
On Predicting Rediscoveries of Software Defects

by

Mefta Sadat

Bachelor of Science, Islamic University of Technology, 2013

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2017

©Mefta Sadat 2017

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A

THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii

On Predicting Rediscoveries of Software Defects

Master of Science 2017

Mefta Sadat

Computer Science

Ryerson University

Abstract

The same defect may be rediscovered by multiple clients, causing unplanned outages

and leading to reduced customer satisfaction. One solution is forcing clients to install

a fix for every defect. However, this approach is economically infeasible, because it

requires extra resources and increases downtime. Moreover, it may lead to regression of

functionality, as new fixes may break the existing functionality. Our goal is to find a

way to proactively predict defects that a client may rediscover in the future. We build a

predictive model by leveraging recommender algorithms. We evaluate our approach with

extracted rediscovery data from four groups of large-scale open source software projects

(namely, Eclipse, Gentoo, KDE, and Libre) and one enterprise software. The datasets

contain information about ⇡ 1.33 million unique defect reports over a period of 18 years

(1999-2017). Our proposed approach may help in understanding the defect rediscovery

phenomenon, leading to improvement of software quality and customer satisfaction.

iii

Acknowledgements

This master’s thesis is submitted to fulfill the requirements of the MSc of Computer

Science at Ryerson University in Toronto, Canada. The work carried out in this thesis

was supervised by Dr. Andriy Miranskyy and Dr. Ayse Bener.

Foremost, I would like to express my sincere gratitude to Dr. Miranskyy for the con-

tinuous support of my MSc study and research, for his patience, motivation, enthusiasm,

and immense knowledge. His guidance helped me in the research and writing of this

thesis. I could not have imagined having a better supervisor and mentor for my MSc

studies.

My sincere thanks also goes to Dr. Bener, who always provided great guidance related

to my research and inspiration to work hard and aim for the best. I thank her also for

leading me to work on diverse exciting projects.

Besides my supervisors, I would like to thank the rest of my thesis committee.

I thank my fellow labmates in Ryerson AMiR Lab: Mujahid Sultan, Sokratis Tsak-

iltsidis, and Jorge Lopez for the stimulating discussions in our group meetings.

Last but not the least, I would like to thank my family and my wife Nadira, whose

constant love and support made this possible.

iv

Dedication

To my beloved mother, who always inspired me to go for higher studies.

v

Contents

Declaration . ii

Abstract . iii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1 Introduction 1

1.1 Terminology . 1

1.1.1 Software Defect . 2

1.1.2 Defect Rediscovery . 2

1.1.3 Graph of Rediscoveries . 3

1.1.4 Preventive Service . 3

1.2 Motivation . 4

1.3 Objective . 6

1.4 Proposed Solution . 6

1.5 Novelty . 7

1.6 Contribution . 8

1.7 Outline . 8

2 Literature Review 10

2.1 Triage Leveraging Duplicate Defect Reports 10

2.2 Reducing Defect Rediscovery . 12

2.3 Defect Report Analysis . 13

vi

3 Methodology 15

3.1 Recommender Systems . 15

3.2 User Feedback for Recommender Systems 16

3.2.1 Explicit User Feedback . 16

3.2.2 Implicit User Feedback . 16

3.3 Top-N Recommendations . 17

3.4 Rating Matrix for RS . 18

3.5 Recommender Algorithms . 18

3.5.1 Random items . 19

3.5.2 Popular items . 19

3.5.3 User-based Collaborative Filtering 20

3.5.4 Naive-Bayes-based . 22

3.6 Sparsity Problem . 23

3.6.1 Reducing the Sparsity of the Datasets 24

3.7 Evaluation . 25

3.7.1 Accuracy Metrics . 25

3.8 Validation . 26

4 Evaluation 31

4.1 Data Extraction . 31

4.2 Dataset Analysis . 34

4.3 Discussion . 39

4.3.1 Rediscovery Prediction . 39

4.3.2 Which Schema is the Best One? 41

4.3.3 Which algorithm is the Best One? 44

4.3.4 What drives models’ failure? . 47

4.4 Threats to Validity . 51

5 Conclusions and Future Work 57

5.1 Future Work . 59

Appendices 60

vii

A Reducing the Sparsity using Clustering 61

A.1 Clustering . 61

A.1.1 Agglomerative Hierarchical Clustering 62

A.1.2 Self-Organising Map (SOM) . 67

A.1.3 Results . 69

B Data Extractions Scripts 73

B.1 Web Scraper . 73

B.2 Web Scraper Util . 83

C Recommender Scripts 89

C.1 Naive Bayes Implementation . 89

C.2 Temporal Splitting Implementation . 94

C.3 Split Known Unknown . 96

References 106

Index 108

viii

107

98

List of Tables

3.1 Sample rating matrix capturing information about defect (re)discoveries. 18

4.1 Summary statistics. 36

4.2 Percentage of non-zero elements (↵) for each project without splitting and

median ↵ after splitting by product-components 42

4.3 Summary of the best-performing algorithms (in %) incorporating all schemas 48

4.4 Confusion Matrix of the Random Forest Classifier 48

4.5 List of factors potentially influencing models’ performance 49

4.6 Statistical Analysis of the three most important factors. The table shows

means of the attributes plus-minus standard deviation (s.d.). 49

4.7 Confusion Matrix of the Naive Bayes Classifier 50

4.8 Frequency of the two class-attributes for each dataset 51

4.9 Best Algorithms for Schema-1 for each dataset and for each Top-N value 53

4.10 Best Algorithms for Schema-2 for each dataset and for each Top-N value 54

4.11 Best Algorithms for Schema-3 for each dataset and for each Top-N value 55

4.12 Best Algorithms for Schema-4 for each dataset and for each Top-N value 56

ix

List of Figures

1.1 The distribution of number of defect reports submitted per day for four

di↵erent software projects in the last 18 years. The Y-axis in log scale. . 2

1.2 Graph of rediscoveries of Eclipse report #4671. Report B being duplicate

of report A is denoted by A ! B. Note that even though report #4671

is the original discovery, a later report #6325 was chosen by developers

as the master report. We can say that the failure associated with report

#4671 was discovered 15 times in total (counted as the total number of

vertices/reports in the graph) and rediscovered 14 times (total number of

duplicate reports). 4

3.1 Temporal Splitting: Schematic Diagram. The diagram represents how

we split a dataset containing defect reports from ten consecutive years

into training and testing sets. Time-interval-increment (dt) is set to 1

year. The green boxes represent the training-set-time-interval and the

grey boxes represent the testing-set-time-interval. 29

4.1 Unique defect reports and reporters count for each project. Note that

y-axis has log scale. 35

4.2 Count of the total number or reports for a given failure vs. count of

original reports. If a given failure was reported once, then it means that

it was never rediscovered; reported twice – means that it was rediscovered

once, and so on (see Section 1.1.3 for details). For example, KDE dataset

has 257420 reports that were never rediscovered (i.e., discovered once) and

15106 reports that were rediscovered once (i.e., discovered twice). 35

4.3 Per-year analysis: Number of reports per year. 37

x

4.4 Per-year analysis: Percent of reports that have not been (yet) rediscovered. 38

4.5 Distributions of time intervals between the original discovery and the latest

rediscovery for a given graph of rediscoveries. 38

4.6 Distribution of non-rediscovered reports per product-component. 39

4.7 Mean TPR while changing dt=1 to dt=3, by 1 year. 42

4.8 Distribution of non-zero elements in the per component analysis. 43

4.9 ROC plots for each temporal-splitting-schema and for each dataset. The

thresholds of the curve are the values of Top-N = 1,3,5,10,20. The Y and X

axis represent the mean FPR and TPR respectively. Error bars represent

one standard deviation spread from either side of the mean. 45

4.10 Best Performing Algorithm for each schema and dataset 47

4.11 Most influential factors as per Random Forest classifier 50

xi

Chapter 1

Introduction

Software quality assurance is the process that ensures that the software being developed

meets all the expected quality standards [73]. During software quality assurance and

maintenance, a significant amount of time is invested on detecting, analyzing, and cor-

recting software defects [19]. A Software defect is an anomaly in the software product that

causes the software to perform incorrectly or to behave in an unexpected way [16]. Defect

reports are software engineering artifacts that contain description of software defects.

When a defect is reported for the first time pointing to a problem in the software

that was never identified before, we call it Defect Discovery [9, 60]. If multiple users

report the same defect, we call it a Defect Re-discovery [9, 60] of the original discovery.

The occurrence of a large number of rediscovery causes an avalanche of support tickets,

increased downtime, and reduced customer satisfaction. Preventing a defect rediscovery

(i.e., by applying a fix beforehand as a preventive measure) is costly because in software

projects a large number of defects is reported on a regular basis (Figure 1.1) and creating

so many special builds is expensive and time consuming. Thus, the necessity to develop

optimised techniques to prevent defect rediscovery arises.

1.1 Terminology

Throughout the study the following terminology (adopted from [16, 15, 65, 58]) is used.

1

Chapter 1. Introduction 1.1. Terminology

●

●

●●
●
●●

●●●●●●
●●●●●●
●
●
●
●●
●●●●●●●●●
●
●●●●
●

●

●●

●●

●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●
●
●

●
●

●
●

●

●

●

●●●
●●
●
●●

●
●●
●
●

●

●

●●
●
●●●
●

●

●
●

●

●
●●●●●●●●●●●
●●
●●●●
●
●
●
●
●●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●
●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●
●
●
●
●●●●●●●
●●●●
●
●●●●
●●
●
●●●●
●
●
●●●●
●
●●●●●●●●
●
●
●●
●●●●●
●
●
●●
●●●●●
●●
●
●
●●●
●
●
●●●
●
●●●
●
●●
●
●●
●
●●●●●●
●
●●
●●●
●●●●●●●●
●
●●●●
●●●●●
●
●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●
●●●
●
●
●

●
●●●●●●

●●
●●
●
●●●●
●
●●●●●

●

●
●●●●●
●
●●●

●

●●

Eclipse Gentoo KDE Libre

1
5

50
50

0

Project

D
is

tri
bu

tio
n

of
 s

ub
m

itt
ed

 re
po

rt
co

un
t p

er
 d

ay

Figure 1.1: The distribution of number of defect reports submitted per day for four
di↵erent software projects in the last 18 years. The Y-axis in log scale.

1.1.1 Software Defect

The users of a software product often encounter a problem or a fault in the software that

leads to an undesired outcome or even a software failure. This problem or flaw is also

known as software defect. Even though there are multiple ways to define the term defect,

typically in Software Engineering, it means the deviation from an expected outcome or

requirement [16].

1.1.2 Defect Rediscovery

Original defect discovery can be defined as the moment when a customer encounters a

defect in the software for the very first time. Encounter is manifested by a problem or a

fault in the software that leads to an undesired outcome or even a software failure. The

customer then submits a report to a defect tracking system describing the problem.

If another customer encounters the same defect again, it is called Defect Rediscovery

[60]. Defect rediscovery may occur when the fix is not ready or the fix is ready and yet

to be installed by the customer. Sometimes, the administrators of the software system

may delay the fix request as they are preoccupied with other crucial tasks related to the

2

Chapter 1. Introduction 1.1. Terminology

overall functionality of the system or are awaiting for planned maintenance downtime [9].

1.1.3 Graph of Rediscoveries

After encountering a defect, a customer typically submits a new report to the defect

tracking system of the software provider. During report triaging, developers identify if a

new report relates to a discovery of a new defect or to a rediscovery of an existing one. If

it is a rediscovery, then developers typically mark the most recent report as a duplicate

and link it to the original report (in some cases the link may be established incorrectly:

“to err is human”). They then choose one of the linked reports as a master report and

the rest of the reports associated with this particular failure will be deemed duplicates

of the master report. Note that the report associated with the first discovery does not

necessarily become a master report – sometimes developers choose a report of one of

the rediscoveries as a master one. Given that there can be more than one rediscovery

of the same defect, the network linking the original report with duplicate ones (which

we call the graph of rediscoveries) may become complex [15]. For example, Figure 1.2

shows the graph of rediscoveries for Eclipse project’s defect report #4671 of product

Platform. Note that the master report (#6325) in this case is not the original report.

The defect tracking system used by Eclipse project numbers defect reports sequentially

with an integer id, with the first id set to 1.

Summing up original discovery and rediscovery count yields total number or reports

for a given failure. If a given report was discovered in total once, then it means that it

was never rediscovered; discovered twice – means that it was rediscovered once, and so

on. In the case of Figure 1.2, report #4671 was rediscovered 14 times. Thus, the total

number of reports for a failure associated with report #4671 is 15.

1.1.4 Preventive Service

Preventive Service (PS) generally means the installation of a fix for a defect beforehand,

in order to prevent the defect rediscovery [9]. Preventive Service is provided to counter

defect rediscovery. Sometimes, customers may ask proactively for preventive services after

getting notification from the software manufacturer about potential defect rediscovery

[60].

3

Chapter 1. Introduction 1.2. Motivation

4760

16783 18247 19760

19274 19128

23194 23196

6325

5544 6136 13724 25256 31201

4671

Figure 1.2: Graph of rediscoveries of Eclipse report #4671. Report B being duplicate
of report A is denoted by A ! B. Note that even though report #4671 is the original
discovery, a later report #6325 was chosen by developers as the master report. We
can say that the failure associated with report #4671 was discovered 15 times in total
(counted as the total number of vertices/reports in the graph) and rediscovered 14 times
(total number of duplicate reports).

1.2 Motivation

Defects are injected in the software during the development cycle. When the test team

inadvertently fails to detect the injected defect, it escapes the test cycle, resides in the

shipped product and ultimately reaches the end customer. The detection of all the defects

before release is hardly ever achieved in real-life software projects [39]. So, the customers

“trip” on the dormant defects that are part of the released product. After encountering

such a defect, a customer usually reports it to the software provider by opening a ticket in

a defect reporting system of the software provider. When a ticket is opened, it is analysed

and then assigned to a single developer or a group of developers to fix the problem. The

process is generally known as bug fixing [88]. When the fix is ready and sent to the

4

Chapter 1. Introduction 1.2. Motivation

customer, it is applied to the product to eliminate the defect.

A defect injected in a frequently used software component is more likely to be re-

discovered multiple times. On the contrary, a defect residing in an infrequently used

software component has a lower chance of rediscovery. The group of customers who use

the same set of software features excessively, may rediscover the same defects more often

because users expect the software to behave similarly in similar situations [59]. Some

customers may use the software more extensively than the others, contributing to the

higher probability of defect rediscovery, as they ‘traverse’ through a higher number of

execution paths. Essentially, they have higher number of inputs, outputs, and configu-

rations. For example, one group of customers may use a spreadsheet software only for

storing data and another group of customers may use the same software for both storing

and analysing the data. The latter group may rediscover more defects.

Defect rediscoveries a↵ect clients, as they lead to unplanned outages and reduced

customer satisfaction. Moreover, rediscoveries drain resources of the support person-

nel [9, 60], as they have to analyse each request before providing a solution. Since both

parties su↵er from the problems caused by rediscoveries, it is essential to reduce the

number of rediscoveries per defect in a software product. Defect rediscovery can be

countered by applying Preventive Service (PS) [9]. If a client applies the fix proactively,

before rediscovering the defect, they will never encounter it. By applying PS, one may

minimise the total number of rediscoveries significantly. However, this strategy has some

disadvantages as per[9, 60]:

• PS is expensive, as it requires allocation of additional resources (e.g., to apply

patches),

• Some customers are resistant to apply PS (i.e., they prefer not to update until a

major service pack is released),

• PS itself may inject a new defect, causing regression of functionality, and

• Each customer will not rediscover every defect. As a result, it is not practical to

install fix for every discovered defect.

Therefore, if we take all the above mentioned constraints into account, we can come to

the conclusion that this strategy is not always desirable. Rather than applying fixes to

5

Chapter 1. Introduction 1.3. Objective

all defects, we need to identify a subset of defects that the client will rediscover in the

future and target only this subset of defects for PS.

1.3 Objective

The primary objective of this study is to build predictive models that can predict defect

rediscoveries in order to proactively eliminate them before a customer finds. We reach

the primary objective by answering the following research question.

RQ1: How can we proactively predict defects that a client will rediscover in the

future?

The secondary objectives include (1) understanding the defect rediscovery phenomenon

in both commercial and open source software projects and (2) identifying the essential

factors that influence the accuracy of the predictive models. We address these objectives

by answering the following questions.

RQ2: How prevalent is the defect rediscovery phenomenon in commercial and open

source software projects?

RQ3: What are the factors that influence the accuracy of the predictive models?

1.4 Proposed Solution

In order to address RQ1, first, we extract data from one commercial and several open

source software projects. We write a custom-built web scraper to extract defect report

data from the defect tracking system (Bugzilla) of the open source software projects. We

mine the Bugzilla engine of Eclipse, Gentoo, KDE, and LibreO�ce (details of the data

extraction presented in Section 4.1). We collect the data from the Enterprise software

project through its structured relational database system.

Second, we implement a Defect Recommender System (DRS) to proactively identify

the defects a client may encounter in the future. In case of recommender systems, the

basic idea is to predict the items that the user of the system is going to be interested in

based on some historical data, such as, previous interactions with the system, what like

6

Chapter 1. Introduction 1.5. Novelty

minded users are interested in, and items that are very similar to the previously liked

items. For example, a movie recommender recommends movies to the user based on the

movies watched by the user in the past, currently popular or trending movies, and the

preference of the like-minded users (what similar users also watched). In our case, we

have built our defect recommender system (DRS) based on the defect reports (which

in recommender system terminology becomes item) by the users. Basically we predict

defect rediscovery based on the previously reported defects by a user, the preference of

the similar reporters, and the most commonly reported defects.

To address RQ2, we provide an in-depth analysis of the defect rediscovery data col-

lected from both commercial and open source software projects in Section 4.2. We com-

pare the data from di↵erent projects using various statistical techniques. Finally, to

answer RQ3, we examine the cases where the model fails to perform in Section 4.3.4. We

apply a Random Forest (RF) and a Naive Bayes classifier to distinguish such cases and

use the variable importance measure of RF to identify the driving factors of the failed

cases.

1.5 Novelty

To the best of our knowledge, there is no other work that implements recommender

systems to predict defect rediscoveries by the customers. Although other researchers

have studied the prediction/detection of duplicate/rediscovered defects, ours is the first

study that predicts defect rediscoveries from the perspective of the customers with the

intention to increase the customer-satisfaction of the software project. Furthermore, we

investigate the inter-relations of rediscovered defects, which has not been studied before.

We analyze ⇡ 1.3 million unique defect reports from one commercial and four dif-

ferent open source large scale software projects each of them having thousands of users

worldwide. We provide a solution on reducing the sparsity for such sparse data in the

context of software engineering and how recommender systems can be used to proac-

tively eliminate potential defect rediscoveries. We show that partitioning the data using

product-component yields the highest accuracy in terms of the recommender systems.

We present a comprehensive and reproducible approach using commonly used recom-

mender systems including popularity based and k-Nearest Neighbors based recommender

7

Chapter 1. Introduction 1.6. Contribution

algorithms. We show that simply recommending the most frequently reported defects

for a given product-component may reduce the number of defect rediscoveries because

the popularity-based recommender is the best performing algorithm. We find empirical

evidence that there exists similarity among the users of a software product because the

k-Nearest Neighbour based recommender performs as the second best algorithm while

predicting rediscoveries.

1.6 Contribution

The major contributions of this work can be summarized as:

• A set of techniques to connect duplicate defects and identify defect rediscovery

information in software projects.

• A novel approach, to reduce number of defect rediscovery leveraging recommender

systems algorithms in order to increase customer satisfaction and better manage

resource allocation.

• Three extracted rediscovery datasets from open source projects shared with the

Software Engineering community in CSV, MySQL, and Neo4j formats [67, 66, 68].

The data is available in open access data sharing repository [68]: https://doi.

org/10.5281/zenodo.400614

• A prototype tool to extract rediscovery data from Bugzilla-based defect report

tracking systems, listed in Appendix B.

• A prototype tool implementing the novel approach, core features1 of which are

listed in Appendix C.

1.7 Outline

In Chapter 2, we provide related works and a brief literature review on defect report

analysis. In Chapter 3, we introduce the methodologies that we use in order to built

1Full code base of the tool will be shared via GitHub.

8

Chapter 1. Introduction 1.7. Outline

our predictive model and the approaches followed to evaluate the model. In Chapter 4

we present the data analysis and the analysis of the results of our model. Finally, in

Chapter 5, we provide a summary of this study, as well as a conclusion and a direction

towards future work.

9

Chapter 2

Literature Review

There has been multiple studies done in the past in software engineering literature that

leverage duplicate defect reports. For example, one can detect duplicate reports to speed

up report triaging (deduplication) [65, 10] and identification of the root cause of fail-

ure [15], or to predict defect rediscoveries in order to proactively eliminate defects before

a customer finds [9], or to improve resource allocation to optimally manage the work-

force [60], or to predict bug priority to improve planning [77], or to build customer profiles

to improve quality assurance processes [58], or to automatically assign defect reports to

owners to speed up time-to-fix of defects [13].

In this chapter, we review the related research works that either leverage rediscov-

ered/duplicate defect reports or the research works that highlight the importance of

reducing the number of defect rediscovery (or defects in general) in a software project.

Additionally, even though we di↵erentiate our study from defect report analysis studies,

we review the literature from this field of study as they are related. This includes studies

on defect report prioritization, duplicate defect report detection, quality of defect reports,

misclassified defect reports, and predicting the severity of defect reports.

2.1 Triage Leveraging Duplicate Defect Reports

Many researchers have investigated the methodologies to detect duplicate defect reports

in order to speed up triaging [65, 10]. Most of the studies focus on either the textual

similarity between the defects or the stack trace information. Hiew [36] was first to

10

Chapter 2. Literature Review 2.1. Triage Leveraging Duplicate Defect Reports

use Natural Language Processing (NLP) to detect duplicate defects. Later, Runeson et

al. [65] used a more sophisticated approach leveraging a vector space model as well as

combined multiple textual attributes. Alipour et al. [10] applied existing NLP based

techniques along with a set of contextual word lists to detect duplicate reports. Sureka

and Jalote [76] introduced a n-gram based detection approach instead of typical word

based approach.

Another group of studies focus on the stack trace data in order to detect duplicates

[81, 74, 25]. Stack trace contains information about the software execution as a crash

report. Such information typically helps to understand the characteristics of a software

defect. Therefore, many researchers used this technique to identify duplicates.

The main di↵erence between our study with the studies of duplicate detection is that

we do not predict if a defect report relates to a duplicate report/defect rediscovery. Rather

we predict, for a given set of rediscovered defects, which are the defects a specific user

may rediscover in the future. The prediction problem we deal with is more user-centric;

and thus we choose recommender systems as the proposed solution.

Avik et al. [13] proposed a machine learning system to automatically assign defect

reports to developers (automatic traiaging). The authors observed that the assigned to

field does not update often and point to the actual developer (who fixes the defect) in

case of defects labelled with the duplicate tag. Therefore, they derived heuristics such as

using the information from the original defect the duplicate is related to.

Researchers analysed defect report prioritization using rediscovery information. Tian

et al. [77] leveraged duplicate reports data while predicting priority level of a defect

report since the similar defects may share the same priority level. Therefore, during

model-training time they used a set of duplicate defects. The authors adopted a modified

version of REP which is a state-of-the-art technique to measure similarity between two

defects, proposed by Sun et al. [75]. The modified version includes textual summary and

description fields as well as the product and component of the defects. They discarded

the priority field because their main objective was to predict the priority level for a given

software defect.

