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                                                  ABSTRACT 
 

 

©  Alaa R. Abdullah, 2010 

Master of Applied Science (MASc) 

Electrical and Computer Engineering 

Ryerson University, Toronto, 2010 

 

 

With the increasing effect of on-chip interconnects on nowadays VLSI design performance, 

modeling of interconnects becomes a necessity. GAM, TPN, and AWE are well known methods 

that are used to map an interconnect to an equivalent electrical circuit.   In this thesis, a general 

approach that considers z-parameters is developed which allows the generation of equivalent RC, 

RLC, and RLCG circuits for both T and Π configurations. The performance of these generated 

circuits is compared to H-spice simulations by measuring the effect of interconnects on the 

transition times and delays under different conditions such as input transition times, interconnect 

lengths and capacitive loads. As a result, the a-configuration of AWE method reveals consistently 

an acceptable performance which makes it a good candidate to be utilized for buffer insertion.  

         Buffer insertion is a popular technique used to reduce the delay of a long interconnect by 

segmenting it and inserting buffers among these segments. Therefore, the performance of this 

technique depends strongly on the accuracy of the considered interconnect model. However, using a 

model such as the RLCG of Π-configuration which is derived from using the AWE method is not 

practical due to the complexity accompanied by such model which makes the derivation of closed-

form expressions very complicated.  To overcome this dilemma, the selected configuration has been 

mapped to a simple equivalent RC circuit.  As a consequence, a new RC representation of on-chip 

interconnects is developed. Moreover, depending on the developed RC model, the proposed buffer 

insertion technique shows superiority over previously published works.  
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CHAPTER 1 
 

Introduction 
 

 

 With the continued down scaling of CMOS technology to reach nanometre scale and the 

requirement for high speed, (SoC) interconnect emerges as one of the main performance limiting 

factors. As a matter of fact, it has been shown in [1] that interconnect delay is more than the logic 

delay and reaches 70-80% of all signal delays in a chip at 0.18μm technology. Thus, modeling and 

accounting for interconnect effects as early as possible in the design process becomes a major 

concern of VLSI designers. Modeling an interconnect expresses the characterization of the 

interconnect and its effects on the circuit’s performance. On-chip interconnects modeling 

historically began in 1959 when Fairchild Semiconductor took the first step towards manufacturing 

an integrated circuit IC. In those days, interconnect effects were ignored because interconnects were 

short and circuits were simple. Therefore, an interconnect was modeled as a short circuit. With the 

scaling of the minimum feature size, interconnect effects started to be considerable. The first 

interconnect effect had to be considered when interconnect capacitances had become comparable to 

the gate capacitance. Thus, an interconnect was modeled as a single lumped capacitance [2-4]. With 

the increase in the device densities per unit area, the interconnect density has also correspondingly 

increased. Thus, the cross-sectional area of interconnects had been reduced to provide more 

interconnect per unit area [5]. Also, the global wires across the chip increased in length. So, 

because of the decrease in the cross-sectional area and increase in the interconnect length, the 

interconnect resistance could no longer be neglected and had to be considered in interconnect 

modeling. Therefore, the interconnect was modeled as an RC circuit [6-8]. With the demand of 

increasing the speed of on-chip circuits and using wider wire for distributing the clock, especially in 

the global wires, the inductance effect of on-chip interconnects became more important. Therefore, 

accounting the interconnect inductance in the interconnect modeling is crucial [9-13]. Using multi-

layer techniques to increase the functionality of on-chip circuits with long wires, the effects of the 

dielectric loss is considered to accurately model the interconnect effects [1], [14,15]. 

       Interconnect delay is a major concern of System on-Chip design. Basically, the interconnect 

delay in SoC is due to the line resistance, capacitance, inductance and dielectric conductance. These 



2 

 

elements are in direct proportion to the interconnect length ( .R r=  , .L l=  , .C c=  , .G g=  ). 

Elmore delay modeling for an RC interconnect [16] shows that the interconnect delay is in 

quadratic proportion to the interconnect length ( 2. .pdt r c l⇒ ). This quadratic of interconnect delay 

with interconnect length significantly degrades the performance of VLSI circuits with long wires. 

In order to reduce this quadratic increase in delay with interconnect length, repeaters (or a series of 

CMOS inverters separated by interconnects) are inserted along these long interconnect lines to 

partition the lines into shorter sections, thereby reducing the total delay of the interconnect path 

[17-22].  
 
       Buffer insertion technique is shown to be an effective technique for interconnect delay 

optimization. Buffer insertion problem can be partitioned into sizing as well as segment length and 

width determination. Some authors considered these two problems independently [23,24]. While 

others tackled both problems [25- 31]. 

  

        In this thesis we derive general z-parameter models for both T and Π configurations targeting 

the Global Approximation Method (GAM), Two-Port Network (TPN) and Asymptotic Waveform 

Evaluation (AWE). The general z-parameter models allow easy and directly switching between the 

RC, RLC and RLCG models for both T and Π configurations for GAM, TPN and AWE modeling 

techniques. The interconnect RC, RLC and RLCG models were tested for different interconnect 

lengths, capacitive loads and input transition times and are presented in this thesis. The test results 

show that the RLCG model of the Π configuration which was derived from using the AWE method 

exhibits more acceptable, satisfactory and consistent results than other models. Thus, this model 

was selected as the candidate model for buffer insertion analysis. We will use this model to reduce 

the on-chip interconnect delay by considering the buffer insertion technique and Elmore delay 

modeling. By using this model, it is difficult to derive the closed-form expression for the on-chip 

interconnect delay based on the Elmore delay model Because of the model complexity. Therefore, 

modifying the model is crucial. Some modifications have been applied on the model to reduce this 

complexity. The first modification was eliminating the effect of the dielectric loss from the model 

and converting the model from RLCG model to RLC model. The second modification was mapping 

the interconnect RLC model into the RC model. The effect of the interconnect inductance is 
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compensated in the RC model. This generates an improved RC model. This model has a negative 

capacitance connected in the upstream of the model.  We modified it to the down stream of the 

model and generated an equivalent RC model. This model is simple and easy to use for calculating 

the on-chip  interconnect delay using buffer insertion technique. Moreover, this model has the 

simplicity of general RC model and the accuracy of the RLC model. 

 

        The thesis is organized as follows: The history of the interconnect modeling in VLSI circuits is 

briefly reviewed in Chapter 2. Model characterizations are also reviewed in chapter 2 which is 

started from the simple model represented as a short circuit and changes with time to C, RC, RLC 

and RLCG [2-8],[9-13],[32-35],[36-64]. Also, in Chapter 2, basic transmission line theory is briefly 

reviewed. The theory of transmission lines is discussed for types of transmission lines: lossless LC 

transmission lines, lossy RLCG transmission lines. Furthermore, brief discussions on the GAM, 

TPN and AWE methods are addressed. 

 

       Z-parameters of Telegraph equations are derived in Chapter 3. A general form of z-parameters 

of both T and Π configurations from using the GAM, the TPN and the AWE are presented 

respectively. Using these general z-parameter models, eighteen different RC, RLC and RLCG 

models are generated.  

 

       In chapter 4, the comparison for the vdd/2 and transition time between the H-spice and the 

RLCG models of T and Π configurations which were derived from using the GAM, TPN and AWE 

methods for different interconnect lengths, input transition times and capacitive loads was 

introduced. The comparison revealed that the RLCG model of the Π configuration which is derived 

from using the AWE method exhibits more acceptable and satisfactory results than other models. 

 

       The buffer insertion technique is used in Chapter 5 to reduce the on-chip interconnect delay. 

The equivalent RC model was considered and the Elmore delay model was used to derive closed-

form expressions for the interconnect critical length, minimum buffer sizing and optimum 

interconnect delay. In this chapter, these closed-form expressions were compared with other 

studies.  
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     Conclusions and future works are provided in Chapter 6. In Appendix A, a general z-parameter 

model of the T configuration is presented based on the AWE method.  A general z-parameter model 

is derived based on the AWE method for the Π configuration in Appendix B. In Appendix C, 

closed-form expressions for interconnect critical length, minimum buffer sizing and optimal 

interconnect delay are derived.  
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CHAPTER 2 
 

Background 
  

 
 
2.1   Introduction 
In VLSI, interconnect can be defined as the path, usually a metal line, that joins two or more points 

in the circuit. When a signal propagates through it, it exhibits some responses which affect the 

signal behaviour and integrity. Interconnect responses against the propagation signal such as delay, 

noise, reflection, etc. depends on many factors which may be grouped as interconnect and signal 

dependent factors. The first group includes factors such as interconnect dimensions, material, etc. 

The second group consists of factors such as the signal's amplitude, transition time, etc. 

       With the down scaling of technology, interconnects start to play a major role in determining the 

design performance. Thus, this chapter is dedicated for reviewing the state of the art of on-chip 

interconnect modeling. 

 
2.2   Interconnect Models 
On-chip interconnect modeling tries to describe the behaviour of on-chip interconnects in terms of 

their dimensions, materials, and propagation signal properties. Accurate models are the models 

which are able to characterize the interconnect behaviour accurately to reach the real behaviour. 

Interconnect modeling can be classified based on the signal wavelength into: lumped and 

distributed models.     

 
2.2.1   Interconnect Lumped Models 
Interconnects have a distributed nature and they should be modeled accordingly. However, when 

the signal wavelength is larger than the interconnect length, modeling interconnects as lumped 

elements provides good accuracy and reduce the modeling complexity. Therefore, for high-speed 

digital circuits, local interconnects, which is the majority of on-chip interconnects, can be safely 

treated as lumped models because their lengths are negligible compared to the wavelength of the 

traveling signals [1].  
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2.2.1.1   C- Lumped Models 
In the 1990s, when the gate’s capacitance dominated the interconnect’s parasitic capacitance, 

interconnects were modeled as short circuits. However, with the scaling of the minimum feature, 

the interconnect parasitic capacitance became comparable to the gate capacitance. Thus, an 

interconnect was modeled as a lumped capacitance [2- 4]. As shown in Figure 2  

 
C = c.l

C

 
Figure 2.1: Interconnect lumped capacitive model. 

 

In Figure 2.1, .C c=   where C is the line capacitance, c is the line capacitance per unit length 

and  is the interconnect length. 

 

2.2.1.2   RC- Lumped Models 
The resistance effect of on-chip interconnect is significant for global interconnects and it becomes 

even more prominent with the technology downscaling [5-6]. For such interconnects, modeling the 

resistance effect is necessary to achieve good accuracy. Figure 2.2 shows an RC-lumped 

interconnect modeling. 

 

R 

C/2 C/2

(a)
    

R /2

C

R/2

(b)
 

Figure 2.2: Interconnect lumped RC model (a) Π-configuration (b) T- configuration.  
 

In Figure 2.2, .R r=  where R  is the line resistance, .C c=  where C  is the line resistance and 

,c r are interconnect unit capacitance and resistance respectively. 

As illustrated in Figures 2.1, the C-lumped model has only one node. So, there is no voltage 

difference along the line whereas the RC-lumped model as shown in Figure 2.2 has two nodes in 
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the Π-configuration and three nodes in the T- configuration. Thus, the analysis of the RC-lumped 

model is more complicated than the C-lumped model due to the changes in the node voltages [7, 8], 

[32-35].  

 
2.2.1.3   RLC- Lumped Models 
The increased demand for faster VLSI chips pushes ASIC designers to use the wide wire upper 

metal layers [9- 13], [36- 55]. For global interconnects such as clock distribution, moreover, this 

also pushes the industry to develop low resistivity materials such as copper [42, 46] and low k 

materials to reduce the interconnect capacitance [42, 46]. These advance technologies allowed 

longer and denser interconnects which increased the inductance effect. Thus, modeling such 

interconnects considers their inductance effects [54]. Therefore, interconnects are modeled as 

lumped RLC circuits as shown in Figure 2.3.  

 

R L

C/2 C/2

(a)

R/2 R/2L/2 L/2

C

(b)
 

Figure 2.3: Interconnect lumped RLC model (a) Π-configuration (b) T-configuration. 
 

In Figure 2.3, .L l= where L  is the line inductance and l is the line inductance per unit length. 

 

The amount of inductance effects presented in an RLC line depends on the ratio between the RC 

and the LC time constant of the line [55]. Hence, as inductance effects increase, the LC time 

constant dominates the RC time constant. 

 

       By combining all these effects with the dielectric loss G, RLCG configuration becomes 

necessary to characterize the behaviour of the interconnect accurately.  
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2.2.1.4   RLCG- Lumped Models 
In VLSI circuit fabrication, G represents the conductivity of the dielectric layers such as silicon 

dioxide (SiO2) and silicon nitride (Si3N4) located between an interconnect and the substrate layer. 

Generally, there are many benefits from using dielectric layers in the chip fabrication. First of all, 

they are used to isolate active circuits from each other and to provide mechanical and chemical 

protection to the device itself. Second, dielectric layers are widely used in the fabrication of 

components essential to circuit functionality such as capacitors and MOS transistors. Lastly, 

dielectric layers are also used as masking materials during wafer fabrication. However, naturally 

there are no ideal dielectric materials. Thus, they reveal some conductivity. Although this 

conductivity is very low, it behaves as a path for the current to pass through it and cause power 

loss. This loss will affect the signal integrity and delay [56, 57].  This loss has to be considered in 

the interconnect modeling to represent the real behaviour of the interconnect. In this case, the 

interconnect takes another shape of configuration, which is the RLCG model as shown in Figure 

2.4, where .G g=  , G is the line conductance and g is the line conductance per unit length.  

 

LR

C/2 G/2G/2C/2

(a)
    

L/2R/2

GC

L/2R/2

(b)
 

Figure 2.4: Interconnect lumped RLCG model (a) Π- configuration (b) T- configuration. 
 

 
2.2.2   Distributed Transmission Line Models 
When the signal transition time becomes less than or comparable to the signal traveling time on 

interconnects, lumped models do not characterize the behaviour of interconnects with adequate 

accuracy. Therefore, the distributed transmission line models are needed to fully consider this 

behaviour. Figures (2.5-2.10) represent the equivalent circuits of the distributed 2T and 2Π models 

for one lump of interconnect T and Π configurations [64]. 
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R/2 R/2

C
(a)

R/4 R/2

C/2

(b)

R/4

C/2

 
 

Figure 2.5: Lumped circuit approximations for distributed RC Lines (a) RC T- configuration 
 (b) RC 2T- configuration. 

 

R

(a)
C/2C/2

R/2

(a)
C/2C/4

R/2

C/4

 
 

Figure 2.6: Lumped circuit approximations for distributed RC Lines (a) RC Π- configuration 
 (b) RC 2Π- configuration. 

 

R/2 Rl/2L/2 Li2

C
(a)

R/4 R/2L/4 L/2

C/2
(b)

R/4 L/4

C/2

 
 

Figure 2.7: Lumped circuit approximations for distributed RLC Lines (a) RLC T- configuration (b) 
RLC 2T- configuration. 
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LR

C/2C/2

(a)

Ll2R/2

C/2C/4

(b)

L/2R/2

C/4

 
 

Figure 2.8: Lumped circuit approximations for distributed RLC Lines (a) RLC Π- configuration (b) 
RLC 2Π- configuration. 

 
 

L/2R/2

GC

L/2R2
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L/2R/2

G/2C/2

L/4R/4
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L/4R/4

G/2C/2

 
Figure 2.9: Lumped circuit approximations for distributed RLCG Lines (a) RLCG T- configuration 

(b) RLCG 2T- configuration. 
 

 

LR

C/2 G/2Gl2C/2
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R/2

C/4 G/4
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Figure 2.10: Lumped circuit approximations for distributed RLCG Lines (a) RLCG Π- 
configuration (b) RLCG 2Π- configuration. 

 



11 

 

2.3   Transmission Line Theory 
Transmission line theory discusses the behaviour of a transmission line during signal propagation. 

When an electrical signal propagates through a transmission line, the voltage and current along the 

transmission line can vary in magnitude and phase as a function of position. Therefore, standard 

circuit theory cannot be employed on an electrical network; an alternative analysis must be applied 

to the system. As we know, transmission line theory represents a traditional topic in electrical 

engineering, especially in the area of power transmission. This topic received renewed attention 

because transmission line theory has found new and important applications in the area of high-

speed VLSI circuits. Interconnect in a high-speed VLSI circuit reveals nonlinear delay effects. So, 

the interconnect can be modeled as a transmission line loaded with nonlinear element such as a 

capacitance. This nonlinearity may lead to many new effects such as instability and generation of 

higher order harmonics. The mathematical models of transmission lines with nonlinear loads 

consist of the linear partial differential equations describing the current and voltage dynamics along 

the lines together with the nonlinear boundary conditions imposed by the nonlinear loads connected 

to the lines. These nonlinear boundary conditions make the mathematical treatment very difficult. 

Moreover, in a high-speed VLSI circuit, the transmission line is stripped compared with the 

wavelength, and the transmission line can be characterized by the propagation constant and 

characteristic impedance.  

 
2.3.1   Transmission Lines 
The transmission line, as the name implies, is the line used to transmit an electrical signal from one 

point to another. When the electrical signal propagates through the transmission line, the line 

exhibits resistive, capacitive, inductive and conductive effects against the signal. Therefore, the line 

in a VLSI circuits can be modeled as a transmission line which is composed of   interconnect series 

resistance, series inductance, shunt capacitance and shunt conductance, , ,R L C and G

respectively, as illustrated in Figure 2.11. The resistance R comes from the self resistance of the 

interconnect itself (the resistance of the materials used for interconnect); the inductance L

represents the interconnect self inductance; the capacitance C is mainly due to the capacitance 

formed between the interconnect and the substrate layers; and the conductance G represents the 

conductivity of the dielectric layers located between the interconnect and the substrate layer. 

Interconnect parasitic impedances push the line to deviate from the ideal characteristic impedance.  
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       In VLSI chips, interconnects can be modeled as micro-strips or as parallel-plate transmission 

lines [58- 60]. The best signal transmission from one point to another on the transmission line can 

be reached if the losses across the transmission are low, if the attenuation and velocity of the waves 

across the transmission line are frequency independent and if the characteristic impedance of the 

transmission line and the source and load impedances are matched to prevent reflections [61- 63].     

 

 

CΔℓ/2CΔℓ/2

RΔℓ LΔℓ

 

GΔℓ/2 GΔℓ/2

Δℓ

 
 

Figure 2.11:  A section of an RLCG Π- configuration of transmission line. 
 

 

Based on the interconnect loss, interconnects in VLSI circuits can be classified as: Lossless and 

Lossy transmission lines. 

 
 2.3.1.1   Lossless Transmission Lines 
When the loss, which acts on the propagated signal on an interconnect in VLSI circuits due to the 

line elements (interconnect resistance and conductance) is ignored, the interconnect can be modeled 

as an LC model called a lossless transmission line model. To get a more accurate representation 

model, the interconnect is sampled into small pieces. Each piece represents small LC lumped circuit 

elements. These elements are distributed uniformly down the length of the line as shown in Figure 

2.12. 
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CΔℓ

LΔℓ

CΔℓ CΔℓ CΔℓ

LΔℓ LΔℓ LΔℓ
ℓ

 
 

Figure 2.12:  Equivalent circuit model of a lossless transmission line. 
 

