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ABSTRACT 

Content-Independent Orientation Detection with 
Histogram of Optimized Local Binary Pattern 

@Nan Dong, 2009 

Master of Applied Science 
Electrical and Computer Engineering 

Ryerson University 

This thesis is primarily concerned with the introduction of a new approach to the general 
problem of automatic image orientation detection. Inspired by the local binary pattem(LBP), a 
luminance, rotation and scale invariant and content-independent algorithm is proposed, namely: 
Histogram of Optimized Local Binary Pattern(HOOPLBP). 

Whilst the proposed approach is essentially generic, the core application considered in this 
study is human face orientation detection. To detect the face orientation, a general face model is 
trained using the HOOPLBP feature. The experiments show a very impressive result. Integrating 
this result with other face related techniques will facilitate some applications. To this end, this 
thesis propose a hybrid face detection system. 

Specifically, the new system aims to detect both upright and tilted human faces in digital im­
ages. In the scheme, several face related algorithms are integrated to achieve different tasks in 
different stages. In addition, two modified systems are used in this thesis to detect faces in both 
grayscale images and color images. 

The HOOPLBP is a new and robust method in automatic image orientation detection. It can be 
improved by other techniques and also can be used in many other fields. The future work is also 
included in the thesis. 
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Chapter 1 

Introduction 

1.1 Automatic Image Orientation Detection 

T HE rapid growth of digital imaging has led to an increase in image-related tasks such as en­

hancement, manipulation, compression, understanding, organization, and retrieval. Knowl­

edge of the correct image orientation can be of great importance for these tasks. Automatic im­

age orientation can drastically reduce the human effort otherwise needed to orient the images for 

viewing (either on a computer monitor, a handheld device, or a TV) or for organizing an album. In 

addition, many automatic algorithms for object recognition, scene classification, and content-based 

image retrieval either require a priori knowledge of the correct image orientation, or can perform 

significantly better if image orientation is known. For example, face detection algorithms [16] usu­

ally assume the image is in an upright orientation. Most sky detection algorithms are designed to 

take advantage of the fact that sky often appears as a blue region at the top of an image, with the ex­

ception of the clear blue sky detection method by Luo and Etz [ 1]. Semantic features are becoming 

increasingly important for content-based image retrieval and annotation [2, 13, 3]. For classifi­

cation of images into indoor-outdoor [4], sunset, beach, field, fall foliage, mountain, and urban 

scenes [5], images are assumed to be in the upright orientation so that scene layout of prototypical 

scenes can be learned through training. 

Automatic image orientation detection is a very difficult problem. Humans use object recogni­

tion and contextual information to identify the correct orientation of an image. Unfortunately, the 

state-of-the-art computer vision techniques still cannot infer the high-level knowledge abstraction 
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Figure 1.1: The dilemma: "chicken or the egg". 
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of the objects in the real world [24] . The alternative method is to exploit the low-level features 

(e.g., spatial color distributions, texture, etc.) from the images for orientation detection [25]. The 

problem between orientation detection and object recognition is like the dilemma - "Chicken or the 

egg", as shown in Fig. 1.1. On one hand, we need the correct orientation before pattern recogni­

tion. On the other hand, we also need the context information of the object for recognizing correct 

orientation. Fig. 1.2 illustrates the difficulty in image orientation estimation, where the true ori­

entation cannot be detected unless you first recognize the object present in the image. Close-up 

images, low-contrast images, or images of uniform or homogeneous texture (e.g., sunset/sunrise 

and indoor images) pose additional problems for robust orientation estimation. 
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Figure 1.2: A difficult orientation detection problem [6] 

1.2 Contributions 

This thesis brings together new algorithms and insights to propose a content-independant ori­

entation descriptor- Histogram of Optimized Local Binary Pattem(HOOPLBP). This method is 

demonstrated on and in part motivated by, the task of automatic digital image orientation detec­

tion. This task is basic but difficult in computer vision. There are few paper published in this field. 

Furthermore, a hybrid face detection system based on the HOOPLBP is proposed in this thesis. It 

can detect tilted faces in both grayscale and color images and the results outperform the previous 

work. 

There are four main contributions in this thesis. We will introduce each of these ideas briefly 

below and then describe them in detail in subsequent chapters. 

• The first contribution of this thesis is a new orientation descriptor called the Histogram of Op­

timized Local Binary Pattem(HOOPLBP). Motived in part by the local binary pattem(LBP), 

our method use the bit-wise shift times by which it achieves the minimum LBP value, in­

stead of the minimum LBP value as the feature value. The feature makes automatic image 

orientation possible. Then the use of a histogram offers us a robust method to detect image 

orientation. 

• The second contribution of the thesis is an optimization method for our proposed image 

orientation detection method. A large number of linear interpolations operations make the 
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method so time-consuming. The optimization converts the problem to the task of solving a 

quartic equation which can be easily done. This not only makes the algorithm more robust, 

but also increases the calculation precision. 

• The third contribution of this thesis is to use the HOOPLBP on human face orientation detec-

tion. Human faces, of no matter what races or sex, have a set of similar features. Although 

they are easily observed by humans, it is difficult for computers. By training a general face 

model based on the HOOPLBP, our method can successfully detect the orientation of a hu­

man face. 

• The fourth contribution of this thesis is to propose a hybrid face detection system. The 

state-of-the-art face detection systems use either a pyramid searching scheme or a candi­

date selection based scheme. One advantage of candidate selection based method is fast, 

which can eliminate most of the non-face regions. Our porposed hybrid face detection sys­

tem integrates the candidate selection phase with our HOOPLBP operation to succseefully 

detect faces with rotation within the plane. Our system is the first that can detect faces with 

arbitrary-degree-rotation. 

1.3 Outline of Thesis 

The remainder of this thesis is organized in the following chapters: 

Chapter 2: Background, provides a comprehensive study on the previous research in the area of 

automatic image orientation detection. The problem they solved and the features they used are 

presented here. The scale-invariant feature transform which is used for comparison with our pro­

posed method is also presented in this chapter. A literature review of the face detection algorithm 

is given at last. 

Chapter 3: Histogram of Local Binary Pattern, introduces our proposed automatic image orien­

tation approach- HOOPLBP. The feature extraction and optimization are detailed in this chapter. 

The experiment results ofHOOPLBP on digital images and human faces are also shown here. 

Chapter 4: Hybrid Face Detection Algorithm, presents the proposed hybrid face detection algo-
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rithm. A set of algorithms used in the system are shown in this chapter, including normalization, 

candidate selection, upright face detection. 

Chapter 5: Conclusions, draws the concluding remarks and suggests the future research direction. 



Chapter 2 

Background 

2.1 Introduction 

T HE purpose of this thesis is to propose a new and robust automatic image orientation detec­

tion algorithm and apply this method to a hybrid face detection system. In this chapter, we 

will review the literatures of existing image orientation detection algorithms and the state-of-the-art 

face detection algorithms. 

The remaining of this chapter is organized as follows. First we will talk about object orienta­

tion from psychology perspective. Then a literature review of image orientation in specific fields 

is presented. In section 2.4, we will present the image orientation detection approaches in photo 

management. The algorithm and applications of scale-invariant feature transform is given in sec­

tion 2.5. Finally, we will do a short review of the present face detection approaches and a summary 

is concluded at last. 

2.2 A Psychophysical Study on the Perception of Orientation 

While a small portion of the psychology literature involves human perception of orientation of 

gratings [7, 8], and recognition of rotated letters and digits [11, 12], most ofthe psychology litera­

ture involving orientation focuses on the interplay between orientation and recognition of objects, 

specifically the effect of in-plane rotation on the recognition of single object represented by line 

drawings. 

6 
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A rigorous psychophysical study was conducted recently to investigate the perception of image 

orientation [9]. In this study, a collection of 1, 000 images (a mix of professional photos and con­

sumer snapshots, intended to span reasonably well the photo space [10] in terms of, e.g., picture 

seasons, occasions, locations, indoor/outdoor, people/no people) was used. Each image was exam­

ined by at least five observers and shown at varying resolutions. At each resolution, observers were 

asked to indicate the image orientation, the level of confidence, and the cues they used to make the 

decision. Examples of these images are shown in 2.1. 

.... ,-... 
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Figure 2.1: Examples of the photos used in the study 

A number of insights are gained from this psychophysical study. 

-·- . I 

. .. ·~-
~ ... 

1. Image resolution: The study found that observer accuracy increases steadily with increasing 

resolution until what is referred to as Base I 4 (i.e. 256 x 384), at which point accuracy 

was 95. 7%. Increasing to the next resolution level, 512 x 768, increased accuracy is less 

than a percentage point. A conclusion is that Base/4 is an adequate resolution for accurate 

orientation by human observers, and therefore, is probably a reasonably adequate resolution 

for automatic algorithms as well, especially considering the limitations of such algorithms 

in recognizing semantic objects. 
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2. Upper bounds on accuracy: It is safe to assume that an automatic orientation algorithm will 

not surpass the accuracy of an average human observer on an unconstrained set of images, 

given that inferring orientation is a task that humans are trained to do well. Humans are 

able to recognize thousands of objects and use high-level reasoning to deduce orientation. 

An automatic algorithm cannot rival that level of sophistication in the foreseeable future. 

Human performance, therefore, represents an upper bound on the accuracy that an algorithm 

can attain. We conclude that an upper bound for accuracy of an algorithm using all available 

semantic cues is about 96%. If only coarse semantics from thumbnails are used, the upper 

bound is about 84%. Of course, these bounds depend on the nature of the image set. An 

algorithm could achieve vastly different detection rates on different image sets, even 100% 

detection rate on a conveniently chosen dataset. 

3. Relative frequencies of incorrect answers: The study found that observers are twice as likely 

to misorient images by 180° than by either of the 90° possibilities. This suggests that ob­

servers use cues that can distinguish between north and south or east and west, but are unable 

to distinguish between the remaining possibilities. Such cues could include horizon lines. 