The main di↵erence between our study with defect report prioritization related studies

is that, we proactively identify defects the users may encounter in the future so that

some preventive actions can still be recommended. However, defect reports prioritization

studies focus on the final solution or fix without eliminating immediate risk of potential

11

Chapter 2. Literature Review 2.2. Reducing Defect Rediscovery

defect rediscovery. Our results may be used for prioritization before a defect is fixed.

But, this is not the main goal of this research.

2.2 Reducing Defect Rediscovery

There are not many studies done in the area of reducing defect rediscoveries in software

projects; however, the importance of minimising the number of defects in a software

is critical to its success: some authors have suggested in the past that the number of

defects existing in a software is closely related to customer satisfaction [18]. Researchers

have developed di↵erent metrics related to defect rediscovery in order to benefit software

providers and increase customer satisfaction. An earlier study presented a set of metrics

to estimate the risk associated with defect rediscovery [60]. Another metric was proposed

to improve product support that measures the probability of a customer detecting a defect

within a short period of time [61].

In the seminal paper in 1984, Adams [9] assessed when preventive services should

be applied to avoid defect rediscovery. He reported that by applying preventive services

for the defects that have been rediscovered many times early in the life cycle of the

software, one can achieve the most benefits. Adams also discussed how the maximisation

of preventive services is not desirable and how one should optimise preventive services.

Researchers have developed di↵erent metrics related to defect rediscovery in order

to benefit software providers and increase customer satisfaction. A study presented a

set of metrics to estimate the risk associated with defect rediscovery [60]. According to

this study the information on number of defect rediscoveries can be leveraged by the

software maintenance, support, and quality assurance teams. Upon receiving a support

ticket, the support team must verify first if the ticket is a rediscovery of a existing

defect or not. Increased number of rediscoveries cause slower transfer of support tickets

to maintenance teams. Similarly, maintenance teams need to know when to expect

maximum defect rediscovery in order to better prepare for creating special builds for

clients and to estimate allocation of personnel. A large number of defect rediscovery in

a frequently used software component can be used to pinpoint software testing related

failure by the Quality Assurance Team [60]. Another study proposed a metric to improve

product support that measures the probability of a customer detecting a defect within a

12

Chapter 2. Literature Review 2.3. Defect Report Analysis

short period of time [61].

In order to better understand software reliability and system outages, researchers

have analysed the data from a software product that had geographically distributed user

base (which is also the case in our study) and suggested metrics such as the number of

rediscoveries per defect and the time window between first and last rediscovery of a given

defect [22].

In order to prioritise fixes and allocate sta�ng, many researchers investigated distribu-

tions of defect rediscoveries. They observed that the distribution can be either thin-tailed

[80] or heavy-tailed [9, 62, 60], depending on the data under study. In general, software

engineering processes, it is common to have a heavy-tailed distribution [53].

To the best of our knowledge, there is no other work that implements recommender

systems for defect rediscoveries. The work, that is closest to ours, identifies several

methods to reduce the number of defect rediscovery by customers [85]. These methods

include 1) making fixes available quickly for severe defects (defects that cause a large

number of rediscovery), 2) releasing fixes that are available, in the soonest possible update

rather than waiting to complete more fixes, 3) making announcements about availability

of fixes and creating easily installable fixes, 4) taking preventive measures against severe

defects by doing root cause analysis for existing severe defects. However, this work is

complementary to ours, as they focused only on severe defect and generalised to all

the customers, whereas, we take into account all the defects and create personalised

predictions for each customer.

In our case study in this research, we used di↵erent defect rediscovery metrics previ-

ously used by other researchers in order to understand how we can reduce the number of

rediscoveries [9, 22, 61, 59].

2.3 Defect Report Analysis

Apart from defect report triage and defect rediscovery studies, there are general defect

report analysis studies. This type of studies deal with defect report optimization problem

(improving report quality) [14, 47, 86, 40, 12, 35].

Bettenburg et al. [14] analysed the quality of defect reports by conducting a developer

survey for Eclipse project. According to the developers the inclusion of reproducibility

13

Chapter 2. Literature Review 2.3. Defect Report Analysis

and stack trace in the report are the most helpful data. In addition, the authors reported

that the developers typically do not consider duplicate reports as harmful, because some-

times these reports contain additional description.

Lamkanfi and Demeyer [47] and found that defect reports often contain incorrect

information in some of the fields of the reports. The main reason is that the users of the

software are not completely aware of all the technical aspects of the software (i.e., product,

component, etc.). As a result, the triager may need to manually correct this information.

The authors proposed machine learning approach to predict incorrect component field in

defect reports.

Xie et al. [86] analysed the impact of introducing non-developer-triagers in optimiz-

ing defect reports. The optimizing activities involve filtering defect reports, completing

incomplete reports, and mapping products to reports. The authors observed that the

traigers were e�cient filtering invalid defects whereas not so e�cient in mapping prod-

ucts to reports.

Wu et al. [40] also found that defect reports are often incomplete. They built a

machine learning model using Support Vector Machine (SVM) in order to predict the

values of the missing fields based on the previous data of the software projects under

study. In addition, they detect if a new report is a duplicate or not based on textual

similarity measures such as cosine distance.

Another group of studies focus on identifying defect reports that do not relates to

actual defects. The problem can be termed as defect report misclassification problem

as per Antoniol et al. [12]. The authors di↵erntiated defects from other issues using

Decision Tree, Naive-Bayes, and Logistic Regression based approaches. Herzig et al. [35]

reported that two out of five defect reports are wrongly classified as defects, especially

in open source projects.

14

Chapter 3

Methodology

In this chapter we provide general overview of recommender system (RS), followed by

discussion on RS used in our study. In Section 3.1 we present a brief overview of RS.

Then, we discuss di↵erent aspects of RS, including the type of user feedback used in RS in

Section 3.2, the Top-N recommendations in Section 3.3, the input user-item rating matrix

to RS in Seciton 3.4, and the recommender algorithms used in our study in Section 3.5.

RS often su↵ers from lack of information, so called sparsity problem, which we discuss in

Section 3.6. We tackle the problem by partitioning the data, as discussed in 3.6.1. The

evaluation of the RS’s performance is given in Section 3.7. Throughout the chapter, we

use the term item and defect interchangeably because item is a more common term in

RS terminology and in our context an item and a defect are equivalent.

3.1 Recommender Systems

Recommender System (RS) is a popular technology used by di↵erent organisations (e.g.,

Amazon [1], Netflix [5], and Spotify [7]) in various domains such as e-commerce [72],

news [20], and entertainment websites [45]. RS uses statistical and knowledge discovery

approaches in order to create recommendations based on historical transaction data [69].

These recommendations help users to find relevant products or items from a plethora of

choices. The basic idea is to predict the products or items that the user of the system

is going to be interested in, based on the user’s previous interactions with the system.

For example, e-commerce website Amazon recommends products to a user based on the

15

Chapter 3. Methodology 3.2. User Feedback for Recommender Systems

user’s interests [51]. Some recommender systems also consider the interactions of the

similar users with the system, while presenting recommendations to a user. For example,

when a user visits the web page of a movie in Internet Movie Database or IMDb [3], it

recommends a list of other movies that people — who liked a given movie — also liked.

3.2 User Feedback for Recommender Systems

Recommender Systems rely heavily on users’ feedback. The quality of the user feedback

is the key to successful recommendations [70]. It is crucial to study the characteristics

of user feedback data in order understand the design and evaluation of recommender

algorithms based on di↵erent types of user feedback data. Generally, there are two types

of user feedback in recommender systems [52]:

• Explicit User Feedback,

• Implicit User Feedback.

3.2.1 Explicit User Feedback

Explicit user feedback tells us how much the user likes or is interested in an item. This

type of user feedback is readily available, whereas the implicit user feedback is gathered

by observing the user’s interactions with the system [52]. The explicit user feedback is

typically ordinal and more common when the user expresses specific opinion or preference

about the product using a rating interface [23]. The rating interface is a scale that depicts

how much the user likes or dislikes the product. The scale can be finite (e.g., 1 to 5 Stars

Ratings in Amazon), continuous (e.g., any real value within -10 to 10 in Jester Online

Joke Recommender [4]) or even binary (e.g., like and dislike for YouTube [8] videos).

3.2.2 Implicit User Feedback

The implicit feedback is more common when the user’s interest or opinion is inferred

from implicit user actions, such as clicks and browsing history (i.e., when a customer

browses or buys a product on Amazon or plays a song on Spotify) [37, 52]. Implicit user

feedback can be collected by observing the user’s interactions with the system. In many

16

Chapter 3. Methodology 3.3. Top-N Recommendations

cases, the implicit user feedback is unary or positive-only [37], which means that we have

items that the user may like but we do not have the items that the user dislikes. For

example, when a user plays a song, it means that the user may like the song. However,

it does not mean that the user dislikes thousands of other songs that s/he did not play.

We have built our Defect Recommender System (DRS) based on defect (which in RS

terminology becomes item) reports by the users. This type of data can be classified as

positive-only-implicit user feedback.

3.3 Top-N Recommendations

RS returns Top-N recommended items, sorted from most desirable to least desirable. For

example, in the case of DRS system, Top-3 returned items would represent ids of three

defect reports that this user may rediscover in the future. The first defect in the Top-3

list has the highest probability of rediscovery, the second one – the second highest, and

the third one – the third highest.

Essentially, these are the defects for which PS should be applied. For example, let us

assume that there are 100 unique defects and 50 unique customers for a software product.

A subset of the customers made a defect report and no customer made more than one

defect report. In a traditional setting, the worst case assumption is that each of the

50 customers may rediscover the 100 defects (if defect reports by that customer are not

taken into acoount). Therefore, it will require 100 preventive services for each customer

and in total 100⇥ 50 = 5000 PS for the software product. This naive solution maximises

PS to minimize rediscovery. The total number of required PS is also very high and it is

nearly impossible to provide so many PS to the customers due to increased downtime and

resource allocation issues. Moreover, the 100 defects will not be rediscovered concurrently,

which may cause multiple time windows of downtime. On the contrary, the DRS only

recommends the Top-N most probable defects for each customer by taking into account

all the defect reports made by the customer. Therefore, it will minimise the number of

rediscoveries without maximising the number of PS.

In case of DRS, the Top-N values, for the sake of brevity, were set to N = 1, 3, 5, 10, 20

(so that they may apply preventive services for the Top-N defects and minimise the num-

ber of rediscoveries without maximising the number of preventive services). Depending

17

Chapter 3. Methodology 3.4. Rating Matrix for RS

Table 3.1: Sample rating matrix capturing information about defect (re)discoveries.
d
1

d
2

d
3

d
4

d
5

d
6

u
1

0 0 1 0 1 0
u
2

0 1 1 1 0 0
u
3

1 1 0 0 0 0
u
4

0 1 0 0 0 0
u
5

1 0 1 0 0 1

on the amount of resources that a support team has and the tolerance to false positives,

a given development shop can pick a value of N that suits their needs. One can argue

that in the case of Top-20, all 20 patches will be installed simultaneously, thus not in-

creasing downtime needed for patch application significantly. Of course, the threat here

is that installing 20 patches rather than one leads to increase of probability of regressing

functionality.

3.4 Rating Matrix for RS

The input to the recommender algorithms is a m⇥ n rating matrix which is also known

as the Utility Matrix; where m denotes the number of users and n denotes the number of

items. In case of positive only implicit user feedback, a non-zero cell in the rating matrix

corresponds to a rating. A rating in RS terminology means the user rated/liked/bought

an item (in our context, it becomes a user rediscovered a defect). An example of a rating

matrix, storing information about defect (re)discoveries, is shown in Table 3.1. In this

case we have a 5⇥ 6 rating matrix with five users U = {u
1

, u
2

, u
3

, u
4

, u
5

} and six defects

D = {d
1

, d
2

, d
3

, d
4

, d
5

, d
6

}. Ones in the table represent defect discovery/rediscovery by

users; zeroes – the opposite. For example, u
2

(re)discovered defect d
3

, but u
3

– did not.

3.5 Recommender Algorithms

Below we provide information about the four approaches used in our DRS: namely,

Random-, Popular-, User-, and Naive-Bayes-based, given in Sections 3.5.1 – 3.5.4, re-

spectively. The first three approaches are implemented in recommenderlab [32] R pack-

age. We implemented the fourth, Naive-Bayes-based approach as an extension to the

18

Chapter 3. Methodology 3.5. Recommender Algorithms

recommenderlab package, for consistency of our experiments.

3.5.1 Random items

In the case of random items algorithm, DRS chooses at random N defects and returns

them to a user as Top-N defects that the user may rediscover in the future. For example,

as per Table 3.1, the Random-items will recommend the Top-2 defects for user u
5

, by

randomly sampling 2 defects without replacement from the following set of defects:

{{d
1

, d
2

, d
3

, d
4

, d
5

, d
6

}� {d
1

, d
3

, d
6

}}. (3.1)

Random-items will not recommend defects from {d
1

, d
3

, d
6

} as they have been already

reported by user u
5

. This is the most naive approach and is used as a baseline in our

study.

3.5.2 Popular items

In the case of popular items algorithms, DRS sorts defects by the historic number of

rediscoveries in descending order and return Top-N defects as the ones that a given user

may rediscover in the future. The algorithm is based on the assumption that a frequently

rediscovered defect resides in a commonly executed path, which suggests that it relates

to a popular or core functionality of the product [59]. Therefore, this user may rediscover

it as well.

For example, as per Table 3.1, let’s assume we are predicting the re-discoveries for

the user u
5

. The total number of report counts for each defect are:

{(d
1

, 2), (d
2

, 3), (d
3

, 3), (d
4

, 1), (d
5

, 1), (d
6

, 1)}. (3.2)

Popular-items sort these defects on the historic number of rediscoveries in descending

order. As a result, we get the following sorted list of defects:

{(d
2

, 3), (d
3

, 3), (d
1

, 2), (d
4

, 1), (d
5

, 1), (d
6

, 1)}. (3.3)

The Top-2 defect recommended for u
5

by Popular-items will be d
2

and d
4

since u
5

already

19

Chapter 3. Methodology 3.5. Recommender Algorithms

reported d
1

, d
3

, and d
6

.

3.5.3 User-based Collaborative Filtering

Collaborative filtering (CF) is one of the most common recommendation techniques and

is being used for many years [44]. CF systems use the knowledge of the crowd [42, 33].

It means that an item is recommended to a user based on the preferences of a set of

users who have some degree of similarity with the target user. This set of similar users

are referred to as the crowd or the neighbours and the system uses their predilections as

a knowledge base while providing a new recommendation to the target user [33]. The

neighbours are identified by applying statistical techniques on the historical feedback

data. Typically, the neighbours have similar opinions or preferences with the target user.

They may rate products similarly, listen to the same songs, or buy items of the same

type more frequently.

In a User Based Collaborative Filtering (UBCF) scenario, there is a set of users,

U = {u
1

, u
2

, . . . , un} and a set of items I = {i
1

, i
2

, . . . , in} (items becomes defects in

our context). Each user rates some of the items. The rating is a numeric value (explicit

feedback) or unary value (implicit feedback). The rating rui represents a rating expressed

by the user ui for the item ij and is typically stored in a rating matrix. The active user

ua is the person for whom the rating is being predicted. The basic idea behind the

prediction is that the active user ua will have similarity in preferences with a similar set

of users.

The neighbourhood Sa of the active user ua is a set of users similar to ua. It is

typically formed by calculating similarity scores between the active user and every other

user, then comparing the scores with a threshold score or, alternatively, considering the

k users most similar to ua (k nearest neighbours) [33]. The result is an ordered set of

users, based on the similarity score. So, the first user in the set Sa will be the most

similar user to the active user ua. Pearson correlation coe�cient or cosine similarity can

be used to compute similarity in case of explicit feedback [48].

Similarity Measure

In the case of implicit feedback or positive only data, we know only which items are

favoured by the user, which is generally expressed by a Boolean value (i.e., TRUE-FALSE

20

Chapter 3. Methodology 3.5. Recommender Algorithms

or 1-0). Calculation of similarity using the Jaccard similarity index is recommended in

such a situation [31]. The Jaccard similarity index can be expressed as:

SimJ(ua, ui) =
|Ua \ Ui|
|Ua [Ui|

, (3.4)

where ua is the active user, ui is the other user, Ua is the set of items favoured or rated

positively by the active user and Ui is the set of items favoured by the other user. The

numerator in Eq. 3.4 yields the number of items that the active user and the other user

rated positively simultaneously (intersection of the sets). The denominator yields the

total number of all the items rated positively by both of the users (union of the sets).

This is the measure of similarity that we are going to use in our implementation of the

UBCF, since what we have is positive-only-implicit user feedback: defects found by users

are marked by 1s and not found – by 0s. For example, the similarity between u
2

and u
3

in Table 3.1 is:

SimJ(u2

, u
3

) =
|{d

2

}|
|{d

1

, d
2

, d
3

, d
4

}| = 1/4 (3.5)

Rating Calculation

After the neighbourhood Sa of the active user ua is defined, the missing rating r̂a(j0) of

an item j0 for the active user ua is predicted by aggregating the ratings for that item in

the neighbourhood:

r̂a(j
0) =

1

|Sa|
X

k2Sa

rk(j
0) (3.6)

The final output of the UBCF is a set of Top-N items/defects with the highest predicted

ratings. These are the items that the active user is likely to prefer most.

As an example, let us assume the user u
5

in Table 3.1 is the active user for whom we

want to predict defect rediscoveries.

First, we calculate the similarity between the active user (u
5

) and all other users

(u
1

, u
2

, u
3

, u
4

) as per Section 3.5.3 using Jaccard similarity measure. The similarities are:

SimJ(u5

, u
1

) = 1

4

, SimJ(u5

, u
2

) = 1

5

, SimJ(u5

, u
3

) = 1

4

, and SimJ(u5

, u
4

) = 0

4

.

Second, in case of a 3-Nearest Neighbour system we aggregate the ratings of the three

21

Chapter 3. Methodology 3.5. Recommender Algorithms

most similar users (based on SimJ) to u
5

: u
1

, u
2

, and u
3

, for the defects that are not yet

reported by u
5

using r̂a(j0). The valuse of r̂a(j0) are d
2

: 2

3

, d
4

: 1

3

, d
5

: 1

3

. Therefore, the

Top-1 defect for user u
5

by UBCF would be defect d
2

.

3.5.4 Naive-Bayes-based

We also created a simple probabilistic classifier based on Naive-Bayes (N-BAYES) ap-

proach. In the scope of this classifier, each defect can have two classes associated with

it: defect-reported class Cr (when a defect is reported by a user) and defect-not-reported

class Cn (when a defect is not reported by a user). For example, let us assume that

we want to compute the two class probabilities for the cell [1, 3] in the rating matrix

provided in Table 3.1. This can be expressed as:

• P (Cr|u = u
1

, d = d
3

) referring to the probability of defect-reported, given the user

id u = u
1

and defect id d = d
3

.

• P (Cn|u = u
1

, d = d
3

) referring to the probability of defect-not-reported, given the

user id, u = u
1

and defect id, d = d
3

.

.

We apply Bayes theorem [11], to calculate P (Cr|u, d) and P (Cn|u, d):

P (Cr|ui, dj) =
P (Cr)⇥ P (ui|Cr)⇥ P (dj|Cr)

P (ui)⇥ P (dj)
, (3.7)

where, P (ui|Cr) represents the number of times user ui reported a defect over the total

number defects reported by all users, when we consider only the reported-defects and

P (dj|Cr) represents the number of times defect dj was reported over the number of times

all the defects were reported, when we consider only the reported-defects. Analogously,

P (Cn|ui, dj) is computed as

P (Cn|ui, dj) =
P (Cn)⇥ P (ui|Cn)⇥ P (dj|Cn)

P (ui)⇥ P (dj)
, (3.8)

where, P (ui|Cn) represents the number of times user ui did not report a defect over the

total number defects not reported by all users, when we consider only the not-reported-

defects and P (dj|Cn) represents the number of times defect dj was not reported over

22

Chapter 3. Methodology 3.6. Sparsity Problem

the number of times all the defects were not reported, when we consider only the not-

reported-defects.

Finally, we compare the probabilities of a given defect and user belonging to each class:

if P (Cr|ui, dj) > P (Cn|ui, dj), then we assume that a given defect will be rediscovered,

else it will not be. Note that since denominators in Eqs. 3.7 and 3.8 are the same, we

do not have to compute P (ui) and P (dj) for the purpose of comparison, setting it to a

dummy value of 1.

We then generate personalised list of defect, returning Top-N defects that have the

highest values of P (Cr|ui, dj) (sorted in descending order).

As an example, for user u
5

let us see what is the Top-1 recommendation by N-BAYES.

First, we need to calculate the class probabilities for the defects that are not yet reported

by u
5

. These defects are d
2

, d
4

, and d
5

. For, defect d
2

and user u
5

the probabilities based

on Eq. 3.7 and 3.8 are:

P (Cr|u5

, d
2

) = P (Cr)⇥ P (u
5

|Cr)⇥ P (d
2

|Cr) =
11

30
⇥ 3

11
⇥ 3

11
⇡ 0.03, (3.9)

P (Cn|u5

, d
2

) = P (Cn)⇥ P (u
5

|Cn)⇥ P (d
2

|Cn) =
19

30
⇥ 3

19
⇥ 2

19
⇡ 0.01. (3.10)

Because P (Cr) > P (Cn), we can conclude that the probability that u
5

will report

d
2

is ⇡ 0.03. Similarly, for (u
5

, d
4

) and (u
5

, d
5

), we calculate P (Cr|u5

, d
4

), P (Cn|u5

, d
4

)

and P (Cr|u5

, d
5

), P (Cn|u5

, d
5

), respectively. In both of these cases, P (Cr) < P (Cn)

and, thus, d
4

and d
5

are discarded from potential Top-N recommendations. For user u
5

,

N-BAYES recommends d
2

as the Top-1 recommendation1.

3.6 Sparsity Problem

Recommender systems in general, and collaborative filtering systems in particular su↵er

from the lack (sparsity) of information [70], especially in a high-dimensional space [38].

1 If d4 or d5 had P (Cr) > P (Cn), the Top-1 would have been the defect with the highest P (Cr)
among defects d2, d4, and d5.

23

Chapter 3. Methodology 3.6. Sparsity Problem

The rating matrices in real world are sparse. There is a large number of users and items.

However, only a few items will be rated/encountered by a user. For example, most users

will buy small number of items sold on Amazon (out of hundreds of millions items being

o↵ered [30] or watch a handful of movies on Netflix (out of thousands being o↵ered [54]).

Similarly, in a good quality software product a client rediscovers only a handful of defects

[9, 60].

3.6.1 Reducing the Sparsity of the Datasets

To tackle the sparsity problem, researchers have proposed several solutions to reduce the

sparsity of the rating matrix [29]. The users who rated only handful of items or items that

have very few ratings can be removed [29]. There exists other sophisticated techniques,

such as, Latent Semantic Analysis [26] and clustering-based approaches [49, 71].

Partitioning by software product-component

One way to overcome sparsity of the data is to partition the data by software product

and component. By product in this study, we denote the software subsystem the report

belongs to (i.e., JDT is a product of Eclipse project). By component we mean a group

of functions (in C/C++ sense of the term) dedicated to implementing a specific func-

tionality. For example2, code compiler can be split into multiple components, such as,

scanner, parser, and optimiser.

The split by component allows to partition dataset by functionality, which becomes

important as not every customer will use each and every feature. Of course, there is quite

a number of common components that will be executed by all the users (e.g., scanner or

parser in the case of compiler). Defects uncovered in such components will be of interest

to all the clients.