      

   A lossless transmission line behaves as a short circuit at low frequencies because line inductance

L can be represented as a short circuit whereas the line capacitance C can be represented as an 

open circuit. Therefore, a short circuit lossless transmission line at low frequencies represents an 

ideal medium for signal propagation. However, at high frequencies, the behaviour of a lossless 

transmission line is totally different than the short circuit representation. Delay of the propagation 

signal along the wire as well as the reflection is the most important two things that should be 

considered compared with the short circuit representation. In [64], lossless transmission line 

velocity, characteristic impedance and delay are calculated as illustrated in equations (2.1-2.3),  

 

 
1v
lc

=                                                                                                                            (2.1) 

0
lZ
c

=                                                                                                                           (2.2) 

pdt
v

=


                                                                                                                              (2.3) 

 

where v is the velocity of the signal on the line, 0Z is the line characteristic impedance and pdt is 

the signal propagation delay. 
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2.3.1.2   Lossy Transmission Lines 
When the loss is significant, the effects of the series resistance R and the dielectric conductance G 

should be included in the transmission line models. Figure 2.13 shows the equivalent circuit model 

of a lossy transmission line with distributed lumps of RLCG elements, 

 
RΔ

GΔℓ

LΔℓRΔℓ LΔℓRΔℓ

GΔℓCΔℓ

LΔℓRΔℓ

GΔℓCΔℓ
CΔℓ

LΔℓ

 
 

Figure 2.13:  Equivalent RLCG circuit model of a lossy transmission line. 
 

 

To describe Eq. (2.4), the characteristics of the wave propagation along the line (γ ) is a complex 

number. The real part represents the signal attenuation (α ) due to the line resistance and dielectric 

conductance. The imaginary part ( β ) represents the phase constant, which determines the speed of 

the propagation signal across the line. Thus γ can be expressed as  

 

jγ α β= +                                                                                                                        (2.4)  

 

For an RLCG lossy transmission line, the attenuation (α ) can be described as in [64], 

 

2 2
o

o

gZr
Z

α = +                                                                                                               (2.5) 

 

Clearly, we can see from Eq. (2.5) that the attenuation of the lossy RLCG transmission line is 

directly proportional to line resistance and conductance. Also, if we neglect the effects of the line 

resistance and conductance, the attenuation will be zero and the line will be a lossless transmission 

line. The speed of the wave propagation along the transmission line for RLC and RLCG 

transmission lines as represented in [64] is 
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v ω
β

=                                                                                                                                 (2.6)  

 

whereω and β are the system frequency and the phase constant respectively.  

 

 From Eq. (2.6), we see that the speed of the signal across the transmission line will be frequency 

dependent.                      

 
2.4  Interconnects in VLSI Circuits  
On-chip interconnect can be represented as series resistance R due to the line resistance and 

inductance L due to the interconnect inductance and shunt capacitance C due to the capacitance 

formed between the interconnect layer and the substrate and conductance G due to the conductivity 

of the dielectric layer. When a signal propagates through an interconnect, it takes a non-negligible 

amount of time, which is called interconnect delay or propagation delay, to travel from one end to 

the other. A large portion of this time is due to the time it takes to charge and discharge the 

capacitance of the wire and gate capacitance of the transistors through the interconnect resistance.  

 

2.4.1  RC- Delay Models 
For an RC circuit, delay can be characterized by the time constant RC. For on-chip interconnects, 

the delay of the signal mainly occurs due to the interconnect resistance R and the interconnect 

capacitance C. Interconnect resistance and capacitance are in direct proportion to the interconnect 

length. Based on the Elmore delay method [65], the delay of the RC line is in quadratic proportion 

to the interconnect length ( 2. .pdt RC r c l= ⇒ ) as shown in Figure 2.14. 
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Figure 2.14: The relationship between the interconnect delay and interconnect length. 

 

 

Figure 2.14 represents the changing of the interconnect delay with its length and a specific width. 

Clearly, we see that the interconnect delay increases nonlinearly with increasing the interconnect 

length. In addition, increasing interconnect length causes the delay to increase rapidly at a specific 

interconnect length (called critical length).   

 

2.4.2  Elmore Delay Models 

Elmore delay model [65] is widely used delay model in interconnect optimization. It is also the 

delay model used in this thesis. Despite its simplicity, Elmore delay model provides fairly good 

accuracy when compared with CAD tools such as H-spice. With an acceptable accuracy, on-chip 

interconnects and buffers can be replaced by an RC components. Therefore, interconnects and 

buffers become an RC circuit. At any point on the interconnect, the upstream resistance is equalled 

to the sum of the resistances from a driver (or a buffer before the point) to that point. The 

downstream capacitance is equalled to all capacitances from that point to a sink (or a buffer after 

the point). The Elmore delay model is basically a resistance-capacitance product. The Elmore delay 

along a signal path in the RC circuit is the sum of the delays associated with resistors in the path, 

where the delay is associated with a resistor is equalled to its resistance times its downstream 

capacitances as shown in Figure 2.15. 
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Figure 2.15: Distributed RC-model of interconnect. 
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Figure 216: Delay calculation at vdd/2. 
 

 

1 2 1 2
2 1 1

( .... ) ( ).....
1

N
pd N

R R R R Rt C C C R
N N

+ + + +
= + + +

−
                                (2.7) 

 

For the uniform interconnect, line resistance and capacitance change with the length of the 

interconnect (interconnect thickness and width are constant). Then, 

 

iR R= ∆  and iC C= ∆                                                                                               (2.8) 

 

Eq. (2.7) can be expressed as  

.p dt [ ( ) ( ) ....... ( )]( ) C C CR
N

∆ + ∆ + + ∆
= ∆

  
                                                       (2.9) 
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.p dt [ ( ) ( ) ..... ( )]( ) ...... ( ) ( )
1

C C CR R C
N

∆ + ∆ + + ∆
= ∆ + + ∆ ∆

+
  

                   (2.10) 

.p dt 2( ) (1 2 ... )RC N= ∆ + + +                                                                                    (2.11) 

.p dt 2 ( 1)( )
2

N NRC +
= ∆                                                                                             (2.12) 

where 
N

∆ =


 , (  represents the interconnect length, N represents the network sections), we have 

21
2pdt RC=                                                                                                                     (2.13) 

 

Eq. 2.13 shows that the delay of the distributed RC modeled interconnect is in the quadratic 

proportion to the length of the interconnect. 

 

      There are many advantages and disadvantages for using the Elmore delay method. The 

advantages are simple closed-form expression, usefulness for interconnect optimization and good 

solutions compared with the H-spice delay model. However, the disadvantages are poor for slope 

computation and inability to handle inductance effects because it represents the first moment of the 

impulse response.   

 

2.4.3   High Order Delay Models 

For long interconnects where the effect of the parasitic inductance is crucial to achieve accurate 

modeling, many models that account for the inductance effect have been proposed [66- 69]. Zhou et 

al. [66] presented an analytical approach of a two-pole circuit approximation to provide a closed 

form solution. Kahng and Muddu [67] obtained an analytical delay model, based on first and 

second moments of RLC interconnection lines, that considers the effect of line inductance. 

Subsequently, Tutuian et al. [68] found a stable time domain expression of the transfer function by 

matching the residues of the first two dominant poles with the first two moments of the transfer 

function. For more accurate methods, Pillage [69] proposed the asymptotic wave evaluation (AWE) 

method which matches the first moments of the transfer function. Later, more stable methods 

namely, pade via Lanczos (PVL) [70], matrix pade via Lanczos (MPVL) [71], Arnoldi algorithm 
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[72], block Arnoldi algorithm [73], and passive reduced order interconnect macromodeling 

algorithm (PRIMA) [74]. Moreover, G. Chen and Eby G. Friedman [75] have used Fourier analysis 

of an RLC interconnect modeling to find the transfer function, then they found the closed-form 

expression for the delay. These models are very accurate but need complex numerical 

computations.  

 

2.5   Methodologies Used for Interconnect Modeling  
In this section, we will discuss three well-known methods of characterizing on-chip interconnects: 

The GAM [76], TPN [77] and AWE [69] methods. The works in [78-80] have considered these 

three methods to find improvement models. In [78], Xu and Mazumder presented an RC macro-

modeling of Π configuration using GAM and AWE methods. The work in [79] continued by 

presenting the RC T configuration using GAM method and also presented an RLC model for both T 

and Π configurations. Subsequently, Sun, et al., [80] obtained an RLC macro-modeling using TPN 

and AWE methods. The GAM, TPN and AWE methods will be explained briefly in the following 

sections. 

 

 2.5.1   Global Approximation Method (GAM) 

The GAM is a method used to provide a mathematical approximation of a physical model. 

Depending on the range of its applicability, the mathematical approximation of a physical model 

can be classified as Local Approximation Method (LAM) (valid in the vicinity of a design point) or 

Global Approximation Method (GAM) (valid in the whole design space). LAM are usually based 

on Taylor series expansion at the current point using a function value and its first derivative, 

whereas GAM are normally based on the information taken in a series of points in the feasible 

design space. 

 

         The construction of a GAM relies on the sampling of the design space at nX  locations to 

obtain response values for the objective function. To apply this method to interconnect modeling, 

let us consider an interconnect of length   [79] as shown in Figure 2.17, where nX  represents the 

selected grid points on the interconnect and iV  represents the voltages at selected grid points. 
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I2    Io X0=0 X2=1X1=1/2

V0 V1 V2



 
 

Figure 2.17: Interconnect with the assumption of the three grid points [79]. 
 

 

Along the line, three grid points have been selected:  

 

 
0

0x =  , 
1

1
2

x =   and 2 1x =                                                                                       (2.14) 

 

Voltages and currents at these points can be expressed in Laplace domain as follows: 

0 0( , )V V x s=   ‘  1 1( , )V V x s=  ‘  2 2( , )V V x s=                                                                (2.15) 

0 0( , )I I x s=   ‘  1 1( , )I I x s=   ‘ 2 2( , )I I x s=                                                                 (2.16) 

 

To find the approximation frame for this interconnect, based on the GAM, the current differences 

for each two points equals the sum of the derivative currents for all branches between these two 

points [76]. 

 

 2 0 1 0 2 1 3 2( , ) ( , ) ( , ) ( , ) ( , )I x s I x s a I x s a I x s a I x s′ ′ ′− = + +                                              (2.17) 

 

The voltage difference between two points equals the sum of the derivative voltages of the outer  

points.      

 

1 0 1 0 2 2( , ) ( , ) ( , ) ( , )V x s V x s bV x s b V x s′ ′− = +                                                                   (2.18) 

2 1 3 0 4 2( , ) ( , ) ( , ) ( , )V x s V x s b V x s b V x s′ ′− = +                                                (2.19) 
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The approximation frame has coefficients 1 2 3 1 2 3, , , , ,a a a b b b  and 4b  and ( ' ) denotes the 

derivative with respect to x  ( [0,1])x∈ where x  is the normalized interconnect length. The value of 

these coefficients can be found by using the generalized Galerkin’s method [76]. The generalized 

Galerkin’s method assumes that interconnect currents and voltages change with interconnect length.  

So, to find the current response at each point, the fitting function method is used to express the 

current based on the location ( x ). The power of ( x ) increases with the number of derivative of the 

current assumed in the frame as shown below: 

 

( , )I x s x=  as a fitting function                                                                                        (2.20) 

 

Using this assumption to find the coefficients 1 2,a a  and 3a   used in Eq. (2.17), we get 

 

At ( , )I x s x=                                                                                                                     (2.21) 

0 1 2
2 0 1 2 3x x x x x x

x x a x a x a x
= = =

′ ′ ′− = + +                                                                         (2.22)                                            

1 2 3 1 2 31 0 1a a a a a a− = + + ⇒ = − −                                                                            (2.23) 

2( , )I x s x=                                                                                                                        (2.24) 

0 1

2 2 2 2 2
2 0 1 2 3 2( ) ( ) ( )

x x x x
x x a x a x a x x x

= =
′ ′ ′− = + + =                                                 (2.25)       

2 3 2 31 2 1 2a a a a= + ⇒ = −                                                                                                 (2.26) 

3( , )I x s x=                                                                                                                         (2.27) 

0 1

3 3 3 3 3
2 0 1 2 3 2( ) ( ) ( )

x x x x
x x a x a x a x x x

= =
′ ′ ′− = + + =                                                    (2.28) 

                                                                                       (2.29) 

 

 

From Eqs. (2.23, 2.26 and 2.29), we get 

 

1 2
1 2,
6 3

a a= =  and 3
1
6

a =                                                                                                  (2.30) 

2 2
3 3

3 4 31 3
4 12
a aa a −

= + ⇒ =
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In the same way, to find the voltage response at each point, the fitting function method is used to 

express the voltage based on the location ( x ). Again, the power of ( x ) increases with the number 

of derivative of the voltages assumed in the frame as shown below: 

Substituting ( , )V x s x′ =  and 2x  as the fitting functions used in Eq. (2.18), yield 

 

1
3
8

b =  and 2
1
8

b =                                                                                                              (2.31)    

   

Also, 3
1
8

b =  and 4
3
8

b =  can be obtained in the same way from Eq. (2.19). 

The approximation frame for interconnect current and voltage differences after applying the GAM 

and using the generalized Galerkin’s method is 

 

 2 0 0 1 2
1 2 1( , ) ( , ) ( , ) ( , ) ( , )
6 3 6

I x s I x s I x s I x s I x s′ ′ ′− = + +                                                 (2.32) 

1 0 0 2
3 1( , ) ( , ) ( , ) ( , )
8 8

V x s V x s V x s V x s′ ′− = +                                                                (2.33) 

2 1 0 2
1 3( , ) ( , ) ( , ) ( , )
8 8

V x s V x s V x s V x s′ ′− = +                                                                   (2.34) 

 

2.5.2   Two-Port Network (TPN) 

TPN has two ports, each port is characterized by voltage and current variables as shown in Figure 

2.18. 

 

+ +

- -
V1 V2

I1 I2

 
  Figure 2.18: Shows the variables for a two-port network. 
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The subscript 1 is used to refer to the variables at the input port (at the left) and the subscript 2 to 

refer to the variables at the output port (at the right). At both of these ports the variables are defined 

so that their relative reference directions obey the usual convention (input and output current for 

each port should be equal). Since we now have four variables, it requires two equations to relate 

these variables. The general form of these equations is expressed as  

 

1 11 1 12 2( ) ( ) ( ) ( ) ( )U s K s W s K s W s= +                                                                            (2.35) 

2 21 1 22 2( ) ( ) ( ) ( ) ( )U s K s W s K s W s= +                                                                               (2.36)    

                                                

where the quantities 1( )U s , 2 ( )U s , 1( )W s and 2 ( )W s  maybe any of the voltage and current 

variables 1( )V s , 2 ( )V s 1( )I s  or 2 ( )I s . Coefficients ( )ijK s  are the network functions that relate 

these variables. Sometimes ( )ijK s are called network parameters.  There are six different possible 

combinations that can be used to represent 1( )U s  and 2 ( )U s in Eqs. (2.35-2.36). A tabulation of 

these six possible combinations is given in Table 2.1. 

 

Table 2.1: Six sets of network parameters for two-port network method. 

case 1( )U s  
2 ( )U s  1( )W s  2 ( )W s  

1 1( )V s  2 ( )V s  1( )I s  2 ( )I s  
2 1( )I s  2 ( )I s  1( )V s  2 ( )V s  
3 1( )I s  2 ( )V s  1( )V s  2 ( )I s  
4 1( )V s  2 ( )I s  1( )I s  2 ( )V s  
5 1( )V s  1( )I s  2 ( )V s  2 ( )I s−  
6 2 ( )V s  2 ( )I s  1( )V s  1( )I s−  

 

 

Here we may note that any one of these six sets of parameters (if it exists) has the property 

completely characterizes the network. Also, any set can be utilized to find other sets of parameters 

[77].  

 



24 

 

     The general TPN configuration shown in Figure 2.19 has four individual terminals. It is 

theoretically possible to define four current variables rather than the two shown in the Figure 2.18. 

The requirement of a network port is that the current into one of the port terminals, at every instant 

of time, equals the current out of the other terminal of the port. This is called the port current 

requirement and it is illustrated in Figure 2.19. Most of the situations to which TPNs are applied 

automatically satisfy this requirement. If a port is open-circuited (i.e. if nothing is connected to it), 

the currents at the two terminals defining the port are zero. Thus the requirement is satisfied. When 

the case where any two-terminal elements (including a short circuit) are connected to the port, the 

currents into and out of the two-terminal element must be equal, the port current requirement is 

always satisfied in this case. The requirement is also satisfied for the case where a group of two-

port networks is connected in cascade as shown in Figure 2.20. Consider the first network (on the 

left) in the cascade. The restriction on the currents is satisfied at the input port of this network by 

the open circuit. KCL now requires that the sum of the other two-terminal currents must be zero; 

thus the port current requirement is satisfied. Since the requirement at the output port of the first 

network is met, it must also be satisfied at the input port of the second network since the ports are 

directly connected.  

 

I1 I2

I1 I2

 
Figure 2.19: Current requirements of the ports. 

 

 

+ +

- -
V1 V2

I1

+ +

-

+ + +-

-- - -

+

-
V1 V1 V1 V1 V1 V1

I1a -I2a I1b -I2b I1c I2c -I2

 
    

 Figure 2.20: Cascade connections for two-port networks. 
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2.5.2.1  Z-Parameters in TPN Method 

Table 2.1 shows that there are six ways in which the voltage and current variables of a TPN method 

may be selected so as to define a set of network functions. The first case in Table 2.1  will be 

considered to represent the z-parameter. We Choose 1( )V s and 2 ( )V s as the quantities 1( )U s  and 

2 ( )U s  as shown in Eqs. (2.35) and (2.36) and 1( )I s and 2 ( )I s as the quantities and 2 ( )W s . Since 

the left members of the resulting set of equations have the dimensions of voltage, all the terms in 

the right members of these equations must also have the dimensions of voltage. Therefore, since the 

quantities 1( )W s  and 2 ( )W s have the dimensions of current, this requires that coefficients ( )ijK s

have the same dimensions of impedance. Equations (2.35) and (2.36) can be written in the form of 

 

1 11 1 12 2( ) ( ) ( ) ( ) ( )V s Z s I s Z s I s= +                                                                                 (2.37) 

2 21 1 22 2( ) ( ) ( ) ( ) ( )V s Z s I s Z s I s= +                                                                                (2.38) 

 

Quantities ( )ijZ s are called Z parameters. We can write equations (2.37) and (2.38) in the matrix 

form. 

 

1 11

2 21

( ) ( )
( )

( ) ( )
V s Z s

V s
V s Z s
  

= =  
  

    
12 1

22 2

( ) ( )
( ) ( )

( ) ( )
Z s I s

Z s I s
Z s I s

  
=  

  
                                           (2.39) 

Eq. (2.39) represents the z-parameter matrix where for a given set of z-parameters (shown in Eq. 

(2.39)), there are some commonly used network forms which may be used as circuit configurations. 

One of the well known methods of these forms is the “ T ” network configuration as show in Figure 

2.21. When 12 ( )Z s  is equal to 21( )Z s , the network is reciprocal. Let us consider the T 

configuration of two-terminal impedances shown in Figure 2.21. The z-parameter matrix for this 

network is readily shown to be 
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Za Zb

Zc

 
                                                     Figure 2.21: T-Configuration. 
 