4. Orientation confidence: It was found that accuracy and confidence of observations were 

highly correlated, indicating that humans are very good at judging the quality of their deci­

sions. This would be a very desirable characteristic of an automatic algorithm. When the 

confidence of the algorithm is low, the input image could be flagged and judged by a human, 

thus improving the overall accuracy of the system. 

5. Semantic cues: Semantic cues are very important for image orientation. In this study, only 

1.6% of images were oriented correctly without semantic cues. Some cues stood out as 

being very important, such as sky (used in 31% of the correct observations), and people 

(36.7% of the correct observations). Other important semantic cues include cloud, water, 

grass, and trees. In fact, a combination of sky, grass, or people were used in over 70% of 

the correct observations. These objects are all fairly well defined. We are in the process 

of developing more robust automatic algorithms for detecting these types of objects [9]. 
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Other cues mentioned by observers are not as well defined, making detection of them by an 

automatic algorithm more difficult. Such cues include categories of objects, such as animals 

(all species), buildings (all types and styles), ground (dirt, carpet, tiles, etc.), furniture (all 

types), and vehicles (all types and models). Among them, it is possible and beneficial to 

develop automatic detectors for sub-categories of objects: the most promising cases include 

skyscrapers [15], passenger cars [16], paved road [14] and sand [13]. We do note that many 

of the published semantic object detectors actually use location cues (therefore explicitly 

assuming the correct image orientation). The least accurate semantic cues were flowers 

and snow. Text was found to be a low-payoff cue, because it occurs infrequently in typical 

photographic images, and the variety of languages and scripts makes it difficult to use. 

2.3 Literatures about Orientation Detection for Specific Pur­
poses 

2.3.1 Document Image Skew Detection 

Most of the related topics have focused on document page orientation detection. The digital image 

of a document may be rotated or skewed at an arbitrary angle because of how it was placed on the 

platen when it was scanned or because of a document feeder malfunction [ 1 7]. This results in a 

skewed image such as that shown in Fig. 2.2(b). This represents a skew of only 5 degrees. In fact, 

a skew of as little as 0.1 degrees may be apparent to a human observer. Thus, a desirable function 

in a digital photocopier is the automatic detection and correction of skew. Ideally, an input such 

as that shown in Fig. 2.2(b) would produce Fig. 2.2(a) as output. A skew detection algorithm is 

given the digital image of a document and it determines the angle (possibly zero degrees) by which 

it was skewed when it was digitized. It is assumed that there also exists a method for rotating the 

image to remove the skew. 

A simple solution for skew detection is to deteimine the location of at least two comers of the 

original document [ 18] and compute the skew angle from them. However, this can be error-prone 

because of non-linear distortions that occur when pages are not fiat on the platen [ 19]. Also, the 

entire scan surface may be obscured by the input document or the input itself has been produced 
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Figure 2.2: Original image in correct alignment (a) and skewed by 5 degrees (b) [ 17]. 
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from a skewed original. In either case, deriving the skew angle from the comers or edges of the 

page is problematic. In almost every case, the algorithms that are discussed assume that an input 

document contains some amount of text. Features are often extracted from the text portion of the 

image that allow the skew to be calculated. This is done because the text is usually structured 

into lines that are co-linear and aligned with the horizontal (or vertical) axis of the page. Thus, 

detecting the skew of the text lines provides the skew of the document. 

Techniques described in the scientific and patent literature often use the following four algo­

rithms. 

• Projection Profile Analysis 

• Feature Point Distribution 

• Hough Transform Analysis 

• Orientation-sensitive Feature Analysis 
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The performance of most methods reported in the literature range up to a 0.1 degree accuracy. 

While it is arguable whether this fine resolution is needed in a digital copier application, at least 

a resolution of 0.2 to 0.3 degrees should be achieved. Only preliminary efforts have been con­

ducted in comparative performance evaluation [20]. Further work in this area could help show the 

strengths and weaknesses of individual algorithms. 

2.3.2 Medical Image Orientation Detection 

The rapid rate of advancement in computer technology and image acquisition devices makes the 

hospitals a purely digital radiology department possible. Furthermore, The patient's digital medical 

images will be among the medical charts and records. Several modalities, such as Computed 

Tomography ( CT), Ultra Sound, and Magnetic Resonance Imaging (MRI) can contribute to the 

images in the patient records. A technician could preview every image, but this wastes resources. 

It is only applicable to the daily caseload and would not include archival recall for comparisons 

against a patients past history. A routine that will automatically orient the medical images will 

avoid the necessity of having a technician preview every image. 

As far as we know, few papers are published in doing auotmatic medical image orientation. 

In our reviews, only one about chest image was found [21]. The motivation is to automatically 

display the chest images in proper orientation to save radiologists' time. Linear regression is used 

on two othogonal profiles to determine the top of the image. The edge of the heart is found to 

make sure the image is not displayed as a mirror image. The algorithm was 90.4% successful on 

115 chest images. 

2.4 Image Orientation Detection in Photo Management 

With the development of digital photography as well as inexpensive scanners, it is possible for 

us to store vacation and family photographs on our personal computers. This has created a need 

for developing image management systems that assist the user in storing, indexing, browsing, and 

retrieving images from a database. All image management systems require information about the 

true image orientation. When a user scans a picture, he expects the resulting image to be displayed 
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in its correct orientation, regardless of the orientation in which the photograph was placed on the 

scanner [23]. Thus, an image management system is expected to correctly orient the input images. 

The number of literatures about automatic orientaion detection in photo management are also 

very few. Although the system is for specific purpose, we use a seperate section to review this topic, 

because the photos contain various content and only features which can deal with this situation can 

be used in the system. We will review the very few systems from three aspects : problem statement, 

feature extraction and classification systems. 

2.4.1 Problem Statement 

In all of the paper reviewed [6, 22, 23], the authors defined the correct orientation of an image 

as the orientation in which the scene, captured by the image, originally occurred. Because of the 

camera rotation while taking a picture or mis-placement of the photograph on a scanner, a digital 

image could be incorrectly oriented. However, most of the pictures are placed on a scanner with 

their boundaries aligned with those of the scanner plate. When this condition is not satisfied, that 

is, when a picture is placed on a scanner at a random orientation, we can always first de-skew this 

image based on detected outer edges of the picture, as mentioned in [23] . Therefore, in these 

work, the authors assume that the input image is restricted to only four possible rotations that are 

multiples of goo. That is, a digitized or scanned photograph can differ from its correct orientation 

by 0° (no rotation), goo, 180°, or 270°. In conclusion, they represent the orientation detection 

problem as a four-class classification problem, with: 

Fig. 2.3 shows the four possible orientations of an image. 

2.4.2 Feature Extraction 

Automatic image orientation detection is a very difficult problem. Humans use object recognition 

and contextual information to identify the correct orientation of an image. Unfortunately, the state­

of-the-art computer vision techniques still cannot infer the high-level knowledge abstraction of the 
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Figure 2.3: Four possible orientations of an image [23]. 

objects in the real world [24] . The alternative method is to exploit the low-level features from the 

images for orientation detection [25]. 

There are many potential features which can be used to represent an image. Different features 

have different abilities to detect the four possible orientations of the scanned image. Since global 

image features are not invariant to image rotation, local regional features are used for the classi­

fication in these work. An image is represented in terms of N x N blocks and the features are 

extracted from these local regions. The low level features used in the literatures are listed below: 

• Color Moments(CM): It is shown in [26] that color moments (CM) of an image in the LUV 

color space are very simple yet very effective for color-based image analysis. In [23], the 

authors use the first order (mean color) and the second order moments (color variance) as 

the CM features to capture image chrominance information. Furthermore, the features were 

normalized to the same scale as follows: 

(2.1) 

where Yi represents the ith feature component of a feature vector y , m ini and m axi represent 

the range of values for the feature component over the training samples, and y~ is the scaled 

feature component. 

• Edge Direction Histogram(EDH): In [23], the authors utilize the edge direction histogram 

to characterize structural and texture information of an image, similar as that in [27]. The 
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Canny edge detector [28] is used to extract the edges in an image. In [23], the authors use a 

total of37 bins to represent the edge direction histogram. The first 36 bins represent the count 

of edge points with edge directions quantized at 10° intervals. And the last bin represents the 

count of the number of pixels that do not contribute to an edge. To compensate for different 

image sizes, normalize the histograms as follows: 

H(i) = H(i)/Me, fori E [0, ... , 35]; H(36) = H(36)/M, 

where H ( i) is the count in bin i of the edge direction histogram; Me is the total number of 

edge points detected in the sub-block of an image; and M is the total number of pixels in the 

sub-block. 

• Semantic cues: In [22], semantic cues are selected based on their correlation to image 

orientation, occurrence, and confidence of the corresponding detectors they can build. The 

cues chosen are : face, blue sky, cloudy sky, ceiling/wall, and grass in order to decrease 

usefulness, supported by the psychophysical study [9]. Other semantic cues, such as open 

water, building, furniture, cars, flowers, and text, incur diminishing returns and increasing 

difficulties for building the associated detector. 

An integrated approach using low-level features and semantic cues is presented in [22]. Their 

system is shown in Fig. 2.4. 