However there exist optional components too. For example, Intel C++ compiler is

shipped with code coverage tool that can provide information about code covered during

execution of test cases [2]. We can think of this tool as an individual component. The

defects exposed in this component will be of interest only to the clients using it; the

2Another example would be Eclipse project, which has a product JDT consisting of multiple compo-
nents, such as, UI, Debug, Text, and Core.

24

Chapter 3. Methodology 3.7. Evaluation

rest of the clients can safely ignore most of them (example of exception: critical security

defect).

From computational perspective, per product-component partitioning allows to sig-

nificantly reduce both (users and items/defects) dimensions of the rating matrix; which,

hopefully, will improve predictive power of the models. Results of partitioning by product-

component are discussed in Section 4.3.

In addition, we explore some clustering based approaches with limited success which

we describe in Appendix A.

3.7 Evaluation

There are several evaluation metrics to evaluate the performance of a recommender sys-

tem. For explicit user feedback or numeric rating based recommender systems, error

measures, such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and

Mean Absolute Error (MAE), are often used [24]. However, for implicit feedback data

sets in recommender systems, classification metrics [46] popular in the field of Information

Retrieval, such as Precision and Recall, are used. On the other hand, these metrics are

more useful in comparing the performance of di↵erent recommender algorithms, rather

than evaluating how good a recommender is [34]. This is because each user typically

rates a very small fraction of the available items in the data set and these metrics are

dependable upon the number of items rated by the user. Therefore, in this study, we

have used F-measure and a graphical evaluation technique called Receiver Operating

Characteristics (ROC) curve [57] as our evaluation metrics.

3.7.1 Accuracy Metrics

The ROC curve visually represents the trade-o↵ between two metrics, the True Positive

Rate (TPR) and the False Positive Rate (FPR) across the di↵erent thresholds (i.e.,

the numbers of Top-N recommendations [42, 31]). TPR is defined as the proportion of

correctly classified positive instances and is plotted on the Y -axis of the ROC curve plot:

TPR =
TP

(TP + FN)
, (3.11)

25

Chapter 3. Methodology 3.8. Validation

where TP is the number of true positive results, FP is the number of false positive

results, TN is the number of true negative results, and FN is the number of false negative

results. FPR is defined as the proportion of the incorrectly classified negative instances

and plotted on the X-axis of the ROC curve plot:

FPR =
FP

(FP + TN)
. (3.12)

TPR and FPR ranges between 0 and 1. The ideal curve would have TPR = 1 and

FPR = 0 for all N .

For selecting the best algorithm, we use F-measure, which combines precision and

recall (to obtain a balanced measure) into a single metric:

F �measure =
2⇥ TP

(2⇥ TP + FN + FP)
. (3.13)

3.8 Validation

As our validation scheme, we have used a temporal splitting technique. We divide the

training and testing set based on the temporal attribute in the data in order to simulate

the real-world setting where the predictive model would be applied as new data arrives.

This kind of chronological splitting based evaluation scheme has been used by many

previous studies that analyze defect reports [77, 36, 63, 65].

We develop four di↵erent temporal splitting schema in order to understand how the

models perform (in terms of the predictive accuracy) while varying the amount of his-

torical training and testing data. For each schema, we split the the dataset into several

folds. The number of folds for each schema depends on the time-interval-increment dt,

measured in years. The smallest value of dt = 1. Details of the schema are given below.

Schema #1 is defined in Algorithm 1. In this schema we keep accumulating historical

training data and test on ‘immediate’ future test data. In the example given in Figure 3.1,

in fold #1, we train on the data of year 1 and test on the data of year 2. In fold #2, we

train on the data of years 1 and 2 and test on the data of year 3. In fold #3, we train

on the data from years 1-3 and test on the data gathered in year 4, etc.

Schema #2 is shown in Algorithm 2. In this schema we train the model on recent

historical data and test on ‘immediate’ future test data. Going back to the example in

26

Chapter 3. Methodology 3.8. Validation

Figure 3.1, in fold #1, we train the model on the data of year 1 and test the model on

the data of year 2. In fold #2, we train on the data of year 2 and test on the data of

year 3. In fold #3, we train on the data from year 3 and test on the data from year 4,

and so on.

Schema #3 is given in Algorithm 3. In this case, we always train on ‘recent’ historical

data and test on all subsequent future test data. Note that, the last fold of the Schema

#3 and #2 are the same. In the example shown in Figure 3.1, in fold #1, we train on

the data of year 1 and test on the data of years 2-10. In fold #2, we train on the data of

year 2 and test on the data of year 3-10. In fold #3, we train on the data of year 3 and

test on the data of years 4-10, etc.

Schema #4 is depicted in Algorithm 4. In this schema we accumulate both training

data and testing data. Note that, the last fold of schema #4 and #1 are the same. In

the example given in Figure 3.1, in fold #1, we train on the data of year 1 and test on

the data of years 2-10. In fold #2, we train on the data of years 1-2 and test on the data

of years 3-10. In fold #3, we train on the data from years 1-3 and test on the data from

years 4-10, and so on.

input : A list of unique year values (year list)
output: The training and testing set time intervals

t
0

 min(year list);
tf max(year list);
dt 1;

/* [or] closed interval */

/* (or) opened interval */

for i t
0

+ dt to tf by dt do
training set time interval [t

0

, i);
test set time interval [i, i+ dt);

end
Algorithm 1: Temporal Split: Schema 1

27

Chapter 3. Methodology 3.8. Validation

input : A list of unique year values (year list)
output: The training and testing set time intervals

t
0

 min(year list);
tf max(year list);
dt 1;

/* [or] closed interval */

/* (or) opened interval */

for i t
0

+ dt to tf by dt do
training set time interval [i� dt, i);
test set time interval [i, i+ dt);

end
Algorithm 2: Temporal Split: Schema 2

input : A list of unique year values (year list)
output: The training and testing set time intervals

t
0

 min(year list);
tf max(year list);
dt 1;

/* [or] closed interval */

/* (or) opened interval */

for i t
0

+ dt to tf by dt do
training set time interval [i� dt, i);
test set time interval [i, tf];

end
Algorithm 3: Temporal Split: Schema 3

28

Chapter 3. Methodology 3.8. Validation

Year:				1						2						3							4	…… 9			10

F1
F2
F3
F4
.	
.

Schema	#1
Year:				1						2						3							4	…… 9			10

F1
F2
F3
F4
.	
.

Schema	#2

Year:				1						2						3							4	…… 9			10

F1
F2
F3
F4
.	
.

Schema	#3
Year:				1						2						3							4	…… 9			10

F1
F2
F3
F4
.	
.

Schema	#4

Figure 3.1: Temporal Splitting: Schematic Diagram. The diagram represents how we
split a dataset containing defect reports from ten consecutive years into training and
testing sets. Time-interval-increment (dt) is set to 1 year. The green boxes represent the
training-set-time-interval and the grey boxes represent the testing-set-time-interval.

29

Chapter 3. Methodology 3.8. Validation

input : A list of unique year values (year list)
output: The training and testing set time intervals

t
0

 min(year list);
tf max(year list);
dt 1;

/* [or] closed interval */

/* (or) opened interval */

for i t
0

+ dt to tf by dt do
training set time interval [t

0

, i);
test set time interval [i, tf];

end
Algorithm 4: Temporal Split: Schema 4

30

Chapter 4

Evaluation

In this chapter, we apply our proposed solution to our research problem using the method-

ologies presented in the previous chapter. We start with discussing how we extract the

defect rediscovery data from the Bugzilla based defect tracking system of several open

source software projects in Section 4.1. We provide an analysis of the datasets focusing

on the defect rediscovery phenomena in Section 4.2. We present the results of our pro-

posed approach; and a discussion on how we apply our predictive models, and evaluate

them as well as the limits beyond which our models do not work in Section 4.3. We

conclude the chapter by discussing the threats to validity in Section 4.4.

4.1 Data Extraction

We mined bug repositories of four groups of open source software projects: Eclipse,

Gentoo, LibreO�ce, and KDE. We extract the defect rediscovery information from the

defect reports publicly available in these repositories. The final datasets contain in-

formation about approximately 1.3 million defects that have been reported in the last

15-18 years (depending on the project). Some of the resulting datasets are located at

http://doi.org/10.5281/zenodo.400614.

In addition, we mined the defect rediscovery information of a large-scale enterprise

software product. We extract the data from a defect database system of this software

manufacturer. This dataset contain information about defects that have been reported

between the year 2007 and 2015. We denote this software in the rest of the study as

31

Chapter 4. Evaluation 4.1. Data Extraction

ENT.

For each group of the open source software projects, the set of attributes that we

extracted from each defect report are described below.

• id: The unique integer identifier that identifies a report.

• product: The name of the software subsystem the report belongs to.

• component: The name of the component the report is associated with.

• reporter: The unique username of the person who opened the report.

• bug status: The current status of the report.

• resolution: The current resolution of the report.

• priority: It represents how quickly the defect described in the report should be

fixed.

• bug severity: It refers to the degree of impact the reported defect has on the

whole system.

• version: The version the defect was observed in.

• short desc: A short textual summary of the report.

• opendate: The date when the report was opened.

• dup list: The list of ids of duplicates of a given report; if the report does not have

any duplicates – the value is an empty string.

• root id: The id of the root vertex of the graph of rediscoveries, which typically

resembles the master report. If the report does not have any duplicates – the value

is an empty string. This is a derived attribute.

• disc id: The id of the oldest defect (i.e., the one that is opened first) in the graph

of rediscoveries. If the defect does not have any duplicates – the value is an empty

string. This is a derived attribute.

32

Chapter 4. Evaluation 4.1. Data Extraction

Data Extraction Procedure

We performed the following four extraction and transformation steps to obtain the at-

tributes described in Section 4.1.

Step 1: Retrieval of report ids. For each of the software projects we selected, we

mined its Bugzilla defect tracking system which numbers defect reports sequentially with

an integer id, with the first id set to 1.

Given the sequential nature of the data, we query a given Bugzilla engine for reports

opened within the last seven days (at the day of data gathering) and select the maximum

id value, denoted by I
max

returned by the engine. Thus, for a given engine the range of

reports ids is set to [1, I
max

].

Step 2: Data mining and extraction. The data were extracted using a custom-built

web scraper. The input to the scraper was the range of ids to be mined - identified in the

previous step. The scraper outputs all the attributes mentioned in Section 4.1 (except

the two derived attributes) in CSV format (one line per report), saving intermediate

results, as the extraction process takes several days to complete.

Step 3: Construction of the dataset. First, we aggregate all intermediate results

for a given project in a single CSV file.

Second, we eliminate rows from the CSV file for which a report either does not exist

or is not available. The former may happen because the report may get cancelled by

a user before submission or may be erased by a bug tracker administrator. The latter

may happen because we do not have su�cient permissions to access a given report. The

former case cannot bias our dataset, as the data does not exist. However, the latter case

may lead to bias, if the number of reports that we cannot access is large. We built a

script that computed the number of ids associated with each case (by analysing error

messages returned by the bug tracking engine). Details of our analysis are provided in

Table 4.1.

Step 4: Construction of derived attributes. In order to construct derived at-

tributes, we built a directed graph G linking id with its duplicates using information

stored in the dup list attribute. Going back to example given in Figure 1.2, report

33

Chapter 4. Evaluation 4.2. Dataset Analysis

#19274 has two duplicates linked to it (#23194 and #23196), as per the dup list at-

tribute. Thus, we will add to the G two edges: 19274! 23194 and 19274! 23196. We

repeat this process for each report in a given dataset. We then use Graphviz software [27]

to identify all ‘connected components’ (in the graph theory sense of the term) in the G.

The resulting connected components represent the graph of rediscoveries for each of the

original defects. An example of such connected component is given in Figure 1.2.

We then analyze each graph of rediscoveries (connected component) and identify the

root vertex (typically, this report is a master report) and the vertex associated with the

id with the oldest opendate. The former becomes root id value for each report associated

with a given graph of rediscoveries; the latter value becomes disc id. For example, in

case of Figure 1.2, the root id value for all the reports will be set to 6325 and disc id to

4671 (since, by design of the Bugzilla defect tracking system, the smaller the defect id

– the older the defect). Then, we merge the original dataset with the derived attributes

and store the resulting dataset in the CSV, SQL, and Neo4j formats.

4.2 Dataset Analysis

The summary statistics of the datasets are given in Table 4.1. The number of reports

that we gathered (column ‘Total accessible reports count’) ranges from ⇡ 13 thousands

for ENT to ⇡ 504 thousands for Eclipse. The reports were opened between years 1999

and 2017.

The total count of unique defect reports and reporters are illustrated in Figure 4.1.

The Y-axis in the barplot is in log scale. For example, in case of Eclipse there are

503, 935 unique defect reports reported by 46, 993 unique reporters. The Eclipse, KDE,

and Gentoo dataset have lower unique reporter to report ratio, whereas the ENT and

LibreO�ce dataset have much higher unique reporter to report ratio.

The distributions of the total number of reports (obtained by combining rediscovery

and original defect count, as discussed in Section 1.1.3) for a given failure are given in

Figure 4.2. The distributions are heavy-tailed as evident from the linear structure of the

data plotted on the log-log scale.

As discussed in Section 4.1, we could not access some of the reports. The percentage

of such reports (shown in column ‘Inaccessible reports count’) is small: 0.1% for Eclipse,

34

Chapter 4. Evaluation 4.2. Dataset Analysis

Eclipse ENT Gentoo KDE Libre

Project

To
ta

l c
ou

nt
 o

f u
ni

qu
e

de
fe

ct
 re

po
rts

 &
 re

po
rte

rs

5e
+0

3
1e

+0
4

2e
+0

4
5e

+0
4

1e
+0

5
2e

+0
5

5e
+0

5 503935

46993

5044

3345

402840

35409

365893

80720

50094

17552

defects
reporters

Figure 4.1: Unique defect reports and reporters count for each project. Note that y-axis
has log scale.

1 2 5 10 20 50 100 200 500

1
10

0
10

00
0

Total number of reports per failure

O
rig

in
al

 re
po

rts
 c

ou
nt

●

●

●

●

●
●

●
●

●
●

●●

●●●
●●

●●

●

●●

●

●

●

●

●

●

●
●
●

●●●●

●

●●● ●●

●

●● ● ● ● ●

●

Eclipse
KDE
Gentoo
Libre
ENT

Figure 4.2: Count of the total number or reports for a given failure vs. count of original
reports. If a given failure was reported once, then it means that it was never rediscovered;
reported twice – means that it was rediscovered once, and so on (see Section 1.1.3 for
details). For example, KDE dataset has 257420 reports that were never rediscovered (i.e.,
discovered once) and 15106 reports that were rediscovered once (i.e., discovered twice).

35

Chapter 4. Evaluation 4.2. Dataset Analysis

Table 4.1: Summary statistics.
Project

name

Total

accessible

reports

count

Inaccessible

reports

count

Rediscoveries

count

Distinct

disc id

count

Min

report

opendate

(YY-MM-

DD)

Max

report

opendate

(YY-MM-

DD)

Max

number of

rediscov-

eries

Distinct

products

count

Distinct

product-

components

count

Non-

rediscovered

reports

(% of

total)

Eclipse 503,935 560 52,499 31,811 01-10-10 17-02-07 128 232 1,486 83

KDE 365,893 4,818 82,359 26,114 99-01-21 17-02-13 405 584 2,054 70

Gentoo 402,840 205,014 50,082 28,333 02-01-04 17-01-31 324 15 168 81

Libre 50,094 55,881 8,718 4,192 10-08-03 17-02-13 35 12 43 74

ENT 13,112 0 8,068 2,120 07-06-11 15-10-02 159 1 185 22

1.3% for KDE and is moderate: 34% for Gentoo, 53% for LibreO�ce. In case of ENT

all reports were accessible.

To gather information about original discoveries and rediscoveries of reports, as dis-

cussed in Section 4.1, we analysed graphs of rediscoveries (similar to the one shown in

Figure 1.2). Such graphs can become fairly large: based on Table 4.1, the maximum

number of rediscoveries of an original report (per graph of rediscoveries) ranges from 35

for LibreO�ce to 405 for KDE.

The percentage of the original reports that were rediscovered at least once ranges

from 7% (28333/402840) for KDE to 16% (2120/13112) for ENT . The distributions of

the total number of reports (obtained by combining rediscovery and original defect count,

as discussed in Section 1.1.3) for a given failure are given in Figure 4.2. The distributions

are heavy-tailed as evident from the linear structure of the data plotted on the log-log

scale.

In Figure 4.3 and 4.4, we present the per year analysis. The data are current as of

February 2017, thus the dataset for year 2017 is incomplete, hence the “dip” in reports

for year 2017. By construction, zero observations for a given year are not shown.

The number of reports per year changes, as seen in Figure 4.3. Magnitude-wise,

the number of reports ranges from thousands for ENT to tens of thousands for Eclipse,

Gentoo, and KDE (with the exception of the first and last reporting year for each project).

Overall, percentage of reports that are not rediscovered ranges between 70% for KDE

and 83% for Eclipse. However, these values change from year to year, as shown in

Figure 4.4. This figure may suggest that for the last seven years percentage of non-

rediscovered reports grows up (albeit non-monotonically). For example, for defects

opened in 2016, the percentage of non-rediscovered defects ranges from 75% for KDE

to 92% for Eclipse (compare these numbers with the average values of 70% and 83%,

respectively).

36

Chapter 4. Evaluation 4.2. Dataset Analysis

2000 2005 2010 2015

1
10

10
0

10
00

0

Year in which reports are opened

C
ou

nt
 o

f r
ep

or
ts

 p
er

 y
ea

r

●

●

●
● ● ● ● ● ●

●

Eclipse
KDE
Gentoo
Libre
ENT

Figure 4.3: Per-year analysis: Number of reports per year.

However, in the future, users may encounter and report some of the defects discussed

in these non-rediscovered reports. This will lead to reduction of the number of non-

rediscovered reports opened in previous years. To confirm this conjecture, we plot the

distribution of time intervals between the opening dates of the original discovery and

the latest rediscovery, shown in Figure 4.5. The figure suggests that some reports get

rediscovered years after the original discovery.

Even for the graph of rediscoveries shown in Figure 1.2, the time interval between

open dates of the original report #4671 and its latest rediscovery #31201 was ⇡ 1.3 years.

The number of products per open source project ranges from 12 for LibreO�ce to 584

for KDE; the number of product-component tuples per project – from 43 for LibreO�ce

to 2054 for KDE. The percentage of reports that are not rediscovered per product-

component is given in Figure 4.6. For the open source the software projects, the median

percentage ranges between 84% for KDE to 96% for Eclipse. For the enterprise software

project, the median percentage is 31%. However, there are outliers with low percentage

of non-rediscovered defects, suggesting that di↵erent components may exhibit di↵erent

behaviour. Therefore, various product-components may be studied independently.

37

Chapter 4. Evaluation 4.2. Dataset Analysis

2000 2005 2010 2015

0
20

40
60

80
10

0

Year in which reports are opened

%
 o

f n
on
−r

ed
is

co
ve

re
d

re
po

rts

●

●

●

●
● ● ● ●

●

●

Eclipse
KDE
Gentoo
Libre
ENT

Figure 4.4: Per-year analysis: Percent of reports that have not been (yet) rediscovered.

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●

●
●

●

●●

●

●●●

●

●

●

●

●
●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●
●

●

●

●●

●

●

●

●

●
●●

●

●●
●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●●●
●

●

●

●●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●
●●
●
●●●●
●
●
●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●●
●
●

●

●

●
●
●

●

●

●
●
●

●

●

●●

●

●
●

●●
●●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●●

●●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●

●●
●
●
●
●●

●

●

●

●

●
●
●●
●●●●●

●●

●

●

●
●●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●●●
●
●

●

●

●

●

●●
●

●

●●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●●
●

●

●

●
●

●
●●
●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●

●
●

●

●

●
●

●●●●

●

●

●●

●

●
●

●

●●

●●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●●
●
●

●

●
●●
●●

●●●

●

●
●
●

●

●●
●
●
●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●

●●●

●

●
●
●
●
●
●

●

●

●
●

●
●
●

●

●

●

●

●

●
●●
●

●

●

●●

●●

●

●●

●

●
●
●

●

●●●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●●
●

●
●
●

●

●●●●●
●●
●

●
●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●●
●
●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●●
●●●

●●●

●●

●

●

●●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●
●
●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●●
●●

●
●

●
●
●
●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●
●●

●●
●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●●
●

●

●●
●

●
●

●

●
●
●●
●

●

●

●●

●●

●

●
●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●●

●●
●

●
●
●

●

●
●

●
●●●

●

●●●

●

●

●
●

●
●

●●

●●
●

●

●●●

●
●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●

●●
●

●●
●
●●
●

●

●

●

●
●

●●
●●
●●

●

●

●
●

●●
●

●

●
●

●

●
●●●●
●

●

●

●

●●

●●●

●

●

●

●

●

●
●
●

●

●●●
●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●●

●

●

●

●●

●
●
●

●

●

●
●

●
●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●
●

●●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●●
●●

●

●

●
●
●

●

●

●

●
●

●

●

●
●●
●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●●

●

●
●
●●●
●

●

●

●
●●
●
●

●
●
●

●

●

●
●●

●
●

●●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●●

●

●
●

●●

●

●
●●●●

●●●

●

●

●
●

●
●

●●●●
●
●
●

●
●

●
●

●
●

●
●

●●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●●
●
●

●

●

●
●
●
●
●
●
●
●

●

●

●

●●
●
●●●
●

●

●

●●●●
●

●

●
●

●●

●

●
●●●

●

●

●
●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●●●
●
●

●

●
●●
●

●●

●

●
●

●
●

●

●
●
●

●

●

●

●
●

●●●

●

●

●●

●

●●

●●

●

●
●●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●
●
●

●

●

●

●
●
●

●

●

●

●●
●●

●

●●
●

●
●●●
●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●
●

●

●
●●
●
●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●
●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●●
●

●

●
●●●

●
●●●

●

●

●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●●
●●

●●

●

●
●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●
●

●

●
●
●

●

●●

●

●
●

●

●

●

●●●

●●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●●
●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●●
●●
●

●
●
●●
●

●

●
●

●

●●●
●
●
●●●

●

●

●

●●

●

●
●●

●●●●●
●
●●●

●

●

●

●

●

●●

●

●●●

●

●
●●
●

●

●●●●

●

●

●●
●
●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●●

●

●
●●
●●
●

●

●

●●
●●●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●●
●

●●

●
●

●

●

●

●

●●

●

●●●

●

●
●

●
●

●●

●
●●

●●

●
●

●

●

●
●
●

●

●●

●

●●
●

●●●●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●●

●

●
●●●●●

●

●

●
●
●
●
●
●●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●

●●●●

●

●

●

●

●

●
●●●

●

●
●

●
●
●●

●●

●

●

●●●

●
●
●●●

●

●

●

●
●●

●●

●

●
●●
●

●
●

●

●

●

●

●●

●

●●●
●
●●

●

●
●
●

●

●
●

●
●

●

●●
●

●●
●

●●

●

●

●

●

●

●

●

●
●
●●
●
●
●
●
●

●

●

●

●

●

●
●●
●●
●●
●
●●●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●●
●
●

●

●
●
●

●

●

●

●

●

●
●
●
●

●●●●
●
●
●

●

●

●

●
●●●●●

●
●

●

●

●
●

●

●

●

●●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●●
●

●

●
●
●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●
●●●

●

●

●

●
●
●
●
●●

●

●

●
●
●

●

●●
●
●

●●

●●
●

●

●

●

●

●

●
●
●●

●

●●
●
●

●
●

●

●●

●
●
●
●

●●

●
●
●●

●

●●
●

●●

●
●

●●
●

●●

●

●

●

●

●●

●

●
●●●
●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●
●●

●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●●●
●●●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●●

