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ABSTRACT 

 

Human vision is a complex system which involves processing frames and retrieving information 

in a real-time with optimization of the memory, energy and computational resources usage. It 

can be widely utilized in many real-world applications from security systems to space missions.  

The research investigates fundamental principles of human vision and accordingly develops a 

FPGA-based video processing system with binocular vision, capable of high performance and 

real-time tracking of moving objects in 3D space. 

 

The undertaken research and implementation consist of: 

1. Analysis of concepts and methods of human vision system; 

2. Development stereo and peripheral vision prototype of a system-on-programmable chip 

(SoPC) for multi-object motion detection and tracking; 

3. Verification, test run and analysis of the experimental results gained on the prototype 

and associated with the performance constraints;  

 

The implemented system proposes a platform for real-time applications which are limited in 

current approaches. 
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Chapter 1 

1. Introduction 

 

The principles of human vision are widely used nowadays in industrial and research computer 

vision applications. Standard technologies of video systems store and process entire frames, 

whereas human vision only focuses on a small part of the whole Field-of-View (FOV), which 

optimizes power, timing and memory usage. The research aims to utilize the human “attention” 

technique, and implement and design of two principal concepts of human binocular vision: 

1) Stereo vision for 3D-pose estimation 

2) Peripheral vision for a wide field of view 

with the ability of real-time multi-object motion detection and tracking in 3D space with a wider 

field of view. 

 

The main challenges of the research involve: analysis of the principles of human vision; the 

explanation of the organization of human eyes which are able to track objects in 3D space; the 

process of data acquisition with the capability of memory and resources optimization and 

extracting features for the further processing for the custom applications.  

 

It should be emphasized that proposed design utilizes FPGA, multiple video-sensors and 

embedded ARM for achieving stereo and peripheral vision goals and keep high frame rate for 

the processing which lets further industrial or research development use for real-time 

applications with limited resources. Moreover, it proposes custom actions and features using the 

trajectory of the objects. 

 

In this chapter, the motivation of the research and reasons for the usage of the proposed 

platform is discussed, and the objectives of the research and implementation are determined. In 

addition, it highlights the parts of the original contribution and proposes the detailed organization 

of the rest of the work.  
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1.1 Motivation 

There are many real-world applications, where principles of human vision are used for different 

purposes. Vision applications involve 3D scanners, medical imaging, space mission, security 

systems, photography and etc. 

 

The main motivation of the research is to solve the limitations of current approaches in video 

and vision systems.  

 

Human vision integrated two main base vision components: 

1. Stereo vision, which is used for determining the position in 3D space  

2. Peripheral vision:  which makes it possible to capture and perceive objects in a wide field 

of view (> 150-degree angle) frames 

 

Standard ways to achieve the peripheral vision and panoramic view includes special wide-angle 

cameras with a smaller focal length than standard ones or image stitching techniques which 

involve detecting overlaps between differently exposed frames captured by single/multiple 

cameras and calibration, blending and merging them into a single frame. There are various 

frameworks and algorithms, which proposes computer vision implementations such as OpenCV, 

Dlib, GIST1, SIFT-based image-stitching and others.  

Traditional TV/Cinema video applications continuously store and process entire frames and use 

a significant amount of memory and computational resources, while using concepts of human 

vision can optimize frame processing for real-time applications. 

 

The main limitations of traditional approaches and methods are: 

1. Timing: The software frameworks are designed for ARM architecture and are limited 

due to timing and resource constraints. In addition, the algorithms don’t include 

hardware parallelism and represent sequential logic or require processing time, which 

limits their usage in real-time applications. 

2. Memory: Large resource overhead associated with big video memory modules, which is 

necessary due to acquisition, recording and processing entire video frames in most of 

the methods. However, human vision focuses only on the object-of-interest and can see 

the rest in quite low resolution. 

3. Power: Current approaches use significant power consumption, which can be minimized 

by using human vision principles. In contrast to existing technologies, human vision is 
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energy optimized because of usage “attention” concept for video capturing and 

processing approximately 5-10% of the entire Field-of-View (FOV) 

4. Complexity: Software and Hardware designs are quite complex due to the utilization of 

principles and concepts of TV/Cinema video-acquisition and processing (e.g. entire 

frame-by-frame). The complexity can be optimized if only a small portion of FOV 

associated with a moving object is captured and processed. 

 

1.2 Objectives 

The main objective of the research is to find efficient mechanisms (algorithms and methods) for 

detecting all moving objects in FOV, selecting object(s) of interest and tracking them in 3D 

space in real-time, minimizing hardware processing and memory resources. 

 

Aspects for the research, development, implementation and verification involve: 

1. Investigate existing techniques of vision systems and analyze the pros and cons of the 

current approaches and identify main principles of the human vision for further utilization 

in the system 

2. Create algorithms and methods for real-time object selection, location in 3D space and 

tracking 

3. Develop a platform and design a prototype with real-time motion detection and tracking 

in the 3D space, with minimization of the memory, processing time and computational 

resources according to the created algorithms and methods 

4. Design a flexible and automated testing environment for verifying modules of the 

architecture and in order to validate visual and 3D coordinate results of tracked objects 

5. Verify the test results, determine performance metrics, and identify possible features and 

limitations for further development. 

 

1.3 Original contributions and methodology 

Original contributions of the research involve: 

a. Analysis of existing approaches and methods, which includes the research of 

background information and related works in human vision application and identifying 

the main principles by observing the visual data processing 

b. Creation of the system architecture to solve the problem, which includes 
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i. Defining efficient algorithms and methods for object detection, location and 

tracking 

ii. Design and implementation of the system, which uses the observed principles 

from a human vision for optimizing computational resources  

c. Development of the experimental set-up, implementation of the developed architecture 

and performing the set of experiments, which includes a description of the set-up, 

methodologies how the tests are performed, experimenting with different approaches for 

achieving acceptable performance and resource constraints 

d. Verification of the setup and finding the pros and cons of the proposed method and 

architecture, which involved analysis of results, and discussion for future development 

 

It should be mentioned that research solves several challenges related to the development of 

human vision applications: 

 

● The main challenge of the design is performance and resource constraints. 

Correspondingly, the implementation includes optimization of memory, time and 

computational resources, which makes it possible to be used in the application where 

other approaches fail to solve problems in their specifications. 

● It should be emphasized that in the design, the custom board with multi-purpose video-

sensors, FPGA device and embedded ARM are combined. Separation of the design for 

the hybrid approach with specific constraints and keeping integrity for verification, 

identifying the areas which part should be taken in each area are an essential part of the 

development. 

● Another challenging part of the research includes noise filtration from the video frames 

and the results estimated by 3D pose calculation. Multiple approaches are used and 

analyzed in the research for achieving the desired results. 

● Testing vision application is always challenging as most of the verification procedures 

include confirmation by humans. The research proposes several layers of verification, 

description of methods and creation of the test environment. 

● As the final design and implementation are considered as a platform for future 

development, it includes a customization interface for flexible and easy usage in future 

applications. 
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1.4 Thesis organization 

The rest of the thesis is organized as follows: 

In Chapter 2, background information and related works are described which are utilized for 

identifying the main concepts of the human vision for further implementation and design, as well 

as, discussing the main limitation and problems of the current approaches. Firstly, background 

information is discussed, which includes: 

1. Human vision and eye anatomy 

2. Binocular vision 

3. Detection techniques 

4. Tracking algorithms 

5. Image stitching 

6. Noise reduction, smoothing results and fitting curves 

 

Related works section involves the specific implementations of the algorithms which support the 

research and decisions made for choosing the right methods. In addition, other FPGA based 

vision systems analyzed for reusing methodology or identifying the limitations. 

 

Chapter 3 covers the methodology, explains the techniques utilized in the design, and proposes 

the architecture. Main parts included in this chapter involve: 

1. Human vision observations used in the architecture 

2. Object representation technique 

3. Image stitching method 

4. Video-sensor operations for 3D processing 

5. A solution to the noisy results 

6. Architecture for stereo and semi-panoramic vision components 

7. Final combined architecture for developed binocular vision system 

 

Chapter 4 describes in details the implementation of the proposed architecture and 

methodology, and consists of: 

1. The experimental setup, which presents utilized technology and sensors, and describes 

hardware and software specifications 

2. Description for each module and process of the architecture, which involve: 

a.  Functional specification 

b. Principle of operation, which explains how the modules operate 
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c. Interface as input and output signals with a specification of the type and mode 

Symbol as an illustration for the block diagram 

d. Process diagram for clarification the operation, where it is needed 

 

Chapter 5 covers the results and evaluation of the research. It involves: 

1. Process describing test data and environment 

2. Measurements for verification of results 

3. Performance metrics and properties of the designed system 

 

Chapter 6 is the last chapter, which summarizes the research, describes the usage of the final 

design and implementation and proposes future work for additional features and possible 

solutions for research limitations. 

. 
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Chapter 2 

2. Background Information and Related Works 

 

 

This chapter involves explanation and descriptions of background information and related works 

of human vision, popular frameworks and algorithms highlighting the achievements and 

limitations. 

2.1 Background Information 

2.1.1 Human vision 

 

A human vision involves a complex process of capturing, storing and processing an image. 

Exploring the anatomy of an eye and configuration of the vision is crucial for the research as the 

purpose is to mimic the basic principles of the human vision. It should be noted that modern 

video-sensors resemble the structure of the eye and use the main methods of physics of it. 

The eye is the main unit tool of human for capturing images. The general structure of it is 

displayed in Figure 2.1 [1]. The main components involve [2] [3] [4]: 

 

Figure 2.1: Eye anatomy 

• The cornea is a transparent spherical structure which utilizes projecting entered light 

energy  [2][3]. 

• The pupil which is a central part of the iris and appeared as a black hole because of 

absorption of light [2] [5].  

• The lens which is one of the essential parts of the eye and is used for focusing light into 

the retina [2] [3]. 
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• Iris is a circular unit, which controls the bandwidth of incoming light by changing the 

pupil size [5]. 

• Aqueous humor, which is a provider of important nutrition for pressure maintenance [2]. 

• Vitreous humor is a helper part inside the eyeball which is used as a gel for filling 

space between retina and lens[2]. 

• Rods and cones, which are photoreceptors for scotopic vision[2]. 

• Retina plays an essential role and is responsible for converting the light into a neural 

signal form[3]. 

• The sclera, which is another helper for supporting essential protection[6]. 

 

 

Firstly, the incoming light goes inside the cornea. The iris controls the amount of light by altering 

the pupil. It should be noted that the shape of the lens can be changed for optimizing the power 

depending on how long distances object is detected and identified [2]. Once the light reaches 

the end of the first layer of the eye, it is projected on the retina. At the final stage, the retina 

converts light in neural signal form and sends to the option nerves [7]. It should be emphasized 

that the image is inverted, and the same geometry and optical image formation is used in digital 

video-sensors [1] [2] [7].  

 

The process of eye operation was briefly overviewed above. However, it only includes a 

description of a single eye operation. The importance of analysis of human vision is two eyes 

operation. The two important components of the operation of binocular vision are stereo vision 

and peripheral vision, which are described in detail in the next subchapters and are considered 

as main principles of the research for creating the design and implementation[8][9][10]. 

 

The most animals, which have two eyes and the relatively larger intersection of the Field of 

Views (FOV) from each eye, are considered to have binocular vision. The main advantages of 

binocular vision are the following [7] [8][9][10]: 

1) Being able to detect objects 3D position and most importantly the distance 

2) have a wider FOV which helps keep tracking objects in a wider range 

3) Can operate if in emergency case one of the eyes doesn’t work or are damaged 
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Stereo vision 

 

Stereo vision or stereopsis vision is referred to as a system, which is able to estimate the depth 

and 3D position from the processing of images obtained from 2 eyes.  

 

Figure 2.2: Human vision system fields 

As it can be seen from Figure 2.2, the stereo horizontal visual field in case of human is ~100-

120 degrees. 

Once the object is presented in the stereo visual field of view, the distance is retrieved from the 

triangulation [11]. 

Before describing a geometrical way for calculating the distance, it’s important to define 

terminology[12][13][14]:  

• A baseline is called the distance between two eyes. 

• An epipolar plane is called the plane which goes through the center of projection 

• Conjugate pair is another term used for point/object which can be seen from both eyes. 

• A disparity is a difference between two conjugate pairs 

• A disparity map is a table which maps disparity values to distance values, usually 

presented as a look-up table or implemented by functions in computer vision 

applications. 
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Geometry of triangulation 

 

The geometry of triangulation defines the way to calculate the distance of a point/object seen 

from two or more video-sensors [15] [16]. As a simple standard case, as shown in Figure 2.3: 

 

Figure 2.3: Triangulation of video-sensors 

Since the triangles M, N, X and O1, O2, X are similar, the depth can be determined by the 

equation, where xL and xr are distance from the object on projected plane from left and right 

video-sensors accordingly, d is a disparity, b is a baseline value, f is a focal length and Z is a 

real distance  [15] [16]: 

 

 

 

Because the baseline b and focal length f are known and predetermined values and xL and xr 

known measured values, the only unknown variable is Z distance, which can be derived as 

follows [15]: 

 

 

It should be emphasized that this is the geometrical way calculation, however as the disparity is 

inversely proportional to the depth, the predetermined lookup table can be defined for 
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optimization and better accuracy purposes. The distance determination can be achieved by 

mapping disparity to distance values as well as taking into account: width, previous distance, 

error prediction and other parameters. 

This method replicates the human binocular vision; However, planes of each video-sensor can 

have different angles in case of some animals’ vision and implementations require more 

complex calculations, additional verification, rectification, stitching and other processing, which 

result in higher requirements for resources utilization [13]. 

 

It should be emphasized that the stereo vision triangulation approach raises several problems 

and challenges such as calibration and object/point matching known as the correspondence 

problem [13]. Since video-sensors are separated in independent units, external check and 

rectification are required to have the same image results in terms of brightness, saturation and 

other image properties in order to minimize the error of object matching[17].  

 

The solutions for image matching or correspondence problem vary to the digital 

implementations and are still in research in human vision. There are various effective solutions. 

However, the main limitations are a large number of processing resources and complex 

methods. Traditional implementations vary to the complexity and use different techniques[13] 

[14][17][18]: 

● Pixel matching is one of the naive solutions and involves matching the array of pixels 

by a certain threshold 

● Centroid matching, which involves detection object/movements, filtering the noise and 

verifying results by comparing and matching centroids 

● Edge detection involves pre-processing of the initialized images, identifying edges and 

matching them for the desired area of an object, the limitations and challenges of this 

approach include high noise rate which is normally caused from the complicated 

backgrounds/objects [19] 

● Scale-invariant feature transform is one of the powerful algorithms which works for 

different scale, angle images, and even different video-sensor units, however, requires a 

relatively high amount of time for processing [20]. 

