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Sparse Representation is a topic that has been gaining popularity in recent years due to 

its efficiency, performance and its applications in communication and data extraction fields. 

A number of algorithms exist that can be used to implement sparse coding techniques in 

different fields which include K-SVD, ODL, OMP etc. In this project one of the most 

popular sparse algorithms, the OMP (Orthogonal Matching Pursuit) technique, is 

investigated in depth. Since OMP is not capable of finding the global optimum, a 

Top-Down Search (TDS) algorithm is proposed in this project to achieve much better 

results by sacrificing the execution time. Another contribution of this project is to 

investigate the properties of dictionary by modifying the frequency and shifting the phase 

of a standard Discrete Cosine Transfer (DCT) dictionary. The results of this project show 
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that the performance of sparse coding algorithm still has room for improvement using 

new techniques.  

 

Keywords: Sparse coding, OMP, Top-Down search algorithm 
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Chapter 1 
Introduction 

 

1.1 Motivation 

 

Sparse approximation is representation that accounts for all information of a signal in 

terms of a linear combination of small number of elementary signals called dictionary 

atoms [1]. These atoms are often selected from a dictionary that is fixed in nature. 

Dictionary learning is a process to find this sparse approximation for certain signals. In 

the past few years dictionary learning techniques have been gaining popularity due to their 

efficiency and high performance making them suitable for applications such as noise 

reduction, compression, feature extraction, pattern classification and blind source 

separation [2, 3].  

This technique for finding a sparse representation from a small number of significant 

coefficients is referred to as Sparse Coding. While the decoding process remains relatively 

straightforward the real challenge lies with the encoding process where the input vectors 

have to be represented with the least possible number of atoms. This proves to be an 

NP-hard problem because the number of combinations from the available solution space is 

usually extremely large. Thus, considerable effort has been made to find near-optimal 

schemes that allow us to acquire a solution that while may not be the global optimum in the 

solution but at least a near optimum value. Some examples of these sub-optimal schemes 
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include Matching Pursuit, OMP, K-SVD, ODL, and online dictionary learning [4,5,6,7]. 

Another popular branch of dictionary learning tried to learning an image-based dictionary 

based on the picture itself [8,9,10]. The motivation of this paper is centered on the 

limitations of the OMP algorithm and what can be done to improve efficiency and accuracy 

of sparse coding.  

The contribution of this paper is as follows: (1) An in-depth evaluation of the popular 

OMP algorithm and a study of its performance compared with that of a technique called the 

Top-Down search algorithm. The top-down search algorithm is a sparse coding technique 

that uses the curve fitting approach to find optimal solutions while sacrificing the execution 

time. The Top-Down search algorithm will allow us to independently verify if the OMPs 

abilities to accurately represent input images is severely limited or not and whether the 

OMP is actually able to find values that are closer to the global optimum or not. (2) The 

second contribution of this paper is aimed at understanding the effects of modifying the 

dictionaries which the algorithm uses to generate its results. Instead of using a fixed and 

known dictionary, the modification of dictionary tries to improve the quality of dictionary. 

Three different approaches are implemented in this paper; two approaches aim to expand 

the standard DCT dictionary using two different strategies, while the last approach apply 

a popular heuristic algorithm called Particle Swarm Optimization Algorithm to “learn” a 

dictionary iteratively.  
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1.2 Sparse Representation 

 

Sparse representation is the “core” of dictionary learning algorithms. The idea is to 

represent a large amount of data using a linear combination of small amount of basis, 

therefore the data can be transmitted, saved, or processed in an efficient way. Many 

practical and useful applications can be implemented based on the idea of sparse 

representation. For instance, high quality images are usually large files in modern 

computer systems. If an image is sent from one device to another device through wireless 

network, instead of sending the original image with all the data pixel by pixel, through 

sparse coding only a small amount of information is encoded on the transmitter side and 

decoded on the receiver side. Figure 1.1 shows an example in a real implementation. The 

original test picture is sparse represented using a linear combination. The picture is firstly 

divided into small 8x8 blocks, and each block is represented by a linear combination of 8 

basis. The major issue of the sparse representation is how to find the global optimum or a 

sub-optimum solution which is really close to the global optimum.  

 

Figure 1.1: Sparse representation example 
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1.3 Thesis Organization 

 

This thesis is organized in a structured approach to make it easier to understand the 

concept of sparse representations. In Chapter 2 a short survey of the OMP algorithm and 

the PI-DCT dictionary used in the tests are presented. In Chapter 3 background concepts 

necessary to understand the study are presented; this includes the concepts of the 

Top-Down dictionary and the dictionary properties under investigation. In Chapter 4 the 

simulation results of the tests conducted are presented along with a flow of the simulations 

to describe how each test progresses. In Chapter 5 the results of the simulations are 

presented, along with a detailed analysis and comparison between the different tests. 

Finally this thesis is concluded by presenting future work and proposals for increasing the 

performance of the sparse coding techniques.  
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Chapter 2 

Survey 

 

The sparse coding process begins with an input image which is taken and divided into 

windows each of 8X8 pixels. It is represented as a set of input vectors . This 

window is, then, mapped onto a pre-compiled DCT dictionary in terms of dictionary atoms 

given by . This mapping is a linear combination of dictionary atoms 

which represent discrete cosine signals with different frequencies. Using these atoms in the 

dictionary the sparse coding algorithm, then, calculates coefficients or weights  

for representing the input image window in terms of the dictionary atoms. Thus, the overall 

input image is represented as  or 𝑋 = 𝐵 ⋅ 𝑆 in matrix form, once a window 

is represented within the sparsity restrictions and the error constraints; this process is 

repeated until the whole picture is represented sparsely. Using these representations it is 

then able to reconstruct the original image with the sparse terms, the quality of this 

reconstructed image is judged by subtracting the sum of the sparse terms from the original 

vector to receive a reconstruction error . The objective throughout this study is 

to reduce this reconstruction error as much as possible. To limit the scope of this thesis only 

a brief description of the sparse signal representation of images is provided since the topic 

is extensive, the basics of image processing techniques and the further reading on this can 

be found in [11, 12]. 
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Before going further it is important to clearly define the concept of sparsity factor. The 

sparsity factor represents the number of non-zero terms that can be used in the linear 

equation to represent the sample window [13]. For example, if an image is transmitted 

from the sender to the receiver across a network, it is impractical to transmit all the data in 

the input image. A more practical approach would be to transmit data that is sufficient 

enough to reconstruct the image at the receiver. The size of the data that can be used to 

represent the image, then, becomes really important because a smaller size linear equation 

leads to much faster processing between transmitter and receiver. This leads to a dramatic 

decrease in processing time. 