●

●●

●
●

●●

●
●●

●

●

●
●
●
●
●

●●

●●
●

●●●
●

●
●
●

●

●●

●

●

●

●●

●

●●
●●

●
●●

●

●
●
●●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●
●

●

●●
●

●

●
●
●
●

●

●

●

●●
●

●
●●
●
●●

●

●●

●●●●
●

●●

●
●

●

●

●
●
●●
●
●
●
●

●

●

●

●

●

●
●●●
●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●
●
●

●
●●●

●

●

●
●
●
●●●
●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●●

●

●

●
●

●●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●
●●●●●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●
●●

●●

●

●

●
●

●

●●●●●●

●

●●●●

●

●

●

●

●
●

●
●●●
●

●

●

●
●

●
●●

●●

●
●

●
●●
●

●

●

●

●
●●

●

●
●●●
●

●
●

●●
●
●

●

●
●

●●

●

●●
●

●

●

●●
●
●
●
●

●

●

●

●

●

●

●
●●
●●

●●

●●●

●●●●

●●
●

●

●
●

●

●●●

●

●
●●●

●

●
●
●
●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●
●
●●●
●
●
●
●
●●

●

●

●

●

●

●
●

●

●
●●
●
●●●
●●
●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●●
●
●●

●

●
●●

●
●

●
●

●
●
●●●
●

●
●

●

●
●●●

●

●

●
●

●

●
●

●

●

●

●
●

●
●
●●

●

●
●●

●
●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●
●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●
●
●
●

●●

●

●

●

●

●

●●
●

●●
●●●●●●
●
●●●●●●
●
●●●

●

●
●
●●
●
●

●

●
●
●

●●
●●●●
●

●●
●

●●●●●●

●

●
●
●●●
●
●

●

●
●

●
●

●

●●
●
●●●

●

●●●●

●●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●
●
●

●

●●●●●
●

●

●

●
●

●

●
●

●
●

●●●

●

●
●

●●●

●●

●
●

●

●

●

●

●●
●
●●●

●

●
●

●

●●●

●

●

●●

●
●

●

●
●
●

●

●
●

●●

●

●●●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●●●●

●

●●
●
●

●●●

●

●
●
●●

●

●●

●

●●
●
●

●

●

●

●●
●●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●●
●
●

●
●●●●●
●●

●
●

●●

●

●●●●●

●

●●●●

●

●●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●●

●●

●

●

●

●●

●

●
●●

●

●●

●●
●●●●
●
●

●●

●

●

●
●
●
●

●●

●

●
●
●
●●
●

●
●

●

●●
●

●

●
●●●
●

●

●

●

●●●●●●

●●

●

●

●●
●
●

●
●

●

●

●
●
●
●

●
●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●●

●

●

●
●●

●
●
●

●
●●

●
●
●

●
●

●

●●●
●

●
●

●●

●

●

●

●●
●

●
●

●

●
●
●

●

●

●
●
●●
●

●

●

●●●
●

●●●
●

●

●
●

●●●●
●●

●

●●

●●

●

●

●●

●●

●

●●

●

●

●●●

●

●

●

●
●

●

●
●●

●

●

●●
●●

●

●

●●

●
●

●

●●
●
●

●

●

●

●

●●●●

●

●●

●●●●●

●

●

●

●
●

●
●●
●●
●●

●
●

●
●●

●
●
●●●●

●

●
●
●●

●

●

●
●●

●
●
●
●●●
●●
●
●

●

●●
●

●

●
●

●●
●●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●
●
●
●

●

●

●

●

●

●
●
●●
●●
●

●

●●
●●

●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●
●
●
●

●
●

●

●●

●●
●
●●●

●

●
●

●

●

●●
●

●

●

●

●●
●

●

●
●
●
●
●
●
●●
●●
●

●

●

●
●●●●

●●

●

●

●

●●●
●

●

●●
●

●●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●
●●

●

●
●●

●
●

●

●
●

●

●

●●
●●
●●●
●

●

●●
●

●

●

●
●

●
●●●●

●

●
●●
●
●●
●
●●
●

●

●
●
●
●●

●

●●●

●

●
●

●

●●

●
●

●
●
●

●

●●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●●
●●
●
●●●
●
●

●

●●
●●●

●

●
●●●●
●
●

●

●

●

●
●
●

●●

●●●
●●
●

●●

●●

●●
●
●
●

●
●

●

●

●
●

●●

●
●

●●●

●

●

●

●

●

●
●

●

●●●

●

●

●
●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●
●
●●●

●

●●

●●●●●
●
●

●
●

●
●
●
●

●

●
●●
●

●

●

●
●

●

●
●

●

●
●
●

●

●●
●

●●
●
●

●

●

●

●

●

●

●
●●
●
●●●

●

●●●
●
●

●

●
●

●

●●

●

●
●

●

●●

●●

●●●●
●
●
●
●

●●

●●
●
●●
●
●●●

●

●

●

●

●

●

●

●●●

●

●
●
●
●

●

●

●

●
●●

●

●

●●

●●

●
●●●
●

●

●

●

●

●

●
●
●
●●●

●

●●

●●

●

●
●

●

●
●●
●

●
●●●●●

●

●
●
●
●●
●

●

●●●
●
●●●●
●
●
●
●●

●

●

●

●

●

●
●
●
●●●●

●

●

●

●

●

●●●
●
●
●

●

●●●
●

●

●●

●

●
●●
●●

●
●
●

●

●
●
●
●

●
●

●

●
●●
●●●

●●

●

●

●
●●

●

●
●●●
●
●

●
●●●●●●
●

●

●●

●

●●●
●●
●
●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●●
●●●●
●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●
●●●

●

●
●

●

●●

●
●
●
●
●

●

●●

●●

●
●●●

●

●●

●

●
●
●●●●●

●

●

●

●
●

●
●

●●●
●

●

●

●

●●
●

●●

●
●
●
●
●

●

●

●
●
●●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●
●
●

●

●

●

●●

●●

●●●●●

●

●

●

●
●●
●●●

●

●
●
●

●

●
●

●

●

●
●
●●●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●
●●●●

●

●●●●
●

●

●

●●

●

●
●●
●●
●
●

●

●
●●

●

●

●
●●●

●

●●
●●●●●●
●

●

●

●
●●●

●

●●
●

●
●

●●●

●

●●
●●
●

●

●

●

●

●
●

●

●●

●
●●

●●
●
●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●
●

●

●

●

●●●●●
●
●

●●

●

●●

●

●
●

●●

●

●

●
●

●●
●
●●
●

●●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●●
●

●

●
●●
●
●●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●●
●
●●●

●
●
●●●●
●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●
●

●

●
●
●●
●●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●
●●

●●●
●

●

●●
●

●

●

●●●

●

●●●

●
●

●

●

●
●

●●

●

●
●
●

●

●●
●
●●●

●

●●
●
●●
●●

●

●

●

●
●●●

●●●
●

●●

●●

●

●

●

●

●●

●

●

●

●
●
●
●●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●●●●

●

●●●
●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●
●
●

●
●

●●

●
●

●●●●

●

●

●
●
●
●●

●
●

●

●

●
●●

●

●●

●

●

●

●
●
●
●

●

●
●

●
●
●

●
●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●
●
●
●●

●

●

●●

●

●
●

●
●
●

●

●
●●

●

●

●
●
●

●

●

●

●●
●

●
●

●●

●
●

●
●

●
●
●●●●
●●
●

●

●
●

●●

●●
●

●

●

●●●

●

●
●
●●
●●

●

●●
●●
●

●

●

●●

●

●

●●
●●

●

●●
●

●

●

●●

●

●●

●

●

●

●●●

●●

●

●

●●

●
●

●

●
●●●●

●

●●
●
●

●

●●
●●●
●●●

●
●

●
●●

●

●
●●
●
●
●

●

●

●●

●

●

●

●
●

●

●

●
●●●
●
●
●

●

●
●●
●
●
●
●
●

●

●

●

●

●●

●●
●

●

●
●●

●

●
●●
●

●●

●
●

●●●
●
●

●●

●

●
●
●●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●
●
●
●●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●●

●

●

●

●●

●●●
●

●

●

●

●

●●

●
●
●
●

●

●●

●
●

●●

●●●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●
●●
●●
●
●

●

●●

●
●
●●

●

●

●

●
●

●

●●
●
●●

●

●●●
●●●

●

●●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●●●

●●

●●

●

●

●
●●●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●

●●

●●

●

●

●●
●
●●

●

●
●●
●●

●●
●

●

●

●

●

●●●●
●
●
●
●●

●
●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●

●
●
●

●

●

●

●●

●
●

●

●

●●●●●●

●

●

●

●●●
●

●

●●
●●●●
●●●

●

●

●

●

●

●●
●●
●
●

●

●
●

●

●●
●●
●

●

●

●
●
●
●

●

●
●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●
●
●
●●

●●
●●

●

●●

●

●●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●
●
●
●
●
●

●

●

●
●
●●

●

●

●●

●
●
●

●

●

●
●●

●

●

●

●

●●●

●

●●●●

●
●
●●
●

●

●

●

●

●

●

●●
●●
●
●

●●

●
●●●
●
●

●

●

●

●●
●●

●

●●

●

●●

●

●
●●
●
●
●
●●

●

●●●
●●

●

●
●●●●●

●
●
●
●

●

●●
●
●●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●
●●
●

●
●

●

●●●

●
●

●

●●
●●●●
●
●●●
●

●

●
●●●
●●

●●

●
●●
●
●

●●

●●
●

●●
●
●

●
●

●

●
●
●

●
●
●●●
●●

●
●

●●
●
●
●

●

●●

●

●●
●

●

●

●●

●

●
●●

●

●
●

●
●

●

●
●

●

●
●●

●

●
●

●●●●●

●●
●

●
●

●
●●●
●

●

●●●

●
●
●

●●
●
●

●

●

●
●
●
●
●

●

●

●

●●

●●
●

●

●●●

●

●
●

●

●

●

●

●
●

●●

●
●
●

●
●

●

●

●

●●
●●

●

●

●

●

●●●

●

●
●
●

●

●

●

●●●

●●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●
●

●●

●

●●

●
●

●●
●
●
●

●

●

●

●

●

●
●

●

●

●
●
●

●●
●
●●
●
●
●

●

●
●

●

●

●

●●

●

●
●
●

●

●
●●
●●

●●

●●●●●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●
●●●
●●
●

●

●

●●●

●●

●

●
●

●

●
●
●
●
●

●
●●●

●

●

●
●

●●●

●
●

●
●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●●●

●

●

●
●
●

●

●
●
●
●

●

●●
●
●●

●

●

●

●

●

●●●●●

●●
●

●●

●

●

●

●

●

●●
●
●

●
●●

●

●

●

●
●

●●

●

●

●

●●
●
●●
●

●

●

●●●●

●
●

●●
●
●
●
●
●

●

●

●

●
●
●

●

●
●
●

●
●
●
●
●
●●
●

●

●●●●
●
●●●●

●
●
●●

●

●

●

●
●●
●●

●

●
●

●

●●●

●

●●

●

●

●●
●
●
●●
●
●

●

●

●

●

●

●

●
●
●
●

●●
●
●

●

●●

●●
●
●

●●●●
●●●●
●

●

●

●

●●●
●
●●●●●
●
●●●●●
●

●

●
●
●●●
●●
●
●●●●●
●
●●

●
●

●

●

●

●

●●●●

●●●
●

●●●●●●●

●

●

●

●●●●
●

●

●

●

●
●●
●

●
●●
●
●

●

●

●
●
●
●●
●

●

●●●●●●
●●
●

●

●

●●●

●●

●

●

●●
●
●●
●
●●●●
●●
●
●
●
●●
●

●
●●●
●●

●

●
●
●

●
●

●

●●
●●
●●●●●
●●●●
●●

●

●●

●

●

●●

●
●
●●●●

●
●●●
●●●●●
●
●
●
●●●
●●

●
●●●●●
●
●

●
●
●●

●

●●●●●●●●●

●

●

●

●●●●
●●●●
●●●●
●
●●●●

●

●●●●●

●

●●
●●

●

●
●●●●

●

●●●

●

●

●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●
●●●
●
●

●

●

●

●●

●

●
●

●

●

●●

●
●
●

●

●
●

●●

●

●●

●
●
●

●
●

●

●

●●
●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●
●
●●

●

●
●

●
●
●●
●
●

●
●
●

●

●

●

●
●

●
●●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●●

●

●
●
●

●

●

●
●●

●
●

●

●

●●

●
●●

●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●
●
●
●●●
●

●

●

●●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●
●●
●●
●

●

●

●
●●
●

●●●
●
●

●●

●
●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●
●

●

●
●
●

●

●

●

●

●●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●●
●
●●●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●
●●●

●

●

●
●
●●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●
●

●

●

●●●
●
●
●
●
●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●
●

●

●●
●
●
●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●
●
●●
●

●
●

●
●
●●

●●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●
●
●●
●
●

●

●●
●
●
●
●

●

●

●●
●

●

●
●●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●●●●
●

●

●

●

●●

●

●

●

●

●●

●
●●
●

●

●●
●

●
●
●

●
●

●●
●
●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●
●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●●
●●●
●

●

●

●

●

●

●
●●
●●

●

●

●
●
●

●●

●●●

●

●

●
●●
●

●

●

●●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●
●
●●

●

●

●

●●●

●

●

●
●●
●

●●
●

●

●
●
●●

●●●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●
●●
●

●

●●●

●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●●

●

●●
●
●
●

●

●●●

●

●

●

●●●

●

●

●

●●

●
●●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●
●
●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●
●

●●●
●
●

●

●●
●

●●

●●

●
●●

●
●

●

●

●

●

●
●

●
●

●
●
●●●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●
●
●
●

●
●●

●
●

●
●
●
●

●

●

●

●

●●
●●
●
●
●●●

●

●

●

●

●
●●
●●
●

●

●

●
●

●

●●●

●

●●

●

●
●

●●

●●

●

●●

●

●
●

●

●
●

●
●

●●
●●

●

●
●
●●
●●

●
●
●

●

●

●

●

●
●

●

●

●●

●●
●●

●
●●●

●

●

●

●

●

●●
●

●

●

●●●

●
●

●

●

●

●

●●

●

●
●

●
●
●

●

●
●●
●
●
●

●

●●

●

●●
●●

●
●

●

●

●

●

●●●

●●●

●●

●●●●●
●

●

●

●●

●

●

●

●

●
●●●●
●

●
●

●
●

●

●
●
●

●

●●●
●

●●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●●

●

●

●●
●

●
●

●●

●

●●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●
●
●
●

●●

●●

●

●

●

●
●
●

●

●●
●●
●

●
●
●●
●
●●●●●●

●

●
●
●

●

●
●
●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●●
●
●

●

●
●

●

●

●

●●●

●●

●●
●●
●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●

●
●

●●●

●

●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●●
●

●●

●

●

●●●

●
●

●●●
●●●

●
●

●

●●
●
●

●●
●●
●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●●●●●

●

●

●
●

●
●

●
●●●●

●

●
●

●

●
●
●
●●
●
●
●
●●

●

●
●
●
●

●

●
●

●●●

●
●
●●

●

●

●

●

●

●●●●
●

●●

●

●
●●●

●

●
●
●
●
●

●●

●

●
●

●
●●

●

●

●

●

●

●●

●

●
●

●
●●

●●●●

●●
●

●●
●●
●

●

●
●

●●

●

●
●

●

●

●●

●
●●●●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●
●●

●

●
●
●
●
●●

●

●●

●

●
●

●

●
●

●
●
●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●
●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●
●
●●●

●
●●

●
●
●

●

●

●

●●

●●

●

●●●
●
●●
●
●

●

●

●

●●●
●
●●●●●●
●
●
●
●●●
●

●

●
●●

●

●
●
●

●

●●

●

●
●●●
●
●
●
●●

●

●

●
●

●●
●●●●

●

●

●

●●
●
●●
●●
●
●
●●

●
●

●

●●

●●

●

●●

●
●●

●

●●●
●

●

●

●

●

●●

●

●

●●

●
●
●

●
●
●
●

●

●

●
●

●
●

●
●●

●●

●
●

●●

●

●
●
●
●
●

●

●

●

●

●
●
●●

●

●

●

●●

●●

●

●●
●

●

●●●

●

●
●
●●

●

●

●

●
●

●
●●

●

●
●
●●●

●●●

●

●●

●

●
●

●●

●

●

●

●●

●●●●

●●●

●

●
●
●●
●
●●

●

●
●
●

●
●
●●
●●
●●
●
●

●
●

●
●

●

●
●
●

●

●

●
●
●
●
●
●
●

●
●

●

●●
●
●●

●

●●
●

●

●

●
●

●●
●
●
●
●
●
●●
●●
●
●●
●●●●

●

●●
●

●

●

●
●

●

●
●
●
●

●

●

●
●

●

●●●●●

●

●

●
●
●●

●

●

●

●

●

●

●

●●●●

●●●

●

●
●

●●

●
●

●
●
●●

●

●
●●

●

●
●●
●

●

●

●●
●
●
●
●●
●●●
●●●

●●
●
●
●●
●

●●

●●
●
●
●

●●
●

●
●●
●
●
●
●●●

●
●
●
●●
●
●
●

●

●
●
●
●
●

●
●
●●●
●●●

●

●

●
●●
●●●
●●●

●●
●●●
●●●

●

●●
●●●
●
●
●●
●
●●
●●

●

●●●

●

●

●●
●●●●●●●●
●●

●
●●●●●●
●●●●●●

●

●●●●●●●●●●●●
●
●

●

●
●
●●

●

●●
●

●

●

●

●●●

●●
●●●
●●●
●
●
●
●●
●

Eclipse ENT Gentoo KDE Libre

0
5

10
15

Project

Ti
m

e
in

te
rv

al
 (Y

ea
rs

)

Figure 4.5: Distributions of time intervals between the original discovery and the latest
rediscovery for a given graph of rediscoveries.

38

Chapter 4. Evaluation 4.3. Discussion

●
●●
●

●

●

●

●

●●
●●

●

●

●

●
●
●

●●●●
●
●●

●

●●●●●●

●

●●●●
●

●●●
●

●

●
●
●●

●

●●

●●●
●

●

●

●
●

●

●

●●●

●
●

●●

●●●

●

●

●

●

●

●

●

●●

Eclipse ENT Gentoo KDE Libre

0
20

40
60

80
10

0

Project

N
on
−r

ed
is

co
ve

re
d

re
po

rts
 (%

)

Figure 4.6: Distribution of non-rediscovered reports per product-component.

4.3 Discussion

In this section, we discuss how we apply our proposed approach to reduce defect redis-

covery on the datasets that we gathered and the results that we achieve in Section 4.3.1.

We also discuss how we evaluated the models’ performance in terms of the schemas

(Section 4.3.2), algorithms (Section 4.3.3), and the failed cases (Section 4.3.4).

4.3.1 Rediscovery Prediction

In this section, we provide details about the application of RS algorithms (presented in

Section 3.1).

We measure the sparsity of the datasets by calculating the percentage of non-zero

elements in the rating matrix. Non-zero elements refer to ratings in recommender system

terminology (which becomes discovery/rediscovery in our context). This is essentially

the positive implicit user feedback (discussed in Section 3.2). The percentage of non-zero

39

Chapter 4. Evaluation 4.3. Discussion

elements in the rating matrix for each project, denoted by ↵, is computed as:

↵ =
|rui = 1|
|U |⇥ |D| ⇥ 100, (4.1)

where |rui = 1| is the number of reported (re)discoveries, |U | is the number of unique

users, and |D| is the number of unique defects. The values of ↵ for each project are

presented in Table 4.2 as Pre-split ↵. The numbers suggests that we do have a very

sparse rating matrix, as discussed in Section 3.6. Therefore, we apply the ‘partitioning by

product-component ’ technique described in Section 3.6.1 in order to reduce the sparsity

of the rating matrix. The resultant median ↵ values across product-components are

presented in Table 4.2 as Post-split ↵. These ↵ values suggests, our partitioning technique

produces much denser rating matrix.

The distribution of the percentage of non-zero elements in the rating matrix of each

subset of data partitioned by product-component for each project is given in Figure 4.8.

The median value range between ⇡ 1% and ⇡ 3%, which are significantly higher values

than in the case of the original matrix (depicted in Table 4.2). The distributions suggest

that in case of the enterprise software the split by product-component yields the maxi-

mum median non-zero elements in each split. In case of the open source projects, KDE

has the highest median non-zero elements when we split by the product-components.

After partitioning the data for each project by product-components, we divide the

resulting data into several folds of temporal training and testing sets based on the four

time-split schema as discussed in Section 3.8. The number of folds depends on the

time range (in years) of the software project and the time-interval-increment (dt). We

experiment the time-interval-increment by setting dt = 1, 2, or 3 years and comparing

the prediction accuracy of the model with respect to dt. We find that setting dt = 1 year

yields good results for the temporal splitting schema, as shwon in Figure 4.7.

We run the Defect Recommender System for each project, for each selected product-

component, for each temporal splitting schema, for each fold of the schema, and for each

Top-N value. We store all configuration attributes in a log file along with the accuracy

metrics (discussed in Section 3.7). We calculate the accuracy metrics by evaluating the

predicted defect rediscoveries by DRS with the actual data. Essentially, we follow, the

given�x experimental protocol introduced by Breese et al. [17]. As per this protocol, for

each user, out of n items, we give the recommender x items and withhold n�x items from

40

Chapter 4. Evaluation 4.3. Discussion

the recommender. Then, we evaluate the predictive performance of the recommender only

on the withhold items.

for project in {Eclipse, ENT,Gentoo,KDE,Libre} do
for product component in all product components of project do

for schema in {schema1, schema2, schema3, schema4} do
for temporal fold = 1 to number of folds do

get train data and test data of temporal fold ;
for N in {1, 3, 5, 10, 20} do

run POPULAR with train data and test data;
run UBCF with train data and test data;
run RANDOM with train data and test data;
run NBAYES with train data and test data;
get best performer among
{POPULAR,UBCF,RANDOM,NBAY ES} ;

end
end

end
end

end
Algorithm 5: Selection of the DRS-best performing algorithm for each case

Lastly, using the accuracy metrics, we select the DRS-best performing algorithm for

each case. By case, we mean each time we split the data into train and test set by

product-component, temporal-splitting schema, and fold as depicted by Algorithm 5.

We use the best performing algorithm’s predictive accuracy to evaluate di↵erent schemas

and recommender algorithms in the following sections.

4.3.2 Which Schema is the Best One?

The accuracy of the models varies across the temporal splitting schemas (we describe

the temporal splitting in Section 3.8). We illustrate this variation using Figure 4.9.

The figure, essentially, represents ROC curve plot, where we change the value of N (in

Top�N) to adjust the ‘threshold’.

Each data point in the ROC plot represents the best performing algorithm’s mean

FPR and mean TPR values for a given Top-N , across all the product-components and

41

Chapter 4. Evaluation 4.3. Discussion

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time−interval−increment (dt) in years

M
ea

n
re

ca
ll

(T
PR

)

1 2 3

Eclipse
KDE
Gentoo
Libre
ENT

Figure 4.7: Mean TPR while changing dt=1 to dt=3, by 1 year.