● Object classification is one of the high computational resource utilization algorithms, 

but it’s popular due to high accuracy. It firstly identifies the object, classifies to different 

shapes and matches them [21]. 
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● Graph cuts and Ground truth, which involve segmentation of images and labeling the 

pixels [22] 

 

Characteristics of Simple Stereo Vision in Monocular Vision 

 

It should be mentioned that a single eye/video-sensor can be utilized with or without other eyes 

for distance calculation. If the object is classified to the certain type (for example a human face, 

a cat, a car and other known objects), the approximate distance can be determined based on 

the experience of the dimensions of the particular objects [23]. On the other hand, if the object is 

entered to the stereo vision field area and the distance is already identified for the lazy 

processing or the case where it can be still observed from non-stereopsis vision area, changing 

the distance can be determined based on the dimension [24][25].  

Peripheral Vision 

 

Another essential approach of binocular vision in addition to the stereo-optical field of view is a 

peripheral vision. It should be mentioned that the field of view of stereo and peripheral area 

varies for different animal vision systems [11] [26]. Examples are illustrated in Figure 2.4. 

   

a) Cat Vision   b) Dog Vision   c) Rabbit Vision 

Figure 2.4: Vision system fields in different animals 

 

As can be seen, the whole field of view reaches 140 to 180 degrees for a human vision, while in 

the case of a rabbit, it is ~340 degrees. However, the rabbit stereo vision field is relatively 

shorter, and accordingly, the calibration and matching of images involve different processes as 

well. In illustration 10, other examples and variation of a dog [27] and a cat can be seen [11][28]. 
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The properties are mainly derived from the lifestyle of the animal and according to development 

from the evolution [6][29][30]. 

 

 

Two modes of operation of peripheral vision and the field are identified: 

1. Static mode of vision, which is the case when eyes are fixed, and as it was 

aforementioned, a human can reach ~200 degrees of the whole field of view in this 

mode. 

2. The dynamic mode includes moving of the eyes or, more advanced, a head. It should 

be noted that even eyes can move, it can be adjusted only with the same angle in 

normal behavior. This property is kept as to avoid more complex calculation and 

calibrations for processing of images from different eyes. By the movement of the eye, 

human vision can reach 270 degrees of field of view and 360 degrees by the movement 

of the head. It should be noted that when the object is presented in the closer distance 

eyes can be adjusted to different angles, which are considered as adaptation and is 

described in a later chapter. 

 

In order to achieve the same approach in computer vision, there are possible hardware and 

software current solutions: 

1. Single camera-based solutions involve manufacturing higher (120>) field of view video-

sensors [31]. However, this solution isn’t cost-efficient in terms of price and power usage 

and normally have a lower frame rate due to higher processing. 

2. Another approach is utilizing multi video-sensors with different angles or rotating the 

single video-sensor by motors. The main limitation of these approaches is high 

processing time and resources for rectifying and stitching images as they are captured 

from different angles.  

 

The role of the nose should be emphasized in calibration. It is used as a trusted object which 

normally can be seen from both of the eyes, but it is filtered from final result image of the vision/ 

However, it isn’t simply excluded, but it is utilized for matching and merging images for retrieving 

a single combined image with a wider field of view. That’s the main reason that animals which 

have a bigger nose like eagles, have better calibration and precision for determining targets with 

higher distances and are more efficiently integrating images from different eyes[29]. 
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Attention 

 

Another important observation from human vision is the property of attention. Attention is a term 

used for the object/area focused by vision. It should be noted that humans just focus only on a 

single object/area, and computational resources are reduced for background processing 

[32][33][34].  

The main features and observations from the human vision from the attention involve [33]: 

- Always at a time, only one area or object is prioritized by the human vision; it is a 

subpart of the whole image and has a maximum and minimum range of dimensions. 

- The attention area is always seen and captured in higher resolution while the 

background area is in lower resolution. The main motivation of this approach is 

minimizing resources and getting higher accuracy for 3D estimation. 

- It should be emphasized that the background area is still presented with lower resolution 

and isn’t excluded. The motivation comes from processing the image for changing the 

area of attention in the future if another object is prioritized. 

- The attention can be defined by different criteria of priorities, mostly it takes the higher 

speed of movement but can be derived by shape, distance and other factors. 

The information and observations presented in this section are explained in more details in the 

implementation and design section and described how they are integrated into the research 

development. 

 

2.1.2 Detection and Tracking  

 

Object detection and tracking are essential parts of vision applications. This section overviews 

the different types of detection and tracking algorithms and discusses the usability of the 

research purposes in human vision.  

 

It should be noted that some application separates the process of object detection and tracking 

since the detection a specific object (for example, face) can take a long time, but tracking object 

with already known properties can take relatively fewer steps.  

 

Since the tracking involves the process of determining the changed position through the time 

from the previous instances of the object, algorithms depend on the representation of the object 
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by detection. There are numerous ways of representation which are illustrated in Figure 2.5.[35] 

 

 

                                     

a) Point-based                   b) Shape-based  

 

          c) Model-based        d) Contour-based       e) Cluster-based 

Figure 2.5: Object detection representations 

The main approaches include: 

1. The point-based approach involves identifying the single or multiple points which can 

be utilized in tracking or further processing. The point should be defined depending on 

the importance. The simplest way is a centroid of the object. More complex methods are 

multiple object-specific points, for example, landmarks of a face or a body of a human. 

The advantage of the approach is the usability in tracking since tracking can save time 

by avoiding whole image processing and estimate result by identifying transformations of 

points[35]. 

2. The shape-based approach involves fitting the predefined shape as single or multiple 

rectangles or circles to the desired object. This approach is widely used in initial stages 

of various detection and tracking algorithms as firstly it identifies the area where an 

object is presented and skipping rest information and avoids processing [35]. 
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3. Model-based is a complex approach which is a mixture of detecting points and 

connections between them. This approach has higher precision and is flexible for further 

application processing since it already involves extracted features from the object; 

however, it requires higher computational resources than previous techniques[36]. 

4. Contour-based detection is used for tracking objects by external edges. Once the 

object is identified, the tracker searches the same contours with acceptable modification 

of the object and changing the position according to it [37]. 

5. Cluster-based is a popular approach for motion tracking, the performance varies 

depending on the application and cluster definitions, however in motion analysis where 

the silhouette can be easily defined this approach is useful [35] [38]. 

 

It should be mentioned that these approaches don’t exclude each other and can be combined 

for achieving desired results. 

 

The types of detection vary as well depending on the desired shape of the object instance [35]: 

 

Point detectors are class of detectors which searches specific points with the same feature for 

the desired object. This class is suitable for images which have high resolution and texture since 

the normal features of points are limited and need to be expressed accurately enough to be 

detectable with this method. There are various algorithms which specialize in the detection of a 

certain feature. As an example, Harris Corner Detector is a well-known approach which detects 

corners in the image which can be presented as points and tracked for further processing. A 

more complex algorithm is Scale-invariant feature transform (SIFT) which involves detecting 

general key points for features which are most likely preserved in the next frame. This approach 

has a high accuracy even the images are captured from different video-sensors; however, it 

involves lots of steps of processing which aren’t suitable for application which requires shorter 

cycle time of processing [35]. 

 

Segment detector is a class of detectors which firstly segments images with certain criteria, 

identifies clusters, and use the previously localized segments for tracking. One of the most 

popular approaches is mean Mean-shift algorithm, which involves defining a kernel function and 

iterate it through the images to the highest density while convergence occurs. The definition of 

means relies on the description of the kernel function, which can be varied to the applications. 
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The advantage of usage means shifts for clustering is independent of the image values and 

shapes [35]. 

 

The Classifying method includes training the classifier based on the features of the object. The 

process requires having a ready database or dynamically improve the algorithm by giving the 

indication of success or failure to the detector. The widely used classifiers are regression 

models, Support Vector Machine (SVM), neural networks. The algorithms are mostly used for 

complex applications such as face detectors, shape detectors, and others and require lots of 

resources for storing data and computations as well are complex in terms of implementations 

[35][39].  

 

Once points or areas are presented by detection it’s important to define which features of the 

group of pixels are utilized for tracking. There are various features which can be combined in 

these classes [35]: 

 

1. Color Values 

This color value is the basic features of the pixels and is suitable for algorithms where 

objects are represented in point instances of data and depend on the color value of the 

pixels. While there are two traditional approaches for representing the color as HSV (Hue, 

Saturation, Value) and RGB (Red, Green, Blue), there isn’t a clear advantage each of it for 

general usage of tracking and depends on the application. This approach is based on the 

assumptions that the colors of the objects are preserved while frames are changing. 

However, the main limitations are considered as a lack of information on features such as 

shape, texture and etc. 

2. Contours 

Contour or edge-based approach is one of the widely used features. The idea is that edges 

of the object are preserved or slightly change during tracking and even preserved by 

changing the illumination. The most popular detector is a Canny edge detector which 

identifies the contours and edges of in the image. It also involves smoothing the image and 

noise reduction with a Gaussian filter [40]. The main steps of the algorithm include gradient 

calculation and applying a threshold to identify potential edges. Another widely used 

approach is Sobel operation, which involves detecting edges by applying convolution 

function kernels[41]. The example of the filtered image is presented in Figure 2.6. 

 



18 

 

 

 

 

a) Original image b) Sobel filtered image 

Figure 2.6: Sobel filter on the example image 

3. Brightness constancy 

Brightness is another widely used feature, the corresponding algorithms based on the idea 

that the brightness of the object is preserved. One of the well-known algorithms is Optical 

Flow (OF), which determines the distribution of movement retrieved from the brightness [42]. 

While there are different implementations of OF, one of the most popular is Fleet and Weiss 

approach which proposes calculation of gradients depending on the velocities of the 

brightness. This feature and related algorithms are suitable for motion-based tracking 

applications [42]. 

 

4. Patterns and Distributions 

Patterns and distribution from images as textures are another feature which is used for 

tracking objects. This approach can be considered as an extension of color-based 

approach, however, considering mainly the color value. The process involves identifying the 

connection between the values of the ordered color values. The implementation for 

detection and tracking uses histograms calculation. One of the simple examples is Co-

occurrence matrix, which is a statistical technique for finding the density of pixel values for 

detecting occurrences within the acceptable distance of different (following) images [43]. 
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Tracking algorithms involve defining the trajectory of the objects and varies to the representation 

of objects by the detection in the form shown in Figure 2.6 and using the described above [35].  

 

They can be classified into three main groups [35]: 

 

Point-based tracking 

These class of tracking algorithms depend on the point representation of the instances 

and taking into consideration the absolute color value or brightness of the pixel [44]. The 

tracking requires object detection for each frame to retrieve the same processing of 

detection to map the identified points.  The well-known approaches are Kalman Filter, 

MGE tracker by Salari and Sethi and others. 

 

Pre-defined Shape-based tracking 

Shape-based tracking involves having a predefined template as a shape which is 

searched in the next frame with the same properties. The feature properties can be a 

combination of textures, edges, color values or other additional characteristics of the 

model. The shapes are normally rectangle or eclipse. This class is suitable for motion 

tracking as the motion can be surrounded with the desired shape and can be simply 

mapped to the next image with just position modification or rotational and affine 

transformations. Well-known algorithms are Mean-shift, which was discussed above, 

KLT (Kanade–Lucas–Tomasi feature tracker) which includes finding a disparity vector 

which minimizes the difference between function-specific measurements of certain areas 

from different images [44] [45].  

 

Model-based tracking 

A model-based approach is one of the complex techniques which traditionally based on 

the representation of objects by contours, multiple points, textures or another form [36]. 

The idea is to integrate features inside the tracking for higher precision. This naive 

method usually involves pre-processing such as brute-forcing the whole images for 

fitting gradients to the certain model or shape, which is one of the most expensive 

operations in terms of image processing time and computational resources. The possible 

implementations are Hausdorff algorithm which is based on the calculations of distances 

of two subsets in a defined metric space [46]; State-space models by Isard and Blake 

which tracks the contour by maximization of a posteriori probability [35]. 
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2.1.3 Image stitching 

 

Image stitching is a process of merging images which are sharing the same parts as overlaps. It 

is widely used in the medical area, virtual game industry, photography and other vision 

applications [47].  

 

In the general approach, images can be captured from a different location, a different angle, 

with different illumination, resolution or even from different video-sensors.  

 

While the algorithms vary, the standard process of image stitching contains the following 

milestones [48] [49] [50]: 

1) Keypoint detection, which involves identifying the features from the images for the 

verification and detection of overlaps 

2) Matching images, the process where features are extracted by keypoint detection, 

compared, and intersections are recognized. 

3) Blending is a process of mapping images to the final combined image with a chosen 

projection layout. This step also involves adjusting images and calibration for having the 

same appearance. 

 

 

Keypoint detection 

Detecting keypoints or features from the images is the initial step of image stitching. It should be 

noted that the key points should be extracted the way to be invariant of possible transformations 

for the application [48]. As an example, if the images are rotated the key points should be 

rotation invariant. The features or key points can be a single point, lines, contour, area from the 

image or in any other form. The simple approach is corner detection, which was widely used in 

the past, however, nowadays most popular and widely verified approach are Scale-Invariant 

Feature Transform (SIFT) and Speeded Up Robust Features (SURF). The popularity of these 

approaches is based on the idea that they are scale, rotate, translation, illumination, and blur 

invariant. It should be mentioned that they are also widely used in modern 3D reconstruction, 

object recognition and other machine vision algorithms [51][52]. 
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SIFT 

SIFT-based keypoint localization is based on a set of SIFT defined specific features [53]. 

The Operation of the algorithm is extracting local features from the images based on the 

intersect points appearance. It should be noted that the process involves reducing errors in 

illumination change, filtering noise, and keep invariant with a particular level of the change of 

viewpoint. Another advantage is that the process minimizes the probability of mismatch and 

false-positive results [51] [53][54]. 

 

The principle of operation of SIFT involves the following steps[53] [54]: 

 

Gaussian filter and Scale-space extrema  

 

Firstly, the Gaussian filter is applied to the image using convolution. Secondly, the difference 

between two scales padded by a constant factor is computed[55], as shown in the following 

equation [51]: 

 

The pyramid is created for each octave by finding the difference of Gaussian, as shown in 

Figure 2.7 [56]. 

This purpose of this procedure is to identify the orientation and scale-invariant points. Finally, 

after differential calculation, local extremes are searched and considered as a potential feature 

for further processing [53][57]. 

 

 
 

Figure 2.7: The pyramid of DOG 
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Key Point Localization 

Once potential keypoints are identified, they are filtered for verification purposes. For stability, 

several processing steps are used as threshold filtering, removing edges due to higher 

sensitivity from Gaussian differences and etc [53] [56].  

 

Key Point Descriptor 

The area of localized keypoints (ex: 16x16) are separated into internal blocks and gradients are 

created, which results in vector as descriptors for each keypoint[53] . 

 

The vector of invariant keypoint is retrieved from the final step and processed in the next steps 

of the image stitching algorithm [53][58]. 