 

2.1 Orthogonal Matching Pursuit (OMP) Algorithm 

 

OMP algorithm happens to be one of the most widely used sparse coding algorithms 

because of its efficiency and high accuracy [14,15,16]. It is a matching pursuit based 

greedy algorithm which is centered on three important features; residue, generalized 

dictionary atoms, and weight. In [17,18,19], OMP algorithm is optimized to be more 

efficient. However in this project the basic OMP is implemented and tested. Given the 

input vector  𝑥, the OMP algorithm finds us 𝑋 which is a reconstruction of the original 

input signal in terms of a weight matrix and the dictionary matrix. The relation between the 

weight matrix 𝑆 and selected dictionary atoms 𝐵, is given by the following formula: 

                         𝑋 = 𝐵 ⋅ 𝑆   𝑤𝑕𝑒𝑟𝑒 𝑆 𝑖𝑠 𝑡𝑕𝑒 𝑤𝑒𝑖𝑔𝑕𝑡 𝑚𝑎𝑡𝑟𝑖𝑥     (1) 
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where S is the weight matrix. 

The OMP first takes one column 𝑥 from the input matrix 𝑋 as the input to itself; this 

vector is also chosen as the initial residue. The residue is defined as the difference between 

the reconstructed vector and the initial input vector. The initial residue is defined as 

                                   𝑅1 = 𝑥,                                      (2) 

The algorithm, then, must choose an atom 𝐵𝑖 from the given dictionary 𝐵  which is a 

best match to the original vector. This is done by calculating and finding the maximum 

inner product of the generalized dictionary atoms and the 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙: 

                             max*𝐵𝑖 ⋅ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙+                         (3) 

Once the product for all dictionary values is calculated a matrix with the best values is 

chosen using the following formula: 

                              𝑠 = (𝐷𝑇𝐷)−1𝐷𝑇𝑥,                  (4) 

where s is a weight vector for all selected dictionary atoms, D is the matrix of all selected 

dictionary atoms from the first iteration till the current one, and x is the current input vector.  

This formula makes sure that the residual is always orthogonal to the current selected 

dictionary atom in the current iteration; this is one of the most crucial differences between 

OMP and matching pursuit. Next, it subtracts the current reconstructed vector from the 

original vector to update the residue. 

                            𝑅𝑛+1 =  𝑅𝑛 − 𝐷 ⋅ 𝑠                                  (5) 

The algorithm continues to do the above process until the constraints are met. This 

makes the accuracy of the OMP algorithm high, but the main reason for choosing the 
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algorithm is its efficiency of getting results in shorter period of time. The algorithms main 

steps are outlined in Figure 2.1. 

 

 

 

 

 

 

 

 

 

Figure 2.1: OMP algorithm 

To illustrate the reason why OMP has the ability to reach higher accuracy than the 

well-known Matching Pursuit (MP) algorithm, the major difference between MP and OMP 

is explained in a 2D space example in figure 2.2. There three vectors, 𝛼 × 𝑑𝛾𝑛, 𝑅𝑛, and 

𝑅𝑛+1. 𝛼 × 𝑑𝛾𝑛 is a dictionary atoms with its weight. 𝑅𝑛 is the residual of the current 

iteration, while 𝑅𝑛+1 is the residual of the next iteration. The ideal of MP algorithm and 

OMP algorithm is gradually adding dictionary atoms with weight in each iteration to 

reduce the residual. In figure 2.2, it is obvious that 𝑅𝑛+1 is shorter than 𝑅𝑛, and will be 

further reduced in the next iteration. The only difference between OMP and MP is when 

MP update the weight, it directly uses the inner product value ⟨𝑅𝑛, 𝑑𝛾𝑛⟩, while OMP uses 

the equation (4) to make sure that 𝛼 × 𝑑𝛾𝑛 is orthogonal to 𝑅𝑛+1. The advantage is that in 

each iteration, OMP always find the shortest distance as shown in figure 2.2 (a). 

 

Figure 1. OMP algorithm 
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(a)  (b) 

 

Figure 2.2: (a) Matching Pursuit Algorithm (b) Orthogonal Matching Pursuit Algorithm 

 

 

2.2 PI-Dictionary Property 

The original PI-DCT dictionary is a 2D discrete value dictionary that provides values 

as a basis for image reconstruction [20].  The dictionary is composed of two cosine 

functions with its frequency ranging for 0Hz (DC) to approximately 4Hz. The PI-DCT 

dictionary uniformly distributes the frequency with the default value of 1/16 Hz. 

The equation to generate the dictionary is as follows: 

cos .
𝜋

𝑁
𝑁1𝑛1/ cos .

𝜋

𝑁
𝑁2𝑛2/    𝑓𝑜𝑟 𝑛1, 𝑛2 = 1,2,3, … , 𝑁                            (6)    

where N = 8 and 𝑁1 and 𝑁2 are integers from 0 to N-1. 