Table 4.2: Percentage of non-zero elements (↵) for each project without splitting and
median ↵ after splitting by product-components

Project Pre-split ↵ Post-split ↵
Eclipse 0.0021 0.4456
Gentoo 0.0028 0.1536
KDE 0.0012 0.7205
Libre 0.0057 0.4292
ENT 0.0777 2.9759

42

Chapter 4. Evaluation 4.3. Discussion

●●●●
●
●

●
●
●

●

●●●

●

●

●

●

●

●●●●

●●

●

●
●●●●

●●●●

●●

●
●

●●●

●●●

●●●●

●●
●●
●●

●
●
●●
●
●●

●

●
●●●

●●●●

●●

●

●

●

●●●

●

●
●

●

●
●

●
●
●

●

●

●

●
●●

●

●

●

●●●

●

●●

●

●

●●●●

●

eclipse ENT gentoo kde libre

0
2

4
6

8
10

12

Project

N
on
−z

er
o

el
em

en
ts

 (%
)

Figure 4.8: Distribution of non-zero elements in the per component analysis.

all the folds of the given temporal split schema. The data points for the best performing

algorithm is ordered: the left-most data point has N = 1, the next one – N = 3, then

N = 5, 10, until we reach N = 20. The vertical and horizontal error bars show one

standard deviation of the mean TPR and FPR.

Both FPR and TPR increase monotonically with the increase of N . However, TPR

grows faster than FPR. This can be explained by the fact that increasing the number

of defects returned gives more chances to get the correct result. For example, in the case

of N = 20, the model needs to return at most 1 defect that was actually (re)discovered

out of 20, in order for this outcome be deemed as true positive.

For Eclipse dataset, according to Figure 4.9, schema #2 and #3 have overall higher

TPR and at the same time lower FPR, consistently for all values of Top-N . So for Eclipse,

when we train on 1 year of data and test on 1 or more years of data, DRS yields the

best results. We reach maximum mean TPR ⇡ 60% and FPR ⇡ 37% with a standard

deviation of 0.41 and 0.25 respectively for Top-20 recommendations.

For Gentoo dataset, schema #2 and #3 are again performing better in terms of TPR

and FPR. In case of schema #2, we reach maximum mean TPR ⇡ 60% and FPR ⇡ 20%

with a standard deviation of 0.43 and 0.19 respectively for Top-20 recommendations. In

43

Chapter 4. Evaluation 4.3. Discussion

the case of schema #3, we reach maximum mean TPR ⇡ 66% and FPR ⇡ 20% with a

standard deviation of 0.36 and 0.18 respectively.

For ENT dataset, although all four schema have high TPR, the FPR is also high.

In contrast to the open source projects, where we observe a more significant di↵erence

between some of the schemas. Across the four schemas, the maximum mean TPR ranges

between ⇡ 90% and ⇡ 100%, at the same time with a maximum mean FPR that ranges

between ⇡ 60% and ⇡ 100%. The maximum TPR and FPR standard deviation ranges

between 0.01 and 0.21 and 0.03 and 0.29 respectively. However, for ENT schema #1 and

#4 gives better TPR to FPR ratio. So, for the enterprise software, accumulating training

data from the previous years yield better performance. In the case of ENT dataset, we

achieve higher TPR at the expense of FPR (which also increases).

For KDE dataset, similar to the cases of Eclipse and Gentoo, schema #2 and #3

have overall higher TPR and at the same time lower FPR in comparison with schema

#1 and #4. When we train on 1 year of data and test on 1 or more years of data, DRS

yeilds the best results. In case of schema #2 and #3 the maximum mean TPR ranges

between ⇡ 80% and ⇡ 83% with standard deviation between 0.28 and 0.29, whereas the

mean FPR ranges between ⇡ 54% and ⇡ 60% with standard deviation of 0.34.

For LibreO�ce dataset, considering all the values of Top-N, schema #2 performs best

with a maximum mean TPR ⇡ 60% and FPR ⇡ 46% with a standard deviation of 0.49

and 0.37 respectively.

As we can see from Figure 4.9, the decision to pick to the best temporal splitting

schema depends on the size and type of the project. For example, in case of large scale

open source project schema #2 and #3 yields the better results, whereas in case of en-

terprise software, accumulating rediscovery data from previous years slightly improves

the accuracy. Therefore, it would be better to leave it to an analyst to select the appro-

priate temporal splitting schema for a particular dataset. The decision will depend on

the business goals and the comfort of organization with di↵erent TPR and FPR values.

4.3.3 Which algorithm is the Best One?

We begin our evaluation of DRS by applying Random-, Popular-, User-, and N-Bayes-

based algorithms (discussed in Sections 3.1) on the partitioned data for each software

project. The performance of the top performing algorithms of DRS are shown in Fig-

44

Chapter 4. Evaluation 4.3. Discussion

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eclipse schema1

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eclipse schema2

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eclipse schema3

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eclipse schema4

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gentoo schema1

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gentoo schema2

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gentoo schema3

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gentoo schema4

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ENT schema1

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ENT schema2

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ENT schema3

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ENT schema4

FPR
TP

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

kde schema1

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

kde schema2

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

kde schema3

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

kde schema4

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

libre schema1

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

libre schema2

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

libre schema3

FPR

TP
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

libre schema4

FPR

TP
R

Figure 4.9: ROC plots for each temporal-splitting-schema and for each dataset. The
thresholds of the curve are the values of Top-N = 1,3,5,10,20. The Y and X axis represent
the mean FPR and TPR respectively. Error bars represent one standard deviation spread
from either side of the mean.

45

Chapter 4. Evaluation 4.3. Discussion

ure 4.10.

In case of the user-based approach, given the nature of our data, we use Jaccard Sim-

ilarity (Eq. 3.4) as our measure of similarity between the users. A series of experiments

were conducted to identify the ideal size (k) of the neighbourhood as per [11]. We varied

the value of k from 3 to 35 incrementing by 2 and k = 25 gave us the best results. Thus,

k = 25 was chosen as the neighbourhood size.

To asses performance of the algorithms, we examined their performance for all possible

splits and across all components for a given dataset and schema; examples are shown in

Figure 4.10. The figure shows that the performance of the algorithm may change with

N . Moreover, the shape of the curves fluctuates from dataset to dataset and schema

to schema, however, the Popular- and User- based are the top performer in most times

than the other two algorithms. To aggregate the performance data, Figure 4.10 shows

the percentage of the winning cases across all components, where each of the algorithms

performs best for a given dataset, schema, and N . Performance is evaluated using F-

measure (Eq. 3.13).

Table 4.3 shows the summary of the top-performing algorithms combining all temporal

splitting schemas. The Popular- and User- based algorithm are the two top performing

algorithms. For example, in case of Eclipse, POPULAR is the top-performer in ⇡ 79%

of the cases and UBCF is the top-performer in ⇡ 12% of the cases. For each algorithm,

we show the breakdown of the actual number of cases per schema in separate tables.

Tables 4.9, 4.10, 4.11, and 4.12 show the actual number of top-performing cases per

schema for each algorithm, for each dataset, and all values of Top-N .

We conjecture that the potential reason for the Popular-based algorithm to be the

best performer is the rediscovery phenomenon. As shown in Figure 4.2, there exist

defects in each software project that have been rediscovered hundreds of times. Thus,

the frequentist reasoning prevails in such cases. The User-based approach is the second

best one, which suggests that there exists some similarity between the users of a software

product. However, the number of such cases is not high, because we do not supply

the model with enough information about the users. This is due the fact that 75%

of the users1 reported, at the most, one or two defects in the lifetime of the software

1Note that when we say ‘users’ we mean a fraction of the customer base that actually reported a
problem. Obviously, we do not have information about customers who use the product without ever
encountering a problem.

46

Chapter 4. Evaluation 4.3. Discussion

0
20

40
60

80
10

0

eclipse schema1

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ● ●

●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

gentoo schema1

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es
1 5 10 15 20

● ● ● ●
●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

ENT schema1

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ● ●

●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

kde schema1

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

● ● ● ● ●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

libre schema1

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
●

●
●

●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

eclipse schema2

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●

● ● ●
●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

gentoo schema2

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

● ●
●

●
●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

ENT schema2

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es
1 5 10 15 20

●
● ●

●
●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

kde schema2

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

● ● ● ●
●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

libre schema2

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
●

●

● ●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

eclipse schema3

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ●

● ●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

gentoo schema3

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ●

●
●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

ENT schema3

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ●

●
●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

kde schema3

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ● ●

●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

libre schema3

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●

●

● ● ●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

eclipse schema4

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ● ● ●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

gentoo schema4

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
● ● ●

●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

ENT schema4

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
●

● ●

●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

kde schema4

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

● ● ● ● ●

●POPULAR UBCF N−BAYES RANDOM

0
20

40
60

80
10

0

libre schema4

N

%
 o

f B
es

t−
Pe

rfo
rm

tin
g

C
as

es

1 5 10 15 20

●
●

●
●

●

●POPULAR UBCF N−BAYES RANDOM

Figure 4.10: Best Performing Algorithm for each schema and dataset

projects under study. As a result, we do not have su�cient information about users’

characteristics.

4.3.4 What drives models’ failure?

After we complete the evaluation of top-performing schemas and algorithms, we examine

the cases where DRS can not predict. By case, we mean a unique split in terms of

product-component, temporal splitting schema, and fold. In this section, we present our

analysis of the factors leading to models’ failure.

47

Chapter 4. Evaluation 4.3. Discussion

Table 4.3: Summary of the best-performing algorithms (in %) incorporating all schemas
N-BAYES POPULAR RANDOM UBCF

Eclipse 3.71 79.37 5.12 11.80
Gentoo 0.67 89.13 1.74 8.46

ENT 2.44 79.56 7.89 10.11
KDE 1.34 82.06 5.56 11.05
Libre 0.85 91.06 3.83 4.26

Table 4.4: Confusion Matrix of the Random Forest Classifier
Predicted as,

can-not-predict can-predict

Actual,
can-not-predict 1302 42
can-predict 95 318

As we run DRS on the partitioned datasets (unique splits), we store the characteristics

of the input data structure (the rating matrix) in a log file for further analysis of the

models’ performance. Essentially, we have two input rating matrix, one for the training

and the other for testing. The attributes that we keep track of are listed in Table 4.5. If

the models fail to predict a single defect rediscovery (True-Positive), we assign the case

to the class: can-not-predict, and can-predict otherwise. We show the frequency of cases

belonging to each class in Table 4.8.

Then, we merge all cases and in order to identify the important attributes, we train

a Random Forest classifier using the attributes mentioned in Table 4.5. We use the

implementation of the classifier from randomForest package in R with a configuration

of 100 trees [50]. We randomly split 70% of the cases into training set and 30% data

to test. The overall accuracy of the classifier on the test set is ⇡ 92%. We present the

predictive performance on the test set in a confusion matrix in Table 4.4:

The Random Forest classifier creates multiple decision trees with a di↵erent combina-

tion of a random subset of variables. The classifier takes into account the vote of each tree

while making a classification. The finally predicted class is obtained by aggregating the

predictions from all trees. Random Forest classifier can estimate the importance of the

attributes used. The attributes that have more predictive power are likely to influence

more. This helps us to identify the important factors leading to models’ failure.

To identify the most influential factors that drive models’ failure, we use Random

48

Chapter 4. Evaluation 4.3. Discussion

Table 4.5: List of factors potentially influencing models’ performance
Attribute Description
tr users Number of unique users in training set
tr defects Number of unique defects in training set
tr ratings Number of unique ratings in training set
tst users Number of unique users in testing set
tst defects Number of unique defects in testing set
tst ratings Number of unique ratings in testing set
present tr present tst Number of defects rediscovered by both train and test users
present tr absent tst Number of defects rediscovered by only training users
absent tr present tst Number of defects rediscovered by only testing users
class Two classes: whether model can-predict or can-not-predict

Forest’s variable importance measure [28]. The coe�cient that we use is called Mean

Decrease in Gini. It measures the e↵ect of each variable in the homogeneity of the

decision node. Every time a variable is used to partition the tree into children, the

di↵erence in Gini coe�cient between the child node and the parent node is calculated.

A predictor variable with a higher decrease in Gini indicates that it has more influence

in partitioning the data into classes.

We present the importance of the factors in terms of the gini coe�cient in Fig-

ure 4.11. We can see that the tst ratings, the tst users, and present tr present tst are

the three most important factors in terms of predictive power. The tst ratings and the

tst users correspond to the number of unique rediscoveries and users in the testing set

respectively. The present tr present tst represents the number of common rediscoveries

in both training and testings set .

Table 4.6: Statistical Analysis of the three most important factors. The table shows
means of the attributes plus-minus standard deviation (s.d.).

Attribute Can-predict Can-not-predict
(mean ± s.d.) (mean ± s.d.)

tst users 59.36 ± 75.1 8.8 ± 12.07
tst ratings 63.96 ± 82.33 8.83 ± 12.1
present tr present tst 19.42 ± 17.86 4.19 ± 3.28

To verify our findings, we again train a di↵erent classifier. We use the Naive-Bayes

classifier with a 10-fold validation scheme using the three most important factors returned

49

Chapter 4. Evaluation 4.3. Discussion

present_tr_absent_tst

tst_defects

tr_defects

absent_tr_present_tst

tr_ratings

present_tr_present_tst

tst_users

tst_ratings

0 50 100 150 200 250 300 350

MeanDecreaseGini

Figure 4.11: Most influential factors as per Random Forest classifier

Table 4.7: Confusion Matrix of the Naive Bayes Classifier
Predicted as,

can-not-predict can-predict

Actual,
can-not-predict 4326 164
can-predict 580 785

by Random-Forest. We get overall accuracy of ⇡ 87% with the Naive-Bayes. The

confusion matrix is shown in Table 4.7.

We compare the statistical measures (namely, mean and standard deviation) of the

three most important factors against each class. We present this analysis in Table 4.6.

According to the analysis, we find that the model belongs to can-not-predict class, if we

do not have su�cient data about defect rediscovery. For example, compare the number

of unique users in the test set (tst users) for the can-not-predict class (⇡ 9 ± 12) with

the ones for the can-predict class (⇡ 59 ± 75). Similar picture holds for the number of

unique rating in testing set tst ratings (⇡ 64 ± 82 vs. ⇡ 9 ± 12) and the number of

defects rediscovered by both train and test present tr present tst (⇡ 19±18 vs. ⇡ 4±3).

50

Chapter 4. Evaluation 4.4. Threats to Validity

Table 4.8: Frequency of the two class-attributes for each dataset
Project Can-not-predict can-predict
KDE 2453 554

Eclipse 1015 410
ENT 411 194

Gentoo 458 160
Libre 153 47

Therefore, the larger is the number of users, the higher is the number of rediscoveries

(i.e., the less sparse the matrix is), and the more rediscoveries of the same defect are

there between train and test set – the better the performance of the models.

4.4 Threats to Validity

In this section we discuss threats to validity, classified as per [87, 84].

Internal Validity

We do not have access to a number of reports, which may bias our dataset (as discussed

in Section 4.2). However, given that the percentage of such reports is small: 0.1% for

Eclipse, 1.3% for KDE and is moderate: 34% for Gentoo, 53% for LibreO�ce, the dataset

should not be a↵ected significantly.

In addition, some of the reports that are currently non-rediscovered may be rediscov-

ered in the future (as discussed in Section 4.2). This has to be taken into consideration

during data analysis. In the case of ENT, all the reports were available.

Customers may under-report defect rediscoveries, skewing the distribution of redis-

coveries (shown in Figure 4.2). Two main types of defects are not reported to the service

desk: 1) defects with low severity with obvious workarounds; and 2) rediscoveries of

known defects that were not fixed last time. Under-reporting may a↵ect quality esti-

mates of the software, but it will not a↵ect resource allocation of in-house service and

maintenance team. As far as they are concerned, a defect that is not reported does not

exist. These situations are a nuisance to the clients, but the clients typically find solu-

tions in a minimum amount of time. Thus, from practical perspective, absence of these

data can be ignored.

51

Chapter 4. Evaluation 4.4. Threats to Validity

Construct Validity

In order to reduce the threat to validity related to human errors, we automated the

process of data gathering and analysis, reducing the risk of human error. Python, R, and

SQL-based scripts were created to extract, transform, and analyse the data.

Conclusion Validity

In order to prevent over-fitting of the models, we have used four di↵erent temporal

splitting techniques. We pick dt = 1 year which ensures we have the maximum number

of folds for each temporal splitting schema.

External Validity

As described by Wieringa and Daneva [83], software engineering studies su↵er from the

variability of the real world, and the generalisation problem cannot be solved completely.

As they indicate, to build a theory we need to generalise to a theoretical population and

have adequate knowledge of the architectural similarity relation that defines the theo-

retical population. In this study, even though we have used the data from five di↵erent

software projects (include both open source and enterprise) to build the DRS, we can not

generalise our results to all software projects. Our goal of this study was not building a

new theory, rather we wanted to achieve a deeper understating of how established ma-

chine learning techniques perform in the rediscovery domain. Our approach on reducing

defect rediscoveries can be applied to other software products with well-designed and

controlled experiments.

52

Chapter 4. Evaluation 4.4. Threats to Validity

Table 4.9: Best Algorithms for Schema-1 for each dataset and for each Top-N value
dataset TopN N-BAYES POPULAR RANDOM UBCF
Eclipse 1 0 106 0 4
Eclipse 3 3 93 4 10
Eclipse 5 6 86 4 14
Eclipse 10 8 82 6 14
Eclipse 20 4 78 7 21
ENT 1 0 40 2 3
ENT 3 1 35 2 7
ENT 5 2 30 5 8
ENT 10 0 33 6 6
ENT 20 0 38 3 4
Gentoo 1 0 35 0 1
Gentoo 3 0 32 2 2
Gentoo 5 0 34 0 2
Gentoo 10 0 34 0 2
Gentoo 20 0 31 2 3
KDE 1 0 125 2 12
KDE 3 0 117 8 14
KDE 5 0 118 5 16
KDE 10 0 116 7 16
KDE 20 2 123 4 10
LibreO�ce 1 1 13 0 1
LibreO�ce 3 0 13 1 1
LibreO�ce 5 0 14 0 1
LibreO�ce 10 0 14 0 1
LibreO�ce 20 0 13 0 2

53

Chapter 4. Evaluation 4.4. Threats to Validity

Table 4.10: Best Algorithms for Schema-2 for each dataset and for each Top-N value
dataset TopN N-BAYES POPULAR RANDOM UBCF
Eclipse 1 0 59 1 2
Eclipse 3 4 54 2 2
Eclipse 5 4 49 3 6
Eclipse 10 5 42 5 10
Eclipse 20 4 40 6 12
ENT 1 1 28 1 2
ENT 3 2 23 4 3
ENT 5 1 25 5 1
ENT 10 0 28 2 2
ENT 20 0 32 0 0
Gentoo 1 1 22 0 3
Gentoo 3 0 22 1 3
Gentoo 5 0 20 0 6
Gentoo 10 0 20 1 5
Gentoo 20 0 21 0 5
KDE 1 3 80 3 11
KDE 3 1 76 9 11
KDE 5 2 78 6 11
KDE 10 3 78 4 12
KDE 20 1 82 4 10
LibreO�ce 1 0 5 0 1
LibreO�ce 3 0 6 0 0
LibreO�ce 5 0 5 0 1
LibreO�ce 10 0 6 0 0
LibreO�ce 20 0 5 1 0

54

Chapter 4. Evaluation 4.4. Threats to Validity

Table 4.11: Best Algorithms for Schema-3 for each dataset and for each Top-N value
dataset TopN N-BAYES POPULAR RANDOM UBCF
Eclipse 1 2 69 0 6
Eclipse 3 2 59 8 8
Eclipse 5 4 51 9 13
Eclipse 10 8 43 9 17
Eclipse 20 5 56 4 12
ENT 1 2 34 3 2
ENT 3 1 30 6 4
ENT 5 1 31 5 4
ENT 10 0 35 5 1
ENT 20 0 40 1 0
Gentoo 1 2 29 0 5
Gentoo 3 1 30 2 3
Gentoo 5 1 30 0 5
Gentoo 10 0 31 2 3
Gentoo 20 0 31 2 3
KDE 1 6 98 4 17
KDE 3 2 96 9 18
KDE 5 1 90 12 22
KDE 10 1 91 14 19
KDE 20 1 107 10 7
LibreO�ce 1 0 9 0 0
LibreO�ce 3 0 8 1 0
LibreO�ce 5 0 8 1 0
LibreO�ce 10 0 8 1 0
LibreO�ce 20 0 8 1 0

55

Chapter 4. Evaluation 4.4. Threats to Validity

Table 4.12: Best Algorithms for Schema-4 for each dataset and for each Top-N value
dataset TopN N-BAYES POPULAR RANDOM UBCF
Eclipse 1 0 155 1 5
Eclipse 3 1 142 2 16
Eclipse 5 5 128 10 18
Eclipse 10 5 117 12 27
Eclipse 20 6 118 12 25
ENT 1 2 47 3 10
ENT 3 1 47 4 10
ENT 5 4 45 3 10
ENT 10 3 45 6 8
ENT 20 1 50 5 6
Gentoo 1 0 48 0 3
Gentoo 3 0 48 1 2
Gentoo 5 0 49 0 2
Gentoo 10 0 49 0 2
Gentoo 20 0 48 0 3
KDE 1 0 165 8 20
KDE 3 3 163 6 21
KDE 5 4 154 15 20
KDE 10 4 156 13 20
KDE 20 3 160 11 19
LibreO�ce 1 1 15 0 1
LibreO�ce 3 0 17 0 0
LibreO�ce 5 0 15 1 1
LibreO�ce 10 0 15 2 0
LibreO�ce 20 0 17 0 0

56

Chapter 5

Conclusions and Future Work

In this study, we present defect rediscovery datasets collected from several groups of open

source projects (Eclipse, Gentoo, LibreO�ce, and KDE) as well as an enterprise software

project (ENT), aimed at capturing information associated with duplicate / rediscovered

defects. We describe the schema of the datasets, extraction and transformation process,

and present analysis of the datasets. Then, we build a predictive model leveraging com-

mon recommender system algorithms in order to predict defect rediscoveries based on

the extracted data.

We apply recommender systems to reduce the number of defect rediscoveries by the

users in large scale open source and enterprise software projects. We identified that for

large scale software projects, the defect rediscovery data is highly sparse, that is only

a small number of defects out of thousands of defects are rediscovered frequently by

the users of the software product. In order to provide accurate recommendations about

defect rediscoveries to the users, the sparsity must be reduced. We introduce a product-

component based data partitioning technique to reduce the sparsity in defect rediscovery

datasets.

We investigate several temporal splitting schema to build our predictive models. The

performance of the temporal splitting varies. Generally, in the case of open source soft-

ware projects, training the model on one year of rediscovery data and testing on one or

more years of data yields the best results. In the case of the enterprise software project,

accumulating rediscovery data from previous years, typically result in higher accuracy

while predicting future defect rediscoveries.

57

Chapter 5. Conclusions and Future Work

We describe the advantages of our data partitioning techniques. However, they have

limitations. Namely, the product-components with limited defect rediscovery data and

the time-windows with a small number of defect rediscoveries may result in inability to

recommend defects for a given client.

Our primary research question, RQ1 was: How can we proactively predict defects that

a client will rediscover in the future? To address this question we applied recommender

system techniques to predict defects rediscovered by a given client. The recommender

system achieved a maximum TPR between 60% and 92% with a maximum FPR between

20% and 60% for each project, while predicting Top-20 rediscovered defects. To achieve

this result, we applied four temporal splitting techniques in combination with partitioning

the data by product-components.

Our secondary research questions, RQ2 and RQ3 were, How prevalent is the defect

rediscovery phenomenon in commercial and open source software projects? and What

are the factors that influence the accuracy of the predictive models?. To address RQ2, we

analyzed the inter-relations between rediscovered defects and connected all rediscoveries

related to the same discovery. We also presented a statistical analysis on the defect

rediscovery data of five di↵erent software projects. We found the rediscovery phenomenon

to be widespread among the projects.

