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Abstract

Optimal Filter Bank Representation in Texture Classification
using Support Vector Machines

©Samsher Singh Sidhu 2005
Master of Applied Science
Department of Electrical and Computer Engineering
RYERSON UNIVERSITY

Texture analysis has been a field of study for over three decades in many fields
including Electrical Engineering. Today, texture analysis plays a crucial role
in many tasks ranging from remote sensing to medical imaging. Researchers
in this field have dealt with many different approaches, all trying to achieve
the goal of a high classification accuracy.

The main difficulty of texture analysis was the lack of ability of the tools to
adequately characterize different scales of the textures effectively. The devel-
opment in multi-resolution analysis such as Gabor and Wavelet Transform
help to overcome this difficulty. This thesis describes the texture classification
algorithm that uses the combination of Statistical features and Co-Occurrence
features of the Discrete Wavelet Transformed images. The classification ac-
curacy is increased by using translation-invariant features generated from the
Discrete Wavelet Frame Transform.

The results are further improved by focussing on the transformed images
used for feature extraction by using filters which essentially extract those
areas of the image that discriminate themselves from other image classes. In
effect, by reducing the spatial characteristics of images that contribute to the
features, the texture classification method still has the ability to preserve the
classification accuracy.

Support Vector Machines has provided excellent performance in the area of
pattern recognition problems. We have applied SVMs with the texture classi-
fication method described above and when compared to traditional classifiers,
SVM has produced more accurate classification results on the Brodatz texture
album.

vii



Contents

Introduction

Wavelet Transform

2.1 History on Wavelets . . .. ... ... .............
2.2 Wavelet Applications . . . . .. .. ... ... .........
2.3 Fourier Analysis . . . . . .. .. ... ... ... . ... ...
2.4 Short-Time Fourier Analysis . . . . ... ... ... ......
2.5 Wavelet Analysis . . .. ... ... ... .. .. ... .. ...
2.5.1 Continuous Wavelet Transform . ... ... ... ...
2.5.2 Discrete Wavelet Transform . .. ... ... ... ...
2.5.3 Wavelet Packet Analysis . . ... ............
2.5.4 Discrete Wavelet Frame Transform . .. ... ... ..
2.6 Summary . . . . ... e e e e e e e e e

- Support Vector Machines

3.1 Linear Support Vector Machine Classifier . . . . .. .. .. ..
3.2 Non-Linear Support Vector Machine Classifier . . . . ... ..
3.3 SVM Applications . ... .. ... ... ... ... ...,
34 Summary . ... ...... .. .. .. .. ..., e e e

Optimal Filter Bank Representation

4.1 Introduction . . . . . . . . . . . . ... .. o
4.2 Non-Filtering . . ... .. .. ... .. .. .. ...
4.2.1 Statistics. . . . . . . ... ...
422 Model-Based . ... .. .. ... ... . ... ...,
43 Fixed Filters. . . . . . . . . . .. . ..o



4.3.1 LawsFilter Masks . ... ... ... .......

4.3.2 Discrete Cosine Transform . . . .. ... ... ..
433 GaborFilter. ... ... ..............
4.3.4 Wavelet Transforms, Packets, and Frames . . . .
44 Applications . . . . .. ... ... .
4.5 Related Work . ... ... ... ... . .........
46 Motivation . . . . ... ... L
47 Background . .. ... ... .. ... ... . ... ..
4.8 Methodology . ... ....................
49 Summary . . . ... ...

5 Texture Classification: Comparative Experiments

5.1 Experimental Setup . . . ... ... ... ... ......
20811 Data . . ... .
5.1.2 Extracted Features . . ... ... .. .......

5.1.3 Classification . . .. ... .. ... ... .....

5.2 Results. . . . ... ... ...
5.3 Multi-Texture Classification . . . .. ... ... .. ...
54 Summary . ... ... ...

6 Conclusions

6.1 Contributions of This Work . ... ... ... ... ...

6.2 Conclusions of This Work . . . ... ... ... .....

6.3 FutureResearch . . . . ... ... ... ... .......
Bibliography

A Co-Occurrence Matrix Equations
B Brodatz Image Collection

- C Filter Shapes

79

81

89



List of Figures

2.1 An illustration of a signal in the time domain. . . . . ... ..
2.2 An illustration of a signal in the frequency domain. . . . . ..
2.3 A sampled window of the signal ready to be transformed. . . .
2.4 The resulting mapping function that occurs using STFT. . .

2.5 Time domain mapping as prescribed by Shannon. . . . . . ..
2.6 Frequency Domain mapping as prescribed by Fourier. . . . . .
2.7 STFT mapping as prescribed by Gabor. . . ... .......
2.8 Wavelet Analysis mapping as prescribed by Daubechies. . . . .
2.9 Top: Signal Under Study. Bottom: Low Scaled Wavelet. . . .
2.10 Top: Signal Under Study. Bottom: High Scaled Wavelet. . . .
2.11 Filtering process at the most basiclevel. . . . . .. ... ...
2.12 The pure Sinusoidal Wave. . . . . ... ... ....... .
2.13 The High frequency content random noise. . . . . . . ... ..
2.14 The sinusoidal wave added with high frequency random noise.
2.15 Level One Approximation Coefficients. . . . . ... ... ...
2.16 Level One Detail Coefficients. . . . . .. .. ... ... ....
2.17 Multi-Level DWT Decomposition. . . . . . . e e e e e
2.18 Level Two Approximation Coefficients. . . . . . ... ... ..
2.19 Level Two Detail Coefficients. . . . . .. ... ... ......
" 2.20 Level Three Approximation Coefficients. . . . . . .. ... ..
© 2.21 Level Three Detail Coefficients. . . . . ... ... ... .. ..
2.22 Wavelet Packet Decomposition Tree. . . . . . . ... ... ..
2.23 Image Decomposition for DWT and DWFT. . . ... ... ..
2.24 One Stage 2-D DWT and IDWT . .. ... .. ... .....
2.25 One Stage 2-D DWFT and IDWFT . . . . . . . ... ... ..

3.1 Sample Linear Hyperplane.. . . . . . ... ... ... D



Various Hyperplanes in existence. . . . . ... ... ...... 24

Optimal Hyperplane. . . . . ... ... ... ... ....... 24
Feature Mapping. . . . . . . . .. .. ... . ... ... ... 26
Separation Margin. . . . . . .. ... ... ... 30
D1, Brodatz image collection. . . . ... ... ......... 44
The Cross Filter. . . . . . . . .. . .. . . . ... .. 44
D1 intersected with Cross Filter. . . . . . .. ... ... ... 45
Texture Training. . . . . .. ... ... ... ... ....... 50
Texture Testing or Classification. . . .. ... ... ... ... 51
The complete texture classification implementation. . . . . . . 95
Triangle. Black represents pixels of interest. 50% Active. . . . 60
Triangle. Black represents pixels of interest. 50% Active. . . . 60
Inverted Diamond. 48% Active. . . . . . . . . .. ... .... 61
Diamond. 52% Active. . . . . . . . . . ... .. ... 61
Circle. 71% Active. . . . . . . . . . . . . 61
Inverted Circle. 41% Active. . . . . . . . . . . .. ... .... 61
Hour Glass. 50% Active . .. ... ....... e e e e e 62
Inverted Hour Glass. 50% Active . . . . .. .. ... ... .. 62
Cross Template. 55% Active. . . . . ... . ... ... .... 62
Dual Triangle. 77% Active. . . . ... ... .. ... ..... 62
Checkerboard. 50% Active. . . ... ... ... ... ..... 62
Vertical Lines. 50% Active. . . . . . . .. .. .. .. ..... 62
Horizontal Lines. 50% Active. . . . . . . . . . .. . ... ... 63
2-class multi-texture image. . ... ... ... ... ...... 64
Misclassification Error Rate of 7.80%. . . . . . . . .. .. ... 64
4-class multi-texture image. . . ... .. ... .. ... .. .. 65
Misclassification Error Rate of 12.44%. . . . . .. .. ... .. 65
8-class multi-texture image. . . . ... ... ... ....... 65
Misclassification Error Rate of 16.71%. . . . . .. ... .. .. 66
Dl1. . ., 81
D3. . 81
D6. . . . 82



B4 DI11. . ... ... ... ... .. e e e e 82

B.5 Di6. .. ... .. e e e e e e e e e e e e e 82
B6 DI7. . ........ A S 82
B.7 D20. . ... 83
B.8 D21. . . . . 83
B.9 D24. . ... 83
B.10D28. . . . 83
B11D29. ... ... ... ... ... e e e e e e e e e e e e e 84
CBA2D32. . 84
B13D34. ... .......... P 84
B.14D35. . ... 84
B.15D46. . . . . . e 85
B.16 DAT. . . . . 85
B.17D49. . ., 85
B.A8DSI1. . . . 85
B.19D52. . .. 86
B20D53. ... ... e e e e e e e e e e 86
B.21D55. . . . 86
B.22D56. . . . .. 86
B23D57. . . 87
B.24D65. . . . .. 87
B25D78. . . . 87
B26D82. . .. ... .. 87
B27D84. . .. 88
B28D85. . . . 88
B29D101. ... ... . e 88
B30D104. . ... ... ... ..... e e e e e e e e .... 88
C.1 Cross Template. 55% Active. . . ... ... ....... ... 89
C.2 Triangle. Black represents pixels of interest. 50% Active. . . . 90
C.3 Inverted Triangle. 50% Active. . . . . . . . . ... ... .... 90
C.4 Diamond. 52% Active. . . . . . ... ... ... ... .. ... 91
C.5 Inverted Diamond. 48% Active. . . . . ... .. ... ..... 91
C.6 Box Template. 65% Active. . .. ... .. e 92

xii



C.7 Inverted Box Template. 80% Active. . . .. ... ... .... 92

C.8 Circle. 7T1% Active. . . . .« v v v i e e e e e .. 93
C.9 Inverted Circle. 41% Active. . . . . . . . .« o v v v v ot 93
C.10 Half Triangle. 50% Active. . . . . . . . . ... ... ... .. 94
C.11 Other-Half Triangle. 50% Active. . . . . .. .. ... .. ... 94
C.12 Hour Glass. 50% Active . . . . . . . . v v i v v i i v vt 95
C.13 Inverted Hour Glass. 50% Active . . . . . . ... .. ... .. 95
C.14 Horizontal Lines. 50% Active. . . . . . . . . . . . .. ... .. 95
C.15 Vertical Lines. 50% Active. . . . . . . . . . .. 96
C.16 Checkerboard. 50% Active. . . . . . . . . . .. 96
C.17 Dual Hour Glass. 42% Active. . . . . . . . .« c v v v v v 97
C.18 Inverted Dual Hour Glass. 58% Active. . . . . . . . ... ... 97

C.19 Dual Triangle. 77% Active. . . . . . . .. ... ... 08

xiii



List

of Tables

3.1 Common Kernel Functions. . . ... ... ........... 31
5.1 Classification of Three Decomposition Levels. . . .. ... .. 56
5.2 Classification of Four Decomposition Levels. . . ... ... .. 56
5.3 Classification of Five Decomposition Levels. . . ... ... .. 57
5.4 Different Classifier Comparison. . . ... ... ... ... ... b7
5.5 Different Classifier Comparison. . . . . ... ... ....... 57
5.6 Different Classifier Comparison. . . . . ... ... .. .. ... 58
5.7 DWT versus extended DWFT.. . . . ... ... ........ 59
5.8 Triangle Contrasted Filters. . . . . .. ... ... ....... 60
5.9 Diamond Contrasted Filters. . . . . .. ... ... ....... 61
5.10 Circle Contrasted Filters. . . . . . ... ... ... .... ... 61
5.11 Hour-Glass Contrasted Filters. . . . . . . ... ... ...... 62
5.12 Correct Classification Accuracy of the optimum filters. . . .. 63
C.1 Filter Cross Template. . . ... ... ... ... ........ 89
C.2 Filter Triangle. . . . . . . . .. . ... .. ... .. ...... 90
C.3 Filter Inverted Triangle. . . . . . ... ... ... ....... 90
C4 Filter Diamond. . . . . . ... ... ... ... .. ....... 91
C.5 Filter Inverted Diamond. . . . . . .. ... ... ........ 91
C.6 Filter Box Template. . . . . .. ... ... ... ........ 92
C.7 Filter Inverted Box Template. . . . .. ... ... ....... 92
C.8 FilterCircle. . . . . . . . . . . . . e 93
C.9 Filter Inverted Circle. . . . . . . . ... ... ... ....... 93
C.10 Filter Dual Triangle. . . . . . ... ... ... ... ...... 94
C.11 Filter Other-Half Triangle. . . . . . . . .. .. ... ...... 94
C.12Filter Hour Glass. . . . . . . . . . .. ... . ... 95



C.13 Filter Inverted Hour Glass. . . . . . . . . . . ... ... .... 95

C.14 Filter Horizontal Lines. . . . . . . . . . . . . .. ... . .... 95
C.15 Filter Vertical Lines. . . . . . . . . . . . .. .. ... 96
C.16 Filter Checkerboard. . . . . . . . . . . . . . . . . ... .... 96
C.17 Filter Inverted Dual Hour Glass. . . . . . . . .. ... .. ... 97
C.18 Filter Dual Hour Glass. . . . . . . . . . . . ... .. ...... 97
C.19 Filter Dual Triangle. . . . . . . ... ... ... ........ 98

XV



Chapter 1

Introduction

WO of the most problems studied in the context of signal and image processing of

Texture Classification are Feature Extraction and Classification. Feature Extraction
is the process in which signal coordinates are mapped onto another set of coordinates in
a way that signal discrimination or signal storage is optimized through a transformation,
linear or nonlinear. Essentially, Feature Extraction is based on disposal of less important
(irrelevant) information in the signal by identifying the most relevant features in a signal.
Classification has been a domain that has existed for many centuries in almost every field of
science and arts. Due to this fact, it has led to a tremendous amount of knowledge about
different machine recognition schemes, that requires either or both requirements of high
accuracy or speed for applications.

