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Abstract.

This thesis is concerned with noise reduction in hearing aids. Hearing — impaired
listeners and hearing — impaired users have great difficulty understanding speech in a
noisy background. This problem has motivated the development and the use of noise
reduction algorithms to improve the speech intelligibility in hearing aids. In this thesis,
two noise reduction algorithms for single channel hearing instruments are presented,
evaluated using objective and subjective tests. The first noise reduction algorithm,
conventional Spectral Subtraction, is simulated using MATLAB 6.5, R13.

The second noise reduction algorithm, Spectral Subtraction in wavelet domain is
introduced as well. This algorithm is implemented off line, and is compared with
conventional Spectral Subtraction. A subjective evaluation demonstrates that the second
algorithm has additional advantages in speech intelligibility, in poor listening conditions
relative to conventional Spectral Subtraction. The subjective testing was performed with
normal hearing listeners, at Ryerson University. The objective evaluation shows that the

Spectral Subtraction in wavelet domain has improved Signal to Noise Ratio compared to

conventional Spectral Subtraction.
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CHAPTER 1
INTRODUCTION

The human population of the earth is growing and the age distribution is shifting
toward higher ages in the developed countries. According to many surveys, one out of ten
people suffers from hearing loss and would benefit from using hearing aids [5]. Hearing
loss and treatment of hearing loss are important research topics. Most of the people with
hearing loss have mild or moderate hearing loss that can be treated with hearing aids. The
hearing aids users would like to have improved speech intelligibility for listening to
speech in quiet and noisy environment, in telephone and in different background noise
environment.

A major part of the interaction between humans takes place via speech
communication. The speech processing systems used to communicate or store speech are
usually designed for a noise free environment [10], but in real word environment, the
presence of the background interference in the form of the additive background and
channel noise drastically degrades the performance of these systems, causing inaccurate
information exchange and listener fatigue. Restoring the desired speech signal from the
different background interference is amongst the oldest, still elusive goals in speech
processing research [8]. The main objective of the noise reduction algorithms is to
improve one or more perceptual aspects of speech, such as the speech quality or
intelligibility. So far, many researchers and engineers have developed a number of
methods to address this problem, but due to complexities of the speech signals, this area

of research still poses a considerable challenge [8]. It is difficult to reduce noise without



distorting the speech and thus, the trade off between speech distortion and noise reduction
limits the performance of speech enhancement systems.

The noise reduction algorithms in Hearing Aids, single channel system, is the
most common scenario and very complex to deal with [9]. The complexity and ease of
implementation of any proposed scheme is another important criterion especially, since
the majority of the speech enhancement and noise reduction algorithms find applications
in real-time portable systems, like cellular phone, hearing aids and hands free kits [28].

The ability to remove noise from speech is reliant upon differences between
characteristics of the speech and unwanted noise. A hearing-impaired individual more
typically finds that the noisy environment he encounters is of competing conversations or
babble speech [27]. The single channel methods of speech enhancement generally
attempt to minimize measures of mean square error to improve the ratio of speech signal
power to noise power. The spectral subtraction method has been one of the best — known
techniques for the noise reduction [4]. Spectral Subtraction is a method for restoration of
the power spectrum or the magnitude spectrum of a signal observed in additive noise,
through subtraction of an estimate of the average noise spectrum from the noisy signal
spectrum [4]. This approach generally produces a residual noise commonly called
musical noise [4].

In this research a Spectral Subtraction in wavelet domain algorithm, is
implemented and is compared with a general Spectral Subtraction. The proposed method
gives much better results than the conventional method of Spectral Subtraction, based on
objective and subjective evaluation. In the proposed algorithm, the SNR (signal to noise

ratio) is increased, and on the same time the processed speech is less distorted. The



residual noise, that is very disturbing in conventional SS, is eliminated in the proposed
algorithm.

The following is a block diagram of the proposed method:

Wavelet Packet Decomposition

Inverse - Wavelet Packet
Decomposition

l 5()
Figure 1.1. Block Diagram of the Proposed Method.

The thesis is organized as follows: Chapter 2 gives an overview of hearing aids,
various aspects of hearing which are critical in developing hearing aids, and noise
reduction algorithms based on human perception along with a review of various noise
reduction techniques. Chapter 3 gives an introduction to Wavelet Theory. Chapter 4
discusses the proposed Noise Reduction technique using Spectral Subtraction in wavelet
domain. Chapter 5 considers the summary along with the suggested directions for future

work.



CHAPTER 2

LITERATURE REVIEW

The noise reduction algorithms for speech communications have been a
challenging area for researchers for more than three decades now. The goal of the speech
enhancement is to eliminate the additive noise present in speech signal and restore the
speech signal to its original form [8]. Most of the methods, known so far, have been
developed with some or other auditory model, perceptual or statistical constraints placed
on the speech and noise signals [1] [12] [20].

In real word situations, it is very difficult to reliably predict the characteristics of
the speech waveform, so as a result the speech enhancement methods are sub-optimal and
can only reduce the amount of noise in the signal to some extent, and in the other side
some of the speech signal can be distorted during this process. The effectiveness of the
speech enhancement system can therefore be measured based on how well it performs the
trade off between noise reduction and speech distortion [4] [20].

The speech enhancement systems include improving the performance of: - Digital
mobile radiotelephony systems, that suffer from background noise in the environment as
well as from channel noise [6]. — Hands free telephone systems suffering from car noise.
— Ground air communications where the cockpit/engine noise corrupts the received
signal. Hearing Aids applications and cochlear implants in a noisy environment [20].

This chapter starts with an overview of hearing and the physiology of the human
ear that are very important in developing Speech Enhancement algorithms for hearing

aids. An introduction to the development of hearing aids is presented, and different



speech enhancements methods, with greater emphasis on single channel subtractive type
algorithms, are described.
2.1  Hearing.

The human auditory system has an unsurpassed capability to adapt noise and is
based on a time-frequency analysis [14]. The information received by the human ears can
be described most conveniently as non-linear auditory responses to frequency selectivity
and perceived loudness [20]. The general properties of frequency selectivity are related to
the concepts of critical band by the assumption that incoming sounds are preprocessed by
the peripheral auditory system through a bank of band pass filters [27].

The critical band has a perceptual and a physical relationship with the auditory
system, and represents the first approximation of the ear’s ability to discriminate different
frequencies [20]. Experiments have shown that 25 critical bands exist over the frequency
range of human hearing from 20 Hz to 20 kHz as shown in Table 2.1.

Critical band analysis is the basis for almost all the models based on the auditory
system, and it is the first stage for analysis performed by the inner ear. This analysis is a
frequency-domain transformation, which can be seen as a filterbank with bandpass filters.
A critical filterbank gives an equal weight to portions of speech with the same perceptual
importance [20]. The notion of critical band is related to the phenomenon of masking.
The hearing threshold level in quiet environment is a representative of average among the
values obtained from different people, and below this level the human ear cannot
perceive sound [28].

Masking is a fundamental aspect of the human auditory system and is a basic

element of perceptual coding systems [9]. Masking can be defined as either the process



or the amount by which that threshold is increased.

by which the thresholds of audibility of one sound is raised by presence of another sound

Sub Band: | Lower edge: Center Upper edge
(Hz): (H2): (Hz):
1 0 50 100
2 100 150 200
3 200 250 300
4 300 350 400
5 400 450 510
6 510 570 630
7 630 700 770
8 770 840 920
9 920 1000 1080
10 1080 1170 1270
11 1270 1370 1480
12 1480 1600 1720
13 1720 1850 2000
14 2000 2150 2320
15 2320 2500 2700
16 2700 2900 3150
17 3150 3400 3700
18 3700 4000 4400
19 4400 4800 5300
20 5300 5800 6400
21 6400 7000 7700
22 7700 8500 9500
23 9500 10500 12000
24 12000 13500 15500
25 15500 18000 20000

Table 2.1 Critical Bands.

Masking occurs because the auditory system is not able to differentiate two signals close
in frequency or in time [14]. Loudness is another important attribute of auditory
perception in terms of which sounds can be ranked on a scale extending from quiet to

loud. These aspects of human auditory system such as critical band structure, masking,



absolute threshold and excitation patterns have been applied in speech coding, speech
recognition and speech quality evaluation [4] [8].
2.2 Noise Characteristics

Noise may be defined as any unwanted signal that interferes with the
communication, measurement or processing of an information — bearing signal. Noise is
present in various degrees in almost all environments. The success of a noise processing
method depends on its ability to characterize and model the noise process, and to use the
noise characteristics advantageously to differentiate the signal from noise [4].

Noise can be classified depending on its source or depending on its frequency
characteristics.

Source classification of noise is as follow:

Acoustic noise: noise caused from moving, vibrating, or colliding sources and is
the most familiar type of the noise present in various degrees in everyday
environment.

- Electromagnetic noise: present at all frequencies and in particular at the radio
frequencies. All electric devices, such as radio and television transmitter and
receivers generate electromagnetic noise.

- Electrostatic noise: generated by the presence of a voltage with or without current
flow. Fluorescent lighting is one of the more common sources of the electrostatic
noise.