 

 

11 12

21 22

( ) ( )
( ) ( )

Z s Z s
Z s Z s
 
 
 

 = 
( ) ( ) ( )

( ) ( ) ( )
a c c

b b c

Z s Z s Z s
Z s Z s Z s
+ 

 + 
                                               (2.40) 

                                                       

From the matrix above, the relations of the network elements ,a bZ Z  and cZ as functions of the 

network parameters can be found from [77]. 

 

11 12( ) ( )aZ Z s Z s= −                                                                                                          (2.41)                         

22 12( ) ( )bZ Z s Z s= −                                                                                                          (2.42) 

12 ( )cZ Z s=                                                                                                                         (2.43) 

 

Thus, the T-network may be redrawn with the expressions specifying the two-terminal impedances 

given directly in terms of z-parameters as shown in Figure 2.22.  

 

Za Zb

Zc

Z11-Z12 Z22-Z12

Z12

 
  Figure 2.22: The equivalent z-parameter of T-model. 

 



27 

 

 
2.5.3 Asymptotic Waveform Evaluation (AWE) Method 
The AWE was introduced in [69] as an efficient technique for the solution of linear circuits. It is a 

general method that applies to circuits consisting of all types of lumped, linear elements connected 

in any valid topology. The AWE method employs an efficient algorithm to compute the time 

moments of circuit responses. These moments are then matched via Pade approximation [70], a 

simple recursive formula method [106], or Maclaurin series projection [83] to reduced-order 

rational function models. The reduced-order models can be used to characterize the circuit’s time 

and frequency. 

 

         In AWE, a Taylor series expression could be used to express the circuit response in a 

polynomial form. Then a simple recursive formula in [106] and the approaches in [83] are used to 

find the polynomial coefficients as illustrated below.  

 
2 1

0 1 2 1
2

1 2 1

.....( )
1 ......

n
n

in n
n

a a s a sY s
b s b s

−
−

−

+ + +
=

+ + +
                                                                                      (2.44) 

 

Eq. (2.44) can be expressed using a polynomial of order 2n-1, as in the Taylor series 

 

 2 1
0 1 2 1( ) ........ n

in nY s Y Y s Y s −
−= + + +                                                                                    (2.45) 

 

The coefficients kY of Eq. (2.45) can be found by a simple recursive formula [106],     

 

1

k

k k i k i
i

Y a bY −
=

= −∑                                                                                                               (2.46) 

 

where ( )inY s  is the input admittance of a circuit in s-domain, kY are the coefficients of the input 

admittance, ka are the coefficients of the numerator of the input admittance equation, n is the 

number of the circuit sections , and ib  are the coefficients of the denominator of the input 

admittance.   
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2.6   Summary 
In this chapter, the history of the interconnect modeling were briefly reviewed. The amendments of 

the interconnect modeling based on the interconnect effects in the circuits toward the accuracy are 

briefly addressed. Lumped and distributed interconnect models, namely C, RC, RLC, and RLCG, 

were addressed. A transmission line of lossy and lossless models was mentioned for RC and LC 

configurations respectively. Delay models based on interconnect RC configuration, Elmore method 

and high order delay methods were discussed. The GAM, TPN, and AWE methods were briefly 

reviewed. In each method, the derivation of an interconnect model is considered. These methods are 

fully considered in the next chapter.    
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CHAPTER 3 
 

Generalizing the GAM, TPN and AWE Methods Using Z-Parameters  
 

 

 
3. 1  Introduction 
 With the use of nano-meter technology, integrated circuits (ICs) have become more dense and 

more complex. Subsequently, interconnect delay has become the dominant factor in nano-meter 

design. The effects of interconnects on chip performance such as delay, crosstalk, and reflection are 

becoming critical  factors in VLSI design [81]. 

 
       In recent years also, various improvement methods have been proposed on the interconnect 

models [78-80]; an improved RC T-configuration based on the GAM and RC Π - configuration 

based on the AWE have been proposed in [78]. These models are not robust because they don’t 

consider the effect of the interconnect inductance. In [79], improved RC and RLC models for both 

T and Π  configurations based on the GAM have been proposed. Furthermore, improved RLC 

models for both T and Π   configurations based on the TPN and AWE methods have been 

presented in [80]. Although these models exhibit good accuracy compared with H-spice, 

unfortunately, the complexity of using these methods prevents including the effect of the dielectric 

loss in their models. Therefore, generalizing these methods to find all the RC, RLC and RLCG 

models are crucial. 

 

      In this chapter, we generalized these methods into z-parameter models. We started to derive the 

Telegraph equations for the currents and voltages of a transmission line in z-parameter 

representation. A z-parameter of interconnect modeling for both T and Π configurations based on 

the GAM, TPN, and AWE is proposed. Eighteen different RC, RLC and RLCG models are easily 

generated from using the derived models.  
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3.2   Z-Parameter Representation for the Telegraph Equations  
To derive the telegraph equation for the currents and voltages of a transmission line, we consider 

the general form using the z-parameter model where there are resistance, capacitance, inductance 

and/or conductance. Moreover, the distributed z-parameter model will be considered as shown in 

Figure 3.1. 

In this section, telegraph equations for voltage and current differences of the interconnect-z-

parameter model in s-domain have been derived.  

 

 

Z2Δx

Z1Δx

V(x+Δx,t)V(x,t)
1

1i(x,t) i(x+Δx,t)

 
 

Figure 3.1: Distributed z-parameter model of a transmission line. 
 

 

By applying KVL for loop1 of Figure 3.1, we get 

 

                                                                             (3.1) 

1( , ) ( , ) ( , )v x x t v x t i x t Z x+ ∆ − = − ∆                                                                              (3.2) 

 1
0

( , ) ( , ) ( , )
x

d vx t v x t i x t Z
dx x ∆ →

∆
= = −

∆                                                                              (3.3) 

 

Expressing Eq. (3.3) in s-domain, gives 

 

1
( , ) ( , )dV x s I x s Z
dx

= −                                                                                                         (3.4) 

1( , ) - ( , )V x s Z I x s′ =                                                                                                            (3.5) 

1( , ) ( , ) ( , )v x t i x t Z x v x x t= ∆ + + ∆
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By applying KCL at node1, results in 

 

2( , ) ( , ) ( , ) /i x t i x x t v x x t Z x= + ∆ + + ∆ ∆                                                                       (3.6) 

2( , ) ( , ) ( , ) /i x x t i x t v x x t Z x+ ∆ − = − + ∆ ∆                                                                    (3.7) 

2
( , ) ( , ) /i x t v x t Z

x
∆

= −
∆

                                                                                                    (3.8) 

2
0

( , ) ( , ) ( , ) /
x

d ix t i x t v x t Z
dx x ∆ →

∆
= = −

∆                                                                           (3.9)  

   

Expressing Eq. (3.9) in s-domain, yields 

 

2
( , ) ( , ) /dI x s V x s Z
dx

= −                                                                                                  (3.10) 

2( , ) ( , ) /I x s V x s Z′ = −                                                                                                     (3.11) 

 

Eqs. (3.5, 3.11) represent the Telegraph equations for voltages and currents difference of the z-

parameter-transmission line in s-domain. From these equations, it is easy to get the telegraph 

equations of current and voltage difference for transmission line RC, RLC, or RLCG models as 

shown below: 

For the RC distributed model, if we substitute 1Z R=  and 2
1Z

sC
= in Eqs. (3.5, 3.11), we have 

 

 ( , ) ( , )V x s RI x s′ = −                                                                                                          (3.12) 

( , ) ( , )I x s sCV x s′ = −                                                                                                       (3.13) 

For the RLC distributed model, substituting 1Z R sL= + and 2
1Z

sC
=

 
in Eqs. (3.5, 3.11), we 

have 

( , ) ( ) ( , )V x s R sL I x s′ = − +                                                                                               (3.14) 

( , ) ( , )I x s sCV x s′ = −                                                                                                        (3.15) 
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For the RLCG distributed model, substituting 1Z R sL= + and 2
1Z

G sC
=

+
 in Eqs. (3.5, 3.11), 

we have 

 

 ( , ) ( ) ( , )V x s R sL I x s′ = − +                                                                                               (3.16) 

( , ) ( ) ( , )I x s G sC V x s′ = − +                                                                                               (3.17) 

 

From all the results above, Eqs. (3.5, 3.11) represent the general z-parameter telegraph equations 

for transmission line currents and voltages. Therefore, Eqs. (3.5, 3.11) can be directly used to find 

RC, RLC and/or RLCG telegraph equations by replacing 1Z and 
2

1
Z  

with their actual components, 

where 1Z is the impedance between the two points at which the voltages change, and 
2

1
Z

is the 

shunt admittance where the currents change. 

 

3.3   Z-Parameter Modeling For Interconnect Based on GAM, TPN and  
       AWE Methods 
A general z-parameter interconnect modeling is a model which can be used to find an RC, RLC 

and/or RLCG interconnect model directly in both T and Π configurations. Three well known 

methods have been used for interconnect modeling: GAM, TPN and AWE. In this section, we will 

discuss all these three methods of analysing interconnects in z-parameter form and for each method, 

both T and Π configurations will be considered. 

 

3.3.1 GAM Based Z-Parameter Modeling 
z-parameter modeling using the GAM method is presented by deriving Telegraph equations    for 

interconnect voltages and currents in z-parameters. The GAM method is taken for interconnect 

voltages and currents. Based on that, approximation frames for voltages and currents in z-

parameters are obtained. The fitting function of the Galerkin’s method is used to find the 

approximation frames coefficients. Some mathematical manipulations are applied on the frames. z-
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parameter modeling for both T and Π configurations is derived. Z-parameter modeling based on the 

GAM method can be used easily to switch between the interconnect RC, RLC and RLCG modeling 

 

3.3.1.1   Z-Parameters Derivation For T-Configuration 
In this section, we will present the z-parameter model for an interconnect T-presentation based on 

the GAM. By considering Eqs. (3.5, 3.11), Eqs. (2.32-2.34), which are proposed in section 2.5.1, 

can be rewritten as: 

 

0 1 2
2 0

2 2 2

( , ) ( , ) ( , )1 2 1( , ) ( , )
6 3 6

V x s V x s V x sI x s I x s
Z Z Z

− = − − −                                             (3.18) 

1 0 0 1 2 1
3 1( , ) ( , ) ( , ) ( , )
8 8

V x s V x s I x s Z I x s Z− = − −                                                           (3.19) 

2 1 0 1 2 1
1 3( , ) ( , ) ( , ) ( , )
8 8

V x s V x s I x s Z I x s Z− = − −                                        (3.20) 

 

Also, by considering Eqs. (2.15, 2.16) in section 2.5.1, Eqs. (3.18-3.20) above can be  

rewritten as  

 

0 1 2
0 2

2 2 2

1 2 1
6 3 6

V V VI I
Z Z Z

− = + +                                                                                        (3.21)   

0 1 1 0 1 2
3 1
8 8

V V Z I Z I− = +                                                                                                  (3.22) 

1 2 1 0 1 2
1 3
8 8

V V Z I Z I− = +                                                                                          (3.23) 

 

Eq. (3.22) can be rewritten as  

 

1 0 1 0 1 2
3 1
8 8

V V Z I Z I= − −                                                                                                    (3.24) 
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Substituting Eq. (3.24) in equation (3.23), yields 

 

2 0 1 0 1 2 1 0 1 2
3 1 1 3
8 8 8 8

V V Z I Z I Z I Z I= − − − −                                                                     (3.25) 

2 0 1 0 1 2
1 1
2 2

V V Z I Z I= − −                                                                                                  (3.26) 

0 2 1 0 1 2
1 1
2 2

V V Z I Z I− = +                                                                                                  (3.27) 

 

Depending on Eq.(3.27), the circuit can be constructed as shown in Figure 3.2. 

 

 

V1

Vx

I0 I2

1 V2V0

Z1/2 Z1/2

Z2

1

 
Figure 3.2: The circuit after manipulations of the voltage equations. 

                

 

By applying KVL for loop 1 of Figure 3.2, we can write 

 

0 1 0 1
1
2 xV Z I V V= + +                                                                                                        (3.28) 

0 1 1 0
1
2 xV V Z I V− = +                                                                                                        (3.29) 

 

Substituting Eq. (3.29) in Eq. (3.22), yields 
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1 0 1 0 1 2
1 3 1
2 8 8xZ I V Z I Z I+ = +                                                                                           (3.30) 

1 0 1 0 1 2
3 1 1
8 2 8xV Z I Z I Z I= − +                                                                                           (3.31) 

1 0 2
1 ( )
8xV Z I I= − −                                                                                                         (3.32) 

 

So, from Eqs. (3.27, 3.32), the circuit can be presented as shown in Figure 3.3. 

 

V1

I0 I2

V2V0

Z1/2 Z1/2

Z2

-Z1/8

 
 

Figure 3.3: The z-parameter of T-configuration after the voltage and current equations are 
manipulated. 

 

 

It can be seen that Eqs. (3.29, 3.32) represent the general form of the interconnect z-parameter for 

T-configuration based on the GAM. Figure 3.4 represents the interconnect T-configuration for RC, 

RLC and RLCG circuits based on the GAM as obtained from Eqs. (3.27, 3.32).  
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R/2 L/2

C

-R/8

-L/8

L/2R/2V0

I0

V2

I2

(b)

R/2 L/2

GC

-R/8

-L/8

R/2V0

I1 I2
V2L/2

(c)  
 

Figure 3.4: Interconnect T-configuration based on the GAM for (a) RC, (b) RLC and  
(c) RLCG interconnects. 

 
 

 In this section, we derived the z-parameter model of interconnects in T-configuration based on the 

GAM. In this model, the voltage differences of the line are expressed in Eq. (3.27) and the current 

differences are expressed in Eq. (3.32). Figures 3.4 (a, b and c) represent the result of the general z-

parameter model in T-configuration based on the GAM for RC, RLC and RLCG models. Qinwei 

and Pinaki in [78] derived only the RC T-configuration based on GAM. They did not mention RLC 

and the RLCG models. Later on, the work in [79] mentioned both T and Π configurations for RC 

and RLC models based on the GAM but omitted RLCG models. Clearly, the revision of the z-

parameter model revealed better results than the works in [78,79] because using the z-parameter 

model, we can easily find the T-configuration of the RC, RLC or RLCG interconnect models not 

only the RC or RLC model. 

 

3.3.1.2   Z-Parameters Derivation for Π-Configuration  
In this section, we derive the z-parameter model for on-chip interconnect for Π-configuration based 

on the GAM. Eqs. (3.5) and Eq. (3.11) represent the relationship of duality [80]. i.e., if we replace 

V(x, s) with I(x, s) and 1Z with 2Z , then Eq. (3.5) and Eq. (3.11) become identical. This duality can 

also be applied to Eqs. (3.18-3.32) which results in another approximation frame.  

 

 0 2 1 0 1 1 1 2
1 2 1
6 3 6

V V Z I Z I Z I− = + +                                                                                (3.33) 

R/2

-R/8

R/2

C

V0
I0 I2

V2

(a)
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0 2
0 1

2 2

3 1
8 8

V VI I
Z Z

− = +                                                                                                       (3.34) 

0 2
1 2

2 2

1 3
8 8

V VI I
Z Z

− = +                                                                                              (3.35) 

 

 Eqs. (3.34) can be rewritten as 

 

0 2
1 0

2 2

3 1
8 8

V VI I
Z Z

= − −                                                                                                       (3.36) 

 

Substituting Eq. (3.36) in Eq. (3.35), we get 

 

0 02 2
2 0

2 2 2 2

3 1 1 3
8 8 8 8

V VV VI I
Z Z Z Z

= − − − −                                                                            (3.37) 

0 2
0 2

2 2

1 1
2 2

V VI I
Z Z

− = +                                                                                                       (3.38) 

Based on Eq. (3.38), the circuit will be as shown in Figure 3.5. 

 

 

 

 

 

 

 

 
Figure 3.5: The circuit after manipulations of the current equations. 

 

I0 I2

V2
V0

1/2Z2 1/2Z2

Z1
1 2

Zx

I1

Vx

Ix
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By considering KCL at node 1, we get 

 

0
0 1

2

1
2 x

VI I I
Z

− = +                                                                                                            (3.39) 

 

Substituting Eq. (3.39) in Eq. (3.34), gives 

 

 
0 0 2

2 2 2

1 3 1
2 8 8x

V V VI
Z Z Z

+ = +                                                                                              (3.40) 

0 0 2

2 2 2

3 1 1
8 2 8x

V V VI
Z Z Z

= − +                                                                                              (3.41) 

 0 2
2

1 ( )
8xI V V

Z
= − −                                                                                                        (3.42) 

 

So, from Eqs. (3.38) and Eq. (3.42), the circuit can be constructed as shown in Figure 3.6. 

 

 

I0 I2

V2
V0

1/2Z2 1/2Z2

Z1
1 2

-1/8Z2

 
Figure 3.6: The z-parameter of Π-model after the voltage and current equations are manipulated. 
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It can be seen that Eqs. (3.38) and (3.42) represent the interconnect z-parameter of Π - 

configuration using the GAM. Figure 3.7 represents the interconnect of Π - configuration for RC, 

RLC and RLCG models after using Eqs. (3.38) and (3.42). 

 

 

R

G/2C/2

L

G/2C/2

-G/8

-C/8

(c)  
Figure 3.7: Interconnect Π- configuration based on the GAM for (a) RC, (b) RLC and (c) RLCG 

interconnects. 
 

 

A z-parameter of interconnect modeling of Π configuration based on the GAM is derived in this 

section. Comparing this approach with the approaches in [78,80], a Π configuration based on the 

GAM is not mentioned in [78], whereas in [79], only an RC Π configuration exists. The z-

parameter of the Π configuration, which is approached in this section, is better for modeling an on-

chip interconnect. It is not limited to one configuration such as RC, RLC and/or RLCG 

configurations, but we can use it to find all interconnect models of the Π configuration as shown in 

Figure 3.7 (a, b and c).    

  

3.3.2   TPN Based Z-Parameter Modeling 
In the TPN method, it is possible by using Ohm’s law to represent the physical circuit by 

parameters. This ability enables us to convert the matrix form into circuit parameters. Moreover, the 

TPN method enables us to use the duality between the T and Π  configurations of interconnect 

models. In the following, we will address the z-parameter models in both T and Π configurations 

based on the TPN method. 