This is very important when considering the increasing popularity of digital libraries
and multimedia databases, where content-based image retrieval is becoming an important
research topic [1]. A very useful characterization for a wide range of images is by their tex-
tures. Moreover, it is generally believed that even our human visual system uses textures for
recognition and interpretation. Textures have been successfully used for object recognition,
scene interpretation and segmentation, especially in the areas of industrial automation, re-
mote sensing and medical diagnosis. As such, numerous techniques have been developed for
texture classification, segmentation, synthesis and other related tasks.

This thesis discusses these different texture analysis methods with the use of different



feature extraction and classification protocols.

Feature Extraction

Large number of texture features have been proposed [2, 3]. They can be categorized into

four major methods, namely:
e Statistical - the co-occurrence method [4].
e Geometrical - Voronoi Tessellation Features [5].
e Model-Based - Markov Random Fields [6] and Fractals [7, 8].
e Signal Processing - Gabor Filters [9], Wavelet Transforms [10, 11] and QMFs [12].

Few empirical comparisons on these textures have been conducted with some mixed
results [13, 14]. However, Randen et al. [12] performed a more systematic and comprehensive
study, with particular emphasis on the signal processing approach. It was concluded that
no texture feature is consistently superior for all images, though the wavelet frame with
quadrature mirror filters are among the best for most images.

The evidence of good performance in texture classification is due to the fact that Wavelet
Theory has a solid foundation based on formal mathematical theory for multi-resolution im-
age analysis [11, 15, 16]. However, the main problem with the commonly used discrete

~wavelet transform (DWT) is that it is translation-variant. A simple integer shift of the
signal/image would result in non-trivial modifications of the wavelet coefficients. This is
problematic in texture analysis as textures are generally considered as translation-invariant.
Unser [17] implemented the discrete wavelet frame transform (DWFT), which is an over-
complete wavelet representation, to alleviate this problem. As it will be discussed in Sec-
tion 2.5.4, DWFT avoids the down-sampling operations in DWT and, thus, yields a descrip-

“tion that is translation-invariant.



Classification

Another crucial component in texture classification is the classifier being used after feature
extraction. A number of classifiers has been used from the most common Bayes classifer
[12, 18, 19], to nearest neighbor classifiers [20], linear discriminants [21], neural networks
[10], and learning vector quantization classifiers [12].

In the past decade, the Support Vector Machine (SVM) Classifier [22, 23] has proved to
be a promising pattern recognition method and in achieving successful results. It has outper-
formed traditional techniques in various applications such as handwritten digit recognition
[24], text categorization [25] and spam categorization [26]. SVM has also provided superior
performance in regression [27] and time series prediction [28].

The reason for SVM’s success is that it is based on Structural Risk Minimization [22];
rather than empirical risk minimization used for many other methods. SVM attempts to
minimize the generalization error, which is a combination of Empirical Risk and Structural
Risk. Other methods simply attempt to minimize the training error, which carries many

flaws such as over-fitting [2].

In this thesis, both feature extraction and classification are studied and a method has been
proposed in terms of texture analysis and classification. Several researchers have proposed
many different feature extraction methods and many have been applied in many different
areas of study. This is also true with the study of classification. We have proposed a
method by effectively applying SVMs and employing external shift-invariant texture features
generated by DWFT to the problem of texture classification.



Summary of Contributions

The contributions of this thesis to the original schemes are:

e Implementing a texture classification approach that operates on small windows instead
of global ones from the texture classes and utilizing the complete separation of training
and testing sets. These elements are used to provide an unbiased and un-boosted final

classification accuracy.

e Extending the feature extraction algorithm by increasing the feature space of the fea-
ture vector by implementing the Discrete Wavelet Frame Transform, which incorpo-

rates the shift-invariant representation.

e Proposing an extension to the texture classification method by optimally representing

the filter banks in the DWFT for better discriminatory features.

Organization of the Thesis

The thesis consists of seven chapters, which are organized as follows:

In Chapter 2, the background information on the ground breaking Wavelet Transform, and
how it is applied to the Texture Classification method is discussed.

In Chapter 3, SVM theory is reviewed and explained, and how it is a vital component in the
texture classification methodology.

‘In Chapter 4, existing technology of texture analysis and features are reviewed. Our pro-
posed method of optimal representation for feature extraction of the Wavelet Transform’s
decomposed filter banks is introduced and discussed.

In Chapter 5, comparative experiments are carried out. The different decompositions of
wavelet transform and the extension method with the proposed filtering methods are com-
pared.

In Chapter 6, conclusions and future work of this thesis are stated.



Chapter 2

Wavelet Transform

VERYWHERE around us are signals that can be analyzed. For example there are:
E seismic tremors, human speech, engine vibrations, medical signals and images, financial
data, music, and many other types of signals. Wavelet Analysis is a promising set of tools
and techniques for analyzing these signals.

In this thesis, we have made use of the collection of built-in functions provided under the
Wavelet Toolbox in the MATLAB® Technical Computing Environment. It provides tools
for the analysis and synthesis of signals and images using wavelets and wavelet packets all

within MATLAB. All further simulations are also completed using this platform.

2.1 History on Wavelets

The main algorithm dates back to the work of Stephane Mallat in 1988 (11, 15]. Since
then, research on wavelets has become an international study. Such research is particularly
active in the United States, where it is spearheaded by the work of scientists such as Ingrid

Daubechies, Ronald Coifman, and Victor Wickerhauser.

2.2 Wavelet Applications

The reason for which wavelets and its corresponding decompositions are used is its abil-
ity to combine scale and time aspects that are present in any application. Wavelets are

mathematical functions that separate data into different frequency components. Each com-

5



ponent is further studied depending on the resolution of the scale. They have advantages
over traditional Fourier methods in analyzing physical situations where the signal contains
discontinuities and sharp spikes. This is discussed in Section 2.3. Wavelets were developed
independently in the fields of mathematics, quantum physics, electrical engineering, and
seismic geology. Interchanges between these fields over the past decade has led to many
new wavelet applications such as image compression, turbulence, human vision, radar, and
earthquake prediction.

Many of the applications that apply the fundamentals of wavelets attempt to achieve
the goal of signal or image clearance and simplification, which are essentially de-noising and
compression. There are many published papers covering many different areas, it is almost
impossible to sum up several thousand papers written within the last 15 years. However,
the list below gives the reader an insight on the long reach of wavelets. Some of the domains

are:
e Oceanography and Earth Studies [29].
e Compression of FBI Fingerprints [30, 31].
e ECG and EKG extraction for localization of heart activity and noise removal [32].
e Enhancing Mammograms to discriminate tumors from calcification [33].
If reader is interested in the area of wavelets and its applications, the reader is encouraged

to read [34] to get a broad understanding of this field.

2.3 Fourier Analysis

‘The most well known of signal analysis is the Fourier analysis or Fourier Transform. This
analysis tool breaks down the signal into constituent sinusoids of different frequencies. Essen-
tially, it converts or transforms the view of the signal from a time-based to frequency-based.

Fourier Transform is very useful when the signal’s frequency content is of importance.

"However, when the signal is transformed into the frequency domain, all time information is

6



Figure 2.1: An illustration of a signal in the time domain.
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Figure 2.2: An illustration of a signal in the frequency domain.



lost. When analyzing the transformed signal, it is impossible to dictate when a particular

event took place.

2.4 Short-Time Fourier Analysis

Gabor adapted the Fourier Transform to analyze the signal in small sections at a time
to overcome the deficiency of the original transform. In doing so, it essentially maps the
signal into two functions of time and frequency. This is now known as Short-Time Fourier

Transform or STF'T.

Figure 2.3: A sampled window of the signal ready to be transformed.

Frequency

Y

Time
Figure 2.4: The resulting mapping function that occurs using STFT.

As can be seen by Figure 2.4, it merges the view points of analyzing a signal, time
and frequency. It provides the ability to localize the information that has lacked the past

“efforts of signal analysis. However, this method suffers the effects of the size of the window

8



chosen for analysis. If the window is too small, low frequency signals fail to get analyzed.
If the window is too big, high frequency signals fail to get analyzed. Many signals that are
experienced need a flexible approach, where the window can be more adaptive to capture

either the time or frequency information.

2.5 Wavelet Analysis

With the impressive set of tools already been developed, wavelet analysis represented the
next step in signal analysis. It implements the adaptive approach to analyzing signals,
more specifically a time-scale view of the signal. The window is expanded when we want
more precise low-frequency information, and is shortened in those regions where we want

high-frequency information. From Figure 2.5 to Figure 2.8 shows this progression.

Amplitude

Time

Figure 2.5: Time domain mapping as prescribed by Shannon.

Frequency

Amplitude

Figure 2.6: Frequency Domain mapping as prescribed by Fourier.

Because of wavelet’s ability to be adaptive in analyzing signals, it does not use the time-
frequency approach, as used by others, but a time-scale approach. The window is directly
related to the scaling and shifting of wavelets. Scaling a wavelet simply means stretching
(or compressing) it. It works in the same manner a scale factor would affect a sinusoid

wave. The smaller the scale factor, the more compressed the wavelet. As with sinusoid wave,

9



Frequency

Time

Figure 2.7: STFT mapping as prescribed by Gabor.

Scale

Time
Figure 2.8: Wavelet Analysis mapping as prescribed by Daubechies.

Shifting simply means delaying (or hastening) its onset. The mathematics are the same for
both cases. Delaying a function f(t) by k is represented by f(t — k) in a traditional sinusoid
case. In the wavelet family, the original function is ¥(¢) and the shifted function is ¥(t — k).

2.5.1 Continuous Wavelet Transform

This leads to the derivation of the Continuous Wauvelet Transform. Recalling fourier analysis,
‘Figure 2.6 and Section 2.3, the transform is the sum over all time of the signal f(¢) multi-
plied by the complex exponential, which can be broken down into complex and imaginary

sinusoidal components as shown in Equation 2.1.
+00 .
F(w) = / F(t)etdt. (2.1)

The result of this transform are the Fourier Coefficients F(w). Similarly, the Continuous
Wavelet Transform (CW'T) is defined as the sum over all time of the signal multiplied by

the scaled and shifted versions of the wavelet function:

+00
C(scale, position) = / f(t)¥(scale, position, t)dt, (2.2)
—00
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where the wavelet transform is represented by any arbitrary function as a superposition

of wavelets, which are functions-generated from a mother wavelet, ¥, by dilations and

translations of
1 z—b
72V =)

The result of this transform are many wavelet coefficients, which are a function of the mother

Ueb(z) = (2.3)

wavelet, U. If one were to multiply each coefficient with the appropriate scaled and shifted

wavelet, it would yield the constituents signals of the original signal, just as Fourier.