 

SURF 

While SURF is a similar approach to SIFT, it requires less time for finding features. The principle 

of operation involves[51] [59]: 

 

Interest Point Detection 

This step involves conversion image to integral form. The integral form represents the sum 

values of the intensities from the images with the operation defined as follows: 

 

The integral form of an image is convoluted with a box filter, which itself consists of Laplacian of 

Gaussian, which is the second-order derivative of Gaussian. In the end, the points are similarly 

sampled but upward direction and identified with non-maxima suppression [51] [59]. 

 

Interest Point Description 

In this step, initially, Haar wavelet filters as matrix M1 and M2 are applied to obtain the 

responses in a vertical and horizontal direction [60]. 
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The responses are normalized and converted to unit vectors in order to keep invariant to 

contrast and illumination. The circle window with radius π/3 is slid through the result and 

dominant orientation is derived from the wavelet responses weighted by the Gaussian 

filter[51][59]. 

  

To sum up, both approaches are effective for feature extraction. While they have some 

advantages of invariance of certain properties of an image, both are acceptably invariant to 

noise, scale, rotation and contrast. However, the limitation of using these approaches involves 

higher processing time and computational resources if the full set of features are utilized. 

Moreover, the main limitation is considered in industrial applications that they are restricted due 

to patent [51] [52] [59]. 

Features matching 

After detecting features from both images, the next step to match them to identify overlapped 

part and map objects to each other. The naive approach is to try every possible value as brute-

forcing by matching and choose the result which minimizes the total error. This approach always 

guarantees the most accurate result; however, it’s the time consuming and doesn’t work with 

typical vision constraints if certain parts aren’t optimized by some indications. The most popular 

approach is Random sample consensus (RANSAC), which is the non-deterministic iterative 

method which can be used for bijection that maps set of features to another set of the image 

data [61]. On each iteration, it tries random approaches by choosing a set of features to be 

matched, verifying them, and calculates the sum of error, which is corrected every next run. The 

accuracy of the result is proportional to the number of iterations [48][54]. 

 

Blending Images 

Blending is a process of adjusting images together in order to minimize the intensity difference 

between intersected areas and calibrate the image to have the same appearance as a 

combined merged result. The possible differences between images can be caused due to[54]: 

• Radial distortion 

• Viewpoint differences of video-sensors 

• Light change due to position differences of video-sensors 

• Errors as mismatching features 

and other possible errors 
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The final image results are mapped to the projection layer, which can have different forms. The 

most popular traditional projections for panoramic images are [62]: 

 

Cylindrical projection, which maps 3D stitched images space to 2D space by stretching 

original horizontal lines and directly associating vertical lines. The analogy can be seen as 

covering the object with a cylinder and obtain the result which is projected to the cylinder 

surface. As a result, horizontal lines appear stretched while the vertical view is preserved. The 

example is illustrated in Figure 2.8. Equirectangular projection can be considered as a subcase 

of cylindrical projection where 360° horizontal by 180° vertical field of view is presented. 

Similarly, horizontal lines appear curved while vertical lines remain straight [62][63]. 

 

Figure 2.8: Cylindrical Projection 

 

Hammer projection is an equal-area projection, which stretches stitched image horizontally. 

The final image has distortion on the outer part of the image, but the central area is 

preserved[64]. The example is displayed in Figure 2.9. 

 

Figure 2.9: Hammer Projection 
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Stereographic projection is another mapping technique, where the points are mapped in the 

relation of the view from a certain point and give a spherical view on the 2D plane [64]. The 

example is illustrated in Figure 2.10. 

 

Figure 2.10: Stereographic Projection 

 

It should be noted that while above algorithms and steps of processing have general-purpose 

usage, human vision involves certain advantages which can be utilized for choosing the 

algorithm not to overcomplicate the problem and save computational resources. 

The main features and observations from the human vision, which are taken into consideration 

while mimicking it as the digital system involve[28]: 

1. In human vision, eyes as video-sensors have same base properties as dimensions, 

resolution and other parameters. However, captured images can still be different 

because of position differences and possible errors and still need calibration and noise 

filtration processes. 

2. Video-sensors are presented on the same linear baseline with the same angle with a 

known distance from each other. 

3. As it was mentioned before, the nose plays an important role in human vision. It can be 

seen from both of eyes but isn’t presented in the final stitched image. It is used as a well-

known object with known distance, shape and used as an essential key point of feature 

for merging images.  

 



26 

 

These properties of human vision give advantages which can be used in implementation and 

design to save computational resources as follows: 

1. Video-sensors in the implementation can be presented the same way with the same 

linear baseline in order to save time for searching viewpoint sensitive invariant features. 

2. Since the video-sensors are the same and frames have the same property and aren’t 

rotated the images which should be matched and have overlaps in pre-defined range, it 

isn’t required to search keypoint invariant to rotation, scale and other features. 

 

2.1.4 Noise reduction, Smoothing and Fitting curves 

 

Noise reduction is one of the essential parts in the digital image processing applications since 

noise is typically presented on digital images due to capturing errors, transmission, possible 

memory corruptions or other reasons. Moreover, it plays another important role in smoothing the 

results derived from image processing for higher accuracy and having a better experience from 

the user side[65] [66]. 

Digital Image noise filtration 

 

Filtration is a traditional method which is widely used in computer vision for noise reduction.  

The idea is to filter the errors without affecting the essential information contained inside the 

image. The filters vary to the applications, implementation and assumptions [66]. 

The basic approach is convolutional filters, which assumes that the noise is presented to the 

individual pixels and the pixels have a common relation to the neighborhood values. 

The naive implementation is defining the average matrix which is known as Mean Filter (MF) 

and applies convolution through the 2D image. The 2x2 form of the matrix is described as 

following: 

 

This approach successfully fixes the basic noise however it loses too much information and 

strongly depends on the neighborhood values. The better idea is to have weight values of the 

neighbors, as the farther neighbors are less likely to affect the pixel than the closest one. The 
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most popular approach of this class of filters is the Gaussian filter[40]. The Gaussian equation 

describes the probability density function of a normalized distribution: 

: 

the 5x5 matrix form representation is as follows: 

 

Another approach is a median filter a non-linear filter which replaces each pixel value by a 

median of the neighborhood pixel values. This approach is widely used in the applications 

where images can be corrupted by the defect and or canceling the pixel values. Another 

advantage of the algorithm is that it preserves the edges[67]. The filter example is illustrated in 

Figure 2.11. 

 

 

a) Original image b) Median filtered image 

Figure 2.11: Median filter on the image example 

Another non-linear, edge-preserving filter is a bilateral filter which resembles a Gaussian filter 

and utilizes it by computation weighted average of the intensity values and setting to the center 

pixel  [40] [67]. The filtered image can be seen in Figure 2.12. 
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a) Original image b) Bilateral filtered image 

Figure 2.12: Bilateral filter on the image example 

 

It should be mentioned that there are other approaches which utilize more complicated 

algorithms such as deep learning, classification the regions and etc. which remove noise for not 

only single-pixel, but affected the region of the image, however, computation resources of such 

methods are quite large, and implementation involve complex steps which aren’t suitable for 

research requirements [66]. 

Fitting the curve 

The image is not only the data which needs noise reduction in machine vision applications. The 

results which are derived from the image processing such as positions, angles or other values, 

also need to be smoothed due to stability as well as better user experience.  It should be noted 

that data is presented as a digital signal or an array of values and don’t require as much time 

constraints as an image since the single value is retrieved per frame instead of per pixel. 

 

The basic approaches involve the same technique as was described before for noise filtration 

for images such as an average of weighted average with gain values. They give a reasonable 

result for smoothed data however the precision is based on the length of the filer, which is 

proportional to the latency value, they aren’t suitable due to longer response time in real-time 

application[68]. 

Another naive approach is threshold filtering. The idea is to define a certain threshold and filter 

values if the difference is high enough. In addition, it counts the number of continuously filtered 

pixels, and if the count reaches more than another threshold value should be changed the 

position. This technique is illustrated in Figure 2.13, where blue points are original data and read 
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points represent smoothed results, the period of the frame measurement is taken 33.3 

milliseconds (ms) as for standard 30 frames per second (fps) video sensor operation. 

 

Figure 2.13: Threshold filtering 

 

The main limitation is the long latency as it can be seen from the example. Moreover, it doesn’t 

exclude small jittering, which is below the threshold.  

 

One of the best practices and techniques is fitting the curve, which is a process of finding a 

mathematical function from the data which minimizes the distance between the measured 

points. This approach is widely used and gives higher accuracy results. Mathematical functions 

can vary; thus, the most popular approach is polynomial functions. The idea is to define a 

polynomial with a previously determined factor and change coefficients based on the income 

data[69]. It’s important to define proper power value of polynomial in order to avoid overfitting 

which example is shown in Figure 2.14, where red points are real data, the green curve is an 

optimal smoothing result, and the blue curve represents the overfitted curve [70].  Similarly, to 

the previous graph, the period of the frame measurement is 33.3 ms. 
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Figure 2.14: Overfitting example 

 

Kalman Filter 

One of the popular solutions from best practices is the Kalman filter, which is a linear quadratic 

estimation. It is widely used in real-time tracking application since have a practical structure and 

is optimal in calculation with smaller latency and cycle time. It operates by minimizing the mean 

square error of the estimated parameters[71]–[73]. 

 

The principles of operation of Kalman filtering is shown in Figure 2.15:  

 
 

Figure 2.15: Principles of operation of KF 
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The input of the Kalman filter is measurement values in addition to a noise matrix which can be 

defined statically as an initial step or changed in runtime. The inputs are presented as: 

Process noise matrix, which describes the uncertainty about the process of the variable. 

Measurement noise matrix, which describes how much error measurement can have.  

The matrix values depend on the model and values being measured and smoothed. 

As an output, the filter receives a smoothed estimated value with a covariance matrix which 

describes the confidence level of estimation of the smoothed parameter [71]–[73]. 

 

The definition of each parameter is described below in Table 2.1 [71]–[73]: 

 

 

Fk State model matrix 

Hk observation model 

Qk Process Noise matrix 

Rk Measurement noise matrix 

Bk Control-input model 

Pk Post error covariance matrix 

 

 

The process changes time to time and defines parameters by the assumption that it can be 

derived from the previous state as following [71]–[73]: 

 

 

The prediction step involves the update of the state and error covariance: 

   

 

   

 

 

After the prediction, measurement, Kalman gain, and error covariance are updated, and the 

state is estimated as follows [71]–[73]: 

Table 2.1: Definition of Kalman Filter Parameters 
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Measurement residual:  

 

Gain update: 

 

Covariance update: 

 

(Post) State re-estimation: 

 

 

The process is repeated to the same cycle with prediction and estimation. 

 

It should be noted that the Kalman filter is the optimal linear filter and is based on the 

assumptions that   

1) The model should be defined precisely which replicates the real system process 

2) The noise which is reduced is independent, and the process and measurement noise 

are at least roughly known. 

Which means that the algorithm accuracy depends on how the parameters and model are 

defined [71]–[73]. 

 

2.2 Related Works 

Various vision system frameworks and designs are developed in recent years. In this section, 

some of the implementations of the main components of human vision are described, 

overviewed, and highlighted advantages and disadvantages. 

FPGA-based Panoramic Vision works 

The first research “High-Speed Simultaneous Image Distortion Correction Transformations for a 

Multicamera Cylindrical Panorama Real-time Video System Using FPGA” by Yuan Xu and 

Qinghai Zhou proposes a simultaneous technique of barrel correction, perspective transform 

and projection to the cylindrical space using multiple video-sensors [74]. The experimental setup 

is developed on the Spratan6 FPGA utilizing DDR3 memory. It proposes architecture with 

minimized latency and high performance. The setup involves multi-camera distributed as a 

pentagon with the additional video-sensor on top, which is illustrated in Figure 2.16 [74]. 
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Figure 2.16: Proposed multi-video-sensor setup of the related research 

 

Since the video-sensors are presented in different angles and don’t share the same baseline, it 

requires more complex transformations of points for matching the intersected region. The main 

milestone of the algorithm involves: 

1. Calibration and adjustment video-sensor parameters 

2. Transformation coordination which involves Barrel correction and cylindrical reprojection 

of each image 

3. Identification of the overlapped area 

4. Blending the final image 

While the algorithm process consists of typical image stitching steps, additionally it involves 

specific approach for coordination of transformations and the setup, which speed up the 

approach by statically setting the cameras with predefined distances and angles, which are 

symmetric for each lower camera as well. It should be mentioned that implementation also 

utilizes software part in SoPC as well, which involves: 

1. Sensor configuration 

2. Perspective transform matrix initialization 

3. Image adjustments 

4. Display setup 

5. User interface 

The hybrid design is useful for implementing the parts which don’t require saving computational 

resources for each cycle of operation and debugging/testing purposes [74]. 

 

Another application which worth mentioning is “Image Blending in a High Frame Rate FPGA-

based Multi-Camera System“ by Popovic and Seyid[75]. The research proposes the blending 

technique using FPGA. The main technique of operation is based on Gaussian blending 
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methods. The test setup includes a large number of cameras, as shown in Figure 2.17:  104 and 

15 video-sensor are utilized in the setup[75]. 

 

 

Figure 2.17: Setup of cameras in related research 

 

 

Orthographic plane projection through the center of the spherical distribution of multicamera 

setup is used. The implementation involves two types of Gaussian blending: a standard one and 

restricted Gaussian technique, which restricts blending image to the region where pixels aren’t 

close enough to the center of the field of view. The implementation is done by using XILINX 

Virtex 5 FPGA with the designed board for setting up video-sensors because of the limitation of 

input-output pins of the development board. The high-level architecture is presented in Figure 

2.18 [75]. 

 

Figure 2.18: FPGA Architecture of the related research 

 

As it can be observed it utilizes two external SRAM memory, which stores an array of twenty 

following frames. 
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FPGA-based Stereo Vision works 

 

The previously described researches proposed only a stitching component for a panoramic field 

of the view of human vision. It’s important to review the stereo vision component from binocular 

vision.  

 

The research “Hardware implementation of an SAD based stereo vision algorithm” by Ambrosh 

and Humenberger proposes the hardware design and implementation of the base algorithm for 

stereo vision [76]. The proposed implementation covers only a core algorithm based on the area 

matching instead of features. It defines the range of disparity from 0 to 100 and for all possible 

values calculates the matching score in parallel and choosing the best score value. The 

algorithm is applied for each line of the image frame. The implementation depends on the 

assumption that the maximum disparity is 100 and it doesn’t involve any position estimation, 

triangulation or object detection from the images. As a result, it maps each line of the original 

image to resulted disparity map. The design is developed on the Altera Quartus II FPGA and the 

architecture is displayed in Figure 2.19 [76].  

