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Abstract

Finite system approximation in colloidal systems with aggregation and break-up

Master of Science, 2018

Salina Aktar

Applied Mathematics

Ryerson University

In this Thesis, reactive multiparticle collision dynamics (RMPC) is used to simulate red blood cell cluster

concentration profiles in the presence of aggregation, as well as when aggregation and break-up are present

together. RMPC dynamics involves local collisions, reactions and free-streaming of particles. Reactive

mechanisms are used to model the aggregation and break-up of particles. This analogy is motivated by a

system of ODES called the Smoluchowski differential equations that have been used to model aggregating

systems in the well-mixed case. Exact solutions for the (infinite) systems of ODEs for the Smoluchowski

equation are compared to a numerical ODE system solution where the maximum cluster size is N (finite)

rather than infinite as assumed in the Smoluchowski equation. The numerical ODE solution is compared

to the exact solution in the infinite system when the maximum cluster size is 20 or less. Stochastic RMPC

simulations are performed when the maximum cluster size N = 3, and the simulation domain is a cubic

volume subject to periodic boundary conditions. Constant and equal aggregation and break-up rates are

considered, as well as much smaller aggregation rates compared to break-up rates and vice-versa. Two

different initial conditions are considered: monomer-only, as well as non-zero initial concentrations for clusters

of all sizes. The simulation for the RMPC (finite), numerical ODE (finite) and exact (infinite) can be shown

to have good agreement in the equilibrium concentrations of the chemical species in the system in some

cases, although agreement is poor in other cases. This work is an important stepping stone that can be

expanded to incorporate flow conditions into the particle dynamics in future work, so as to more accurately

investigate pathological conditions including atherosclerotic plaque formation.
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Chapter 1

Introduction

1.1 Biological Modelling

The blood circulation in the human body is a delicate system in which the essential functions of delivering

oxygen and nutrients to the tissues and cells, and taking away metabolic waste products, is carried out

by the heart, the blood and blood vessels. The cardiovascular system spans through the entire body and

provides an essential support mechanism for all other body tissues. Blood has been extensively studied at

the macroscopic, as well as microscopic level, for nearly half a century, and has been a key focus of medical,

biological, chemical, physical, mathematical and pharmaceutical studies [5]. Significant efforts have been

made to obtain correct models for blood flow so as to investigate mechanical and bio-chemical properties,

as well as coagulation of blood in healthy and diseased conditions. In particular, coagulation of blood can

be affected through complex flow geometries as can arise in atherosclerosis and thus it is important to

understand this phenomenon. To describe red blood cell (RBC) coagulation, or aggregation of RBCs, the

collision theory of chemical reactions can be used as an analogy [23].

The flow of blood is affected by three key parts: blood vessels, periodic pumping of the heart, and cellular

constituents of blood itself. Blood vessels have varying diameters and elastic properties that influence blood

flow and are categorized as arteries, veins and capillaries. The larger blood vessels that carry blood away

from the heart are arteries while veins carry blood towards it. The smaller capillaries allow for exchange

of water and chemicals between the blood and the tissues. The periodic contractions of the heart lead to

pulsatile flows. Finally, blood consists of a fluid component called plasma and blood cells that are suspended

within it. Blood plasma is an aqueous solution of electrolytes, proteins and small organic molecules such as

glucose, that occupies roughly 50 − 60% of the blood volume. The remaining portion contains blood cells

including primarily erythrocytes (or red blood cells - RBCs), thrombocytes (or platelets), and leukocytes

(or white blood cells - WBCs). The properties of blood depend on the extent of aggregation of suspended

erythrocytes in plasma that grow in size as they aggregate [15], the total number of RBC aggregates in an

elementary volume, and on the kinetic changes of the size distributions [22].