2.4.3 Classification Systems 

1. Support Vector Machine 

Support vector machine [29] , which was introduced by Vapnik [30], [31 ], utilizes the 

structural risk minimization principle. It is primarily a dichotomy classifier. The optimiza­

tion criterion is the width of the margin between the classes, i.e., the empty area around the 

decision boundary defined by the distance to the nearest training samples. These patterns, 

called the support vectors, finally define the classification function. The SVMs use opti­

mization methods to maximize the gap between the classes. An SVM with a large margin 

separating two classes has a small VC dimension. A major advantage of SVM is its good 
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Figure 2.4: An integrated approach to image orientation detection using lowlevel and semantic cues (22]. 

generalization performance, which has also been demonstrated in some applications, such as 

object recognition [32] and face detection [33]. Since in this work, people aim at detecting 

the orientations of large varieties of images, good generalization over image variety is a de­

sired property for our problem here. The computational complexity of the training procedure 

(a quadratic minimization problem) is one of the drawbacks of SVM. In [6], a number of 

classifiers were trained using different kernels (linear, polynomial, radial basis function, and 

sigmoid) for SVM. The best classification accuracy was achieved when a polynomial kernel 

function of degree 3 was used. Multi-class pattern recognition problems with SVMs (i.e., 

problems with more than two classes, where one has K > 2 classes) are typically solved by 

using voting scheme methods based on combining many binary classification decision func­

tions [34] with either one-against-all or one-against-one schemes. In the one-against-all 

scheme, K classifiers are placed in parallel, one for each class. The K th classifier constructs 

a hyper-plane between class K and the K- 1 other classes. A new input can be classified by 

choosing the maximum applied to the outputs of K SVMs. Weston and Watkins [35] pro-
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pose two extensions to the SVM method of pattern recognition to solve K -class problems 

in one (formal) step, which do not use a combination of binary classification rules. In the 

work [23], the authors use the one-against-all SVM-based classifier for image orientation 

detection. The exploration of other multi- class SVM classifiers will be the future direction. 

2. K-Nearest Neighbor Rule 

The K -NN rule [36] assigns a test pattern to the majority class among its K nearest neighbors 

using a performance optimized value for k. There is no separate training procedure for K­

NN rule. It is a robust classifier, which gives a good classification accuracy in practice. The 

asymptotic error rate of K-NN rule is bounded by twice the Bayes error rate. The drawback 

of K -NN rule is its large computational requirement. Also, when the data are not properly 

scaled, the K -NN rule employing the Euclidean distance does not perform well. So, data 

normalization is inevitable in most cases. 

3. Hierarchical Discriminating Regression Tree 

The HDR algorithm [37] casts classification and regression problems into a unified regres­

sion framework. This unified view enables classification problems to use numeric infor­

mation in the output space-distance metric among clustered class labels for coarse and fine 

classifications. Clustering is performed in both output space and input space at each inter­

nal node of the regression tree. Clustering in the output space provides virtual labels for 

computing clusters in the input space. Features in the input space are automatically derived 

from the clusters in the output space. These discriminating features span the subspace at 

each internal node of the tree. A hierarchical probability distribution model is applied to 

the resulting discriminating subspace at each internal node. To relax the per-class training 

sample requirement of traditional discriminant analysis techniques, a sample-size dependent 

negative-log-likelihood (NLL) is employed. 

4. Mixture of Gaussian 

A mixture of Gaussians can be used to model a data set comprising of several distinct popu-
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lations. A Gaussian mixture model G(y), with K components can be written as 

k 

G(y) = L Wi * p(yBi) (2.2) 
i= l 

where wi is the mixing probabilities and Bi is the set of parameters (the mean and the co­

variance matrix) defining the ith component of the Gaussian mixture. The expectation max­

imization (EM) algorithm [38, 39] is a commonly employed parametric technique for esti­

mating parameters, wi and Bi , of a mixture of Gaussians, here . In [ 40] , the number of 

mixture components is automatically estimated along with the mixture parameters by incor­

porating a MDL technique within the EM steps. Although the EM method is unsupervised, 

in [6] , the authors employed it in a supervised fashion, learning a mixture for each class 

separately. The final classifier is designed using the estimated mixture parameters and then 

classifying based on the MAP classifier. The main limitations of this approach are that it 

doesnt scale well to large dimensional feature vectors and does not use the complete training 

data (each class is separately treated independent of the others) while estimating the mixture 

parameters. 

2.5 Scale-invariant Feature Transform 

Scale-invariant feature transform (SIFT) is an algorithm in computer vision to detect and describe 

local features in images. The algorithm was published by David Lowe in 1999 [ 41]. This approach 

transforms an image into a large collection of local feature vectors, each of which is invariant to 

image translation, scaling, and rotation, and partially invariant to illumination changes and affine 

or 3D projection. Following are the major stages of computation used to generate the set of image 

features [42] : 

1. Scale-space extrema detection: The first stage of computation searches over all scales and 

image locations. It is implemented efficiently by using a difference-of-Gaussian function to 

identify potential interest points that are invariant to scale and orientation. 

2. Keypoint localization: At each candidate location, a detailed model is fit to determine 
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Figure 2.5: sift matching 

location and scale. Keypoints are selected based on measures of their stability. 

3. Orientation assignment One or more orientations are assigned to each keypoint location 

based on local image gradient directions. All future operations are performed on image data 

that has been transformed relative to the assigned orientation, scale, and location for each 

feature, thereby providing invariance to these transformations. 

4. Keypoint descriptor: The local image gradients are measured at the selected scale in the 

region around each keypoint. These are transformed into a representation that allows for 

significant levels of local shape distortion and change in illumination. 

For image matching, SIFT features are first extracted from a set of reference images and stored in a 

database. A new image is matched by individually comparing each feature from the new image to 

this previous database and finding candidate matching features based on Euclidean distance of their 

feature vectors, as shown in Fig. 2.5. The keypoint descriptors are highly distinctive, which allows 

a single feature to find its correct match with good probability in a large database of features. 

The applications of SIFT includes object recognition [43], robot localization and mapping [44], 

panorama stiching, 3D scene modeling, recognition and tracking [45], human action recogni­

tion [ 46](more details can be found in [ 48]). 
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Face detection is one of the visual tasks which humans can do effortlessly. However, in computer 

vision, this task is not easy. A general statement of the problem can be defined as follows: Given 

a still or video image, detect and localize an unknown number (if any) of faces. The solution 

to the problem involves segmentation, extraction, and verification of faces and possibly facial 

features from an uncontrolled background. As a visual front-end processor, a face detection system 

should also be able to achieve the task regardless of illumination, orientation, and camera distance. 

Chellappa et al. [ 49] have conducted a detailed survey on face recognition research. In their survey, 

several issues, including segmentation and feature extraction, related to face recognition have been 

reviewed. 

Early efforts in face detection have dated back as early as the beginning of the 1970s, where 

simple heuristic and anthropometric techniques [50] were used. These techniques are largely rigid 

due to various assumptions such as plain background, frontal face and typical passport photograph 

scenario. To these systems, any change of image conditions would mean fine-tuning, if not a com­

plete redesign. Despite these problems, the growth of research interest remained stagnant until the 

1990s [ 49], when practical face recognition and video coding systems started to become a reality. 

Over the past decade there has been a great deal of research interest spanning several important as­

pects of face detection. More robust segmentation schemes have been presented, particularly those 

using motion, color, and generalized information. The use of statistics and neural networks has 

also enabled faces to be detected from cluttered scenes at different distances from the camera. Ad­

ditionally, there are numerous advances in the design of feature extractors such as the deformable 

templates and the active contours which can locate and track facial features accurately. 

The face detection algorithms can be classified into four categories [51]: 

• Knowledge-based methods. These rule-based methods encode human knowledge of what 

constitutes a typical face. Usually, the rules capture the relationships between facial features. 

These methods are designed mainly for face localization. 

• Feature invariant approaches. These algorithms aim to find structural features that exist 
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even when the pose, viewpoint, or lighting conditions vary, and then use these features to 

locate faces. These methods are designed mainly for face localization. 

• Template matching methods. Several standard patterns of a face are stored to describe the 

face as a whole or the facial features separately. The correlations between an input image 

and the stored patterns are computed for detection. These methods have been used for both 

face localization and detection. 

• Appearance-based methods. In contrast to template matching, the models (or templates) 

are learned from a set of training images which should capture the representative variability 

of facial appearance. These learned models are then used for detection. These methods are 

designed mainly for face detection. 

Fig. 2.6 summarizes algorithms and representative works for face detection in a single image within 

these four categories. 
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Chapter 3 

Histogram of Optimized Local Binary 
Pattern 

3.1 Introduction 

L OCAL binary pattem(LBP) operator is defined as a gray-scale invariant texture measure, 

derived from a general definition of texture in a local neighborhood [52]. Its main ap­

plication is facial expression analysis, including face recognition [53, 54] and facial expression 

recognition [55, 56]. Motivated by LBP, we make an extension to the original operator to achieve 

content-independent image orientation detection. In this chapter, we will present our proposed im­

age orientation detection approach- Histogram of Optimized Local Binary Pattem(HOOPLBP). 

In the experiments, we set up several plans to test HOOPLBP's performance in image orientation 

detection under different circumstances, including human face orientation detection. 

The rest of this chapter is organized as follows: we first review the initial local binary pattern 

in section 3 .2. Then the feature extraction and optimization of our proposed method is shown in 

section 3.3 and section 3.4. The experiment results are given in the last section. 

3.2 Gray Scale and Rotation Invariant Local Binary Patterns 

The LBP operator was defined as texture descriptor. We first review the LBP operator by defining 

texture T in a local circle area centered on each pixel of the image: 

(3.1) 

22 
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where 9c is the gray value of the center pixel and gp(P = 0, . .. , P- 1) correspond to the gray 

values of P equally distributed pixels around the center pixel on a circle of radius r (r > 0), shown 

in Fig. 3.1 . 
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(b) P = 18, r = 2.0 

Figure 3.1: Circularly symmetric neighbor sets for different (P, r). 

To achieve gray scale invariance, we subtract the gray value of the center pixel from the circu­

larly symmetric neighborhood gp(P = 0, ... , P- 1) and only consider the signs of the differences 

instead of the exact values, giving: 

T = t( s(go- 9c), s (gl- 9c), · · · , s(gP- 1- 9c)) , (3.2) 

where 

s(x) = { 1, x 2 0 
O, x < 0. 

We disregard the gray value of the center pixel from the texture descriptor T, because much of 

the information in the original joint gray level distribution( equation 3.1) is conveyed by the joint 

difference distribution. Because signed differences are not affected by local luminance changes, 

the descriptor is invariant against gray-scale shifts. We express the LBP operator in binary style 

for following processing compared with transfered to decimal numbers in other LBP related appli­

cations. 