 

Figure 2.19: FPGA High-level design of the Stereo Vision related research 

 

As a result, the algorithm doesn’t require lots of computation, the total time takes only 2.4 ms 

and can operate 425 fps, however, it’s just a simple core part of stereo vision and doesn’t fully 

cover the all main components [76]. 
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Another design and implementation on FPGA are “FPGA Design and Implementation of a Real-

Time Stereo Vision System“ by Jin and Cho which propose a fully pipelined system for real-time 

application[77]. It is based on the utilization of the density of disparity and census 

transformation. The architecture involves rectification module, Hamming distance measurement, 

tournament selection, subpixel estimation, and error detection, which results calculated disparity 

image. The implementation is developed on Virtex-4 FPGA using two VSS-8350CL video-

sensors. The advantage of the approach is based on pixel processing rather than sharing the 

same results for each line, which was described in the previous research. However, it uses and 

window side for each region where the disparity is estimated. Other advantages of the design 

are pipelining technique and modularity of the architecture, which makes the design able to 

operate faster and be flexible for improvement and further modifications. The research focuses 

only to disparity value calculation and doesn’t involve 3D trajectory estimation or object 

detection. [77]  

 

More complete research example which involves most of the parts of stereo vision is “Real-Time 

Stereo Vision System using Semi-Global Matching Disparity Estimation: Architecture and 

FPGA-Implementation” by Banz and Hesselbarth, which proposes stereo vision system [78]. It 

covers the process of minimizing the noise of images, disparity calculation with rectification, and 

visualization with rendering module. The stereo vision implementation is based on the epipolar 

geometrical setup of two video-sensors. The hardware architecture utilizes MI-bus which 

connects noise filters, memory units, control of the video-sensor, disparity estimation and 

rendering, and is illustrated in Figure 2.20. The median filter with a 3x3 matrix is used for post-

processing step for noise reduction. [78] 

   

Figure 2.20: Hardware Architecture of the Stereo Vision related research 
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The stereo vision is based on feature matching key algorithm and is done by parallelizing semi-

global matching with a combination of rank transforms with a 9x9 matrix in the pre-processing 

step. The design uses Virtex 5 FPGA and outputs result through VGA module. It should be 

mentioned that this approach is scalable and adjustable by the requirement of the latency and 

processing time [78]. 

 

The more complex approach which uses the extended concept of a reconfigurable computer 

instead of single FPGA is “Real-Time Stereo Vision on the PARTS Reconfigurable Computer” 

by Woodfill and Herzen [79]. The main advantage of the implementation is the Programmable 

and Reconfigurable Tool Set (PARTS) engine, which increases the efficiency of real-time video 

applications. The design covers the implementation of the census stereo disparity algorithm 

which maps two images to the dense depth map image pixel by pixel. Despite the powerful 

engine, the algorithm only specializes in a subpart of stereo vision and proposes implementation 

of disparity calculation with only acceptable shift range of the matrix. The matrix is given to 5x5 

and is scanned by the neighborhood around a certain pixel, and the best score results are 

obtained. The dataflow of the algorithm is represented in Figure 2.21 for the PARTS engine. [79] 

 

Figure 2.21: The dataflow of the algorithm for the PARTS engine 

 

The result implementation reaches 42 to 225 frames per second depending to the image 

resolution. It should be mentioned that the approach is overcomplicated and doesn’t utilize all 
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the advantages of the described engine, thus it doesn’t show the main necessity for the 

implementation and a clear dominance to the single FPGA [79].  

Machine Vision Software Platforms 

 

Besides the research and designs on the reconfigurable platform, it’s important to review 

software analogies and libraries. 

One of the popular machine vision toolkits is DLIB, which provides C++ based implementation 

of various machine vision problems [80].  The toolkit contains portable code and can be run on 

different OS including Windows, Linux, Mac OS and any POSIX system. 

It provides a wide range of domains of the algorithms for machine vision, including: 

• Image Processing domain which integrates the implementation of feature extraction with 

SURF, HOG, FHOG, general detection, frontal face detection, pose estimation, face 

recognition and other complex algorithms. 

• Machine Learning domain which involves implementation of classification and regression 

problem solving with Support Vector Machines, Deep Learning, Multilayer Perceptron, 

Clustering algorithms such as Whispers, Newman and other linear or kernel k-means 

clustering 

• Numerical algorithms module which involves fast operational matrix implementation, 

non-linear optimization algorithms, min cut/max flow problems solutions. 

It also includes additional modules such as threading, networking, GUI and other utility parts 

[80]. 

 

Another widely known software implementation is an Open source computer vision (OpenCV) 

library, which is widely used in industrial and research purposes to solve real-world vision 

problems [81]. The initial idea of creating the library was to develop open source vision 

infrastructure with optimized code. It covers the vision areas with the implementation of deep 

learning frameworks such as TensorFlow, Caffe and etc. As well includes gesture recognition, 

object identification, motion tracking, augmented reality algorithms and others. It is commonly 

used as another alternative to Dlib. The newer version also includes GPU optimizations with 

OpenCL and Cuda based interface [81]. 
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2.3 Summary 

 

To sum up, various implementation and design of human visions on the reconfigurable platform 

was reviewed. Despite high performance and accurate results of the hardware implementations, 

they were focused on a specific feature of the vision, utilizing most resources on it and don’t 

cover complete approach and all basic components of human vision. Software implementations 

are wide and contain reusable methods of various areas of human vision however they aren’t 

useful to human vision systems because of a general limitation of the computer systems using 

programmable procedures rather than reconfigurable systems. Differently, to software 

platforms, reconfigurable computing system paradigm provides real-time adaptations, massive 

data processing, multitasks parallel independent operations, power minimization, computation 

and memory usage by direct management and mapping. Because of that, software 

implementations aren’t useful for high-performance real-time systems which could mimic the 

human vision system [82]. 
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Chapter 3 

3. Methodology and Architecture 

 

This chapter involves the methodology and design architecture of the binocular vision system 

which replicates human vision. Firstly, the observations are highlighted which are utilized in 

methodology and realized in implementation and design. In the methodology, principles and 

techniques with the specification of the algorithms are described. The motivation for using the 

chosen technology is explained. The binocular vision is separated into two parts as the stereo 

and peripheral vision. Finally, the combined architecture and design is proposed and discussed. 

3.1 Observations 

 

Since the aim of the research is to create the analog of the human vision system, it’s essential 

to highlight the main principles of human vision, which are utilized later in the implementation. 

Two main concepts of the binocular vision as it was discussed in background information are: 

1) A stereo vision which enables the human vision to the calculated depth of the object in 

3D space 

2) A peripheral vision which supports a wide field of view vision  

Accordingly, the implementation is divided into two parts, but the main concepts of vision are 

shared, which involves[28][33] [83]: 

 

1. One of the fundamental properties of human vision is attention. Human vision only 

focuses on a single window or area or object from the whole view. Instead of seeing the 

complete image in the high resolution, only the area which is inside the attention is 

processed in higher resolution while the surrounded part is blurred. The main motivation 

of having this property in human vision, is to save the time, computations and memory 

for the processing the whole image and only specify the part which is in high interest[33]. 

2. The criteria for setting a particular area of the frame to attention window or changing it, 

can vary to the priority of interest, conditions and history of previous objects. However, 

one of the main factors is the speed of motion. The objects which appear to move faster 

normally takes human visual attention, and after observing the features and properties, it 

is kept or rejected and moved to another object. Similarly, if the object stops moving 
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after a certain time and condition, it’s getting out of interest and new objects, which are 

moving or prioritized, are taking human attention[83]. 

3. The attention window is always centered on the interested area, which highlights the 

importance of finding the centroid properly. Moreover, it doesn’t move and avoids jitter 

by a small threshold distance. 

4. The vision is based on the continuous frames, and the object movement is ranged based 

on the speed, this allows optimize the approach for the tracking as the changing whole 

frame or unexpectedly showing the object in other location can be considered as noise 

or abnormal operation. 

5. Two almost identical eyes are located on the same baseline and normally share the 

same angle, which allows saving computational resources for image merging and not to 

waste time for searching features which are scale, rotation invariant and highly sensitive 

to viewpoint change. 

6. The field of view can be extracted by moving the eye or head in order to cover the whole 

area. This approach is useful for human; however, in industrial applications, the same 

results can be achieved by using more than 2 video-sensors since the cost of the sensor 

is relatively cheap than using the motor. Moreover, multiple video-sensors can share the 

same techniques of processing algorithms and don’t require external setup. Same 

resource utilization can be achieved by setting inactive and active video-sensors and 

simulate movement by shifting and adjusting combinations. 

Prioritizing criteria for defining attention 

 

Objects, which are coming to the attention area and processed in high resolution by human 

vision, can be prioritized or filtered based on the properties[83]: 

1. Shape and dimensions: in real-life application, it’s important to define what kind of 

shape and dimensions are taken into consideration. The real dimensions of the object 

can be easily retrieved by scaling 2D dimension with the distance factor retrieved by 

stereo vision. For instance, if the prioritized object is a human, the dimension and the 

range of it can be predetermined and differentiated from other shapes such as car or 

spacecraft. Another reason for using shape and dimension-based filtration is a reduction 

of the noise. For example, if a single pixel of a small area of the image is corrupted or an 

object is a small mosquito which isn’t in the interest of application, they can be easily 

removed by verifying dimensions. The examples can be seen in figure 3.1 [84][85]. 
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Figure 3.1: Examples of prioritizing objects [84][85] 

 

2. Distance is another important parameter for prioritizing objects. The interest of area can 

be defined only for objects which are closer than certain distance and, accordingly, far 

objects are filtered. Oppositely, farther objects such as (4) (5) in figure 3.1 can be in the 

area of interest, and the closer object (3) can be excluded. 

3. It’s important to retrieve the speed of movement of the object. Normally slower objects 

take less attention than faster-moving objects but depend on the situation a specific 

range of speed can be defined and utilized. 

4. The direction of the movement is another important factor of human attention. Cyclic 

moving objects (ex: trees) can take less attention than the object, which is coming 

forward to the human, which is normally due to a possible fear factor.  The direction of 

movement is also important to find objects which share the same vector of movement 

and can be combined to a single object. 

5. Predicted location is another criterion for prioritizing. The predicted location can be 

retrieved from the known vector of the object and history of a movement. If the object is 

coming to the “restricted” area defined by the vision application, it can be taken into 
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attention before entering for pre-processing or possible reactions. It should be 

mentioned that this feature can be utilized as security and defense applications. 

3.2 Methodology  

In this section, main utilized algorithms and methods are described, which involves object 

detection, object representation, tracking, techniques of memory and resource minimization, 

multi-object extended approach, disparity calculation, and other features. 

 

Object detection 

The principle of object detection is based on the movement of an object. Every two following 

frames are kept in the memory for each cycle of operation. The difference is calculated for each 

pixel value, which is filtered with a certain threshold. The example result of movement detection 

and conversion to the binary form is shown in Figure 3.2.  

 

Figure 3.2: Movement detection instance example 

 

This is a standard procedure for movement detection. The procedure allows detecting moving 

objects based on the assumption that video-sensors are continuously operating. If a new object 

appears, it won’t be missed because of showing the difference to the previously retrieved frame. 

Moreover, the threshold value filters the possible pixel noise caused by the video-sensor 

capture or transmission of the digital image. 

Presentation of the object instances 

The object is presented in two properties: 

1. A rectangular area of the object which is surrounded through the object 

2. A single point which is the actual centroid of the object inside. 

The rectangular area of the object is not only the dimensions of the moving area but as well the 

window of “attention”, which is called blob. This means that the area is captured, processed, 

and kept in high resolution and outside are in low resolution, as displayed in Figure 3.3.  
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(Note: the term blob will be referred to the attention as the area which is kept in higher 

resolution in following part of the thesis). 

  

Figure 3.3: Blob representation example 

Two types of memory for image storage are defined: 

1. Background storage, which is for 4x4 compression of the frame 

2. Blob storage, which is high definition area of the focused object 

 

The blob is not always kept in the highest possible definition, and it also depends on the 

distance, size and dimensions of the object. The idea is to define the resolution adaptation, 

which is proportional to the dimensions and properties to it. If the object is far, the highest 

resolution is taking place, and if it’s relatively closer and bigger enough and doesn’t fit into the 

predefined size of memory for the blob, it is compressed proportionally. The idea is illustrated in 

Figure 3.4. To sum up, the size of each memory unit type is already fixed, and dynamic 

resolution is utilized for blobs. 

 

Figure 3.4: Blob resolution adaptability 
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It should be noted that if the dimensions of the object are small and far enough that doesn’t 

require whole memory defined for the blob, the extra surrounding is kept in higher resolutions. 

The main idea and concept of this technique come from the human vision, and the motivation is 

to have constant accuracy regardless of the distance.  It should be emphasized that the centroid 

need to be defined in higher accuracy for a farther object than closer objects in order to 

calculate the distance with acceptable error. Figure 3.5 shows the error function for the distance 

calculation. The function shows the correlation between an error of the distance (caused by a 

single-pixel error in centroid calculation) and the distance. The x-axis shows the disparity 

values, and the y-axis presents the error values. As it can be observed smaller getting the 

disparity, which means that the object is farther, the single-pixel error can cause a huge error in 

distance calculation. The reason for it is the inverse proportional relation of the distance and 

disparity by the definition of triangulation formula. 

 

Figure 3.5: Distance Error function according to the single-pixel error of a disparity 

 

 

It should be noted that once an object window is determined, the result is verified from different 

video-sensors. Verification is performed by two parameters: 

- Dimensions of the blob: the size of the width and height of the blob should be within the 

acceptable threshold distance value in order to be considered as the same object 

determined from different video-sensors 

- If the object was tracked before and the same blob has moved, the vector of the 

movement should be the same within acceptable error from the different video-sensors. 

Another important note which should be emphasized is that processing and keeping blob in the 

higher definition is performed for the next frame after verifying blobs, in order not to waste time 

reprocessing of the same frame and keep high cycle time. 
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It should be mentioned that if the object stops moving, a blob is kept active until the certain 

number of frames after which it becomes the part of the background. However, the last 

centroids in 3D space are kept for up to previous 8 objects, and as they get active again, it’s 

being tracked and processed in the same high-resolution blob. The reason for keeping the blob, 

in case of a certain time of inactivity, is to avoid losing the attention to the slow-moving objects. 

 

Centroid calculation 

 

The actual centroid of the object doesn’t always match the center of the blob because: 

● Taking the center of the window instead of the actual centroid of the object leads to 

lower accuracy of disparity calculation. The possible noise of movement or different 

views of video-sensors can result in slightly different shapes of motions and blob sizes 

which can be accepted by blob verification step, but the error must be excluded in the 

centroid part 

● The actual centroid depends on the object shape. For instance, if the most part of object 

shape is distributed in the left side of a blob, the center should be adjusted to it 

● If the object is smaller enough that fits the area of the blob size the surrounded part is 

also kept inside the blob, and the actual center can be different 

● As it was mentioned before smaller movements of the object doesn’t change the center 

of the blob while the actual center of the object is altered 

 

 

Calculation horizontal centroid in enough for distance estimation since it leads to horizontal 

disparity and the video-sensors are horizontally separated to each other and vertically share the 

same line. However, with the same technique, the vertical centroid is determined for further 

processing, Y-coordinate estimation, and better visualization.  