In 1 mm3 volume of blood, millions of red blood cells (RBCs) interact with each other and stick together

1
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to form larger clusters called rouleaux in a process called aggregation. Large RBC aggregates formed in

autologous plasma resemble a stack of coins when observed under light microscopy. In flow, RBC clusters

are easily broken up, leading to shear-dependent aggregation that is believed to be the reason that blood

behaves like a non-Newtonian fluid. Newtonian flow behaviour is observed when blood flows through the

larger diameter arteries where flows have high shear rates, but remarkable non-Newtonian behaviour is

observed when it flows through small diameter arteries, or capillaries, where the shear rates are much lower.

Additionally, the rouleaux formation leads to an increase in the viscosity of blood at low shear rates [33]

causing a flattened parabolic velocity profile rather than a parabolic profile corresponding to Newtonian flow.

The solid core that is formed at the center, which is the cause for the flattened parabolic velocity profile,

requires a minimum amount of shear stress to be broken up. This minimum shear stress is called a yield

stress, and is a non-Newtonian parameter [24]. Normal human blood is believed to have a yield stress value

between 0.01 and 0.06 dyn/cm2.

Complex flow geometries, such as local constrictions in blood vessels, can also cause or affect RBC aggre-

gation. The ultrasonic echo intensity of blood has been found to depend on the concentration of suspended

RBCs and RBC aggregates of various sizes in the plasma. Additionally, increased RBC aggregation leads

to increased microvascular flow resistance that in turn affects aggregation in blood vessels as a result of

decreased overall microcirculatory blood flow. Furthermore, larger RBC aggregates can impede flow in the

smaller capillaries leading to no-flow conditions. Murata[21] investigated time-independent effects of ag-

gregation and sedimentation on the flow of human blood in narrow horizontal tubes as flow resistance is

increased. It was observed that small aggregates are formed under comparatively high shearing forces, while

large aggregates form in low shear conditions. Studying the fluid dynamical aspects of blood flow through

a stenosed artery is useful to develop our fundamental understanding of circulatory disorders. Stenosis is

the narrowing of the blood flow area through the development of an arteriosclerotic plaque, that leads to

increased flow resistance and associated reduction in blood supply downstream. This can cause serious

cardiovascular diseases including myocardial infarction and cerebral strokes[33].

Many computational studies have been carried out so as to simulate stenosed flow. Experimental obser-

vations show that there is a higher RBC concentration at the flow axis [29]. Tsubota et. al. [30] presented

a two-dimensional particle model for blood flows between two parallel rigid plates. The more recent work

of Zhang et. al.[34] used another simulation approach for two-dimensional blood flow using the immersed-

boundary lattice Boltzmann algorithm. AlMomani et. al.[4] used the computational fluid dynamics (CFD)

model to perform micro-scale simulations of platelet-RBC interactions in shear flow.

1.2 Particle-Based Methods of RBC aggregation

Using particle-based methods to simulate RBC dynamics has become increasingly attractive over the years.

In such methods, positions and velocities of particles are recorded and evolved in time. These methods can

be divided into microscopic, mesoscopic and macroscopic particle-based methods, characterized according

to an appropriate length scale. For example, a microscopic approach includes molecular dynamics (MD)

simulations, and mesoscopic methods include the Lattice-Boltzmann method (LBM) [28, 20], dissipative

2
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particle dynamics (DPD) [10] and multiparticle collision dynamics (MPC) [19, 11, 12, 13]. Smoothed particle

hydrodynamics(SPH) [8] is a macroscopic approach. These methods focus primarily on the fluid dynamics

aspects of blood rather than the aggregation and break-up processes of RBCs and how these affect fluid flow

or how flow affects the aggregation process.

The focus of this Thesis is on RBC aggregation using a mesoscopic approach called Reactive Multiparticle

collision dynamics (RMPC), which is an extension of MPC that additionally allows reaction mechanisms.

In this way, the method can be extended to include flow conditions without having to combine different

computational methods. Multiparticle collision (MPC) dynamics was first introduced by Malevanets and

Kapral in 1999 and is a method that conserves mass, energy and momentum throughout the system [19].