As an example which has been implemented in the project, the dictionary uses the 

following arrangement shown in Figure 2.3 where each column contains 8x8 samples for a 

specific frequency. The 2D sample ranges from n1 = 1, n2 = 1 to n1 = 8, n2 = 8. One of 

the frequency samples, n1 is held constant while the second frequency sample is increased 

from 1 to 8. Then the frequency sample n1 is increased by 1 until 8 and an increase for n2 

𝑅𝑛 

𝑅𝑛+1 𝛼 × 𝑑𝛾𝑛 

𝑅𝑛 

𝑅𝑛+1 𝛼 × 𝑑𝛾𝑛 
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from 1 to 8 is repeated, respectively. The 2D frequency ranges of 

both ω1and, ω2  range from 0 to 3.6Hz. Similar to the frequency samples, one frequency 

ω1 is held constant while ω2 is increased by a 0.4Hz until it reaches 3.6Hz, then ω1 is 

increased by 0.4Hz and ω2 repeats the previous process starting with 0Hz to 3.6Hz. 

 

Figure 2.3: PI-DCT sample arrangement 

 

One of the biggest limitations that the OMP algorithms suffers is that the PI-DCT 

dictionary it uses has certain discrete values from which it can choose basis functions. Thus, 

regardless of the input image the standard available dictionary is always the same. This 

makes it simpler to have arrangements in communication systems but it severely limits the 

ability of the OMP algorithm to represent complex input images. 

Thus, for any given image the OMP can only represent the image to a certain degree 

of accuracy; this accuracy may also vary depending on what kind of frequencies are 
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present in the image. If the image consists of a large number of high frequencies then their 

representation becomes harder for a fixed DCT dictionary and the image shows large 

amounts of blur and overlap in sections of the image where the frequency shifts a lot. The 

result is usually image dependent and is usually not guaranteed by any algorithm.  

This limitation on accuracy can be considered as acceptable if the efficiency of the 

algorithm is good. Most sparse representation techniques generally find themselves at a 

loss when it comes to efficiency because the calculation of basis functions is a 

computationally expensive process. As mentioned earlier, the processing time is limited by 

getting the algorithm to choose less number of coefficients per window. Accuracy and 

processing time remain the two features of concern in this study.  
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(8) 

Chapter 3 

Theory 

 

3.1 Top-Down Search Algorithm (TDS) 

 

At the heart of the TDS algorithm is a curve fitting approach which is explained as 

follows. Given an input vector  𝑥, the function of the TDS is to find the optimal linear 

combination shown below within the sparsity constraints: 

                            𝑋 = 𝐵 ⋅ 𝑆,          (7) 

where S is the weight matrix. 

First a column x is taken from the input matrix  X, and the objective now is to find a 

linear representation of x based on the given dictionary  B,  

𝑥𝑖 =  ∑(𝑠𝑗  × 𝑏𝑖𝑗)

𝑚

𝑗=1

 ,  

where 𝑥𝑖  is the i
th 

row value of column x, 𝑏𝑖𝑗 is the i
th

 row value of column j in dictionary 

B, and sj is the corresponding weight, and m is a constant number.  

From Eq. (8), the total error function can be represented as,  

𝜃 =  ∑,𝑥𝑖 − ∑(𝑠𝑗  × 𝑏𝑖𝑗)-

𝑚

𝑗=1

2𝑁

𝑖=1

 ,                                                   (9) 

where N is the number of rows of x.  
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To obtain a representation that is most accurate and close to the original signal, the 

error between the two values must be reduced as much as possible. Thus, to minimize the 

total error, the derivative of 𝜃 must be taken and made equal to zero. 

𝑑𝜃

𝑑𝑠𝑗
= ∑ 2 × (−𝑏𝑖𝑗) × ,𝑥𝑖 − ∑(𝑠𝑛  × 𝑏𝑖𝑛)

𝑚

𝑛=1

-

𝑁

𝑖=1

= 0.                              (10)  

 

Simplifying the above equation leads us to: 

∑ 𝑏𝑖𝑗 × 𝑥𝑖

𝑁

𝑖=1

= ∑ 𝑠𝑛 ×  𝑏𝑖𝑗 × 𝑏𝑛𝑗  

𝑚

𝑛=1

,                                                 (11) 

where i and m are constants. 

Finally, the weights 𝑏𝑖𝑗 can be calculated using a matrix operation. It should be noted 

that since 𝑏𝑖𝑗 and 𝑥𝑖 are all known; calculation of the matrices on the right hand side can 

be done in advance. In this paper, the matrix that requires inverse operation in equation 

(12) is called matrix D, and the column matrix on the right side of matrix D is called 

matrix DF.  

[

𝑠1

⋮
𝑠𝑚

] =  [
∑ 𝑏𝑖1 × 𝑏𝑖1

𝑁
𝑖=1 ⋯ ∑ 𝑏𝑖1 × 𝑏𝑖𝑁

𝑁
𝑖=1

⋮ ⋱ ⋮
∑ 𝑏𝑖1 × 𝑏𝑖𝑁

𝑁
𝑖=1 ⋯ ∑ 𝑏𝑖𝑁 × 𝑏𝑖𝑁

𝑁
𝑖=1

]

−1

× [
∑ 𝑏𝑖1 × 𝑥𝑖

𝑁
𝑖=1

⋮
∑ 𝑏𝑖𝑚 × 𝑥𝑖

𝑁
𝑖=1

   ]                 (12) 

 

 

 

Thus, using the above equations the weights for the given dictionary can be calculated. 

Initially the TDS algorithm takes all available dictionary atoms, and the entire exercise is to 

Matrix D Matrix DF 
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reduce the number of atoms to represent the input signal within the sparsity constraints. 

This is done in an iterative manner by using the curve fitting approach to calculate the 

weights for the current active dictionary atoms and deactivate one single atom from the 

active dictionary atoms which gives the least error increase. In each iteration, an active 

atom is removed once to compute all possible representations exhaustively. For instance, if 

there are n active dictionary atoms, then there are totally n possible representations. Figure 

3.1 gives an outline of the steps involved in the TDS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: TDS algorithm 

The error difference between these representations and the original signal are 

calculated and saved. With the list of errors; the algorithm finds the representation which 

gives the least possible error and permanently deactivates the corresponding atom. This 

new active dictionary now replaces the previous active dictionary and process repeats itself 
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collapsing the dictionary as it goes. The algorithm finishes when the sparsity constraint is 

achieved. This collapse effect is carried out until the required sparsity factor is attained. 