 

As it can be observed from human vision, even the object is moving within a certain relatively 

smaller distance the blob isn’t moving. The same technique is applied to the implementation.  

Inside the blob rectangle, 4 times smaller (2 times smaller width and 2 times smaller height) 

imaginary concentered rectangle is defined. The position of the blob only changes if the centroid 

crosses this imaginary rectangular boundary in order to avoid smaller jitters in blob positioning. 
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This method is illustrated in Figure 3.6, where the green rectangle represents an imaginary area 

of centroid movement without changing the blob position. 

 

 

Figure 3.6: Internal sub boundary of centroid movement 

 

Multi-object tracking 

 

As it was mentioned and observed the attention of the human vision is always concentrating on 

a single area or objects. The developed system can be extended with the concept for multi-

object detection and tracking and utilize the same methodology. The detection process is 

described below: 

1. All the objects which are detected previously are presented in an additional virtual 

border, which is a bigger concentered window. It is padded with a predefined value 

through the borders to the blob window (similarly as it was made to the inner disparity 

movement area).  The outer rectangle reserves the space to the object not to be mixed 

to another object and considered as critical area when tracking multi-objects.  This 

approach is illustrated in Figure 3.7, where the blue rectangle represents the outline 

virtual boundary. Moreover, this method prevents detection the part of the previously 

tracked object as a separate object. 
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Figure 3.7: External boundary of object tracking 

 

2. All the predefined outer window areas are skipped during the detection procedure, and if 

the new object is presented in the remaining part of the image, it’s detected, and the new 

blob is defined. 

3. If objects are crossing each other, the object which goes behind, which is determined by 

the calculation from stereo vision, is kept in memory. It is reserved for several frames, 

and only the visible frontal object is presented unless they separate each other. 

 

Video-sensor operation  

 

Human binocular vision requires two video-sensors. However, the mechanism of moving the 

head and eyes gives an extra field of vision. In the design and implementation, more than two 

video-sensors are utilized. Basic setup involves the operation of 3 video-sensors which are 

separately utilized for the stereo and panoramic vision. The reason for choosing more than 2 

standard video-sensors instead of additional mechanism for movement or wide-angle cameras 

is that it a cost-efficient approach. The standard camera which supports 60-90 degrees field of 

view is relatively cheaper than cameras with a higher field of view, they use fewer resources 

and require lower power usage. Having an additional motor for rotation similarly to human vision 

would make the design more expensive and overcomplicate the approach as would require 

external control and additional power. Despite the fact multi-cameras are utilized, they can be 

activated in combination by the adaptability, which saves the computational resources. 

 

The video-sensors share the same baseline and angle, similar to the human vision, which 

results in easier processing and feature extraction for stereo vision and stitching images. As well 
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they are the share the same configuration which provides the same initial resolution, 

dimensions, format, and other properties of captured images. 

 

As it was discussed, the images, captured by video-sensors, requires pre-processing for noise 

reduction and better quality. The pre-processing is done inside the camera sensor unit and 

involves the following processes: 

1. Black and white pixel correction, which supports fixing stuck pixels 

2. Automatic white balance control, which removes unrealistic color casts 

3. Lens correction, which avoids distortion 

4. Contrast center auto adjustment 

5. Color banding, which is in the process for avoiding inaccurate color presentation 

6. Color interpolation 

7. Adaptive Gain Control with the Least Mean Squares, which prevents artifacts 

8. Automatic Brightness Control, which adjusts brightness automatically 

 

The methodologies described above were the common components for stereo and peripheral 

vision. In this section specific methodologies and principles for stereo and peripheral vision are 

described. 

Stereo vision specific methodologies 

 

Video-sensor Adaptation 

While three video-sensors are utilized for tracking object, only two of them are in the active 

state. The selection of active cameras depends on the location of the object. The approach is 

illustrated in Figure 3.8. 

 

 

Figure 3.8: Video-sensors adaptation examples 
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It should be noted that not only horizontal location is considered, if the object is farther, 2 

furthermore cameras are utilized in order to have higher accuracy for distance calculation. This 

technique replicated the human vision feature that eyes are adjusted by the distance of the 

object. In terms of implementation, it provides the dynamic adaptation of the cameras as there is 

no necessity to process all of them for stereo vision. The provided technique can save power, 

memory and computational resources. 

Verification 

As it was mentioned before, objects are verified from both video-sensors to avoid mismatching 

them and prevent possible noise, which can be specific to a single video-sensor. The 

verification is done by the following procedure: 

1. Single-camera verification: for a small sample of frames the object dimensions and 2D 

location should keep the same with an acceptable change as verification that camera 

functions correctly and consider the area as an object. 

2. The dimensions of the object from different video-sensors should be similar to each 

other. The small difference is acceptable due to the fact that images aren’t captured from 

the same location 

3. If an object was previously analyzed and tracked, the 2D vector from each video-sensor 

should match. 

Once it is verified and the centroid is calculated by the procedure described above, the next 

step is to find the distance of the object. 

Distance determination 

The idea of distance calculation is based on the standard triangulation illustrated in Figure 3.9, 

however, some of the parts are modified and optimized. 

 

Figure 3.9: Standard triangulation method 



51 

 

 

Let’s assume that the object captured is the same and the centroids are calculated correctly and 

are c1 and c2 from video-sensor 1 and 2 accordingly. 

The disparity value can be calculated as follows: 

 

Since there is inverse proportional relation between disparity and distance with the constant 

factors based on the focal length and baseline (assume that despite the adaptation of video-

sensors, the distance is fixed). Instead of specifying the parameters, the range as an example [0 

to 1024] can be defined and result value can be simply rescaled as follows: 

 

 

The reason for adding unit 1 to the disparity, is that it can be zero for very far distances. 

This is a simpler way of calculation; however, this approach can be improved by replacing it with 

a lookup table since: 

1.  Division is always computationally expensive operation while lookup table gives result in a 

single (or double depends on the size) clock cycle. 

2. Depend on the application lookup table can be redefined and customized. As well it doesn’t 

require to resynthesize and reroute the whole design and can be simply modified by changing 

lookup table values. 

3. If the specific more complex formula is utilized, the lookup table can simply be filled with 

values derived from the function in compile time. 

 

Table 3.1 illustrates one of the simple lookup table which was used testing in the lab, the range 

is relatively smaller due to the smaller distance and customized to 10 steps, measured in foot 

(ft), and have the similar function to the division with a smaller range and smaller sensitivity 

changes based on the object length. Figure 3.10 illustrates the functional form of the table.  

 

 

Disparity range [pixels] Distance [ft] 

1-18 10 

19-54 9 

55-108 8 

 

Table 3.1: Example LUT of distance determination by disparity value 
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Table 3.1 (continued) 

109 – 180 7 

181 – 270 6 

271 – 378 5 

379 – 504 4 

505 – 648 3 

649 – 810 2 

811-1024 1 

 

 

 

Figure 3.10: Functional representation of the example LUT of distance determination  

 

Smoothing Results 

 

It’s essential to maintain a stable result in order to: 

1. Remove noisy data and minimize errors 

2. Exclude small jitters or sharp movement to keep smoother results for human interface 

Since smoothing results are performed in the post-processing stage, which is executed per 

frame instead of each pixel, it can utilize whole time spend on a single frame processing. The 

longer time gives the possibility to use high accuracy and a more complicated algorithm than 

threshold filtering or averaging.  
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Linear quadratic estimation filter is utilized for achieving desired results. Figure 3.11 illustrates 

the diagram of the entire smoothing procedure.  

 

Figure 3.11: Smoothing filter operational layers 

 

As it can be observed, firstly, the centroids are smoothed separately and controlled by an active 

signal, which is the indication if the objects were moved and the data is new or not. Active 

signals are important because if the last data was a noise and the object stops moving, the rest 

of the time noise data will get a higher advantage, which is prevented. After smoothed values 

disparity is calculated, which is smoothed with another layer of Kalman filter as well. Finally, the 

distance value is retrieved from the disparity lookup table and smoothed. Despite the fact that 

Kalman filter is used in every stage of smoothing, the model of each one and the parameters for 

measurement and covariance noise differ to each other, because of different sensitivity and 

probability to the error. 

 

Representation of results 

 

As the distance is calculated and centroid provides horizontal and vertical location it’s important 

to represent results in a feasible way for custom application and user easy representation. 
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Mapping the trajectory of the object movement 

The custom 3D grid is defined which can be used for possible applications. The 3D position is 

mapped to the grid for better representation. The trajectory as the history of previous points 

makes it possible to determine the vector of movement by sampling last 8-16 points and predict 

the future location of the object. The mapping trajectory is illustrated in Figure 3.12.  

 

 

 

Figure 3.12: Mapping trajectory on the 3D grid 

 

Detection if the object has passed the border of pre-determined area-of-interest 

and action respective to this event 

 

The grid gives a general platform which can be used in various areas such as security systems, 

defense, space mission and others. On top of that, the implementation also supports defining 

the imaginary borders and alarm-based events. The events can be varied by the logic if an 

object enters the area, leaves the area or prediction of it or a combination of these approaches. 

Figure 3.13 illustrates the proposed custom borders for the object where borders are defined in 

red color and the blob is highlighted in yellow color.  
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Figure 3.13: Custom Borders on the grid for event-based alarms 

 

Peripheral vision specific methodologies 

The main aim of the part is to obtain a wide-angle view capture of an area with saving 

computational resources to utilize in monocular vision object tracking. Since the standard video-

sensors are limited in the angle of the field of view which is typically 55-90 degrees, multiple 

video-sensors are utilized to achieve a wider field of view.  The algorithms and implementations, 

which were discussed in related works section, involve complex operations for keypoint 

matching and perspective projection. The approach, developed in the thesis implementation, is 

based on a system which utilizes 3 video-sensors, which aims to create a merged image by 

stitching images with simple rectification and use the techniques of distance calculation with 

single monocular vision. 

 

The video-sensors are attached on the flat surface. The distance between each camera is ~10 

cm which is similar to the distance of human eyes, which ranges 58 mm to 68 mm. The longer 

distance is chosen because of the purpose to be able to use the same setup for stereo vision 

and determine distance with higher accuracy. Figure 3.14 illustrates the base idea of the 

proposed technique. 
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Figure 3.14: Distribution and setup of video-sensors 

 

The whole image, which is seen from all video-sensors can be divided into three parts as it is 

illustrated in Figure 3.15. As it can be seen, the images from left and right video-sensors are 

cropped and stitched to the original center camera image, however since the video-sensors 

have different viewpoints, the rectification and blending are required to get smooth continues 

image result. In the implementation, frames of side video-sensors are cropped with 

predetermined offset and rectified to the middle frame because the effective stitching algorithms 

are computationally intensive, and the main point is to use for monocular distance determination 

and tracking in a larger field of view. Despite the fact that visual results aren’t effective, the 

challenges and purpose of having wider FOV for tracking 3D objects in peripheral view and 

avoid computationally expensive operations are achieved. 

 

Figure 3.15: Overlapping example of the images retrieved from video-sensors 
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Once the object leaves the stereo field of view, it is still tracked from the peripheral part and the 

distance is calculated in proportional relation to the length of the width as it is illustrated in 

Figure 3.16.  

 

 

Figure 3.16: Monocular distance calculation principle 

 

The proposed method saves time for the processing frame to find the key points and features to 

be matched, which are the most time consuming and computationally expensive operations. 

 

3.3 Architecture 

The architecture of the developed system consists of two components: 

1. Stereo vision, which operates based on the overlapped field of views of video-sensors 

and calculates 3D coordinates using the triangulation technique 

2. Semi-Panoramic vision, which is used for peripheral vision. It merges frames obtained 

from video-sensors to a single stitched image. 

Finally, the combined architecture is proposed, which integrates these two components and, 

additionally, determines the distance from peripheral vision using monocular tracking. 
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Stereo Vision Architecture 

The stereo vision system architecture is illustrated in Figure 3.17 and consists of nine different 

type of modules.  

 

Figure 3.17: Stereo Vision Architecture 

 

The principles of operation are the following: 

It takes three camera images as input and processes them in parallel. Firstly, each image is 

averaged by 4x4 (16 pixels in group: 4 rows x 4 columns) in order to achieve higher speed for 

background processing. After averaging part. It should be noted that the two following frames 

are kept in the memory, and the multiplexer controls and navigates memory part for each new 

frame. 

 

After saving the frame, the difference between the two frames are generated and the movement 

area of the object is detected. The blob is determined, which represents a window where the 

movement was detected. Sizes of detected blobs from all video-sensors are compared, 

validated and verified by blob validator module. If the validation is successful, new blob 

coordinates and dimensions are taken for each video-sensor.  
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The blobs are stored, and motions are detected with the same technique, but in higher 

resolution without averaging because more accuracy is needed for further processing.  

For each acquired blob, the centroid is calculated, which follows the disparity determination. 

According to disparity, the distance is obtained by LUT. Finally, the output frame displays: 

averaged video-sensor outputs, detected blobs in higher resolution, the depth, the disparity and 

other custom values.  

In addition, the input controls configure the mode of the output frame generator, which make it 

possible to show different representations of the results. 

Panoramic Vision Architecture 

Panoramic vision architecture, which is shown in Figure 3.18, consists of four components. 

Initially, it takes three video-sensor images and stores them into corresponding frame memory. 

It should be noted that the middle video-sensor is preserved originally, while side video-sensors 

are cropped. After the acquisition of the data, the inputs are rectified, merged and sent to the 

output generator module. 

It should be mentioned that the camera capture module is the same as in stereo vision 

architecture and output frame generator shares the same components, these overlaps are 

shared in combined design. 

 

 
Figure 3.18: Peripheral Vision Architecture 
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Integrated Final High-level Architecture 

 

The final architecture combines stereo and peripheral (semi-panoramic) vision components. As 

it was mentioned, the camera capture module and output generations with small internal 

components are shared. The principle of operation is the following: if the object is viewed from 

at least two video-sensors, it is analyzed through stereo vision and once it leaves the stereopsis 

field of view, the distance is calculated and tracked based on the width and height of the object. 

The combined design diagram is illustrated in Figure 3.19. 

 

Figure 3.19: Integrated Final High-level Architecture 
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Chapter 4 

4.1 Implementation and Design 

4.1 Experimental Setup 

 

The design and implementation are developed in a hybrid way, which means that it utilizes 

FPGA hardware design with the addition of software, executed in the ARM. The software is 

implemented on procedural and imperative C language and only used for parts where time 

limitation constraints are lower and don’t affect processing cycle time. The usage of software 

includes: 

1. Initialization stage, where video-sensor registers are initialized, and HDMI is set up. 

2. Post-processing part, where the results are processed per frame instead of the pixel. For 

instance, smoothing or verification of 3D vectors. 

