illustrated in Figure 8-6. Several 

input categories have a significant effect on the percentage share of hydro. It can be 

observed that the percentage share from hydro is heavily dependent on the dew point 

temperature, the month, and the relative humidity on the left of the figure. It should be 

noted that the other inputs had a relatively smaller effect on the predicting power of the 

network. This clearly indicates that hydro is highly dependent on the weather. 
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Figure 8-6: Input importance percentage for the % hydro NN 

The statistical results are presented in Table 8-8 for the training, validation and testing 

subsets. This NN model is very accurate given the MAPE values, the factors affecting the 

percentage share from hydro are closely represented by the inputs selected in Chapter 4. The 

validation and testing subsets have the highest values for the 1iAPE of 5.81 % and 5.78%, 

respectively, whereas the training subset has the lowest value of 5.23%. The maximum 

MAPE value was the highest in the validation subset. 

Table 8-8: NN % hydro training statistics 

Training 
Mean 5.23 

Std Dev 4.79 
Min 0.0013 
Max 53.74 

MAPE (%) 
Validation 

5.81 
5.51 

0.0031 
52.63 
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8.3.2.1 Test Case Using Percent Hydro NN Model 

In tlus case, the target is to predict the percent share from hydro for each season for 2006. 

The NN model was developed using data from 2005 and as shown above it could predict 

the percent share from hydro accurately with an average MAPE of 5.23%. Percent share 

from power generation and weather data for 2006 was divided into winter, spring, summer, 

and fall in order to compare the NN predictive performance across the seasons for the year 

2006. Table 8-9 shows the average MAPE values for 2006. The mghest 1-lAPE value 

occurred in the fall wmch indicates that the percent share from hydro during the fall 

fluctuates considerably in comparison to the other seasons. The lowest MAPE value 

occurred during the winter. The seasonal MAPE profiles for the test case are presented in 

Figures C-18 to C-21 in Appendix C. 

Table 8-9: Average MAPE values for % hydro test case - 2006 

2006 
Season MAPE (%) 

Winter 8.67 

Spring 9.62 

Summer 11.03 

Fall 12.23 

Average 10.39 

The NN model wmch was trained using 2005 data was not as accurate for 2006. The NN 

models developed are for short term forecasting only. However, it was observed that long 

term forecasting for the winter had the lowest MAPE of 8.67% in 2006. In addition, the 

spring and summer months resulted in a 1-lAPE of 9.62% and 11.03%, respectively. In 

addition, the fall was considered to be the hardest season to predict due to its mgh MAPE 

value of 12.23%. However the average MAPE for the entire year was 10.39%. Yearly 

retraining of the NN should improve the predictive performance. 

8.3.3 Percentage Coal NN 

The performance of the developed NN model for percentage coal forecasting is presented in 

Table 8-10. The R2 and correlation values for the training, validation, and testing data were 

really close to 1 wmch is a good performance indicator of the network. 
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Table 8-10: Prediction performance of NN model - % coal 

Subset R2 Correlation 

Training 0.938 0.970 

Validation 0.934 0.968 

Testing 0.931 0.966 

The estimates for the NN models are plotted along with the percentage coal data for 

Ontario as shown in Figures C-22 to C-24 in Appendix C. The NN model was able to 

predict the percentage share from coal most hours for the year 2005. When the inputs were 

examined, it was found that most of the predicted values where close to their corresponding 

values in the testing dataset. 

The error distribution for the network is shown in Figure 8-7. It can be observed that the 

majority of the errors are lower than 4.6%. 
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Figure 8-7: Error distribution for the % coal NN 

The importance of the types of inputs for the network is illustrated in Figure 8-8. Several 

input categories have a significant effect on the percentage share of coal. It can be observed 

that the percentage share from coal is heavily dependent on the percentage share from 

Hydro on the far left of the figure, as well as percentage share from nuclear. It should be 

noted that the other inputs had little effect on the predicting power of the network. This 

clearly indicates that the electricity market regulators attempt to use hydro and nuclear 

before using coal. 
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Figure 8-8: Input importance percentage for the % coal NN 

The statistical results are presented in Table 8-11 for the training, validation and testing 

subsets. This NN model is very accurate given the MAPE values, the factors affecting the 

percentage share from coal are closely represented by the inputs selected in Chapter 4. The 

validation and testing subsets have the highest values for the MAPE of 4.71 % and 4.64%, 

respectively, whereas the training subset has the lowest value of 4.45%. The maximum 

MAPE value was the highest in the validation subset. 

Table 8-11: NN % coal training statistics 

MAPE (%) 
Training Validation Testing 

Mean 4.45 4.71 4.64 
Std Dev 4.15 4.35 4.29 

Min 0.0005 0.0027 0.0043 
Max 48.91 40.23 37.51 
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8.3.3.1 Test Case Using Percent Coal NN Model 

In this case, the target is to predict the percent share from coal for each season for 2006. 

The NN model was developed using data from 2005 and as shown above it could predict 

the percent share from coal accurately with an average ~1APE of 4.45%. Percent share from 

power generation and weather data for 2006 was divided into winter spring summer and , , , 

fall in order to compare the NN predictive performance across the seasons for the year 

2006. Table 8-12 shows the average MAPE values for 2006. The highest ~L<\PE value 

occurred in the winter which indicates that the percent share from coal during the winter 

fluctuates considerably in comparison to the other seasons. The lowest ~1APE value 

occurred during the summer. The seasonal ~1APE proftles for the test case are presented in 

Figures C-25 to C-28 in Appendix C. 

Table 8-12: Average MAPE values for % coal test case - 2006 

2006 

Season MAPE (%) 

Winter 13.53 

Spring 12.84 

Summer 7.23 

Fall 12.87 

Average 11.62 

The NN model which was trained using 2005 data was not as accurate for 2006. The NN 

models developed are for short term forecasting only. However, it was observed that long 

term forecasting for the summer had the highest ~1APE of 7.23% in 2006. In addition, the 

spring and fall months resulted in a ~PE of approximately 12.8% and the winter was 

considered to be the hardest season to predict due to its high ~1APE value of 13.53%. 

However the average MAPE for the entire year was 11.62%. Yearly retraining of the NN 

should improve the predictive performance. 

8.3.4 Percentage Other NN 

The performance of the developed NN model for percentage other forecasting is presented 

in Table 8-13. The R2 and correlation values for the training, validation, and testing data were 

approximately 80% and 90%, respectively. It should be recognized that the percent share 

from "other" is difficult to predict since it is dependent on the market. 
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8.3.3.1 Test Case Using Percent Coal NN Model 

In this case, the target is to predict the percent share from coal for each season for 2006. 

The NN model was developed using data from 2005 and as shown above it could predict 

the percent share from coal accurately with an average l'vIAPE of 4.45%. Percent share from 

power generation and weather data for 2006 was divided into winter, spring, summer, and 

fall in order to compare the NN predictive performance across the seasons for the year 

2006. Table 8-12 shows the average l'vIAPE values for 2006. The highest l'vIAPE value 

occurred in the winter which indicates that the percent share from coal during the winter 

fluctuates considerably in comparison to the other seasons. The lowest l'vIAPE value 

occurred during the summer. The seasonall'vIAPE profiles for the test case are presented in 

Figures C-25 to C-28 in Appendix C. 
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The NN model which was trained using 2005 data was not as accurate for 2006. The NN 

models developed are for short term forecasting only. However, it was observed that long 

term forecasting for the summer had the highest l'vIAPE of 7.23% in. 2006. In addition, the 

spring and fall months resulted in a MAPE of approximately 12.8% and the winter was 

considered to be the hardest season to predict due to its high l'vIAPE value of 13.53%. 