This guarantees that the result has the minimal possible error. However the number of 

computations to get to this accurate result is extremely high making the processing 

efficiency of the algorithm low. The results of the comparison between TDS and OMP are 

presented in Chapter 6. 

 

3.2 Properties of The Dictionary 

 

The properties of the dictionary prove to be crucial when representing images. As 

explained earlier depending on what atoms are present in the dictionary the resulting 

representation maybe either highly accurate or moderately accurate. For example if the 

input image to the system has all low frequency components and the dictionary being used 

contains all low frequency components then there is a high probability that sparse coding 

algorithms used will be able to find an accurate representation for the input image. Even 

with all the low frequencies present in the dictionary there is a chance that the 

representation is not as accurate as required because of the discrete nature of the DCT 

dictionary, therefore it is difficult to account for frequencies that fall in between the chosen 

frequencies inside the DCT dictionary. Thus, there is always a trade off when it comes to 

sparse representations and much research has been done into how to make a balanced 

general dictionary that can account for images with different frequency components. A 
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number of dictionary properties are investigated in this thesis. The key features are 

described below. 

 

(1) Frequency Modification 

The standard PI-DCT dictionary follows the equation that   𝑤 =
𝑁1

𝑁
𝜋  𝑁1 =

0,1,2 … 𝑁 − 1, where N is number of pixels in the image. N1 uses evenly distributed 

discrete values. As mentioned earlier, this becomes a problem because the global 

optimum frequencies needed to accurately represent the input image may land 

somewhere in between two discrete frequency values of the DCT dictionary. For example 

from the graph in Figure 3.2 it is observed that the intensity of the signal varies 

constantly over a certain section of the image. When the signal is converted to the 

frequency domain with discrete values the frequency domain representation may not be 

adequately represented. This happens because the frequencies chosen to be added to the 

dictionary do not contain enough detail to correctly represent the details of the original 

image.  

  

Figure 3.2: Original signal and frequency domain after discrete cosine transform 
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The question arises that if the standard PI-DCT dictionary fails to adequately 

represent the signal required in the frequency domain; what can be done to improve the 

accuracy of the representation. The first obvious answer that comes to mind is; why not 

increase the number of dictionary elements. This concept works and is referred to as an 

“over complete dictionary” where the number of atoms in the dictionary are much greater 

than the number of atoms defined by the sparsity factor. Although an increased dictionary 

size does not increase the computational time a lot for the OMP algorithm when finding 

the solution for one single input. It is still necessary however to keep the dictionary size 

as small as possible to increase the efficiency of the system when the OMP is applied on 

a real image. 

The natural question that arises next is that whether there is any way to intelligently 

expand the dictionary around the frequencies that are necessary. This would allow for 

only a moderate expansion in the size of the dictionary allowing better results with 

increased efficiency. The technique proposed in this thesis is to first use the OMP 

algorithm to find a representation for the input signal with a specific sparsity factor. Once 

this is done and the required dictionary atoms are found, the result can be fine-tuned by 

searching around these atoms for better alternative frequency values. For example if the 

OMP algorithm chose 2π and 3π originally, then the dictionary can be expanded in 

between these two individual frequencies to include 2.1π, 2.2π, 2.3π, 2.4π, 2.5π, etc., and 

the OMP algorithm is run again. In theory the expanded number of options will remove 
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any constraints of the DCT dictionary which are present in the original dictionary thus 

giving more accurate results. This method is referred to as intelligent expansion. The 

results of evenly expanded dictionary and the intelligently expanded dictionary are 

described in Chapter 6. 

 

(2) Phase Shift 

The original PI-DCT dictionary does not offer all elements to represent the entire 

signal space for image construction. A PI-DCT dictionary with phase shifting elements has 

the possibility to represent more elements in the signal space. Therefore, the PI-DCT 

dictionary can be expanded with phase shifting to increase accuracy for image signal 

representation. 

The following equation is the original PI-DCT representation function with a 

phase-shift of zero for the domain 0 ≤  𝜑 < 2𝜋 where 𝜑 is the phase shift: 

cos .
𝜋

𝑁
𝑁1𝑛1/ cos .

𝜋

𝑁
𝑁2𝑛2/         𝑓𝑜𝑟 𝑛1, 𝑛2 = 1,2,3, … , 𝑁                                     (13) 

where 𝑁1 and 𝑁2 are from 0 to N-1. 

The equation can be modified to allow phase shift and is defined as: 

cos .
𝜋

𝑁
𝑁1𝑛1 + 𝜑1/ cos .

𝜋

𝑁
𝑁2𝑛2 + 𝜑2/    𝑓𝑜𝑟 𝑛1, 𝑛2 = 1,2,3, … , 𝑁                             (14) 

where 𝑁1 and 𝑁2 are from 0 to N-1 and 𝜑1 and 𝜑2 are the phase shifts for the cosine 

functions 1 and 2 used to construct the PI-DCT dictionary. Both phases 𝜑 should be 

bounded by 0 ≤  𝜑 < 2𝜋 to prevent repetition of elements in the PI-DCT dictionary.  
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Similar to frequency expansion, phase shift expansion can be expanded evenly or 

intelligently. Each element in an un-expanded phase shift dictionary can be expanded with 

an unlimited number of phases. That number depended on the precision desired for the 

problem. Similar to the frequency expansion, the number of phases cannot be predicted and 

a threshold may exist.  

 

(3) PSO Algorithm 

 

In the previous two approaches, the dictionary is expanded based on the standard 

DCT dictionary; however the solution space of finding the best dictionary is obviously 

non-linear as shown in figure 3.3, therefore simply expand the DCT dictionary is not  

 

capable of finding the global optimum solution. Instead of being restricted by the 

frequency and phase of DCT dictionary, a random search of the solution space using 

Particle Swarm Optimization (PSO) algorithm has a number of advantages: (1) it always 

Figure 3.3: Non-linear solution space 
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aims for the global optimum, (2) it usually converges to a good solution very fast, and (3) 

it is easy to modify to meet different constraints such as sparsity. The downside of 

heuristic approach when applied to dictionary learning is that it may take too long time to 

reach a solution which is much better than the solutions achieved by the algorithms 

described in the previous sections because the solution space is too big. How the PSO 

algorithm being used performs depends largely on whether the heuristic algorithms’ 

coefficients are well tuned, and the trade-off between convergence speed and quality of 

solutions.  