3. Debugging and testing purposes such as setting and modifying values and logging 

important data 

4. Customization purposes such as graphical user interface  

Hardware design is done on VHDL using Xilinx ISE/Vivado Design Suite computer-added 

design (CAD) tools. 

 

Zedboard 

 

Zedboard is a board which is architected for evaluation and development purposes. It is a part 

of Xilinx Zynq-7000 family with integrates hardware programmable FPGA in the combination of 

the ARM processor [86]. It’s widely used in development because it provides analytics and 

control tools, hardware acceleration, set of design and CAD tools. Moreover, it is designed to 

achieve the lowest system power. With 85000 Programmable logic cells, it contains the ARM 

Cortex-A9 which is a 32-bit processor with the ARMv7-A architecture with 4 cache-coherent 

cores. The block diagram of the Zedboard is illustrated in Figure 4.1 [86]. 
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Figure 4.1: The block diagram of the Zedboard [86] 

 

As it can be observed it contains HDMI 225Mhz transmitter with a digital video interface, which 

is compatible to HDMI 1.3 version with support of 1080p60 16-bit, YCbCr, 4:2:2 mode values.  

512 MB Double Data Rate 3 (DDR3) Synchronous Dynamic Random-Access Memory which 

enables to utilize it for saving frames for processing, however since it’s external on the board 

and the design is optimized for memory usage BRAMs (4 KB) are utilized for faster operation 

[86]. Zedboard supports 140 BRAMs with the ability to be configurable and convert as a true 

dual-port memory unit. From the I/O pins, the switches and buttons are utilized for debugging 

purposes and FMC is used for connection to the printed circuit board (PCB) which connects to 

video-sensors [86]. 
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Video-sensors 

Special purpose OVM7690 video-sensors are utilized in the proposed solution. The video-

sensor is 2.5x2.9x2.5 mm cube which combines a wide variety of functions inside a single 

chip[87]. Another advantage of using a camera is that it can be directly soldered to the PCB 

instead of using external mount device. The resolution of the video-sensor is 640 x480 pixels 

which are suitable for research constraints. It supports F/4.0 lens with a 64-degree field of view. 

It uses relatively low power as requires 2.6-4 v analog power supply.  the temperature 

operation, in order to get a stable image, is 0 to 50-degree Celsius which is acceptable for 

testing setup. It supports different output formats YUV 442, RGB 565, CCIR656 and raw RGB 

data, which is used in the implementation. Input clock frequency ranges from 6-27 Mhz. The 

frame rate operates in 2 modes: 

• VGA: 30 fps 

• QVGA: 60 fps 

To summarize, the video-sensors is low cost, ultra-low power usage solution with the 

acceptable performance and suitable for research purposes. Moreover, it should be noted that it 

integrates standard basic image processing inside the chip such as exposure, gamma, color 

saturation and reduction of the noise functions. The video-sensor and functional block diagram 

are represented in Figure 4.2 [87]. 

 

 

Figure 4.2: The video-sensor and functional block diagram of it [87] 

 

The video-sensors is configured in the initialization stage through the ARM by setting values to 

the registers, the main parts of configuration involve [87]: 



64 

 

● The output format is settled to Bayer pattern RAW RGB mode. The patter follows a 

combination of red, green and blue values with twice as many green pixels as blue or 

red in order to replicate the principle of the physiology of the human eye. The pattern is 

illustrated in Figure 4.3 [88]. 

 

Figure 4.3: Bayer pattern 

 

● VSYNC, HREF, and PCLK are selected and used for output state 

● Pre-processing AGC and AEC algorithm are enabled with unlimited step size  

● Automatic gain control is enabled for automatic adjustment of the image frame 

● Exposure control is activated 

● Auto mode is selected for contrast center adjustment 

● Other noise reduction image processing functions are selected and enabled including 

color interpolation, black and white pixel correction, lens correction, auto white balance 

and etc. 

Setup 
 

3 video-sensors are mounted to the custom printed circuit board (PCB) with the addition of 

1. 6-Bit Bidirectional Level shifter for translation voltage domain 

2. Adjustable and Fixed Low-Dropout Voltage Regulator to maintain a stable voltage level 

3. The clock generator generates 25 MHz clocks for video-sensors 

4. 2-bit Bus Transceiver with support of dynamic Level-Shifting and Translation 

5. FMC module for I/O 

 

The layout of the PCB is displayed in Figure 4.4. The distance between closer cameras are 10 

centimeters and mimics human vision parameters. 
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Figure 4.4: The layout of the PCB 

 

 

The custom board is mounted to the Zedboard through FMC module. 

The experimental setup is displayed in Figure 4.5. 

 

Figure 4.5: Experimental Setup 

4.2 Implementation and Design 

In this section technical description of the implementation and design is presented, which is 

separated into 2 parts: Stereo vision and peripheral vision. The implementation shares the same 

base of submodules and same setup with modifications and addition to the specific vision 

component. In the end, the combined final implementation and design is proposed and 

described. 
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Modules of Stereo-Vision 

Top-Level Module 

 

Top-Level Module of stereo vision is the biggest module which integrates all of the submodules 

of the architecture, which is illustrated in Figure 3.17.  

Functions: 

Top-Level Module Performs the following functions: 

1. Receives frames from 3 video-sensors 

2. Averages frames from video-sensors and saves in memory 

3. Find the difference between 2 frames (for Movement detection) 

4. Detect the blob area 

5. Finds centroids in the blob 

6. Calculates Disparity and Depth of the Object 

7. Generates output Frame and Displays Result 

Structure: 

Top-Level Module includes 9 different types of submodules. 

It should be mentioned that the following submodules are used for each video-sensor frame 

processing:  

1. CamCapture Module which takes the image frame from video-sensor decodes and 

performs function 1 

2. Average Module, which performs function 2 

3. Diff Module, which performs Function 3 

4. Blob detect Module, which performs Function 4 

5. Centroid Calculation Module, which performs Function 5 

The Following Submodules are shared among the video-sensors: 

6. Blob Validator, which validates and verifies detected blobs 

7. Disparity Calculation, which performs function 6 (one part) 

8. Depth Calculation, which performs function 6 (depth part) 

9. Output Frame Generator, which performs function 7 

 

The symbol and interface of the module are shown in Figure 4.6 and Table 4.1 respectively. 
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Figure 4.6: Symbol of Stereo Vision Top Level 

 

 

 

Name Type Mo

de 

Description 

GCLK std_logic IN Global Clock 

FMC_CAM0_PCLK std_logic IN input clock of camera 0 

FMC_CAM0_DATA std_logic_vector(9 downto 0) IN frame pixel of camera 0 

FMC_CAM0_HREF std_logic IN start of a line of camera 0 

FMC_CAM0_VSYNC std_logic IN start of a frame of camera 0 

FMC_CAM1_PCLK std_logic IN input clock of camera 1 

FMC_CAM1_DATA std_logic_vector(9 downto 0) IN frame pixel of camera 1 

FMC_CAM1_HREF std_logic IN start of a line of camera 1 

FMC_CAM1_VSYNC std_logic IN start of a frame of camera 1 

Table 4.1: Interface of the stereo-vision top-level 

module 

disparity value 
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Table 4.1 (continued) 

FMC_CAM2_PCLK std_logic IN input clock  of camera 2 

FMC_CAM2_DATA std_logic_vector(9 downto 0) IN frame pixel   of camera 2 

FMC_CAM2_HREF std_logic IN start of a line of camera 2 

FMC_CAM2_VSYNC std_logic IN start of a frame   of camera 2 

RST std_logic IN reset 

SWITCHES std_logic_vector(6 downto 0) IN Controlling testing  modes and 

changing crop and rectification 

adjustment 

HD_CLK std_logic OU

T 

Output clock for HDMI 

HD_DATA std_logic_vector(17 downto 0) OU

T 

Data output for HDMI 

HD_HREF std_logic OU

T 

start of a line of the output 

frame 

HD_VSYNC std_logic OU

T 

start of an output frame  

HD_DE std_logic OU

T 

Data Enable signal for output 

 

 

Camera Capture Module 

 

Functional Description 

Camera Capture Module converts raw input taken from the video-sensor to a more usable 

format. Figure 4.7 presents the raw input [87], as it can be observed only the active rectangle 
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from the arrays are real video-sensor frame while other parts are dummy data which is filtered 

with the module and generated as an output. 

 

 

Figure 4.7: Structure of an image frame [87] 

 

 

The original image arrays consist of 656 columns and 492 rows which are 322752 pixels in total. 

Only 307200 are the part of the active area of the pixels: 640 columns and 480 rows. Basically, 

the other area is used for calibration of black level and interpolation. 

 

 

Principles of operation 

The module is implemented with a state machine, which generates new horizontal and vertical 

synchronization signals and filters the dummy data from the pixels array. Moreover, the input 

data are 10 bits from where the most significant 8 bits are taken and processed.  

In should be noted that the video-sensor input clock is used for processing the input data while 

the output signal is synchronized through the global clock. 
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Interface and Symbol 

Figure 4.8 displays the symbol of the module and Table 4.2 describes the interface. 

 

Figure 4.8: Symbol of the Camera Capture Module 

 

 

 

Name Type Mode Description 

CLK std_logic IN input clock of the camera 

DATA_IN std_logic_vector(9 downto 0) IN frame pixel of the camera 

HREF_IN std_logic IN the start of a line of camera 

VSYNC_IN std_logic IN start of a frame of camera 0 

RST std_logic IN reset 

 

Table 4.2: Interface of the Camera Capture module 

module 

disparity value 
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Table 4.2 (continued) 

DATA_OUT std_logic_vector(7 downto 0) OUT Data output  

HREF_OUT std_logic OUT start of a line of an output  

VSYNC_OUT std_logic OUT start of the output  

 

 

 

Average module 

Functional Description 

The average module takes the input raw RGB image and converts to lower resolution image by 

averaging the region 4x4. The motivation of averaging is to compress and minimize the image 

for further processing as a background and identifying the potential moving objects and blobs. 

 

 

Principles of operation 

The image input is taken as the Bayer pattern stream.  In order to achieve average for each 

color two extra lines are reserved as buffers which store previous values for each column. The 

average is done and on each step by addition and shift operation (division by 2) instead of as a 

stream instead of adding and dividing by 4 which saves space for each pixel. The calculation is 

presented for each color channel respectively: 

 

 

 

 

 

Interface and Symbol 

 

The symbol is illustrated in Figure 4.9 and the interface in Table 4.3, as it can be seen new 

HREF_OUT and VSYNCH_OUT are used as horizontal Pixel clock and the start of the new line 

as respectively and the clock is kept as global CLK. 
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 Figure 4.9: Symbol of Average Module 

 

 

 

Name Type Mode Description 

CLK std_logic IN input clock of the camera 

DATA_IN std_logic_vector(7 downto 0) IN frame pixel of the camera 

HREF_IN std_logic IN the start of a line of camera 

VSYNC_IN std_logic IN start of a frame of the 

camera 

RST std_logic IN reset 

DATA_OUT std_logic_vector(7 downto 0) OUT Data output  

HREF_OUT std_logic OUT start of a line of an output  

VSYNC_OUT std_logic OUT start of output  

 

 

 

Table 4.3: Interface of Average Module 

 



73 

 

Diff module 

 

Functional Description 

In order to detect movement, it is essential to calculate the difference between the 2 following 

frames. The difference is calculated for background compressed image frames for further 

detection of a blob and for the high definition blob frames for more accurate calculation of 

centroids. The movement is detected by the threshold for each color channel pixel value. The 

absolute value of subtraction of pixel values is calculated, compared to the threshold and 

mapped to a binary output. The module supports threshold scaling mode which enables varying 

threshold value proportional to the value of the pixels as the noise can be varied to the intensity 

of the pixel. 

 

Principles of operation 

The module takes input from both images as 8-bit pixel values and is controlled by enable signal 

for disabling calculations on the inactive area of the image.  In order to use module flexibly for 

testing or applying the same logic for different noisy images, the module takes the threshold 

value as input instead of constantly setting it. The threshold can be dynamically calculated and it 

slightly differs for blob and background area because of different possible errors and sensitivity 

importance. Since the output is mapped to binary result the data_out is single std_logic type and 

the busy signal is used for control and indication of the validity of output. 

 

Interface and Symbol 

The interface and symbol are illustrated in Figure 4.10 and Table 4.4 respectively. 
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Figure 4.10: Symbol of Diff Module 

 

 

 

 

Name Type Mode Description 

CLK std_logic IN input clock of the 

camera 

EN std_logic IN Enable 

 

Table 4.4: Interface of the Diff Module 
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Table 4.4 (continued) 

THRESHOLD_DIFF std_logic_vector(7 

downto 0) 

IN Threshold value 0-

255 

THRESHOLD_SCALI

NG 

std_logic IN Threshold dynamic 

scaling mode enable 

 

DATA_IN_1 std_logic_vector(7 

downto 0) 

IN pixel value from 

frame 1 

DATA_IN_2 std_logic_vector(7 

downto 0) 

IN pixel value from 

frame 2 which is 

following frame 

RST std_logic IN reset 

DATA_OUT std_logic OUT Binary result output  

BUSY std_logic OUT Busy control signal 

 

 

Blob detection module 

 

Functional Description 

 

This module detects blob on provided movement frame. Enable, HREF and VSYNCH signals 

are used for control purposes, which are generated for the background frame and aren’t the 

same as the original image. Width of the data pixel value is 1 as an indication of the movement 

instead of the 8-bit pixel value. The output is left and right margin values which range from 0 to 

640 and the top and bottom value which ranged from 0 to 480. The busy signal is used as an 

indicator if output data is valid or not. 
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Principles of operation 

 

The purpose of the module is to find the smallest rectangle where the moving object can fit, in 

order to achieve it, output values are calculated as follows: 

● Left value: the extremum minimum column from minimum values for each row where 

movement is detectable  

● Right value: the extremum maximum column from maximum movement values for each 

row 

● Top value: the extremum minimum column value from minimum movement values for 

each column  

● Bottom value: the extremum maximum column value from maximum movement values 

for each column  

 

Interface and Symbol 

Figure 4.11 and Table 4.5 displays symbol and interface respectively. 

 

Figure 4.11: Symbol of Blob Detection Module 
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Table 4.5: Interface of the Blob Detection Module 

Name Type Mode Description 

CLK std_logic IN input clock of the 

camera 

EN std_logic IN Enable 

DATA_IN std_logic_vector(7 downto 0) IN Movement indication 

for pixel 

HREF_IN std_logic IN the start of a line of a 

frame 

VSYNC_IN std_logic IN start of frame 

 

RST std_logic IN reset 

LEFT_OUT std_logic_vector(9 downto 0) OUT Left margin value 

RIGHT_OUT std_logic_vector(9 downto 0) OUT Right margin value 

TOP_OUT std_logic_vector(8 downto 0) OUT Top margin value 

BOTTOM_OUT std_logic_vector(8  downto 0) OUT Bottom margin value 

BUSY std_logic OUT Busy control signal 

 

 

 

Centroid Calculation module 

 

Functional Description 

This module calculates the centroids from the given high definition blob image, adds it a 

padding of left and top value to horizontal and vertical value accordingly and outputs results. 
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Principles of operation 

 

A horizontal centroid is calculated by finding the average of determined movement range. The 

same method is used for determination vertical centroid.  It should be noted that horizontal 

centroid is enough for disparity and distance calculation however it is calculated for further 

possible processing purposes such as additional verification. The centroid calculation algorithm 

is described in the methodology section in details. 