However the average l'vIAPE for the enrue year was 11.62%. Yearly retraining of the NN 

should improve the predictive performance. 

8.3.4 Percentage Other NN 

The performance of the developed NN model for percentage other forecasting is presented 

in Table 8-13. The R2 and correlation values for the training, validation, and testing data were 

approximately 80% and 90%, respectively. It should be recognized that the percent share 

from "other" is difficult to predict since it is dependent on the market. 
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Table 8-13: Prediction performance of NN model- % other 

Subset R2 Correlation 

Training 0.839 0.928 

Validation 0.814 0.912 

Testing 0.797 0.909 

The estimates for the NN models are plotted along with the percentage "other" data for 

Ontario as shown in Figures C-29 to C-31 in Appendix C. The NN model was able to 

predict the percentage share from "other" for the year 2005. When the inputs were 

examined, it was found that some of the predicted values where close to their corresponding 

values in the testing dataset. 

The error distribution for the network is shown in Figure 8-9. It can be observed that the 

majority of the errors are lower than 3.2%. 
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Figure 8-9: Error distribution for the % other NN 

The importance of the types of inputs for the network is illustrated in Figure 8-10. Several 

input categories have a significant effect on the percentage share of "other". It can be 

observed that the percentage share from "other" is heavily dependent on the day of the 

week, the electricity generated in the Province of Ontario, the month, and the temperature. 

It should be noted that the other inputs had a relatively smaller effect on the predicting 

power of the network. This clearly indicates that other is highly dependent on day of the 

week. 
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Figure 8-10: Input importance percentage for the % other NN 

The statistical results are presented in Table 8-14 for the training, validation and testing 

subsets. This NN model is less accurate than the other networks, the factors affecting the 

percentage share from "other" are somewhat represented by the inputs selected in Chapter 

4. The validation and testing subsets have the highest values for the MAPE of 11.86% and 

12.17%, respectively, whereas the training subset has the lowest value of 10.89%. The 

maximum MAPE value was the highest in the testing subset. 

Table 8-14: NN % other training statistics 

MAPE (%) 

Training Validation Testing 

Mean 10.89 11.86 12.17 

Std Dev 10.06 10.35 11.13 

Min 0.0002 0.0012 0.0042 

Max 109.09 89.74 114.31 
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8.3.4.1 Test Case Using Percent Other NN Model 

In this case, the target is to predict the percent share from "other" for each season for 2006. 

The NN model was developed using data from 2005 and as shown above it could predict 

the percent share from "other" somewhat accurately with an average MAPE of 10.89%. 

Percent share from power generation and weather data for 2006 was divided into winter, 

spring, summer, and fall in order to compare the NN predictive performance across the 

seasons for the year 2006. Table 8-15 shows the average MAPE values for 2006. The highest 

~1APE value occurred in the fall and the lowest MAPE value occurred during the winter. 

Given the high ~1APE values the predictive performance of the "other" network is not valid 

for 2006. The seasonal ~1APE profiles for the test case are presented in Figures C-32 to C-

35 in Appendix C. 

Table 8-15: Average MAPE values for % other test case - 2006 

2006 

Season MAPE (%) 

Winter 27.70 

Spring 21.24 

Summer 23.52 

Fall 28.05 

Average 25.13 

The NN model which was trained using 2005 data was not as accurate for 2006. The NN 

models developed are for short term forecasting only. However, it was observed that long 

term forecasting for the fall had the highest MAPE of 28.05% in 2006. In addition, the 

spring and summer months resulted in a MAPE of 21.24% and 23.52%, respectively. In 

addition, the fall was considered to be the hardest season to predict due to its high MAPE 

value of 28.05% and average MAPE for the entire year was 25.13%. This network is the 

most difficult to predict due to the electricity market regulations and fuel costs. Other mainly 

uses natural gas, and wood chips to produce electricity. However, the nuclear, coal and 

hydro networks were quite accurate and since they produce approximately 94% of the 

electricity, the less accurate network such as "other" does not have a huge impact on the 

total percentage share predictions. 
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8.4 Emission Factor Forecasting using Neural Networks 

This section presents the use of neural networks developed in previous sections to predict 

the NGHGIF A for the Province of Ontario. Two methodologies were explored, one that 

uses the neural networks developed in previous sections and another one that has its own 

NN to predict the hourly emission factor. 

8.4.1 Methodology 1 

In order to predict the emission factor for the fIrst case, the total hourly electricity generated, 

and the hourly electricity generated by coal and "other" for the Province of Ontario had to 

be predicted for the year 2005 using the networks developed in Sections 8.2, and 8.3. The 

following process is defIned in Equations 8.1, 8.2, 8.3, 8.4 and 8.5 

HPElecGentotal = HPElecDemand NN + HElecimported - HElecexported [8.1] 

Where, 

HPElecGen I = Hourly Predicted Total Electricity Generated by the Province of toto 

Ontario (kWh) 

HPElecDemand NN = Hourly Predicted Electricity Demand by NN for the 

Province of Ontario (kWh) 

HElec. = Hourly Electricity imported by the Province of Ontario (kWh) ,mported 

HElec = Hourly Electricity exported by the Province of Ontario (k\Vb) exported 

_ (HP%COalNN X HPElecGentotal J 
HP Elec coal - 100 

[8.2] 

Where, 

HPElec = Hourly Predicted Electricity generated by coal for the Provllce of coal 

Ontario (kWh) 

HP%Coai NN = Hourly Predicted Percentage from Coal by NN for the Province of 

Ontario (kWh) 
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Where, 

Where, 

HPElecGenlolal = Hourly Predicted Total Electricity Generated by the Province of 

Ontario (kWh) 

HPElec = (HP%OtherNN x HPElecGenlolal J 
olher 100 [8.3] 

HPElecolher = Hourly Predicted Electricity generated by other for the Province of 

Ontario (kWh) 

HP%Other NN = Hourly Predicted Percentage from Other by NN for the Province 

of Ontario (kWh) 

HPElecGenlolal = Hourly Predicted Total Electricity Generated by the Province of 

Ontario (kWh) 

HPC02 = (i)(HPEleccoal ) + U)(HPElecolher) [8.4] 

HPC02 = Hourly Predicted CO2 production (g) 

HPEleccoal = Hourly Predicted Electricity generated by other for the Province of 

Ontario (kWh) 

HPElecolher = Hourly Predicted Electricity generated by coal for the Province of 

Ontario (kWh) 

i = OPG CO2 emission factor (0.974 g of COz/kWh for the year 2005) 

j = Environment Canada natural gas emission factor (0.432 g of COz/kWh for the 

year 2005) (Environment Canada (2005)) 

HPNGHGIF
A 

= HPC02 

HPElecGenlolal 
[8.5] 
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Where, 

HPNGHGIFA 

COz/kWh) 

Hourly Predicted New Greenhouse Gas Intensity Factor (g of 

HPC02 = Hourly Predicted CO2 production (g) 

HPElecGen,o,al = Hourly Predicted Total Electricity Generated by the Province of 

Ontario (kWh) 

8.4.1.1 Test Case Using Methodology 1 

In this case, the target is to predict the NGHGIF A for each season for 2005. The model was 

developed using data from 2005. As described in the previous section, NN predictions for 

the electricity generated and percent share from power generation for Ontario data for 2005 

was divided into winter, spring, summer, and fall in order to compare the predicted and 

actual emission factor. Table 8-16 shows the average MAPE values for 2005. The highest 

.MAPE value occurred in the summer and the lowest r.1APE value occurred during the 

spring. The r.1APE values were not as low as desired, however the predictive performance of 

the emission factor network is still valid for 2005. The seasonal MAPE profiles for the test 

case presented in Figures C-36 to C-39 in Appendix C correspond to the initial methodology 

and not to the alternate method. 