- Channel distortion, echo and fading: due to non-ideal characteristics of the

communication channel. Radio channels, such as those at microwave frequencies



used by cellular mobile phone operators, are particularly sensitive to the
propagation characteristics of the channel environment.
Processing noise: the noise that results from the digital/analog processing of the

signals, e.g. quantisation noise in digital coding of speech or image signals.

Depending on its frequency or time characteristics, a noise can be classified as [4]:

Narrowband noise: a noise process with a narrow bandwidth such as 50/60 Hz
*hum’ from the electricity supply.

White noise: purely random noise that has a flat power spectrum. White noise
theoretically contains all the frequencies in equal intensity. White noise is defined
as an uncorrelated noise process with equal power at all frequencies.

Band - limited white noise: a noise with a flat spectrum and a limited bandwidth
that usually covers the limited spectrum of the device or the signal of the interest.
Colored noise: non-white noise or any wideband noise whose spectrum has a non-
flat shape; examples are pink noise, brown noise and autoregressive noise.
Impulsive noise: consists of short duration pulses of random amplitude and
random duration

Transient noise pulses: consists of relatively long duration noise pulses

To model noise accurately, we need a structure for modeling both the temporal and

the spectral characteristics of the noise. Accurate modeling of noise statistics is the key to

high-quality noisy signal classification and enhancement.

23

The peripheral auditory system.

A healthy hearing system organ is an impressive sensory organ that can detect

tones between 20 Hz and 20 kHz and has a dynamic range of about 100 dB between the



hearing threshold and the level of the discomfort [27]. The hearing organ comprises the
outer ear, the middle ear and the inner ear (Figure 2.1). The outer ear including the ear
canal works as a passive acoustic amplifier. The sound pressure level at the eardrum is

5 — 20 dB higher than the free field sound pressure level outside the outer ear

(2 kHz -5 kHz). Due to the shape of the outer ear, sounds coming approximately from in

front of the head are amplified more than sound coming from other directions.

The esr. Note the outer, middle, and inner regions of the ear
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External auditory Tympanic cavity

meatus (canal)

— Auditory tube
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Figure 2.1. Overview of the Peripheral auditory system (Courtesy of Tissues and
Organs: A Text — Atlas of Scanning Electron Microscopy, by R.G Kessel and R.H

Kardon, 1979)

The task of the middle ear is to work as an impedance converter and transfer
vibrations in the air to the liquid in the inner car. The middle ear consists of three bones;

malleus (that is attached to eardrum), incus and stapes, (that are attached to the oval



window). Acting primarily as levers performing an impedance matching transformation
(from the air outside the eardrum to the fluid cochlea), they also protect against very
strong transient sounds. The acoustic reflex activates the middle ear muscles, to change
the type of motion of the ossicles when low-frequency sounds with Sound Pressure Level
(SPL) above 85-90 dB reach the eardrum [27]. Ossicle acts as a low-pass filter with a
cutoff frequency around 1000 Hz.

The inner ear is a system called the osseus, or the bony labyrinth, with canal and
cavities filled with liquid. From a hearing perspective, the most interesting part of the
inner ear is the snail shell shaped cochlea, where the sound vibrations from the oval
window are received and transmitted further into the neural system. The cochlea contains
about 12,000 outer hair cells (OHC) and about 3,500 inner hair cells (IHC) [27]. The hair
cells are placed along a 35 mm long area from the base of the cochlea to the apex. Each
inner hair cell is connected to several neurons in the main auditory nerve. The vibrations
in the fluid generated at the oval window causes the basilar membrane to move in a
waveform pattern. Linear distance along the basilar membrane corresponds
approximately to logarithmic increments of frequency [27].

24  Hearing Aids.

There are two types of hearing loss: conductive, sensorineural or mixed hearing
loss. They can appear isolated or simultaneously. A problem that causes a hearing loss
outside the cochlea is called a conductive hearing loss, and damage to the cochlea or the
auditory nerve is referred to as a sensorineural hearing loss. A conductive loss causes a
deteriorated impedance conversion between the eardrum and the oval window in the

middle ear. This non-normal attenuation in the middle ear is linear and frequency

-10-



dependant and can be treated automatically. A more problematic impairment is the
sensorineural hearing loss. This includes damage to the inner and outer hair cells or the
abnormalities of the auditory nerve.

Damage to the outer hair cells causes changes in the input /output characteristics
of the basilar membrane movement resulting in a smaller dynamic range. This is the main
reason for using automatic gain control in the hearing aids. According to the statistics, 40
percent of the adults between 65 and 75 years have a hearing loss, and 45 to 50 percent of
the people at age of 75 and older have a hearing loss [10]. Hearing aids are used to help
people with hearing loss issues. The hearing aid detects the sound signals in the
acoustical environment through one or more microphones.

The acoustic sound signals consist of the speech signal uttered by the speaker to
whom the hearing aid user is listening, the interference background noises (e.g. train in a
subway station, restaurant environment, traffic noise) as well as possible signal leakage
from the hearing aid loudspeaker to the microphone, also referred to as acoustic
feedback. The recorded microphone signals are processed by some signal processing
algorithms, with the aim of compensating for the hearing impairment of the hearing aid
user. The processed sound is then applied to the ear canal through a loud speaker known
as receiver. Hearing aids assume that the inner hair cell function is still in tact. The goal

in fitting a hearing aid is an improvement in the overall quality of life. This is a general

block diagram of a digital hearing aid [8]:

-11-



Figure 2.2 — Digital Hearing Aid

The most important requirements for the modern high performance of the hearing
aids are:

- Low physical area consumption (size).

- Low power dissipation.
There are four common types of hearing aids:

- in the canal (ITC)

- completely in the canal (CIC)

- in the ear (ITE)

- behind the ear (BTE)

Front Microphone

Telecoil

Rear Microphaone

DAC, ADC
DSP, Memory

. Ly Control Butten

Receiver

—

Battery

Figure 2.3 Overview of the components included in a modern BTE digital hearing aid

(Courtesy of Unitron Hearing).
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The BTE hearing aid has the largest physical size. The CIC and ITC hearing aids
are becoming more popular since they are small and can be hidden inside the ear. A
hearing aid comprises at least a microphone, an amplifier, a receiver, an ear mold and a
battery. Modern hearing aids are digital also, and include an analog to digital converter
(ADC), a digital signal processing (DSP), a digital to analog converter (DAC). Larger
models as BTE, ITE and ITC include a telecoil in order to work in locations with
induction-loop support (telephone) [10]. Some hearing aids have directionality features,
which mean that a directional microphone or several microphones are used. Various
signal processing techniques are used in hearing aids.

Automatic gain control or compression is a central technique for compensating a
sensorineural hearing loss. The modern hearing aids use an improved technique called
Wide Dynamic Range Compression (WDRC) — where more gain is applied to low
intensity signals than to high intensity signals [8]. Nowadays, hearing aids usually
include feedback suppression, multi - band automatic gain control, adaptive beam
forming, and other noise reduction algorithms.

The general opinion is that single channel noise reduction, where only one
microphone is used, mainly improves sound quality, while effects on speech
intelligibility are usually negative. A multi channel noise reduction approach where two
or more microphones are used, can improve both sound quality and speech intelligibility.
In this research single channel noise reduction was considered, since in the small size

hearing aids as ITC, CIC that are more in demand, it is difficult to employ two

microphones.
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2.5  Acoustic feedback in hearing aids.

In addition to the difficulty of understanding the speech in noise, the occurrence
of acoustic feedback poses a major problem‘to hearing aid users. Acoustic feedback
refers to the acoustical coupling between the loudspeaker and the microphone of the
hearing aid. As a result of this coupling, the amplified sound sent through the loudspeaker
is fed back into the microphones, and the hearing aid produces severe distortion of the
desired signal and an annoying howling sound when the gain is increased.

The use of an amplification that brings the system close to instability indicates
that the hearing aid user desires more ampliﬁcation from the hearing aid than actually
provided, and as a result of this gain limitation, low-energy signals fall below the hearing
threshold so the instrument does not compensate for hearing loss in the patient. The
acoustic feedback stems from the vent, i.e., the hole in the earmold of the hearing aid:
depending on the size of the vent, venting establishes an acoustic feedback path that
limits the maximum stable gain in a hearing aid to 40 dB and often even less [9]. This
effect refers to the increase in loudness of the own voice and the low frequency boost that
hearing aid users experience when the ear canal is completely blocked with an earmold.

The unnatural perception of their own voice while talking is disturbing to most
hearing aid users and is often a reason to stop wearing their hearing aids. Eliminating the
vent or considerably reducing its size is not an acceptable solution for the acoustic
feedback problem. Actually, in hearing aid industry there is even a growing tendency
towards hearing aids with an open fitting (i.c., without an earmold) to improve listening

comfort and binaural hearing (e.g., Phonak, Unitron, GN Resound).