 

R

C/2

V0
I0 I2

V2

C/2

-C/8

(a)

R

C/2

V0
I0 I2

V2

C/2

-C/8

L

(b)
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3.3.2.1   Z-PARAMETER DERIVATION FOR T-CONFIGURATION 
This section considers the TPN theory to find interconnect models for T-configuration. By 

considering Eqs. (3.21-3.23) and Eq. (3.22) can be rewritten as 

 

1 0 1 0 1 2
3 1
8 8

V V Z I Z I= − −                                                                                                 (3.43) 

 

Eq. (3.23) can be rearranged as  

 

2 1 1 0 1 2
1 3
8 8

V V Z I Z I= − −                                                                                         (3.44) 

 

Substituting Eq. (3.43) in Eq. (3.44), we get 

 

2 0 1 0 1 2 1 0 1 2
3 1 1 3
8 8 8 8

V V Z I Z I Z I Z I= − − − −                                               (3.45) 

2 0 1 0 1 2
1 1
2 2

V V Z I Z I= − −                                                                                      (3.46) 

 

Substituting Eq. (3.43) and Eq. (3.46) in Eq. (3.23), yields    

 

0 1 0 1 2 0 1 0 1 2
0

0 2
2 2 2

3 1 1 1( ) ( )1 2 18 8 2 2
6 3 6

V Z I Z I V Z I Z IVI I
Z Z Z

− − − −
− = + +                      (3.47) 

0 0 1 0 0 1 01 2 1 2
0 2

2 2 2 2 2 2 2

1 2 6 2 1 1 1
6 3 24 24 6 12 12

V V Z I V Z IZ I Z II I
Z Z Z Z Z Z Z

− = + − − + − −
             (3.48) 

0 0 1 0 0 1 01 2 1 2
0 2

2 2 2 2 2 2 2

1 2 1 1 1 1 1
6 3 4 12 6 12 12

V V Z I V Z IZ I Z II I
Z Z Z Z Z Z Z

− = + − − + − −
                (3.49) 
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0 1 0 1 2
0 2

2 2 2

1 1
3 6

V Z I Z II I
Z Z Z

− = − −                                                                                      (3.50) 

0 2 0 1 0 2 2 1 2
1 1
3 6

V Z I Z I Z I Z I= + − +                                                                                 (3.51) 

1 1
0 2 0 2 23 6

Z ZV Z I Z I   = + − −   
   

                                                                                (3.52) 

 

Substituting Eq. (3.52) in Eq. (3.46), we get 

 

1 1
2 2 0 2 2 1 0 1 2

1 1
3 6 2 2
Z ZV Z I Z I Z I Z I   = + − − − −   

   
                                            (3.53) 

1 1
2 2 0 0 2 2 2 1 0 1 2

1 1
3 6 2 2
Z ZV Z I I Z I I Z I Z I= + − + − −                                                 (3.54) 

2 2 0 1 0 2 2 1 2
1 1
6 3

V Z I Z I Z I Z I= − − −                                                                              (3.55) 

1 1
2 2 0 2 26 3

Z ZV Z I Z I   = − − +   
   

                                                                             (3.56) 

 

We can write Eqs. (3.52, 3.56) as a matrix 

 

1 1
2 2

0 0

1 12 2
2 2

,
3 6

,
6 3

Z ZZ ZV I
Z ZV IZ Z

 + −    
=     −    − +  

                                                                            (3.57) 

 

Obviously, according to the TPN theory, Eq. (3.57) represents an equivalent circuit that has 

negative impedance. Circuit impedances 11Z , 12Z , 21Z  and 22Z  can be found directly from 

equation (3.57) as  
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1
11 2 3

ZZ Z= +                                                                                                                    (3.58) 

1
12 2 6

ZZ Z= −                                                                                                                    (3.59) 

1
21 2 6

ZZ Z= −                                                                                                                    (3.60) 

1
22 2 3

ZZ Z= +                                                                                                                    (3.61) 

                                                                            

Considering Eqs. (2.41-2.43) in section 2.5.2.1 and Eqs. (3.58-3.61), we can write 

  

1 1
2 2 1

1
3 6 2a
Z ZZ Z Z Z= + − + =                                                                                       (3.62)                                    

1 1
2 2 1

1
3 6 2b
Z ZZ Z Z Z= + − + =                                                                                       (3.63) 

1
2 6c

ZZ Z= −                                                                                                                    (3.64) 

 

From Eqs. (3.62-3.64), the equivalent z-parameter model of a T-configuration circuit based on the 

TPN theory can be described as shown in Figure 3.8. 

 

V1

I0 I2

V2V0

Z1/2 Z1/2

Z2

-Z1/6

 
Figure 3.8: Z-parameter model of the T- configuration based on the TPN method. 
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Based on Eqs. (3.62-3.64), the RC, RLC and RLCG models of a T-configuration can be built as 

illustrated in Figure 3.9.  
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GC

-R/6
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R/2V0
I1 -I2

V2L/2

                                                                                      

               (a)                                                    (b)                                                            (c) 

Figure 3.9: Interconnect T-model based on the TPN theory for an (a) RC (b) RLC and  
(c) RLCG interconnects. 

                                                                                       

 

 

Eqs. (3.62-3.64) represent the parameters of the interconnect T-configuration in the z-parameters 

form. As shown in Figure 3.9 (a, b and c), It could be easily and directly used to find the RC, RLC 

and/or RLCG interconnect models of the T-configuration depending on the TPN method from these 

equations. So, the z-parameter model, which is presented in this section, represents the general form 

of interconnect modeling of the T-configuration based on using the TPN method. Comparing these 

results to the work in [80], the work in [80] is limited by the RLC model only.    
 

3.3.2.2   Z-Parameters Derivation for Π-Configuration 
The interconnect z-parameter model of the Π-configuration based on the TPN method is presented 

in this section. Applying the duality principle to equations (3.43-3.64), the results are equations in 

the Π-model [80] as shown below 
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2 2
1 1

0 0

2 22 2
1 1

,
3 6

,
6 3

Z ZZ ZI V
Z ZI VZ Z

 + −    
=     −    − +  

                                                                               (3.65) 

 

According to the TPN theory, equation (3.65) represents an equivalent circuit that has negative 

impedance. Again, circuit impedances 11Z , 12Z , 21Z  and 22Z  can be directly found from Eq. 

(3.65) as 

 

2
11 1 3

ZZ Z= +                                                                                                                    (3.66) 

2
12 1 6

ZZ Z= −                                                                                                                    (3.67) 

2
21 1 6

ZZ Z= −                                                                                                                    (3.68) 

2
22 1 3

ZZ Z= +                                                                                                                    (3.69) 

 

Using the same process of Eqs. (3.58-3.64) for a T-model based on the TPN method, we get the 

general z-parameter of Π -model based on the TPN method as shown in Figure 3.10. 
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Figure 3.10: Interconnect z-parameters model of the Π- configuration based on the TPN. 
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From Figure 3.10, we can directly find theΠ -configuration for the RC, RLC and/or RLCG models 

based on the TPN by replacing 1Z and 2Z with their actual components as shown in Figure 3.11.   

 

R

G/2C/2

L

G/2C/2

-G/6

-C/6

(c)  
Figure 3.11: InterconnectΠ -model based on the TPN theory for an (a) RC (b) RLC and 

(c) RLCG interconnects. 
 

 

Using the derived model, we can directly find the RC, RLC and/or RLCG models of an on-chip 

interconnect. In contrast, [79] does not present the RLC model of the Π -configuration based on the 

TPN. Therefore, the z-parameter method used in this section is more flexible for finding all 

interconnect models such as RC, RLC and/or RLCG models, than the method used in [79] as shown 

in Figure 3.11 (a, b and c).   

 

3.3.3   AWE Based Z-Parameter Modeling 
The AWE method, a moment matching method, consists of two main parts: First, moment 

generation and second, moment matching. The AWE method approximates the transient response 

of a circuit by first expanding the system equations in moments (coefficients) of a Taylor expansion 

(Maclaurin Series, Pade or a Simple Recursive Formula Method) in s-domain and then matching 

the moments of the series as well as the initial time conditions.  In the following sections, we will 

show the process used to find both T and Π configurations of interconnect z-parameter models 

based on the AWE method.   
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3.3.3.1   Z-Parameters Derivation for T-Configuration 
The input impedance of a short-ended z-parameter interconnect with normalized length can be 

found as illustrated in [78-80].  

 

tanh( )in oZ Z λ=                                                                                                             (3.70) 

Where 1 2/oZ Z Z=  , 1=   ,  1 2Z Zλ =                                                                       (3.71)  

Therefore, 1 2 1 2/ tanhinZ Z Z Z Z=                                                                        (3.72) 

 

Using Taylor series formula, we can explain the hyperbolic function as a polynomial series 

equation. So, the input impedance based on the Taylor series formula will be  

 

2 3 2 4 3
1 1 2 1 2 1 2

1 2 17
3 15 315inZ Z Z Z Z Z Z Z= − + − + − − − − −                                                   (3.73) 

 

Eq. (3.73) represents the general input impedance of a short-ended interconnect in z-parameter 

representation. We can directly find the input impedance of a short-ended RC, RLC and/or RLCG 

interconnect model from Eq. (3.73) as shown below. 

 

 For an interconnect RC lumped model 

 

2 3 2 2 4 3 31 2 17( )
3 15 315inZ s R R Cs R C s R C s A= − + − +                                                  (3.74) 

For an interconnect RLC lumped model 

 

2 3 2 2

2 2 2 4 3 3

1 2 2( ) ( ) ( )
3 3 15

1 2 17( )
3 5 315

inZ s R L R C s RLC R C s

L C R LC R C s A

= + − + − + +

− + − +
                                               (3.75) 

 

For an interconnect RLCG lumped model 
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2 2 2 2

2

1 2 1 2 1( ) ( ) ( )
3 3 3 3 3

1
3

inZ s R R G L RLG R C s RLC L G s

L C A

= − + − − − +

− +
                           (3.76) 

 
Let us consider the T- model illustrated in Figure 3.8. 

 

V1

Z1 Z4

Z2

Z3

 
Figure 3.12: The improved T-model in the z-parameter. 

 

 

Assuming Figure 3.12 has a symmetric structure. i.e. 1 4Z Z= , the input impedance of the circuit 

shown in Figure 3.12 when short-ended is  

 

 
2

1 2 1 3 1

1 2 3

2 2
in

Z Z Z Z ZZ
Z Z Z
+ +

=
+ +

                                                                                              (3.77) 

 

Eq.(3.77) represents the general input impedance of the T-configuration in the z-parameter at a 

short-ended interconnect. The rational function of the input impedance for the T- configuration in 

the z-parameter at short-ended interconnect as illustrated in Eq.(3.77) can be expressed as a 

polynomial of order 2n-1. The coefficients iZ  can be computed by a simple recursive formula as 

shown in Eqs. (2.44-2.46). So, by using Eq. (2.45) and Eq. (2.46), we can directly find the input 

impedance of the models shown in Figure 3.12 for the RC, RLC and/or RLCG models after 

replacing 1Z , 2Z and 4Z with their actual components (where 1Z = 4Z ). By equating the first, 

second and third moments of Eq. (3.73) with the Eqs.(3.74-3.76) results from using the RC, RLC 
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and/or RLCG configuration respectively, we found the RC, RLC, and/or RLCG models of the T-

configuration based on the AWE as shown in Figure 3.13. (For more details, see Appendix A.) 

 

R/2 L/2

4G/34C/3

-R/5

-L/5

R/2 L/2

(c)
 

 

Figure 3.13: The T- configuration based on the AWE for an (a) RC, (b) RLC and (c) RLCG 

interconnects. 

 

 

In this section, the interconnect z-parameter model of the T-configuration based on the AWE has 

been proposed. Comparing with the previous works such as in [78], the RC Π-configuration is only 

considered by using the AWE method whereas the T- configuration of an RC, RLC and/or RLCG 

models are not considered. However, the work in [80] considered the AWE of RLC modeling but 

for T-configuration only. By using the z-parameter model which is derived in this section, we can 

directly find the interconnect RC, RLC, and /or RLCG models of the T-configuration based on the 

AWE method. Thus, the z-parameter model, which is derived in this section, represents an 

extensive model to find the interconnect RC, RLC and/or RLCG models of the T-configuration 

based on the AWE method as shown in Figure 3.13 (a, b and c). 

   

3.3.3.2   Z-Parameters Derivation for Π-Configuration 
The general input admittance of the interconnect z-parameter lumped model at the open end can be 

obtained from the two-port parameters as in [78, 80]. 
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1 2

1 2

tanh /
( )in

Z Z
Y s

Z Z
=                                                                                                         (3.78) 

 

Using the Taylor series formula, the hyperbolic function can be converted into the polynomial 

series. Therefore, for an open-ended interconnect of z-parameter, the input admittance ( )inY s can be 

expanded as follows: 

 

 
2 3

1 1 1
2 3 4

2 2 2 2

1 1 2 17( )
3 15 315in

Z Z ZY s
Z Z Z Z

= − + − + − − −                                                            (3.79) 

 

For an open-ended interconnect, equation (3.79) represents the input admittance of a z-parameter 

lump-model. Thus, the admittance of an open-ended RC, RLC, and/or RLCG interconnect can be 

directly obtained from equation (3.79) by using the actual values of interconnect parameters as 

illustrated below.  

For an interconnect RC lumped model, if we substitute 1Z R=  and 2
1Z

sC
= in Eq. (3.79), this 

equation becomes Eq. (3.80) 

 

2 2 2 3 3 3 4 41 2 17( )
3 15 315inY s sC RC s R C s R C s A= − + − +                                             (3.80) 

 

For an interconnect RLC lumped model, if we substitute 1Z R sL= +  and 2
1Z

sC
= in Eq. (3.79), 

this equation becomes Eq. (3.81). 

 

2 2 2 2 3 3 3 3 4 41 1 2 4 17( ) ( ) ( )
3 3 15 15 315inY s sC RC s LC R C s RLC R C s A= − − − + − +

    (3.81) 

For an interconnect RLC lumped model, if we substitute 1Z R sL= +  and 2
1Z

G sC
=

+
 in Eq. 

(3.79), this equation becomes Eq. (3.82) 
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2 2 2 2

2 3

1 1 2 1 2( ) ( ) ( ) ( )
3 3 3 3 3

1
3

in s G RG C LG RCG s RC LCG s

LC s A

Y = − + − − − +

− +
        (3.82) 

 

Let us consider the Π - configuration shown in Figure 3.10, 

 

Z2

Z1

Z3

Z4

 
Figure 3.14: The assumption of the Π- configuration. 

 

 

assuming theΠ - configuration has a symmetric structure. i.e. 2 4Z Z= . For an open-ended z-

parameter of Π - configuration as shown in Figure 3.14, the driving point admittance can be 

obtained as   

 

1 3 1 2 2 3

2 1 3 1 2 2 3

2 2
( )in

Z Z Z Z Z ZY
Z Z Z Z Z Z Z

+ +
=

+ +                                                                                     (3.83) 

 

Equation (3.83) represents the input admittance of a z-parameter Π - configuration at an open-

ended interconnect. Using the simple recursive formula to convert the rational input admittance 

equation to the series equation. By matching the first, second and third moments of the Eqs. (3.80-

3.82) with the results of Eq. (3.83), we can easily find the RC, RLC, and/or RLCG models of the Π

-configuration based on the AWE as shown in Figure 3.15. (For more details, see Appendix B.) 
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Figure 3.15: Π-configuration based on the AWE for an (a) RC, (b) RLC and (d) RLCG models. 
 

Figure 3.15 (a, b and c) shows the results of using the z-parameter model which is derived in this 

section. RC, RLC and/or RLCG models are easily found from the derivative model.  

 

 

3.4   Summary 
Models using z-parameters for both T and Π configurations of interconnect modeling based on the 

GAM, TPN and AWE methods were derived in this chapter. The models provide the ability to find 

the RC, RLC and RLCG interconnect models easily and directly. Efficient approximation frames 

were obtained by using the GAM. Galerkin’s method was used to find the frames coefficients. 

Mathematical manipulations applied on the frames lead to generate z-parameters modeling for both 

T and Π configurations. Another mathematical manipulations has been done on the approximation 

frames to convert them into a matrix form. The TPN method was used to derive another z-

parameter interconnect model from the matrix in both T and Π configurations. Based on the z-

parameters models derived from using the TPN method, the symmetric-structure in the z-parameter 

model with the AWE method was derived by matching the first three moments of the driving point 

admittance of an open-ended interconnect for Π-configuration and matching the first three moments 

of the driving point impedance of a short-ended interconnect for T-configuration. It is found that 

the models, which are derived from using the AWE method, have negative components called 

improvement elements [79]. In contrast, the derived z-parameter models represent comprehensive 

models for finding the RC, RLC, and /or RLCG models in both T and Π configurations based on 

the GAM, TPN, and AWE methods.     
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CHAPTER 4 
 

Performance Comparison and Characterization of the GAM, TPN and 
AWE Methods 

 

 

4.1   Introduction 
In the previous chapter, z-parameter models of on-chip interconnect were derived. These models 

were used to obtain the RC, RLC, and RLCG models in both T and Π configurations based on the 

GAM, TPN, and AWE methods. The results of this process generate eighteen different RC, RLC, 

and RLCG models. To characterize an on-chip interconnect accurately, it is important to evaluate 

the performance of these models.  

 

       In this chapter, the RC, RLC, and RLCG models for both T and Π configurations, which were 

obtained from using the GAM, TPN, and AWE methods, are evaluated for different interconnect 

lengths, input transition times and capacitive loads. H-spice simulations show that the RLCG model 

of Π configuration which is derived from using the AWE method provides the best accuracy. 

 

4.2   Verification of the Simulation Ranges 
Based on our goal to find the best model response and consider the interconnect delay, choosing the 

accurate simulation range for different interconnect lengths, capacitive loads and input transition 

times is crucial to reach this goal.  

 

4.2.1 Range of the Interconnect Length 
Simply, to limit the length of the interconnect in our simulations, we will consider the critical 

length presented in [64] based on the RC line model and illustrated in equation (1),  

 

 
0 0

.
2

crt
R C
RC

=                                                                                                                (4.1) 
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where .crt is the length of the interconnect where the delay is in linear proportion to the 

interconnect length, 0R  is the output resistance of the minimum buffer, 0C  is the input 

capacitance  of the minimum buffer, R is the line resistance and C  is the line capacitance. 

Eq.(4.1) represents the optimum interconnect length where the interconnect delay is in linear 

proportion to its length. Based on the 45 nano-meter technology, the result from using Eq.(4.1) 

shows that the critical length is around 0.25mm. Therefore, we extend our simulations to reach 

2mm to check the robustness of the models. Moreover, 2mm length is widely used and accepted 

[78-80]. 

 

4.2.2 Range of the Capacitive Load 
Based on the 45Nano-meter technology, the input capacitance of the minimum buffer size is 

0.25fF. We assume that the size of the output buffer will not exceed two-hundred times of the 

minimum buffer size. Therefore, we will limit our simulations of the capacitive loads for no more 

than 50fF.    

  

4.2.3 Range of the Input Transition Time 
The woks in [78-80] limit their simulations to10GHz. We consider this range as a satisfied and 

accepted range to verify the behaviour of the RLCG models which were derived based on the 

GAM,TPN and AWE methods for both T and Π configurations.  

  

4.3   Models Evaluation 
To evaluate the performance of the RLCG models for both T and Π configurations which were 

derived in the previous chapter, the output responses of on-chip interconnects under different 

interconnect lengths, capacitive loads, and input transition times are considered. Limiting the 

simulation ranges for different interconnect lengths, capacitive loads, and input-signal-transition 

times, we will be able to evaluate the models accurately. 

 

4.3.1 Delay Based Comparison for the RLCG Models  
In the previous chapter, sixteen different RC, RLC and RLCG models were generated for both T 

and Π configurations from using the z-parameter models based on the GAM, TPN and AWE 
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methods. The comparison among these models is important to distinguish the preferable model. We 

preferred to test the RLCG models for both T and Π configurations because these models represent 

more accurate models than others; these models consider most of the interconnect effects such as 

interconnect resistance, capacitance, inductance and the dielectric loss. In our perspective, we need 

to use the preferred model for buffer insertion technique to improve the interconnect delay in VLSI 

circuits. Therefore, we tested these models for the vdd/2 delay. Furthermore, we tested these 

models for transition time to get more robustness model. 