Scale versus Frequency

As stated earlier, the windowing function adapts itself to signal under study. This has a
direct effect on the wavelet used. Higher scales (window) correspond to the most stretched
wavelets. The more stretched the wavelet, the longer the portion of the signal with which it
is being compared, and thus, the coarser the signal features is being measured by the wavelet
coefficients. The resultant coefficient C represents how closely correlated the wavelet is with
the section of the signal. The coefficient C can be interpreted as a correlation coefficient,
if the signal and wavelet are normalized to equal unity energy [34]. Therefore, through our

analysis the relationship between wavelet scales and frequency becomes:

e Low Scale = Compressed Wavelet = Rapidly changing details = High Frequency of
Signal under study.

e High Scale = Stretched Wavelet = Slowly changing features = Low frequency of
Signal under study.

Figure 2.9 and 2.10 shows this relationship.

With the many strengths of this transform, almost all signal processing are performed on the
computer using the real-world data that has been changed into discrete form. If one were to
use CWT, it would operate at every scale, shifted over the full domain of the original signal

to predefined maximum scale, which is the trade-off for the need for detailed analysis with

computational power.
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Figure 2.9: Top: Signal Under Study. Bottom: Low Scaled Wavelet.

M

Figure 2.10: Top: Signal Under Study. Bottom: High Scaled Wavelet.

2.5.2 Discrete Wévelet Transform

The standard description of Discrete Wavelet Transform (DWT) has been a development
over many years with the work of many researchers. It solves the problem of calculating
wavelet coefficients at every scale, by using scales and positions based on dyadic (powers of
“two). This produces a more efficient algorithm, while still maintaining its accuracy. Mallat
[11, 15] introduced this concepts as a two-channel subband coder. It essentially is a fast
wavelet transform, when compared to the CWT.
DWT is built upon the simple fact that low-frequency content is the most important part
for many signals. The remaining high frequency content simply adds flavor or noise [11].
The perfect example is human speech. By removing the high-frequency elements from the
speech sample, the speech may change. However, the information or what is being said, can
still be determined. If too much of the high-frequency content is removed, the speech may
become distorted and sound irrelevant [34].

Wavelet Analysis uses approzimation and detailed terms to describe frequency informa-

12



tion. Approximation (A) is the term to describe the low frequency information, while the
Detail (D) describes the high frequency information. This is achieved by filtering the original
signal, S through two complimentary high and low pass filters shown in Figure 2.11.

LOW:PASS Filters:. ‘HIGH-PASS

A D

Figure 2.11: Filtering process at the most basic level.

By downsampling the resultant A and D samples [11], it produces the DWT coefficients.
For a better understanding, a one stage discrete wavelet decomposition is shown. A
pure sinusoid signal, Figure 2.12, is added with high frequency noise to generate the sample
of study, as shown in Figure 2.13. One-level DWT is performed on the sample signal. It
produced two sets of coefficients, Approximation (Figure 2.15) and Detail (Figure 2.16).
Notice that the detail coefficients are small and consist mainly of a high-frequency noise,
while the approximation coefficients contain much less noise than does the original signal of

study.

Multi-Level Decomposition

This decomposition process can be iterated, with successive approximation coefficients being
decomposed in turn, so that one signal is broken down into many lower resolution compo-
nents. The resultant is called the wavelet decomposition tree.

By continuing the example in Section 2.5.2, the decomposition tree can provide valuable
information. By inspecting the Level Three Approximation Coefficients with the structure

of the original signal, Figure 2.20, one can observe that it has removed almost all of the high
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Figure 2.14: The sinusoidal wave added with high frequency random noise.
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Figure 2.15: Level One Approximation Coefficients.
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Figure 2.16: Level One Detail Coefficients.
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Figure 2.17: Multi-Level DWT Decomposition.
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frequency random noise.

Figure 2.18: Level Two Approximation Coefficients.
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Figure 2.19: Level Two Detail Coefficients.
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Figure 2.20: Level Three Approximation Coefficients.
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Figure 2.21: Level Three Detail Coeflicients.

Since the analysis process is iterative, it can be continued indefinitely. However, in terms
of processing, the decomposition can proceed only until the individual details consist of a
single sample. In practice, the selection of a suitable number of levels is based on the nature

of the signal, or on a suitable criterion such as entropy [11].

Reconstruction or Synthesis

To regain the original signal, or combining the components, without loss of information is
the other half of DWT. This process is called reconstruction, or synthesis or in mathematical
terms, the inverse discrete wavelet transform (IDWT). Wavelet analysis involves filtering
and downsampling, the wavelet synthesis process consists of upsampling and filtering. In
digital signal processing, downsampling is the process of shortening a signal component by
removing elements between samples, while upsampling is the process of lengthening a signal
component by inserting zeros between samples [35].

The filtering part of the reconstruction process is an important issue because it is the
choice of filters that is crucial in achieving perfect reconstruction of the original signal. The
downsampling of the filtered signal components performed during the DWT decomposition
phase introduces a distortion called aliasing [36]. It turns out that by carefully choosing
filters that are closely related (but not identical) for the decomposition and reconstruction
phases of DWT and IDWT, the effects of aliasing can be removed [37, 38]. By creating a

complementary filter with the original filter, the pair of filters used in combination creates one
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invertible lossless filter. When these filters (L & H) are used in pairs to decompose an input,
the same pair of complementary filters (L’ & H’) has to be used to put the decomposition
back together. This eract reconstruction filters creates an operation that is reversible (no
loss of information) and restores the original signal. The low and high-pass decomposition
filters (L & H), together with their associated reconstruction (complimentary) filters (L’ &
H’), form a system of what is called quadrature mirror filters, QMF [37].

Choosing the quadrature mirror filters is an important detail that only determines whether
perfect reconstruction is possible, it also determines the shape of the wavelet used to perform
the analysis [36, 39, 40]. Daubechies, Haar, Biorthogonal, Coiflets, Symlets, Morlet, Mexi-
can Hat, Meyer, and other complex wavelets are all apart of the QMF family each with its
certain characteristics. Researchers have studied and attempted to find the optimal wavelet

for use, however, the results have been mixed and it is mainly application dependent [12].

2.5.3 Wavelet Packet Analysis

DWT, as it can be deduced, only decomposes and iterates on the approximation coefficients,
while the remaining detail coefficients remain idle for further operations. This results in n+1
ways to decompose or encode the signal for an n-level decomposition. The wavelet packet
method is a generalization of wavelet decomposition that offers a richer range of possibilities
for signal analysis [10]. In wavelet packet analysis, the details as well as the approximations
can be split. This yields more than 22"7" different ways to encode the signal as seen in

Figure 2.22. Choosing one out of all these possible encodings presents an interesting problem.

S

3 . A 2 \ S B 2

1—1 AA2. _l | pa2 | AD2 l_ DD2
- & = ' i 2 4. : N

AAA3 | [Daa3 |[aDA3 || DDA3 | [AAD3 | [ DAD3 | [ ADD3 | [DDD3

Figure 2.22: Wavelet Packet Decomposition Tree.
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One of the possible methods is to use an entropy-based criterion to select the most suitable
decomposition of a given signal [38]. This means we look at each node of the decomposition
tree and quantify the information to be gained by performing each split. Then by using
simple and efficient algorithms, the wavelet packet decomposition can be selected /pruned to
represent the optimal decomposition, which has direct applications in optimal signal coding
and data compression [16, 41, 42]. These adaptive filtering algorithms were developed by
Coifman and Wickerhauser [37, 38].

2.5.4 Discrete Wavelet Frame Transform

Discrete Wavelet Frame Transform resembles its DWT counterpart except that the dyadic
down-sampling process is not imposed at each level. In doing so, unlike DWT, DWFT -
yields a shift-invariant signal representation [12, 17]. In DWT and DWFT, decomposing
a 1-D signal to d decomposition levels results in d detail subbands and one approximation
subband. However, the main difference is that the sizes of the subbands in DWT decreases
as the decomposition is iterated. Each subband in DWFT has the same size as the original
signal of decomposition (Figure 2.23). This redundant representation of DWFT is, thus,

more demanding in terms of both memory and time.

Image Processing

In image processing, we are mostly interested in the two-dimensional extension of the wavelet
transform. Figure 2.24 shows one stage of the 2-D DWT and inverse DWT. As shown, the
DWT is implemented using QMFs, a bank of 1-D low-pass (h) and high-pass (g) analysis
filters, and the inverse DWT likewise uses its complement, (k) and (§). After one stage of
decomposition, an image at resolution level ¢ will be decomposed into four subband images
Di¥l Difl, D and Sifl. The three detail images, D34, Dif! and D correspond to the
low-high (Horizontal), high-low (Vertical) and high-high (Diagonal) bands in the frequency
domain respectively. The remaining low-low (Approximation) component Stt!, is a low-pass
filtered version of Si;, and can be used for further subband decomposition. A DWT with

d decomposition levels results in a total of 3d + 1 end subbands. Performing DWFT to d
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decomposition levels also results in a total of 3d details subbands and one approximation

subband.

image
DWT
$2 .D |
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Figure 2.23: Image Decomposition for DWT and DWF'T.

2.6 Summary

We have described the Wavelet Transform in terms of its history, its application and its
evolution over time. Many different iterations of the wavelet transform has been shown as
the general progression in the research community. The main focus was on the conceptual
aspects of wavelet transform, and how it is incorporated in image processing and how it can

be used as feature generation scheme for the texture classification method.
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Figure 2.24: One stage 2-D DWT and inverse DWT. On the decomposition side, we have the
down-samplers. 2 | 1 denotes keeping one column out of two. 1 | 2 denotes keeping one row out
two. On the synthesis side, the up-samplers put column and row of zeros between each column and

row.
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Figure 2.25: One stage 2-D DWFT and inverse DWFT. On the decomposition side, we have no
the down-samplers. h T 2' denotes inserting zeros between every samples in filter h, and similarly

forgT2i,iLT2iand§T2i.
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Chapter 3

Support Vector Machines

HE Support Vector Machine (SVM) Learning Classifier is essentially derived for cases
T of binary classification. The main focus of the SVM is to find and construct a hyper-
plane, otherwise known as the decision surface, in such a way that the margin of separation
between the two classes, in this case positive and negative examples, are maximized. The
goal is motivated by principles of statistical learning theory and the method of structural
risk minimization [22], [23]. According to the statistical learning theory, the error rate or
the Generalization Error Rate of a learning machine on the test data is bounded by the sum
of two terms. The first term named Training Error and the second term that depends on
Vapnick-Chervonenkis (VC) dimension [22] named Structural Risk. In the case of separable
patterns, SVM produces a value of zero for the first term, while minimizing the second term.
Accordingly, the optimal hyperplane which is sought by SVM is equivalent to minimizing
the bound on the VC-dimension.

SVM is capable of generalizing well (predicting the unseen or unknown samples with a
.good degree of accuracy) as compared to many traditional classifiers (Neural Networks, etc).

It offers several advantages which are typically not found in other classifiers:

e Computationally much less intensive (when compared to the iterative nature to Neural

Networks).

e Performs well in higher dimensional spaces, a factor which limits many efficient classi-

fiers.
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e Lack of training data is often not a severe problem.

¢ Robust with noisy data, where noise can severely degrade the performance of other

classifiers.
e Does not suffer as much from the curse of dimensionality and prevents over-fitting.

In the following sections, we will first review the mathematics of the derivation of the Support
Vector Machine in the simple case where, patterns are linearly separable, and the difficult

case of when the pattern are non-linearly separable case.