 

Interface and Symbol 

 

 

 

Figure 4.12: Symbol of Centroid Calculation Module 
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Table 4.6: Interface of the Centroid Calculation Module 

Name Type Mode Description 

CLK std_logic IN input clock of the 

camera 

EN std_logic IN Enable 

DATA_IN std_logic IN Pixel value of blob 

HREF_IN std_logic IN the start of a line of a 

frame 

VSYNC_IN std_logic IN start of frame 

 

RST std_logic IN reset 

LEFT_IN std_logic_vector(9 

downto 0) 

IN BLOB Left margin 

value 

RIGHT_IN std_logic_vector(9 

downto 0) 

IN BLOB Right margin 

value 

TOP_IN std_logic_vector(8 

downto 0) 

IN BLOB Top margin 

value 

BOTTOM_IN std_logic_vector(8  

downto 0) 

IN BLOB Bottom margin 

value 

HOR_OUT std_logic_vector(9 

downto 0) 

OUT Horizontal value of 

the centroid 

VER_OUT std_logic_vector(8 

downto 0) 

OUT Vertical value of the 

centroid 

BUSY std_logic OUT Busy control signal 
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Blob validation module 

 

 

Functional Description 

The function of the module is to validate the blobs in order to verify that the same area or 

objects are tracked from the different video-sensors. 

 

 

Principles of operation 

The input values are coordinates provided from three video-sensors. Firstly, the dimensions are 

compared with an acceptable error value and, secondly, if the blob is previously tracked which 

is indicated by comparing previous locations, the vectors of movement is calculated and 

compared to each other. If the new values pass the verification steps, they are outputted, or the 

last validated values are kept as an output. It should be emphasized that validation signals 

control if the object is seen and detected to the video-sensor and the verification is chosen 

accordingly to it. 

 

Interface and Symbol 

Figure 4.13 illustrates the symbol and description of each input and output values are shown in 

Table 4.7. 
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Figure 4.13: Symbol of Blob Validator Module 

 

 

 

Name Type Mode Description 

CLK std_logic IN input clock of the camera 

EN std_logic IN Enable 

VAL1 std_logic IN Valid result indicator from camera 1  

VAL2 std_logic IN Valid result indicator from camera 2  

Table 4.7: Interface of the Blob Validator Module 
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Table 4.7 (continued) 

VAL3 std_logic IN Valid result indicator from camera 3 

RST std_logic IN reset 

LEFT_IN_1 std_logic_vector(9 downto 0) IN BLOB Left margin value from camera 1 

RIGHT_IN_1 std_logic_vector(9 downto 0) IN BLOB Right margin value from camera 1 

TOP_IN_1 std_logic_vector(8 downto 0) IN BLOB Top margin value from camera 1 

BOTTOM_IN_1 std_logic_vector(8  downto 0) IN BLOB Bottom margin value from camera 1 

LEFT_IN_2 std_logic_vector(9 downto 0) IN BLOB Left margin value from camera 2 

RIGHT_IN_2 std_logic_vector(9 downto 0) IN BLOB Right margin value from camera 2 

TOP_IN_2 std_logic_vector(8 downto 0) IN BLOB Top margin value from camera 2 

BOTTOM_IN_2 std_logic_vector(8  downto 0) IN BLOB Bottom margin value from camera 2 

LEFT_IN_3 std_logic_vector(9 downto 0) IN BLOB Left margin value from camera 3 

RIGHT_IN_3 std_logic_vector(9 downto 0) IN BLOB Right margin value from camera 3 

TOP_IN_3 std_logic_vector(8 downto 0) IN BLOB Top margin value from camera 3 

BOTTOM_IN_3 std_logic_vector(8  downto 0) IN BLOB Bottom margin value from camera 3 

LEFT_OUT_1 std_logic_vector(9 downto 0) OUT BLOB Left margin  output value from camera 1 

RIGHT_OUT_1 std_logic_vector(9 downto 0) OUT BLOB Right margin output  value from camera 1 

TOP_OUT_1 std_logic_vector(8 downto 0) OUT BLOB Top margin output value from camera 1 

BOTTOM_OUT_1 std_logic_vector(8  downto 0) OUT BLOB Bottom margin output value from camera 1 

LEFT_OUT_2 std_logic_vector(9 downto 0) OUT BLOB Left margin output value from camera 2 

RIGHT_OUT_2 std_logic_vector(9 downto 0) OUT BLOB Right margin output value from camera 2 

TOP_OUT_2 std_logic_vector(8 downto 0) OUT BLOB Top margin output value from camera 2 

BOTTOM_OUT_2 std_logic_vector(8  downto 0) OUT BLOB Bottom margin output value from camera 2 

LEFT_OUT_3 std_logic_vector(9 downto 0) OUT BLOB Left margin output value from camera 3 

RIGHT_OUT_3 std_logic_vector(9 downto 0) OUT BLOB Right margin output value from camera 3 

TOP_OUT_3 std_logic_vector(8 downto 0) OUT BLOB Top margin output value from camera 3 

BOTTOM_OUT_3 std_logic_vector(8  downto 0) OUT BLOB Bottom margin output value from camera 3 
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Disparity Calculation module 

Functional Description 

This module calculates disparity from the horizontal centroid values of the video-sensor 

 

Principles of operation 

CEL_CAMERA controls the validity of the video-sensors as well selection of it according to the 

position and adaptation of video-sensor operation. The disparity is calculated as follows: 

 

Firstly, the centroids are subtracted and then the absolute value is taken. 

 

Interface and Symbol 

The interface is described in Table 4.8 and the symbol is illustrated in Figure 4.14. 

 

Figure 4.14: Symbol of Disparity Calculation Module 

 

 

 

Name Type Mode Description 

CLK std_logic IN input clock of the camera 

EN std_logic IN Enable 

CEL_CAMERA std_logic_vector(2 downto 0) IN Selection of the camera valid 

results 

Table 4.8: Interface of the Disparity Calculation Module 

 



84 

 

Table 4.8 (continued) 

HOR_IN_1 std_logic_vector(9 downto 0) IN Horizontal value of the 

centroid from camera 1 

HOR_IN_2 std_logic_vector(9 downto 0) IN Horizontal value of the 

centroid from camera 2 

HOR_IN_3 std_logic_vector(9 downto 0) IN Horizontal value of the 

centroid from camera 3 

RST std_logic IN reset 

DISPARITY std_logic_vector(9 downto 0) OUT Calculated disparity result 

BUSY std_logic OUT Busy control signal 

 

 

 

 

Depth Determination module 

 

Functional Description 

 

This module calculates the distance according to the disparity. The cel value indicates a 

combination of from which video-sensors were centroid and disparity are obtained in order to 

know the base distance between video-sensors. 

 

Principles of operation 

 

Since the relation between disparity and distance is inverse proportional and it requires 

intensive computation, it’s implemented with lookup tables. This approach makes it possible to 

define values based on the application and specification as well as it is useful for debugging and 

testing purposes. Two types of look-up table which maps 10-bit input value to 10-bit output 

value are predefined and filled. Two types are chosen because of different baseline on the 

video-sensors (closer or and further cameras). Single BRAM (4 kilobytes in size) is utilized for 

the solution. 
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Interface and Symbol 

 

 

Figure 4.15: Symbol of Depth Determination Module 

 

 

Table 4.9: Interface of the Depth Determination Module 

Name Type Mode Description 

CLK std_logic IN input clock of the camera 

EN std_logic IN Enable 

CEL_CAMERA std_logic_vector(2 downto 0) IN Selection of the camera valid 

results 

DISPARITY std_logic_vector(9 downto 0) IN Disparity value 

RST std_logic IN reset 

DEPTH std_logic_vector(9 downto 0) OUT Depth result value 

BUSY std_logic OUT Busy control signal 
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Output Frame Generator module 

Functional Description 

This module takes the input images from video-sensors with the 3D coordinate value and 

generates output HDMI frames for visualization results. It should be noted that since the 

visualized image can vary by the configuration and can combine blob, background, movement 

frame or original image from different video-sensors, the module outputs the address being 

displayed and the custom pixel RGB value is provided as input and determined externally. 

 

Principles of operation 

The module takes RGB input value, custom configuration retrieved from ARM and generates 

YCbCr 1080x720 HDMI frame. For the conversion from RGB to YCbCr internal IP is utilized 

provided by Xilinx. 

Along with a camera image which can be represented with or without blob, movement and from 

different video-sensors and scaling, the trajectory grid is drawn, and application-specific 

methods are applied depending on the configuration. 

 

Figure 4.16: HDMI frame structure 
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The modules generate full HDMI frames filled with blanking and display pixels which are 

illustrated in Figure 4.16 [89]. 

 

Interface and Symbol 

 

Figure 4.17: Symbol of Frame Generator Module  

 

 

 

Name Type Mode Description 

CLK std_logic IN input clock of the camera 

EN std_logic IN Enable 

DATA_IN std_logic_vector(23 downto 0) IN frame pixel  

DATA_VALID std_logic IN If the data is valid 

X std_logic_vector(8 downto 0) IN X coordinate of object 

Y std_logic_vector(9 downto 0) IN Y coordinate of object 

 

Table 4.10: Interface of the Frame Generator Module 
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Table 4.10 (continued) 

Z std_logic_vector(9 downto 0) IN Z coordinate of object 

CONFIG std_logic_vector(63 downto 0) IN Custom configuration and 

data 

RST std_logic IN reset 

ADDRESS std_logic_vector(13 downto 0) OUT Requested Address of the 

output 

DATA_OUT std_logic_vector(17 downto 0) OUT Data output  

HREF_OUT std_logic OUT start of a line of an output  

VSYNC_OUT std_logic OUT start of the output  

Data Enable std_logic OUT Data Enable signal for 

output 

 

 

Modules of Peripheral Vision  

 

Functional Description 

Peripheral Vision Component Performs the following functions: 

1. Receives frames from 3 video-sensors 

2. Saves each color channel to the corresponding BRAM 

a. Keeps the middle video-sensor as the original input 

b. Crops side camera inputs 

3. Rectifies frames and merges them 

4. Generates output Frame and Displays Result 

The symbol of the peripheral vision component shares the same input and output signals as 

stereo-vision and it is displayed in Figure 4.18. 
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Figure 4.18: Symbol of Peripheral Vision Component 

 

 

Camera Capture Module  

Camera Capture Module is the same as defined for the stereo vision module. 

 

 

Data Acquisition 

Principles of operation 

After converting inputs through a camera capture module, data is saved in BRAMs. It should be 

emphasized that the pixel array of input is arranged according to the Bayer pattern. Each color 

is saved separately to the corresponding BRAM. It should be noted that while blue and red color 

is directly saved, green color data is averaged as it is proposed in the Bayer pattern. It should 

be noted that since the side video-sensor inputs are cropped only half of the data are saved in 

the memory. In addition, the cropping is performed with a custom offset which is adjustable 

through the switches of the top-level module input. 

 

In total 115 BRAMs are utilized for saving the given frame. 

The calculations are shown below. 
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The total number per color per camera frame is calculated as: 

 

Accordingly, total BRAM number per camera per color is: 

 

Total number of BRAMs utilized per camera is: 

 

Since the side cameras half data are cropped the number of BRAMs are reduced as: 

 

As a sum, the total number of BRAM for all camera images is: 

 

 

 

Block Diagram of Components 

The frame data acquisition process operates according to the Bayer pattern. It should be noted 

that this is a part of the top-level module as a separate process for each video-sensor instead of 

the module. The diagram of data acquisition is shown in Figure 4.19. 

 

 

Figure 4.19: Frame Data Acquisition Merging 
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Principles of operation 

The merging of the frames is done by mapping output addressed to the corresponding 

addresses of the appropriate BRAMs. It should be noted that the rectification offset of each side 

video-sensor is taking place in the calculation of the BRAM address as well. 

The frames are cropped horizontally with a maximum of the side cameras rectification number 

which is adjustable through the switches of the top-level module. 

The generated output frame is in HD resolution (1080x720), where each pixel represents 24 bits 

RGB value (8 bits for each color). Since the saved data frames resolutions are smaller each 

pixel is 4 times repeated (2 times per row, 2 times per column). Accordingly, the address range 

from (1080x720) is mapped to (720x480). The columns 0-180 is used for left-side camera 

cropped frame. Columns 180-540 are used for middle camera frame without modification. 

Columns 540-720 are similarly used for right camera cropped frame. 

 

Block Diagram of Components 

Figure 4.20 illustrates the process of mapping the output address to the corresponding BRAM 

and merging the frames. It should be noted that similarly to data acquisition this is represented 

as a process instead of a separate module. 

 

Figure 4.20: Merging Block Diagram 
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Output Frame Generator Module 

Functional Description 

The output frame generator module is similar to the stereo component output generator module 

and takes the inputs of the merged frame as 24 bits pixel (RGB) and generates1080x720 

resolution frame for displaying to a monitor via HDMI port. 

 

Principles of operation 

The module requests addresses of RGB data as an input to the proper frame. It takes 24 bits 

data with validated the data valid signal and converts to 18 bits pixel data frame as a final result. 

Every time a new address is requested, the module waits for data valid signal and after data is 

registered properly, the new address as a request is generated. Moreover, it should be noted 

that the module enables to add any custom visual data for testing or clarification purposes. 

 

Interface and Symbol 

 

 

Figure 4.21: Symbol of Output Frame Generator Module 
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Table 4.11: Interface of the Frame Generator Module 

Name Type Mode Description 

CLK std_logic IN input clock of the 

camera 

DATA_IN std_logic_vector(23 

downto 0) 

IN frame pixel  

DATA_Valid std_logic IN If the data is valid 

RST std_logic IN reset 

ADDRESS std_logic_vector(13 

downto 0) 

OUT Requested Address 

of the output 

DATA_OUT std_logic_vector(23 

downto 0) 

OUT Data output  

HREF_OUT std_logic OUT start of a line of an 

output  

VSYNC_OUT std_logic OUT start of the output  

Data Enable std_logic OUT Data Enable signal 

for output 

 

 

 

 

Block Design and IPs 

 

It should be emphasized that most of the modules, processes and signal operations are 

implemented with minimizing utilization of external IP (intellectual property) cores, however, 

clock generator IP for generating 74.25 MHz clocks of HDMI frames is used and illustrated in 

Figure 4.22. 



94 

 

 

 
Figure 4.22: 74.25 MHz Clock generator 

In addition, block rams are utilized for storing background and blob image frames with the 

latency of a single clock cycle. The IP is illustrated in Figure 4.23. 