-14-



Beside the vent size, also the geometric configuration of the hearing aid, the ear
canal and the acoustic outside the ear determine the feedback path. Because of the shorter
distance between the loudspeaker (receiver) and microphones, the attenuation of the
feedback path is smaller for in- the -ear (ITE) and in-the-canal (ITC) hearing aids than for
the behind-the -ear (BTE) model. Since the ear canal shape differs among hearing users,
the feedback path is user-dependent [33]. People with a moderate hearing loss suffer from
an increase in hearing threshold of 40 dB to 70 dB, while the maximum stable gain in a
hearing aid is limited to at most 40 dB and often even less. As a result, there is a strong
need for efficient feedback suppression techniques.

To reduce the negative effects introduced by acoustic feedback (i.e., howling and
the limited maximum possible amplification), several techniques have been proposed in
the literature. In Feedforward suppression techniques, the regular signal-processing path

of the hearing aid is modified in such a way that is stable in conjunction with the

#}Q Receiver

feedback path as shown in Figure 2.4.

]
] :
' [}
' [}
l . . 1
i Amplification :
1
1 ]
' y 1 .

p ' ' Acoustic
Forward path : i fooonatic
E Noise Reduction ;
: Compression E
’ :
: f N :
;, ______________________________ ' A 4
Microphone
D p

Figure 2.4: Feedforward Suppression Algorithm.
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The most common technique is the use of a notch filter, where the gain is reduced

in a narrow frequency band around the critical frequencies, whenever feedback occurs.

Other examples include equalizing the phase of the open-loop response, and using time-

varying elements (such as frequency shifting, delay and phase modulation) in the forward

path.

The increase in maximum stable gain with feedforward suppression techniques

has generally been found limited, and on the other side, all compromise the basic

frequency response of the hearing aid, so it may seriously affect the sound quality. A

more promising solution for acoustic feedback is the use of a feedback cancellation

algorithm, which is shown in Figure 2.5.

Amplification

----- -1 Receiver
» +

Forward path

Estimate of the
Feedback path Acoustic Feedback

Noise Reduction
Compression

Path
...... ! /
- P |F)

Microphone

Figure 2.5: Feedback Cancellation Algorithm.
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The feedback canceller estimates the feedback path signal and subtracts this
estimate from the microphone signal, so that ideally, only the desired signal is preserved
at the input of the forward path. Since the acoustic path between the loudspeaker and the
microphone can vary significantly depending on the acoustical environment, the feedback
canceller must be adaptive.

2.6 Noise Reduction Algorithms in Hearing Aids.

The development of noise reduction strategies in hearing aids is guided by the
technical limitations of these devices, such as the size, the calculation power of the DSPs
and the number of microphones available. The first and the simplest noise reduction
algorithm implemented in hearing aids was a highpass filter [45]. It was assumed that the
energy of environmental noise was mainly at low frequencies (20 Hz — 300 Hz).

The hearing aid used a fixed highpass filter, which could be manually switched
ON or OFF as required. Afterwards, variable high pass filters were used. These filters
were adjusted to increasingly reject energy of the low frequencies when this energy
increases. In a non-noisy environment, the highpass filter became an all pass filter. Plomp
argued that the speech intelligibility for hearing - impaired persons could be improved by
a selective expansion or compression of the temporal modulation envelope of the signals
under certain conditions [28]. Based on this, a method that uses filter bank to separate the

input signal of the microphone into different frequency channels was proposed by

Clarkson and Bahgat [29].

The modulation frequency in each channel is analyzed to decide whether the

signals are more likely to be speech or noise and each frequency range is amplified or

attenuated accordingly. High-pass and multiple bandpass filters work in the frequency
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domain. On the other hand, directional microphones work on the spatial characteristics of
the sounds.

Directional microphones are designed to be most sensitive to sound arriving from
the front and try to cancel (or null) noise sounds coming from a specific direction [14].
The directional microphone has two entry ports that allow sound to enter both the front
and the rear cavities and arrive on the either side of the microphone diaphragm. If the
delayed version of the sound at rear port reaches the diaphragm at the same time as the
sound coming from the front port, a cancellation of the sounds occur. The spatial
characteristics of the directional microphone depends on this formula:

D(a) =1 +ycos(a), 2.1)
where y is the ratio between the external delay (the travel time of the sound due to
distance between the two ports of the microphone) and the internal delay. The spatial
characteristics of the directional microphone for different values of the y are illustrated in
Figures 2.6 and 2.7.

Based on the hardware directional microphone strategy, software directional
microphones have been developed [30]. This method uses two omni-directional
microphones as the front and the rear entry port of the directional microphone. The
directional microphone signal is computed as the difference between the signals from the
front microphone and the delayed — weighted signal of the rear microphone, resulting in a
response comparable to a hardware directional microphone. The microphone parameter is
the frequency dependent weight for the rear microphone and the spatial characteristics of

the directional microphone varies as a function of the internal delay time and the weight.
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180 degrees Angle of Rotation

Figure 2.6 Cardioid spatial characteristics of the hardware directional microphone

(y = 1).

180 degrees Angle of Rotation

Figure 2.7 Hypercardioid spatial characteristics of the hardware directional microphone
()r = 3)
The adaptive directional microphone, currently the state-of-the- art solution in

modern, commercial hearing aids, is used at Unitron Liaison, GN Resound Canta,
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Phonak Claro. [31]. Two software directional microphones provide reference signals,

namely the speech reference and the noise reference as shown in Figure 2.8.

P

Output

Delay —»@_ ,

Front Mic

Adaptive Filter

Rear Mic. &

Noise Reference
Figure 2.8. Representation of the adaptive directional microphone.

The speech reference is created with a front spatial cardioid, (null at 180°) and the
noise reference is created with a rear spatial cardioid (null at 0°). The signals of the
software directional microphones, speech and noise reference are connected at to an
Adaptive Noise Canceller (ANC). The coefficient of this ANC filter can be updated by
the means of classical adaptive algorithms [32]. Also, a constraint is applied on the
coefficients of the ANC. This constraint allows the adaptation of the coefficient when a
source is at the back (it is considered to be noise) and stop the adaptation when a source
is at the front (this is considered to be speech). This avoids the cancellation of the speech
signal at the output of the ANC. Rickets and Henry [33], evaluated a software directional
microphone and an adaptive directional microphone for hearing aids. In this study, it was
shown that the advantage of the adaptive, over the fixed directional microphone, was
prominent when noise sources are situated on the side of the listener.

The very advanced technique for noise reduction in hearing aids is the so-called

beamformer. The beamformer is designed to receive a signal radiating from a specific
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direction and attenuate the signals radiating from other directions of no interest. Adaptive
techniques generally have a better noise reduction performance than fixed beam forming
techniques, particularly if the number of interferences is small (smaller than the number
of microphones) and in acoustic environments with little reverberation, but are more
sensitive to distortion or cancellation of the desired speech signal [33].

Adaptive beam former technique [35] typically solves a linearly constrained
minimum variance (LCMV) optimization criterion, minimizing the output power or
output noise power subject to the constraint that signals coming from a certain region or
direction (i.e., ideally the direction of the desired speech) are preserved. An efficient
realization of the LCMV is the generalized side - lobe canceller (GSC) [34]. The GSC
transforms the constrained LCMV optimization criterion into an unconstrained criterion
through a combination of a fixed spatial pre — processor, i.e., a fixed beam former and a
blocking matrix are designed to avoid so-called speech leakage into the noise references.

A physical evaluation of three fixed and two adaptive beamformers was carried
out [34]. This evaluation provided useful information for selecting an array — processing
algorithm as function of performance. The two first fixed beamformers were the delay-
and-sum beamformer and an over steered array. The latter was similar to a delay-and-sum
beamformer but the time delays used in combining the microphone output signals were
greater than acoustic propagation times between the microphones. The third fixed
technique was the optimal super directive beamformer [32]. The two adaptive

beamformers were the scaled projection algorithm [35] and an extension of this technique

using a composite structured correlation matrix.
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The beam former techniques were evaluated for adverse listening conditions in
two different anechoic chambers. It appeared that the single cardioid microphone was
more effective than the delay-sum beamformer. The adaptive beamformers results in a
better SNR improvement than the fixed beamformer. The adaptive beamformer is
successfully used at the latest products developed from Unitron Hearing (Liaison) and
Phonak (Claro).

Another relatively new signal processing strategy for noise reduction in hearing
aids is blind source separation (BSS). The goal of BSS [34] is to recover independent
sources given only sensor observations that are linear mixtures of the independent source
signals. The term ’blind’ indicates that both the source signals and the way the signals are
mixed are unknown. There are two different methods to solve the BSS problem. First one
is based on second order statistics, called Principal Component Analysis (PCA), and the
second one called Independent Component Analysis (ICA), does not only de-correlate the
signals, such as PCA, but also reduces higher-order statistical independences. In speech
processing, only PCA approaches were developed or evaluated. Two different types of
signal separation can be distinguished, the scalar separation and the convolute separation.

The scalar separation assumes that the mixture between the sources is performed
by a static mixing matrix and typical applications areas are the small band signal
processing. The convolute separation assumes that the mixture between the signals is
done by a transfer function and the sources are broadband like in speech and audio
processing. Nguyen-Thi (1992) evaluated both types of the algorithms, scalar and
convolute separation, based on a PCA approach. The evaluation was carried out in

anechoic condition and the sources, speech and noise, were close to the microphones. The
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SNR measure was used to evaluate the algorithms and the strategies based on the
convolute separation gave the best separation. Stability and non-unique solutions can
occur with the separation algorithms.