3.1 Linear Support Vector Machine Classifier

Let vector xe X denote a pattern to be classified, and let scalar y denote its class label
y [£1]. In addition, let {(z;, ¥:),% =1,2,...1} denote a given set of [ training examples.
The main problem in any classifier, is how to generate a decision surface function or
hyperplane, f(x), that can correctly classify an input pattern that may or may not be from
the training set. Given the linearly separable case, there exists a linear function f(z) of the

form:
f(x) =wlx+b, (3.1)

such that for each training example z;, the function yields f(z;) > 0 for y; = +1, and f(=;) <
0 for y; = —1. In other words, training examples from the two different classes are separated

by the hyperplane f(x) = wix+b = 0. For a given training set, while there may exist

v ®
O T )
O . ®
Q L J
o o & <
o o ¢
wx+b<0 wx+b>0
wx+b=0

Figure 3.1: Sample Linear Hyperplane.
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Figure 3.2: Various Hyperplanes in existence.
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Figure 3.3: Optimal Hyperplane. Extracted support vectors are shown in bold.
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many hyperplanes that separate the two classes (Figure 3.2), the SVM classifier is based
on the hyperplane that maximizes the separating margin between the two classes. In other
words, SVM finds the hyperplane that causes the largest separation between the decision
function values for the borderline members of the two classes referred as support vectors,
Figure 3.3. This hyperplane can be mathematically found by minimizing the following cost

function:

U(w) = -W W= -IIWII2 (3.2)
Subject to separability constraints:
wlz; +b> +1, for y; = +1, (3.3)
and
wlz; +b< —1, for y; = —1, where i =1,2,... L. (3.4)

Equivalently, these constraints can be written more compactly as
yi(wlz; +b) > +1, fori=1,2,... L (3.5)

This specific problem formulation may not be useful in practice because the training data
may not be completely separable by a hyperplane. In this case, a slack variables, denoted

by &; can be introduced to relax the separability constraints in Equation 3.5 as follows:
yi(wlz; +b) >1—&, where£>0;i=1,2,... 1 (3.6)
Accordingly, the cost function in Equation 3.2 can be modified as follows:
U(w,§) = —IIWII2+CZ&, (3.7)
i=1
where, C, is a user specified, positive, regularization parameter. In Equation 3.7, the variable
& is a vector containing all the slack variables &, 1 =1,2,... l.
The modified cost function in Equation 3.7 represents the structural risk. This équation

is a fine balance between the second term, empirical risk (i.e.- training error) with first term

(model complexity). The regularization parameter C' controls this trade-off. The purpose
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of using model complexity to constrain the optimization of empirical risk is to avoid over-
fitting, which is a usual occurrence in Neural Networks. This is a situation where the decision
boundary is constructed too precisely with the training data and ultimately fails to perform

well on data outside the training set. This is discussed more in Section 3.2.

3.2 Non-Linear Support Vector Machine Classifier

The set of equations are clean and simple with linearly separable data. However, the data
set is unlikely to be linearly separable as seen in Figure 3.4. Support Vector Machines uses
Cover’s Theorem [23] to overcome the nature of non-linearly separable data. The theorem
specifically states that such a non-linearly separable pattern space can be transformed into
a new feature space where patterns are linearly separable with a high probability. However,
the transform must be of non-linearity and the feature space dimension must be a high

enough value. Let x, with a dimension of mg denote the vector drawn from the input space

¢

Figure 3.4: Feature Mapping.

X. Let {®;(x)}72; denote the set of non-linear transformations from the input space to the
feature space dimension of m;. It is assumed that {®;(x)}}2} is defined a priori for all j.

Then, a hyperplane acting as decision function is defined as:

% wj‘bj(x) + b= 0, (38)

=1
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where {w;}72; denotes the set of linear weights joining the feature space to output space

and where b is simply the bias. The Equation 3.8 can be simplified by writing:
my
le)j(pj(X) = 0, (39)
Jj=1

where it is assumed that ®p(x) = 1 for all x. In doing so, wy denotes the bias b. Equation 3.9
defines the decision function computed in the feature space in terms of the linear weights of
the support vector machine. The quantity ®;(x) represents the input supplied to the weight
w; via the feature space. In fact, the vector [®o(x), ®1(%), ..., B, (x)]7 can be considered
the “image” induced in the feature space due to the input vector x.

The problem of finding weight coefficients w can be formulated as an optimization prob-
lem with a constraint. From [23], it can be shown that finding optimal hyperplane is equal\
to minimizing the cost function:

1 N
T(w) = Sliwl* + C;fi- (3.10)
A large value of the regularization parameter C, which is selected by the user, corresponds
to a higher penalty being assigned to the training errors [67]. A lower value of C has the
reverse effects.

Given the training samples, {(z;,d;)}¥,, the constraints which must be satisfied are:
di(wTP(z;) +b) >1—¢, fori=1,2,... N. (3.11)

This constrained optimization problem can be solved using the Lagrange multiplier. The

Lagrangian function is constructed as:

J(w,0,&,b) = %Hw”z + C;& - iai[di(wTé(x,-) +b) —1+¢], (3.12)

where the non-negative variables of @; are called Lagrange Multipliers. The solution to con-
strained optimization problem is determined by the saddle point of the Lagrangian function

J(w,a,&,b), which has to be minimized with respect to w and b and maximized with respect
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to a. Applying the optimality conditions:

8J(w,a, Ea b) — 0, (313)
ow

0J(w,a,&,b)

A s ) .14
Pl (314)

0J(w,a,&,b)

AT ) 3.15
bl o, (3.15)

to the Lagrangian function Equation 3.12 yields:

N

w =) 0;d;®(;). (3.16)

i=1
Given the equations above, the final structure of the non-linear SVM classifier is obtained
as:

f(X) = i a,-di@T(a:,-)q)(a:i) +b = i aidiK(xi, X) + b, (317)

i=1 i=1

where the kernel function K(-,-) is defined as:
K(x1,%3) = xTx,. (3.18)

Lagrange Multipliers are solved from the dual form of Equation 3.10, which is expressed as:

N 1 N N
Zai~§zzaiajde($ia$j) = 0, (3.19)

i=1 i=1j=1

which are subjected to the constraints:

0<0; <C, wherei=1,2,...,N, (3.20)
N
Zaidi =0. (321)
=1
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This dual problem is solved numerically through quadratic programming (QP). The
Karush-Kuhn-Tucker optimality conditions for Equation 3.19 leads to the following three

cases for each q; as shown in Figure 3.5:
1. Q; = 0.

e This corresponds to d;(z;) > 1. In this case, the data element z;, is outside the
decision margin of the function f(x) and is correctly classified. This is related
to null Lagrange multipliers. These vectors are irrelevant in the future use of the

SVMs.
2. 0<ag;<C.

e This corresponds to d;(z;) = 1. In this case, the data element z;, is strictly located
on the decision margin of f(x). Hence z; is reffered as a margin support vector

(SV) for f(x). These are correctly classified vectors placed on the margins.
3. Q; (.

e This corresponds to d;(z;) < 1. In this case, the data element x;, is inside the
decision margin (though it may be still correctly classified). Accordingly, z; may

be called an error support vector of f(x).

The last two groups of vectors are known as support vectors and define the separation
hyper-plane between the classes.

Most of the training samples in a typical problem are correctly classified by the trained
classifier (Case 1), i.e. only a few training samples would be support vectors. For sim-
plicity, let the set s; contain aj, where j=1,2,....Ns, which denotes those support vectors
and their corresponding nonzero Lagrange multipliers respectively. The decision function in
Equation 3.17 can now be simplified as:

Ns
f(x) =Y ofd;K(si,x) + b. (3.22)

=1

29



Class A (+1) Separation Margins Class B'(-1)

Nocacc”

0<ay<C

Figure 3.5: Separation Margins of Lagrange multipliers given the two classes of A & B.

As it can be seen in Equation 3.19 and 3.22, the nonlinear mapping f(-) never appears ex-
plicitly in either dual form of SVM training problem or the resulting decision function. The
mapping f(-) only enters the problem implicitly through the kernel function K (+,+). Thus,
it is only necessary to déﬁne K(-,-) which implicitly defines f(-). However, when choosing
a kernel function, it is necessary to check that it is associated with the inner product of
some linear mapping. Mercer’s theorem [22] states that such a mapping indeed underlies a
kernel K(-,-) provided that K(-,-) is a positive integral operator. That is, for every square-
integrable function g(-) defined on ™ the kernel K-, -) satisfies the following condition of:

/ f K(z,y)g(z)g(y)dzdy > 0. (3.23)

Common Kernel Functions

Given the above conditions, shown in the Table 3.1 are a few common kernels most com-
monly in practice and applications of the SVM kernel [43]. The functions shown avoid
the increased computational complexity and curse of dimensionality, a kernel-trick or kernel
function K (x,y) is employed which, computes an equivalent kernel value in the input space

such that no explicit mapping is required [43].
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Table 3.1: Common Kernel Functions.

Gaussian RBF  k(x,y) = e
Polynomial (x-y)+6)¢
Sigmoidal tanh(k(x -y) + 0)
1

Inv. Multiquadric Vllz—ylP+e

3.3 SVM Applications

Being a late member into the classifier community, SVM has received much attention because
of its ability to overcome dimensionality issues, while keeping the accuracy of the results at
a high level. The heart of the SVM engine is based upon the mathematical and statistical
theory. This sound base in theory gives SVM its power to be applicable to many different
areas and domains of research.

There has been many papers written since its inception and even more work has been
published in the past five years. The domains SVM has covered over those years are in
the same category as with other popular classifiers such as Neural Networks. The main
reason for its gain to popularity was by comparison and providing its ability to reach high
classification accuracies versus other classifiers.

SVM does not depend explicitly on the dimensionality of the problem, but to the margin
with which it separates the data. Superior performance is achieved even on high dimension
data sets like US postal service database of handwritten digits using 16x16 bitmap as input
[44, 45]. Face Detection experiments [46] where dimensionality was 283 [47]. Some of the

other domains are:
e Texture Classification [48, 49, 50].

e Medical Imaging: Detection of Microcalcifications [51] and Oral Lesion Classification

[52].

e Satellite Imagery: Synthetic Aperature Radar (SAR) [53].
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e Voice Recognition [54].

As stated earlier, most of these published works provided comparisons to popular traditional
classifying methods. As SVM becomes more popular in the research community and more
research is put into its mathematical derivations and applicability, the future is bright with

possibilities.

3.4 Summary

We have described the Support Vector Machines as in terms of its Mathematical fundamen-
tals and how it is applied in classification theory. The SVM is a relatively new classifier
in terms of history and interest from the research community. With its powerful methods,
it can only gain more acceptance by more researchers studying it and applying it to their

respective fields.
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Chapter 4

Optimal Filter Bank Representation

EXTURE analysis plays an important role in many tasks. The main difficulty of
T texture analysis in the past was the lack of adequate tools to characterize different
scales of texture effectively. To overcome this fact, researchers have attempted to duplicate
the ability of the human brain, to understand the content of images by interpreting the
shape and texture of the object in the scene, by developing image understanding algorithms
for varied applications from robotic vision, industrial monitoring, remote sensing to assisted

medical diagnosis.

4.1 Introduction

With its importance in many fields from real to synthetic images, there is no universal
definition of texture due to the shear diversity of the patterns involved, given the set of
natural and artificial textures defined. The definition of a texture can be defined in many

ways:

e A texture may be regarded as what constitutes a macroscopic region. Its structure
is simply attributed to the repetitive patterns in which elements or primitives are

arranged according to a placement rule.

e A region in an image has a constant texture if a set of local statistics or other lo-

cal properties of the picture function are constant, slowly varying or approximately
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periodic.

e The image texture which is considered is non figurative and cellular. An image tex-
ture is described by the number and types of its (tonal) primitives and the spatial

organization or layout of its tonal primitives.

However, these definitions cover many of the same ideas that a texture should encompass
for it to be passed as a one. Sklansky [55] summed them and derived a new definition of a
texture. It is defined as an image region that has a constant texture if a set of local properties
in that region is constant, slowly varying or approzximately periodic. These local statistics or
properties that is repeated over the textured region is called a texture element or tezel. This
meaning of texture has both local and global meaning, that it is characterized by invariance
of certain local attributes that are distributed over a region of an image.

The proper analysis of texture requires the identification of proper attributes or features
that differentiate the textures for classification, segmentation and recognition. Various fea-
ture extraction and classification techniques have been suggested in the past for the purpose

of texture analysis and is reviewed next.

4.2 Non-Filtering
4.2.1 Statistics

Texture analysis was based on first order or second order statistics of textures introduced
by Haralick [4]. He and the respective authors [4] proposed generating features from the
co-occurrence matrix. In this method, the relative frequencies of gray-level pairs of pixels
. at certain relative displacements are computed and stored in a matrix, P. For G gray-levels
in the image, P is of size G x G. If the number of gray-levels is low, much of the texture
information is lost in the image quantization. The possible combinations of the nearest
neighbor pairs used most commonly are at orientations of 0°, 45°, 90°, and 135° [12]. There
were 14 features [4] defined (i.e. - Contrast, Energy, Entropy, Local Homogeneity, Cluster

SHade, Cluster Prominence, Max Probability, etc.). However, their computation for different
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distances at different orientations increases the computational and time complexity. Even

when all the features were used, the accuracy of the classification rate was only at 60-70%.