Table 8-16: Average seasonal MAPE values comparing actual and predicted NGHGIFA - 2005 

.. 2005 

Season MAPE (%) 

Winter 13.58 

Spring 12.94 

Summer 15.72 

Fall 15.06 

Average 14.32 

It should be noted that the predicted enusslOn factor is dependent on the predicted 

electricity demand for the Province of Ontario. An alternate method was explored by using 

the actual electricity demand instead of the predicted electricity demand in the predicted 

percentage mix values. However, the predicted electricity demand was still used to calculate 
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the emission factor as show in Equation 8.5. Table 8-17 shows the average ~1APE values for 

2005 using the alternative methodology which is beyond the scope of this thesis. 

Table 8-17: Average seasonal MAPE values comparing actual and predicted NGHGIFA using 

alternate methodology - 2005 

2005 
Season MAPE (%) 

Winter 6.27 

Spring 8.04 

Summer 5.47 

Fall 7.35 

Average 6.78 

The NN model which was trained using 2005 data was not as accurate as expected. This 

might be due to carried errors from the other predictive models. The NN models developed 

are for short term forecasting only. However, it was observed that long term forecasting for 

the spring had the lowest MAPE of 12.94% and the winter and fall months resulted in a 

MAPE of 13.58% and 15.06%, respectively. The summer had the highest MAPE of 15.72% 

and was considered to be the hardest season to predict due to grid fluctuations related to 

weather change in the city of Toronto. In addition; the overall average MAPE for the entire 

year was 14.32% which is a good performance indicator for this methodology. This 

methodology will be compared to methodology 2 in the next section . 

8.4.2 Methodology 2 

For the second case a neural network model was developed to estimate the hourly emission 

factor based on the total electricity demand and weather for the Province of Ontario. 

The performance of the developed NN model for etnlSSlOn factor (EF) forecasting is 

presented in Table 8-18. The R2 and correlation values for the training, validation, and 

testing data were close to 1 which is a good performance indicator of the network. 
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Table 8-18: Prediction performance of NN model- emission factor 

Subset R2 Correlation 

Training 0.806 0.915 

Validation 0.782 0.906 

Testing 0.790 0.912 

The estimates for the NN models are plotted along with the EF data for Ontario as shown 

in Figures C-40 to C-42 in Appendix C. The NN model was able to predict the EF for the 

year 2005. When the inputs were examined, it was found that most of the predicted values 

where close to their corresponding values in the testing dataset. 

The error distribution for the network is shown in Figure 8-11. It can be observed that the 

errors for the network are lower than 53 g of COz/kWh, and that the majority of these 

errors corresponding to the predicted EF are within 0.848277 and 15 g of COz/kWh from 

the actual EF value. 

Error Distribi1ion 

I ; 

I!! 300· . 
o 

.......................... " .......... i. ................. io. ..................... .l ....................... I.. ....................... .i. ......................... I .................... I.. .... .. 
, I I! t ... ... 

w 
'0 200··· 
... 
Q) 

! ! ! 
............. !' .............. .. r ............ ••• .. ", .... ••• ................ r .. ••• .... • .. • .... ·,· .. •• .... ,.··· ...... l" ............... .,... .... .. 

I I I 

.0 100 
E 

.L ......... "" ...... ) ... "" ............ 1.. .. " .......... " ... 1 .... "" ............. '. " .............. )" ... . 
I I I 1 

~ 

z 0.~.~~~~U1~U1~~~~~~~~~~~~~~----~~~ 

22,856784 27.93567 33.014556 39.786405 46.558253 53.330101 60.10195 65.180836 0,848277 5,927163 11.00605 16,084936 

Figure 8-11: Error distribution for the EF NN 

The importance of the types of inputs for the network is illustrated in Figure 8-12. Several 

input categories have a significant effect on the emission factor for the Province of Ontario. 

It can be observed that the emission factor is heavily dependent on the electricity demand. 
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Figure 8-12: Input importance percentage for the EF NN 

The statistical results are presented in Table 8-19 for the training, validation and testing 

subsets. Given the MAPE values, the factors affecting the emission factor are closely 

represented by the inputs selected in Chapter 4. The validation and testing subsets have the 

highest values of :MAPE with 8.09% and 8.31 %, respectively, whereas the training subset has 

the lowest with 7.85%. 

Table 8-19: NN EF training statistics 

MAPE (%) 
Training Validation Testing 

Mean 7.85 8.09 8.31 
Std Dev 7.55 8.39 8.20 

Min 0.002 0.016 0.0126 
Max 87.63 77.96 69.25 

8.4.3 Comparison of Emission Factor Methodologies 

Two methodologies were developed in order to estimate the e1TI1SS10n factor for the 

Province of Ontario. It is clear that methodology 1 is more complex due to the several 

inputs and steps that are required in order to estimate the emission factor, whereas 

methodology 2 is simpler and is highly dependent on the electricity demand and does not 
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The statistical results are presented in Table 8-19 for the training, validation and testing 

subsets. Given the MAPE values, the factors affecting the emission factor are closely 

represented by the inputs selected in Chapter 4. The validation and testing subsets have the 

highest values of :MAPE with 8.09% and 8.31 %, respectively, whereas the training subset has 

the lowest with 7.85%. 

Table 8-19: NN EF training statistics 

MAPE (%) 
Training Validation Testing 

Mean 7.85 8.09 8.31 
Std Dev 7.55 8.39 8.20 

Min 0.002 0.016 0.0126 
Max 87.63 77.96 69.25 

8.4.3 Comparison of Emission Factor Methodologies 

Two methodologies were developed in order to estimate the e1TI1SS10n factor for the 

Province of Ontario. It is clear that methodology 1 is more complex due to the several 

inputs and steps that are required in order to estimate the emission factor, whereas 

methodology 2 is simpler and is highly dependent on the electricity demand and does not 
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take into consideration the percentage mix from the different sources that make up the 

electricity generation sector. It should be noted that methodology 2 resulted in a lower 

~1APE. However, the alternate methodology 1 performed better than methodology 2 

because it did not use the predicted electricity value developed in Section 8.2, but instead 

used the actual value. Also, methodology 1 used the predicted electricity values for 2005 

developed by the electricity demand network based on 2004 data, which was not as accurate 

for 2005. This might have been one of the contributing factors to the lower performance of 

the network developed by the fIrst methodology. 
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9 Conclusions and Recommendations 

9.1 Conclusions 

As stated in Section 1.5, the objectives of this work were: firstly, to study the supply and 

demand of electricity and associated GHG emissions for the Province of Ontario and to 

develop GHG emission factors for the years 2004, 2005, and 2006; secondly, to develop 

seasonal Time Dependent Valuation (TDV) emission and monthly cost factors in order to 

estimate and place a monetary value on emissions produced by the electricity generation 

sector; thirdly, these emission and cost factors were applied to simulation results from ESP-r 

for the different archetypes and cities; lastly, NN models were developed to predict the 

electricity demand, emissions, and emission factor for the Province of Ontario. The 

aforementioned objectives were successfully achieved as follows: 

• Emissions from the electricity generation sector were analyzed and different 

emission factors were developed in order to represent the true reduction potential of 

CO2 by using renewable energy technologies. CO2 emissions were the highest during 

the winter in 2004, but were higher during the summer months in 2005 and 2006. 

The year with the highest emissions was 2005. However, emissions in 2006 were the 

lowest between 2004 and 2006. Once again, electricity generated by coal plants is 

being reduced unless some unplanned event affects the other generating plants. 