The LBP operator can form 2P binary patterns, corresponding to the starting position of the P 

neighborhoods. When the image is rotated, the circle formed by the neighbor net of one pixel is 

correspondingly moved around the pixel. To remove the effect of the rotation, we can assign a 
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unique identifier to each rotation invariant local binary pattern: 

LBPP,r = m in{ROR(LBPP,r, i )j i = 0, 1, .. . , P - 1} , (3.3) 

where ROR(x, i ) perfomrs a circular bit-wise shift on the binary number xi times. 

3.3 Feature Extraction 

The attribute of rotation invariant of the LBP operator offers us a viable approach to record and 

detect the degree of the rotation. As mentioned above, the circle around certain pixel rotates the 

same degree as the whole Image rotates. To detect the degree, we record the sequence of the binary 

pattern which forms the minimum LBPP,r by recording the times of bit-wise shift i . For example, 

pattern 10011000 has the value of i as 5 if we perform circular left shifts and pattern 00010101 has 

the value of 0. We can deduce the degree of rotation with the following formula: 

(3.4) 

where i 1 and i2 denote the correspondent times of bit-wise shift of the original image and the 

rotated image. Hence, the difference of i of the same pixel in the original image and the rotated 

image denotes the degree of the rotation, and the precision of the degree is determined by the value 

P. The greater the value of P is, the higher the precision it achieves. If P equals 360, the precision 

of the degree will be 1 o which may not be perceived by a human. 

However it is not viable to locate the same pixel on two images. Furthermore, after rotation, the 

information of the neighbor set of the pixel may vary which will affect the result of the orientation 

detection. The attribute of rotation invariant of the LBP operator makes the changes of the LBP 

value over the whole image by the same amount which is caused by the rotation of the image. This 

is illustrated in Fig. 3.2. 

In Fig. 3.2, where 0 is the center of the rotation, LAOA' is the degree of the rotation. Point 

A denotes a pixel in the image and point B is a neighbor of pixel A. A' and B' denote the pixels 

after rotation respectively. We denote a as the angle between the line AB and axis x , f3 as the 

angle between the line A' B' and axis x . It can be seen that the difference( L B o' B') between a and 
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Figure 3.2: The explaination of rotational invariance 

f3 is equal to the degree of rotation LAOA'. It means when the image rotates() degrees around the 

center of 0, the relative neighbor set of an arbitrary pixel A rotates the same degree () around the 

center of point A. 

Therefore instead of using one pixel, we can use the histogram computed over a region of 

image. As mentioned above, the rotation of image changes the LBP value over the whole image by 

the same amount. It means the degree of the rotation of image converts to the bit-wise shifts of the 

histogram, like ROR(H, iii= 0, 1, 2 ... ), where H denotes the histogram, i denotes the degree of 

rotation. Then we can deduce the degree of rotation with the following formula: 

Deg = min{d(H1 , ROR(H2 , iii= 0, 1, 2 ... ))} (3.5) 

where H1 , H2 denote the histogram of the original image and the rotated image. d(H1 , H2 ) is the 

distance matrix used for the comparison of the histograms. 

In our experiments, we use two different histogram comparison algorithms under different 

environments. The first is chi - square, high scores indicate good matches and low scores indicate 

bad matches, described as follows: 

(3.6) 

The other comparison method is the earth mover's distance(EMD), which is a mathematical 

measure of the distance between two distributions. Intuitively, given two distributions, one can be 

seen as a mass of earth properly spread in space, the other as a collection of holes in that same 

space. Then, the EMD measures the least amount of work needed to fill the holes with earth. 

Here, a unit of work corresponds to transporting a unit of earth by a unit of ground distance. If the 
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domain Dis discrete, the EMD can be computed by solving an instance transportation problem, 

which can be solved by the so-called Hungarian algorithm. In particular, if D is a one-dimensional 

array of bins, the EMD can be efficiently computed by scanning the array and keeping track of 

how much dirt needs to be transported between consecutive bins. 

3.4 Optimization 

We need calculate numerous interpolations for each pixel to achieve high precision. If we want 

to get the precision of 1 o , we need 360 calculations for each point. Therefore the process is time­

consuming. In the following of the section, we give an optimization of the algorithm which saves 

us a great amount of time. 

y 

q 

p 
f• g 

Figure 3.3: Linear interpolation in quadrant 1 

The local binary pattern measures the signs of the difference between one pixel and its neighbor 

set regardless of the exact values of the difference. Because the neighbor sets of the pixel are 

calculated by linear interpolation, the values are monotonic in each one of the four quadrants. In 

Fig. 3.3, if the value of point a is less than that of point x , and the value of point c is bigger than 

that of point x , the value of the interpolated points will monotonic increasing along the perimeter 

of the circle from point a to point c. It means the sign of the difference will be 0 untill it meets 

the point whose interpolated value is the same as point x , then the sign will change to 1 and keeps 
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1 till the end point c. In short, it converts the numerous jobs of interpolation to finding a point on 

the circle whose value is the same as point x which definitely reduce the computation by a large 

amount. 

We illustrate the mathematical relations and how to find the points in four quadrants in Fig. 3.3, 

Fig. 3.4, Fig. 3.5 and Fig. 3.6, each followed by a list of equations and constraints, containing 

two variables. Then the set of linear equations are converted to a quartic equation. 

• Quadrant l(Fig. 3.3) 

m=x+(a-x)p 

n = c + (b- c)p 

x = m+ (n- m)q 

0<p<1 

0<q<1 

(3.7) 

where p, q are the ratio of the segments ax and ex. m, n denote the temporary points on 

segments ax and ex after linear interpolation. By eliminating variables, the above equations 

can be converted to a quartic equation: 

(b- c- a+ x) 2p4 + 2(b- c- a+ x)(c- x)p3+ 

[(c- x) 2 + (x- a) 2
- (b- c- a+ x) 2)p2

-

2(b- c- a+ x)(c- x)p- (c- x) 2 = 0 

• Quadrant 2(Fig. 3.4) 

m=x-(e-x)p 

n=c-(d-c)p 

x=m+(n-m)q 

-1 < p < 0 

O<q<l 

(3.8) 

(3.9) 
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Figure 3.4: Linear interpolation in quadrant 2 

where p, q are the ratio of the segments ax and ex. m , n denote the temporary points on 

segments ax and ex after linear interpolation. By eliminating variables, the above equations 

can be converted to a quartic equation: 

(e + e- d- x) 2p4 + 2(e + e- d- x)(e- x )p3+ 

[(e- x) 2 + (e - x) 2
- (e + e- d- x)2)p2

-

2(e + e - d- x )(e - x )p- (e - x )2 = 0 

• Quadrant 3(Fig. 3.5) 
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Figure 3.5: Linear interpolation in quadrant 3 

(3.10) 



p2 + q2 = 1 

m=x-(e-x)p 

n=g-(f-g)p 

x=m-(n-m)q 

-1 < p < 0 

-1 < q < 0 
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(3.11) 

where p, q are the ratio of the segments ax and ex. m, n denote the temporary points on 

segments ax and ex after linear interpolation. By eliminating variables, the above equations 

can be converted to a quartic equation: 

(e + g- f- x)2p4 + 2(e + g- f- x)(g- x)p3+ 

[(g- x)2 + (e- x)2- (e + g- f- x)2]p2-

2(e + g- f- x)(g- x)p- (g- x)2 = 0 

• Quadrant 4(Fig. 3.6) 
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Figure 3.6: Linear interpolation in quadrant 4 

(3.12) 



m=x+(a-x)p 

n=g+(h-g)p 

x=m-(n-m)q 

O<p<l 

-1 < q < 0 
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(3.13) 

where p, q are the ratio of the segments ax and ex. m, n denote the temporary points on 

segments ax and ex after linear interpolation. By eliminating variables, the above equations 

can be converted to a quartic equation: 

(h- g- a+ x) 2p4 + 2(h- g- a+ x)(g- x)p3+ 

[(a- x) 2 + (g- x) 2
- (h- g- a+ x) 2]p2

-

2(h- g- a+ x)(g- x)p- (g- x) 2 = 0 

(3.14) 

As we know, the quartic is the highest order polynomial equation that can be solved by radicals in 

the general case. So we find the point by solving a quartic equation and find the feasible solution. 

Given the general quartic equation: 

Ax4 + Bx3 + Cx2 + Dx + E = 0 (3.15) 

Using Ferrari's method, its solution can be found by means of the following formula: 

B ±sW ±tV -(3a + 2y ±s u;) 
X = - -4A- + -----=----2----- (3.16) 

where 



U = ifli( either sign of the square root will do) 
W = vfa+2y 
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The two ±8 must have the same sign, the ±t is independent. To get all roots, compute x for 

±s, ±t = +, + and for +, - and for -, + and for -, -. This formula handles repeated roots 

without problem. 

3.5 Experiment results 

In this section, we will show the experiment results of our proposed image orientation detection 

methods. Originallly, the HOOPLBP is designed for digital images orientation detection. Further 

we apply it to human face orientation detection and achieve impressive results. We will present 

each experiment separately in the following sections. At first, HOOPLBP in digital image orienta­

tion detection is shown is section 3.5.1. Then application in face orientation detection is given in 

the next section. 

Empirically, we convolve filter w with each image before applying HOOPLBP. w is an average 

filter: 
1 1 1 1 1 

1 
1 1 1 1 1 

w = 25 1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

The pixel values after image rotation must have some differences. Applying an average filter can 

reduce the effect caused by the differences. 

3.5.1 HOOPLBP in Digital Image Orientation Detection 

For the experiments, we use bisection method to find the minimum range of proposed method. The 

bigger the range is, the more accurate the result is. In the following, we choose two different sets 

of images for testing. The first set is artificial images mainly from cartoons and computer games to 

reduce the effect of noises and fully show the ability of the method. The rotation of the images is 

achieved by the computer program. The second set of images are real photos. The rotation of the 

images is also performed by rotating the camera on purpose while taking the photos. The results 



are shown in Fig. 3.7. 