 

       The results of the comparison are compared with H-spice tools because these tools are widely 

used and their results are accurate for calculating the interconnect delay. We tested these models for 

different interconnect lengths, capacitive loads and input transition times. The default values are 

used during the simulation such as when testing the models for different capacitive loads (1fF-

50fF), we have to keep the other factors (input transition times and interconnect lengths) constant. 

 

         First of all, the comparison is considered the vdd/2 delay of the output responses for T and Π 

configurations of the RLCG models for all methods for different interconnect lengths, capacitive 

loads and input transition times. Second, the best configuration response is tested for all methods to 

find the best model response based on vdd/2 delay calculations. In the same way, we tested the 

models for different transition times. Third, we compared the best models which preferred from the 

previous process and find the best model response.  

 

         The calculations shown in Figures 4.1-4.2 have been simulated based on the 45nano-meter 

technology. The default values used in these simulations are 2mm, 20p.sec and 5fF which represent 

the interconnect length, input transition time and capacitive load respectively. The dot line 

represents the line, which has slop=1, where the two values of the H-spice delay and the RLCG 

models delay are equalled. The simulation results appear above the slope line when the H-spice 

shows faster output than the RLCG models and appear below the slope line when the RLCG 

models show faster output responses than H-spice estimation. The ranges of the interconnect 

lengths, capacitive loads and input transition times we used to calculate the delay of vdd/2 is: The 

interconnect range we used in these simulations is from 0.25mm to 2mm, the range of the input 
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transition times is from 100 Pico second to 10 Pico second and the range of the capacitive loads is 

from 5femto farad to 50 Femto Farad.   

 

        The simulation results shown in Figure 4.1 represent the comparison of the vdd/2 delay 

calculations for the RLCG models of both T and Π configurations which were derived based on the 

GAM, TPN and AWE methods for different input transition times, capacitive loads and 

interconnect lengths. The simulation results show that the Π configuration is better than T 

configuration compared to H-spice. It is worth mentioning that the improved design tackles the 

upstream in Π-configuration and the down stream in T-configuration.  

 

 
Figure 4.1: The comparison of the vdd/2 delay between the RLCG models and H-spice simulation 

for different interconnect lengths, capacitive loads and output transition times.  
 
 

Figure 4.2 shows the comparison between the RLCG models of the Π configuration which were 

derived from using the GAM, TPN and AWE methods and H-spice for vdd/2 delay simulations. 

These models are tested for different input transition times, capacitive loads and interconnect 

lengths. It is clear from Figure 4.2 that the RLCG model of the Π configuration which was derived 

using the AWE method reveals the best output response than others.   
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Figure 4.2: The comparison of the vdd/2 delay between the Π configuration and H-spice simulation 

for different interconnect lengths, capacitive loads and output transition times.    
 

 

4.3.2  Output Transition Time Based Comparison for the RLCG Models  
Based on the simulation results shown in Figures 4.3 and 4.4, the RLCG model of the Π-

configuration which was derived from using the AWE method exhibits the best output transition 

time for different capacitive loads, interconnect lengths and input transition times.   

 

 
Figure 4.3: The comparison of the output transition time between the Π configuration and H-spice 

simulation for different interconnect lengths and capacitive loads.   
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Figure 4.4: The comparison of the output transition time between the Π configuration and H-spice 

simulation for different output transition times. 
 

 

4.4   Summary 
The delay and the output transition time which are obtained from the GAM, TPN and AWE 

methods for both configurations T and Π are compared with H-spice in this chapter. The 

comparison is done for different interconnect lengths, capacitive loads and input transition times. 

The results from this comparison show that the RLCG model of the Π configuration which was 

derived from using the AWE method reveals better satisfactory and acceptable than others   
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CHAPTER 5 
 

Wire Segmentation, Buffer Insertion and Buffer Sizing Techniques for 
Minimizing an Interconnect Delay  

 
 
 
5.1  Introduction 
With the evolution of VLSI fabrication technology, interconnect delay has become the dominant 

factor in deep submicron design. Buffer insertion, wire segmentation and buffer sizing have been 

shown to be effective techniques for interconnect delay optimization. Different studies considered 

these three techniques to optimize on-chip interconnect delay. However, most of the results from 

these studies on interconnect delay optimization, especially for some simple cases like buffer 

insertion alone or buffer sizing alone, are algorithmic.  

 

      Basically, sizing of inserted buffers and lengths of the segments can all be changed from source 

to sink in order to minimize the delay. Although some techniques are used to change  buffer 

insertion, buffer sizing or wire segmentation alone to minimize the interconnect delay,  

simultaneous change techniques for buffer insertion, buffer sizing and wire segmentation are also 

used to reduce the interconnect delay.  

      

        For wire segmentation, [81] a uniform wire segmentation algorithm for performance 

optimization of distributed RLC interconnects was proposed in this paper. The optimal wire length 

for identical segments and buffer size for buffer insertion are obtained through computation and 

derivation, based on a 2-pole approximation model of distributed RLC interconnect.  

 

         Buffer sizing has been an active research area for decades. To drive a large capacitive load, 

[82] first proposed the tapered buffer structure, which is a series of cascaded buffers of increasing 

size. Immediately after that, [83] showed that the optimal tapering factor, the size-ratio between 

consecutive buffers in the tapered buffer structure, should be constant in order to minimize the 

delay. In [84], a specific algorithm is used to show that when the size of repeaters increases 

exponentially, the delay will be reduced. A more accurate capacitance model used to reduce the 
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delay showed that the optimal tapering factor should be approximately 3–5 and depend on the 

process parameters and the design style [85]. [86] considered the delay, power dissipation and 

circuit area and proposed the use of variable size-ratio between consecutive buffers. Note that all 

the results for the tapered buffer structure above are useful only when large capacitive loads are 

driven. When the resistivity of the loads cannot be ignored, as in the case of driving interconnects 

nowadays, buffers should be distributed throughout the interconnect.  

 

        For the case when the buffer locations in the interconnect are predetermined, and the buffers 

and wire segments can be sized simultaneously, an iterative algorithm can be derived. Many such 

algorithms published in the past few years. [87] used a sequential quadratic programming approach, 

[88] used a greedy approach, [89] used the Lagrangian relaxation technique, and [90] solved a 

recurrence relation.   

     

        For the case when the buffer locations are not predetermined (i.e., buffer insertion is 

considered), [91] and [92] considered the problem of driving a uniform line (i.e., wires were not 

sized). [93] addressed simultaneous floor planning and buffer-block planning for interconnect 

optimization by partition modules into super modules. [94] derived formulae of feasible regions and 

integrated buffer planning with floor planning to optimize area, time, noise and congestion 

simultaneously. [95] extended van Ginneken’s buffer-insertion algorithm to simultaneously 

incorporate driver sizing. [96] formulated the simultaneous buffer insertion and wire sizing problem 

as a convex quadratic program and derived a very efficient algorithm to solve it. They also 

introduced an effective pruning technique to handle buffer sizing. [97] extended the dynamic 

programming framework by considering buffer insertion and wire sizing under the effect of process 

variation. [98] handled the simultaneous buffer insertion, buffer sizing and wire sizing problem by 

generalizing the dynamic programming algorithm for buffer insertion in [99]. The algorithm in 

[100] was later extended to handle power dissipation and incorporate signal slew into the buffer 

delay model. 

 

5.2  Buffer Insertion (Repeaters) 
A buffer insertion technique is a method used to reduce on-chip interconnect delay. When the 

resistance of an interconnect is comparable to or larger than the on-resistance of the driver, signal 
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propagation delay increases proportionally to the square of the interconnection length because both 

capacitance and resistance increase linearly with interconnect length. Thus, reducing the 

interconnect length leads reducing the interconnect delay. In buffer insertion techniques, this 

principal is used by sampling an interconnect into small pieces and separated them by CMOS 

buffers as shown in Figure 5.1 

 

 

Driver Load

Wire length: 

(a)

Driver LoadRepeater RepeaterRepeater

N Segments

Segment (b)



/ N / N / N

DelayA B

A B

 
            Figure 5.1: Wire (a) without repeaters, (b) with repeaters. 

 

Figure 5.1b shows that the wire is sampled into N segments and separated by buffers. The delay is 

reduced by splitting the wire into N segments and increasing the number of inverters or buffers to 

actively drive the wire [101]. The new wire involves N segments with RC flight time 2( / )N , for 

a total delay of 2 / N . If the number of segments is proportional to the length, the overall delay 

increases only linearly with  [101].  

 

       Using inverters as repeaters gives the best performance. However, each repeater adds some 

delay. If the distance is too great between repeaters, the delay will be dominated by the long wires. 

If the distance is too small, the delay will be dominated by the large number of inverters. As usual, 

the best distance between repeaters is a compromise between these extremes. Suppose a unit 

inverter has resistance 0R  and capacitance 0C  0( 3 NC C≈ because the inverter is composed of a 

unit NMOS and double-width PMOS) and a wire has both resistance r and capacitance c per unit 
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length. Consider inserting repeaters of h times unit size. Under the Elmore delay model, neglecting 

diffusion parasites, the best length of wire between two repeaters as illustrated in [101] is 

 

 0 02R C
N rc
=


                                                                                                                (5.1) 

 

The delay per unit length of a property repeated wire is 

 

0 0(2 2)pdt
R C rc= +


                                                                                              (5.2) 

 

To achieve this delay, the inverters should use an NMOS transistor width of  

 

0

0

cRh
rC

=                                                                                                                         (5.3)   

 

 

5.3  Wire Segmentation   
Interconnect delay is in quadratic proportion to its length. Therefore, reducing an interconnect 

length by cutting the interconnect into small pieces (segments) as shown in Figure 5.2 leads 

reducing the delay. 

 

 

 

 

 

                                                               

          Figure 5.2: Interconnect with N segments. 
 

 

N segments



dR

LC

/ N
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Each segment can be represented as shown in Figure 5.3 

                                

                  

 

 

 

                         Figure 5.3: Interconnect (a) One segment, (b) RC Π-model. 
 

Where 

         r :  Interconnect unit resistance 

         c : Interconnect unit capacitance 

  / N : Segment length. 

 

5.4  Buffer Sizing 
A buffer, also called repeater, is a CMOS inverter used to separate small pieces of a line. It is 

modeled as a switch-level RC circuit as shown in Figure 5.4. 0 0,R C  and 0dC  are respectively, the 

unit effective output resistance, the unit gate capacitance and the unit drain capacitance. 

 

0dhC0hC

0hR

 

Figure 5.4: The model of a buffer has size h  as a switch-level RC circuit. 
 

 

Buffer insertion is widely recognized as an effective technique used to reduce the line delay [102]. 

To explain how the buffer insertion technique reduces the interconnect delay, let us consider the 

simple circuit illustrated in Figure 5.1a. The circuit has a wire without repeaters connected to a 

driver and load buffers. We can simply express this circuit as a Π-configuration of an RC circuit as 

illustrated in Figure 5.4.  The circuit will be as shown in Figure 5.5b  

/ N
(a) (b)

.r 

. / 2c . / 2c 
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hR

C2C1

R

C1 Cg h

re/h

C2Cd h

(a)

(b)  
Figure 5.5: Delay reduction by buffer insertion (a) wire without a buffer (b) wire with a buffer. 

 

 

Where R is the wire resistance, 1C and 2C are the wire capacitances . Suppose R, 1C and 2C are all 

large. Then the Elmore delay for the original circuit (Figure 5.5a) is 

 

      1 2( )pdt R C C= +                                                                                                         (5.4) 

 

Where pdt  is the wire delay which is very large. After a buffer of size h is inserted between 1C and 

2C , the buffer isolates  2C  from the  original driver. So, the original driver only needs to drive 1C

together with the gate capacitance of the inserted buffer. Therefore, the Elmore delay calculation 

after buffer insertion is 

 

       . 1 2( ) ( )e
p d g d

rt R C C h C h C
h

= + + +                                                                          (5.5)   

 

If the buffer is inserted appropriately, the resulting delay can be significantly smaller [88]. 
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        Simply, the principle behind the repeater is that when dealing with an interconnect as one 

piece, the time constant (RC) of the whole interconnect can be calculated by multiplying the 

number of units of resistance times the number of units of capacitance. For example, let us take an 

interconnection that has 5 units long. This means, it has 5 units of resistance and 5 units of 

capacitance. The Time constant will be = 5x5=25 units. When this wire is divided into five equal 

sections by buffers, its accumulative RC constant is reduced to 1+1+1+1+1=5 units. Of course, the 

additional delay due to buffers should be taken into account.  

 

       To effectively use buffer insertion technique to reduce on-chip interconnect delay, robust an 

interconnect model should be used. The RLCG model which is derived from the previous chapter 

has good accuracy compared with H-spice but it is a complex model. This complexity makes this 

model is difficult to be used to improve on-chip interconnect delay. Therefore, mapping this 

complexity is crucial to reach this target.          

 
5.5  Mapping an RLCG Model into an RLC Model  
In chapter 4, the results of the comparison show that the RLCG model of the Π-configuration which 

was derived from using the AWE method as shown in Figure 5.6 revealed the best response for 

vdd/2 delay and transition time calculations. 

 

4R/3

G/2C/2

4L/3

G/2C/2

-G/5

-C/5

in out

 
 

Figure 5.6: The RLCG model of the Π-configuration which was derived from using the AWE 
method. 

 

 

The model shown in Figure 5.6 considers the interconnect resistance R, interconnect capacitance C, 

interconnect inductance L and dielectric conductance G.  This consideration gives the model some 
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complexity. The complexity makes this model to be difficult to use for finding the mathematical 

expressions of the optimum interconnect delay, interconnect critical length and minimum buffer 

sizing. Modifying the model’s complexity takes into our consideration to keep the same vdd/2 

delay effect.  

  

        In the RLCG model, G represents the dielectric loss. It is important for long interconnect. But 

this loss will reduce when the interconnect be short. Because the length of the interconnect will be 

sampled into small pieces by using buffer insertion technique, the effect of G will be very small and 

we compensate this effect by the buffer sizing. Therefore, we will consider the RLC model of the 

Π-configuration which was derived based on using the AWE method as shown in Figure 5.7 instead 

of the RLCG in our simulation process. 

 

 

 
 

 
 
 
 

Figure 5.7: The RLC model of the Π configuration which was derived from using the AWE 
method. 

 

 

5.6  Mapping an RLC Model into an RC Model 
The model shown in Figure 5.7 has a negative capacitance is connected in parallel with the 

upstream components. A negative capacitance in the circuit creates some complexity [80]. This 

complexity is conflicted with the delay calculation. Therefore, mapping the circuit is crucial to find 

the closed-form expression of the line delay. 

 Clearly, circuit components are represented as in [80] 

 

1 2 1
4 4, , 1

2 3 3
C R LC C R L= = = = and 3 5

CC = −                                                          (5.6) 

R1=4R/3

C2=C/2 C1=C/2

C3 = - C/5

L1=4L/3
Vin Vo
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Where ,R L and C are interconnect resistance, inductance and capacitance. 

 

The input admittance of an open-ended circuit shown in Figure 5.7 is 

 
2 3

1 2 1 1 3 1 2 3 1 1 2 1 1 3 1 2 3 1 1 2
2

1 1 1 3 1 1 1 3

( ) ( ) ( )( )
1 ( ) ( )in

C C s R C C R C C R C C s L C C L C C L C C sY s
R C R C s L C L C s

+ + + + + + +
=

+ + + +
                                                                                                                                              (5.7) 

 

Using the Simple Recursive Formula in [106], the input admittance can be extended as 

 
2 2 2 2 2 3 2 3

1 2 1 1 1 1 3 1 1 1 1( ) ( ) ( )inY s C C s R C s R C C R C L C s A= + − + + − +                      (5.8) 

 

Let us assume that the equivalent RC circuit for Figure 5.7 is shown in Figure 5.8.  

 

 
 
 
 

 

 
 

 
Figure 5.8: The RC equivalent circuit for the model shown in Figure 5.7. 

 

 

The input admittance of an open-ended circuit shown in Figure 5.8 is 

 
2

4 5 2 4 6 2 5 6 2 4 5

2 4 2 6

( ) ( )( )
1 ( )in

C C s R C C R C C R C C sY s
R C R C s

+ + + +
=

+ +
                                     (5.9) 

The input admittance in equation (5.9) can be extended as 
2 2 2 2 2 3 3

4 5 2 4 2 4 6 2 4( ) ( ) ( )inY s C C s R C s R C C R C s A= + − + + +                                   (5.10) 

Vin Vo

C6

R2

C5 C4
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Using the AWE method for moments matching in [69] and we assume that the 1 2C C= and 

4 5C C=  as a property of the Π-configuration of an interconnect model, yields 

 

1
4 1 2 1 6 3 2 2

1

4 3, ,
2 3 5 4

LC R C LC C R R C C
R R

= = = = = − = − −                                 (5.11) 

                             

Eq. (5.11) represents the components of the equivalent RC circuit shown Figure 5.8. The equivalent 

RC circuit is similar to the RC model of the Π-configuration which was derived from using the 

AWE method. The difference between them is just the value of 6C  This value includes the effect 

of the line inductance. Therefore, this model is an RC model but considers the effect of the line 

inductance (an improved RC model). The comparison between the RLC model and the improved 

RC model have been done based on the scenarios shown in Figures (5.9) and the result is shown in 

Table 5.1. 

 

 

 

 

        

 

Figure 5.9: The comparison between the (a) RLC (b) Improved RC models. 
 

Table 5.1 shows that the errors between the improved RC model RLC model mainly depend on the 

value of Rd. For interconnect circuit analysis, Rd represents the output resistance of the driver 

buffer. Therefore, increasing the driver size drives more current to an interconnect. This increases 

the speed of the signal and leads to reduce the error between the two responses. However, reducing 

the driver size leads to increasing the signal delay and this increases the error. Therefore, using 

optimum buffer sizing is crucial to reduce the delay. Furthermore, reducing the value of 1 1,R L and 

3C  reduces the error. These values represent the interconnect parameters. Increasing these values 

means increasing the length of the interconnect and leads to increasing the error. Thus, finding the 

critical length is important to optimize the interconnect delay. 

R1=4R/3

C2=C/2 C1=C/2

C3 = - C/5

Rd
Vin V0

CL 

L1=4L/3

(a)

R2

C5 C5 

C6 

Rd
Vin V0

CL 

(b)
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Table 5.1: Error calculations for the vdd/2 delay between the RLC model and the improved RC   
                 model for different R1, C1 and C3. 
 

Rd  
(Ω) 

1R  
(Ω) 

1L  
(p. h) 

1C  
(f. F) 

2C  
(f. F) 

3C  
(f. F) 

LC  
(f. F) 

Error at 
vdd/2 delay 

[%] 
100 40 200 100 100 50 50 1.708 
100 40 200 100 100 20 50 0.859 
1K 40 200 100 100 50 50 0.0657 
1K 40 200 100 100 20 50 0.0586 
5K 20 50 50 50 25 25 0.0353 
5K 20 50 50 50 10 25 0.0323 
10K 20 50 50 50 25 25 0.0276 
10K 20 50 50 50 10 25 0.0257 

 

Figure 5.10 shows that the vdd/2 delays for both responses are close to each other until the 

interconnect reaches 1mm length. Then the difference between them starts to increase. This 

improvement is valid because we will not reach more than 1mm for interconnect critical length.  