• Several emission factors were developed for the years 2004, 2005, and 2006. The 

hourly emission factor proved to be the most accurate. In addition, depending on the 

type of analysis conducted it might be practical but not as accurate to employ 

seasonal, time dependent valuation (TDV), and annual averages emission factors to 

estimate CO2 emissions. It was observed that TDV and seasonal average emission 

factors were more accurate than using the annual average value. It should also be 

mentioned, that monthly TDV emission factors might prove to be as accurate as 

using hourly values. However, it should be noted that TDV values for 2005 were 

quite different from those of the years 2004 and 2006. This difference might be 
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attributed to unexpected events for 2005 due to either unplanned outages for plants 

or variability in temperature. 

Greenhouse Gas Cost Factors (GHGCF) were developed in order to place a 

monetary value on emissions from fossil plants. The cost factors were developed for 

three pricing schemes: flat rate, time-of-use (fOU), and wholesale. It was determined 

that the flat rate pricing scheme placed a higher monetary value on emissions 

compared to using a TOU pricing scheme. In addition, the cost factor based on the 

wholesale pricing scheme was developed to charge generators a price for the amount 

of emissions produced from fossil plants. Clearly, the money collected from 

generators could be used as a rebate for customers using renewable technologies 

emitting zero operating emissions. 

• The potential reduction of GHG emissions using the different emission factors was 

performed on each of the test case house models. Using the hourly, seasonal average, 

annual average and TDV emission factors for the Province of Ontario, the total CO2 

emission reduction potential for each test case was estimated and compared to using 

the hourly emission factor. For all test cases, the highest and lowest emission 

reduction potential was obtained by using the seasonal TDV and annual average 

emission factor, respectively. The hourly emission factor is usually in between the 

two limits. It is clear that there is a need for hourly emission factors in order to 

accurately estimate the true potential reduction in greenhouse gases. The use of 

regionally specific climate-modeled factors, such as those identified, allows for a 

more accurate representation of the benefits associated with GHG reducing 

technologies. 

• The development of NN models was conducted in order to speed up the process in 

estimating emission factors. Initially, a neural network model was developed in order 

to predict the electricity demand and percentage mix from each generating source for 

the Province of Ontario by using hourly data obtained from the IESO and weather 

data from Environment Canada. Two methodologies were developed in this thesis: 

1) using the aforementioned networks to predict the emission factor or 2) developing 

a specific neural network that could predict the emission factor in one step. It was 

determined that both methodologies are accurate, but the second method proved to 

be better at estimating the emission factor with a MAPE of 7.85% compared to a 
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tiAPE of 14.32% using the first methodology. Two things were discovered during 

the simulations: Firstly, it was determined that by using the actual electricity demand 

data instead of the predicted values increased the tiAPE value by almost 45%. 

Secondly, the predicted electricity demand network was developed using data from 

2004 to predict the electricity demand for 2005. Both of these factors contributed to 

lower MAPE values. This approach could be used in other provinces where 

electricity generation data are not readily available. However, it should be noted that 

the NN model is limited to changes in both the environment and electricity 

consumption; thus, it should be updated periodically. 

9.2 Recommendations 

In this thesis, average hourly, seasonal and annual emission factors were developed in order 

to show the time of day and time of year variations of the electricity generation sector. 

However, monthly emission factors could be developed to provide better accuracy. It should 

be noted that the emission factors developed were based on the total electricity generated 

from all sources in the Province of Ontario. Perhaps peak and marginal emission factors 

could be developed in order to have a middle and upper limit reduction potential of 

emissions. However, these emission factors should not be used to estimate the reduction 

potential of CO2 by using renewable technologies in the residential sector due to their 

overestimating quality. 
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In addition, an NN model was developed USIng the learning algorithms and activation 

functions of the NeuroIntelligence software. Other NN software with different learning 

algorithms and activation functions could be tested to increase the prediction performance 

of the model in order to reduce training time. Another potential improvement to the NN 

model would be to increase the database size of the environmental factors and electricity 

demand values. Fuel based methods only estimate an annual average and do not reflect the 

cyclic behaviour of emission factors throughout the day. The model can determine the 

environmental impacts on when energy is consumed. Thus, the NN model can predict the 

hour-by-hour electricity demand for the Province of Ontario which can then be used to 

estimate GHG emission factors. This method of analysis would allow for a more accurate 

representation of the potential reduction of GHGs by using renewable technologies. 

However, it was determined that all the neural network models should be trained for the 

same year due to their short term predictive power. 
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Appendix A: Neural Network Algorithms and Performance 

A.I Learning Algorithms 

This section will explain the most common learning algorithms used for the training of 

neural networks. 

Levenberg-Marquardt 

Levenberg-Marquardt (Roweis, 2001) is an advanced non-linear optimization algorithm. It is 

the fastest algorithm available for multi-layer perceptrons. However, it has the following 

restrictions: 

• It can only be used on networks with a single output unit. 

• It can only be used with small networks (a few hundred weights) because its memory 

requirements are proportional to the square of the number of weights in the 

network. 

It is only deflned for the sum of squared error function and therefore it is only appropriate 

for regression problems. 

Quasi-Newton 

The network training algorithm based on Newton's method (Bertsekas, 1995) is an 

approximate Hessian matrix that is computed for each iteration of the algorithm based on 

the gradients. 

Conjugate Gradient Descent 

This is an advanced method for training multi-layer neural networks (Shewchuk, 1994). It is 

based on the linear search usage in the line of an optimal network weights' change. The 

correction of weights is conducted once per iteration. In most cases, this method works 

faster than Back Propagation and provides more precise forecasting results. 

Back-Propagation Algorithms 

The back-propagation algorithm was introduced by Rumelhart and McClelland (1986) and is 

the most commonly used learning algorithm. Back-propagation is the best known training 

algorithm for multi-layer neural networks. It deflnes rules of propagating the network error 

back from network output to network input units and adjusting network weights along with 
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this back-propagation. It requires lower memory resources than most learning algorithms 

and usually gets an acceptable result, although it can be too slow to reach the error 

nurumum. 

There is no single best training algorithm for neural networks. You need to choose a training 

algorithm based on the characteristics of the problem. The following simple rules proved to 

be quite effective for most practical purposes (Alyuda, 2007): 

• If the network has a small number of weights (usually, up to 300), Levenberg­

Marquardt algorithm is efficient. Levenberg-Marquardt often performs considerably 

faster than other algorithms and finds better optima th:in other algorithms. But its 

memory requirements are proportional to the square of the number of weights. 

Another Levenberg-Marquardt limitation is that it is specifically designed to 

minimize the sum of square errors and cannot be used for other types of network 

error. 

• If the network has a moderate number of weights, Quasi-Newton and Limited 

Memory Quasi-Newton algorithms are efficient. But their memory requirements are 

also proportional to the square of the number of weights. 

• If the network has a large number of weights, it is recommended that a Conjugate 

Gradient Descent algorithm be used. Conjugate Gradient Descent has nearly the 

convergence speed of second-order methods, while avoiding the need to compute 

and store the Hessian matrix. Its memory requirements are proportional to the 

number of weights. 

• Conjugate Gradient Descent and Quick Prop~gation are general-purpose training 

algorithms of choice. 

• It is also possible to use incremental and batch-back propagation for networks of any 

size. Back-propagation algorithm is the most popular algorithm for training of 

multilayer perceptrons and is often used by researchers and practitioners. The main 

drawbacks of back-propagation are: slow convergence, need to adjust the learning 

rate and momentum parameters, and high probability of getting caught in local 

minima. Incremental back-propagation can be efficient for large datasets if learning 

rate properly selected. 
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A.2 Assessing the Prediction Performance of Neural Networks 

To judge the prediction performance of a network, several performance measures are used. 