(Original) 
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(R = 60, D = 60) 

(R = 150, D = 150) 

(R = 240, D = 240) 

(R = 330, D = 330) 

(D = 30) 

Figure 3.7: Experiments results. R and D denote the real rotation degree and detected rotation degree 
respectively. 
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The minimum range for optimum performance is 30°. Therefore, we rotated the artificial image 

every 30° and use chi - square for histogram comparison. The degree of rotation detected by 

our approach is the same as which we rotated. For real photos, first we used noise reduction 

techniques. The result shows us the rotation degree of the camera is 30°, which is nearly the same 

as we estimated by human eyes. We use EMD for histogram comparison for real photos. EMD 

shows a better performance but is much slower. 

In the next experiment, we show the differences between our proposed method and SIFT in 

orientation detection. SIFT is also a robust algorithm in orientation detection, as few as 3 SIFT 

features from an object are enough to compute its location and pose. Although it is invariant to 

image scale and rotation, it is restricted to image sources. It means the content of the images 

should be the same, because it is based on the keypoints detection and matching. The scale and 

rotation changes doesn't effect the content of the scene. This can be illustrated in Fig. 3.8. In 

Fig. 3.8(a), the two images have the same content but different scales and the matching is perfect. 

The difference of orientation is easily calculated as 0°. However in Fig. 3.8(b ), the two images are 

different and there is no matching at all, although the two images are very similar. 

(a) SIFT features matching 1 

(b) SIFT features matching 2 

Figure 3.8: SIFT matching under different situations 
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Our proposed method is a content-independent approach compared with SIFT. It is based on 

the contrast of the nearby pixels and a region-based histogram. The advantage of the method in 

orientation detection is its effectiveness in similar images, as illustrated in Fig. 3.9. The degree of 

rotation detected by our method is 5° which is reasonable and acceptable. Fig. 3.10 shows some 

other examples using HOOPLBP in content-independant orientation detection. 

I ~'\ r 

........... . .• ~ 
... ~)J 
' ., d 

(Original) (D = 5) 

Figure 3.9: Experiment result. D denotes the detected degree by the HOOPLBP 

(Original) (D = 180) 

(Original) (D = 24) 

Figure 3.10: Examples of content-independent orientation detection using the HOOPLBP. D denotes the 
detected degree by the HOOPLBP. 

The algorithm proposed in section 2 was implemented under MATLAB. Using the optimization 

described above, the processing time is less than one second compared with several minutes of 

implementation without optimization. 
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3.5.2 HOOPLBP in Face Orientation Detection 

Human faces, of no matter what races or sex, have a set of similar features. Although they are 

easily observed by humans, it is difficult for computers. In this section, by training a general face 

model based on the HOOPLBP, our method can successfully detect the orientation of a human 

face. 

1. Image Data and Experimental Setup 

In our experiments, we use The Database of Faces (formerly 'the ORL Database ofF aces') [57]. 

There are ten different images of each of 40 distinct subjects. For some subjects, the images 

were taken at different times, varying the lighting, facial expressions (open I closed eyes, 

smiling I not smiling) and facial details (glasses I no glasses). All the images were taken 

against a dark homogeneous background with the subjects in an upright, frontal position 

(with tolerance for some side movement). Based on the original form of the database, we ro­

tated each image every 30 degrees. It means each single image now has 12 duplications with 

different orientations. The total size of our database is 4800. The samples of the database 

are shown in Fig. 3.11. 

Figure 3.11: Samples of the database used in the experiment: one persone with different frontal 
position and 12 orientations. 
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We further divided the database into two categories for experiments: category I and category 

II. Category I includes eight images with 12 orientations of each subject for the first 30 

subjects, totally 2880. Category II includes the rest of the database, which includes two 

images with 12 orientations of each subject for the first 30 subjects and all ten images with 

12 orientations of each subject for the last 10 subjects, totally 1920. 

2. Experimental Plan 

Three separate experiments are planed to demonstrate the performance ofHOOPLBP in face 

orientation detection. 

(a) Use HOOPLBP to test the face orientation of the same image with different orienta­

tions. Compare the result with other content-based images. 

(b) Use HOOPLBP to build one model for each orientation using database category I and 

compare the 12 models to test if the models have bit-wise shift relations. 

(c) Use HOOPLBP to build one model from category I and use it for face orientation 

detection in category II to test the recognition rate. 

3. Experimental Results 

In the rest of the section, we present the experimental results according to the experimental 

plan using the Database of Faces. 

(a) In this experiment, we use bisection method to find the minimum range of orientation 

detection precision. The example images of human face and other content-based im­

ages are shown in Fig. 3.12. The range lies in around 30° with other content-based 

images, while the range decreases to less than 5° with human face images. There­

fore, HOOPLBP shows better results in face images than others with the same pre­

processing techniques and other environments. The results can be further improved by 

specific processing skills. 
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Figure 3.12: The examples of human face and other content-based images 

(b) In this experiment, we use the mean of each orientation of category I for each model 

which are shown in Fig. 3.14. It means each model is built from 240 images. From 

the figure, we can observe the movements of the four waves, 30°/ each tim e, which 

shows their bit-wise shift relations. The orientation detection rate is 100% among these 

12 models. Because we get the models from the means of different images, we can 

conclude that HOOPLBP is a content-independent orientation descriptor and works 

very well with human faces. 

(a) (b) 

Figure 3.13: The HOOPLBP of a normal single face and the feature after average filter 

(c) From the above experiment, the 12 models have close bit-wise shift relations. Therefore 

we simply use the upright face model as a universal model for this experiment. The 

HOOPLBP of a normal single face and the histogram after average filter is shown 
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in Fig. 3.13. The orientation recognition rate with database category II is 66.67% 

with 80% upright face orientation recognition rate. We concern about the orientation_ 

recognition rate of upright face more, because they can be detected by present face 

detection approaches. We don't want them be mis-detected by our algorithm. By 

multiplying A(O < A < 1) with the chi - square value around 0 degree, we can 

increase the orientation recognition rate of upright face without decrease the overall 

orientation detection rate a lot. When A = 0.9, the orientation recognition rate over 

category II is 63.02% with 90.62% upright face orientation recognition rate. 

The experiments show a very impressive results, especially the orientation recognition rate 

with 100% among the models. Considering that the images have differences in the head ori­

entation, the lighting and the scaling and the face details are also various at beard, wrinkles, 

glasses and expressions, the orientation recognition rate is good enough. From Fig. 3.13 (a), 

the HOOPLBP of a single face contains many high-frequency signals, but the ensemble 

shows clear indication and very similar with the above models. 

3.6 Summary 

In this chapter, we present the Histogram of Optimized Local Binary Pattern(HOOPLBP) which 

is a new and robust content-independent orientation detection algorithm. We use the bit-wise shift 

times as the feature value instead of the original LBP value which offers us a new method in 

orientation detection. The method is gray scale and illumination invariant by using the pixel con­

trast. The optimization upgrades the original local binary pattern to high precisions and reduces 

the run time by a large amount. The usage of histogram makes the proposed method content­

independent, which makes the method different from other approaches. The experiments show 

that the method is robust and efficient. Moreover, we set up a set of experiments for the appli­

cation of human face orientation detection and got very positive and impressive results. Based 

on LBP, HOOPLBP gets better results in human face images than other content-based images. 

The algorithm can successfully detect face orientations, rotated up to ± 180° in the image plane. 
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Without further pre-processing and training, the overall recognition rate can achieve 63.02% with 

upright face recognition rate to 90.62%. The future research will focus on learning a better model 

to increase the orientation detection rate. 
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Figure 3.14: The HOOPLBP models for 12 orientations. D denotes the rotation degree between the model 
and the upright face model. 



Chapter 4 

Hybrid Face Detection Algorithm 

4.1 Introduction 

F ACE detection is an important task in computer vision, especially in human-computer inter­

action. Most recent face detection approaches detect only upright human faces. Some re­

ported that it can detect highly variable face patterns, rotated up to ±20 degrees in image plane [58]. 

With our tests, the algorithm in [59] can detect faces within 15 degrees. However there are lots of 

images and photos with human faces rotated up to ±180 degrees. [60] presents a face orientation 

detection method. However it detects the orientation after face detection. So a face orientation de-

tection method before face detection is needed. In this chapter, we propose a hybrid face detection 

system by integrating the HOOPLBP and candidate selection method. The proposed system can 

successfully detect the faces within 360° rotation. 

In the remaining of this chapter, we will present the details of our proposed system. In sec­

tion 4.2, the diagram of our proposed system is shown. Then we implement the system by two 

different methods according to that if the input images are in grayscale or in color. We will discuss 

the methods of grayscale images in section 4.3, and the face detection system of color images is 

shown in section 4.4, followed by the summary of this chapter. 

41 
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4.2 Proposed System 

The state-of-the-art face detection system use either a pyramid searching scheme or a candidate 

selection based scheme. One advantage of candidate selection based method is fast, which can 

eliminate most of the non-face regions. In this thesis, we propose a hybrid face detection algorithm 

which integrates the candidate selection phase with our HOOPLBP operation to succseefully detect 

faces with rotation within the plane. Our system is the first that can detect faces with arbitrary­

degree-rotation. The diagram of the system is shown in Fig. 4.1. 

The conception of the system is as follows. By selecting the potential face regions, apply the 

face orientation detection method to these candidates. Rotate faces to its upright position, and 

detect the faces. An illustration of the process used in this thesis is given in Fig. 4.2. 