4.2.2 Model-Based

With model based features, some image model is assumed, its parameters estimated for a
subimage, and the model parameters, or attributes derived from them, are used as features.
Gaussian Markov Random Fields (GMRF) as it was proposed by Chatterjee and respective
authors [6] to characterize textures in using the models. Building upon the work for GMRF,
local linear transformations were used to compute texture features by Laws [56] and Unser
[67]. These traditional statistical approaches to texture analysis were restricted to the
analysis of spatial interactions over relatively small neighborhoods on a single scale, which -

resulted in their relative poor performance.

4.3 Fixed Filters
4.3.1 Laws Filter Masks

One of the first approaches to filtering for texture identification was presented in the work
by Laws [56]. Laws and respective authors suggested using a bank of separable filters, five

in each dimension, for a total of 25 filters. The filter masks suggested in the work were:
e hl = [1,4,6,4,1],
e h2 =[-1,-2,04,1],
e h3 = [-1,0,2,0,-1],
e h4 = [-1,2,0,-2,1] and

o h5 = [1,-4,6,-4,1].
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4.3.2 Discrete Cosine Transform

The discrete cosine transform (DCT) is popular in image coding such as JPEG compression
standard due to good performance and fast implementation [58]. Ng [58] suggested using
a 3x3 DCT for texture feature extraction. They, furthermore, suggested excluding the low-
frequency component of the DCT, thus, yielding 8 features. These image transforms are
equivalent to critically sampled filter banks. The filter bank can be separable, which are

determined by the one-dimensional filter masks used for the operations [12].

4.3.3 Gabor Filter

Jain and Farrokhnia [9] suggested a bank of Gaussian shaped band-pass filters, with dyadic
coverage of the radial spatial frequency range and multiple orientations termed Gabor filters.
This choice was justified by the relation to models for the early vision of mammals as well
as the filters’ joint optimum resolution in time and frequency [9]. The basic even-symmetric

Gabor filter oriented at 0° is a band-pass filter with unit pulse response
12

—15+5)
h(k,l) =e * = s cos(2m fok), (4.1)

where fo is the radial center frequency. Other orientations are obtained by rotating the
reference coordinate system, h(k,l). This filter has an infinite unit pulse response, but in
pfactice, it is approximated by a finite filter. Five radial frequencies are suggested in [9] (for
images of size 256 x 256) at four orientations of 0°, 45°, 90°, and 135°. The discrete radial

center frequencies were:
V2 V2 V2 V2 V2

o e &g (42)

4.3.4 Wavelet Transforms, Packets, and Frames

A major disadvantage in using Gabor Transform is that the output of the Gabor filter banks
are not mutually orthogonal, which results in a significant correlation between texture fea-
tures. Plus, Gabor filtering is not a reversible process, which limits their applicability for
texture synthesis. These deficiencies were avoided with the introduction of Wavelet Trans-

form, which provided a precise and unifying framework for the analysis and characterization
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of signal at different scales. Another major advantage of Wavelet Transform over Gabor
filter was its use of low-pass and high-pass filters remained the same between consecutive
scales, while the Gabor approach required filters of different parameters and proper tuning
of its parameters at different scales.

An unpleasant consequence of the filter bank approaches is that they are to varying de-
gree computationally demanding. For these reasons, the design of optimal filters for texture
discrimination is gaining increased interest [12]. Optimization of the filters offers the poten-
tial of reduced feature dimensionality and, hence, reduced computational complexity and/or
better feature separation. Other popular filter bank approaches are based on least mean
squared linear prediction error filters [59]. The linear prediction error filters are optimized
with respect to the prediction error. This filter bank design approach is applicable to prob- -
lems with arbitrary numbers of textures, and the number of filters is equal to the number
of textures. Prediction error filtering and its family of least squares auto regressive (AR)
parameter estimation is not the focus of this thesis and is not reviewed. A

Many authors have proved that Wavelet Transform is a viable transformation for texture
classification. Chang and Kuo [18] provided the conventional pyramid structure wavelet
transform, whose classification rate was higher than other methods such as Gabor filter and
Tree structured wavelet transform. They have also ihdicated that texture features are most
prevalent in intermediate frequency bands, where Wavelet Packets would become of optimal
use in the respective task. Unser [57] and Randen [12] also proved that texture classification

using wavelet transform was comparable if not better than other methods used.

4.4 Applications

Many have used the wavelet transform texture analysis structure for many image classi-
fication needs. Medical Imaging has produced much interest from the image processing
community. Wavelet Transform has been used in classification of MR Images of brain [60],
Myocardial Tissue [33], and many more which can be easily found in various journals and

conferences.
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4.5 Related Work

Feature Extraction

In the texture classification domain, Wavelet Transform has been well documented and
applied. Besides having good empirical performance, wavelets has a solid foundation based
on a formal mathematical theory for multi-resolution image analysis. The orthonormal
design of wavelet transform has the implied property which is of high importance for texture
analysis. The data is decomposed into independent frequency channels, which allows a coarse
selectivity of three spatial orientations in image processing of horizontal, vertical & diagonal,
and the orientations correspond to maximum sensitivity of the Human Visual System [62].

Laine and authors [10] introduced an approach to characterize textures at multiple scales.
They had used Wavelet Packet Signature to generate energy and entropy metrics of natural
textures, which were incorporated into distinct scale space representations. These results
were compared with the standard wavelet decomposition. Major disadvantage of this method
was its use of samples sizes which were 128x128 pixels, and the smallest window size of study
can be no less then 32x32 pixels.

Kuo and respective authors [18] developed the multi-resolution approach based on mod-
ified wavelet transform called Tree-Structured Wavelet Transform. This was developed be-
cause of a large class of natural textures that can be modelled as signals whose dominant
frequencies are located in the middle frequency channels. This gave the ability to zoom into
any desired frequency channel for further decomposition. However, the classification results
are dependent on the test set having the same wavelet tree structure of the training set.

Unser [17, 57] developed the approach to characterize texture properties at multiple scales
using the over-complete wavelet decomposition, which yielded translation-invariant features.
He also implemented the tight frame approach, which yielded a fast iterative algorithm.
However, the classification experiments were only conducted with 12 natural textures. A
more detailed approach was needed to hold the results to a standard.

Randen [12] had reviewed most major filtering approaches to texture feature extraction

and performed a comparative study. He compared Laws masks, Gabor filter banks, wavelet
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transforms, wavelet packets, discrete cosine transforms and linear predictors. They were all
tested under extensive experiments and were given a ranking based on their results. The
overall conclusion was that wavelet transforms ranked at the top of most of these experiments.

Utilizing this, several filter bank approaches and related schemes have been proposed, as
stated above. Similar approaches and extensions to these works can be found in literature
by Mojsilovic [33], Li et al. [62], and Rajpoot [63]. However, there are many others who
have implemented the wavelet transform filtering method, which will be too many to state
here.

Arivazhagan [64] took a different approach. He provided a merger of the filtering with
the non-filtering approaches. He implemented use of Mallat’s [15] wavelet transform in
conjunction with Haralick’s [4] co-occurrence matrix features. He used the wavelet transform
decomposed images to generate features based statistical and co-occurrence features, which
were used as a feature database approach in texture classification. The results provided

promising results.

Classification

Another crucial component in texture classification is the classifier being used. In work stated
above, they each used a different classifier to obtain the overall classification accuracies. Laine
and Arizvahagan had used the Minimum Distance classifier. Kuo and Unser had used the
Bayes, minimum error Bayes and Neural Network classifiers. Randen mainly used the LVQ
classifier. Mojsilovic implemented a distance metric suited towards their scheme, which was
similar to Mahalabonis distance classifier.

In most of the work, they had dimensionality problems beyond the feature extraction
phase and some of the authors had further used transforms to reduce the dimensionality.
Rajpoot and Kwok had proposed the use of the SVM classifier because of its robust capa-
bilities to handle the dimensionality issue. We used the SVM classifier because of its ability

to remove this variable out of the texture classification equation.
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4.6 Motivation

The first motivation is to implement a standardized testing, similar to [62] that does not
embellish the final classification results. In doing so, a platform is generated to compare the
different methods and conclusions can be derived.

Secondly, it is clear that replacing DWT with DWFT into Arivazhagan’s [64] method of
feature extraction, the WSFs and WCFs would better be represented because of the over-
complete representation and shift-invariant nature of the DWFT elements. Furthermore,
the feature space can be increased in the feature vector representation, thus, providing more
discriminatory characterization of the texture classes.

Finally, the basic assumption for the filtering approaches stated above was that the energy
distribution in the frequency domain identifies a texture. Hence, if the frequency spectrum is
decomposed into a sufficient number of subbands, the spectral energy signatures of different
textures are different, as per Equation 4.3, where “I” represents the decomposed image
M x N. Thus using these values in a Feature Vector (FV) to be used in the classifier, the
feature vectors provides enough discriminating power to separate itself from other textures.

Energy = ——— Z Z I*(z,v). (4.3)
N ==
Afivazhagan [64] proposed to use the DWT features and co-occurrence features (Appen-
dix A.1 through A.10) computed out of the subbands of wavelet transformed images. The
intuition behind this approach was that the chances for correct classification is consider- -
ably improved if the higher order statistical features are used, as they normally have good
discriminating ability than the lower order ones.

Many experiments in the research community implement the DWT to generate features
to characterize the texture for optimal discrimination. The clear fact that DWT’s inherent
property of critical sampling at each stage of decomposition can be seen as savior to time and
computational complexity, however, it has forsaken the spatial information integrity when the
features are being generated. This was resurrected by Unser’s [17] research work into Discrete

Wavelet Frame Transform, DWFT. By restoring the spatial veracity at each decomposition
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level, the respective decomposed images can enhance the discrimination ability of the feature
vector corresponding to the texturé. In doing so, this adds to the computational cost and
time expense, however, the classification accuracy results which are discussed in Section 5.2
justify this reasoning.

Revisiting Arivazhagan’s approach at adding additional features to improve the success
rate can be furthered by the proper implementation of the DWFT. His approach was only
able to use subbands of level-one decomposed images because of the critical sampling caused
by the inherent properties of the Discrete Wavelet Transform. Much information is lost with
each level of decomposition even at the start of the decomposition at level-one. For example,
an image of small dimension of size 32x32 pixels is decomposed using DWT. The third level of
decomposition generates images of 8x8 pixels because of the critical dyadic sampling. If one -
were to continue to use the DWT decomposed images for co-occurrence feature generation,
the spatial information that had been lost would not be suffice to support the calculations
required by Haralick’s co-occurrence matrix and subsequent features (Appendix A.3 to A.8).

By implementing the DWFT with Arivazhagan’s approach, the ability to capture more
features per decomposition can be variably increased. A five-level DWFT decomposition
produces 5 Approximations, and 15 Detail images (5 levels multiplied by 3 details per de-
composition), all of which are of same size as the original image. This totals to 20 de-
composed images. By generating the co-occurrence matrix for each image and deriving the
co-occurrence features (A.3 through A.8), there is a possibility of accumulating 140 (7 x
20) features from a single five-level decomposition. This is in comparison to any one feature
generation as entropy or energy from Equation 4.3, which only produces 20 (20 x 1) features.

Furthermore, we are motivated at aiming at providing more discriminatory information
that has now abundantly been generated by the DWFT and ensuing co-occurrence features.
The goal is to capture the data that most provides discrimination ability of the feature in
regards to the texture. This is accomplished by focussing and localizing only on certain areas
of the image to generate the necessary features (energy, co-occurrence matrix features) using

a filtering technique with a specified structuring element.
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4.7 Background

The heuristically designed filter banks of DWFT imply large numbers of features. Conse-
quently, the computational complexities are large in feature extraction stage. Hence, it may
be desirable to attempt to discriminate by effect of reducing the data of interest operated
upon. Focussing on certain elements at the filter banks may yield a maximized feature sep-
aration by the removal of the redundant data. This step is compensated with information
derived from the multiple input bands and the subsequent decomposed images are analyzed
using texture analysis techniques for proper discrimination, as stated above. The number of
input bands in the feature extraction stage are incorporated to enhance the discrimination
of the textures.

If frequency bands are biased with different weights, one can dynamically control the
receptive behavior of texture window at distinct resolutions. Decomposition using DWFT
in Time-Frequency domain is the over-complete representation of features that describe the
texture at that localized position in the signal. When attempting to focus by effect of
reducing the information contributed from the subbands, it is important that the feature
extraction stage derives more discriminatory information.