To address RQ3, we applied two classifiers to identify the important factors leading

to models’ failure. We found that lack of information about users and rediscoveries in

the test data, as well as the lack of overlap of rediscoveries in train and test data are the

main reasons that cause the predictive model to fail.

We believe that our approach for predicting defect rediscoveries is of interest to prac-

titioners, as they may use this approach to proactively identify a subset of defects that

a particular client may encounter in the future. It is also of interest to researchers, as it

may help in understanding phenomenon of rediscovery data, leading to creation of new

models for predicting rediscoveries.

Moreover, we believe that the defect rediscovery datasets that we extracted, will

aid researchers and practitioners in gathering insight into usage of duplicate reports in

various areas of software engineering.

58

Chapter 5. Conclusions and Future Work 5.1. Future Work

5.1 Future Work

Going forward, we would like to extend our work to include data from other software

projects as well as experiment with other recommender algorithms and data partitioning

techniques.

We consider this study as a starting point in the application of recommender systems

to reduce defect rediscovery. Generally, recommender systems are widely used in other

domains and real world use cases. We plan to build more sophisticated recommender

systems (including context-aware and content-based ones) leveraging the insights we got

from this study. For example, defect reports not labelled as duplicates but with high

textual similarity may get rediscovered by similar clients in the future.

The defect rediscovery phenomena should be investigated more. As we build the

graph of rediscoveries for each connected set of duplicate defects, we notice how dupli-

cate/rediscovered defects are interrelated with each other across di↵erent products and

components. Unraveling the unique characteristics of the duplicate/rediscovered defects

would be another line of our future research.

Finally, we look forward to leveraging our proposed approach to above-mentioned

and relevant research problems including defect report prioritization and defect report

optimization.

59

Appendices

60

Appendix A

Reducing the Sparsity using

Clustering

As we discuss in Secition 3.6.1 that there exists several techniques to reduce the sparsity

of the rating matrix, we explore some of these techniques in combination with partioning

by product-components. However, we exclude them from our analysis because these

techniques did not yield superior results than the partitioning by product-components.

Moreover, we use the geo-location based feature for this purpose which is available only

in the ENT dataset. Therefore, we share our findings on the clustering based sparsity

reduction techniques on the ENT dataset here in the appendix.

A.1 Clustering

As mentioned above, clustering based techniques reduce the sparsity of the dataset by

forming groups of defect reports using unsupervised learning approaches. In order to

group defect reports into clusters, we have investigated the location attribute in the

ENT dataset that is associated with each defect report. The location attribute was

chosen because the behaviours of the users may vary from country to country [79].

For example, people from some countries may be not very keen on reporting defects

or they may not use the software extensively, resulting in rediscovering less number of

defects. On the contrary, users from some other locations may always report defect as

soon as they find or they may use the software more extensively, resulting in rediscovering

61

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

higher number of defects in the software.

Our location data set contains country-level location information with 72 unique

countries (geo-locations). To understand the properties of each geo-location, at first we

have extracted a set of derived attributes for each country listed below:

1. Average number of defects per customer,

2. Average number of rediscoveries per defect,

3. Rediscovery window,

4. Average defect arrival rate.

Attributes 1 and 2 were found useful in operational profiling of customers [59]. A

high average number of defects per customer suggests that users from such locations

use the software extensively and a high average number of rediscoveries per defect in a

location suggests that large number of users are using the product in a similar manner.

To compute Attribute 3, rediscovery window, for each country we calculated the number

of days between the first and last defect, as per [22], indirectly providing information on

the length of usage of this product in a given country. Attribute 4, the average defect

arrival rate, is computed as the number of defects reported per day for a given country.

This attribute is linked to product quality [41], hence its inclusion in the set.

We use these four attributes to perform unsupervised learning using two techniques:

agglomerative hierarchical clustering (AHC) and self-organising map (SOM), discussed

in Sections A.1.1 and A.1.2, respectively.

A.1.1 Agglomerative Hierarchical Clustering

The AHC or bottom-up hierarchical clustering technique groups geo-locations by merging

pairs of locations first (based on a measure of distance) and then greedily pairing the

resulting clusters pair-wise, as we move up the hierarchy [56]. The resulting hierarchy of

clusters is called dendrogram. We used Euclidean Distance to compute distance between

each pair of objects; in order to determine distance between clusters we used average

linkage criterion. Built-in R function hclust [64] was used to obtain the dendrogram.

We used Gap Statistic method [78] to identify optimal number of clusters, implemented

in clustGap R function from the cluster package [55]. In our case optimal number of

62

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

−0.05

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10
Number of clusters k

G
ap

 s
ta

tis
tic

 (k
)

Optimal number of clusters

Figure A.1: Identification of optimal number of clusters for AHC using gap statistic.

clusters is two. Hence, we cut the dendrogram (Figure A.2) at a height that splits the

tree into two clusters, which we will further discuss in Section A.1.3.

In order to identify optimum number of clusters, we used the Gap Statistic method

[78]. The gap statistic measures the total intra-cluster di↵erences for di↵erent values of k

with corresponding expected values under reference distribution of the data. For several

values of k (the number of clusters), the intra-cluster di↵erence or variation between

the actual data and the reference data is computed. The value of k that returns the

maximum variation or gap statistic is the optimum number of clusters. Based on the

clustGap R function from the cluster package[55]

We used the clustGap R function from the cluster package[55] to identify optimal

number of clusters using the gap statistic automatically. Figure A.1 illustrates that in

our data, for k = 2 we get the maximum gap statistic.

63

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

14 72 35 49 6 19 27 69 64 32 37
2

11 22
34

8 45 12 17 16 56 4 29 3 9 1 26 10 67 5 71 13 41 7 23 3
0

21 33 18 31
25 36 48 42 44 2
0 28 38 40 39 46 1
5 51 50 70 43 47 5
9

24 58 54 57
60

61 62
68

66 63 53 65 52 55

0
50

0
10

00

hclust (*, "average")
Country ID

H
ei

gh
t

Figure A.2: Cluster Dendrogram and Tree Pruning for AHC.illustrates the dendrogram
obtained by AHC. The red dotted line shows the height at which the tree pruning was
done. The two orange rectangular boxes represent the two clusters, obtained after tree
pruning.

64

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

Figure A.3: Illustrates the self-organising map in 5 ⇥ 5 grid. Each circle represents one
of the 25 neurons of the grid. The diagram is called a Fan-Diagram. Each fan represents
the magnitude of each attribute in the weight vector.

65

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

1

2

3

4

6

7

Figure A.4: Counts plot. Shows the number countries associated with each neuron on
the self-organising map in 5⇥ 5 grid. Grey colour represents zero countries.

66

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

A.1.2 Self-Organising Map (SOM)

The Kohonen self-organising map is a special type of Artificial Neural Network [43] .

It can visualise high dimensional data in a low-dimensional space; typically the space

is reduced to a two-dimensional map. By inspecting the map, we can understand the

underlying characteristics of the geo-locations and identify similar ones.

The building block of SOM is a unit or a neuron. The number of neurons to be used

must be decided before training. There are weights associated with each of the neurons.

The number of weights are equal to the number of attributes in the input space. The

neurons are typically represented in a rectangular grid system. At first, random weights

are assigned to the neurons in SOM. During the training process, in each iteration all

the data points are presented to the SOM. The similarity in weights between a data

point and all the neurons is computed and the most similar neuron becomes the winning

neuron. The weights of the winning neuron is adjusted in each iteration as the neuron

becomes more and more similar to the input data. The weights of the other neurons in

the neighbourhood of the winning neuron are also adjusted. This process is repeated for

a fixed number of iterations.

The output of the SOM are clustered data points (i.e., every data point will be

associated with a certain neuron in the grid) [21]. By design, the data points in adjacent

neurons of the grid are similar to each other. Visual inspection of the resulting grid

(map) allows to identify the clusters.

We trained SOM implemented in kohonen [82] R package on our 4-dimensional geo-

location data. To construct the SOM, as discussed above, we need to choose the number

of neurons and the number of iterations. To choose the number of the neurons, we used

the following heuristic formula: � ⇡ 5⇥�0.54321 [6], where � is the number of units in the

map and � is the number of observations in the data set. We had 72 observations and

according to this heuristic our map size should be 25. The neurons were configured in a

5⇥ 5 grid. The maximum number of iterations was set to 100; the algorithm converged

after ⇡ 45 iterations. In Figure A.5, we can see that in the case of our dataset the

algorithm converges after ⇡ 45 iterations. The resulting visual inspection of the data

suggested to aggregate data from four neurons into one cluster. The analysis of the data

associated with this cluster is given in Section A.1.3.

These clusters can be identified by visual inspection of the map.

67

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

0 20 40 60 80 100

5
10

15

Training progress

Iteration

M
ea

n
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t

Figure A.5: SOM Training.

68

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

The learning rate decreases during the training and the map converges, which means

that the neighbourhood size around the best matching unit decreases with each iteration

until the neighbourhood is only the best matching unit [43].

To choose the size of the grid we have used the following heuristic formula, munits ⇡
5 ⇥ dlen0.54321 [6]. Where munits is the number of units in the map and dlen is the

number of observations in the data set. We had 72 observations and according to this

heuristic our map size should be 25.

A.1.3 Results

We partition the dataset, reducing sparsity of the rating matrix, using clustering tech-

niques (shown in Sections A.1.1 and A.1.2) and apply RS algorithms to the resulting

clusters in Sections A.1.3 and A.1.3 . Lastly, we further reduce the sparsity by parti-

tioning the data per product-component and applying the RS algorithms to the resulting

subsets of data.

Clustering – AHC

We first cluster the complete dataset (grouped by country as discussed in Section A.1)

using AHC (details of the algorithm are provided in Section A.1.1). Figure A.2 shows the

resulting dendrogram generated by the AHC. The dendrogram was split into two clusters

(using the gap statistic approach described in Section A.1.1). The resulting clusters are

marked using orange boxes in Figure A.2.

Each cluster has ⇡ 50% of the countries associated with it. However, even though

the right cluster on Figure A.2 has ⇡ 50% of the countries associated with, ⇡ 99% of the

defect reports originated from these countries. Therefore, we use the defect reports from

this cluster for our experiments.

Clustering – SOM

In this section we cluster the complete dataset using SOM (details of the algorithm are

shown in Section A.1.2). Upon training on the complete dataset, SOM returned 5⇥5 grid
of neurons with each of the 72 countries associated with a particular neuron. Figure A.4

69

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

show the number of countries associated with each neutron. The number of countries

per neuron ranges from 0 to 7.

Each neuron in the SOM has a weight vector (one weight value per each of the

four attributes discussed in Section A.1). Figure A.3 visualises these weights using fan-

diagrams. Each fan represents the magnitude of each attribute in the weight vector.

For example, the bottom-left neuron in Figure A.3 contains countries with the highest

average number of defects per user, average number of rediscoveries per defect, rediscovery

window, and average defect arrival rate.

Inspection of the fan diagram helps to uncover some patterns. Note that by design of

SOM (see [43]), countries in adjacent neutrons of the grid possess some similarities. In

particular, four neurons at the bottom left corner of the grid (the bottom left neuron and

three other neurons surrounding it) possess interesting characteristics: the magnitude

of the weights for all the attributes is relatively higher in this region of the grid, in

comparison with other regions.

Although, 19 countries out of the total 72 countries are mapped to the four neurons

mentioned above, ⇡ 94% of the defect reports came from these 19 countries. The other

21 out of 25 neurons contain 53 out of 72 countries, with ⇡ 6% of the defect reports

coming from these. Therefore, we apply the DRS to the subset of data reported from

these 19 countries. The percentage of non-zero elements in the rating matrix for this

subset of data is 0.08%, which is higher than 0.071% of the full matrix. Thus, as in

the case of AHC described in Section A.1.3, we expect that performance of DRS should

increase (in comparison with the performance of the DRS on the complete dataset).

Per product-component

We partitioned the dataset by product-component in combination with the two clustering

based approaches mentioned above. We select 28 out of 185 components, covering ⇡ 80%

of defect reports.

Essentially, we took the complete dataset, filtered defects associated with 28 compo-

nents, and split the filtered dataset by component. We then applied four DRS algorithms

to each of the 28 subsets of data and gathered the summary statistics. We then repeated

this process twice: first, replacing the complete dataset with ‘cluster 1’ generated by

AHC, and second, replacing the complete dataset with the cluster of data identified

70

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

by SOM. In this section we will refer to the datasets originated from complete dataset

as Complete-based, from AHC ‘cluster 1’ as AHC-based, and from the SOM cluster as

SOM-based.

To assess usefulness of clustering techniques, we “collapse” distribution of TPR and

FPR per component, by computing means and 95% asymmetric confidence interval1 (CI)

of FPR and TPR data for each dataset and N . Results are given in Figure A.6. AHC

dataset has consistently2 higher mean TPR values while maintaining similar or lower

mean FPR rates. Analysis of confidence intervals suggests that AHC-based approach

outperforms the other two for N  5; SOM-based approach prevails for N > 5 .

For example, in the case when N = 3, TPR’s 95% CI for AHC-based approach ranges

between 0.05 and 0.48, with the mean of 0.20; FPR’s – between 0.01 and 0.08, with the

mean of 0.4. In the case when N = 20, TPR’s 95% CI for SOM-based approach ranges

between 0.26 and 0.88, with the mean of 0.53; FPR – between 0.09 and 0.54, with the

mean of 0.25.

1Computed based on 0.025 and 0.975 empirical quantiles.
2 The only exception is N = 20, where SOM TPR value is higher than AHC TPR values by 0.01;

however, this increase comes at expense of FPR, which is also higher for SOM by 0.01.

71

Chapter A. Reducing the Sparsity using Clustering A.1. Clustering

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

FPR

TP
R

1

3
5

10
15

20

● Complete
AHC
SOM

Figure A.6: Performance of the best algorithms for three datasets. Each data point
represents mean FPR and TPR values for all 28 components for a given Top-N . Values
of N are shown above the lines. Dotted lines represent 95% confidence intervals of FPR
and TPR for each of the data points.

72

Appendix B

Data Extractions Scripts

A prototype tool to extract rediscovery data from Bugzilla-based defect report tracking

systems.

B.1 Web Scraper

1 import u r l l i b 2

2 import pandas as pd

3 import sys

4 import time

5 import os

6 from WebScraperUtil import command l ine opt ions

7 from bs4 import Beaut i fu lSoup

8 from r e t r y i n g import r e t r y

9

10

11 c l a s s ExtractionParams :

12 ' ' '
13 This c l a s s d e f i n e s d e f au l t e x t r a c t i on parameters .

14 Use command l ine opt ions to ove r r i d e the con s t ruc to r .

15 ' ' '
16

17 de f i n i t (s e l f) :

18 s e l f . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , ' bug s ta tus

' , ' r e s o l u t i o n ' , ' p r i o r i t y ' , ' bug s ev e r i t y ' , ' ve r s i on ' , ' s ho r t d e s c '

73

Chapter B. Data Extractions Scripts B.1. Web Scraper

, ' opendate ' , ' dup id ' , ' dup l i s t ']
19 s e l f . bug l ookup ur l p r e = ' https : // bugs . e c l i p s e . org /bugs/ bu g l i s t .

c g i ? bug id= '
20 s e l f . bug l ookup ur l po s t = '&co lumn l i s t=product%2Ccomponent%2

Creporter%2Copendate%2Cpr i o r i t y%2Cbug id%2Cbug sever i ty%2

Cvers ion%2Cre so lu t i on%2Cbug status%2Cshort desc&query based on

=&query format=advanced '
21 s e l f . b u g p r o f i l e u r l = ' https : // bugs . e c l i p s e . org /bugs/show bug . c g i ?

id= '
22 s e l f . ou t f i l ename = ' output/ e c l i p s e / '+s t r (time . s t r f t ime ('%c ')) + '

e c l i p s e d e f e c t r e d i s c o v e r y . csv '
23 s e l f . f i l e i n p u t d i r = ' input / e c l i p s e '
24

25

26 de f r e t r y i f e x c e p t i o n (except ion) :

27 ' ' ' Retry http reque s t i f except ion occurs . ' ' '
28 pr in t ' r e t r y i n g : ' + s t r (except ion)

29 r e turn i s i n s t a n c e (except ion , Exception)

30

31

32 @retry (r e t r y on ex c ep t i on=r e t r y i f e x c e p t i o n , wait random min=5000 ,

wait random max=20000)

33 de f s t a r t h t t p r e q u e s t (u r l) :

34 ' ' ' Send http reque s t . ' ' '
35 re sponse = u r l l i b 2 . ur lopen (u r l)

36 r e turn re sponse

37

38

39 de f get bug metadata (bug id , l i s t o f a t t r i b u t e s , params) :

40 ' ' '
41 Extracts bug metadata from Bugz i l l a .

42 : param bug id : an i n t bug id

43 : param l i s t o f a t t r i b u t e s : a l i s t o f a t t r i b u t e s from the a v a i l a b l e

a t t r i b u t e s

44 : param params : an ob j e c t o f the ExtractionParams c l a s s

45 : r e turn : a d i c t i ona ry conta in ing a t t r i b u t e : va lue as key : va lue pa i r s

46 ' ' '
47 bug l i s t h tm l = s t a r t h t t p r e q u e s t (params . bug l ookup ur l p r e + s t r (

bug id) + params . bug l ookup ur l po s t)

74

Chapter B. Data Extractions Scripts B.1. Web Scraper

48 bug l i s t s o up = Beaut i fu lSoup (bug l i s t h tm l , ' html . pa r s e r ')
49

50 a t t r i b u t e s = {}
51 a t t r i b u t e s [l i s t o f a t t r i b u t e s [0]] = bug id

52

53 f o r i in range (1 , l en (l i s t o f a t t r i b u t e s)) :

54

55 i f l i s t o f a t t r i b u t e s [i] == ' dup id ' :
56 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = bug id

57

58 e l i f l i s t o f a t t r i b u t e s [i] == ' dup l i s t ' :
59 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = None

60

61 e l i f l i s t o f a t t r i b u t e s [i] == ' opendate ' :
62

63 t ry :

64 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = s t r (bu g l i s t s o up . f i nd (

' td ' , { ' c l a s s ' : ' bz opendate column ' }) . content s [0]) .
r s t r i p ()

65

66 except Exception , e :

67 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = 'NA '
68

69 e l i f l i s t o f a t t r i b u t e s [i] == ' s ho r t d e s c ' :
70

71 t ry :

72 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = s t r (

73 bug l i s t s o up . f i nd (' td ' , { ' c l a s s ' : '
bz shor t desc co lumn ' }) . f i nd (' a ') . content s [0]) .
r s t r i p ()

74

75 except Exception , e :

76 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = 'NA '
77 e l s e :

78 t ry :

79 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = s t r (bu g l i s t s o up . f i nd (

' td ' , { ' c l a s s ' : ' bz '+l i s t o f a t t r i b u t e s [i]+ ' column ' })
. f i nd (' span ') . content s [0]) . r s t r i p ()

80 except Exception , e :

75

Chapter B. Data Extractions Scripts B.1. Web Scraper

81 a t t r i b u t e s [l i s t o f a t t r i b u t e s [i]] = 'NA '
82

83 r e turn a t t r i b u t e s

84

85

86 de f g e t dup id s (s t r ing hav ing dups , d u p l i s t) :

87 ' ' '
88 From the s t r i n g having the dups form the Bugz i l l a web page , ex t r a c t

each dup as int , and updates the d up l i s t o f the bug .

89 : param s t r i ng hav ing dups : a s t r i n g conta in ing a l l dups f o r a g iven bug

90 : param dup l i s t : a l i s t i n t dup id s

91 : r e turn : updated dup l i s t

92 ' ' '
93 f o r dup in s t r i ng hav ing dups . f i n dA l l (' a ') :
94

95 va l = (dup . content s [0])

96

97 t ry :

98 i n t (va l)

99

100 except ValueError :

101 va l = s t r (dup [' hr e f ']) . p a r t i t i o n ('= ') [2]
102

103 dup l i s t . append (va l)

104 r e turn dup l i s t

105

106

107 de f wr i te row (bug metadata , tmp l i s t s , l i s t o f a t t r i b u t e s) :

108 ' ' '
109 Writes a s i n g l e entry /row in in te rmed ia t e temporary l i s t s f o r a g iven

bug .

110 : param bug metadata : a d i c t i ona ry conta in ing a l l ext rac teded a t t r i b u t e s

to be wr i t t en

111 : param tmp l i s t s : a temporary l i s t o f l i s t s

112 : param l i s t o f a t t r i b u t e s : a l i s t o f a t t r i b u t e s used in ex t r a c t i on

113 : r e turn : updated l i s t o f l i s t s (e s s e n t i a l l y added one item to each item

in each l i s t)

114 ' ' '
115 f o r in xrange (l en (l i s t o f a t t r i b u t e s)) :

76

Chapter B. Data Extractions Scripts B.1. Web Scraper

116 tmp l i s t s [] . append (bug metadata [l i s t o f a t t r i b u t e s []])

117 r e turn tmp l i s t s

118

119

120 de f w r i t e c s v (l i s t o f a t t r i b u t e s , tmp l i s t s , params) :

121 ' ' '
122 Writes the a t t r i b u t e s to an ac tua l output f i l e .