•-----lJI-~1 Orientation Detection jt------IJI-~ 1 Upright Face Detection 

~------~ 

Candidate Selection 

Figure 4.1: The diagram of the hybrid face detection system 

Candidates Selection Combination and Morphological Operation 

Face Detection 

HOOPLBP Operation and Rotation 

Figure 4.2: An illustration of the proposed hybrid face detection system 

The first stage of the proposed scheme is locating the potential face regions. For color images, 

skin color segmentation is the most usable technology for candidate selection. However there 
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are also lots of gray images to be processed. Furthermore, most of the database for face related 

research are gray images. In such images, there are no color information so that we cannot apply 

skin color segmention for candidate selection. To achieve our proposed face detection system in 

gray images, we trained a cascade of classifiers(Viola-Jones detector). The cascade of classifier 

algorithm was first introduced by Paul Viola [61] and improved by Rainer Lienhart [62] for the 

object detection, and implemented in OpenCV library. There are totally 20 stages in the cascade 

for face detection implemented in OpenCV. In this thesis, we use the first 15 stages to build up a 

set of candidates in an image to be further processed by the HOOPLBP. The number of stages for 

candidate selection is decided by trial and error, to achieve the optimum candidate selection rate. 

Less stages lead to too many candidates that will increase the further computational complexity. 

Otherwise, More stages will take the tilted human faces as negative and increase the false positive 

rate. 

After candidate selection, the HOOPLBP is used for orientation detection. The details were 

discussed in chapter 3. The last phase of the system is upright face detection. The upright face 

detection algorithm can be chosen arbitrarily, because most of the state-of-the-art face detection 

algorithms perform well in upright face detection. In this thesis, we use the same Viola-Jones 

detector for both grayscale image processing and color image processing. It means we will apply 

the cascade of classifiers twice. At first time, we use the begining several stages of the cascade for 

candidate selection. At second time, all the stages are used for face detection. 

4.3 Face Detection in Gray Image 

Viola-Jones detector offers us a great tool for candidate selection in grayscale images. It uses 

a cascade of classifiers to achieve fast processing. The structure of the cascade reflects the fact 

that within any single image an overwhelming majority of sub-windows are negative. As such, 

the cascade attempts to reject as many negatives as possible at the earliest stage possible. In our 

system, we use the first several stages of the cascade of classifiers to eliminate most of the non-face 

regions, but preserve the potential face regions, either upright or tilted. In the rest of this section, we 

will introduce the Viola-Jones detector first. Then training our own detector using OpenCV library 
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is shown. The orientation detection phase and upright face detection phase are also included. We 

will also give experiment results after each subsection. 

4.3.1 Viola-Jones detector 

Haar Like Features 

The simple features used are reminiscent of Haar basis functions which have been used by Papa­

georgiou et al. [ 63]. More specifically, the method uses three kinds of features. The value of a 

two-rectangle feature is the difference between the sum of the pixels within two rectangular re­

gions. The regions have the same size and shape and are horizontally or vertically adjacent (see 

Fig. 4.3). A three-rectangle feature computes the sum within two outside rectangles subtracted 

from the sum in a center rectangle. Finally a four-rectangle feature computes the difference be­

tween diagonal pairs of rectangles. 

B 
A B 

[[]] 

c D 

Figure 4.3: Example rectangle features shown relative to the enclosing detection window. The sum of the 
pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles. 
Two-rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a 
four-rectangle feature. 

Integral Image 

Rectangle features can be computed very rapidly using an intermediate representation for the image 

which we call the integral image. The integral image at location x, y contains the sum of the pixels 
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above and to the left of x, y, inclusive: 

ii (x, y) = L i (x' , y') (4.1) 

where ii (x, y) is the integral image and i (x, y) is the original image (see Fig. 4.4). Using the 

following pair of recurrences: 

s(x, y) = s(x, y- 1) + i (x, y) (4.2) 

ii (x, y) = ii (x - 1, y) + s(x, y) (4.3) 

(where s(x, y) is the cumulative row sum, s(x, -1) = 0, and ii ( - 1, y) = 0) the integral image can 

be computed in one pass over the original image. 

Using the integral image any rectangular sum can be computed in four array references (see 

Fig. 4.5). Clearly the difference between two rectangular sums can be computed in eight refer­

ences. Since the two-rectangle features defined above involve adjacent rectangular sums they can 

be computed in six array references, eight in the case of the three-rectangle features, and nine for 

four-rectangle features. 

(x,y) 

Figure 4.4: The value of the integral image at point ( x , y) is the sum of all the pixels above and to the left. 



46 

A B 

1 2 

c D 

3 4 

Figure 4.5: The sum of the pixels within rectangle D can be computed with four array references. The 
value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is 
A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be computed as 
4 + 1 - (2 + 3). 

Adaboost - Learning Classification Functions 

In [61], Paul Viola et al. used detectors of resolution 24 x 24 on 384 by 288 pixel images. The 

exhaustive set of rectangle features is quite large, 45, 396, a number far larger than the number of 

pixels. Even though each feature can be computed very efficiently, computing the complete set is 

prohibitively expensive. Therefore, in the system an AdaBoost learning algorithm is used both to 

select the features and to train the classifier [ 64]. 

In practice no single feature can perform the classification task with low error. Features which 

are selected early in the process yield error rates between 0.1 and 0.3. Features selected in later 

rounds, as the task becomes more difficult, yield error rates between 0.4 and 0.5. Table 1 shows 

the learning algorithm. 



• Given example images (x1 , y1 ) , ... , (xn, Yn) where Yi = 0, 1 for negative and posi­
tive examples respectively. 

• Initialize weights w1,i = 2~, tz for Yi = 0, 1 respectively, where m and l are the 
number of negatives and positives respectively. 

• Fort = 1, ... , T: 

1. Normalize the weights, 
wt , i 

Wt . +-- =--~--
,t ""n t . 

L...,.j=l w ,J 

so that Wt is a probability distribution. 

2. For each feature j, train a classifier hj which is restricted to using a single 
feature. The error is evaluated with respect to Wt, Ej = I: iwi lhj(xi ) - yJ 

3. Choose the classifier ht, with the lowest error Et . 

4. Update the weights: 
t '{3tl-e · 

Wt+l ,i = W '~ t 

where ei = 0 if example xi is classified correctly, ei 1 otherwise, and 
{3 - _§__ 

t - 1-c:t " 

• The final strong classifier is: 

where at = log -/J; 
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Table 4.1: The boosting algorithm. T hypotheses are constructed each using a single feature. The final hy­
pothesis is a weighted linear combination of the T hypotheses where the weights are inversely proportional 
to the training errors [ 61]. 
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Cascade 

Cascade algorithm was designed for constructing a cascade of classifiers which achieves increased 

detection performance while radically reducing computation time. The key insight is that smaller, 

and therefore more efficient, boosted classifiers can be constructed which reject many of the neg­

ative sub-windows while detecting almost all positive instances. Simpler classifiers are used to 

reject the majority of sub-windows before more complex classifiers are called upon to achieve low 

false positive rates. 

The structure of the cascade is that of a degenerate decision tree (see Fig. 4.6). A positive 

result from the first classifier triggers the evaluation of a second classifier which has also been 

adjusted to achieve very high detection rates. A positive result from the second classifier triggers a 

third classifier, and so on. A negative outcome at any point leads to the immediate rejection of the 

sub-window. 

Figure 4.6: Schematic depiction of a the detection cascade. A series of classifiers are applied to every sub­
window. The initial classifier eliminates a large number of negative examples with very little processing. 
Subsequent layers eliminate additional negatives but require additional computation. After several stages of 
processing the number of sub-windows have been reduced radically. Further processing can take any form 
such as additional stages of the cascade or an alternative detection system [ 61]. 

Each stage was trained using the Discrete Adaboost algorithm [ 65] . Discrete Adaboost is 

a powerful machine learning algorithm. It can learn a strong classifier based on a (large) set of 
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weak classifiers by re-weighting the training samples. Weak classifiers are only required to be 

slightly better than chance. At each round of boosting, the feature-based classifier is added that 

best classifies the weighted training samples. With increasing stage number, the number of weak 

classifiers, which are needed to achieve the desired detection rate and false positive rate, increases. 

4.3.2 Training a Cascade Clssifier in OpenCV 

Training the cascade classifier for candidate selection and upright face detection is complished 

by using OpenCV library. OpenCV (Open Source Computer Vision) is a library of programming 

functions mainly aimed at real time computer vision. It was originally developed by Intel, and now 

is supported by OpenCV community. It is free for commercial and research use under the open 

source BSD license. Th library is written in C and C++ and runs under Linux, Windows and Mac 

OS X. There is active development on interfaces for Python, Ruby, Matlab, and other languages. 

One of OpenCVs goals is to provide a simple-to-use computer vision infrastructure that helps 

people build fairly sophisticated vision applications quickly. The OpenCV library contains over 

500 functions that span many areas in vision, including factory product inspection, medical imag­

ing, security, user interface, camera calibration, stereo vision, and robotics. Because computer 

vision and machine learning often go hand-in-hand, OpenCV also contains a full, general-purpose 

Machine Learning Library (MLL ). This sub library is focused on statistical pattern recognition and 

clustering. The MLL is highly useful for the vision tasks that are at the core of OpenCV s mission, 

but it is general enough to be used for any machine learning problem. 

The algorithm discussed in the previous section is commonly known as the Viola-Jones de­

tector, which is implemented in OpenCV OpenCV refers to this detector as the Haar classifier 

because it uses Haar features or, more precisely, Haar-like wavelets that consist of adding and 

subtracting rectangular image regions before thresholding the result. OpenCV ships with a set 

of pretrained object-recognition files , but the code also allows you to train and store new object 

models for the detector. 

In this thesis, we used OpenCV library to train our own cascade of classifiers. The four steps of 

training a classifier are described as following (For more details, see the haartraining reference 

PROPERTY OF 
YERSON UNIVERSITY liBRARY 
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manual supplied with OpenCV in the opencv / apps / H aarTraining /doc directory.): 

1. Gather a data set consisting of examples of the object you want to learn, also called positive 

samples. In our cases, the object we used are a set of face imgaes. Then these are stored in 

one or more directories indexed by a text file in the following format: 

<path> / img_name_1 counL1 x11 y11 w11 h11 x12 y12 .. . 