It is a common understanding of texture as an attribute representing the spatial arrange-
ment of the gray levels of pixels in a region. The investigated region is called a texture
window, which is configured in its size by the specific technique implemented. With respect
to wavelet transform filtering approaches, DWT texture window decreases with each level
of decomposition, while DWFT texture window stays the same size as the original sample
image with each level of decomposition.

The traditional approach is to calculate the feature from the whole texture window by
accumulating all the wavelet coefficients over the decomposed image/slice, as is the case
using Equation 4.3. By focussing the elements used for calculation of a feature, it not
only reduces the data needed to be operated upon, but it also preserves the discrimination
ability of the features corresponding to the particular texture. This is dependent on the

window/filter utilized that maximizes the number of neighborhood pixels into account for

42



feature calculation.

4.8 Methodology

In the texture characterization perspective, maximizing the amount of information used in
the calculation of the features is key. One needs to match a prescribed position and where the
percentage of neighborhood pixels is high. This is usually at the center of the window. If the
percentage of neighborhood pixels equals to 1, this means that the whole image or texture
window has been taken into account. This task is completed by applying a structuring
element or filter on the image centered by the prescribed position and retaining only those

pixels encompassed by the filter. The shape of this filter is discussed in the next section.

Texture Window Filter

Before we define the filters that are used on the filter bank textured windows of the DWFT
method, the definition of texture is defined in terms of mathematical spaces. The textures
that are used in our experiments are from the Brodatz collection [68, 69]. A texture is simply
a combination and permutation of gray-level values arranged in a manner that a distinctive
shape has been derived [60, 61]. The gray-values are simply the intensity levels of the pixel,
which range from 0 meaning the color black to 255 meaning the color white to total 256

separate values. The values in the middle are considered the different levels of the color

gray.
An image space F is the set containing all the K possible gray values:

gray space: F = [fu, f2, . fil- (4.4)
| A gray set of G of all possible subsets of F is defined as:

gray set : G = [{{0}, {f1}, ---» {fx}, {f1, fo}s -0 {f1s f2r ooy fic}})- (4.5)

As a result, one can define a gray-coded textured image as an object and an associated

function A, which is defined as a projection from A to the set F
gray coded textured image A : [A — F). (4.6)
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According to this definition, function A assigns a gray-code to each pixel. The gray code
simply named gray value, is one element from the gray set F'. The gray value itself might
consist of an arbitrary number of color values {f1, fa, .., fi} from the gray space. Therefore,
A represents the collection of those possible intensity gray-values from the set G, which have
been fashioned in a manner that has represented a textured image covering a certain spatial
space. This is clear by observing any of the textured images from Brodatz collection [68].
There are clear sections in the image, which are repeated over the entire image, as it can be

seen Figure 4.1.

Figure 4.1: D1, Brodatz image collection.

Figure 4.2: The Cross Filter.

This proposition, by localizing on the specific area of the image would improve the ability

to characterize the image by using the features defined. To localize the image with respect
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Figure 4.3: D1 intersected with Cross Filter.

to the filter, the filter captures only those areas of interest in the image to generate a new
image. This new image is further processed for feature extraction.

This can be defined using the Equation 4.7 and 4.8, where A is represented as the image,
and B is represented as the filter, both of which are of same dimensions. The filter B contains
only two states, active (1), associated with the color black and non-active (0), associated
with the color white. This can be seen with filters used in the experiment in Appendix C.
When the two images are intersected, only the active regions in B retain the information in

A. The rest of the pixels are discarded.

If A(z,y)[ ) B(z,y) =1, A(z,y) is retained. (4.7)
If A(z,y) () B(z,y) =0, A(z,y) is not retained. (4.8)

Operating with filter B (Figure 4.2) on image A (Figure 4.1) one uses the operations
which are similar to those of binary operations. These operations enable us to achieve this

localization effect on image A (Figure 4.3).

Selection Criteria

The filter may enable to achieve more description of the image under operation. The filter
B retains only a percentage of A pixels. This percentage, n, is given with respect to the

cardinality of the filter B. If n is set to 1, the full description of the image has been fully
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retained. This would represent a filter that is active in all regions. The question remains on
the shape of the structuring filter. As discussed earlier in Section 4.8, that by positioning
the filter in the center of the image, it maximizes the ability to cover more and retain the
spatial characteristics of the image. This is why the center position is the prescribed position
because of its ability to acquire more of the neighborhood pixels into account. In doing so,
the resultant post filtered image retains majority of the discriminatory characteristics, thus,

generating better feature vectors.

Data Reduction

A DWFT decomposition of a N x N image generates decomposed images of N x N. In the
unfiltered approach, all of the image elements (IN2) are utilized in calculating the respective
features. By filtering, we have focussed only on those certain areas in the decomposed image
that are utilized in further calculations. If the filter only retains 50% of spatial information
in the decomposed image, only %N2 of the image elements are utilized in calculating the
respective features from the original unfiltered approach. In effect, by data reduction also

results in a computational reduction.

Filter Shapes

There are many possibilities of shapes and designs of the filter. The balance between spatial
reduction and discrimination has to be addressed in the design. Some of the filter design has
taken into account the selection criteria stated above and some have been designed void of
this criteria. The designs could be endless, however, we have selected a vast array of designs
which cover many of the possibilities in obtaining the optimal filters through a manual design
process.

All the filters used in the experiments have been shown in Appendix C. The results of
applying these filters to the texture classification method are shown in Section 5.2. Those
filters which cover more of the center of the image would better localize the information,

thus, providing better discriminatory information and the results support this criteria.
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4.9 Summary

The main idea of the method is to localize and focus on the respective decomposed images to
achieve better discriminatory features. We propose using filters of different shapes and sizes
that maximize the neighborhood pixels in the image. This approach balances the reduced
amount of information with information extracted from the data itself as features. In effect,
by reducing the spatial characteristics of images that contribute to the features, the texture
classification method still has the ability to preserve the classification accuracy through
the classification reliability of the SVM classifier. The proposed method is tested with
images from the Brodatz collection in the next chapter and classification results obtained

are promising,.
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Chapter 5

Texture Classification: Comparative
Experiments

5.1 Experimental Setup

HE data is analyzed as texture features from windows on different bands, which are
T contributing factors to a single element in the feature vector. The popularity of the
Wavelet Transform- is due to its excellent properties of the transformation such as local-
ization of the representations and multi-resolution analysis. It allows to derive localized
contributions of energy and other features to the textured signal in well separated frequency
channels.

In this thesis, we use SVMs for texture classification, with texture features generated
by the translation-invariant DWFT using the daubechies Dyo wavelet basis. Choosing the
right wavelet filters for decomposition and synthesis for texture classification has been an
on going discussion in the research community with mixed and conflicting results [12]. It
is also dependent on the data set used for training/testing and the final application of the
‘texture classification method. The Daubecies family of filters has been shown to be slightly
more efficient in representation and discrimination because of its analyzing function of large
regularity when compared to Coiflets, Bi-orthogonal, etc [12]. In all the experiments to
follow, the popular Dy set of filters [63, 10] has been chosen for wavelet image decomposition.

The first set of tests that have been completed is of the four types of wavelet trans-
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form from the respective three authors Randen, Laine and Kuo [12, 10,' 18], who have given
the research community implementations of Discrete Wavelet Transform, Discrete Wavelet
Packet Transform, Discrete Wavelet Frame Transform and the natural extension towards
Discrete Wavelet Frame Packet Transform, DWFPT. DWFPT works under the same theory
as DWPT was built upon DWT, where the details are further decomposed as well. The calcu-
lation of DWFPT is very expensive in terms of memory and time with the many convolution
operations that are involved. The next set of tests consist of applying Arivazhagan’s method
of WSFs and WCFs on our datasets. His method is extended to incorporate translation-
invariant features from DWFT. Finally, we have incorporated our method of filtering the

decomposed images to better localize and generate discriminatory features.

The complete setup has been explained in the flow chart in Figure 5.3.

5.1.1 Data

In this experiment, we select a set of 30 natural textures (Appendix B) from the Brodatz
collection [68]. Each texture image is of size 640x640 with 256 gray levels. Each image is
subdivided into 400 non-overlapping 32x32 subimages. The specific images chosen from the
collection are based upon the fact that their visual properties are similar over the whole
image. This step was motivated by the work of Mojsilovic [33], where the samples were
taken from a very small areas of interest. Her work consisted of implementing a CAD
application for tissue characterization as analysis of the myocardium or cancer recognition.
The implementation also made use of DWFT operators, which were insensitive to noise and
image distortion, yet reliable in order to estimate texture quality from the small number of
image points available.

Traditional texture classification includes texture training steps (Figure 5.1) where known
texture images decomposed and corresponding features extracted. These are, then, stored in
a Features Library to be utilized in the next step called texture classification step (Figure 5.2).
In this step, the unknown texture image is decomposed the same way as in the first step

and the same corresponding features extracted. The classifier would, then, compare this
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unknown texture image to the known texture image features stored in the feature library.
The minimum distance between the unknown texture image to the known texture image is
given to the unknown texture image with respect to the classifier. The unknown texture

image set generally includes the known training set.

Known Texture
Images

Figure 5.1: Texture Training.

Many previous texture classification studies used overlapping training and test sets, and
this is likely to yield unreliable and over-optimistic performance results. Others, used global
and local information and overlapping of images to generate databases. This further increases
the classification accuracy. Databases are usually averaged over many samples, and these
same samples are repeated for testing. This boosts the classification ability to better provide
results for the respective method.

Here, we use a complete separation between the training and test sets. A small fraction
from 1.25% to 10% of the 400 subimages are used in training the classifier, while the rest are
used for testing. Moreover, to further randomize the experiment, 10 random partitions of the
training and test sets are used. The classification accuracy, average over all 30 texture classes
and also over these 10 random partitions is used to evaluate the results. It is found through
extensive performance testing, a training set fraction of 10% produces the best results in the

texture classification method.
5.1.2 Extracted Features
Energy

The original texture image is first decomposed using DWFT. Denote the M x N image
obtained in subband i by I;. Deciding upon the number of decompositions and sub-bands

of the sample to be characterized and used in the feature vector has been well documented
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Texture Image

Figure 5.2: Texture Testing or Classification.
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(12, 10, 18]. The general conclusion has been that a decomposition level of between 3 through
5 has been successful in comparison experiments.
Based on the common belief that a texture can be identified by its energy distribution

in the frequency domain, the local energies

1

Energy = TN

M N
323 B), (5.1)

z=1y=1

from each filtered subband image are then used as texture features. By decomposing the
image to d levels, we obtain a possibility of feature vector of length 4d; approximation and
three detail: vertical, horizontal and diagonal. From performance testing it is found that
the optimal components are derived from the details and the last approximation component.

This leads to the feature vector length of 3d + 1.

Statistical and Co-Occurrence

The feature extraction is extended to incorporate statistical features such as mean and
standard deviation, which are extracted from the approximation and detail regions of DWFT
decomposed images at different scales. The various combinations of the above statistical
features are applied for texture classification.

In order to improve success rate of classification, we have extended Arivazhagan’s [64]
method. In his original method, the statistical information (Equation A.1 and A.2) was ex-
tracted, for three-level DWT decomposition of textured images. Furthermore, co-occurrence
matrices C(4, j) were generated for the original textured image and the one-level DWT de-
composition of the textured image. The corresponding features (Equations A.3 to A.8) were
extracted from the co-occurrence matrix, computed for different angles (i.e. - 8 = 0°,45°,90°
and 135°) and are averaged. The statistical information were termed wavelet statistical fea-
tures (WSFs) and the co-occurrence matrix information were termed wavelet co-occurrence
features (WCF's). The feature vector per textured sample image consisted of 24 WSFs and
35 WCFs.

In the extended version of this method, a five-level DWFT decomposition is used to

decompose the texture image to generate the details (LHk, HLk and HHk for k=1,2,3,4,5)
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and the fifth level approximation, LL5. Mean (A.1) and Standard Deviation (A.2) are
extracted from these images. WCFs such as contrast (A.3), energy (A.4), entropy (A.5),
local homogeneity (A.6), cluster shade (A.7) and maximum probability (A.8) are derived
from the co-occurrence matrices, C(4, j), computed for different angles (ie - § = 0°,45°,90°
and 135°) and are averaged. The total feature vector per sample texture image consists of

32 WSFs and 96 WCFs for a total of 128 elements.

Filtered Decomposed Images

Our filtering method is built upon the feature extraction methods of Energy and WSFs &
WCFs. These methods incorporate the full use of the spatial elements of the decomposed
images. The filtering method localizes and focusses on the respective decomposed images as
shown in Section 4.8. This reduction in spatial information is dependent on the filter used,
as listed in Appendix C. The filter is used on the full set of decomposed images from the

five-level DWFT decomposition. Then, the corresponding features are extracted.