123 : param l i s t o f a t t r i b u t e s : a l i s t o f a t t r i b u t e s used in ex t r a c t i on

124 : param tmp l i s t s : a temporary l i s t o f l i s t s

125 : param params : an ob j e c t o f the ExtractionParams c l a s s

126 : r e turn : none

127 ' ' '
128 bug df = pd . DataFrame (columns=l i s t o f a t t r i b u t e s)

129

130 f o r c o l s in xrange (l en (l i s t o f a t t r i b u t e s)) :

131 bug df [l i s t o f a t t r i b u t e s [c o l s]] = tmp l i s t s [c o l s]

132

133 f i l e n ame c s v = params . ou t f i l ename

134 bug df . t o c sv (f i l e name c sv , encoding= ' utf�8 ')
135

136

137

138 de f c r e a t e (n , c on s t ruc to r = l i s t) :

139 ' ' ' Creates temporary l i s t o f l i s t s . ' ' '
140 f o r in xrange (n) :

141 y i e l d con s t ruc to r ()

142

143

144 de f r e a d i n p u t f i l e (f i l e i n p u t d i r) :

145 ' ' 'Read bug i d s from input f i l e . . See Github wik i f o r more

i n s t r u c t i o n s . ' ' '
146 f o r f i l e in os . l i s t d i r (f i l e i n p u t d i r) :

147 i f f i l e . endswith (' . htm ') :
148 f i l e name = f i l e i n p u t d i r + ' / ' + f i l e

149 r e turn open (f i l e name , ' r ')
150

151

152 de f ex t r a c t da ta (params) :

77

Chapter B. Data Extractions Scripts B.1. Web Scraper

153 ' ' ' I n t i a t e s data ex t r a c t i on with ex t r a c t i on params when an input bug id

f i l e i s supp l i ed . ' ' '
154 l i s t o f a t t r i b u t e s = params . a t t r s

155 tmp l i s t s = l i s t (c r e a t e (l en (l i s t o f a t t r i b u t e s)))

156

157 h tm l f i l e = r e a d i n p u t f i l e (params . f i l e i n p u t d i r)

158 source code = h tm l f i l e . read ()

159

160 soup = Beaut i fu lSoup (source code , ' html . pa r s e r ')
161 dupe tab le = soup . f i nd (' t ab l e ' , { ' id ' : ' dup l i c a t e s t a b l e ' })
162

163 f o r row in dupe tab le . f i n dA l l (' t r ') :
164

165 f o r c o l in row . f i n dA l l (' td ' , { ' c l a s s ' : ' id ' }) :
166 bug id = in t (c o l . f i nd (' a ') . content s [0])
167

168 pr in t ' ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\ nExtract ing Dups o f : ' + s t r

(bug id) + ' \n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ '
169 bug metadata = get bug metadata (bug id , l i s t o f a t t r i b u t e s ,

params)

170

171 bug p ro f i l e h tm l = s t a r t h t t p r e q u e s t (params . b u g p r o f i l e u r l +

s t r (bug id))

172

173 bug p r o f i l e s oup = Beaut i fu lSoup (bug pro f i l e h tm l , ' html . pa r s e r

')
174 dup l i s t = []

175

176 i f (bug p r o f i l e s oup . f i nd (' span ' , { ' id ' : ' dup l i c a t e s ' })) i s not

None :

177 dup l i s t = ge t dup id s ((bug p r o f i l e s oup . f i nd (' span ' , { ' id '
: ' dup l i c a t e s ' })) , d u p l i s t = [])

178

179 bug metadata [' dup l i s t '] = dup l i s t

180 tmp l i s t s = wr i te row (bug metadata , tmp l i s t s ,

l i s t o f a t t r i b u t e s)

181

182 f o r i in d up l i s t :

183 pr in t ' Extract ing Dup #: ' + s t r (d up l i s t . index (i)+1)

78

Chapter B. Data Extractions Scripts B.1. Web Scraper

184 bug metadata = get bug metadata (i , l i s t o f a t t r i b u t e s ,

params)

185 bug metadata [' dup id '] = bug id

186 bug metadata [' dup l i s t '] = None

187 tmp l i s t s = wr i te row (bug metadata , tmp l i s t s ,

l i s t o f a t t r i b u t e s)

188

189 wr i t e c s v (l i s t o f a t t r i b u t e s , tmp l i s t s , params)

190

191

192 de f c r e a t e l i s t o f b u g s t o b e e x t r a c t e d (s t a r t i n g i d , end ing id , params) :

193 ' ' ' Def ines the ran f e o f bug i d s to be ext rac t ed . ' ' '
194 l i s t o f b u g s = range (s t a r t i n g i d , end ing id+1)

195 r e turn l i s t o f b u g s

196

197

198 de f e x t r a c t d a t a by b ru t e f o r c e (params , args) :

199 ' ' ' I n t i a t e s data ex t r a c t i on with ex t r a c t i on params f o r c h r ono l o g i c a l

e x t r a c t i on . ' ' '
200 pr in t ' ex t r a c t i n g by brute�f o r c e '
201

202 s t a r t i n g i d = in t (args [2])

203 end ing id = in t (args [3])

204

205 b u g l i s t = c r e a t e l i s t o f b u g s t o b e e x t r a c t e d (s t a r t i n g i d , end ing id ,

params)

206 l i s t o f a t t r i b u t e s = params . a t t r s

207 tmp l i s t s = l i s t (c r e a t e (l en (l i s t o f a t t r i b u t e s)))

208

209 f o r bug id in b u g l i s t :

210 pr in t 'Bug Id# ' + s t r (bug id)

211

212 bug p ro f i l e h tm l = s t a r t h t t p r e q u e s t (params . b u g p r o f i l e u r l + s t r (

bug id))

213 bug p r o f i l e s oup = Beaut i fu lSoup (bug pro f i l e h tm l , ' html . pa r s e r ')
214 dup l i s t = []

215

216 i f (bug p r o f i l e s oup . f i nd (' span ' , { ' id ' : ' dup l i c a t e s ' })) i s not

None :

79

Chapter B. Data Extractions Scripts B.1. Web Scraper

217 dup l i s t = ge t dup id s ((bug p r o f i l e s oup . f i nd (' span ' , { ' id ' : '
dup l i c a t e s ' })) , d u p l i s t = [])

218

219 i f l en (d up l i s t) > 0 :

220

221 bug metadata = get bug metadata (bug id , l i s t o f a t t r i b u t e s ,

params)

222 bug metadata [' dup l i s t '] = dup l i s t

223 tmp l i s t s = wr i te row (bug metadata , tmp l i s t s ,

l i s t o f a t t r i b u t e s)

224

225 e l s e :

226 bug metadata = get bug metadata (bug id , l i s t o f a t t r i b u t e s ,

params)

227 bug metadata [' dup id '] = None

228 tmp l i s t s = wr i te row (bug metadata , tmp l i s t s ,

l i s t o f a t t r i b u t e s)

229

230 wr i t e c s v (l i s t o f a t t r i b u t e s , tmp l i s t s , params)

231

232

233 de f g e t l a t e s t b u g i d (params) :

234 ' ' 'Command l i n e opt ion : Checks the l a t e s t repor ted bug id in Bugz i l l a .

' ' '
235 u r l = params . bug l ookup ur l p r e . p a r t i t i o n (' bug id= ') [0] + ' c h f i e l d=%5

BBug%20c r e a t i on%5D&ch f i e l d f r om=7d '
236 bug l i s t h tm l = s t a r t h t t p r e q u e s t (u r l)

237

238 pr in t u r l

239

240 t ry :

241 bug l i s t s o up = Beaut i fu lSoup (bug l i s t h tm l , ' html . pa r s e r ')
242 b u g i d l i s t = bug l i s t s o up . f i n dA l l (' td ' , { ' c l a s s ' : ' f i r s t �ch i l d

bz id co lumn ' })
243 l a t e s t bu g s = []

244

245 f o r id in b u g i d l i s t :

246 l a t e s t bu g s . append (id . f i nd (' a ') . content s [0])
247

80

Chapter B. Data Extractions Scripts B.1. Web Scraper

248 pr in t (max(l a t e s t bu g s))

249

250 except Exception , e :

251 pr in t e

252

253 r e turn

254

255

256 de f g e t m i s s i ng count (params) :

257 ' ' 'Command l i n e opt ion : Checks i f bug id i s i n a c c e s s i b l e . ' ' '
258 l i s t o f a t t r i b u t e s = [' id ' , ' mi s s i n g s t a t u s ']
259 tmp l i s t s = l i s t (c r e a t e (l en (l i s t o f a t t r i b u t e s)))

260

261 f i l e name = ' '
262

263 f o r f i l e in os . l i s t d i r (params . f i l e i n p u t d i r) :

264 i f f i l e . endswith (' . csv ') :
265 f i l e name = params . f i l e i n p u t d i r + ' / ' + f i l e

266

267 pr in t f i l e name

268

269 df = pd . r ead c sv (f i l e name)

270

271 f o r i in df [' id '] :
272

273 bug p ro f i l e h tm l = s t a r t h t t p r e q u e s t (params . b u g p r o f i l e u r l + s t r (

i))

274 bug p r o f i l e s oup = Beaut i fu lSoup (bug pro f i l e h tm l , ' html . pa r s e r ')
275 mi s s i n g i n f o d i c t = { ' id ' : s t r (i) ,

276 ' mi s s i n g s t a t u s ' : b u g p r o f i l e s oup . f i nd (' span '
, { ' id ' : ' t i t l e ' }) . content s [0] }

277 pr in t m i s s i n g i n f o d i c t

278 tmp l i s t s = wr i te row (m i s s i n g i n f o d i c t , tmp l i s t s ,

l i s t o f a t t r i b u t e s)

279

280 wr i t e c s v (l i s t o f a t t r i b u t e s , tmp l i s t s , params)

281

282

283 i f name == ' main ' :

81

Chapter B. Data Extractions Scripts B.1. Web Scraper

284

285 params = ExtractionParams ()

286 params = command l ine opt ions (params , sys . argv)

287 i f l en (sys . argv) == 4 :

288

289 a = in t (sys . argv [2])

290 b = in t (sys . argv [3])

291 r = (b � a) / 40

292

293 whi le a <= b :

294

295 sys . argv [2] = s t r (a)

296

297 i f a + r < b :

298 sys . argv [3] = s t r (a + r)

299

300 e l s e :

301 sys . argv [3] = s t r (b)

302 params . ou t f i l ename = ' output/ ' + s t r (sys . argv [1]) + ' / ' +

s t r (sys . argv [1]) + ' ' + ' ' + s t r (

303 sys . argv [2]) \
304 + ' ' + s t r (sys . argv [3]) + ' ' + s t r

(time . s t r f t ime ('%c ')) + ' . csv '
305 e x t r a c t d a t a by b ru t e f o r c e (params , sys . argv)

306 break

307

308 params . ou t f i l ename = ' output/ ' + s t r (sys . argv [1]) + ' / ' + s t r (

sys . argv [1]) + ' ' + ' ' + s t r (sys . argv [2]) \
309 + ' ' + s t r (sys . argv [3]) + ' ' + s t r (

time . s t r f t ime ('%c ')) + ' . csv '
310 e x t r a c t d a t a by b ru t e f o r c e (params , sys . argv)

311 a += r + 1

312

313 e l s e :

314

315 i f sys . argv [2] == ' l a s t ' :
316 g e t l a t e s t b u g i d (params)

317

318 e l i f sys . argv [2] == ' miss ing ' :

82

Chapter B. Data Extractions Scripts B.2. Web Scraper Util

319 ge t m i s s i ng count (params)

320

321 e l s e :

322 ex t r a c t da ta (params)

B.2 Web Scraper Util

1 import time

2

3

4 de f command l ine opt ions (obj , a rgs) :

5 ' ' '
6 Overr ides the con s t ruc to r with command l i n e opt i ons .

7 : param obj : an in s t anc e o f ExtractionParams c l a s s

8 : param args : command l i n e args

9 : r e turn : updated in s t anc e

10 ' ' '
11

12 i f l en (args) >= 2 :

13 pr in t ' Extract ing Bugs f o r : ' + s t r (args [1])

14 i f a rgs [1] . lower () == ' moz i l l a ' :
15 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
16 ' bug s ev e r i t y ' , ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate

' , ' dup id ' , ' dup l i s t ']
17 obj . bug l ookup ur l p r e = ” https : // bu g z i l l a . moz i l l a . org / bu g l i s t .

c g i ? bug id=”

18

19 obj . bug l ookup ur l po s t = ”&query format=advanced&

query based on=&co lumn l i s t=product%2Ccomponent%2Cbug status

%2Cre so lu t i on%2Cshort desc%2Cbug id%2Copendate%2Cpr i o r i t y%2

Creporter%2Cbug sever i ty%2Cvers ion ”

20

21 obj . b u g p r o f i l e u r l = ” https : // bu g z i l l a . moz i l l a . org /show bug .

c g i ? id=”

22 obj . ou t f i l ename = ' output/moz i l l a / ' + s t r (time . s t r f t ime (”%c”))

+ ' moz i l l a d e f e c t r e d i s c o v e r y . csv '
23 obj . f i l e i n p u t d i r = ' input /moz i l l a '
24

83

Chapter B. Data Extractions Scripts B.2. Web Scraper Util

25 e l i f a rgs [1] . lower () == 'gnome ' :
26 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
27 ' bug s ev e r i t y ' , ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate

' , ' dup id ' , ' dup l i s t ']
28 obj . bug l ookup ur l p r e = ” https : // bu g z i l l a . gnome . org / bu g l i s t .

c g i ? bug id=”

29

30 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cchangeddate%2

Cbug id%2Copendate%2Cpr i o r i t y%2Creporter%2Cbug sever i ty%2

Cvers ion&query based on=&query format=advanced”

31

32 obj . b u g p r o f i l e u r l = ” https : // bu g z i l l a . gnome . org /show bug . c g i ?

id=”

33 obj . ou t f i l ename = ' output/gnome/ ' + s t r (time . s t r f t ime (”%c”)) +

' gnome de f e c t r ed i s c ove ry . csv '
34 obj . f i l e i n p u t d i r = ' input /gnome '
35

36 e l i f a rgs [1] . lower () == ' kde ' :
37 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
38 ' bug s ev e r i t y ' ,
39 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
40 obj . bug l ookup ur l p r e = ” https : // bugs . kde . org / bu g l i s t . c g i ?

bug id=”

41

42 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cbug id%2Copendate%2

Cpr i o r i t y%2Creporter%2Cbug sever i ty%2Cvers ion&query format=

advanced”

43

44 obj . b u g p r o f i l e u r l = ” https : // bugs . kde . org /show bug . c g i ? id=”

45 obj . ou t f i l ename = ' output/kde/ ' + s t r (time . s t r f t ime (”%c”)) + '
kd e d e f e c t r e d i s c o v e r y . csv '

46 obj . f i l e i n p u t d i r = ' input /kde '
47

48 e l i f a rgs [1] . lower () == ' apache ' :

84

Chapter B. Data Extractions Scripts B.2. Web Scraper Util

49 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '
bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,

50 ' bug s ev e r i t y ' ,
51 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
52 obj . bug l ookup ur l p r e = ” https : // bz . apache . org / bu g z i l l a /

bu g l i s t . c g i ? bug id=”

53

54 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cbug id%2Copendate%2

Cpr i o r i t y%2Creporter%2Cbug sever i ty%2Cvers ion&query format=

advancedapache ”

55

56 obj . b u g p r o f i l e u r l = ” https : // bz . apache . org / bu g z i l l a /show bug .

c g i ? id=”

57 obj . ou t f i l ename = ' output/apache/ ' + s t r (time . s t r f t ime (”%c”))

+ ' apa ch e d e f e c t r e d i s c o v e r y . csv '
58 obj . f i l e i n p u t d i r = ' input /apache '
59

60

61 e l i f a rgs [1] . lower () == ' documentfoundation ' :
62 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
63 ' bug s ev e r i t y ' ,
64 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
65 obj . bug l ookup ur l p r e = ” https : // bugs . documentfoundation . org /

bu g l i s t . c g i ? bug id=”

66

67 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cbug id%2Copendate%2

Cpr i o r i t y%2Creporter%2Cbug sever i ty%2Cvers ion&query format=

advanced”

68

69 obj . b u g p r o f i l e u r l = ” https : // bugs . documentfoundation . org /

show bug . c g i ? id=”

70 obj . ou t f i l ename = ' output/documentfoundation/ ' + s t r (

71 time . s t r f t ime (”%c”)) + '
document f oundat i on de f e c t r ed i s cove ry . csv '

85

Chapter B. Data Extractions Scripts B.2. Web Scraper Util

72 obj . f i l e i n p u t d i r = ' input /documentfoundation '
73

74 e l i f a rgs [1] . lower () == ' ooo ' :
75 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
76 ' bug s ev e r i t y ' ,
77 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
78 obj . bug l ookup ur l p r e = ” https : // bz . apache . org /ooo/ bu g l i s t . c g i

? bug id=”

79

80 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cbug id%2Copendate%2

Cpr i o r i t y%2Creporter%2Cbug sever i ty%2Cvers ion&query format=

advancedapache ”

81

82 obj . b u g p r o f i l e u r l = ” https : // bz . apache . org /ooo/show bug . c g i ?

id=”

83 obj . ou t f i l ename = ' output/ooo/ ' + s t r (time . s t r f t ime (”%c”)) + '
apa ch e d e f e c t r e d i s c o v e r y . csv '

84 obj . f i l e i n p u t d i r = ' input /ooo '
85

86 e l i f a rgs [1] . lower () == ' ke rne l ' :
87 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
88 ' bug s ev e r i t y ' ,
89 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
90 obj . bug l ookup ur l p r e = ” https : // bu g z i l l a . k e rne l . org / bu g l i s t .

c g i ? bug id=”

91

92 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cchangeddate%2

Cbug id%2Copendate%2Cpr i o r i t y%2Creporter%2Cbug sever i ty%2

Cvers ion&query based on=&query format=advanced”

93

94 obj . b u g p r o f i l e u r l = ” https : // bu g z i l l a . k e rne l . org /show bug . c g i

? id=”

95 obj . ou t f i l ename = ' output/ ke rne l / ' + s t r (time . s t r f t ime (”%c”))

86

Chapter B. Data Extractions Scripts B.2. Web Scraper Util

+ ' k e r n e l d e f e c t r e d i s c o v e r y . csv '
96 obj . f i l e i n p u t d i r = ' input / ke rne l '
97

98 e l i f a rgs [1] . lower () == ' redhat ' :
99 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
100 ' bug s ev e r i t y ' ,
101 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
102 obj . bug l ookup ur l p r e = ” https : // bu g z i l l a . redhat . com/ bug l i s t .

c g i ? bug id=”

103

104 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cbug id%2Copendate%2

Cpr i o r i t y%2Creporter%2Cbug sever i ty%2Cvers ion&

query based on=&query format=advanced”

105

106 obj . b u g p r o f i l e u r l = ” https : // bu g z i l l a . redhat . com/show bug . c g i

? id=”

107 obj . ou t f i l ename = ' output/ redhat / ' + s t r (time . s t r f t ime (”%c”))

+ ' r e d h a t d e f e c t r e d i s c o v e r y . csv '
108 obj . f i l e i n p u t d i r = ' input / redhat '
109

110 e l i f a rgs [1] . lower () == ' nov e l l ' :
111 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
112 ' bug s ev e r i t y ' ,
113 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
114 obj . bug l ookup ur l p r e = ” https : // bu g z i l l a . n ov e l l . com/ bug l i s t .

c g i ? bug id=”

115

116 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cbug id%2Cpr i o r i t y%2

Creporter%2Cbug sever i ty%2Cvers ion%2Copendate&

query based on=&query format=advanced”

117

118 obj . b u g p r o f i l e u r l = ” https : // bu g z i l l a . n ov e l l . com/show bug . c g i

? id=”

87

Chapter B. Data Extractions Scripts B.2. Web Scraper Util

119 obj . ou t f i l ename = ' output/ nov e l l / ' + s t r (time . s t r f t ime (”%c”))

+ ' n o v e l l d e f e c t r e d i s c o v e r y . csv '
120 obj . f i l e i n p u t d i r = ' input / nov e l l '
121

122 e l i f a rgs [1] . lower () == ' gentoo ' :
123 obj . a t t r s = [' id ' , ' product ' , ' component ' , ' r epo r t e r ' , '

bug s ta tus ' , ' r e s o l u t i o n ' , ' p r i o r i t y ' ,
124 ' bug s ev e r i t y ' ,
125 ' ve r s i on ' , ' s ho r t d e s c ' , ' opendate ' , ' dup id ' , '

dup l i s t ']
126 obj . bug l ookup ur l p r e = ” https : // bugs . gentoo . org / bu g l i s t . c g i ?

bug id=”

127

128 obj . bug l ookup ur l po s t = ”&co lumn l i s t=product%2Ccomponent%2

Cbug status%2Cre so lu t i on%2Cshort desc%2Cbug id%2Copendate%2

Cpr i o r i t y%2Creporter%2Cbug sever i ty%2Cvers ion&query format=

advanced”

129

130 obj . b u g p r o f i l e u r l = ” https : // bugs . gentoo . org /show bug . c g i ? id=

”

131 obj . ou t f i l ename = ' output/ gentoo / ' + s t r (time . s t r f t ime (”%c”))

+ ' g en t o o d e f e c t r e d i s c o v e r y . csv '
132 obj . f i l e i n p u t d i r = ' input / gentoo '
133

134 r e turn obj

88

Appendix C

Recommender Scripts

A prototype tool implementing the novel approach, core features are listed here1.

C.1 Naive Bayes Implementation

1 ##

2 # A p a r a l l e l l i z e d implementaion o f Naive Bayes based recommender .

3 # This s c r i p t must be run to r e g i s t e r the a lgor i thm to recommenderlab pkg .

4 #

5 # : dependency : Must ov e r r i d e the recommenderlab s p l i t known unkonwn .

6 # s p l i t known unkonwn o r i g i i s provided f o r t h i s purpose .

7 ##

8 r e qu i r e (recommenderlab)

9 r e qu i r e (p a r a l l e l)

10 r e qu i r e (p ly r)

11 r e qu i r e (hash)

12

13 no co r e s <� detectCores () � 1

14 EvaluateModel <� f unc t i on (u=NULL, d=NULL, d . t ab l e . one , d . t ab l e . zero , u . t ab l e .

one , u . t ab l e . zero , p . one , p . zero , type) {
15

16 d<� as . cha rac t e r (d)

17 u<� as . cha rac t e r (u)

18

1Full code base of the tool will be shared via GitHub.