  

.  

Figure 5.10: The output responses for the RLC model which was derived from using the AWE 
method and the RC improved for different interconnect lengths. 
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We see that the capacitance 6C  in Figure 5.8 is connected between the input and the output From 

the basic principles of capacitance charge and discharge, 6C  will charge 6 ( )c in outQ C V V= − . 

This means that the effect of the 6C charge and discharge in the overall circuit will be the analog for 

the case of removing it from the upstream components and a positive 6C  is connected between the 

input and the ground, and the negative 6C  between the output and the ground, as shown in Figure 

5.11.  

 

 

 

 

 

 
 

Figure 5.11: The equivalent RC circuit for the circuit shown in Figure 5.8. 
 

. 2 1
4
3eqv
RR R R= = = , 1

.1 5 6 1 3 2 2
1

7 3
10 4eqv

L C LC C C C C
R R

= − = + + = + and 

1
.2 5 6 1 3 2 2

1

3 3
10 4eqv

L C LC C C C C
R R

= + = − − = −                                                        (5.12) 

 

So, the circuit shown in Figure 5.11 can be expressed as shown in Figure 5.12. The model shown in 

Figure 5.12 represents the equivalent RC model to the RLC model which was derived from using 

the AWE method. This model, is basically an RC model but it considers the effect of the 

interconnect inductance L. It is easy and simple to use this model to find an interconnect critical 

length, minimum buffer size and optimum interconnect delay. The difference between this work 

and the studies in [103-105] is that these studies could not find the mathematical expressions for the 

critical length, minimum buffer size and optimum interconnect delay because of the complexity of 

the RLC model used. In this work, we used a more complex RLC model and we reached the final 

stage of the research.   

 

Vin Vo
R2

C5 C4C6 -C6
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Figure 5.12:  The equivalent RC circuit for the circuit shown in Figure 5.8. 

 

 

To compare the two circuits (in Figure 5.8 and 5.12), let us consider an interconnect with driver and 

load buffers as shown in Figure 5.1a. This circuit can be represented by considering the circuits 

shown in Figures 5.8 and 5.11 as illustrated in Figure 5.12. 

 

 

 

 

 

 

 
 

 
Figure 5.13: Circuit test (a) The improved RC circuit  (b) The equivalent RC circuit.  

 

 

Both circuits are tested for different driver and load buffer sizes and interconnect lengths. The 

results are shown in Table 5.2.  Table 5.2 shows that the errors between the two circuits diminish 

when the size of the driver and load buffers and the interconnect length are reduced. This means, 

using the buffer insertion technique to reduce the interconnect delay due to cutting the line into 

small pieces separated by buffers makes the equivalent RC model more valid for modeling an 

interconnect.  
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Table 5.2: The error calculations of the vdd/2 delay for the circuits shown in Figure 5.13 (a, b)  
                  for different driver and load buffer sizes and interconnect lengths. 
 

Rd  
(Ω) 

1R  
(Ω) 

1C  
(f. F) 

2C  
(f. F) 

3C  
(f. F) 

LC  
(f. F) 

Error at 
vdd/2 delay 

[%] 
100 40 100 100 50 50 5.62 
100 40 100 100 20 50 2.11 
1K 40 100 100 50 50 0.614 
1K 40 100 100 20 50 0.228 
5K 20 50 50 25 25 0.06 
5K 20 50 50 10 25 0.022 
10K 20 50 50 25 25 0.0297 
10K 20 50 50 10 25 0.011 

 

 

The simulation results shown in Figure 5.14 represent the output responses for the improved RC 

model equivalent RC model for different interconnect lengths. The error for vdd/2 delay between 

the two responses is very small. Therefore, the modification of the improved RC model into the 

equivalent RC model is satisfied.  

 

 
Figure 5.14: The output responses for the improved RC and equivalent RC models for different 

interconnect lengths. 
 

For more robustness of the equivalent RC model, we tested this model with the RLC model as 

illustrated if Figure (5.15). 
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Figure 5.15: Circuit test (a) The improved RC circuit  (b) The equivalent RC circuit.  
 

 

In Table 5.3, the error calculations reflect the behaviour of the two circuits: the original circuit 

shown in Figure 5.7 and the equivalent circuit shown in Figure 5.12 at vdd/2 delay calculations for 

the rise time of the output responses. The results show that the error changes due to changing the 

original circuit component 1 1 1, ,R C L and 3C . The error calculations at vdd/2 delay are accepted 

especially for the interconnect length not exceeding 1mm. 

 

Table 5.3: Error calculations for the vdd/2 delay of the RLC model and the equivalent RC model  
                 for different R1, C1 and C3. 
 

Rd  
(Ω) 

1R  
(Ω) 

1L  
(P. h) 

1C  
(f. F) 

2C  
(f. F) 

3C  
(f. F) 

LC  
(f. F) 

Error at 
vdd/2 delay 

[%] 
100 40 200 100 100 50 50 8.038 
100 40 200 100 100 20 50 3.275 
1K 40 200 100 100 50 50 1.186 
1K 40 200 100 100 20 50 0.793 
5K 20 50 50 50 25 25 0.294 
5K 20 50 50 50 10 25 0.215 
10K 20 50 50 50 25 25 0.1443 
10K 20 50 50 50 10 25 0.107 
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Figure 5.16: The output responses for the RLC model (AWE) and the equivalent RC models for 
different interconnect lengths. 

 

 
5.7   Closed-Form Expression for Optimum Interconnect Delay  
To calculate the interconnect delay with a buffer insertion technique, let us consider the circuit 

shown in Figure 5.1a. The delay of the circuit shown in Figure 5.1a is the sum of the delays for the 

driver buffer, interconnect and load buffer. The vdd/2 delay from point A to point B can be 

calculated as shown in Figure 5.17.   

 
Figure 5.17: The vdd/2 delay calculation from point A to point B as illustrated in Figure 5.1a.  

 

The delay of this circuit is due to the output resistance of the driver buffer dR , interconnect 

capacitance C , resistance R and the gate capacitance of the load buffer LC as illustrated in Figure 

5.13b. Let us assume that the time taken for the signal at node A to reach 50% of its final rise time 
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is 1T  and the time taken for the signal at node B to reach 50% of its final fall time is 2T . So, the 

propagation delay from point A to point B at vdd/2 can be calculated as 

 

2 1pdt T T= −                                                                                                                      (5.13) 

      

Figure 5.12b is the RC circuit configuration of Figure 5.1a. We can use the Elmore delay model 

[65] to calculate the delay of the circuit shown in Figure 5.12b as shown below 

 

.2 .1 . .1( ) ( )pd d equv equv L equv equv Lt R C C C R C C= + + + +                                            (5.14) 

 

Eq. (5.14) can be expressed as  

2

4 7 3( ) ( )
3 10 4pd d L L

Lt R C C R C C
R

= + + + +                                                          (5.15) 

 

where RLC are the interconnect resistance, inductance and capacitance respectively. 

So, Eq. (5.15) represents the delay of the circuit shown in Figure 5.13b based on the Elmore delay 

model. 

 

5.8    Interconnect Critical Length and Optimum Buffer Sizing for Minimizing  
        the Delay  
To calculate the interconnect critical length and the optimum buffer sizing, we consider the method 

in [95] because it is a simple, an accurate and a well-known method. This method mainly considers 

a mathematical expression of the interconnect delay as a function of an interconnect length and 

buffer size. To find an interconnect critical length and optimum buffer sizing to minimize the 

interconnect delay, the derivation of the delay mathematical expression with respect to the 

interconnect length and buffer sizing is taken and the results equalized to zero. The results are the 

interconnect critical length and minimum buffer size. These are used to minimize the interconnect 

delay.  
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Let us assume that h is the buffer size and   is an interconnect length. Therefore, Eq. 5.15 can be 

expressed as a function of a buffer sizing and an interconnect length as  

   

0
0 02

4 7 3( , ) ( ) ( )
3 10 4pd

R lt h c hC r c hC
h r

= + + + +   


                                     (5.16) 

 

Where 0R and 0C are the unit inverter output resistance and gate capacitance and rlc are 

interconnect resistance, inductance and capacitance per unit length respectively. 

So, the interconnect critical length can be found as  

  

( )
0

pdt
d

d
=


                                                                                                                       (5.17)  

 

Therefore,   

 

0 0

.

15( )

14crt

lR C
r

rc

+
=                                                                                                  (5.18)   

 

 The interconnect critical length shown in Eq. (5.18) represents the optimum length of an 

interconnect in which the interconnect delay is in linear proportion to its length. Eq. (5.18) is 

similar to the approaches in [95]. To find the number of segments for an interconnect length  , we 

divide the interconnect length by the critical length as shown in Eq. (5.19). 

 

Number of segments =  
.crt




                                                                                            (5.19) 

 

Also, the number of buffers can be calculated as shown in Eq. (5.20) 

 

 Number of buffers = Number of segments + 1                                                                   (5.20) 
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To find the optimum inverter size to minimize the delay, we consider both Eqs. (5.16, 5.18), 

yielding 

 

0

0

3
4
cRh
rC

=                                                                                                                       (5.21) 

 

Eq. (5.21) represents the optimum buffer size that can be used to minimize the interconnect delay. 

To find the delay per unit length of a properly repeated wire 
.

pd

crt

t


, we have to consider Eqs. (5.16, 

5.18, 5.21). We get 

 

0 0 0 0
0 0 0

0 0

2
. 0 0 0

0

3 3 320 29 29
( )

( )
15( )

pd

crt

R C r l R cr l R cR cr R C c l
t c C rC

h
R C r R l

rC

+ +
+ +

=
+



       (5.22) 

(For more details, see Appendix C.) 

 

 

The experimental results shown in Table 5.4 show that the interconnect delay is improved by using 

the proposed RC model much better than other models (columns 9, 13). Furthermore, the critical 

length and number of buffers which were calculated using the proposed RC method are better than 

others because the critical length is larger and the optimal number of buffers is less than others. The 

best model is that the model which presents longer critical length with minimum number of buffers 

because longer critical length reduces the number of buffer; reducing number of buffer means 

reducing the fabrication cost [101]. Therefore, the proposed RC model reveals the best simulation 

results than [101,103]. 

Where ., crt   are interconnect length and critical length respectively, DNB, DWB represent the 

delay without buffer and with buffer respectively and NO.S, NO.B, U.A. represent the number of 

segments, number of buffers and unit area respectively. 
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Table 5.4: the performance of buffer insertion for using proposed model vs. previous published 
models. 

 
The used parameters: r= 0.29Ω/sqr, c=0.21fF/sqr, and l=0.293pH/sqr, RD=1KΩ and CL=10fF 

  
(mm) 

DNB 

[n.s] 

 
(Proposed RC model)   

h=27.38  
 

(RC model [9] )  
h=31.62  

(RLC model [10] )  
h=26.9  

No. B. DWB 
[p.s] Area [UA] No. B. DWB 

[p.s] Area [UA] No. B. DWB 
[p.s] Area [UA] 

0.5 0.081 3 34.4 246.4 4 51.7 379 4 46.2 322 

1 0.172 5 68.9 410.7 6 86.1 569 7 73.6 564 

2 0.395 10 155.1 821.4 11 172.7 1043 12 162.3 968 

5 1.3 21 344.7 1724 25 413.6 2371 28 398.9 2259 

8 2.7 34 558.8 2792 39 655 3699 45 602.5 3631 

10 3.8 43 723.9 3532 49 827.3 4648 55 811.3 4438 

12 5.1 51 861.8 4189 58 982.5 5501 66 934.6 5326 

15 7.4 63 1090 5174 72 1220 6829 82 1160 6617 

Average delay reduction [%] 20.5 

Average reduction of no. of buffers [%] 24 

 

The average delay saving are 67.66p.s than [101] and 40.22p.s than [103] and the average area 

saving are 768.62u.a than [101] and 654.62u.a than [103].  
 

5.9  Summary 
In this chapter, buffer insertion (repeaters), wire segmentation and buffer sizing were briefly 

reviewed. The RLCG model of the Π-configuration which was derived from using the AWE 

method was modified into an RLC model of the Π-configuration. To reduce the complexity of this 

model, it was mapped into an improved RC model of the Π-configuration based on using the 

moment matching of the AWE method. Another mapping was applied on the model to eliminate the 

negative capacitance. An equivalent RC model was derived. The delay of the vdd/2 of the rise time 

for these models was calculated for different interconnect lengths. Buffer insertion technique was 

used in this chapter to minimize the interconnect delay. By considering the equivalent RC model, 

closed-form expressions for interconnect critical length, minimum buffer size and optimum delay 

were derived. The simulation results as shown in Table 5.4 show that the equivalent RC model 

gives better results than the RC models are used in [101,103].       
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CHAPTER 6 
 

Conclusions and Future Works  
 

 

 

Interconnect closed-form expressions in z-parameter form were derived for both T and Π  

configurations based on the GAM, TPN and AWE methods. Telegraph equations of the 

transmission line were used to derive the z-parameter closed-form expressions for both 

transmission voltages and currents. Based on Telegraph equations of the z-parameter, the 

approximation frames of the transmission line voltages and currents in z-parameter configuration 

were proposed. Mathematical manipulations on the approximation frames were used to generate the 

closed-form expressions in z-parameter form for T and Π  configurations based on the GAM 

method. These expressions were considered to derive six different RC, RLC and RLCG models in 

both T and Π  configurations. Furthermore, other mathematical manipulations were applied on the 

approximation frames based on the TPN method to present the closed-form expressions in z-

parameter form for both T and Π  configurations. These models were used to generate another six 

RC, RLC and RLCG models for both T and Π  configurations. By considering the models which 

were derived from using the TPN method, the moments matching method was used based on the 

AWE method to present another six different RC, RLC and RLCG models of the T and Π  

configurations. Therefore, eighteen different RC, RLC and RLCG models in both T and  Π  

configurations were derived from using the z-parameter models based on the GAM, TPN and AWE 

methods. The RLCG models which were derived from using the GAM, TPN and AWE methods of 

both T and  Π  configurations were tested for different interconnect lengths, capacitive loads and 

input transition times and compared with H-spice. The results revealed that the RLCG model of the 

Π  configuration which was derived from using the AWE method exhibits the most satisfactory and 

acceptable.  

 

        The RLCG model of the Π -configuration which was derived from using the AWE method 

was modified into an RLC model of the Π -configuration in chapter five. This model was mapped 

into an improved RC model based on the moment matching of the AWE method. Another mapping 
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process was applied to this model based on the capacitance charge and discharge to derive an 

equivalent RC model.  

 

        Buffer insertion technique was considered to reduce the interconnect delay. This technique 

was used and the equivalent RC model was considered to derive closed-form expressions for the 

interconnect critical length, minimum buffer size and optimum interconnect delay. These 

mathematical expressions were compared with an RC models in [101,103]. They show more 

accurate and acceptable results. 

 

        Future research could be extended to use the buffer tapering method (different buffer sizes) 

and different interconnect sizes. Also, capacitive load LC  and interconnect parasitic capacitances 

could be considered for the derivation of the mathematical expressions. Furthermore, future work 

could be focused on the power consumption and minimum chip area by using an equivalent RC 

model presented in this thesis. Another method such as a logical effort method could be used to 

calculate the interconnect delay instead of using the Elmore delay method. The same principle used 

for driving an improved RC model could be used to find an improved model from a T-Π  or Π -T 

circuit.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



80 

 

References 
 

[1] Shyue-Win Wei, “Simple RLCG Model” Electronics Letters, vol. 3, No. 25, December 

1997. 

[2] T. Sakurai and k. Tamaru, “Simple Formulas for Two-and Three-Dimensional 

Capacitances,” IEEE Transactions on Electron Devices, vol.Ed-30, No.2, pp.183-185, 

February 1983.   

[3] E. Barke, “Line-to-Ground Capacitance Calculation for VLSI: A Comparison,” IEEE 

Transactions on Computer Aided Design, vol. Cad-7, No.2, pp295-298, February 1988. 

[4] J. Chern, J. Huang, L. Arledge, P. Li, and P. Yang, “Multilevel Metal Capacitance Models 

for CAD Design Synthesis Systems,” IEEE Electron Devices Letters, Vol. EDL-13, No. 1, 

pp. 32-34, January 1992. 

[5] S. Bothra, B. Rogers, M. Kellam and C. M. Osburn” Analysis of the Effects of Scaling on 

interconnect delay in VLSI circuits,” IEEE Transaction on Electron Devices, vol. ED-40, 

No. 3, pp. 591-597, March 1993. 

[6]   M. Horowitz and R. W. on “Resistance Extraction from mask Layout Data,” IEEE 

Transaction on Computer-Aided Design, vol.CAD-2, No. 3, pp. 145-150, July 1983.  

[7]   J. Cong, K.S. Leung and D. Zhou,” Performance-driven Interconnect Design Based on 

Distributed RC Delay Model” IEEE. Transaction on VLSI Design, pp.606-611, 1993. 

[8]   S. S. Sapatnekar,” RC Interconnect Optimization under The Elmore Delay Model” IEEE 

Transaction on Design Automation Conference, pp.387-391, 1994.  

[9]    D.A. Priore,” Inductance on Silicon for Sub-Micron CMOS VLSI,” Proceedings of the 

IEEE. Symposium on VLSI Circuits, pp.17-18, May1993. 

[10]    D.B. Jarvis,” The Effects of interconnections on High-Speed Logic Circuits,” IEEE 

Transactions on Electronic Computers, vol. EC-10,No.4, pp.476-487, October 1963. 

[11]   M. P. May, A. Taflove and J. Baron,” FD-TD Modeling of Digital Signal Propagation in 3-

D Circuits with Passive and Active Loads,” IEEE transactions on Microwave Theory and 

Techniques, vol. MTT-42, No. 8, pp.1514-1523, August 1994. 

[12]  Y. Eo and W. R. Eisenstad,” High-Speed VLSI interconnect Modeling Based on S- 

Parameter measurement,” IEEE transactions on Components, Hybrids and Manufacturing 

Technology, vol.CHMT-16, no.5, Vol.555-562, August 1993. 



81 

 

[13]  A. Deutsch, et al.,” Modeling and Characterizing of Long Interconnections for High- 

Performance Microprocessors,” IBM Journal of Research and development, vol.39, No. 5, 

pp.547-667, September 1995. 

[14] Yw. Bai, “ Delay-Time Bound and Waveform Bounds for RLCG Ladder Networks,”  IEEE 

Transactions on Circuits and Systems, vol.43, No. 7, July 1996. 

[15] Ho Yen, and V. Fillip, “ Closed Form Network Representations of Frequency-

DependentParameters,” International Journal on Circuit Theory and Applications, vol. 33, 

no. 6pp.463-485, Nov. 2005. 

[16]   W. C. Elmore “ The Transient Response of Damping Linear Networks with Particular 

Regard to widedand Amplifiers” vol. 19, January 1948. 

[17]   L. V. Ginnekin, “ Buffer Placement in Distributed RC –Tree Networks for Minimal Elmore 

Delay,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 

865-868, May 1990. 