5.1.3 Classification

Typically, the number of texture classes is greater than two. Thus, unlike the binary classi-
fication problem discussed in Chapter 3, we have a multi-class classification problem. Here,
we adopt the conventional approach of casting this as a number of binary classification
problems. In other words, we have one classifier for each texture class, each attempting to
separate samples belonging to this class from samples belonging to the other classes. On
classifying a new sample, the classifier with the largest output is selected as the winner, and
this new sample is assigned to winner’s corresponding texture class.

In the experiments, the Gaussian kernel, shown in Table 3.1, is used in the SVM. Prelim-
inary results suggest that the Gaussian kernel outperforms the polynomial kernel. However,
one still has to determine a proper values for the kernel parameter o and the parameter
C. Typically, this is tuned manually. A more disciplined approach is to use a validation
set, or by data-resampling techniques such as cross-validation and bootstrapping. However,

these methods can be very expensive in terms of computation time and/or training data.
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Alternatively, one can utilize an upper bound on the generalization error predicted by the
theory of SRM [22]. Li et al. [62] has used a Fused ensemble classifier approach. Three SVM
classifiers were implemented with three values of o. This increases the final classification
complexity by three times and no attempt was made for an optimal parameter selection for
the classifiers. Comparison of the Gaussian and Polynomial kernels are shown in Table 5.6,
in keeping with the same procedure as explained for Table 5.3. The optimal parameters were
searched manually through training. For the polynomial kernel, there are two parameters
that have to be searched, the 6 value and the degree (d) of the polynomial. In the gaussian
kernel, only the value of o needs to be searched. This clearly shows the gaussian kernel
outperforming the polynomial kernel.

For simplicity, we have used the default value of 1000 for the parameter C' and have
conducted a optimal parameter selection and set the o parameter to 0.001 for the Gaﬁssian
Kernel. Moreover, all the features are normalized to the range 0-1.

We have also shown in Table 5.4, 5.5 and 5.6, of the different classifiers working under
the same procedure as Table 5.1, 5.2 and 5.3. It shows the robust capability of the SVM
classifier over other traditional classifiers. When the decomposition levels increases from 4
to 5, the performance of the Bayes classifier [2] and LVQ [3] do not improve much or in some
ca;ses deteriorates. The SVM classifier shows a marked improvement and are less affected by

the curse of dimensionality.

5.2 Results
Energy

By comparing the previous decomposition methods used by the authors [18, 17, 10], we have
sought out statistical establishment for the choice for DWFT by applying simple texture
description analysis and applying the spectral properties or texture energies as features on
small sized texture windows with the SVM classifier as stated in Section 5.1.

Performance of the classifier using 10% fraction of training samples, with 3-5 levels of

wavelet decomposition are shown in Tables 5.1,5.2 and 5.3, respectively. If the decomposition
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Figure 5.3: The complete texture classification implementation.



levels increase from 3 to 5, there is a more marked improvement. This demonstrates that
SVMs are less affected by dimensionality and are able to assemble useful information from the
additional features. Traditional classifier’s performance would not improve much or in some
cases even deteriorate [62, 63], which is true in traditional pattern recognition techniques,
that increasing the number of texture features may not be beneficial.

From results shown in Table 5.3, the DWFT has outperformed DWFPT. The feature
extracted from DWFT still maintained the discriminatory ability from the other textures.
DWFPT produced vast amount information that to be dealt with. By including the detail
decompositions to the fifth-level, it produced a possible feature vector of 1364 elements. It
is generalized that this feature vector had overlapped in the feature dimension space that

SVM was not able to overcome, which caused the lag in the classification accuracy.

Table 5.1: Average Classification Accuracy with the four different types of decomposition types
with three decomposition levels.

Decomposition Type Classification Correct (%)
Discrete Wavelet Transform 41.43
Discrete Wavelet Packet Transform 54.27
Discrete Wavelet Frame Transform 65.40
Discrete Wavelet Frame Packet Transform 67.33

Table 5.2: Average Classification Accuracy with the four different types of decomposition types
with four decomposition levels.

Decomposition Type Classification Correct (%)
Discrete Wavelet Transform 47.01
Discrete Wavelet Packet Transform 63.76
Discrete Wavelet Frame Transform 75.93
Discrete Wavelet Frame Packet Transform 83.77
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Table 5.3: Average Classification Accuracy with the four different types of decomposition types
with five decomposition levels. '

Decomposition Type Classification Correct (%)
Discrete Wavelet Transform 52.34
Discrete Wavelet Packet Transform 74.22
Discrete Wavelet Frame Transform 88.40
Discrete Wavelet Frame Packet Transform 85.53

Table 5.4: Different Classifier comparisions with different SVM kernels of Gaussian and Polynomial
with their optimal parameters searched. Average Classification Accuracy with three decomposition

levels of DWFT.

Classifier Classification Correct (%)
SVM (Gaussian o = 0.001) 65.40
SVM (Polynomial § = 1,d = 20) 62.11
Bayes Distance 57.83
LVQ 57.81

Table 5.5: Different Classifier comparisions with different SVM kernels of Gaussian and Polynomial
with their optimal parameters searched. Average Classification Accuracy with four decomposition

levels of DWFT.

Classifier Classification Correct (%)
SVM (Gaussian o = 0.001) 75.93
SVM (Polynomial § = 1,d = 20) 74.80
Bayes Distance 72.81
LvQ 71.91
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Table 5.6: Different Classifier comparisions with different SVM kernels of Gaussian and Polynomial

with their optimal parameters searched. Average Classification Accuracy with five decomposition
levels of DWFT.

Classifier Classification Correct (%)
SVM (Gaussian o = 0.001) 88.40
SVM (Polynomial 8 = 1,d = 20) 82.22
Bayes Distance 78.15
LvQ 70.91

‘WSFs and WCFs

By applying the Arizvahagan’s method and our extension of the method explained in Sec-
tion 4.6, it is clear that by making use of translation-invariant features, it not only gives the
texture better discriminatingly, but also we are able to generate more contributing elements
in the feature vector. The results are broken on a per texture basis in Table 5.7. In certain
cases, Arivazhagan’s method does match or has better classification ability of certain tex-
tures (i.e. - D17, D32, D47, D56 and D85). This is due to the possible overlap in the feature
space caused by the feature extraction method, where the SVM was not able to distinguish
the different textures in the test samples. However, as a complete texture classification task,
our extension has a definite advantage over the previous method with an overall classification

ability of 92.62% over the 80.14% of the previous implementation.

Filtering

Most of the results have been summarized in Appendix C along with the corresponding

filter shapes. The most important significant results have been brought to attention and
summarized in this section.

The filters localize and focus on the decomposed images. These filters reduce the data

by an amount prescribed by the filter’s non-active regions. Only those elements in the

deéomposed images are furthered processed for feature extraction that correspond to active

regions in the filter. Depending on the filter, the active ranges are somewhere between 40%
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Table 5.7: Comparison of Arivazhagan (DWT) method versus the extension method (DWFT).
Correct Classification Accuracy is stated.

Texture | DWT (%) | DWFT (%)

D1 75.00 98.44
D101 72.50 99.75
D104 98.61 99.53
D11 57.50 94.25
D16 99.72 100.00
D17 95.83 94.28
D20 100.00 100.00
D21 100.00 100.00
D24 78.05 95.17
D28 53.056 64.39
D29 56.38 87.83
D3 66.38 91.11
D32 99.44 98.67
D34 81.11 99.67
D35 60.27 93.47
D49 73.61 100.00
D47 89.00 85.36
D51 92.50 97.25
D53 98.33 100.00
D55 96.67 96.86
D56 76.11 73.31
D6 59.72 100.00
D65 73.05 75.08
D52 83.61 99.00
D84 58.33 88.75
D78 66.38 100.00
D82 91.11 92.22
D85 89.44 85.67
D46 84.38 87.22
D57 75.43 84.33
Overall 80.14 92.62

59



to 80%.

The first significant results that was concluded upon was that, if the threshold broke
the 40% level, the texture classification method was unable to overcome this drop in spatial
i_nformation, and neither the feature extraction method or the SVM classifier was able to
surmount and provide respectable results. The classification results for these filters were
" below the 50% level.

Another interesting result was the fact that those filters which were localized at the center
of the decomposed image and utilized the selection criteria, resulted in higher classification
accuracy. This is shown by providing contrasted filters with the original ones, as shown in
Figure 5.4 and 5.5. Their relative classification accuracy is shown in Table 5.8. This fact
is also shown in Table 5.9, where contrasted diamond filters were used and in Table 5.10,
where contrasted circle filter were utilized. This is also true for other filters whose spatial
characteristic are not centered based. The Hour Glass filters, shown in Figure 5.10 and 5.11

provide evidence of this fact with their respective comparison in Table 5.11.

Figure 5.4: Triangle. Black represents pixels of interest. 50% Active.

Figure 5.5: Triangle. Black represents pixels of interest. 50% Active.

Table 5.8: Correct Classification Accuracy of the two contrasted filters.

Feature Type | Figure 5.4 (%) | Figure 5.5 (%)
Energy 86.45 64.64
WSF & WCF 90.36 68.44

60



&
h 4

Figure 5.6: Inverted Diamond. 48% Active.

Figure 5.7: Diamond. 52% Active.

Table 5.9: Correct Classification Accuracy of the two contrasted filters.

Feature Type

Figure 5.7 (%)

Figure 5.6 (%)

Energy

88.40

50.46

WSF & WCF

92.55

61.36

Figure 5.8: Circle. 71% Active.

Figure 5.9: Inverted Circle. 41% Active.

Table 5.10: Correct Classification Accuracy of the two contrasted filters.

Feature Type

Figure 5.8 (%)

Figure 5.9 (%)

Energy

88.38

48.57

WSF & WCF

92.60

62.11
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Figure 5.10: Hour Glass. 50% Active

)4

Figure 5.11: Inverted Hour Glass. 50% Active

Table 5.11: Correct Classification Accuracy of the two contrasted filters.

Feature Type [ Figure 5.10 (%) [ Figure 5.11 (%)
Energy 70.45 69.96
WSF & WCF 71.56 69.44

Figure 5.12: Cross Template. 55% Active.

Figure 5.13: Dual Triangle. 77% Active.

Figure 5.14: Checkerboard. 50% Active.

Figure 5.15: Vertical Lines. 50% Active.
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Figure 5.16: Horizontal Lines. 50% Active.

The tested filters were meant to cover many different spatial arrangements of the image
as possible, while still maintaining spatial integrity. They each represented and focussed
on the different regions of the image. Some were focussed on the center of the image, the
corners, the left/right side, top/bottom or a checkered image, where the information was
gathered from all sectors of the image.

The filters that were optimum, in the sense that it was able to conserve the classification .
accuracy of the pre-filtered image, were the: Cross (5.12), Diamond (5.7), Circle (5.8), Dual
Triangle (5.13), Horizontal Lines (5.16), Vertical Lines (5.15) and the CheckerBoard (5.14)
filters.

Those filters which conversed the accuracy, while having the data reduction of close
to 50% were the: Diamond (5.7), Horizontal Lines (5.16), Vertical Lines (5.15) and the
CheckerBoard (5.14) filters. Their results are summarized in Table 5.12.

Table 5.12: Correct Classification Accuracy of the optimum filters.

Feature Non-Filter | Figure 5.7 | Figure 5.14 | Figure 5.15 | Figure 5.16
Energy 88.40 % 88.40 % 88.32 % 88.30 % 88.31 %
WSF & WCF | 92.62 % 92.55 % 92.62 % 92.44 % 92.45 %

From Table 5.12, the CheckerBoard filter (5.14) proves to have the best filtering effect on
the decomposed images and to the overall classification accuracy. The CheckerBoard filter
only utilized the 50% of the spatial supplied by the decomposed image, however, it was still

able to match the accuracy of the non-filtered decomposed images.
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5.3 Multi-Texture Classification

In this work, we have employed the DWFT for a single-texture classification problem with
a total of 30 textures. This is not applicable to multi-texture classification problem, where
there are more than one texture classes in a single image. To accomplish this task, a five level
DWFT decomposition is used to generate feature images from the subbands. A local local
energy function is computed for each pixel of the feature images. This yields a feature vector
which contains the major properties of each of the texture classes. Explained in Section 5.1.3,
known feature vectors are used to train the SVM classifier which is ultimately used to label
unknown samples. The training subset are taken from the original texture class images. We
have experimented with 2-class, 4-class and 8-class problems shown in Figure 5.17 to 5.22.
The results show that the misclassification error grows with the increase in the number of

classes.