A recent research done by [34], introduces a BSS algorithm using frequency
domain. This algorithm was implemented in real time on a PC-platform, and the
performance of the algorithm was evaluated both by simulations and experimentally,
including the separation of a moving and a fixed speaker in an anechoic chamber.

2.7.  Spectral Subtraction Algorithm.

Spectral Subtraction (SS) is a method for restoration of the power spectrum or the
magnitude spectrum of a signal observed in additive noise, through subtraction of an
estimate of the average noise spectrum from the noisy signal spectrum. The noise

spectrum is usually estimated, and updated, from the periods when the signal is absent

and only the noise is present [4]. In many applications the only signal that is available is

the noisy signal, so it is impossible to cancel out the random noise, but it may be possible

to reduce the average affects of the noise on the signal spectrum.
If we assume that y(n), the discrete noise corrupted input signal, is composed of

the clean speech signal s(n) and the uncorrelated additive noise signal d(in), then the noisy

signal could be represented as:
y(n) =sm) +dn). (2.2)
The assumption that speech is stationary is used in this equation. The process is
carried out on a short — time basis (frame by frame), therefore a time — limited window
and the speech signal as well.

w(n) , multiplies the original speech, noise

So the windowed signal could be represented as:
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Yw() = sy(n) +du(n) (2.3)
In the frequency domain, with their respective Fourier transforms, the power spectrum of
the noisy signal can be represented as:
| Y(@)? =|Su(@))? + | Du(@)|* + Su(@) » D'w@) + S'w(@) * Dy(w), (2.4)
where D' (w) and S"w(w) represent the complex conjugates of D (w) and Sy(w)

respectively. The function lSw(w)lz is referred to as the Short Time Power Spectrum of

speech. The DFT of Y,,(w) is given by:

N-1 ..j.z_’m_' .
Y, (@)=Y yn)-e ¥ =V (@), (2.5)
n=0

where p(w) is the phase of the corrupted noisy signal and N is the number of samples in
the windowed speech signal. In (2.4) the terms |Dw(@)|?, Sw(@) * Dy(@) , S"w(@) *» Dy(w)
cannot be obtained directly and are approximated as EﬁD,..(w)lz ], E[Sw(w) * D"\(w)] and

E[S"(w) » Dy(w)] where E[ ] denotes the expectation operator. Typically, E[\Dy(@)|’ ],
~ 2
is estimated during the silence periods, and is calculated as |D(a))| . If we assume that

d(n) is zero mean and uncorrelated with s(m), then the terms E[S.(w) * D’ (w)] and

E[S",(w) * Dy(w)] are reduced to zero. Thus from the above based assumptions, the

estimate of the clean speech can be given as:
|§(a))|2 =|r (@)’ - EﬂD(w)r] (2.6)

From (2.6) can be seen that the spectral subtraction process involves the subtraction of an

averaged estimate of the noise from the instantaneous spectrum of the corrupted speech.

The estimate lS’(a))lzcannot be guaranteed to be non-negative, as the right side can
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.y(n)

become negative due to errors estimating the noise. These negative values can either be

made positive by changing the sign (full-wave rectification) or can be set to zero

(half wave rectification) which is implemented in this algorithm. Once the estimate of

the clean speech is obtained in the spectral domain, the enhanced speech signal is

obtained according to:

§(n) = IDFT[| $(w) | -]

2.7

The phase information from the corrupted signal is used to reconstruct the time domain

signal by taking the IDFT.

yey(n)

jY/

| Phase

X(w) =Y () -a* Nw)

v
DFT

\ 4

A 4

) |2 LPF

—

Speech

Pause Detection

l

Y(w) = X(w)+ N(w)

Noise spectrum

T~

A 4

PSP

——p

estimator

N@)

IDFT

Figure 2.9. Block diagram of a Spectral Subtraction System. (PSP is a Post Spectral

Subtraction Processing).
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By generalizing the exponent in (2.6) can be further written as below:
of o o |
|S(w)| =|v(@)* - E[D(@)|"] , (2.8)

where lﬁ(a))l can be obtained via a running average the number of frames taken into

account depends on the stationary of the noise, £ =1 for magnitude spectrum and k=2 for
power spectrum. Figure 2.9 presents the Spectral Subtraction implemented in this
research.

The DFT - based spectral subtraction is a block-processing algorithm. The
incoming audio signal is buffered and divided into overlapping blocks of N samples as
shown in Figure 2.9. Each block is Hamming windowed, and then transformed via a DFT
to the frequency domain. After spectral subtraction, the magnitude spectrum is combined
with the phase of the noisy signal, and transformed back to the time domain.

Each signal block is then overlapped and added to the preceding and succeeding
blocks to form the final output [4]. This algorithm was implemented offline, using
MATLAB 6.5 R13, and the database from Speech Enhancement and Assessment
Resource (SpEAR), from Oregon Health and Science University. The most commonly
window length of 20 mS was used. First 100 mS were considered to be noise; the
smoothing factor a was selected 0.05 as the optimal one.

One advantage of the single-microphone noise reduction algorithm, compared to
multi-microphone methods, is their robustness against the number of noise sources and

the level of reverberation. The main disadvantage in this method is the presence of

processing distortions caused by the random variations of the noise.
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CHAPTER 3

WAVELET THEORY

Wavelet transforms and multiresolution are topics that have been studied by
mathematicians, scientists, and engineers. However, it was not until the early 1980’s that
connections were drawn across the fields. Most of the speech enhancement techniques
discussed so far, are based on the spectral information obtained through the short time
Fourier analysis of the speech signal [36]. These are all frequency-based methods
intending to preserve the slow-varying short time spectral characteristics of the speech
quality after the processing.

The wavelet transforms, a time-frequency analysis, has established a reputation as
a tool for signal analysis: having high frequency — resolution (and low-time resolution)
for the low frequency content of the signal while having low frequency resolution (high
time resolution) for the high frequency content of the signal. Wavelets are mathematical
function that cut up data into different frequency components, and then study each
component with a resolution matched to its scale. The wavelet transform can be regarded
as a bank of band-pass filter with constant Q factor (the ratio of the bandwidth and the
central frequency) [7] [18] [25].

Wavelet analysis has a distinct ability to detect local features of the signal in time
and frequency, such as fine structures of the speech signal and other transient,
instantaneous and dynamic speech components that contribute significantly to the quality
of speech. This chapter starts with a short explanation of the continuous wavelet

transform and its relation to the filter banks, wavelet packet decomposition are
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introduced, along with fundamentals of wavelet threshold used for speech de-noising

techniques.

3.1 The Wavelet Transform.

The Fourier transform has long been the most important underpinning for frequency —
domain signal processing. The theory on wavelet transform, which originated as a branch
of applied mathematics, was first introduced into the signal processing field thanks to the
efforts of French mathematicians I. Daubechies and S. Mallat. Analysis with wavelets
involves breaking up a signal into shifted and scaled versions of the original (mother)
wavelet, and it uses a time-scale region rather than a time-frequency region. The wavelet
de-noising techniques, intertwined with multi-resolution and filter bank theory, have been

a hot research topic in recent years. The word “wavelet” literally means “ a small wave”.

A wavelet is a function w(¢) € L*(R) that satisfies the following [7] three conditions:

1. It has an average of zero:
[w(dt=o0.

2. It is normalized such as:
ol =1

3. Itis centered in the neighborhood of 7 = 0.

The wavelet function (¢) can be scaled by s and translated by  such that:

W, ©) =—}; ’;—“) @3.1)

-28-



Thus, changes in u cause the wavelet to slide to different points along the time
axes, and changes in s stretch on wavelet in time domain. This stretching is often called

‘dilating’ or ‘scaling’ because it allows varying resolution at different frequency and time

1 . . .
scales. (Note that the factor OfT on the right-hand side of Equation 3.1 ensures that the
s

dilated wavelet satisfies the normalization condition "y/(t)]] = I). Essentially, s and u

determine the time and frequency support of the wavelet function. The time-frequency

properties of a wavelet due to translation and dilation are shown in Figure 3.1, where ¢ is

defined as:
& =517;+fwlv7(w)|’dw (3.2)

is the center frequency of the wavelet with s =1.
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£
5.}7:
‘ 5,0,

g o sus ses ¥ en ause see sunmsss sen saes sve sermars ses ade ves senmees aes ses sue sue _!_ 1_62_
g %

- ﬂ s,

AT N A B N o N
0 VALY t

Figure 3.1. Time-Frequency Effects of Dilating and Translating Wavelets [7]
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When the wavelet is scaled (s is made smaller), then the following happened:
e Its center frequency ¢ is shifted higher.
e Its time support decreases, increasing the resolution in the time domain.
e Its frequency support increases, decreasing the resolution in the frequency

domain.

Logically, when the wavelet is stretched (s is made larger), then the opposite occurs:
e Its center frequency ¢& is shifted lower.
e Its time support increases, decreasing the resolution in the time domain.
e Its frequency support decreases, increasing the resolution in the frequency

domain.