<path> / img_name_2 counL2 x21 y21 w21 h21 x22 y22 .. . 

Each of these lines contains the path (if any) and file name of the image containing the 

faces. This is followed by the count of how many faces are in that image and then a list of 

rectangles containing the faces. The format of the rectangles is the x - andy- coordinates 

of the upper left comer followed by the width and height in pixels. 

To make the classifier work well, a lot of high-quality data need to be gathered. High qual­

ity means that youve removed all unnecessary variance from the data. Therefore, in our 

experiment, we choose the MIT CBCL FACE DATABASE. It cantains 2, 429 faces for 

training. The images are 19 x 19 grayscale PGM format images, and all of them are high­

quality images which are well aligned using eyes, the nose and mouth. The samples of the 

database are shown in Fig. 4.7. Because the positive samples we used contain only one 

face each that occupies the whole image, the index file in our experiment looks like this: 

data/ faces / face_OOOOl.pgm 1 0 0 19 19 

data/ faces/ face_00002.pgm 1 0 0 19 19 

2. Use the utility application createsamples to build a vector output file of the positive sam­

ples. Using this file, you can repeat the training procedure below on many runs, trying 

different parameters while using the same vector output file. For example: 

createsamples -vee faces. vee -info faces.idx -w 30 -h 40 

This reads in the faces. idx file described in step 1 and outputs a formatted training file, 

' .. ... 'I' • • 
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Figure 4. 7: The training images used in the experiment. 

faces.vec. Then createsamples extracts the positive samples from the images before nor­

malizing and resizing them to the specified width and height (here, 30 - by - 40). Note 

that createsamples can also be used to synthesize data by applying geometric transforma­

tions, adding noise, altering colors, and so on. This procedure could be used (say) to learn 

a corporate logo, where you take just one image and put it through various distortions that 

might appear in real imagery. More details can be found in the OpenCV reference manual 

haartraining located in Iapps/ HaarTraining/doc/. 

In this thesis, we just used the createsamples function to generate . vee file to be used in the 

final step. 

3. The Viola-Jones cascade is a binary classifier: It simply decides whether or not (yes or no) 

the object in an image is similar to the training set. Thus it needs a set of "no" samples 

as well, also called negative samples, so that the classifier can learn what does not look 

like our object. Any image that doesnt contain the object of interest can be turned into a 

negative sample. In this thesis, we collected the negative samples from the same MIT CBCL 
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Face Database, which are located in train/non-face directory. The samples of the non-faces 

images are shown in Fig. 4.8. Again we put the images into one or more directories and 

then make an index file consisting of a list of image filenames, one per line. To be specific, 

an image index file called backgrounds. idx was used in our experiment and contains the 

following path and filenames of image collections: 

datalnon-face/B ]_0000 l.pgm 

datalnon-face/B2 _00002.pgm 

Figure 4.8: The non-faces images used for training in the experiment. 

4. Training. Here's the training call which was used in the experiment: 

Haartraining I 

-data face_c/assifier I 

-vee faces.vec -w 19 -h 19 I 

-bg backgrounds.idx I 



-nstages 15 I 

-nsplits 1 I 

[-nonsym] I 

-minhitrate 0.998 I 

-maxfalsealarm 0. 5 
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In this call, the resulting classifier will be stored inface_c/assifier.xml. Here faces.vec is the 

set of positive samples, and random images extracted from backgrounds.idx will be used as 

negative samples. The cascade is set to have 15 stages, where every stage is trained to have 

a detection rate of0.998 or higher. 

In practice, a single face region can be detected as several candidates. It makes no sense to 

successfully detect the subregion orientation and will lead to final error of face detection. 

Toward this end it is useful to postprocess the detected skin regions in order to combine 

overlapping detections into a single detection. The set of detections are first partitioned into 

disjoint subsets. Two detections are in the same subset if their bounding regions overlap. 

Each partition yields a single final detection. The comers of the final bounding region are the 

average of the comers of all detections in the set. In some cases this postprocessing decreases 

the number of false positives since an overlapping subset of false positives is reduced to a 

single detection. 

We show the results of candidate selection using the trained cascade of classifiers in Fig. 4.9 

and Fig. 4.10 



Figure 4.9: Candidate selection using the cascade of classifiers: part 1 

Figure 4.10: Candidate selection using the cascade of classifiers: part 2 

4.3.3 Rotation Detection and Upright Face Detection 

We have several candidates from one image. Then the candidates are sent to process using the 

HOOPLBP. Campared with the general model we discussed in section 3.5.2, the orientation will 

be determined and the sub-region will be rotated by the degree. If the candidates contain a face, 
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it will be rotated to its upright position. Otherwise, non-face candidates will be rotated to a ran-

dom orientation detected by the HOOPLBP. Examples of candidates before and after detection are 

shown in Fig. 4.11 and Fig. 4.12. 

After rotating every candidates, they are forwarded to an existing upright face detection al­

gorithm. In this thesis, we still use the Viola-Jane detector as the final detection method. It is 

implemented in OpenCV library, so that we suppose it have a good and stable performance. All of 

the 20 stages of the cascade of classifiers are used at this phase. If the detection result is positive, 

we map the position of the candidate back to the original input image. Otherwise, nothing will be 

done to the input image. Fig. 4.13 - Fig. 4.16 show the detection results by applying our proposed 

hybrid face detection algorithm for grayscale images. 

Figure 4.11: The HOOPLBP applied to candidates:part 1 
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Figure 4.12: The HOOPLBP applied to candidates:part 2 

Figure 4.13: The result of face detection: part 1 
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Figure 4.14: The result of face detection: part 2 

Figure 4.15: The result of face detection: part 3 
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Figure 4.16: The result of face detection: part 4 

4.4 Face Detection in Color Image 

Color information is an efficient tool for identifying potential facial areas if the skin color model 

can be properly adapted for different lighting environments. However, such skin color models are 

not effective where the spectrum of the light source varies significantly. In other words, color ap­

pearance is often unstable due to changes in both background and foreground lighting. Though 

the color constancy problem has been addressed through the formulation of physics-based mod­

els [66], several approaches have been proposed to use skin color in varying lighting conditions. 

McKenna et al. presented an adaptive color mixture model to track faces under varying illumi­

nation conditions [ 67]. Instead of relying on a skin color model based on color constancy, they 

used a stochastic model to estimate an objects color distribution online and adapt to accommodate 

changes in the viewing and lighting conditions. Preliminary results show that their system can 
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track faces within a range of illumination conditions. However, this method cannot be applied to 

detect faces in a single image. In this thesis, we adopt the illumination compensation approach in 

[59]. The algorithm is used on images in grayscale. Therefore, we process the 3 channels of a color 

image separately. This illumination compensation procedure can count the effects of illumination 

variations, local shadowing and highlights in the original image, which may preserve the essential 

elements for further skin color segmentation. 

In the next sections, we will present the illumination compensation methods, and skin color 

segmentation algorithm we used in this thesis. The experiment results are given at last. 

4.4.1 Illumination Compensation 

Illumination compensation consists of several stages, including gamma intensity correction (GIC), 

difference of Gaussian (DoG), local histogram matching (LHM) and local normal distribution 

(LND). 

GIC corrects the overall brightness variation of the input image s(x, y). This procedure com­

pensates pixel values of an image, under unknown lighting conditions, by exponentiation to best 

match a canonically illuminated image s0 (x, y), under the normal lighting condition. The GIC 

corrected image s(x, y) is computed by transforming the input image over its position (x , y) pixel 

by pixel with an optimal Gamma coefficient r* 

s' (x, y) = G(s(x, y ); r* ) (4.4) 

1 

where G ( s ( x, y) ; r ) = c · s -;y ( x, y), c is a gray stretch parameter, and r* can be computed as 

r* = argmin-y L)G(s(x, y) ; r )- s0 (x , y)] 2 (4.5) 
x,y 

GIC can enhance the local dynamic range of the face in dark or shadowed regions, compress in 

bright regions and at highlights, and compensates for global brightness changes of an image. In 

the implementation of GIC, r* is approximated using the golden section search with parabolic 

interpolation proposed in [68]. 

The intensity gradients such as shading effects are removed through a DoG filter, which is 

a popular method to obtain the resulting bandpass behavior for images. The selected values of 
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smaller or inner Gaussians are typically quite narrow so the detailed spatial information in high 

frequency is kept, while the outer ones might have more contents for low frequency. 

We then apply LHM after GIC and DoG. To get the LHM transfer function, the histogram 

distribution of the input image and its local window are calculated first. The levels of the input 

image from previous processing is equalized by 

k = O,l , ... ,L- 1 (4.6) 

where n is the total number of pixels, ni is the number of pixels with gray level r i, and L is the 

number of discrete gray levels. The histogram distribution function G ( z) from the local window 

can be obtained by 

~ ~ni G(z ) = Vz = ~Pz (z) ~ ~- = Sk 
n 

0 i=O 

(4.7) 

where Pz(z ) represents the specified desirable PDF for output image in local window, and follow 

the transformation: G ( z ) = T ( r). The inverse transformation function z = c-1 
( s) is then applied 

to the levels obtained in Equation 4.6. The new, revised version of the original image consists of 

gray levels characterized by the specified density Pz ( z) which is then given by 

z = c-1 (s) or z = c-1 [T(r )] (4.8) 

Finally, LND is applied on the resulting image by assuming the gray values drawn form a normal 

distribution. The output image c( x , y) is normalized using ( 6) 

( ) c-1 
( s) - 1-li 

c x, y = 
(Ji 

(4.9) 

where J-li and ai are the mean and standard deviation of c-1 [T( r)] over the whole image. 