[18] V. Alder and E. G. Friedman, “ Delay and Power Expressions for a CMOS Inverter Driving 

a Resistive –Capacitive Load,” Analog Integrated Circuits and Signal Processing, vol. 14, 

no. ½, pp.29-39, September 1997. 

[19] H. B. Bakoblu and J. D. Meindl, “Optimal Interconnection Circuits for VLSI,” IEEE 

Tramsactions on Electron devices, vol. ED-32, no. 5, pp.903-909, May 1985. 

[20] V. Alder and E. G. Friedman, “ Repeater Design for reduce Delay and Power in Resistive 

Interconnect,” IEEE Transactions on Circuits and Systems II, Vol. CAS-45, No. 5, pp607-

616, May 1998. 

[21] V. Alder and E. G. Friedman, “ C. J. Alpert M. A. Franklin, “ Wire Segment for Improved 

Buffer insertion,” IEEE Transactions on ACM Design Automation, pp. 649-654, June 1997. 

[22] S. Dhar and M. A. Franklin, “ Optimum Buffer Circuits for Driving Long Uniform Lines,” 

IEEE Journal on Solid-State Circuits, vol. SC-26, no. 1, pp. 32-40, January 1991. 

[23]  Yin Guoli and Lin Zhenghui, “ Uniform Wire Segmentation Algorithm of Interconnects.” 

High Technology Letters, vol. 13, no. 2, pp. 198-202, June 2007. 

[24] C. Alpert and A. Devgan, “ Wire segmenting for improved buffer insertion.” In Proceedings 

of the ACM/IEEE Design Automation Conference, vol. 6, pp. 588–593, 1997. 



82 

 

[25] J. Cong, C. K. Koh and K. S. Leung, “ Simultaneous Buffer and Wire Sizing for 

Performance and Power Optimization.” In Proceedings of the International Symposium on 

Low Power Electronics and Design. pp. 271–276, Aug. 1996. 

[26] C. C. N. Chu and D. F. Wong, “ A polynomial Time Optimal Algorithm for Simultaneous 

Buffer and Wire Sizing. IEEE Trans. Computer-Aided Design, vol.8, pp. 1297–1304, 

September 1999. 

[27] I. H. Jiang, Y.W. Chang, J.Y. Jou and  K. Chao, “ Simultaneous Floorplaning and Buffer 

Block Panning,” Proceedings of the 2003 conference on Asia South Pacific design 

automation, vol.11, pp.231-236, January 2003. 

[28] Y. Cheng and Y. Chang, “ Integrating Buffer planning with Floor-planning for 

Simultaneous Multi-Objective Optimization,” Proceedings of the conference on Asia South 

Pacific design automation, electronic design and solution fair, vol.24, pp. 624-627, January 

2004. 

[29] C. J. Alpert, C. Chu, G. Gandham, M. Hrkic, J. Hu, C. Kashyap, and S. T. Quay, “ 

Simultaneous driver sizing and buffer insertion using delay penalty estimation technique,” 

IEEE Transactions on Computer.-Aided Design Integration Circuits Syst., vol. 23, no. 1, pp. 

136–141, Jan. 2004. 

[30] C. C. N. CHU and  D. F. Wong, “A quadratic Programming Approach to Simultaneous 

Buffer Insertion / Sizing and Wire Sizing.”  IEEE Transaction. Computer-Aided Design, 

vol.18, pp. 787–798. June 1999. 

[31] J. Lillis, C.K. Cheng and T.T. Lin, “ Optimal Wire Sizing and Buffer Insertion for Power 

and A Generalized Delay Model.” IEEE J. Solid-State Circ. 31, 3 (Mar.), pp. 437–447, 

1996. 

[32]   J. Cong, et al., “ Interconnect Design for Deep Submicron ICs,” IEEE/ACM Conference on 

Computer-Aided Design, pp.478-485, 1997. 

[33]    A. Devgan and PR. O’Brien ,”Realizable Reduction for RC interconnect circuits,” 

EEE/ACM international Conference on Computer-Aided Design, pp.204-207, 1999. 

[34]   S. Abaspourand, “  Calculation of the Effective Capacitance for the RC interconnection 

VDSM Technologies,”  Asia and Pacific Design Automation conference, pp.43-48, 2003. 



83 

 

[35]    G. Chen and Eby G. Friedman, “ Low-Power repeaters driving RC and RLC Interconnects 

with delay Bandwidth,” IEEE. Transaction on Very Large Integration, vol.14, no.2, 

February 2006. 

[36]    A. Deutsch, et al.,“ When are Transmission-Line effects Important for On-Chip 

Interconnects?,” IEEE Transaction on Microwave theory and techniques, vol.45, no. 10, 

pp.1836-1846, October 1997. 

[37]   M. Shoji, High Speed Digital Circuits, Addison Wesley, Massachusetts, 1996. 

[38]   A. Duetsch A. Kopcsay and G. V. Surovic,” Challenges Raised by Long On-Chip wiring 

For CMOS Microprocessors,” Proceedings of the IEEE Topical Meeting on Electrical 

performance of Electronic Packaging, pp.21-23, October 1995. 

[39]   Y. Massoud , S. Majors, T. Bustami and J. White,” Layout Techniques for minimizing On-

Chip Interconnect Self Inductance,” Proceeding of the IEEE/ACM Design Automation 

Conference, pp.566-571, June 1998. 

[40]   B. Krauter and S. Mehrautra, “Layout based Frequency Dependent Inductance and 

Resistance Extraction for On-Chip Interconnect Timing Analysis,” Proceedings of the 

IEEE/ACM Design Automation Conference, pp.303-308, June1998. 

[41]   A. Duetsch, et al., “ Design Guidelines for short, medium and Long On-Chip Interconnect,” 

Proceeding IEEE Topical Meeting on electrical Performance of Electronic Packaging, 

pp.30-32, October 1996. 

[42]  J. Torres,” Advanced Copper Interconnections for Silicon CMOS Technologies,”Applied 

Surface Science, vol. 91, no. 1, pp.112-123, October 1995. 

[43] H. B. Bakoglu, J. T. Walker and J. D. Meindl,” A Symptotic Clock-Distribution Tree and 

Optimized High-Speed interconnections for reduced clock skew in VLSI and WSI Circuits,” 

Proceedings of the IEEE/ACM International Conference on Computer Design, pp. 118-122, 

October 1986. 

 [44]  M. Nekili, et al., “Logic-Based H-Trees for Large VLSI Processor Arrays: A No Skew 

Modeling and High-Speed Clocking Method,” Proceedings of the IEEE Conference on 

Microelectronics, pp. 144-147, December 1993. 

[45]   C. F. Web, et al. “ A 400 MHz S/390 Microprocessor,” Proceedings of the  International 

Solid-state Conference, pp. 448-449, February 1997. 



84 

 

[46]  P. J. restle and A. Duetsch, “Designing The Best Clock Distribution Network,” Proceedings 

of the IEEE VLSI Circuits Symposium, pp. 2-5. February 1998. 

[47]    E. G. Friedman, High Performance Clock Distribution Networks, Kluwer publishers, 

Massachusetts, 1997. 

[48]   E. G. Friedman, Clock Distribution Networks in VLSI Circuits and systems, IEEE Press, 

New Jersey, 1995. 

[49]   W. Bowhill, et al., “Circuit implementation of a 300-MHz 64-bit Second  Generation 

CMOS Alpha CPU,” Digital technical Journal , vol. 7, no. 1, pp. 100-118, 1995. 

[50]  L. Signal, et al., “ Circuit Design Techniques for the High Performance CMOS IBM S/390 

Parallel Enterprise Server G4 Microprocessor,” IBM Jourmal of research and Development, 

vol. 41, no. 4/5, pp. 489-503, July/September 1997. 

[51]   Y. I. Ismail, E. G. Friedman and J. L. Neves, “ Performance criteria for Evaluating 

Importance of on-Chip Inductance,” Proceedings of the IEEE International Symposium on 

Circuits and Systems, pp. 244-247, may 1998. 

[52]   Y. I. Ismail, E. G. Friedman and J. L. Neves, “Figures of Merit to characterize the 

importance of On-Chip Inductance,” IEEE transactions on Very Large Scale Integration 

(VLSI) Systems, vol. 7, no. 4, pp.442-449, December 1999. 

[53]   Y. I. Ismail, E. G. Friedman and J. L. Neves, “Figures of Merit to characterize the 

importance of On-Chip Inductance,” Proceedings of the IEEE/ACM Desiogn Automation 

Conference, pp. 560-565, June 1998.  

[54]    Y. I. Ismail, “On-Chip Inductance in High Speed integrated Circuits,” Ph.D. Dissertation, 

University of Rochester, Rochester, New York, 2000. 

[55]  Yehea I. Ismail and Eby G. Friedman, “ Effects of Inductance on the Propagation Delay and 

Repeater Insertion in VLSI Circuit: A Summary, ” IEEE transaction on Very Large Scale 

Integration (VLSI) Systems, vol.8, no.2, pp.195-206, April 2000. 

[56]   Kai Kang, Wen-Yan Yin and lei-Wei Li “Transfer function of On-Chip Interconnect Based 

on Distributed RLCG Interconnects Model”  IEEE transaction on Very Large Scale 

Integration (VLSI) Systems, vol. 1, no.6, pp. 92-995, March 2005. 

[57]   Ying-Wen Bai and Chrles A. Zukowski “ Delay-Time Bound and Waveform Bound for 

RLCG ladder Networks,”  IEEE transaction on Very Large Scale Integration (VLSI) 

Systems, vol. 2, no.12, pp.226-234 March 1994. 



85 

 

[58]    D.B. Jarvis, “ The Effects of Interconnections on High-Speed Logic Circuits,” IEEE 

Transactions on Electronic Computers, vol.EC-10, no. 4,pp.476-487, October 1993. 

[59]  M. P. May, A. Taflove and J. Baron, “ FD-TD Modeling of Digital Signal Propagation in 3-

D Circuits with Passive and Active Loads,” IEEE Transactions on Microwave Theory and 

Techniques, vol. MTT-4, no.8, pp.1514-1523, August 1993. 

[60]   Y. Eo and W.R. Eisenstad, “ High-Speed VLSI Interconnect Modeling Based on S-

Parameter Measurement,” IEEE transactions on Components, Hybrids and Manufacturing 

Technology, vol. CHMT-16, no. 5, pp. 555-562, August 1993. 

[61]    L. N. Dworsky, Mdern Transmission Line and Applications, John Wiley & Sons, Inc., New 

York, 1979.  

[62]    W. H. Hayt, Engineeging Electromagnetics, McGraw-Hill, Inc., Japan, 1981. 

[63]   S. Ramo, J. R. Whinnery and T. V. Duzer, Fields and Waves in Communication Electronics, 

John Wiley & Sons, Inc., New Jersey, 1984.  

[64]   H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley 

Publishing Company, 1990. 

[65]   W. C. Elmore “ The Transient Response of Damping Linear Networks with Particular 

Regard to widedand Amplifiers” vol. 19, January 1948. 

[66]   F. Tsui D. S. Gao D. Zhou, S. Su and J. S. Cong, “A simplified synthesis of 

transmissionlines with a tree structure,” Int. J. Analog Integrated Circuits Signal 

Processing, vol.5, pp.19–30, 1994. 

[67]  A. B. Kahng and S. Muddu, “An analytical delay model for RLC Interconnects,” IEEE 

Trans.on Computer-Aided Design, vol.16, pp.1507–1514, 1997. 

[68]  F. Dartu B. Tutuianu and L. Pileggi” Explicit RC-circuit delay approximation based on the 

first three moments of the impulse response” In Procenings. ACM/IEEE Design Automation 

Conference, pages 611–616, December1996. 

[69]   L. T. Pillage and R. A. Rohrer,” Asymptotic Waveform Evaluation For Timing Analysis,” 

IEEE Transaction on Computer-Aided Design, vol.9, pp.352–366, March1990. 

[70]  P. Feldmann and R. W. Freund. Efficient linear circuit analysis by pade approximation via 

the lancozos process. IEEE Trans. Computer-Aided Design, vol.14, pp.639–649, une1995. 



86 

 

[71] P. Feldmann and R.W. Freund. Reduced-order modeling of large linear subcircuits via lock 

lanczos algorithm. In Proc. ACM/IEEE Design Automation Conference, pages 474–

479,1995. 

[72]  M. Kamon M. Silveira and J. White. Efficient reduced-order modeling of frequency 

dependent coupling inductances associated with 3-d interconnect structures. In Proceedings 

ACM/IEEE Design Automation Conference, pages 376–380, 1995. 

[73]  D. L. Boley. Krylov space methods on state-space control models. J.Circuits, Syst., Signal 

Processing,vol.13, pp.733–758, 1994. 

[74]  M. Celik A. Odabasioglu and L. T. Pillage. Prima: Passive Reduced Order 

InterconnectMacromodeling Algorithm. IEEE Trans. Computer-Aided Design, vol.17, 

pp.645–654, 1998. 

[75] Guoqing Chen and Eby G. Friedman,“ An RLC Interconnect model Based on Fourier 

Analysis,” IEEE Int. Conf. on Computer-Aided Design, vol.24, no.2, February 2005. 

[76]   R.H. Harington, Field Computation by Moment Method. Macmilan, NY, 1962. 

[77] L. P. Huelsman, Basic Circuit Theory. Chapter 11. Third Edition. 1991. 

[78]   X. Qinwei and P. Mazumder, “ Efficient Macromodeling for On-Chip Interconnects.” 

Design Automation Conference on DAC/VLSI Design, vol. 48109, pp.561-566, Jan, 2002. 

[79]   X. Qinwei, P. Mazumder and L. Ding,“ Novel Macromodeling for On-Chip RC/RLC 

Interconnects.” IEEE International Symposium on Circuits and Systems, vol. 4, pp. IV-192, 

May, 2002. 

[80]   P. Rong, S. Lingling,“ New improved Macromodeling for on-chip RLC Interconnects.” 

IEEE International Symposium on Circuits and Systems, vol.4, pp.Iv-189-92, 2004. 

[81] Yin Guoli and Lin Zhenghui, “ Uniform Wire Segmentation Algorithm of Distributed 

Interconnects.” High Technology Letters, vol. 13, no. 2, pp. 198-202, June 2007. 

[82] H. C. Lin and L. W. Linholm, “An Optimized Output Stage for MOS Integrated Circuits.” 

IEEE J. Solid-State Circ. SC-10, 2 (Apr.), pp. 106–109, 1975. 

[83] R. C. Jaeger. “ Comments on ‘An Optimized Output stage for MOS Integrated Circuits”. 

IEEE J. Solid-State Circ. SC-10, 3 (June.), pp. 185–186,1975. 

[84] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “ Repeater Scaling and Its 

Impact on CAD,” IEEE Transaction on Computer.-Aided Design Integration Circuits 

System, vol. 23, no. 4, pp. 451– 463, Apr. 2004. 



87 

 

[85] N. Hedenstierna and K. O. Jeppson, “ CMOS Circuit Speed and Buffer Optimization. IEEE 

Trans. Comput-Aided Des. CAD-6, 2 (Mar.), pp. 270–281, 1987. 

[86] D. Zhou and X. Y. Liu, “ Minimization of Chip Size and Power Consumption of High-

Speed VLSI Buffers.” In Proceedings of the International Symposium on Physical Design, 

pp. 186–191, 1997. 

[87] N. Menezes, R. Baldick and L. T. Pileggi, “ A sequential Qadratic Programming Approach 

to Concurrent Gate and Wire Sizing.” In Proceedings of the IEEE International Conference 

on Computer-Aided Design, pp. 144–151, 1995. 

[88] J. Cong, C. K. Koh and K. S. Leung, “ Simultaneous Buffer and Wire Sizing for 

Performance and Power Optimization.” In Proceedings of the International Symposium on 

Low Power Electronics and Design. pp. 271–276, Aug. 1996. 

[89] C.-P Chen, Y.-P Chen and D. F. Wong, “ Fast Performance-Driven Optimization for  

Buffered Clock Trees Based on Lagrangian Relaxation.” In Proceedings of the ACM/IEEE 

Design Automation Conference, pp. 405–408, 1996. 

[90] C. C. N. Chu and D. F. Wong, “ A polynomial Time Optimal Algorithm for Simultaneous 

Buffer and Wire Sizing. IEEE Trans. Computer-Aided Design, vol.8, pp. 1297–1304, 

September 1999. 

[91] S. Dhar and M. A. Franklin, “ Optimum Buffer Circuits for Driving Long Uniform Lines.” 

IEEE J. Solid-State Circ. 26, 1 (Jan.), pp. 32–40, 1991. 

[92] C. Alpert and A. Devgan, “ Wire segmenting for improved buffer insertion.” In Proceedings 

of the ACM/IEEE Design Automation Conference, vol. 6, pp. 588–593, 1997. 

[93] I. H. Jiang, Y.W. Chang, J.Y. Jou and  K. Chao, “ Simultaneous Floorplaning and Buffer 

Block Panning,” Proceedings of the 2003 conference on Asia South Pacific design 

automation, vol.11, pp.231-236, January 2003. 

[94] Y. Cheng and Y. Chang, “ Integrating Buffer planning with Floor-planning for 

Simultaneous Multi-Objective Optimization,” Proceedings of the conference on Asia South 

Pacific design automation, electronic design and solution fair, vol.24, pp. 624-627, January 

2004. 

[95] C. J. Alpert, C. Chu, G. Gandham, M. Hrkic, J. Hu, C. Kashyap, and S. T. Quay, “ 

Simultaneous driver sizing and buffer insertion using delay penalty estimation technique,” 



88 

 

IEEE Trans. Computer.-Aided Design of Integrated Circuits Syst., vol. 23, no. 1, pp. 136–

141, Jan. 2004. 

[96] C. C. N. CHU and  D. F. Wong, “A quadratic Programming Approach to Simultaneous 

Buffer Insertion / Sizing and Wire Sizing.” IEEE Transaction. Computer-Aided 

Designvol.18, pp. 787–798. June 1999. 

[97] L. He, B. Andrew,  K. H. Tam and J. Xiong, “ Simultaneous Buffer Insertion  and Wire 

Sizing Considering Systematic CMP Variation and Random Leff  Variation. IEEE Trans. 

On Computer-Aided Design of integrated circuits and systems. vol. 26, no. 5, May 2007. 

[98] J. Lillis, C.K. Cheng and T.T. Lin, “ Optimal and Efficient Buffer Insertion and Wire 

Sizing.” In Proceedings of the Custom Integrated Circuits Conference, vol. 10, pp. 259–

262.1995. 

[99] V. Ginneken, L. P. P. P., “ Buffer Placement in Distributed RC-Tree Networks for Minimal 

Elmore Delay.” In Proceedings of the International Symposium on Circuits and Systems, 

pp. 865–868, 1990. 

[100] J. Lillis, C.K. Cheng and T.T. Lin, “ Optimal Wire Sizing and Buffer Insertion for Low 

Power and A Generalized Delay Model.” IEEE J. Solid-State Circ. 31, 3 (Mar.), pp. 437–

447, 1996. 

[101]   N. H. E. Weste and D. Harris, CMOS VLSI Design: A circuit and Systems Perspective, 3rd 

ed. New York, Addison Wesley, 2005. 