The wavelet transform W of a function £; is the inner product of ¥, _, and the function

W =< s, = [fo (St e

This allows some frequency components of a portion of f to be examined, depending

upon the time-frequency spread of the dilated and translated wavelet ¥, . Wavelet

transform is the equivalent of a convolution operation, or linear filtering. Convolution is

defined as:

h*g(y) = [ g()h(y—x)dx = [h(x)g(y—x)dx (34)
Now, if:

V.0 =¥ =7 D)

V.=V Js s
then Equation (3.3) may be written as:
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i 1 .t-s T - —
Wf (u,s) = _[f(t):/—;vf ()t = i SOV =ndi=1*v, oo

However, a function’s wavelet transform alone is an incomplete representation of the
signal. What is needed is a complementary transform, which takes some sort of the
average, much as the wavelet transform examines the differences or the details.

The function that accomplishes this transform is the scaling function, ¢(?). The

average, or low frequency, approximation of a function fis:

Vf (t,5) =< £y, >= j f(t)—¢' ) (3.6)

The same logic could be used as above, to prove that averaging transform could as well

be a convolution operation. If:
0.0)=9;(-v) =—j?¢'(—§),
then
Vf (4,5) =< [ @uc >= I f(t)-—¢ (——)dt I T rp, (u-ndi =19, G.7).

Mallat proves that a function can be fully reconstructed using the wavelet transform up to

including a certain level so, and the low frequency approximation from the same level so

[7)
fO)=— I WY ()Y, (t)—- ®, (3.8)
where
C, = +~£(g)_|2_dw (39)
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and y(w)is the Fourier transform of y/(¢). Equation (3.8) implies that a function’s space

is simply the sum of the spaces occupied by its wavelet transform and low-frequency

transform:
{rot={reolewres}, (3.10)
where @ is the direct sum of two vector spaces.

An example of a “Mexican hat” wavelet is shown in Figure 3.2.

Mexican hat wavelet

Yalue

Time

Figure 3.2. Example wavelet: The Mexican Hat
It is also important to mention that some wavelets have the useful property of
orthogonality. If a wavelet has this property, then the wavelet of one scale will be
orthogonal to itself at all other scales, provided the scales used cover different frequency

intervals. That is, the wavelet at cach scale occupies a space that does not intersect with

the spaces of the wavelet at any other scale. This is expressed as:
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{Wu.so (t)}¢ {Wu,s*so } (3' 1 1)

Spaces occupied by orthogonal wavelet transforms of a function at different levels can
also be shown to be orthogonal. This is expressed as:
W u,s)ya Wf (u,s # 5,)} 3.12)

3.2  Multiresolution Filter Banks.

This section describes implementing the wavelet transform in the discrete domain in
the form of a filter bank. Suppose there is a signal f{z) that exists in the space V. The
wavelet transform of the highest scale J-1 is Wf (u,s,_,) and will exist in Wi1, which is a
subspace of Vu. The highest scale low frequency transform Vf(u,s,_ ) will than exist in
V1.1, which is also a subspace of V. According to Equation (3.10), the signal space is the
sum of the two subspaces formed by the transforms:

Vi=V5ei® Wi (3.13)

Another way of looking at it is that the space V., contains the low frequency
portion of f(#), while Wi contains the high frequency portion. In order to take the
wavelet transform at the next scale down, J-2, we simply take the wavelet transform
Wf(u,ss.2). 1f the wavelet being used to accomplish the transforms happens to be
orthogonal, then it is known that the wavelet transform of the function f{) at different
scales occupy completely different spaces (Equation 3.12). The space V., always
contains the remainder of the signal, whatever is not represented by W.;. So, the J-2
wavelet transform of the signal /(%) is equivalent to the J-2 wavelet transform of the J-

low frequency portion of f{?) :
Witu,s5.2)= Wi (1.51.2), (3.14)
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where fr1® = Vflus).

The same logic could be used for the wavelet transform at scale s..3, s7.¢and so on.
This makes the decomposition of the signal f{#) into wavelet and low frequency spaces at
different levels recursive in nature. The recursive decomposition as a binary tree of low

frequency spaces V; and wavelet spaces W;is shown in Figure 3.3.

Vi

Via W
/\ ’2
Wis
Via
)
)
/\
Vo Wo

Figure 3.3. Binary tree of the Wavelet Decomposition Transform.
The binary tree decomposition follows Equation. 3.8. A signal space is fully

represented by the sum of the wavelet spaces at all levels and low frequency space at the

lowest level. Thus, the sum of all these spaces are said to be a complete basis for the

signal:

J-1

Vi=Vo® Wy ® Wy © Wiz @ e © Wo=Vo® ) W (3.15)
=0

J
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In digital domain, this recursive feature proves to be rather convenient. As implied by
Equations 3.5 and 3.7, it is possible to perform the wavelet and low frequency transforms
via convolution, or linear filtering in the digital domain.

Let c/k] and d[k] be the digital filters associated with ¢(2) and (%), respectively;
c[k] is used to perform the low frequency transforms, and d/fk] is used to perform the

wavelet (high-frequency) transform. Strang [36] gives the relation between filters and the

continuous time functions:

o)=Y c[klp2t—k) (3.16)

k
p(©)=Y cdklp(2r—k)
k

According to these equations, the filter coefficients depend on the wavelet and

scaling functions at a given time resolution # and the wavelet and scaling functions at the

next highest time resolution 2t. This implies that the filter coefficients would have to be

re-calculated for each level of the wavelet decomposition. In the digital domain this is

avoided by down - sampling the signal at each level.

Down sampling, also known as ‘decimation’, involves removing every other

sample, so that the resulting vector is one half the length of the original. Down-sampling

the signal at each level decreases the scale of the signal, which is the equivalent of the

decreasing the scale of the filters. This allows the same filters ¢/h] and d[h] to be used at

cach level. The implementation of this recursive filtering and downsampling are known

as a filter bank. The schematic of the filter bank shown in Figure 3.5, corresponds to the

binary tree of spaces shown carlier in the Figure 3.3. The down sampling operation is

shown as | 2 (Figure 3.4)
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xmy —» |2 [ v(m=x(2n)

Figure 3.4 - Downsampler

The vectors ¥, and W, indicate the results of the downsampled low frequency and

wavelet transforms at level j, and are known as wavelet coefficients. This kind of filter
bank is used in digital signal processing systems as a fast implementation of the wavelet
transform, and is known as the fast biorthogonal wavelet transform. It is a recursive
process of low- and high pass- filtering downsampled signals, and the entire process
requires O(N) operations, where N is the length of the signal [7]. The fast biorthogonal
wavelet transform generates N wavelet and low-frequency coefficients, so that the

wavelet representation of a discrete signal occupies more space in computer memory than

the original signal.
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x[n]:v,[n]-—% "" d =2 }-‘»‘VV“ [n]
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Figure 3.5, Analysis Filter Bank (Courtesy “An introduction to wavelets”, Amara

Graphs, IEEE, 1995)
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Provided the filters ¢ and d satisfy conditions for perfect reconstruction, then the original
signal can be recovered from the wavelet coefficients. This is accomplished by first
upsampling (Figure 3.6) and then low- and high- pass filtering the coefficients at each

level.

«my ——> 1o |7 y() =x(n/2) ifneven and 0 o.w.

Figure 3.6 Upsampler.
Upsampling a vector is done by inserting a zero after every element, making the
vector twice as long. Figure 3.7 shows a synthesis filter bank, which would reconstruct
the signal, decomposed by the analysis filter bank of Figure 3.5, where g and 4 are low-

and high- pass filters respectively and 12 denotes upsampling.

W] 12 = 0
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Figure 3.5, Analysis Filter Bank (Courtesy “An introduction to wavelets”, Amara
Graphs, IEEE, 1995)
In order to recover the signal perfectly, however, the filters c, d, g, and h must be
specially designed. Strang [36] outlines the requirements as
GE)C() + HEZD(@) = 227,

G)C(-z) + G(z)D(-2) =0, (3.17)
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where C(z), D(z), G(z) and H(z) are the representations of the filters ¢, d, g, and 4 in the z-
domain.

A convenient way of determining the filters, is by first calculating the low
frequency filter ¢ from the scaling function ¢(%), and then using c to determine d, g and A.
This section was indented to give an overview of how filter banks are used to implement
wavelet transforms of discrete signals, and to help the reader obtain an intuitive feel for
how wavelet coefficients represent time —domain signals.

3.3  Wavelet Packets.

The wavelet transform described earlier effectively decomposes the signal into a set
of wavelet (or high frequency) bases and one low pass basis. Wavelet packets are
considered as a method for representing natural grains. They differ from wavelets in that
at every decomposition step, the difference and average coefficients are further broken
down. The results are particular linear combinations or superposition of wavelets. They
form bases, which retain many of the orthogonality, smoothness, and localization
properties of their wavelets [22].

Wavelet packets seem to have lot of potential: depending on the strategy used to find
a suitable basis from the over-complete set of packets in a full wavelet transform, you can
find the basis which represents the signal with the fewest non-zero coefficients.