4.4.2 Candidate Selection 

Skin chrominance information is used in skin color segmentation. In existing skin color segmenta­

tion methods, all visible colors are partitioned into two opposite groups: skin color versus nonskin 

color. Two color models have been evaluated and used. The YCbCr model is naturally related to 

MPEG and JPEG coding. The HSV (Hue, Saturation, Value) model is used mainly in computer 
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graphics and is considered by many to be more intuitive to use, closer to how an artist actually 

mixes colors. According to [69], the cluster of skin color is less compact in HSV space than in 

YCbCr. The projection onto the HS plane only is used by some authors like in [70] where skin 

color classification is performed by setting appropriate thresholds to Hue and Saturation. 

In this thesis, we adopt a skin color segmentation method based on HSV color model. In a 

HSV color model, H ans S components contain the chromatic information and V represents the 

luminace information. HSV color model corresponds closely to the human intuition on color. 

Fig. 4.17 shows the model by an HSV color wheel(left) and the cone(right). 

Figure 4.17: An HSV color wheel (left) allows the user to quickly select a multitude of colors. The conical 
representation (right) of the HSV model is well-suited to visualizing the entire HSV color space as a single 
object. Notice that the triangle in the left image corresponds to one face of the cone cross section in the right 
image [48]. 

In the HSV color wheel, the hue is represented by a circular region; a separate triangular region 

are used to represent saturation and value. Typically, the vertical axis of the triangle indicates 

saturation, while the horizontal axis corresponds to value. In the conical representation, the hue is 

depicted as a three-dimensional conical formation of the color wheel. The saturation is represented 

by the distance from the center of a circular cross-section of the cone, and the value is the distance 

from the pointed end of the cone. 

To work under the HSV color space, we need to convert the original image from RGB color 

space to HSV color space by using the following formula [ 48]: 

H = {H1 if B ~ G; 360°- H1 if: B G} (4.10) 



where 
H _1 0.5[(R- G) + (R- B)] 

1 =cos { J(R- G)(B- G)+ (R- B)(G- B)} 

S = max(R, G, B)- min(R, G, B) 
max(R,G,B) 

V = max(R, G, B) 
255 
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( 4.11) 

(4.12) 

(4.13) 

Then we directly estimated the shape of the skin color subspace in HSV. We use the planar en­

velop approximation method [70] to approximate the human skin color. In planar envelope method, 

a pixel is considered as a skin pixel if the color of the pixel satisfies the following conditions: 

S ~ Th8 ; V ~ Thv; S::; -H- 0.1 V + 110; H::; -0.4V + 75 

if (H ~ 0), s ::; 0.08 X (100- V) X H + 0.5V 

else S ::; 0.5H + 35 

where Th8 and Thv are set to 10 and 40 respectively. 

(4.14) 

After applying skin segmentation, some non-skin regions such as small isolated blobs and nar­

row belts are inevitably observed in the result as their color falls into the skin color space. Keeping 

these spurious skin regions will not only yield negative effects to the latter detection but also in­

crease computational complexity to the orientation detection. Therefore, we apply morphological 

operation to implement the cleaning procedure. The closing operation is first performed to connect 

narrow gaps between skin regions, and then opening operation is applied to remove small isolated 

bulbs and seperate the regions connected by thin strips. Finally, we perform the filling operation 

to remove the black isolated holes. Finally, we combine the overlapping detections into a single 

detection. 

The candidate selection and final face detection results for color images are shown in Fig. 4.18. 

4.5 Summary 

In this chapter, we proposed a hybrid face detection system. The system consists of 3 steps, which 

are candidate selection, face orientation detection and upright face detection algorithm. Skin color 
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Figure 4.18: Candidate selection and face detection results for color images 

segmentation is the most usable technique for potential facial region selection. However, lots of 

grayscale images make this method impossible because of the scarce of the imformation. Instead, 

we use the first 15 stages of the V iola-Jones detector for candidate selection in grayscale images. 

And skin color segmentation technique is used for candidate selection in color images. Then each 

candidate is sent to our HOOPLBP operation to detect the right orientation if it contains a human 

face. We then use the same V iola - J onesdetector to detect the rotated candidates. If the result 

is positive, the position of the face is mapped back to the input image and a face is detected. The 

experiment results show the effectiveness of our proposed hybrid system. 



Chapter 5 

Conclusions 

5.1 Summary of Thesis 

I N this thesis, we present a simple and robust algorithm(HOOPLBP) for automatic image orien­

tation detection. The approach uses the bit-wise shift times by which it achieves the minimum 

local binary pattern value and the histogram over the interested region as feature. It achieves im­

age rotation by bit-wise shifting the histogram instead of really rotating images. An optimization 

methos is included in the algorithm. It saves a great amount of time by converting the calculationof 

a large number of linear interpolation to a solution of a few quartic equations. 

The algorithm is effective in both artificial images and real photos. The minimum range for 

optimum performance is different according to different contents. In general, the range is 30° 

empirically. For human faces, the precision increases to 5°. To be specific, the HOOPLBP has a 

very good effect on face orientation detection. The experiments show a very impressive results. 

The orientation detection rate is 100% among the 12 models. The orientation recognition rate for 

normal single face is 66.67% with 80% upright face orientation detection rate. Because we concern 

more about the detection rate of upright face, with the parameter A, the detection rate is 63.02% 

over category II with 90.62% upright face orientation recognition rate. 

Furthermore, we proposed a hybrid face detection system based on the HOOPLBP. We use 

a cascade of classifiers and skin color segmentation method separately for candidate selection in 

grayscale and color images. The HOOPLBP is used to detect the orientation of potential facial 

regions. Then the candidates are rotated by the detected degree, followed by an upright face 
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detection algorithm. The experiments show impressive result of our system. Our proposed face 

detection system is the first that can detect faces with arbitrary-degree-rotation. 

5.2 Future Research 

The automatic image orientation detection is an important but difficult task in computer vision. 

It is still a new field that needs more attention and effort. The HOOPLBP makes a progress in 

this field, but is still a new and immature algorithm. A lot of work needs to be done to improve 

the performance and find potential applications. In the remain of this section, a number of future 

research directions are discussed, especially what I am interested in the following research. 

5.2.1 Variations in HOOPLBP 

There are two ways to improve the performance ofHOOPLBP. One is to apply more pre-processing 

techniques for the input images. The other is to use different patterns to integrate more nearby 

information. 

In this thesis, we only filter the input images with an average filter w, 

1 1 1 1 1 
1 1 1 1 1 

W = 1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

There are a lot of image processing algorithms that we can try on HOOPLBP, like kinds of filter, 

histogram normalization and color correction. We can even transform the input images to other 

presentations. 

The neighbourhood pattern used in this thesis is the nearest neighbourhood. To be specific, it 

uses the nearest 8 points around one pixel. In the future, we can use the average pixel values as 

the nearest neighbour. The shape over which the average are calculated can change. We show two 

possible shapes in the Fig. 5.1. 
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Figure 5.1: Two possible shapes which can be used for average. 

5.2.2 Face Detection 

The HOOPLBP has achieved impressive results in face orientation detection and the proposed hy­

brid face dtection system can detect faces within 360° rotation. The variant HOOPLBP mentioned 

above may improve the performace on face orientation detection as well. 

Two other key steps in our proposed hybrid system can be improved to increase the face detec­

tion rate. One is the candidate selection phase and the other is the classification method for face 

orentation detection. As we discussed, there are three aspects which affect face detection perfor­

mace, candidate selection rate, face orientation detection rate and upright face detection rate. How 

to correctly and effectively select the candidate from grayscale and color images is an interesting 

problem. 

Actually, the classification method used in this thesis for face orientation detection is very 

simple. A lot of other classification algorithm reviewed in section 2.4.3 can be used, and are 

expected to achieve better results. Genetic algorithm is a training method that may suit this research 

very well. In short, a well trained model or classification system will surelly improve the results 

on face orientation detection. 
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5.2.3 Application in Robots 

It is irrefutable that robots and robotics will play a critical role in human society in the coming 

years. As the mechanical and electronic components required for reliable robotics becomes more 

practical, and as it becomes ever clearer that robots will become a part of our daily lives in the 

not too distant future, it is important now to focus on how humans will interact with these robots, 

and in turn how these robots will interact with us. For robots to truly integrate into human life and 

human society they need to be able to interact naturally with people and their surroundings. One 

of the key steps in the interaction is to achieve automatic human face detection. In robotics, real 

time algorithm is needed. How to integrate our proposed method with robots is a very specific task 

based on what robot system you work on. 

The future research may focus on the robots that Ryerson Multimedia Lab has. The two 

Dr.Robot are EIOO and 190. Both of the robots have similar platforms, and mainly differ by size 

and only a few component differences. The two robots are shown in Fig. 5.2(a) and Fig. 5.2(b). As 

(a) Dr.Robot EIOO 
(b) Dr. Robot 190 

Figure 5.2: Dr.Robot in Ryerson Multimedia Lab 

we saw, the Dr. Robot E 100 has stereo cameras which may be popular in most robot systems. The 

stereo cameras will provide more information than monotonic camera. Fig. 5.3 shows the camera 
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used in the robot. How to use this additional information to accelerate the processing speed and 

integrate the stereo information to further improve our face detection system with rotation around 

the z axis are challenging topics. 

Figure 5.3: Camera used in the robot 

5.2.4 Other Object Orientation Detection 

Face orientation detection is one of the applications for HOOPLBP. The advantage of faces is that 

it has a similar shape and a similar pattern. So that makes it very suitable for HOOPLBP. There 

are many other things that has the attribute, like cars, finger print, houses .... Apply HOOPLBP to 

other objects will be one of the main objectives in future research. 
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List of Publications 

The publications based on the work of this thesis are listed below: 

Conference Paper 

• Nan Dong, Ling Guan, "Content-free Image Orientation Detection Using Lo­
cal Binary Pattern", accepted by IEEE International Workshop on Multime­
dia Signal Processing (MMSP), Rio de Janeiro, Brazil, October, 2009 

• Nan Dong, Ling Guan, "Human Face Orientation Detection using Histogram 
of Optimized Local Binary Pattern", submitted to IEEE International Confer­
ence on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, Texas, 
U.S.A., March, 2010 
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