89

Chapter C. Recommender Scripts C.1. Naive Bayes Implementation

19 i f (i s . nu l l (u . t ab l e . one [[u]])==FALSE) {
20 l . u . p . one <� u . t ab l e . one [[u]]

21 l . u . p . ze ro <� u . t ab l e . ze ro [[u]]

22 } e l s e {
23 l . u . p . one = l . u . p . ze ro = 0

24 }
25

26 l . d . p . one <� d . t ab l e . one [[d]]

27 l . d . p . ze ro <� d . t ab l e . ze ro [[d]]

28

29 i f ((l . u . p . one∗ l . d . p . one∗p . one)>(l . u . p . ze ro ∗ l . d . p . ze ro ∗p . ze ro)) {
30 pred i c t ed . c l a s s <� (l . u . p . one∗ l . d . p . one∗p . one)
31 }
32 e l s e {
33 i f (type== ' r a t i n g s ') {
34 pred i c t ed . c l a s s <� NA

35 } e l s e { pred i c t ed . c l a s s <� 0}
36 }
37

38 r e turn (p r ed i c t ed . c l a s s)

39 }
40

41 ## A pa r a l l e l b inary Naive Bayes Based Recommender

42 BIN NB <� f unc t i on (data , parameter = NULL) {
43 ut . mat = as (data , 'matrix ')
44

45 t o t a l . count = dim(ut . mat) [1] ∗dim(ut . mat) [2]

46 one . count = sum(ut . mat)

47 zero . count = t o t a l . count � one . count

48

49 u . t ab l e . one = as . data . frame (cbind (rownames (ut . mat) , as . numeric ((rowSums(ut

. mat)+1)

50 / one . count)))

51 u . t ab l e . one [[2]] = as . numeric (as . cha rac t e r (u . t ab l e . one [[2]]))

52

53 u . t ab l e . ze ro = as . data . frame (cbind (rownames (ut . mat) , as . numeric (((dim(ut .

mat) [2] � rowSums(ut . mat))+1)

54 / zero . count)))

55 u . t ab l e . ze ro [[2]] = as . numeric (as . cha rac t e r (u . t ab l e . ze ro [[2]]))

90

Chapter C. Recommender Scripts C.1. Naive Bayes Implementation

56

57

58 d . t ab l e . one = as . data . frame (cbind (colnames (ut . mat) , as . numeric ((colSums (ut

. mat)+1) / one . count)))

59 d . t ab l e . one [[2]] = as . numeric (as . cha rac t e r (d . t ab l e . one [[2]]))

60

61 d . t ab l e . ze ro = as . data . frame (cbind (colnames (ut . mat) , as . numeric (((dim(ut .

mat) [1] � colSums (ut . mat))+1)

62 / zero . count)))

63 d . t ab l e . ze ro [[2]] = as . numeric (as . cha rac t e r (d . t ab l e . ze ro [[2]]))

64

65 u . t ab l e . one <� hash (as . cha rac t e r (u . t ab l e . one [[1]]) , u . t ab l e . one [[2]])

66 u . t ab l e . ze ro <� hash (as . cha rac t e r (u . t ab l e . ze ro [[1]]) , u . t ab l e . ze ro [[2]])

67

68 d . t ab l e . one <� hash (as . cha rac t e r (d . t ab l e . one [[1]]) , d . t ab l e . one [[2]])

69 d . t ab l e . ze ro <� hash (as . cha rac t e r (d . t ab l e . ze ro [[1]]) , d . t ab l e . ze ro [[2]])

70

71 p . one <� one . count / t o t a l . count

72 p . ze ro <� zero . count/ t o t a l . count

73

74 model <� c (l i s t (d . t ab l e . one=d . t ab l e . one

75 , d . t ab l e . ze ro=d . t ab l e . ze ro

76 , u . t ab l e . one=u . t ab l e . one

77 , u . t ab l e . ze ro=u . t ab l e . ze ro

78 , p . one=p . one

79 , p . ze ro=p . ze ro

80 , data=data

81))

82

83 p r ed i c t <� f unc t i on (model , newdata , n=10, data=NULL, type=c (' topNList ' , '
r a t i n g s ') , . . .) {

84 #pr in t (as (newdata , ' matrix '))
85 n . data <� newdata

86 m. t e s t <� as (newdata , 'matrix ')
87 newdata <� as . data . frame (as . t ab l e (m. t e s t))

88

89 names (newdata) [1] = ' usr '
90 names (newdata) [2] = ' d f c t '
91 names (newdata) [3] = ' c l s '

91

Chapter C. Recommender Scripts C.1. Naive Bayes Implementation

92

93 newdata$ c l s [newdata$ c l s == TRUE] <� 1

94 newdata$ c l s [newdata$ c l s == FALSE] <� 0

95

96 newdata$ c l s <� mapply (EvaluateModel , newdata$usr
97 , newdata$ dfct , MoreArgs = l i s t (model$d . t ab l e . one
98 , model$d . t ab l e . ze ro
99 , model$u . t ab l e . one

100 , model$u . t ab l e . ze ro
101 , model$p . one
102 , model$p . ze ro
103 , type)

104 ,mc . c o r e s = no co r e s)

105

106 r a t i n g s <� as (newdata , ' rea lRat ingMatr ix ')
107

108 new data=(n . data)

109 top N= (getTopNLists (r a t ing s , n=nco l (r a t i n g s)))

110

111

112 top N <� removeKnownItems (top N, new data)

113

114 top N <� bestN (top N, n)

115

116 r e turn (top N)

117 }
118

119 ## cons t ruc t and return the recommender ob j e c t

120 new('Recommender ' , method = 'NB.2VAR ' , dataType = c l a s s (data)

121 , n t ra in = nrow (data) , model = model , p r ed i c t = pr ed i c t)

122 }
123

124 ## Not implemented yet

125 REAL NB <� f unc t i on (data , parameter = NULL) {
126

127 model <� c (l i s t (d e s c r i p t i o n= 'Naive Bayes f o r Real Ratings ' , data=data))

128

129 p r ed i c t <� f unc t i on (model , newdata , n=10,

92

Chapter C. Recommender Scripts C.1. Naive Bayes Implementation

130 data=NULL, type=c (' topNList ' , ' r a t i n g s ' , '
rat ingMatr ix ') , . . .) {

131

132 ###pr in t (' Naive Bayes hasn ' t been implemented f o r Real Ratings yet ')
133 }
134

135 ## cons t ruc t recommender ob j e c t

136 new('Recommender ' , method = 'NB.2VAR ' , dataType = c l a s s (data) ,

137 nt ra in = nrow (data) , model = model , p r ed i c t = pr ed i c t)

138 }
139

140 ## r e g i s t e r recommender

141 recommenderRegistry$ s e t entry (

142 method= 'NB.2VAR ' , dataType = ' binaryRatingMatrix ' , fun=BIN NB,

143 d e s c r i p t i o n= 'A Naive Bayes C l a s s i f i e r (b inary data) . ')
144

145 ## r e g i s t e r recommender

146 recommenderRegistry$ s e t entry (

147 method= 'NB.2VAR ' , dataType = ' rea lRat ingMatr ix ' , fun=BIN NB,

148 d e s c r i p t i o n= 'A Naive Bayes C l a s s i f i e r (r e a l data) . ')

93

Chapter C. Recommender Scripts C.2. Temporal Splitting Implementation

C.2 Temporal Splitting Implementation

1 ###

2 # Temporal S p l i t t i n g Schema

3 # : param schema type : a s t r i n g from the vec to r

4 # c (' schema1 ' , ' schema2 ' , ' schema3 ' , ' schema4 ')
5 # : param de f . data : an input dataframe

6 # : param dt : an i n t time i n t e r v a l increment (in years)

7 # : return : two l i s t o f dataframes , each conta in ing a dataframe f o r a

8 # temporal f o l d t r a i n and t e s t based on imput params

9 ###

10 do time s p l i t = func t i on (schema type , de f . data , dt) {
11 t 0 = min (de f . data$year)
12 t f = max(de f . data$year)
13 pr in t (s p r i n t f (' t f = %d t 0 = %d dt = %d ' , t f , t 0 , dt))

14 i f (t f � t 0 <= dt�1){
15 r e turn (1)

16 }
17 t r a i n . data = l i s t ()

18 t e s t . data= l i s t ()

19 f o r (i in seq ((t 0 + dt) , t f , dt)) {
20 switch (schema type ,

21 schema1={
22 t r a i n . data [[paste0 (' schema1 ' , i)]] = de f . data [de f . data$year >=

t 0 & de f . data$year < i ,]

23 t e s t . data [[paste0 (' schema1 ' , i)]] = de f . data [de f . data$year >= i

& de f . data$year < i+dt ,]

24 } ,
25 schema2={
26 t r a i n . data [[paste0 (' schema2 ' , i)]] = de f . data [de f . data$year >=

(i�dt) & de f . data$year < i ,]

27 t e s t . data [[paste0 (' schema2 ' , i)]] = de f . data [de f . data$year >= i

& de f . data$year < i+dt ,]

28 } ,
29 schema3={
30 t r a i n . data [[paste0 (' schema3 ' , i)]] = de f . data [de f . data$year >=

(i�dt) & de f . data$year < i ,]

31 t e s t . data [[paste0 (' schema3 ' , i)]] = de f . data [de f . data$year >= i

& de f . data$year <= t f ,]

94

Chapter C. Recommender Scripts C.2. Temporal Splitting Implementation

32 } ,
33 schema4={
34 t r a i n . data [[paste0 (' schema4 ' , i)]] = de f . data [de f . data$year >=

t 0 & de f . data$year < i ,]

35 t e s t . data [[paste0 (' schema4 ' , i)]] = de f . data [de f . data$year >= i

& de f . data$year <= t f ,]

36 }
37)

38 }
39 r e turn (l i s t (' t r a i n '=t r a i n . data , ' t e s t '=t e s t . data))

40 }

95

Chapter C. Recommender Scripts C.3. Split Known Unknown

C.3 Split Known Unknown

1 ###

2 # Modif ied ve r s i on o f s p l i t KnownUnknown to l e v e r ag e rownames f o r NB

3 # To check o r i g i n a l , p l e a s e v i s i t the f o l l ow i n g l i n k :

4 # https : // github . com/mhahsler / recommenderlab/blob /master /R/ eva l ua t i o

5 # nScheme .R

6 #

7 # : param data : an input dataframe

8 # : param given : an int , s p e c i f y i n g how many items to g ive to model

9 # : return : a l i s t o f two dataframes , each conta in ing a dataframe f o r

10 # a known and unknown s p l i t s need to l e v e r ag e given�x pro to co l

11 ###

12 s p l i t KnownUnknown o r i g i= func t i on (data , g iven) {
13 ## given might o f l ength one or l ength (data)

14 i f (l ength (g iven)==1) given <� rep (given , nrow (data))

15 nitems <� rowCounts (data)

16 # pr in t (nitems)

17 a l lBut <� given < 0

18 i f (any (a l lBut)) {
19 given [a l lBut] <� nitems [a l lBut] + given [a l lBut]

20 }
21

22 i f (any (given>nitems)) {
23 stop ('Not enough r a t i n g s f o r user ' ,

24 paste (which (given>nitems) , c o l l a p s e = ' , '))
25 }
26

27 l <� g e tL i s t (data , decode=FALSE)

28 known index <� l app ly (1 : l ength (l) ,

29 FUN = func t i on (i) sample (1 : l ength (l [[i]]) , g iven [i

]))

30

31 known <� encode (

32 l app ly (1 : l ength (l) , FUN = func t i on (x)

33 l [[x]] [known index [[x]]]) ,

34 i temLabels = itemLabels (data@data))

35

36 unknown <� encode (

96

Chapter C. Recommender Scripts C.3. Split Known Unknown

37 l app ly (1 : l ength (l) , FUN = func t i on (x)

38 l [[x]] [�known index [[x]]]) ,

39 i temLabels = itemLabels (data@data))

40

41

42 known <� new(' binaryRatingMatrix ' , data = known)

43 rownames (known) = rownames (data)

44 unknown <� new(' binaryRatingMatrix ' , data = unknown)

45 rownames (unknown) = rownames (data)

46

47 r e turn (l i s t (

48 'known ' = known ,

49 'unknown ' = unknown

50))

51 }

97

References

[1] Amazon, 2016. http://www.amazon.com.

[2] Code Coverage Tool — Intel Software, 2016. https://software.intel.com/

en-us/node/522743.

[3] IMDb, 2016. http://www.imdb.com/.

[4] Jester joke recommender, 2016. http://eigentaste.berkeley.edu/.

[5] Netflix, 2016. http://www.netflix.com.

[6] Som toolbox / som make, 2016. http://www.cis.hut.fi/somtoolbox/package/

docs2/som_make.html.

[7] Spotify, 2016. http://www.spotify.com.

[8] Youtube, 2016. https://www.youtube.com/.

[9] Edward N Adams. Optimizing preventive service of software products. IBM Journal

of Research and Development, 28(1):2–14, 1984.

[10] Anahita Alipour, Abram Hindle, and Eleni Stroulia. A contextual approach towards

more accurate duplicate bug report detection. In Proc. of the 10th Working Conf.

on Mining Softw. Rep., pages 183–192, 2013.

[11] Ethem Alpaydin. Introduction to machine learning. MIT Press, 2nd edition, 2010.

[12] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and Yann-

Gaël Guéhéneuc. Is it a bug or an enhancement?: a text-based approach to classify

98

REFERENCES REFERENCES

change requests. In Proceedings of the 2008 conference of the center for advanced

studies on collaborative research: meeting of minds, page 23. ACM, 2008.

[13] John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this bug? In Proc.

of the 28th Int. Conference on Softw. Eng., pages 361–370, 2006.

[14] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiß, Rahul Premraj,

and Thomas Zimmermann. Quality of bug reports in eclipse. In Proceedings of the

2007 OOPSLA workshop on eclipse technology eXchange, pages 21–25. ACM, 2007.

[15] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. Du-

plicate Bug Reports Considered Harmful... Really? In Proc. Int. Conf. on Softw.

Maintenance, pages 337–345, 2008.

[16] Eric J Braude and Michael E. Bernstein. Software Engineering: Modern Approaches.

John Wiley, 2nd edition, 2010.

[17] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the Fourteenth conference

on Uncertainty in artificial intelligence, pages 43–52. Morgan Kaufmann Publishers

Inc., 1998.

[18] Michael Buckley and Ram Chillarege. Discovering relationships between service and

customer satisfaction. In Software Maintenance, 1995. Proceedings., International

Conference on, pages 192–201. IEEE, 1995.

[19] George Candea, Stefan Bucur, and Cristian Zamfir. Automated software testing as

a service. In Proceedings of the 1st ACM symposium on Cloud computing, pages

155–160. ACM, 2010.

[20] Iván Cantador and Pablo Castells. Semantic contextualisation in a news recom-

mender system. In Workshop on Context-Aware Recommender Systems (CARS

2009), pages 1–5, 2009.

[21] Gianfranco Chicco, Roberto Napoli, and Federico Piglione. Application of clustering

algorithms and self organising maps to classify electricity customers. In Power Tech

Conference Proceedings, 2003 IEEE Bologna, volume 1, pages 1–7. IEEE, 2003.

99

REFERENCES REFERENCES

[22] Ram Chillarege, Shriram Biyani, and Jeanette Rosenthal. Measurement of failure

rate in widely distributed software. In Fault-Tolerant Computing, 1995. FTCS-25.

Digest of Papers., Twenty-Fifth International Symposium on, pages 424–433. IEEE,

1995.

[23] Dan Cosley, Shyong K Lam, Istvan Albert, Joseph A Konstan, and John Riedl. Is

seeing believing?: how recommender system interfaces a↵ect users’ opinions. In Pro-

ceedings of the SIGCHI conference on Human factors in computing systems, pages

585–592. ACM, 2003.

[24] Paolo Cremonesi, Roberto Turrin, Eugenio Lentini, and Matteo Matteucci. An eval-

uation methodology for collaborative recommender systems. In Automated solutions

for Cross Media Content and Multi-channel Distribution, 2008. AXMEDIS’08. In-

ternational Conference on, pages 224–231. IEEE, 2008.

[25] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel.

Rebucket: a method for clustering duplicate crash reports based on call stack simi-

larity. In Proceedings of the 34th International Conference on Software Engineering,

pages 1084–1093. IEEE Press, 2012.

[26] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American

society for information science, 41(6):391–407, 1990.

[27] Emden R. Gansner and Stephen C. North. An open graph visualization system and

its applications to software engineering. SOFTWARE - PRACTICE AND EXPE-

RIENCE, 30(11):1203–1233, 2000.

[28] Robin Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot. Variable selection

using random forests. Pattern Recognition Letters, 31(14):2225–2236, 2010.

[29] Miha Grčar, Dunja Mladenič, Blaž Fortuna, and Marko Grobelnik. Data sparsity

issues in the collaborative filtering framework. In International Workshop on Knowl-

edge Discovery on the Web, pages 58–76. Springer, 2005.

[30] Paul Grey. How Many Products Does Amazon Sell? — ExportX, 2015. https:

//export-x.com/2015/12/11/how-many-products-does-amazon-sell-2015/.

100

REFERENCES REFERENCES

[31] Michael Hahsler. Developing and testing top-n recommendation algorithms for 0-1

data using recommenderlab. NSF Industry University Cooperative Research Center

for Net-Centric Software and System, 2011.

[32] Michael Hahsler. recommenderlab: A framework for developing and testing recom-

mendation algorithms. Nov, 2011.

[33] Jon Herlocker, Joseph A Konstan, and John Riedl. An empirical analysis of de-

sign choices in neighborhood-based collaborative filtering algorithms. Information

retrieval, 5(4):287–310, 2002.

[34] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.

Evaluating collaborative filtering recommender systems. ACM Transactions on In-

formation Systems (TOIS), 22(1):5–53, 2004.

[35] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a feature: how

misclassification impacts bug prediction. In Proceedings of the 2013 International

Conference on Software Engineering, pages 392–401. IEEE Press, 2013.

[36] Lyndon Hiew. Assisted detection of duplicate bug reports. PhD thesis, University of

British Columbia, 2006.

[37] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining,

pages 263–272. Ieee, 2008.

[38] G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans-

actions on Information Theory, 14(1):55–63, Jan 1968.

[39] Capers Jones. Applied software measurement: global analysis of productivity and

quality. McGraw-Hill Education Group, 2008.

[40] Leon Wu Boyi Xie Gail Kaiser and Rebecca Passonneau. Bugminer: Software reli-

ability analysis via data mining of bug reports. delta, 12(10):09–0500, 2011.

[41] Stephen H Kan. Metrics and models in software quality engineering. Addison-Wesley

Longman Publishing Co., Inc., 2002.

101

REFERENCES REFERENCES

[42] George Karypis. Evaluation of item-based top-n recommendation algorithms. In Pro-

ceedings of the tenth international conference on Information and knowledge man-

agement, pages 247–254. ACM, 2001.

[43] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information

Sciences. Springer, 2001.

[44] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R

Gordon, and John Riedl. Grouplens: applying collaborative filtering to usenet news.

Communications of the ACM, 40(3):77–87, 1997.

[45] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, 2009.

[46] Gerald Kowalski. Information Retrieval Systems: Theory and Implementation.

Kluwer Academic Publishers, 1st edition, 1997.

[47] Ahmed Lamkanfi and Serge Demeyer. Predicting reassignments of bug reports-an

exploratory investigation. In Software Maintenance and Reengineering (CSMR),

2013 17th European Conference on, pages 327–330. IEEE, 2013.

[48] Jong-Seok Lee, Chi-Hyuck Jun, Jaewook Lee, and Sooyoung Kim. Classification-

based collaborative filtering using market basket data. Expert systems with applica-

tions, 29(3):700–704, 2005.

[49] Qing Li and Byeong Man Kim. Clustering approach for hybrid recommender sys-

tem. In Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International

Conference on, pages 33–38. IEEE, 2003.

[50] Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R

News, 2(3):18–22, 2002.

[51] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:

Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[52] Nathan N Liu, Evan W Xiang, Min Zhao, and Qiang Yang. Unifying explicit and

implicit feedback for collaborative filtering. In Proceedings of the 19th ACM inter-

102

REFERENCES REFERENCES

national conference on Information and knowledge management, pages 1445–1448.

ACM, 2010.

[53] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power laws in soft-

ware. ACM Trans. Softw. Eng. Methodol., 18(1):2:1–2:26, October 2008.

[54] Victor Luckerson. The Number of Movies on Netflix Is

Dropping Fast — TIME, 2016. http://time.com/4272360/

the-number-of-movies-on-netflix-is-dropping-fast/.

[55] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik.

cluster: Cluster Analysis Basics and Extensions, 2015. R package version 2.0.3.

[56] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction

to information retrieval. Cambridge University Press, 2008.

[57] Charles E Metz. Basic principles of roc analysis. In Seminars in nuclear medicine,

volume 8, pages 283–298. Elsevier, 1978.

[58] A. V. Miranskyy, E. Cialini, and D. Godwin. Selection of customers for operational

and usage profiling. In Proc. of the 2nd Int. Workshop on Testing Database Systems,

pages 7:1–7:6, 2009.

[59] A. V. Miranskyy, E. Cialini, and D. Godwin. Selection of Customers for Operational

and Usage Profiling. In Proceedings of the Second International Workshop on Testing

Database Systems, DBTest ’09, pages 7:1–7:6, 2009.

[60] Andriy V Miranskyy, Matthew Davison, and Mark Reesor. Metrics of risk associated

with defects rediscovery. arXiv preprint arXiv:1107.4016, 2011.

[61] Audris Mockus and David Weiss. Interval quality: Relating customer-perceived

quality to process quality. In Proceedings of the 30th international conference on

Software engineering, pages 723–732. ACM, 2008.

[62] Robert E Mullen and Swapna S Gokhale. Software defect rediscoveries: a discrete

lognormal model. In 16th IEEE International Symposium on Software Reliability

Engineering (ISSRE’05), pages 1–10. IEEE, 2005.

103

REFERENCES REFERENCES

[63] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Chengnian

Sun. Duplicate bug report detection with a combination of information retrieval and

topic modeling. In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering, pages 70–79. ACM, 2012.

[64] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2016.

[65] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate

defect reports using natural language processing. In Proc. of the 29th Int. Conf. on

Softw. Eng., pages 499–510, 2007.

[66] Mefta Sadat, Ayse Basar Bener, and Andriy V. Miranskyy. Rediscovery Datasets:

Connecting Duplicate Reports, 2017.

[67] Mefta Sadat, Ayse Basar Bener, and Andriy V. Miranskyy. Rediscovery datasets:

Connecting duplicate reports. In Proceedings of the 14th International Conference

on Mining Software Repositories (MSR 2017), (to appear), 2017.

[68] Mefta Sadat, Ayse Basar Bener, and Andriy V. Miranskyy. Rediscovery Datasets:

Connecting Duplicate Reports of Apache, Eclipse, and KDE, March 2017. https:

//doi.org/10.5281/zenodo.400614.

[69] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of rec-

ommendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference

on Electronic commerce, pages 158–167. ACM, 2000.

[70] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of

dimensionality reduction in recommender system-a case study. Technical report,

DTIC Document, 2000.

[71] Badrul M Sarwar, George Karypis, Joseph Konstan, and John Riedl. Recommender

systems for large-scale e-commerce: Scalable neighborhood formation using cluster-

ing. In Proceedings of the fifth international conference on computer and information

technology, volume 1, pages 1–6, 2002.

104

REFERENCES REFERENCES

[72] J Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems in e-

commerce. In Proceedings of the 1st ACM conference on Electronic commerce, pages

158–166. ACM, 1999.

[73] Ian Sommerville. Software engineering. Addison-Wesley, 9th edition, 2011.

[74] Yoonki Song, Xiaoyin Wang, Tao Xie, Lu Zhang, and Hong Mei. Jdf: detecting

duplicate bug reports in jazz. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering-Volume 2, pages 315–316. ACM, 2010.

[75] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards more accurate

retrieval of duplicate bug reports. In Automated Software Engineering (ASE), 2011

26th IEEE/ACM International Conference on, pages 253–262. IEEE, 2011.

[76] Ashish Sureka and Pankaj Jalote. Detecting duplicate bug report using character

n-gram-based features. In Software Engineering Conference (APSEC), 2010 17th

Asia Pacific, pages 366–374. IEEE, 2010.

[77] Yuan Tian, David Lo, and Chengnian Sun. Drone: Predicting priority of reported

bugs by multi-factor analysis. In Proc. of Int. Conf. on Softw. Maintenance, pages

200–209, 2013.

[78] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of

clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 63(2):411–423, 2001.

[79] Teemu Tunkelo, Ari-Pekka Hameri, and Yves Pigneur. Improving globally dis-

tributed software development and support processes a workflow view. Journal

of Software: Evolution and Process, 25(12):1305–1324, 2013.

[80] Stefan Wagner and Helmut Fischer. A software reliability model based on a geo-

metric sequence of failure rates. In International Conference on Reliable Software

Technologies, pages 143–154. Springer, 2006.

[81] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach to

detecting duplicate bug reports using natural language and execution information.

105

REFERENCES REFERENCES

In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference

on, pages 461–470. IEEE, 2008.

[82] Ron Wehrens, Lutgarde MC Buydens, et al. Self-and super-organizing maps in r:

the kohonen package. J Stat Softw, 21(5):1–19, 2007.

[83] Roel Wieringa and Maya Daneva. Six strategies for generalizing software engineering

theories. Science of computer programming, 101:136–152, 2015.

[84] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. Experimentation in software engineering. Springer Science & Busi-

ness Media, 2012.

[85] Alan P Wood. Software reliability from the customer view. Computer, 36(8):37–42,

2003.

[86] Jialiang Xie, Minghui Zhou, and Audris Mockus. Impact of triage: a study of mozilla

and gnome. In Empirical Software Engineering and Measurement, 2013 ACM/IEEE

International Symposium on, pages 247–250. IEEE, 2013.

[87] Robert K Yin. Case study research: Design and methods. Sage publications, 5th

edition, 2013.

[88] Jie Zhang, Xiaoyin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. A survey

on bug-report analysis. Science China Information Sciences, 58(2):1–24, 2015.

106

Index

AHC, 62

Defect Discovery, 2

Defect Recommender System (DRS), 6

Defect Rediscovery, 2

Explicit User Feedback, 16

F-measure, 26

FPR, 26

Gini, 49

Graph of Rediscoveries, 3

Implicit User Feedback, 16

Jaccard Similarity, 21

N-BAYES, 22

Non-Zero Elements, 39

Non-zero elements (↵), 40

POPULAR, 19

Preventive Service (PS), 3

RANDOM, 19

Random Forest, 48

Rating Matrix, 18

Recommender System (RS), 15

ROC, 25

SOM, 67

Sparsity, 23

Temporal Splitting, 26

Top-N Recommendations, 17

TPR, 26

UBCF, 20

108107