 
Figure 4.23: BRAM IP core 

 

The design integrates ARM and FPGA components. ARM is utilized for the processing stages 

which aren’t limited in time, aren’t processed per pixel and are relatively harder to implement 

inside FPGA. They are mainly for customization purposes and user interface interaction. The 

communication between ARM and FPGA is done through Advanced eXtensible Interface (AXI) 

which is part of Arm Advanced Microcontroller Bus Architecture (AMBA) and based on master-

slave communication. Figure 4.24 illustrates a high-level block design. 
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Figure 4.24: High-level Block Design 

 

 

 

Software implementation 

As it was mentioned ARM part is utilized for the processes which aren’t limited in time and are 

utilized for each frame, such as user interaction, debugging such as logging through Universal 

Asynchronous Receiver/Transmitter (UART) and testing purposes. 

The operation and implementation in software part involve: 

- User interaction such as defining custom actions and events to the grid for application-

specific requirements and usage 

- Smoothing the parameters. As it was illustrated in Figure 3.11 before, the Kalman filter is 

utilized for smoothing results and fitting in the curve. Four Kalman filters are applied with 

different parameters for measurement and covariance noise to horizontal centroids, 

disparity and depth. 

The pseudocode is described below as a lightweight implementation of the smoothing filter. 
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Chapter 5 

5. Results and Evaluation 

In this chapter, implementation and design are evaluated in different ways which are discussed 

in details and the results as reports of resource utilization and visual representation are 

presented. 

5.1 Testing Methodology 

Testing machine vision applications are always challenging since it requires verification output 

from human perception. In order to maximize test coverage and automate verification, several 

ways of verification are proposed: 

Virtual Camera 

Virtualization camera means replacing camCapture module by mock module with the same 

interface. The virtual camera module outputs the generated moving simple shapes such as 

rectangle, circle and others with custom padding with disparity value. Figure 5.1 illustrates the 

virtual camera example output, where the virtual camera generates rhombus shape as an 

output which is highlighted in green as blob rectangle and centroid is displayed in blue. In the 

third image, horizontal disparity value and matched frames are visualized. The virtual camera 

approach is used for verifying object detection, tracking and disparity calculation and accuracy 

measurement since the defined trajectory is predetermined and can be identify expected and 

actual results and compares them. 

 

Figure 5.1: Video-sensors test configuration 
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Camera chip sensor was selected to provide test configuration for visual verification of video-

sensors and testing proper operation of camera module. It is achieved by test configuration of 

the video sensor registers, which enable to overlay color bar (displayed in Figure 5.2) to the 

input frame with a certain transparency. 

 

Figure 5.2: Overlay Color Bar 

 

Integrated Logic Analyzer 

In order to verify the design module in runtime Integrated Logic Analyzer (ILA) [90], which is an 

IP core supported from Xilinx, is utilized. ILA is a module which can be used for monitoring the 

signal of each module in the design. It involved various triggers such as Boolean logic, edge 

transition and etc. It should be noted that it uses the same clock constraints as used in the 

design since it operates runtime. 

 

The procedure of using ILA involved defining it into design and capture manually or 

automatically by triggering signals, monitoring and comparing them. 

 

Test dataset 

The test data involves values which are retrieved during the processing of frames such as 

centroids, blob coordinated and dimensions, disparity and distance. They are compared to the 

prepared test data in order to test the functionality of the module in automation mode. Test data 

consist of two categories: 

1. Manually selected data which includes simple, complex and edge cases of the values 

2.  Recorded data which is data retrieved from test movement of a person for realistic 

operation cases 
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Verifying design modules 

 

The modules are verified through different methods which involve ILA, recording results and 

compare actual and expected values to test data and visual verification. However, since the 

design consists of multiple modules in order to maximize the performance of finding faults or 

identifying errors, the faster approach is proposed, which is similar to a binary search / 

dichotomy method. The algorithm of testing is the following: 

1. Apply initial testing data from a virtual camera and verify results, by comparison, the 

expected value and actual values captured by ILA or recorded by saving in external 

memory or logging through UART 

2. If there are errors which aren’t acceptable, divide the design into two parts and apply the 

output to the middle layer of the design  

a. If the part indicated is error-free apply the same strategy to another part of the 

design 

b. If there is error indicated repeat the step 2 and divide design by two layers again 

Note: moving the start and endpoint of testable design can vary (input or output) 

depending on the modules involved and test data available to the input 

The technique is useful for testing and finding the problem in design effective way in logarithmic 

complexity. 

 

5.2 Results 

 

One of the challenges of the research was to remove environmental video noise in order to 

calculate 3D vectors in the highest accuracy. While the initial image processing and excluding 

and thresholding operation on pixels minimize errors, as it was described multi Kalman filter is 

applied for noise reduction in the final step.  

Figure 5.3 and 5.4 illustrate the reduction noise of horizontal centroid based on the recorded 

real test data. The red curve shows the smoothed result while the raw data is presented in blue 

points. The period of the frame is 33.3 milliseconds (ms) as the selected video sensors operate 

30 frames per second (fps). The same measurement is used for the graphs shown in this 

section. 
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Figure 5.3: Reduction of the centroid noise based on test dataset 1 

 
Figure 5.4: Reduction of the centroid noise based on test dataset 2 

 

KF is applied with different covariance and noise matrixes based on the model for the disparity 

and distance which are illustrated in Figure 5.5 and 5.6 respectively. Note that compared initial 
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data is without using KF in any layer, while the final smoothed result shows the final results 

used in all: centroid, disparity and distance pre-smoothing stages. The red curve shows the 

smoothed result and raw disparity is shown in green, raw distance is presented in purple color. 

 
Figure 5.5: Smoothing graph of the disparity 

 

 

 
Figure 5.6: Smoothing graph of the distance 
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Performance metrics and properties 

Performance table of the design includes measurement error as Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) of 3D vectors by comparing actual values to real test 

expected data, the test data is generated from the virtual camera involving object movements by 

in different direction with 1-10 pixels movement range per frame. Properties of system operation 

and performance metrics are presented in Table 5.1 and 5.2, respectively. 

 

Table 5.1: Properties of system operation  

Property Value 

Number of video-sensors 3 

Frames per second operation of video-
sensors 

30 

Input video-sensor frame resolution 640x480 

Utilization of Block RAMs (BRAMs) 138 

Total On-Chip power 2.327 W 

 

 

Table 5.2: Performance metrics 

Metric Value 

RMSE  0.383 [pixels] 

MAE  0.172 [pixels] 

 

RMSE and MAE are chosen because of common usage for measuring accuracy in vision/video 

applications. The input variables (vector coordinates) are measured in pixel unit precision. The 

actual values of the estimations, as it can be seen from the table, are less than 1, which give 

effective and competitive results compared to the standard complex machine vision application 

based on software implementations (which have high precision but are limited in power, 

memory and timing resources). 
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Visual results 

 

Figure 5.7 represents the frames taken from 2 different video sensors at the same time. The 

yellow rectangle represents the centroid calculated for the detected moving object. The red 

rectangle shows the blob area, which can be seen is presented in high resolution for higher 

precision results while the background is averaged and blurry for optimization resources. 

 

 

Figure 5.7: Visual images of single object detection with a blob 

Figure 5.8 displays the results of stitched images for the semi-panoramic field of view. As it can 

be seen the merged final image continues and covers ~120-degree fields of view (a, b, c). 

Figure 5.8 (d) shows the calculation results of centroid which is represented as the intersection 

of blue lines as horizontal and vertical centroids, respectively. 

 

 

                                              (a)                                                       (b)  

    

(c)       (d)  

Figure 5.8: Pictures of the semi-panoramic field of view 
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Multi objects are similarly processed and tracked in their separate high definition blob areas, 

represented as different color windows which are shown in Figure 5.9.  

 

Figure 5.9: Visual images of Multi-object tracking 

 

The customization of the designed and implemented system as platform allows developing 

further applications such as defining the restricted area in 3D and arise events when objects 

entered inside it. Figure 5.10 represent such alarm-based application, the x-axis shows 

horizontal centroid while the y-axis represents the distance from the cameras on the pre-defined 

grids, as it can be seen while the object is inside the restricted location (a) alarm is notifying with 

flashing light. 

 

             
         (a)                                        (b)  

    

Figure 5.10: Pictures of the custom application 
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Comparison to existing systems 

 

The concept of attention from the human vision, which is developed in the proposed system, 

optimizes solution for saving computation resources which give competitive and optimized 

results. As it was discussed in related works section, there are numerous FPGA-based designs 

and implementations for the stereo vision systems. Table 5.3 shows the comparison of the 

properties and resource utilization of the existing approaches. 

 

Table 5.3: Comparison to existing systems 

Developed System Frame 

size [px] 

Disparity 

range 

[px] 

Moving 

object 

detection 

and 

tracking 

Number of 

4KB RAM 

Blocks  

FPS 

a Real-Time Stereo Vision 

System by S. Jin [77] 

640 × 480 64 No 322 30/60 +  

Stereo Vision with Semi-

Global Matching Disparity 

Estimation by C. Banz [78] 

640 × 480 128 No 823 30 

Stereo Vision on the 

PARTS by J. Woodfill [79] 

320 x 240 24 No N/A 42 

System developed in the 

work 

640 × 480 480 Yes 138 30/60 + 

 

As it can be observed, other approaches are limited in disparity range as they standardly 

calculate the disparity map for the whole image instead of the certain object and estimate each 

possible disparity value per line/pixel which limits the possible variation for disparity. Moreover, 

they use just two cameras which give a lower field of view and less precision for the disparity for 

farther object. 

  

The major part of resources for the stereo vision of the related existing approaches are spend 

on rectification, which is avoided in the system developed in the R&D work by utilizing the idea 

of detection and tracking moving objects and representing them in the blobs, which already 

reflects rectification in the coordinates. 
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The concept of attention to moving objects and using information from the previously processed 

frames accelerates processing and minimize memory resources comparing to existing systems. 

  

The proposed system operates at 30 FPS and depends on the camera constraints. However, if 

the video sensor can provide higher FPS, the design can be adjusted to higher operational 

frequency proportionally keeping the same amount of resources and functionality. 

  

Moreover, the main advantage of the proposed system is real-time moving objects detection 

and tracking. This feature allows to prioritize them based on the properties and develope further 

custom applications. Unlikely to other approaches which have limited functionality for moving 

objects detection and tracking, the proposed approach allows to determine and track multiple 

objects in real-time. 

  

Summarizing the above, the developed system in this R&D work proposed, implemented and 

verified the concept of attention to moving object(s) optimizing the resources, power 

consumption and cost of real-time object tracking video systems. 
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Chapter 6 

6. Conclusion and Future work 

 

6.1 Conclusion  

 

In this research human vision concepts were analyzed and, based on the main principles, 

FPGA-based embedded vision system was created, implemented and tested. The system 

utilizes 3 special purpose video-sensors, FPGA platform and embedded hard processing core 

ARM Cortex-A9. This hybrid architecture makes it able to process image frames and mimic 

human vision in high performance and minimize the computational and memory resources as 

well as define GUI for application-specific usage. 

 

The implementation and proposed design involved: 

1. Analyses of two main components of human binocular vision: a stereo vision, which 

calculates the 3D vectors of moving objects and peripheral vision for a wider field of view 

and monocular distance calculation. 

2. Identifying main limitations of traditional approaches and implementations and 

developing algorithms and methods to solve them 

3. Utilization the idea of the blob, which replicates the human attention concept, minimizes 

resources and optimizes the solution for high processing time and latency reduction 

4. Experimental setup with hybrid architecture consisting of the FPGA and embedded ARM 

with addition of the custom board and multipurpose video chip sensors. 

5. Creation the system architecture and solve the problem with determined methodology 

from human vision and solve the challenges such as smoothing and noise reduction 

technique which allows convert non-stable raw output values to use in real time vision 

applications 

6. Framework with custom control and configuration for application-specific purpose usage 

as event-based alarms and notifications 

Moreover, the developed system is verified and tested through various steps in defined testing 

infrastructure with a virtual camera, recorded test datasets, integrated logic analyzer and other 

methods. 
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6.2 Future work 

 

The developed system can be improved by adding more features for more flexible and wider 

area usability or by improving performance. There are various algorithms for merging images, 

noise reduction, distance determination, which can result in better performance or a more 

accurate solution. The partial reconfiguration of Zedboard can be utilized for adaptation and 

flexibility of design. As well the system can be developed on another board with larger memory 

space or other capability features which can be utilized to speed up the solution.  

Additional features which replicate concepts of human vision or can be used in industrial and 

educational applications can be developed inside of FPGA or in ARM: 

● Movement recognition, which can record the history of object movement and analyze if 

the new object matches the previously known pattern 

● Object Detector which can be expanded by addition with more features such as complex 

classification as face detectors, body shape detectors and etc. 

● Landmark detection, which involves locating landmark points around the facial or any 

general-purpose component, which is nowadays widely used in object recognition and 

face detection-based application. 

● Object Recognition, which supports matching objects with previously known models, 

which, as an example, can be implemented with algorithms of popular machine learning 

classifiers 

● Text recognition for identifying the characters data and analyzing them 

 

Proposed design with separation of modules and ARM support for customization gives the 

system flexibility to be expanded easily for further development. 
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Appendix 

Waveforms from Integrated Logic Analyzer 

 

Capture of the functional waveforms for main results (final 3D coordinated and the values of the 

map) is performed runtime using Integrated Logic Analyzer (ILA) from Xilinx [90] as one of the 

suggested methodologies for testing. The description and type definition of each signal is 

presented in the table A.1. The results are compared to the recorded data or with pre-

determined values in case of virtual camera. The Figures A.1-A.4 shows sample waveforms for 

performed verification.  

 

 

Table A.1: Description of the input signals of the Integrated Logic Analyzer  

Name Description Type 

CLK Input Clock std_logic 

HOR_CENTROID_2 Horizontal centroid coordinate of 

the blob from active camera 1 

std_logic_vector(13 downto 0) 

HOR_CENTROID_1 Horizontal centroid coordinate of 

the blob from active camera 2 

std_logic_vector(13 downto 0) 

ROW_OUT Row number on the trajectory 

map  

std_logic_vector(5 downto 0) 

COL_OUT Column number on the trajectory 

map 

std_logic_vector(5 downto 0) 

RIGHT_BLOB_COORD Movement detected right 

horizontal coordinate (current) in 

blob search 

std_logic_vector(13 downto 0) 

LEFT_BLOB_COORD Movement detected left 

horizontal coordinate (current)  in 

blob search 

std_logic_vector(13 downto 0) 
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Figure A.1: Waveform for recorded data 1 

 

 

 

 

 
 

Figure A.2: Waveform for recorded data 2 
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Figure A.3: Waveform for virtual camera output 1 

 

 

ILA in Figure A.4 is configured for 32 window data depth and 12 window samples for detailed 

processing. 

 

 
 

 

Figure A.4: Waveform for virtual camera output 2 
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