[102] Jason Cong, Lei Cheng-Kok, and Patrick H. Madden,“ Performance Optimization VLSI 

Interconnect Layout” INTEGRATION, the VLSI journal, vol. 21, pp. 1-94, 1996.  

[103] K. Banerjee and A. Mehrotra, “ Accurate Analysis of On-chip Inductance Effects and 

Implications for Optimal Repeaters Insertion and Technology Scaling” Proceedings  

Symposium on VLSI Circuits, 2001. 

[104] Magdy A. El-Moursy and Eby G. Friedman, “ Optimum Wire Sizing of RLC Interconnect 

With Repeaters” INTEGRATION, the VLSI journal,  vol. 38, pp. 205–225 ,23 April 2004. 

[105] Y. Gao and D. F. Wong, “ A Graph Based Algorithm for Optimal Buffer Insertion Under 

Accurate Delay Models” Proceedings of the conference on Design, automation and test in 

Europe, pp. 535-539, 2001. 



89 

 

[106] M. Sriram and S. M. Kang,“ Fast Approximation of the Transient response of Lossy 

Transmission Line Trees” ACM/IEEE Design Automation Conference, vol. 16, pp. 791-805, 

1993. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 

 

APPENDIX A 
 

Driving  Z-Parameter Modeling of the T-Configuration Based on the 
AWE Method  

 

 

The input impedance of a short-ended z-parameter interconnect with normalized length can be 

found as illustrated in [64, 80].  

( ) tanh( )in oZ s Z λ=    Where  1=   , 1 2( )oZ s Z Z=  , 1 2( ) /s Z Zλ =                      (A-1)                                                           

 

So, 1 2 1 2( ) tanh( / )inZ s Z Z Z Z=                                                                                       (A-2) 

 

Using Taylor series formula, we can change the hyperbolic function into the polynomial series 

equation.  

 

3 5 71 2 17tanh ..........
3 15 315

x x x x x= − + − +  for x < 
2
Π                                                  (A-3)              

 

So, the hyperbolic function in z-parameter will be 

 

 2 31 1 1 1 1 1 1
1 2

2 2 2 2 2 2 2

1 2 17tanh( / ) ( ) ( ) ........
3 15 315

Z Z Z Z Z Z ZZ Z
Z Z Z Z Z Z Z

= − + − +               (A-4) 

 

The input impedance depends on the Taylor series formula will be  
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2 3 4

1 1 1
1 2 3

2 2 2

1 2 17( ) .........
3 15 315in

Z Z ZZ s Z
Z Z Z

= − + − +                                                                (A-6) 

 

Eq. (A-6) represents the general input impedance for interconnect z-parameter lumped model at 

short ended. We can easily find the input impedance for an interconnect lumped RC model as 

illustrated in Figure (A-1) directly from Eq. (A-6) as shown below:   

C

(a)

R

Z2

Z1

(b)  
 

Figure A-1: Interconnect lumped model (a) RLC-model, (b) z-model. 
 

Where 1Z R= and 2
1Z

sC
= then                                                                                      (A-7) 

 

By considering equation (A-6), the input impedance for RC interconnect model will be 

  

2 3 2 2 4 3 31 2 17( )
3 15 315inZ s R R Cs R C s R C s A= − + − +                                                 (A-8) 

 

In the same way, we can find the input impedance for RLC and RLCG interconnect models. Now, 

we try to improve the improvement T-model from TPN by using AWE. Let us consider the T- 

model in the Figure 3.8.  
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V1

Z1 Z4

Z2

Z3

 
 

Figure A-2: Represents the improved T-model in z-parameter. 
 

 

The input impedance for Figure (A-2) at short-ended is  

 

4 2 3
1

2 3 4

( )
in

Z Z ZZ Z
Z Z Z

+
= +

+ +
                                                                                                   (A-9) 

 

1 2 1 3 1 4 2 4 3 4

2 3 4
in

Z Z Z Z Z Z Z Z Z ZZ
Z Z Z

+ + + +
=

+ +
                                                                     (A-10) 

 

Assuming Figure (A-2) has a symmetric structure. i.e. 1 4Z Z= , Eq. (A-10) can be written as 

  

 
2

1 2 1 3 1

1 2 3

2 2
in

Z Z Z Z ZZ
Z Z Z
+ +

=
+ +

                                                                                             (A-11) 

Let us assume 1 4 1Z Z R= = , 2
1

1Z
sC

= and 3 3Z R=                                                      (A-12) 

 

By considering these assumptions, Eq. (A-11) will be  

 
2

1 1 1 1 3 1

1 1 3 1

2 ( 2 )( )
1 ( )in

R R C R R C sZ s
R C R C s

+ +
=

+ +
                                                                                 (A-13) 

 

By using the simple recursive formula as represented in Eqs. (2.44-2.46) of section 2.5.3, 
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2 1
0 1 2 1

2
1 2 1

.....( )
1 ......

n
n

in n
n

a a s a sZ s
b s b s

−
−

−

+ + +
=

+ + +
                                                                                     (A-14) 

 

Eq. (2.45) can be expressed using a polynomial of order 2n-1. As Taylor series 

 

 2 1
0 1 2 1( ) ........ n

in nZ s Z Z s Z s −
−= + + +                                                                               (A-15) 

 

The coefficients of Eq. (A-14) can be found by using a simple recursive formula,     

                 

1

k

k k i k i
i

Z a b Z −
=

= −∑                                                                                                             (A-16) 

 

where ( )inZ s : The input impedance of a circuit in s-domain  , kZ : The coefficients of the input  

                         impedance , ka : The coefficients of the numerator of the input impedance     

                         equation, n : The number of the circuit sections , and  ib  : The coefficients of the  

                         denominator of the input impedance equation. 

 

The rational input impedance of the model shown in Figure A-2 can be represented as a series 

function. So, from Eq. (A-14), the coefficients of the numerator and denominator of the input 

impedance can be represented as: 

0 12a R= , 2
1 1 1 1 3 12a R C R R C= + and 1 1 1 3 1b R C R C= +                                                    (A-17) 

The series coefficients of the input impedance ( 1 2 3 4, , , ,.....Z Z Z Z ) as illustrated in equation (A-15) 

can be found by considering equation (A-16). Thus 

 

0 12Z R= , 2
1 1 1Z R C= − , 3 2 2 2

2 1 1 1 1 3Z R C R C R= +                                                               (A-18) 
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So, the input impedance of the model shown in figure (A-2) at short-ended can be expressed as 

 
2 3 2 2 2 2

1 1 1 1 1 1 1 3( ) 2 ( )inZ s R R C s R C R C R s= + − + +                                                                (A-19) 

 

 We can find the circuit elements for the model shown in Figure A-2 by equating the first, second 

and third moments of the input impedances represented in Eqs. (A-8, A-19). Get 

 

1 12
2
RR R R= ⇒ = , 2 2

1 1 1
1 4
3 3

R C R C C C− = − ⇒ = and                                              (A-20) 

 3 2 2 2 3 2
1 1 1 1 3 3

2 1
15 5

R C R C R R C R R+ = ⇒ = −                                                                    (A-21) 

The circuit of the T-model shown in the Figure (A-3) based on AWE will be 
 
 

R/2 R/2

4/3C

-R/5

 
 

Figure A-3: Represents the RC T-model based on AWE. 
 
 

In the same way, we can find the elements which represent the interconnect RLC or RLCG T- 

model based on the AWE.   
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APPENDIX B 
 

Driving Z-Parameter Modeling of the Π-Configuration Based on the AWE 
Method  

 
 

 

To explain the process of finding the general z-parameter input admittance of interconnect lumped 

model at open-ended as illustrated in Figure B-1, we will consider the works have been done in [64-

80].  

Z2

Z1

 

Figure B-1: Interconnect z-parameter of lumped model.  
 

 

The admittance of an open-ended z-parameter interconnect can be obtained from the 2-port  

 

parameters as in [64, 80], 

 

1 2

1 2

tanh( / )tanh( ( ) )
( )

( ) /in

Z ZR sL Cs
Y s

R sL Cs Z Z
+

= =
+

                                                                 (B-1)                                                           

where 1Z R sL= + and 2
1Z

sC
=  then                                                                             (B-2)                   

 

Using Taylor Series formula, we can convert the hyperbolic function into the polynomial series.  

 

3 5 71 2 17tanh
3 15 315

x x x x x= − + − + − − − −     for x < 
2
Π                                             (B-3) 
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The hyperbolic function can be expressed as a Taylor Series formula in z-parameters as 

 

2 31 1 1 1 1 1 1
1 2

2 2 2 2 2 2 2

1 2 17tanh( / ) ( ) ( ) ........
3 15 315

Z Z Z Z Z Z ZZ Z
Z Z Z Z Z Z Z

= − + − +                (B-4) 

 

We can address the input admittance of z-parameter in s-domain using Taylor Series formula as  

 

2 31 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2

( ) ( )
tanh( / ) 1 2 17( ) ........

3 15 315in

Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z

Y s
Z Z Z Z Z Z Z Z Z Z

= = − + − +       (B-5) 

2 3
1 1 1
2 3 4

2 2 2 2

1 1 2 17( ) .........
3 15 315in

Z Z ZY s
Z Z Z Z

= − + − +                                                             (B-6) 

 

Eq. (B-6) represents the general form of z-parameter input admittance for interconnect lumped 

model at open ended. By considering Eq. (B-2) and Eq. (B-6), the input admittance for RLC 

interconnect model can be expressed as  

 

2 2 2 2 3 31 1 2( ) ( )
3 3 15inY s sC RC s LC R C s A= − − − +                                                     (B-7) 

 

In the same way, we found the input admittance for RLC and RLCG interconnect models. Now, we 

will express the model shown in Figure 3.10 as a general z-parameter model. 
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Z2

Z1

Z3

Z4

 
Figure B-2: Represents the improved Π-model in z-parameter. 

 

For an open-ended z-parameterΠ -model of the model as shown in Figure B-2, the deriving point 

admittance can be obtained as   

 

1 3 1 4 3 4 1 2 2 3

2 1 3 1 4 3 4

( )
( )in

Z Z Z Z Z Z Z Z Z ZY s
Z Z Z Z Z Z Z
+ + + +

=
+ +                                                              (B-8) 

 

Eq. (B-8) represents the input admittance of a z-parameterΠ -model as shown in Figure B-2 at 

open-ended. Assuming Π -model has a symmetric structure. i.e. 2 4Z Z= . The input admittance 

represented in equation (B-8) can be expressed as 

 

1 3 1 2 2 3

2 1 3 1 2 2 3

2 2( )
( )in

Z Z Z Z Z ZY s
Z Z Z Z Z Z Z

+ +
=

+ +                                                                     (B-9) 

 

Eq. (B-9) represents the input admittance of a general z-parameter Π -model at open-ended 

interconnect. We will use interconnect RLC Π -model to find the improvement of RLC Π -model 

using AWE. Let us assume  

 

1 1 1Z R sL= + , 2
1

1Z
sC

= , 3
3

1Z
sC

=  and  2
2

1Z
sC

=                                      (B-10) 
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By considering Eqs. (B-9, B-10), the input admittance in s-domain can be expressed as 

 

2 3
1 2 1 1 3 1 2 3 1 1 2 1 1 3 1 2 3 1 1 2

2
1 2 3 1 2 3

( ) ( ) ( )( )
1 ( ) ( )in

C C s R C C R C C R C C s L C C L C C L C C sY s
R C C s L C C s

+ + + + + + +
=

+ + + +    (B-11)  

                                    

Using the simple recursive formula represented in Eqs. (30-32) of section 2.4.3,  

 

2 1
0 1 2 1

2
1 2 1

.....( )
1 ......

n
n

n
n

a a s a sY s
b s b s

−
−

−

+ + +
=

+ + +
                                                                                       (B-12) 

 

Eq. (B-12) can be expressed s Taylor series using a polynomial of order 2n-1.  

 

 2 1
0 1 2 1( ) ........ n

nY s Y Y s Y s −
−= + + +                                                                                      (B-13) 

 

The coefficients of Eq. (B-13) can be found by using a simple recursive formula,    

                  

1

k

k k i k i
i

Y a bY −
=

= −∑                                                                                                               (B-14) 

 

where   ( )Y s : The input admittance of a circuit in s-domain  

             kY     : The coefficients of the input admittance   

              n     : The number of the circuit sections 

             ka    : The coefficients of the numerator of the input admittance equation  

              ib    : The coefficients of the denominator of the input admittance equation    
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the rational input admittance of the model shown in Figure B-2 can be converted to a series 

function. So, from Eq. (B-11), the coefficients of the numerator and denominator of the input 

admittance can be represented as: 

 

1 1 2a C C= + , 2 1 1 3 1 2 3 1 1 2a R C C R C C R C C= + + , 3 1 1 3 1 2 3 1 1 2a L C C L C C L C C= + +   

1 1 2 1 3b R C R C= +  and  2 1 2 1 3b L C L C= +                                                                          (B-15) 

 

We can find the coefficients of the input admittance as illustrated in Eq. (B-13) by considering the 

simple recursive formula in Eq. (B-14). Get  

 

0 0Y = , 1 1 2Y C C= +                                                                                                        (B-16) 

2
2

2 1 1 3 1 2 3 1 1 2 1 2 1 3 1 2 1 2
1

( )( )
i

Y R C C R C C R C C R C R C C C R C
=

= + + − + + = −∑            (B-17) 

3
2

3 1 1 3 1 2 3 1 1 2 1 2 1 3 1 2 1 1 1 3 1 2
1

( )( ) ( )( )
i

Y L C C L C C L C C R C R C R C L C L C C C
=

= + + − + − + + +∑
2 2 3 2 2

3 1 2 1 2 1 2 3Y L C R C R C C= − + +                                                                                      (B-18) 

 

The input admittance showed in Eq. (B-11) can be expressed as 

 

2 2 2 3 2 2 2 3
1 2 1 2 1 2 1 2 3 1 2( ) ( ) ( )inY s C C s R C s R C R C C L C s= + − + + −                                               (B-19) 

Assuming Π -model has a symmetric structure. i.e. 2 4 1 2Z Z C C= ⇒ = .So, the input admittance 

will be 
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2 2 2 3 2 2 2 3
1 1 1 1 1 1 1 3 1 1( ) 2 ( )inY s C s R C s R C R C C L C s= − + + −                                                         (B-20) 

 

By equating the first, second and third moments of Eq. (B-7) with Eq. (B-20), get 

 

1 2 2
CC C= = ,  1

4
3

R R= , 1
4
3

L L= and 3
1
5

C C= −                                                       (B-21) 

 

The RLC circuit for interconnect Π model can be build as shown in Figure B-3.  
 

-C/5

C/2C/2

4/3 R+4/3L

 
 

Figure B-3: Represents the interconnect RLC Π -model based on the AWE method.  
 
 

In the same way, we can find the interconnect RC and RLCG Π -model based on AWE. 
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APPENDIX C 
 

Closed-Form Expressions for Interconnect Critical Length, Minimum 
Buffer Sizing and Optimum Interconnect Delay  

 
To calculate the interconnect critical length and optimum buffer size, let us consider the circuits 

shown in Figures C-1 and C-2 

Driver

BA
delay

Load
Line

 
Figure C-1: Interconnect with driver and load buffers. 

 

 

 

 

 

 

Figure C-2: Circuit representation of Figure C-1. 
 

 
The circuit shown in Figure C-2 is the representation model for the circuit shown in Figure C-1. The 

output resistance of the driver buffer is dR , the gate capacitance of the load buffer is LC and the 

interconnect is represented by the RC model shown in Figure 3. 

To calculate the interconnect critical length and the optimum buffer size, we will consider the work 

in [101]. The delay of the circuit shown in Figure C-2 can be calculated using the Elmore delay 

[65]. Get  

.2 .1 . .1( ) ( )pd d equv equv L equv equv Lt R C C C R C C= + + + +                                            (C-1) 

 

Reqv.

Ceqv.2 Ceqv.1 

Rd
Vin V0

CL 

(b)
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By considering Eqs. (1, 6, 8) and Eq. (C-1) can be expressed as 

 

2

4 7 3( ) ( )
3 10 4pd d L L

Lt R C C R C C
R

= + + + +                                                          (C-2) 

 

Where RLC are the interconnect resistance, inductance and capacitance respectively. 

Eq. (C-2) can be expressed as a function of an interconnect length, get 

 

2

4 7 3( ) ( ) ( )
3 10 4pd d L L

lt R c C r c C
r

= + + + +   


                                               (C-3) 

 

where . , .R r C c= =  and .L l=   

Dividing Eq. (C-3) on l to make the delay line is in linear proportion to the length of an 

interconnect. Yields 

 

( ) 14 4
15 3

pd d L
d L

t R C lcR rc rC
r

= + + + +



  

                                                         (C-4) 

 

The optimal buffer insertion solution can be achieved by finding the optimal length l to  

minimize
( )pdt 


. 

( )
( )

0

pdt
d

d
=






                                                                                                                 (C-5) 
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.2

( )
( ) 15( )14 10 ( )

15 14

pd
d L

d L crt

t ld R Cl rrc R C
d r rc

+
= = − + ⇒ =



 
 

               (C-6) 

 

This length shown in Eq.(C-6) represents the optimum length of an interconnect in which the 

interconnect delay is in linear proportion to its length. Eq. (C-6) is similar as the approaches in [37]. 

To find the number of segments for each interconnect length, we divide the interconnect length by 

the critical length as shown in Eq. (C-7) 

Number of segments =  
.crt




                                                                                             (C-7) 

 

Also, number of buffers can be calculated as shown in Eq. (C-8) 

 

 Number of buffers = Number of segments + 1                                                                   (C-8) 

To find the optimum inverter size to minimize the delay, we consider both Eqs. (C-4, C-6). Get 

.

15( )( ) 14 4
15 14 3

15( ) 15( )

14 14

d Lpd d L
d L

crt
d L d L

lR Ct R C lrcR rc rC
rcl lR C R C

r rr
rc rc

+
= + + + +

+ +





                                                                                                                                             (C-9) 

Expressing Eq. (C-9) as a function of buffer size h , get 

0

.

0

15( )( ) 14( )
15 14

15( ) 15( )

14 14
4
3

d Lpd d L

crt
d L d L

lR Ct R R C lrh c rc
h rcl lR C R C

r rr
rc rc

rC h

+
= + + + +

+ +





                                                                                                                                                  

                                                                                                                                    (C-10)                                                                       
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To optimize the buffer sizes to minimize the segment delay, we will drive Eq. (C-10) with respect 

to w and equalize it to 0. 

 

.

( )
( )

0

pd

crt

t h
d

dh
=


                                                                                                                (C-11) 

. 0 0
0 2

0

( )
( )

340
3 4

pd

crt

t h
d

R c R crC h
dh h rC

= = − ⇒ =


                                                      (C-12) 

 

Eq. (C-12) represents the optimum buffer size can be used to minimize the interconnect delay. To 

find the delay per unit length of a properly repeated wire  
pdt
l

, we have to consider Eqs. (C-10, C-

12). We get 
 
 

0 0 0 0
0 0 0

0 0

2
. 0 0 0

0

3 3 320 29 29
( )

( )
15( )

pd

crt

R C r l R cr l R cR cr R C c l
t c C rC

h
R C r R l

rC

+ +
+ +

=
+



       (C-13) 
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