Wickerhauser, explain various basis-finding algorithms. While efficiency of

representation is important, there are some key problems that cannot be easily overcome

[22]. Comparison between different regions of the wavelet packets is extremely difficult

becausc the wavelet packets are not shift-invariant [24]. Another difficulty with

comparison has to do with packet levels. Every packet is denoted by the order in which
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the average or difference coefficients have been further broken down, as shown in Figure
3.8.

There is no guarantee that all portions of the signal will be represented on the same
packet level. If we have a packet that is denoted by VWVWVVV in Figure 3.8, it is not
trivial to change it with another packet as denoted by VWVV. They are different sizes and
have to interact with different packets in order to be properly put through the inverse
wavelet decomposition. This makes switching positions of packets very difficult. In order
for a wavelet packet basis to be complete and non - redundant, it must be composed from

the lowermost nodes of an admissible binary tree of bases. An admissible binary tree is

one whose nodes have either zero or two children.

/\\ -,/ \\ //\ ' s /\ ’

Figure 3.8. Wavelet Packet Spaces.
The number of operation required to decompose a signal into its full wavelet packet

tree is O(K N logz N), where N is the length of the signal and X is the number of non-zero

filter coefficients in ¢ and d [7]. The storage of all coefficients from all the nodes in a full

wavelet packet binary trec requires N log: N locations in memory. However, once a
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particular wavelet packet has been chosen, the redundant coefficients can be dropped,
reducing the storage requirements to N memory locations.

3.3  Wavelet Thresholding.

As wavelet has its basis emulating the front-end auditory periphery, efforts have been
made to take advantage of this signal-processing tool for speech enhancement. The most
used approach is based on the non-linear thresholding of the wavelet coefficients as it is
explained by Donoho [11], which bridges the multi-resolution analysis and non-linear
filtering. Donoho proposed this powerful wavelet-based approach as follows:

Let y be a finite length observation sequence of the signal x, that is corrupted by zero-
mean white Gaussian noise n, with variance ¢:

y=x+n (3.18)
In the wavelet domain, this will result on:

Wy = Wx + Wh. (3.19)

A 4

A 4

(a) (b) ©

Figure 3.9. Without Thresholding ( a), Hard Thresholding (b ), Soft Thresholding (c ).
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The clean signal x can be estimated in the following way:

X = W' Xestimation = W' Yiaresh (3.20)
where Y represents the wavelet coefficients after thresholding and W' denotes
inverse wavelet transform.

The approach capitalizes on the fact that an appropriate transform (i.e.,wavelet
transform) projects the signal onto the transformed domain where the signal energy is
concentrated in a small number of coefficients, while the noise is evenly distributed
across the transformed domain.

There are generally two ways of thresholding: soft and hard thresholding shown

in Figure 3.9, and mathematically illustrated as:

X X1 >T
ThrHardO(:T) = . (321)
0 X <T
Sgn(X) (1X1-T) X >T
Thrsop (X,T) = (3.22)
0 X <T,

where X represents the wavelet coefficients before thresholding and T is the threshold.
Major problems arise when the basic wavelet thresholding method is applied, to a

speech degraded by noises. Most of the practical situations the environment noise is

colored noise, non-stationary noise, and using the universal thresholds will result is

speech distortion. Various modifications have been made. For example, Sheikhzadeh ,
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DSP factory Waterloo, ON, [37], proposed using an exponential function to attenuate
coefficients that are smaller than the threshold value in a nonlinear manner to avoid
creating abrupt changes. Other data compression functions can also be chosen such as the

u—law:

X X >T

Thr(X,T) = (3.23)
X/ _
T*[k“*oﬂ e XI<T,

where 0 < u < 1 is the amplification constant for X < T.
The choosing of threshold value , T, can be determined in many ways. Donoho derived

the following formula based on white Gaussian noise assumption:

T=g \2log(N) , (3.24)

where, N, is the length of the noisy signal, and ¢ = MAD/0.6745, with MAD denoting the
absolute median estimated on the first scale of the wavelet coefficients. Johnstone and
Silverman, proposed the level depended threshold method to deal with correlated noise,

where for each frequency interval the threshold is proportional to the standard deviation
in that interval:

4, =0,42l0g(N,), (3.25)
where g, = MAD,/0.6745, N, is the number of samples in scale a, and MADa is the

absolute median estimate at scale a [38].
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CHAPTER 4

DE - NOISING ALGORITHM
4.1  Introduction.

Single channel speech enhancement is still an important issue when the single
channel speech is the only available source as in Hearing Aids. As explained earlier,
wavelet analysis can be easily used for noise reduction algorithms in image processing,
audio and speech coding. The corrupting white noise can be removed, if a wavelet
coefficient threshold is adequately selected, and by subtracting this threshold from the
noisy wavelet coefficients. This method, suffers from residual noise and speech
distortion in the noise reduction applications.

The performance of speech enhancement algorithm will be improved, if the
threshold is adaptively updated according to corrupting noise level. Sheikhzadeh and
Abutalebi [37], suggested the adaptive threshold based on a voiced frame and unvoiced
frame. So, the threshold is increased for high-bands in the voiced frames, and decreased
for unvoiced frames in the high-bands. A level dependent threshold was suggested by
Rouat [39], where a Tiger energy operator is utilized to improve the discriminability for
determining the speech-noise — dominated segments. Besides reducing the noise and
good quality of speech enhancement, another advantage of this method is that it does not
need a segmental SNR estimation.

Method proposed by Virag [40], where the threshold was derived with the
assumption that the noise spectrum was white and stationary, is a trade off between the
amount of noise reduction, the speech distortion, and the level of musical residual noise.

In this research, a novel approach for noise reduction in Hearing Aids is proposed. In this
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algorithm, the noisy speech is first preprocessed using a Spectral Subtraction with an
MMSE (minimum mean square error) as proposed by Ephraim and Malah [3], to initially
lower noise level with negligible speech distortion. A perceptual wavelet transform is

then used to decompose the resulting speech into critical bands.

| -

Spectral Subtraction
Preprocessing using
Ephraim / Malah Technique

Xk

Wavelet Packet Transform
Critical Band - Filter Bank

w° W, w,,

Threshold with Spectral

Thresholds Subtraction Theory
Estimation
- ~ ~17
W W, W
\ 4 Y A

Inverse Perceptual Wavelet
Transform

l

Figure 4.1. The proposed algorithm structure.

-

St

-44 -



Threshold estimation is implemented that is both time and frequency dependent,
providing robustness to non-stationary and correlated noise environments. Figure 4.1
shows the algorithm structure for this research:

4.2  Description and Analysis of the algorithm.
4.2.1 Spectral Subtraction preprocessing using Ephraim / Malah Technique.

The purpose of this preprocessing block, is to initially lower the noise level of the
noisy speech x;, while keeping the distortion level at minimum. In 1984, Ephraim and
Malah [41] proposed an optimum MMSE STSA (short term spectral amplitude)
estimator. This method calculated a gain function based on the a priori and a posteriori

SNR-s. The following equations describe the method:

S(k) = H(k)Y(k), (@.1)

«/n’ 1 Y Y
H(k) = — .4 F 4
(k) == 7 Tey) [7”1+r,, 1, (4.2)

where y4 is the a priori SNR, which is calculated as:

NN GIAIPES _
va= B (——-I 13,.(k>|2J+(1 B)- Py, =1 (4.3)

B —is a weight coefficient (8 = 0.98), i is the frame index with P(x) = x if x>0, and

P(x) = 0 otherwise. yy is the a posteriori SNR and F is a function representing:

Fx) = 0T [(l+x)]0 (§)+I, (32‘-):, (4.4)

where Ip () and I; () are zero and first order modified Bessel function respectively.
Unlike the magnitude averaging where averaging is performed irrespective of whether

frame contains speech or noise, this method performs non-linear smoothing only when

the SNR is low, i.e. when the frame predominantly contains noise.
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The residual noise present due to this technique has been observed to be colorless.
This method reduces the distortions in the speech parts due to averaging. Ephraim —
Malah algorithm is well suited for noise reduction in hearing aids.

4.2.2 Critical — Band wavelet packet decomposition.

Auditory masking is a phenomenon related to the hearing perception of
neighboring signal components [20]. If a strong signal 4 (the masker) masks a weak
signal B (the masker) the weak signal B, is not even heard, even though it is present. Two
main categories of masking, depending on the time and frequency location of 4 and B,
may be considered. When both signal occur at the same time, masking is considered
simultaneous, and is modeled in the frequency domain. If B either precedes or succeeds
A, masking is termed temporal or non simultaneous.