Given the time limitations of this project, only one heuristic algorithm, Particle 

Swarm Optimization algorithm (PSO) is implemented. PSO is a type of random parallel 

optimization algorithms. It is originally designed to for simulating social behavior, as a 

stylized representation of the movement of birds. PSO optimizes a problem by having a 

population of candidate solutions called particles to move around the solution space, and 

trying to move to a better position by considering the current best position of each single 

particle and the current best position among all particles. It has the advantage of: (1) no 

strict requirement of the objective function such as the objective function has to be 

differentiable and continuous, (2) it usually converge faster than other heuristic 

approaches, (3) very easy to implement using any programming language. However, PSO 

also has the disadvantage of: (1) not working very well with the objective function which 

has a number of local optimum solutions, (2) it usually cannot achieve a highly accurate 
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solution without the help of precision search algorithm, (3) there is no guarantee that the 

algorithm will converge to a global optimum. 
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Chapter 4 

Simulation 

 

4.1 Assumption 

 

In the course of the testing process a number of assumptions are made to simplify the 

process and standardize the results across the different domains of testing. The 

assumptions are listed as follows: 

 

1 A portion of the standard Lena image is used for the input for the tests as shown in 

figure 4.1. For the majority of testing an eye portion of the Lena image was used. 

 

Figure 4.1: Standard image test picture Lena 

 

2 The OMP algorithm is used for testing the dictionary parameters through all the 

different variations; i.e., Frequency variations and Phase variations. 

3 In all the tests (except the modified dictionary tests) a standard PI-DCT dictionary is 

used. 
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4 To judge the results of each algorithm and variation the absolute error equation is used 

which is given by 

𝐸𝑟𝑟𝑜𝑟 = √∑(𝑥𝑛 − 𝑥𝑛
′ )2

𝑁

𝑛=1

                                                              (15) 

The unit of the error is gray scale level in this project since the picture is black and 

white. 

 

4.2 Top-Down Algorithm Simulation Flow 

 

 

Figure 4.2: Top-Down search algorithm flow chart 

 

Figure 4.2 represents the flow of the TDS algorithm simulation. The whole program is 

implemented using MATLAB language. As illustrated in the assumption section, a 

one column of 
input signal is 
input into TDS 

TDS use curve 
fitting approach to 

calculate the 
coefficients for all 
possible soultions 
for the problem 

selecting n-1 out of 
n atoms 

the error is calculated 
for all possible 

soultions, the one with 
least error is selected 

update the 
dictionary 

TDS repeat the 
previous three 

steps until sparsity 
constraint is 

matched 
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portion of a standard Lena picture is selected and divided into 8x8 blocks. Before the data 

is input into TDS, all these 8x8 blocks are reshaped to 64x1 columns. TDS processes 

each column of input signal separately and starts by using the curve fitting approach 

illustrated in Chapter 3.1 to calculate the coefficients for all possible solutions. Notice 

that the matrix D and matrix DF required by curve fitting in Chapter 3, Eq. (12) are 

calculated in advance out of TDS function. Therefore for each solution of selecting n-1 

atoms out of n atoms, the TDS function simply removes the corresponding row and 

column from matrix D, and then removes the corresponding row from matrix DF, and 

then finally calculating the coefficients using Eq. (12) in Chapter 3. TDS repeat this 

optimization process until the number of selected atoms matches the sparsity constraint, 

and then it start processing the next input column. Finally, TDS finish execution after 

processing all input columns. 

 

4.3 Modification of The Dictionary 

(1) Even Expansion of The Standard PI-DCT Dictionary 

 

The equation for the NxN PI-DCT dictionaries is   

𝑐𝑜𝑠 .
𝜋

𝑁
(𝑁1)𝑛1/ 𝑐𝑜𝑠 .

𝜋

𝑁
(𝑁2)𝑛2/  𝑓𝑜𝑟 𝑛1, 𝑛2 = 1, 2, 3, … , 8                     (16) 
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To generate this dictionary in MATLAB, two “for” loops are used to produce the DCT 

table. The number of iterations in each loop depends on the frequency range for ω1 =

𝜋

𝑁
(𝑁1) and ω2 =

𝜋

𝑁
(𝑁2).  

Increasing the number of iterations in both for loops by a factor of 2 creates an evenly 

expanded dictionary. The terms inside both for loops are also divided by the same factor to 

maintain the same frequencies for both ω1 and ω2. 

The following equation is coded in MATLAB where N is a positive integer that is a 

factor of 2. 

𝑐𝑜𝑠 .
𝜋

2 × 𝑁
(𝑁1)𝑛1/ 𝑐𝑜𝑠 .

𝜋

2 × 𝑁
(𝑁2)𝑛2/       𝑓𝑜𝑟 𝑛1, 𝑛2 = 1,2,3, … ,8                        (17) 

 

For example, to create an evenly spaced PI-DCT dictionary with one additional 

frequency between two frequencies would produce a 64x256 PI-DCT dictionary. Each 

loop is modified to N1=0 to 15 and N2=0 to 15 and that the number inside the cosine terms 

are divided by 2. In MATLAB, all 𝑁2 values of one atom which has fixed ω1 and ω2 

is saved using column matrix with size of 𝑁2x1.  