In electricity load forecasting, the prediction accuracy is generally evaluated using the mean 

average percentage elTOr (I\1APE) and the absolute elTOr (AE) mean average as indicated in Ortiz­

Arroyo et al. (2001). The MAPE is computed using Equation A.l. 

Ipi pil 
MAPE=~" A -. F xlOO 

N L..J P' 
A 

[A. 1] 

Where, 

PA = Actual value 

PB = Forecasted value 

N = Number of data points 

In addition, the training of a NN is an iterative procedure, which follows the steps described 

below: 

(aJ Initialization of weights and biases: 

All weights and biases are set to small random values between -1 and 1 (or some other 

suitable interval). 

(bJ Feedfonvard propagation: 

Each input unit receives an input signal and sends the signal to all units in the hidden layer. 

Each hidden unit sums its weighted input signals with the bias contribution, applies its 

activation function to compute its output signal and sends this signal to the output unit. The 

output unit sums its weighted input signals with the bias contribution, and applies its 

activation function to compute the output of the network. 
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(cJ E1Tor calculation: 

The output of the network, i.e. its prediction, and the output (target) parameter are used to 

compute the network error. The error is used to compute the necessary changes of the 

weights and biases to minimize the error of the network. 

(dJ Online backward propagation: 

The weights and biases are adjusted in a way that minimizes the error, and steps from (aJ to 

(dJ are repeated until the desired R-squared error is achieved, at which point the slope of the 

testing dataset will become constant. However, if the testing and training datasets begin to 

diverge this is an indication that the network has been overtrained. The R-squared value is 

the relative predictive power of a model, and it is a descriptive measure between 0 and 1. 

The closer it is to one, the better the model's predicting ability. In addition, the correlation 

value is also considered since it is a statistical measure of strength of the relationship 

between the actual values and network outputs. The correlation coefficient can range from -

1 to + 1. The closer it is to 1, the stronger the positive linear relationship, and the closer it is 

to -1, the stronger the negative linear relationship. Once the network is complete, it is used 

to predict the desired output. 
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Appendix B: Neural Network Model Development 

Figures B-1 - B-3 show the minimum error values for the networks developed in this thesis. 
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Figures B-4 - B-6 show the Ale for the trained networks. 
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Tables B-1 - B-6 show the architectural performance results for the networks. 

Table B-1: Performance of the hourly electricity demand network with different architectures 

Architecture Train Error Validation Error Test Error AIC Correlation R2 
[9-1-1 ] 1329 1341 1327 -8822 0.728 0.531 
[9-2-1 ] 1060 1063 1058 -10141 0.834 0.691 
[9-3-1 ] 820 812 810 -11635 0.902 0.813 
[9-4-1 ] 664 661 662 -12867 0.933 0.871 
[9-5-1 ] 785 806 804 -11855 0.908 0.825 
[9-6-1 ] 679 686 685 -12689 0.929 0.864 
[9-7-1] 618 627 623 -13225 0.943 0.890 
[9-8-1] 652 666 658 -12889 0.939 0.881 
[9-9-1 ] 602 622 615 -13337 0.948 0.898 

[9-10-1 ] 614 636 617 -13194 0.945 0.893 
[9-11-1 ] 600 612 619 -13313 0.946 0.896 
[9-12-1 ] 600 616 609 -13293 0.948 0.899 
[9-13-1] 591 604 604 -13360 0.949 0.901 
[9-14-1] 582 596 587 -13423 0.951 0.904 
[9-15-1] 581 602 593 -13411 0.951 0.905 
[9-16-1 ] 605 625 611 -13155 0.947 0.896 
[9-17 -1] 562 583 585 -13567 0.955 0.911 
[9-18-1 ] 540 554 546 -13776 0.957 0.916 
[9-19-1] 619 633 625 -12951 0.945 0.893 
[9-20-1 ] 557 579 563 -13554 0.955 0.911 

[9-21-1] 559 574 575 -13513 0.955 0.911 

[9-22-1] 578 596 589 -13289 0.952 0.907 

[9-23-1 ] 576 602 588 -13292 0.952 0.907 

[9-24-1] 561 591 572 -13421 0.955 0.912 

[9-25-1 ] 554 577 562 -13479 0.956 0.913 

[9-26-1 ] 552 577 559 -13480 0.957 0.915 

[9-27 -1] 569 585 580 -13277 0.954 0.910 

[9-28-1 ] 576 586 583 -13183 0.952 0.906 

[9-29-1 ] 588 606 598 -13033 0.951 0.905 

[9-30-1] 565 598 583 -13253 0.955 0.911 

[9-31-1 ] 531 555 542 -13597 0.959 0.919 

[9-32-1] 552 585 568 -13338 0.956 0.915 
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Table B-2: Performance of the percentage from nuclear network with different architectures 

Arch itectu re Train Error Validation Error Test Error AIC Correlation R2 

[6-1-1 ] 3.888 3.869 3.791 -42782 0.726 0.527 
[6-2-1 ] 3.095 3.083 3.089 -44101 0.846 0.715 
[6-3-1 ] 2.952 2.951 2.961 -44362 0.864 0.746 
[6-4-1 ] 2.406 2.416 2.428 -45541 0.912 0.831 
[6-5-1 ] 2.076 2.079 2.068 -46390 0.934 0.872 
[6-6-1 ] 2.334 2.351 2.379 -45688 0.917 0.840 
[6-7-1] 2.126 2.123 2.162 -46218 0.928 0.861 
[6-8-1 ] 2.510 2.522 2.523 -45231 0.896 0.803 
[6-9-1 ] 2.083 2.103 2.114 -46305 0.933 0.871 

[6-10-1] 2.010 2.021 2.028 -46497 0.939 0.881 
[6-11-1] 1.959 1.958 1.957 -46633 0.939 0.881 
[6-12-1] 2.093 2.091 2.112 -46229 0.928 0.861 
[6-13-1 ] 1.986 1.989 1.985 -46521 0.938 0.879 
[6-14-1 ] 1.930 1.946 1.953 -46673 0.941 0.885 
[6-15-1] 1.834 1.837 1.848 -46953 0.948 0.899 
[6-16-1 ] 1.886 1.891 1.902 -46774 0.944 0.891 
[6-17-1] 1.801 1.790 1.796 -47028 0.949 0.901 
[6-18-1] 1.942 1.943 1.948 -46572 0.939 0.881 
[6-19-1 ] 1.867 1.877 1.887 -46785 0.942 0.888 
[6-20-1] 2.040 2.053 2.059 -46251 0.933 0.871 
[6-21-1] 1.914 1.932 1.929 -46608 0.942 0.887 
[6-22-1] 1.811 1.831 1.821 -46917 0.945 0.893 
[6-23-1] 1.807 1.815 1.824 -46912 0.947 0.896 
[6-24-1] 2.069 2.088 2.089 -46106 0.933 0.870 
[6-25-1] 1.719 1.737 1:739 -47171 0.952 0.906 
[6-26-1] 1.862 1.866 1.873 -46689 0.945 0.893 
[6-27-1] 2.005 2.025 2.009 -46240 0.938 0.879 
[6-28-1] 1.719 1.703 1.732 -47126 0.951 0.903 
[6-29-1] 1.720 1.723 1.731 -47106 0.953 0.907 
[6-30-1] 1.916 1.922 1.898 -46459 0.941 0.885 
[6-31-1] 1.834 1.813 1.825 -46699 0.948 0.899 
[6-32-1] 1.979 1.976 1.980 -46236 0.941 0.884 
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Table B-3: Performance of the percentage from hydro network with different architectures 