Modeling is strongly based in this kind of masking. Several studies have
highlighted the non-uniform temporal and spectral resolution of the human ear.
Frequency components of sounds are integrated into critical bands (as mentioned earlier)
whose centers and bandwidths have been measured. The center frequency location of
these sub- bands is known as the critical band rate z and is expressed as:

z = 13arctan(7.6*10” f)+ 3.5 arctan(1.33 * 10 f) [Bark] 4.4

The critical bandwidth of these filters is of approximately 100 Hz below 500 Hz.
Beyond 500 Hz this bandwidth corresponds to 20 % of the center frequency value. The
distance from one critical band center to the center of the next one is known as 1 Bark.
The human auditory system covers approximately 25 Barks. The absolute threshold of

hearing (AHT), or threshold in quiet, is the average sound pressure level (SPL) below
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which the human ear does not detect any stimulus. This threshold is frequency dependent
and their relation is expressed as:
AHTsp, () = 3.64 % = 6.5 7003924 0.0001 f* [dBSPL] ~ (4.5)

In this algorithm, we are trying to approximate the critical band analysis using the
overlapped block orthogonal transform, previously introduced, and to estimate the
auditory masking threshold. In the 0 — 4 kHz bandwidth there are only 18 critical bands
(Table 2.1). Using a five stage DWPT (p = 5, N = 32), a frequency resolution of 125 Hz
can be achieved. The choice of the prototype filter of the transform, as well as its length,
influences the separation of the sub band signals and determines the maximal window
length. The temporal analysis of the human ear requires that the analysis windows be
limited to 5 — 10 mS, toward higher frequencies, and they could spread up to 100 mS in
the lower frequencies.

In this algorithm I have considered the bandwidth of input signal as 4 kHz. Filter
banks that perceptually divide whole bands in filter banks are illustrated in Figure 4.2.
Looking at these filter banks, the locations of high- and low- pass filters are symmetry in
each node. The branches that contain decomposed levels less than five, in the synthesis
stage, must be delayed, to synchronize with the branches that contain five levels.

The filters proposed by Daubechies are the one that best preserve frequency selectivity as

the number of stages m, of the DWPT. The energy in each critical band is summed as :

Bi = %P(a}), 4.6)

w=bli

where bl is the lower boundary of the critical band i, bh is the upper boundary of

critical band i, and P(w) is the power spectrum.
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Figure 4.2. Decomposition tree of the filter bank (Courtesy of Ta Lu, Ch. , Wang, H.
“Enhancement of single channel speech based on masking property and wavelet
transform”, Speech Communications, 2003)

Bandwidth and subbands index are described in Table 4.1.

Level Subband Index Bandwidth (Hz)
m=-5 i=1,23........ 10 125
m=-6 i=11,12....... 15 250
m=-7 i=16,.......... 18 500

Table 4.1 Bandwidth and subband index
The relation among critical — band index i, the level index m, and the wavelet

subband £, could be described as follows[13]:

k 1<k< 10 for m=-5
i = k+10 1<k<5 for m=-6 @.7
k+15 1<k<3  for m=-7
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Energy distribution along basilar membrane of the inner ear E,.(i), could be
obtained by convolving subband energy B,,(i), with spreading function S,,(i) as proposed
by Schroder [19]:

En(i) = Bu(i) © Su(i) (4.8)
The spreading function S,,(i), is expressed in (4.9), and shown in Figure 4.3:

10 log1o Sm(i) = 15.81 + 7.5 (i + 0.474) — 17.5¢ (1 + (i + 0.474)°) *° (4.9)
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Figure 4.3. Spreading Function.
4.2.3 Threshold Estimation.
As explained earlier the hard thresholding has two values for the weighting
function: zero if SNR is lower than threshold 7, and unchanged if it is bigger. When noise

and speech are presented together within a critical band and the excitation produced by
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the weaker signal is not large, then the strong signal will dominate the auditory filter.
Figure 4.4, shows the weighting functions applied in this research. If the signal is much
stronger than noise, we are in signal - masking region, and the noise is rendered
inaudible. Otherwise if the noise is much stronger than signal, than we are in noise-
masking region. To distinguish these regions, a frame SNR is calculated, and this is

applied in threshold criteria.

|
2 I
= I
-
= |
=
b |
)
7 ! Conventional
: tiona] = = = =
0 kI ; ; ventiona :
] ' 5 10 15 20 25
> I¢ Signal-Noise Region — [
Noise Masking Signal Masking
Region Region

Figure 4.4. Weighting function applied, in comparison with conventional SS. (Courtesy
of Min, L., McAllister, G., Norman, D.,Perez De, A., "Perceptual Time — Frequency
Subtraction Algorithm for noise reduction in hearing aids”, IEEE, 2001)

Two thresholds are calculated based on suggestion from De Perez [20], low
threshold 7i,y, and high threshold Thigs. In order to determine Tlo, and T, an estimation
of the subjective loudness, of both speech and noise is required. Since we have not at a

present time any literature to perform this task, some subjective and objective results

were used to determine the lower and higher threshold. Lower threshold was determined

as:

Tiow = O+210g N, (4.10)
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where N is the frame length, and the 0 = MAD/0.6745 (explained earlier), and
Thigh = 2.5 Tiow (4.11)

These values were used in this research, and using these thresholds did not
introduce any noticeable distortion in the processed speech. These determinations were
primarily based on the auditory perceptual features. This method could reduce the noise
in different SNR noisy speech, and could reduce the amount of the musical noise
produced by the conventional spectral subtraction. The wavelet packet decomposition
used makes it easy to estimate the signal from noise. When the residual noise is present,
even after processing, the speech in low SNR does not contribute significantly toward
intelligibility.

4.2.4 Applying the thresholds.

This algorithm is a subtraction of noise from noisy speech in the wavelet packet
domain and incorporates the perceptual auditory features. It has a similar form with
conventional spectral subtraction explained in Chapter 2, and applied in this research as
well. Knowing that every wavelet coefficients, contributes noise of variance o, but only a
few of them contribute to the signal, help us to determine speech/noise segments using
the wavelet transform. The filtering used in spectral subtraction method, is adopted here
as well to calculate speech spectrum:

8, (m) = h(i,k)s,, (m), (4.12)
where /1 (i, k) is a zero-phase magnitude response filter, computed according to the SNR

in each critical band. It is proved, that the auditory system perceives sounds based on

SNR or SMR (signal-to-masker ratio) in each critical band.
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As explained [2.6], in conventional spectral subtraction, the estimated filter is
based on the SNR in each frequency band and is given by:

E[| N(@) ]

H, =]-
(@ | X(@)]

(4.13)

In wavelet domain, this filter is estimated by considering the linear model [20]. The

proposed filtering is as follow:

h(Gk)=1- BE[Wir ()])"?

| Wi (m) |

, (4.14)

where:

f — constant and calculated based on [20]: B = /21og10Nlog2N (N — frame length)

(E[w2ix(n)])"'? - standard deviation.

w;x(m) — wavelet packet coefficients.

This filter is convenient for including the non-linear properties as well, and it can
incorporate the masking behavior as shown in Figure 4.4. So, in this algorithm this is the

pseudo - code for threshold evaluation:

If frame_SNR < Tiow
wix(m) =0
elself frame_SNR > Thigh
wik(m) = wix(m)
else
wik(m) = h (L) * wix(m)
end

This algorithm is an optimization of the wavelet subtraction using both hard and soft

thresholding.
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4.3 Implementation.

To evaluate these algorithms a speech database provided from Speech
Enhancement and Assessment Resource (SpEAR), Oregon Health and Science
University, was used.

Please refer to Table 4.2, for the speech evaluated, and their SNR’s. An IBM PC,
using Windows XP, and MATLAB 6.5 R13 was used. Off line simulations were

conducted, in order to check the validity and feasibility of the algorithms.

# File SNR (dB)

1 | BigTips_At_Min_5_93_SNR.wav F16 Noise at: SNR =-5.93 dB

2 | BigTips_At_Min_0_67_SNR.wav F16 Noise at: SNR =-0.67 dB

3 BigTips_At 3_26_SNR.wav F16 Noise at: SNR = 3.26 dB

4 BigTips_At_10_11_SNR.wav F16 Noise at: SNR =10.11 dB

BigTips_Clean.wav “Good Service should be rewarded by big tips”

5 | Female_Vega_m_4 93 SNR.wav Pink Noise at SNR =-4.93 dB

6 | Female_Vega_2_97 SNR.wav Pink Noise at SNR = 2.97 dB

7 | Female_Vega_8_ 96_SNR.wav Pink Noise at SNR = 8.96 dB

8 | Female_Vega_ 13_65_SNR.wav Pink Noise at SNR = 13.65 dB
Female_Vega_Clean.wav “I am sitting in the morning at the dinner in the

corner”

Table 4.2. Sample speeches.
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Implementation on a workstation permits modifications and changes without constraints
of time, memory or computational power.
4.3.1 Conventional Spectral Subtraction.

The speech signal is first Hamming windowed using a 20-mS window and a 50
percent overlap (10 mS). The amount of overlap between consecutive frames is also
associated with the frame size, and is required to prevent discontinuities at frame
boundaries. The windowed speech frame is then analyzed using the Fast Fourier
Transform.

Since noise is estimated during non-speech periods, in this algorithm, a robust speech
detector was implemented [1]. This is how the VAD is implemented:

" frame, x(n.m) and transform to the frequency domain:

1. Buffer data into m
X(w,m) = FFT(x(n,m)) (4.15)

2. Initialize the noise spectrum and noise mean for m = 1.

N(@) = X(@m) (4.16)
w =L SN @) @.17)

3. If VAD = 0, then update the noise spectrum, mean and standard deviation for
frame. Frames two through ten are assumed to be noise in order to get a good

initial average of the stationary noise in the environment.