 

(2) Intelligent Expansion 

 

The second strategy of expanding the dictionary is based on the idea that instead of 

expanding the PI-DCT dictionary uniformly every time with even space among all 

frequencies of the dictionary atoms; why not to expand the dictionary around the best 
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atoms for a better result, in other words a precision enhancing technique. To do this the 

OMP algorithm is first run using the standard PI-DCT dictionary and allowed to choose 

the best result based on the sparse constraints. Based on this the frequency domain 

around the frequencies (which are selected by OMP algorithm originally) are searched 

iteratively with increasing precision, allowing arbitrary frequencies in between the 

frequencies of standard PI-DCT dictionary to be reached.  

𝑐𝑜𝑠 (.
𝜋

𝑁
𝑁1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑚/ 𝑛1) 𝑐𝑜𝑠 (.

𝜋

𝑁
𝑁2 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑚/ 𝑛2)                      (18) 

𝑓𝑜𝑟 𝑛1, 𝑛2 = 1,2,3, … ,8 

Where 𝑁1 and 𝑁2 are integers ranged from 0 to N-1. 

The precision of the dictionary depends on the separation of the atoms between the 

standard frequency values. Thus, if a greater deal of accuracy is needed then successive 

frequencies should be more finely separated. For example successive separations of 0.11, 

0.12, and 0.13 have greater precision than 0.1, 0.2 and 0.3.  

The technique used in the testing of the intelligent dictionary uses an increasing 

precision concept where the value of the precision is divided up successfully. So for 

example a frequency of 2Hz is being searched around the answer. The first sets of atoms 

searched are 2.1Hz, 2.2Hz and 2.3Hz. Once the best atom is chosen from these options 

the search is continued around the same atom. So for example if 2.2Hz is chosen, the 

algorithm searches around 2.21 Hz, 2.22 Hz and 2.23 Hz etc. Thus, the precision value 

decreases by a dividend of 10 each time.  
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Lastly, when exploring values around a particular frequency to increase its precision 

it is necessary to explore possible atoms on both sides of the value. For example if there 

is a frequency of 1Hz All atoms around it must be considered. The range of possible 

solutions therefore considered would 0.1 to 0.9 and 1.1 to 1.9. 

After frequency modification, the dictionary then goes through the phase shift. The 

phase shift simply follows the following equation. 

𝑐𝑜𝑠 (.
𝜋

𝑁
𝑁1/ 𝑛1 + 𝑝𝑕𝑎𝑠𝑒 × 𝑎) 𝑐𝑜𝑠 (.

𝜋

𝑁
𝑁2/ 𝑛2 + 𝑝𝑕𝑎𝑠𝑒 × 𝑏) ,                          (19) 

𝑎 𝑎𝑛𝑑 𝑏 = 1,2,3,4 … 

 

In the above equation, 𝑎 and 𝑏 are defined by user depends on how much phase 

shifts are required.  The result of smart expansion is discussed in detail in Chapter 5.2. 

 

(3) PSO Approach 

 

Instead of expanding the standard DCT dictionary on the frequency domain, the 

PSO algorithm simply does a random search of the whole solution space with certain 

rules. In this project, PSO is implemented to check if the PSO approach has the ability to 

provide good solutions in a more efficient manner. The simulation flow is illustrated in 

the following paragraph. 

The OMP algorithm is used to calculate the coefficients for all solutions, and then 

the objective function, which is the total error function shown in Chapter 4.1, is 
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calculated using the coefficients from OMP algorithm. The objective is to find the 

dictionary which provides the least total error.  

In the MATLAB implementation, the initialization is done at the beginning as 

follows; 𝑚 = 50   is the total number of particles in the swarm, each having a 

position 𝑥𝑖∈ ℝ𝑛 in the search-space and a velocity 𝑣𝑖 ∈ ℝ𝑛 indicating the speed, and 

 𝑝𝑖 is the best known position of particle 𝑖 and 𝑔 is the best known position of the entire 

swarm. 

For each particle 𝑖 = 1, …., m, it first initialize the particle's position with a uniformly 

distributed random vector: 𝑥𝑖  ~ U(𝑏𝑙𝑜 ,  𝑏𝑢𝑝), where 𝑏𝑙𝑜 and 𝑏𝑢𝑝 are the lower and upper 

boundaries of the search-space. After the initial position is generated, the particle's best 

known position is calculated by the objective function, and it is saved into  𝑝𝑖: 𝑝𝑖 ← 𝑥𝑖, 

and then the best known position of particle 𝑝𝑖 is compared to the current best known 

position of the entire swarm 𝑔, if any 𝑝𝑖 provides a better result, then the swarm's best 

known position is updated: 𝑔 ← 𝑝𝑖. Following the previous steps, the particle's velocity is 

initialized: 𝑣𝑖  ~ U(−|𝑏𝑢𝑝 − 𝑏𝑙𝑜|, |𝑏𝑢𝑝 − 𝑏𝑙𝑜|). Finally the program simply repeats the 

following steps until a termination criterion is met: 

 

 Pick random numbers: 𝑟𝑝, 𝑟𝑔 ~ U(0,1), and then update the particle's velocity using 

the following equation: 𝑣𝑛𝑒𝑤 =  𝜔 × 𝑣𝑖,𝑑 + 𝑐1 × 𝑟𝑝 × (𝑝𝑖,𝑑 − 𝑥𝑖,𝑑) + 𝑐2 × 𝑟𝑔 ×

(𝑔𝑑 − 𝑥𝑖,𝑑)  for each particle, where ω is the inertia coefficient, and 𝑑  is the 

dimension. 
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 Update the particle's position: 𝑥𝑖← 𝑥𝑖 + 𝑣𝑖. 

 Update the particle's best known position if better position is found: 𝑝𝑖← 𝑥𝑖  

 Update the swarm's best known position if the current best position among all particles 

is better than  𝑔: 𝑔 ← 𝑝𝑖. 

The best position of swarm 𝑔 always holds the best solution among all trails. 
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Chapter 5 

Results and Discussions 

 

5.1 TDS vs. OMP 

 

When the 64x64 non-expanded PI-DCT dictionary with evenly spaced frequencies is 

used with both the OMP and TDS algorithms, it is observed that neither of the approaches 

is able to acquire a global optimum value. The test image used in this test is the eye portion 

of the standard black and white Lena image for DSP application testing.  