Figure 5.18: Misclassification Error Rate of 7.80%.
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Figure 5.21: 8-class multi-texture image.
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Figure 5.22: Misclassification Error Rate of 16.71%.

5.4 Summary

We have shown a general progression from the different types of wavelet decompositions
and provided their respective ability to classify small-sized windows taken from 30 different
texture types from the Brodatz collection with the SVM classifier. It was shown that DWFT
was best able to balance computational complexity and classification accuracy in the texture
classification method. Furthermore, we improved the classification by implementing the use
of WSFs and WCFs. Finally, we attempted to better localize the decomposed images for
better discrimination between the textures by the use of filters that capture only those
elements from the image that are active in the filter. The results are comparable to the
original performance when certain filters are used. The full summary of classification results

is given in Appendix C.
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Chapter 6

Conclusions

‘ ‘ T ITH increasing popularity of digital libraries, multimedia databases, texture analy-

’ sis has become a focus area of research since image regions can be described by \
their textural properties. It can also be extremely useful in numerous other related areas:
content-based image retrieval, remote sensing, image segmentation and interpretation, object

recognition, and industrial applications.

6.1 Contributions of This Work

The contributions of this thesis are:

e Implementing the standardized testing procedure for different decomposition methods
operating on small windows of textures instead of global ones and providing an un-

boosted classification accuracy by separating the training and testing sets.

e Extending Arivazhagan’s algorithm from utilizing DWT features to shift-invariant
DWEFT features for generating WSFs and WCFs. Ultimately, increasing the feature

space of the feature vector for better characterization of the texture classes.

e Proposing a method for optimally representing the filter banks of the DWFT decom-

posed images by utilizing specially selected structuring elements.

The standardized comparison of the different wavelet transform image decompositions

has been conducted. The test consisted of utilizing non-overlapping small-sized windows
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from the original texture space as the sample set taken from the Brodatz collection. This
sample set was further fully separated in fraction of training set and testing set. Once again,
no overlap was done either. In the testing, the fraction of training and testing set that
produced the best results was 10%.

The first set of tests was based upon the spectral features (energy) being extracted from
the frequency domain. DWFT was the clear winner because of its ability to generate higher
content in the feature space of the decomposed elements because the lack of critical sam-
pling. It also has the advantage of balancing complexity and generating a high classification
accuracy. '

With this conclusion, we applied and extended the DWF'T technique to feature extraction
method implemented by Arizvahagan. With the non-restriction of spatial issues in the lower
decomposed levels, we were able to generate more features to characterize the texture. This
increase in the dimension was a non-factor because of the usage of the SVM classifier and its
learning algorithm that has been proven to outperform other texture classification algorithms
which are based on supervised learning i.e. - neural networks. This extension was able to
surpass the previous method by a margin of 12%.

A method of filtering the wavelet transform filter banks was proposed to better localize
the decomposed images, by reducing the data and providing better discrimination ability.
This filtering method was incorporated into the extension method stated above. The same
features of WSFs and WCFs were extracted, thus producing the same feature dimension.
Many different filter types were tested, each with its reduction in the spatial coordinates,
and each corresponding to different areas of images and/or combinations. The conclusion
was that those filters which covered more of the center of the image were able to achieve
higher classification rates than others. This is in accordance with the selection criteria
defined in Section 4.8. This method yielded good classification quality when compared to
the filters that did not meet this criteria. The filtering approach is optimal with respect to

representation and not optimal with discrimination, where the final results were comparable

to the non-filtered implementation.
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6.2 Conclusions of This Work

The current work has focused on algorithmic development and experimental justification.
We have approached the general methodology of texture classification and attempted to
make genuine results. Making a clear separation of training and test set has been a first step
as reported here. In addition, we have clearly separated the images in the image space, such
that overlapping does not occur, thus, decreases the homogeneity of the feature extraction
stage and generating similar feature vectors.

Increasing the feature space of the textures with the use of translation-invariant features
from the DWFT and increasing the feature dimension with the use of external features has
produced a high-level of classification accuracy. The use of filters has concluded that by -
retéjning the majority of the pixels in the center region of the decomposed images, it is
possible to retain the classification ability of the original method. This method reduces
the data by localizing on the image with respect to the filter. Several filters approaches
are evaluated and certain optimal filter design do, in these cases, yield features that are
comparable to the non-filtered decomposed images. Furthermore, considerable reductions in

computations are obtained by many of the filter approaches.

6.3 Future Research

Here in this experiment, relatively simple subband energies and co-occurrence matrices ob-
tained from DWFT have been used as texture features. One can use more complicated
texture features, including using wavelet transforms that are not only translation-invariant,
but are also rotation and scale-invariant, with applications to content-based image retrieval.

Having to search the optimal parameter for SVM can become quite tedious. Ensemble
Classifiers can be a vital component because of the discriminating capabilities of different
methods combined into a single result. A combination of such methods would reduce the risk
of failures stemming from a specific technique. The fused SVM approach does alleviate this

problem. However, one would need a more proactivé approach in determining the proper
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values. Moreover, there are many possible ways of conducting the final result of a fused
SVM. Voting scheme are just one possible way to combine multiple classifiers in general.
Other possibilities such as weighted voting, bagging and mixture of experts may also be
investigated.

This thesis has employed the DWFT and work has been presented for a single-texture
classification problem with a total of 30 texture classes. The technique for feature extraction
is computed by energy distribution limits and co-occurrence matrix features to only a detailed
single-texture case and shown on a simple application to the multi-texture classification
problem (where there are more than one texture classes in a single image). A detailed study
of this method to texture segmentation should be the next investigation.

We are dealing with large training and testing sets with the SVM classifier, it generates
many support vectors, which cause the complexity of the final classifier to increase. In doing
so, the calculations and time involved in solving a test set increases exponentially. There are
reductional and optimization methods that incorporate external algorithms on the data set,
that reduce the final support vectors to be used on the SVM classifier [27]. In doing so, it
improves the time and accuracy of training and testing, and the overall classification ability
of the classifier.

The problem of specifying regions of interest in an image is a complex issue. The method
by which one specifies regions of interest for the filters and how this method can be automated
is a major research area to be followed later. The actual performance of different strategies for
region of interest selection is to be investigated in real world application such as biomedical
image processing, which deals with abnormality detection.

SVM’s mathematical fundamentals and its inherent nature is designed basically for two-
class classification problems, a binary classification problem. This is why SVM is potentially
a good and natural choice for several different areas in medical imaging, where the majority
of the problems in this area deal with abnormality detection, as in the case of Breast Cancer
in a Mammogram. The SVM classifier would generally classify areas of image as Malignant

(cancerous regions) or Benign (non-cancerous regions). With the promising classification
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results of the texture analysis method defined in this thesis, porting it to the biomedical

applications is another research area to be followed later.
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Appendix A

Co-Occurrence Matrix Equations

1 X
Mean(m) = el .le(z,j) (A1)
i,j=
1 X
StandardDeviation(sd) = Nz }:l[p(z, §) —m]? (A.2)
ij= .

where p(i,j') is the transformed value in (i,j) for image of size NxN for Equations A.1 and

A2.

. ,
Contrast = (i,5)*C(4, j) (A.3)
ij=1
N
Energy = Y C(i,5)? (A.4)
1,j=1
N
Entropy = — Y log,C(i, 5) (A.5)
i,j=1
N
Local Homogeneity = ;C(i, 7) (A-6)
i,j=1 1+ (Z —j)z
N
ClusterShade = Y (i — My + j — My)*C(i, j) (A.7)
ij=1
MazimumProbability = Maz[C(i, 7)] (A.8)
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where

N
M, = 3 iC(i,5)

ij=1

N

ij=1
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Appendix B

Brodatz Image Collection

Figure B.2: D3.
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Figure B.3: D6.

Figure B.4: D11.

Figure B.5: D16.

Figure B.6: D17.

82



1810
¥y

igure B.7: D20.

F

D21.

8

.

B

.

igure

F

Figure B.9: D24.

D28.

Figure B.10

83



D29.

Figure B.11
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Figure B.19: D52.

Figure B.20: D53ﬂ.ﬁ

Figure B.21: D55.

Figure B.22: D56.
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Figure B.23: D57.

Figure B.25: D78.

Figure B.26: D82.
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Appendix C
Filter Shapes

Figure C.1: Cross Template. 55% Active.

Table C.1: Filter Cross Template.

Feature Type

Classification Correct (%)

Energy

88.33

WSF & WCF

91.86
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Figure C.2: Triangle. Black represents pixels of interest. 50% Active.

Table C.2: Filter Triangle.

Feature Type | Classification Correct (%)
Energy 86.45
WSF & WCF 90.36

Figure C.3: Inverted Triangle. 50% Active.

Table C.3: Filter Inverted Triangie.

Feature Type | Classification Correct (%)
Energy 64.64
WSF & WCF 68.44
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Figure C.4: Diamond. 52% Active.

Table C.4: Filter Diamond.

Feature Type

Classification Correct (%)

Energy

88.40

WSF & WCF

92.55

&
A 4

Figure C.5: Inverted Diamond. 48% Active.

Table C.5: Filter Inverted Diamond.

Feature Type

Classification Correct (%)

Energy

50.46

WSF & WCF

61.36
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Figure C.6: Box Template. 65% Active.

Table C.6: Filter Box Template.

Feature Type | Classification Correct (%)
Energy 87.50
WSF & WCF 89.04

Figure C.T: Inverted Box Template. 80% Active.

Table C.7:

Filter Inverted Box Template.

Feature Type

Classification Correct (%)

Energy

80.34

WSF & WCF

79.22
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Figure C.8: Circle. 71% Active.

Table C.8: Filter Circle.

Feature Type

Classification Correct (%)

Energy

88.38

WSF & WCF

92.60

Figure C.9: Inverted Circle. 41% Active.

Table C.9: Filter Inverted Circle.

Feature Type

Classification Correct (%)

Energy

48.57

WSF & WCF

62.11

93




Figure C.10: Half Triangle. 50% Active.

Table C.10: Filter Dual Triangle.

Feature Type

Classification Correct (%)

Energy

79.80

WSF & WCF

80.33

Figure C.11: Other-Half Triangle. 50% Active.

Table C.11: Filter Other-Half Triangle.

Feature Type

Classification Correct (%)

Energy

79.45

WSF & WCF

81.78
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Figure C.12: Hour Glass. 50% Active

Table C.12: Filter Hour Glass.

Feature Type

Classification Correct (%)

Energy

70.45

WSF & WCF

71.56

Figure C.13: Inverted Hour Glass. 50% Active

Table C.13: Filter Inverted Hour Glass.

Feature Type

Classification Correct (%)

Energy

69.96

WSF & WCF

69.44

Figure C.14: Horizontal Lines. 50% Active.

Table C.14: Filter Horizontal Lines.

Feature Type

Classification Correct (%)

Energy

88.31

WSF & WCF

92.45
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Figure C.15: Vertical Lines. 50% Active.

Table C.15: Filter Vertical Lines.

Feature Type

Classification Correct (%)

Energy

88.30

WSF & WCF

92.44

Figure C.16: Checkerboard. 50% Active.

Table C.16: Filter Checkerboard.

Feature Type

Classification Correct (%)

Energy

88.40

WSF & WCF

92.61
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Figure C.17: Dual Hour Glass. 42% Active.

Table C.17: Filter Inverted Dual Hour Glass.

Feature Type

Classification Correct (%)

Energy

55.67

WSF & WCF

65.26

Figure C.18: Inverted Dual Hour Glass. 58% Active.

Table C.18: Filter Dual Hour Glass.

Feature Type

Classification Correct (%)

Energy

66.88

WSF & WCF

78.21
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Figure C.19: Dual Triangle. 77% Active.

Table C.19: Filter Dual Triangle.

Feature Type

Classification Correct (%)

Energy

86.25

WSF & WCF

90.22
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