N@) = a*N(@) + (1-a) * X(w,m) (4.18)
1 L-1

uN(m)TZN(w) (4.19)

uv =b *un+ (1-8)*pun(m) (4.20)

oy = (b* 0N +(1-b)uN(m)*)? (4.21)
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where uy, ox and oy’ are the mean, standard deviation and variance of the noise

estimate.

4. Update thresholds if a frame does not contain speech, using the mean and
variance of the noise estimate where threshold settings are adjusted using the
multipliers as(speech) and ay (noise), which can be adapted experimentally.

Threshs = uy + as * on (4.22)

Threshy = uy + an * on (4.23)
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Figure 4.5. a), b) Frequency Response and Spectrogram of the  Noisy Speech (2);
¢), d) Frequency Response and Spectrogram of the enhanced speech using Spectral

Subtraction.
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The Figure 4.5 shows frequency response of the File 2 (refer to Table 4.2) before and
after processing using Spectral Subtraction. The SNR is improved, but as it is mentioned,

in this algorithm there is always a trade-off between the noise reduction and speech

distortion.
4.3.2 Spectral Subtraction in wavelet domain.

The first part of this algorithm is the same as the conventional Spectral Subtraction.
The only difference is that here I am using Ephraim / Malah Technique (4.2.1), to reduce

the noise. Then the de - noised speech is processed using the wavelet packets transform.
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Figure 4.6. a), b) Frequency Response and Spectrogram of the  Noisy Speech (2);
¢). d) Frequency Response and Spectrogram of the enhanced speech using Spectral

Subtraction in wavelet domain.
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Eighteen wavelet sub - bands are employed to implement the critical-band wavelet packet
decomposition. Figure 4.6 shows the frequency response and the spectrogram of the same
noisy speech (2) that was implemented in the conventional SS. The SNR has improved
by 2.58 dB compare to the conventional SS, and the speech distortion is lower as
evaluated perceptually.

The noise level was estimated from first 100 mS, and frame length used is 16 mS.
This algorithm is evaluated using objective measures (SNR), and subjective tests based
on mean — opinion score studies (MOS).

4.4  Objective measures for performance evaluation.

In the evaluation of speech enhancement algorithms, it is necessary to identify the
similarities and differences in perceived quality and subjectively measured intelligibility.
Speech quality is an indicator of the “naturalness” of the processed speech signal.
Intelligibility of speech signals is a measure of the amount of speech information presents
in the signal that is responsible for conveying what the speaker is saying.

Human listeners would prefer the speech signal to be intelligible, even at the
expense of some degradation in speech quality. A good example is that end-users
actually prefer a less aggressive enhancement method that not completely removes all of
the interfering noise, to a more aggressive algorithm that may completely remove the
noise component but also reduce the speech intelligibility. Performance evaluation tests
can be done by subjective quality measures as well, that provide a broad measure of
performance (as discussed in Section 4.5).

Objective measures, provide a measure that can be easily implemented and

reliably produced. It is based on mathematical comparison of the original and processed
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speech signals. The majority of objective quality measures quantify speech quality in
terms of a numerical distance measure or a model of the perception of speech quality by
the human auditory system. It is desired that the objective measure with the judgment of
the human perception of the speech. However, it has been seen that the correlation
between the results obtained by objective measures are not highly correlated with those
obtained by subjective measures. The signal-to-noise ratio (SNR) and the Itakura-Saito
(IS) measure are some of the most widely used objective measures. The SNR is a popular
method to measures speech quality.

It is calculated as the ratio of the signal to noise power in decibels:

>y (m)

SNR .. =10-1o i
@ B0l S5 my = ()

(4.24)

where y(m) is the clean speech, s(m) is the noisy speech and p(m) is the enhanced

speech.
Nr. Speech Samples SNR after | SNR after applying
applying SS SS in WD

(dB) (dB)
1 Male speech at: SNR =-15.93 dB 3.52 4.25
2 Male speech at: SNR =—0.67 dB 4.36 6.94
3 | Male speech at: SNR = 3.26 dB 9.31 11.32
4 Male speech at: SNR =10.16 dB 15.34 16.61
5 | Female singing at: SNR= —4.93 dB 2.41 3.26
6 | Female singing at: SNR=2.97 dB 8.76 10.23
7 | Female singing at: SNR = 8.96dB 15.69 17.52
8 | Female singing at: SNR = 13.65 dB 19.68 21.35

Table 4.3. The SNR improvement after applying SS in time domain and SS in wavelet

domain.
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If the summation is performed over the whole signal length, the operation is called
global SNR, and if the summation is performed on a frame basis, this operation is
referred to segmental SNR. An average of the segmental SNR’s, over the whole speech
length can be performed, and this method has better correlation to subjective results than
the global SNR. Table 4.3 shows the SNR improvement for the speech samples at Table
4.1, in different noise levels.

The results from Table 4.3 where obtained using global SNR’s. Even the SNR for
both algorithms are almost the same, the de - noising algorithm reduces the noise as much
as conventional SS, but the speech with SS in wavelet domain is less distorted, based on
MOS results.

4.5  Subjective evaluation of the algorithm.

The best speech quality measurement requires a subjective judgment by a listener as
to how “good” speech material sounds. Subjective speech quality measures have varied
forms. One method is to ask a group of listeners to rank the quality of speech along a
predetermined scale after the comparisons of original and processed speech data [2]. The
mean opinion score (MOS) is most widely used subjective quality measure [2]. In this
method, listeners rate the speech on a five — point scale, where a listener’s subjective
impressions are assigned a numerical value as shown in Table 4.4. Although the number
of subjects may not be sufficient for a formal assessment of the algorithm, it gives a good
idea for its performance. Another method used for intelligibility is the diagnostic rhyme

test (DRT) that requires listeners to circle the world spoken among a pair of rhyming

words.
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Scale Meaning
5 Imperceptible
4 Perceptible
3 Slightly annoying
2 Annoying
/ Very annoying

Table 4.4. Rating Scale used for MOS.
The original noisy speeches were played first, and then the enhanced speeches from both

algorithms were played as well. The results of MOS are plotted and shown in Figure 4.7:

SSianD vs Conventional SS

@SS in Wawelet Domain
B Conventional SS

Subjects

Figure 4.7. MOS Test results for six different subjects.
Average (AVG), denotes the average score for six listeners. The test shows better
performance of the Spectral Subtraction in wavelet domain compared to conventional SS.

Looking at MOS it is obvious that the speech enhancement in different noise level (male
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speech) was rated higher than the female speech (female singing). MATLAB code is

available in a CD or by contacting the author (fmyftari@ee.ryerson.ca). The simulation is

available on line at: www.alkospace.com/fmyvftari.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The proposed speech enhancement algorithm, based on speech perception of normal
and impaired auditory systems, developed principally for use in hearing aids, could be
optimized for developing new speech enhancement systems. The project was
concentrated on the design of the algorithm based on the features of the auditory
perception. Wavelet packet transforms were used to model the human auditory system,
that every stage of critical bands is consistent with psychoacoustics properties of human
ear. This algorithm, was intended for noise-reductioﬁ in single channel systems, and is
based on the concept of conventional spectral subtraction algorithm.

The spectral subtraction algorithm in wavelet domain was compared with the
conventional spectral subtraction, and the results show that de-noising using wavelet
packets are more efficient than conventional SS, and the speech enhancement is less
distorted. The spectral subtraction in wavelet domain provides a definite improvement
over the conventional spectral subtraction method, and does not suffer from musical
noise. Most of the researchers for noise reduction in hearing aids, suggest that greater
benefit for the hearing-impaired listeners is possible with nonlinear processing, and to
achieve it in this algorithm the masking phenomenon are incorporated.

This algorithm produced more noise reduction than the conventional spectral
subtraction, because of the wavelet packet auditory filtering, leading to better speech

estimates with time and frequency, and the masking phenomenon being exploited
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accurately by identifying the three perceptually different SNR regions. Future research
could be conducted to adaptively update the noise segments, gain function, and threshold
estimations. It can be expected that better psychophysical modeling of the cochlea, will
provide a more precise description of the auditory system and the interactions between
the signal level, masking and loudness.

The future digital hearing aids should be developed with a nonlinear processor that
can adapt to conditions of noise and speech, to maintain optimal performance with regard
to masking, loudness and speech perception over a wide range of conditions. Hearing aid
development requires knowledge of acoustics, transducers, signal processing, auditory
physiology and psychoacoustics, as well as low power semiconductor technology.
Advances in digital technology and speech processing have been rapid and are
continuing. The complexity of circuitry that can be fabricated in silicon is increasing, and
the cost and power consumption is decreasing. In designing hearing aids it is easy to
become focused on only one aspect of the problem, such as speech communication under
ideal conditions.

Auditory experience encompasses a large range of conditions, from
eavesdropping in on a quiet distant conversation, to talking in a noisy area, to listen the
music. The hearing-impaired listener will greatly benefit if the hearing aids cover the

conversational range of sounds and more completely if the normal auditory entire range

of sounds is taken care of.
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