 

 

Figure 5.1: OMP vs. RTDS using the standard 64x64 PI-DCT Dictionary 

 

In the Figure 5.1, OMP shows very similar results compare to RTDS when the image 

is reconstructed with low sparsity of between 10 to 20 out of 64 coefficients. However, 
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with 20 to 35 coefficients, the results for OMP are slightly better than RTDS. For over 35 

coefficients, TDS shows better performance over OMP.  

  

 

 

 

(a)                   (b)                   (c) 

Figure 5.2: (a) Original picture, (b) Reconstructed picture using OMP with sparsity of 8, (c) Reconstructed 

picture using Top-Down search algorithm 

 

 

Figure 5.2 shows the results of the different runs that were conducted. Figure 5.2 

represents the original image which is given as input to the system. Figure 5.2b represents 

the recreated representation of the input image using OMP with a sparsity of 8. Finally 

Figure 5.2c is the recomposed image using the TDS approach. The results have proven that 

both methods do not form the global optimum because the results for both methods 

intersect and cross each other at different sparsity. A global optimum method will result in 

lower error through the entire sparsity range. 

Both methods cannot reach the global optimum due to the fact that both algorithms 

make the assumption that the first element selected is the best element to be selected in the 

entire dictionary leading to the optimum result. There is a difference in approach between 

OMP, which selects elements from the dictionary to form a representation set and the 

RTDS which is initialized with all elements in the representation set and elements are one 



32 
 

by one discarded in each iteration. Each element removed has a direct link to the previous 

iteration leading to a dependency on the first element selected or removed. Both algorithms 

would only know the optimum for the next best result but not the optimum results beyond 

the next iteration. 

From Figure 5.1, it is observed that when the sparsity is high, TDS performs better 

than OMP. To test how much error reduction the TDS achieve when the sparsity is really 

high, a dictionary with size of 256x256 is used in the next test. The dictionary is 

generated using the same equation in Chapter 4, the only difference is n1 and n2 range 

from 0 to 1 to 16. The result is shown in Figure 5.3 and Figure 5.4. It turns out that when 

the sparsity is really high, OMP’s performance is worse than TDS. 

sparsity 200 201 202 203 204 205 206 207 208 209 

OMP(PSNR) 47.73dB 47.87dB 48.04dB 48.20dB 48.36dB 48.53dB 48.76dB 48.95dB 49.12dB 49.31dB 

TDS(PSNR) 52.73dB 52.80dB 52.85dB 53.02dB 53.18dB 53.32dB 53.45dB 53.51dB 53.67dB 53.83dB 

Table 5.1: Error of OMP vs TDS using 256x256 dictionary 

 

 

 

 

 

Figure 5.3:(a) Original picture, (b) Reconstructed picture using Top-Down search algorithm with sparsity of 

200, (c) Reconstructed picture using OMP with sparsity of 200 

 

(a)                           (b)                            (c) 
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Figure 5.4: OMP vs TDS using 256x256 dictionary 

 

The efficiency of OMP algorithm is that it does not perform excessively exhaustive 

searches resulting in much quicker execution time for a good solution. The disadvantages 

are that it does not achieve the global optimum, and may sometimes get a worse solution 

when the dictionary size is increased. Secondly when the sparsity is high OMP’s 

performance is worse than TDS. The second downside of OMP is explained in detail in 

Chapter 5.2. TDS uses curve fitting to calculate the coefficient for selected dictionary, so 

it has higher accuracy than OMP in terms of coefficient calculation, and it works very 

well when the sparsity is high. However, it still cannot reach the global optimum. Another 

downside is that TDS cannot be directly applied on over-complete dictionary, whose 

column number is bigger than row number, because this prohibits the curve fitting 

approach from finding a unique solution. 

Although both algorithms result in very similar result, OMP is much better in 

execution time for low sparsity representation because there are much less iterations to 
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calculate from bottom up than from top down, while TDS is slightly better than OMP in 

terms of overall error. 

 

5.2 Dictionary Expansion Strategies Comparison   

 

One of the biggest advantages of dictionary expansion is that it can be used to evenly 

expand the dictionary to get more precise elements; this allows the OMP to minimize the 

error significantly while maintaining the same sparsity. This is a major advantage because 

if it is applied to data transmission this would mean that the transmission data size remains 

the same as using a smaller dictionary.  

The disadvantage of dictionary expansion is that producing the PI-DCT dictionary is a 

very heavy computational process because each element is computed by multiplication 

between two cosine functions. It also takes 64 times longer to produce the 64x4096 

dictionary. Although this process is very computationally expensive and consumes many 

resources, this process only occurs when the dictionary is not available. Furthermore, the 

amount of random access memory (RAM) required for computing the dictionary increases 

exponentially with respect to the dictionary size. The receiver has the advantage of 

receiving the dictionary from the sender instead of computing it again. 

Another disadvantage of expanding the dictionary is that the size of the dictionary 

expands exponentially. The 64x4096 evenly expanded dictionary is 26 or 64 times larger. 

The sender and receiver need to keep a copy of this large dictionary to encode and decode 
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the sparsity data being transmitted. The final disadvantage of the expansion is that the 

OMP execution time is slightly longer compared to the original 64x64 dictionary because 

there are more elements for OMP to compare with but the sparsity did not change. 

As discussed earlier there are three main approaches inside the dictionary expansion 

that are discussed in this thesis, namely, the even expansion, the intelligent expansion and 

PSO approach. From the study it is concluded that regardless of what method is used 

dictionary expansion always allows the OMP to find better solutions than 

non-overcomplete dictionary, because it has a larger solution space and can find better 

answers. So compared to the standard 64x64 DCT dictionary the expanded dictionaries 

always provides a better solution. The efficiency in both cases however goes down due to 

increasing size of the dictionary. 