Arch itectu re Train Error Validation Error Test Error AIC Correlation R2 
[10-1-1 ] 3.251 3.099 3.236 -43821 0.612 0.375 
[10-2-1] 2.986 2.987 2.978 -44294 0.710 0.503 
[10-3-1 ] 2.221 2.204 2.196 -46002 0.849 0.721 
[10-4-1] 2.106 2.085 2.101 -46288 0.863 0.744 
[10-5-1] 1.998 1.964 2.009 -46573 0.871 0.759 
[10-6-1] 1.641 1.632 1.593 -47702 0.922 0.850 
[10-7-1] 1.609 1.605 1.594 -47791 0.924 0.854 
[10-8-1] 1.536 1.522 1.504 -48039 0.932 0.869 
[10-9-1 ] 1.593 1.590 1.578 -47804 0.927 0.859 

[10-10-1] 1.734 1.754 1.733 -47281 0.909 0.827 
[10-11-1] 1.482 1.488 1.447 -48177 0.937 0.878 
[10-12-1] 1.503 1.509 1.510 -48072 0.935 0.874 
[10-13-1 ] 1.442 1.481 1.444 -48289 0.940 0.884 
[10-14-1 ] 1.513 1.529 1.476 -47983 0.933 0.871 
[10-15-1] 1.454 1.472 1.441 -48192 0.938 0.880 
[10-16-1 ] 1.435 1.462 1.468 -48246 0.941 0.884 
[10-17-1] 1.476 1.504 1.510 -48057 0.936 0.876 
[10-18-1] 1.403 1.436 1.407 -48330 0.943 0.888 
[10-19-1 ] 1.395 1.437 1.387 -48338 0.943 0.889 
[10-20-1] 1.471 1.524 1.502 -48003 0.937 0.877 

[10-21-1 ] 1.363 1.404 1.369 -48426 0.946 0.894 

[10-22-1 ] 1.353 1.390 1.366 -48445 0.947 0.896 

[10-23-1 ] 1.377 1.438 1.408 -48320 0.944 0.891 

[10-24-1 ] 1.417 1.468 1.458 -48129 0.942 0.886 

[10-25-1 ] 1.426 1.467 1.451 -48064 0.941 0.886 

[10-26-1 ] 1.361 1.410 1.388 -48317 0.946 0.895 

[10-27 -1] 1.404 1.444 1.423 -48109 0.943 0.888 

[10-28-1 ] 1.385 1.432 1.395 -48163 0.944 0.891 

[10-29-1 ] 1.383 1.427 1.388 -48150 0.944 0.891 

[10-30-1 ] 1.398 1.438 1.414 -48060 0.943 0.889 

[10-31-1] 1.322 1.376 1.351 -48366 0.949 0.901 

[10-32-1 ] 1.398 1.445 1.421 -48014 0.944 0.891 
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Table B-4: Performance of the percentage from coal network with differen t architectures 

Architecture Train Error Validation Error Test Error AIC Correlation R;t 

[8-1-1] 1.247 1.210 1.248 -49429 0.928 0.861 
[8-2-1 ] 1.105 1.093 1.135 -50118 0.942 0.888 
[8-3-1] 1.072 1.057 1.082 -50277 0.945 0.892 
[8-4-1] 1.056 1.039 1.059 -50345 0.947 0.897 
[8-5-1 ] 1.045 1.035 1.049 -50384 0.950 0.903 
[8-6-1 ] 1.020 1.017 1.030 -50506 0.951 0.905 
[8-7-1] 1.023 1.008 1.021 -50471 0.951 0.904 
[8-8-1] 1.006 0.998 1.007 -50546 0.953 0.907 
[8-9-1 ] 1.005 0.999 1.006 -50532 0.953 0.908 

[8-10-1 ] 0.981 0.979 0.989 -50653 0.956 0.913 
[8-11-1] 0.958 0.953 0.963 -50770 0.957 0.915 
[8-12-1] 0.983 0.960 0.980 -50599 0.955 0.912 
[8-13-1 ] 0.985 0.976 0.981 -50571 0.956 0.914 
[8-14-1] 0.961 0.958 0.966 -50695 0.957 0.915 
[8-15-1] 0.966 0.959 0.963 -50643 0.957 0.915 
[8-16-1 ] 0.958 0.949 0.961 -50670 0.957 0.916 
[8-17-1] 0.949 0.949 0.967 -50708 0.958 0.918 
[8-18-1 ] 0.937 0.941 0.941 -50762 0.959 0.919 
[8-19-1 ] 0.951 0.948 0.956 -50654 0.958 0.917 
[8-20-1] 0.967 0.965 0.965 -50537 0.957 0.916 
[8-21-1] 0.883 0.886 0.903 -51051 0.964 0.928 
[8-22-1 ] 0.940 0.936 0.933 -50662 0.959 0.919 
[8-23-1] 0.942 0.942 0.938 -50631 0.959 0.919 
[8-24-1] 0.893 0.896 0.921 -50923 0.964 0.928 
[8-25-1] 0.952 0.951 0:958 -50532 0.958 0.917 
[8-26-1 ] 0.963 0.955 0.967 -50444 0.957 0.916 
[8-27-1 ] 0.912 0.907 0.927 -50744 0.962 0.925 
[8-28-1 ] 0.898 0.890 0.912 -50813 0.963 0.927 
[8-29-1] 0.915 0.910 0.932 -50682 0.961 0.924 
[8-30-1 ] 0.909 0.904 0.925 -50700 0.962 0.925 
[8-31-1] 0.958 0.942 0.952 -50376 0.957 0.916 
[8-32-1 ] 0.906 0.899 0.923 -50681 0.962 0.925 
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Table B-5: Performance of the percentage from other network with different architectures 

Architecture Train Error Validation Error Test Error AIC Correlation R2 
[7-1-1] 1.372 1.387 1.397 -48873 0.780 0.607 
[7-2-1] 1.321 1.352 1.373 -49077 0.794 0.631 
[7-3-1] 1.290 1.319 1.336 -49200 0.808 0.653 
[7 -4-1] 1.222 1.236 1.269 -49499 0.829 0.687 
[7 -5-1] 1.140 1.158 1.188 -49887 0.848 0.719 
[7 -6-1] 1.168 1.177 1.209 -49726 0.839 0.704 
[7 -7 -1] 1.098 1.122 1.139 -50069 0.857 0.735 
[7 -8-1] 1.110 1.118 1.132 -49989 0.855 0.730 
[7 -9-1] 1.043 1.043 1.080 -50332 0.867 0.751 

[7 -10-1] 1.123 1.145 1.184 -49883 0.854 0.729 
[7-11-1] 1.048 1.071 1.082 -50269 0.870 0.757 
[7-12-1] 1.090 1.106 1.137 -50023 0.869 0.755 
[7 -13-1] 1.020 1.041 1.056 -50392 0.877 0.770 
[7 -14-1] 1.019 1.027 1.059 -50382 0.879 0.772 
[7-15-1] 1.057 1.083 1.115 -50148 0.873 0.761 
[7-16-1 ] 1.037 1.058 1.080 -50240 0.877 0.768 
[7-17-1] 1.024 1.046 1.087 -50300 0.880 0.774 
[7 -18-1] 0.980 0.972 1.020 -50534 0.889 0.791 
[7 -19-1] 1.011 1.040 1.083 -50334 0.883 0.779 
[7-20-1] 1.005 1.031 1.061 -50350 0.882 0.777 
[7-21-1] 1.025 1.049 1.070 -50222 0.881 0.775 
[7-22-1] 1.011 1.026 1.071 -50280 0.886 0.785 
[7-23-1] 1.052 1.081 1.105 -50031 0.874 0.763 
[7-24-1] 0.995 1.014 1.051 -50342 0.887 0.786 
[7-25-1] 1.025 1.053 1.075 -50149 0.880 0.774 