Table 5.2: Comparison between evenly expansion, smart expansion, and PSO (SNR) 

Size of 

Dictionary 

64x64 64x256 64x1024 64x4096 64x16384 

Even 

expansion 

30.82dB 31.01dB 31.15dB 30.87dB 30.68dB 

Smart 

expansion 

31.03dB 

(64x445) 

30.42dB   

(64x501) 

30.78dB 

(64x1005) 

31.14dB 

(64x1061) 

30.48dB 

(64x1229) 

PSO 

algorithm 

29.57dB 30.05dB 30.68dB   
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An important result that should be pointed here is that as the size of the dictionary 

increases with the intelligent dictionary the results has no improvement, and even degrade 

as shown in Table 2. This does not come as a glitch and successive trails led to the same 

answer. The cause of this occurs from the fact that the OMP algorithm is originally a 

greedy algorithm; thus when provided with the choice of an atom at a particular stage it 

chooses the best one regardless of the consequences of the future. Thus choosing a better 

atom at an earlier stage does not guarantee that the eventual outcome will be a highly 

accurate result, even though the OMP considers its future answers based on past choices. 

There is reason to suggest selection of a good atom puts the system on a particular branch 

of solutions. This could lead to a very accurate result or a result that is slightly worse 

compared to other dictionary sizes. In this case the solution chosen was worse than the 

previous options available. 

PSO algorithm is proved to be able to provide good solutions. Compared with even 

expansion and intelligent expansion, the error is really close but still a bit worse. In this 

project, only 10 iterations are tested, the reason is in the objective function, OMP 

algorithms has to be used to calculate the coefficient in each iteration, therefore the PSO 

approach spend too long time on the objective function. The convergence speed is shown 

in Figure 5.5. To reach a better result, the PSO algorithm should take more iteration, and all 

the PSO coefficients have to be tuned properly. The reason that there is no data for 64x4096 

and 64x16384 is it takes too long time to finish the execution because the dimension of 

PSO is 4096 and 16384. 



37 
 

 

Figure 5.5: PSO convergence speed 

 

The study concludes that the evenly expanded dictionary gives a slightly better result 

compared to the intelligently expanded dictionary and PSO approach as is visible from 

Table 2. This happens for a number of reasons. Firstly, when frequencies are chosen using 

the evenly expanded dictionary the solution space to choose from is wider. Thus, even if 

the OMP cannot find us a global optimum; it can use curve fitting techniques in a better 

way and reach a near optimal solution. In the Intelligent search the OMP first picks the best 

available frequencies to represent the input image. Next the frequency range around these 

particular frequencies is searched to see if a better result can be located. This is done under 

the assumption that it is possible due to the discrete values of the dictionary the OMP can 

only pick what is available to it in the initial run, thus, missing the opportunity to find a 

better solution that could be available if other frequencies could be explored in the area 

between the discrete values in the dictionary. Thus, if the solution curve follows a trend 

searching around the area of these originally picked frequency values should give a better 

result. However this method has not generated better results than the evenly expanded 
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dictionary; while the error in both techniques is lower, the evenly expanded dictionary 

gives a slightly better result. The problem with the intelligent search method is that because 

it focuses on expanding around the initially picked solutions it doesn’t necessarily mean a 

global optimum value can be found. This is because the solution space varies and doesn’t 

follow a constant trend. Expanding around the original frequencies may lead to worse 

solutions or only slight variations in error. In most cases it was observed that when an 

enlarged dictionary from the intelligent search was used; the OMP chose to keep its 

original choices and not change too much after the expansion. Expanding around the 

original choices also creates a problem in that the flexibility of the system is reduced. Thus 

it is concluded that while dictionary expansion of any nature will give a naturally better 

result when compared to a standard DCT dictionary, it is better to use an evenly expanded 

dictionary and not the intelligently expanded dictionary whose original motivation was to 

increase the precision of the result but does not bring any significant drops in error. 

  



39 
 

Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusion 

 

In this project a number of assessments were made about the popular OMP algorithm. 

OMP is able to provide good results under a given set of sparsity constraints while being 

able to maintain its efficiency, but the error can be reduced further through other 

techniques such as TDS. OMP has a downside that has not been observed before; the 

error may increase even if a bigger size dictionary is used. The reason is that OMP is 

essentially a bottom-up algorithm, and it always keeps the residue orthogonal to the 

current selected dictionary atom as explained in Chapter 5.2.  

The even dictionary expansion proves to be the most efficient way among all three 

approaches, while the smart expansion has several downsides: (1) not as efficient as even 

expansion, (2) may cause OMP algorithm to get even higher error after dictionary is 

expanded, (3) the expansion result varies a lot depending on the sparsity of the initial 

solution. For the heuristic algorithm approach, the performance of PSO is not as good as 

the even expansion and intelligent expansion approaches mainly because the solution 

space is too big, and there is no high precision algorithm to assist. A better result may be 

achieved by tuning the coefficients of PSO properly and increasing the number of 

iterations. It is also observed that the atoms selected by the sparse coding algorithm share a 
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dependency which is why the performance of the OMP may degrade at times even though 

the dictionary size is increased. Thus, heuristic algorithms like Genetic Algorithm may 

perform better than PSO and need to be tested extensively to see if a heuristic approach can 

perform better than the dictionary expansion approaches. 

The ability to have known dictionaries is a very important step in the application of 

this study to communication systems. When large amounts of data need to be transmitted 

across lines between a transmitter and a receiver; sparse representations prove valuable as 

their compressed form allows for smaller amount of data to be sent between transmitter and 

receiver and a reconstruction of the input to be reproduced at the receiver.  

 

6.2 Future Work 

 

There are numbers of possible extension to this project: 

1. TDS proved that the error can be further reduced, however how to make this 

approach more practical in terms of execution time needs to be studied in more 

detail. 

2. TDS can be applied using over-complete dictionary with the assistance from OMP. 

3. Instead of exhaustively search a small solution space as what we did in TDS, 

heuristic algorithm may be applied to achieve a more efficient partial search. 

4. Hybrid heuristic algorithms such GA/PSO may achieve better result than PSO. A 

greedy algorithm can be used to provide better initial solutions.
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