[7 -26-1] 1.076 1.094 1.129 -49845 0.868 0.753 

[7-27-1] 1.036 1.054 1.098 -50051 0.878 0.770 

[7-28-1] 1.018 1.045 1.065 -50131 0.882 0.778 

[7-29-1] 0.994 1.008 1.034 -50253 0.890 0.791 

[7-30-1] 1.040 1.074 1.100 -49970 0.876 0.767 

[7 -31-1] 1.037 1.042 1.087 -49969 0.878 0.771 

[7-32-1] 1.024 1.036 1.064 -50026 0.880 0.774 

[7-33-1 ] 0.996 1.020 1.041 -50170 0.886 0.784 

[7 -34-1] 1.004 1.020 1.048 -50105 0.885 0.784 

[7 -35-1] 1.036 1.043 1.089 -49903 0.875 0.766 

[7-36-1] 0.969 0.992 1.012 -50276 0.893 0.797 

[7 -37 -1] 1.012 1.040 1.070 -50008 0.884 0.781 

[7 -38-1] 0.971 0.999 1.021 -50230 0.893 0.797 

[7 -39-1] 1.030 1.045 1.087 -49864 0.879 0.772 

[7 -40-1] 1.036 1.075 1.109 -49814 0.877 0.769 
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Table 8-6: Performance of the hourly emission factor network with different architectures 

Arch itectu re Train Error Validation Error Test Error AIC Correlation RA! 

[6-1-1 ] 25 25 26 -31883 0.736 0.542 
[6-2-1 ] 24 24 25 -32039 0.749 0.561 
[6-3-1 ] 24 24 25 -32045 0.753 0.567 
[6-4-1] 24 24 24 -32122 0.766 0.587 
[6-5-1] 23 23 24 -32237 0.780 0.608 
[6-6-1] 22 22 23 -32521 0.804 0.646 
[6-7-1] 22 22 22 -32552 0.808 0.653 
[6-8-1] 22 23 23 -32461 0.801 0.641 
[6-9-1 ] 21 22 22 -32650 0.815 0.664 

[6-10-1] 21 22 22 -32717 0.821 0.673 
[6-11-1 ] 20 21 21 -32933 0.840 0.705 
[6-12-1] 21 22 22 -32715 0.828 0.686 
[6-13-1] 21 22 22 -32633 0.820 0.671 
[6-14-1] 21 22 22 -32694 0.825 0.681 
[6-15-1] 20 20 20 -32904 0.835 0.697 
[6-16-1 ] 21 22 22 -32617 0.819 0.671 
[6-17-1] 21 22 21 -32693 0.829 0.686 
[6-18-1 ] 20 21 21 -32825 0.835 0.696 
[6-19-1] 20 21 20 -32906 0.842 0.708 
[6-20-1] 20 21 21 -32778 0.838 0.703 
[6-21-1] 21 21 21 -32549 0.825 0.680 
[6-22-1] 21 22 22 -32522 0.820 0.672 
[6-23-1] 19 20 20 -33062 0.856 0.732 
[6-24-1] 20 21 21 -32696 0.833 0.694 
[6-25-1] 19 20 20 -33005 0.856 0.732 
[6-26-1] 20 20 20 -32935 0.850 0.722 
[6-27-1] 21 21 22 -32471 0.824 0.679 
[6-28-1] 21 21 21 -32600 0.833 0.694 
[6-29-1] 20 21 21 -32620 0.832 0.691 
[6-30-1 ] 20 21 21 -32703 0.842 0.709 
[6-31-1 ] 20 20 21 -32724 0.841 0.707 
[6-32-1] 19 19 19 -33102 0.864 0.745 
[6-33-1] 20 20 20 -32694 0.843 0.711 
[6-34-1] 20 21 21 -32563 0.834 0.696 
[6-35-1] 20 20 20 -32635 0.839 0.704 
[6-36-1] 19 20 20 -32831 0.852 0.726 
[6-37-1] 20 20 21 -32570 0.839 0.704 
[6-38-1] 20 21 21 -32501 0.834 0.696 
[6-39-1) 21 21 22 -32362 0.830 0.689 
[6-40-1] 20 21 21 -32492 0.837 0.700 
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Tables B-7 - B-1 0 show the architectural performance results for the networks. 

Table B-7: Performance of hydro network trained using five different learning algorithms 

Architecture Training algorithm AIC Correlation R2 

[10-31-1 ] Quick Propagation -49748 0.968 0.933 
[10-31-1 ] Conjugate Gradient Descent -46220 0.891 0.794 
[10-31-1] Quasi-Newton -47094 0.921 0.849 

[10-31-1 ] Levenberg-Marquardt -48068 0.947 0.896 

[10-31-1 ] Online Back Propagation -41929 0.271 0.007 

Table B-8: Performance of the coal network trained using five different learning algorithms 

Arch itectu re Training algorithm AIC Correlation R2 

[8-21-1] Quick Propagation -51510 0.970 0.936 

[8-21-1] Conjugate Gradient Descent -50147 0.949 0.900 

[8-21-1] Quasi-Newton -50117 0.949 0.901 

[8-21-1] Levenberg-Marquardt -50164 0.956 0.913 

[8-21-1] Online Back Propagation -50019 0.947 0.897 

Table B-9: Performance of other network trained using five different learning algorithms 

Arch itectu re Training algorithm AIC Correlation R2 

[7-36-1] Quick Propagation -51286 0.928 0.862 

[7 -36-1] Conjugate Gradient Descent -48869 0.819 0.671 

[7 -36-1] Quasi-Newton -49799 0.872 0.761 

[7-36-1] Levenberg-Marquardt -49070 0.851 0.720 

[7-36-1] Online Back Propagation -49253 0.846 0.712 
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Appendix c: Neural Network Model Results 

C.l Load Forecasting NN 
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Figure C-l: Scatter plot comparing actual vs. predicted values for the training of the network 

23,500 

23,000 

22,500 

22,000 -, --

21,500 

21.000 

20,500 

20,000 .-~---

19,500 _w. 

19,000 

18,SOC 

i 16,000 

017,500 

16,000 .w T-

15,500 .-.----. 

15,000 

14,500 

14,000 

13,sao 

13,000 

12,500 

-- ~ 

---~ 

-:-------. 

-:.. "- -- - -- .. -~ , , 

--< 

_w';_ -;-

--------:.... 

-~ ---- -- - .. - ~-

-;--

_ ~ _______ • ___ ~ • _. w ___ • __ ~w __ _ 

- ~ - : - ~ 
_.Ow_ww ____ w_ ••• ______ • ___ ,. __ • ___ • __ 

--;---- --f----- ._----,---.-------:--- t--- :-.-------

12,000~ _______ -_--~> _______ --~'-_______ -~'--____ --_'~--__ ~ __ ----~-:---------~--____ --~:----------~'-______ ~------~~--~ 
21.000 22,000 23,000 12,000 13,000 14,000 15,000 16,000 17,000 18,000 20,000 

T ..... 

- Target • Oute! Selected t_Sel: 0 Selected outeti I 

Figure C-2: Scatter plot comparing actual vs. predicted values for the validation of the network 
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Figure C-3: Scatter plot comparing actual vs. predicted values for the testing of the network 

Test Case Result 

Figure C-4 shows the 11APE profile for the winter of 2005. The 11APE was the highest 

during January. 
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Figure C-4: MAPE profile for winter test case -load forecasting network 

189 



Figure C-5 shows the MAPE profile for the spring of 2005. The MAPE was the highest 

during April and June. 
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Figure CaS: MAPE profile for spring test case -load forecasting network 

Figure C-6 shows the MAPE proftle for the summer of 2005. The MAPE fluctuated 

throughout the summer. 
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Figure C-6: MAPE profile for summer test case - load forecasting network 
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Figure C-7 shows the MAPE proflle for the fall of 2005. The MAPE was the highest during 

October. However fluctuations were visible during the fall. 
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Figure C-7: MAPE profile for fall test case -load forecasting network 

C.2 Percentage Mix from Nuclear Network 
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Test Case Results 

Figure C-ll shows the MAPE proflle for the winter of 2006. The MAPE IS shown 

fluctuating in sync. 
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Figure C-ll: MAPE profile for winter % nuclear test case 

Figure C-12 shows the J\1APE proflle for the spring of 2006. The J\1APE was the highest 

during April and early May. 
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Figure C-12: MAPE profile for spring % nuclear test case 
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Figure C-13 shows the 1iAPE profile for the summer of 2006. The 1iAPE fluctuated 

throughout the summer. 
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Figure C-13: MAPE profile for summer % nuclear test case 

Figure C-14 shows the 1iAPE profile for the fall of 2006. The 1iAPE was the highest during 

October. In addition, the second highest point occurred near the end of December. 
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Figure C-14: MAPE profile for fall % nuclear test case 

194 



C.3 Percentage Mix from Hydro Network 
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Figure C-15: Scatter plot comparing actual vs. predicted values for the training of the % hydro NN 
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Figure C-16: Scatter plot comparing actual vs. predicted values for the validation of the % hydro NN 
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Figure C-17: Scatter plot comparing actual vs. predicted values for the testing of the % hydro NN 

Test Case Results 

Figure C-18 shows the MAPE profile for the winter of 2006. The MAPE fluctuated the 

most during February. 

50r-------------------------------------------------------------------------, 

40~------------------------+.. 

30~------------------

20 

10 

78 155 232 309 386 463 540 617 694 771 848 925 1002107911561233131013871464 16411618 1695 1772 1649 

Time (hr) 

Figure C-18: MAPE profile for winter % hydro test case 
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Figure C-19 shows the MAPE profile for the spring of 2006. The MAPE was the highest 

during late May and early June. 
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Figure C-19: MAPE profile for spring % hydro test case 

Figure C-20 shows the MAPE profile for the summer of 2006. The MAPE was highest in 

early July and in mid September. 
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Figure C-20: MAPE profile for summer % hydro test case 
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Figure C-21 shows the MAPE profile for the fall of 2006. The MAPE was the highest during 

early November. 
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Figure C-21: MAPE profile for fall % hydro test case 

C.4 Percentage Mix from Coal Network 
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Figure C-22: Scatter plot comparing actual vs. predicted values for the training of the % coal NN 
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Figure C-23: Scatter plot comparing actual vs. predicted values for the validation of the % coal NN 
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Figure C-24: Scatter plot comparing actual vs. predicted values for the testing of the % coal NN 
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Test Case Results 

Figure C-2S shows the l'vIAPE profile for the winter of 2006. The l'vIAPE fluctuated the 

most during mid-winter. 
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Figure C-25: MAPE profile for winter % coal test case 

Figure C-26 shows the l'v1APE profile for the spring of 2006. The l'v1APE was the highest 

during April and early May. 
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Figure C-26: MAPE profile for spring % coal test case 
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Figure C-27 shows the 11APE profJle for the summer of 2006. The 11APE was highest in 

August. 
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Figure C-27: MAPE profile for summer % coal test case 

Figure C-2S shows the 11APE profIle for the fall of 2006. The 11APE was the highest during 

December and October. 
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Figure C-28: MAPE profile for fall % coal test case 
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c.s Percentage Mix from Other Network 
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Figure C-29: Scatter plot comparing actual vs. predicted values for the training of the % other NN 
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Figure C-30: Scatter plot comparing actual vs. predicted values for the validation of the % other NN 

202 



.. 

I 
I , 
\ 
I 
1 

I 
I 
I 
I 
I 
I 
I , 

rXTSBtp,wrn Z' 

18 

17.5 

17 

16.5 

16 

15,5 -""" 

15 

14.5 

14 

13.5 

13 - ~ - -

12.5 

12 

11,5 

i 11 
0 10,5 

10 

'.5 
9 -·i--· 

8.5 

F 

. - . . . --- . - ~ . 

I ... Targe! 

2 T 

-. ----. ; 

·r··· . 
., .. .,., '.-' 

-. .. _. ~~ ... -
- - - - 'or - ~ - - ••• 

--_ . .., ; .... -.~ . 

.--

... ~ .. 

--l-"--

10 11 12 13 1.. 15 16 17 18 

T ..... 

"""" Setected target Selected ()I..(pLt I 

Figure C-31: Scatter plot comparing actual vs. predicted values for the testing of the % other NN 

Test Case Result 

Figure C-32 shows the MAPE profile for the winter of 2006. The 11APE fluctuated 

throughout the entire season with its highest value in early February. 
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Figure C-32: MAPE profile for winter % other test case 
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Figure C-33 shows the MAPE profile for the spring of 2006. The MAPE was the highest 

during late May and early June. 
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Figure C-33: MAPE profile for spring % other test case 

Figure C-34 shows the 1vfAPE profJe for the summer of 2006. The MAPE was highest in 

late September. 
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Figure C-34: MAPE profile for summer % other test case 
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Figure C-35 shows the MAPE profile for the fall of 2006. The MAPE was the highest in 

November. 
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Figure C-3S: MAPE profile for fall % other test case 

C.6 Emission Factor NN Methodology 1 

Figure C-36 shows the MAPE profile for the predicted NGHGIFA during the winter of 

2005. The MAPE was constant throughout the entire season with its highest value in early 

January due to unexpected fluctuations in the grid 
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Figure C-36: MAPE profile for NGHGIF A - winter test case 

Wtttt 

Figure C-37 shows the MAPE profile for the predicted NGHGIFA during the spring of 

2005. The ~1APE was not as low throughout the entire season with its highest value in April 

and late May. The peak MAPE values are due to grid fluctuations in Ontario. 
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Figure C-37: MAPE profile for NGHGIF A - spring test case 
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Figure C-38 shows the MAPE profile for the predicted NGHGIF
A 

during the summer of 

2005. The MAPE fluctuated throughout the entire season with its highest value inJuly. 
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Figure C-38: MAPE profile for NGHGIF A - summer test case 

Figure C-39 shows the :tvlAPE profile for the predicted NGHGIF A during the fall of 2005. 

The MAPE was constant throughout the entire season with its highest value in October. 
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Figure C-39: MAPE profile for NGHGIF A - fall test case 
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C.7 Emission Factor NN Methodology 2 
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Figure C-40: Scatter plot comparing actual vs. predicted values for the training of the EF NN 
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Figure C-41: Scatter plot comparing actual vs. predicted values for the validation of the EF NN 

208 

----------------........ 



2 r: 

= 
310 

300 

290 

200 

Z10 -',.-

Z60 

Z50 

Z<O 

Z30 

zzo 

---~-
--:- --- .. ---:--- ---:- --;-

100 lZO 140 161) zzo Z60 200 3ZO 

I -.. Target 
Selectedtarpet o SelectedolJlput I 

Figure C-42: Scatter plot comparing actual vs. predicted values for the testing of the EF NN 
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