The main steps in MPC are: local collisions and free-streaming. This method is also often referred to as

stochastic rotation dynamics (SRD), although MPC is the more common name in the literature. Due to an

efficient local collision algorithm, which involves a stochastic rotation operator, this method is classified as

mesoscopic [2]. MPC has been used in a number of flow applications [18, 6, 3]. Specifically in [6, 1], the

method has been used to simulate flow through a local constriction. RBC aggregation is not part of these

studies, and all particles in the system are the same type, eg. fluid particles.

MPC can easily be extended to include different particle types for multi-component systems where there

are different chemical species for example [14]. Incorporation of reaction events in the MPC dynamics gave

rise to the Reactive multiparticle collision dynamics (RMPC). Interesting applications have been investi-

gated with RMPC including pattern-forming chemically reacting systems [14], diffusion-influenced reaction

dynamics [31], reaction-diffusion fronts [32], and diffusion-influenced signaling pathways [27]. In the initial

introduction of the RMPC method, reactions had to conserve the total number of particles in the system.

Extension of RMPC to allow for reactions that change the number of particles through a reactive mechanism

was first introduced in [25, 26] and later applied to a bistable biochemical system by Chen et. al. [7]. MPC

dynamics leads to diffusive motion of the particles in the system, so that RMPC simulates a reaction-diffusion

system.

Most biological functions, as well as the core of chemistry, can be described by complex biochemical

reaction networks. The reactive event, as well as the diffusion term, come into play when dealing with

reactions. Diffusion-influenced reaction dynamics can be based on the equation [14]

∂

∂t
c(r, t) = R(c(r, t)) +D∇2c(r, t)

Here c = (c1, c2, . . . , cs) is a vector of the concentrations of the s chemical species, R is a vector-valued

function of the reaction rates and D is the matrix of diffusion coefficients. For a well-mixed system, where

spatial effects are assumed negligible, one can use the simple chemical rate equations

d

dt
c(t) = R(c(t))

for the evolution of the concentrations of the chemical species, although stochastic effects may be exhibited

in spatially distributed reacting systems. Reactions considered include reactions for s chemical species Xl,

3
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(l = 1, . . . , s) such as:

u1X1 + u2X2 + ....+ usXs
kf

−→
ū1X1 + ū2X2 + ...+ ūsXs

and

ū1X1 + ū2X2 + ...+ ūsXs
kr

−→
u1X1 + u2X2 + ....+ usXs

Here ul and ūl are the stoichiometric coefficients for the reactions. In RMPC dynamics, reactions occur locally

in a cell just like the collisions, and occur at discrete times τ . Unlike for reaction-diffusion master equations

(RDME), or Gillespie-multi-particle methods (GMP), RMPC particles have positions and velocities that are

continuous in space.

In this Thesis, this recently developed particle-based method called RMPC is used to investigate the

aggregation properties of particles. Simulating the aggregation properties of particles can most effectively

be done using particle-based methods for reactive media. The total number of clusters before and after the

break-up need not be conserved in the process of RBC aggregation and break-up. The traditional kinetic

theory descriptions in the form of the Boltzmann equations can not handle the fluctuations in particle

numbers. As such, the reactive multiparticle collision dynamics is an appropriate formalism for the study of

RBC aggregation. The RBC aggregation and break-up will be treated like chemical reactions, and various

reaction rates are considered. Although the method is capable of incorporating flow, the results in this

Thesis are for aggregation and break-up in no-flow conditions.

1.3 Specific Aim and Methodology

The purpose of this thesis is to analyze the aggregation properties of particles in no-flow conditions, and

how changes in reaction rates affect the aggregation properties of particles that are also able to break up.

The research is motivated by particle interactions, namely aggregation and breakup of red blood cells.

The thesis will present simulation results for aggregation of particles in no-flow conditions for constant

aggregation and break-up rates, and considers one case where reaction rates are cluster-size-dependent.

Numerical results are assessed and important conclusions and future work are discussed. In the Thesis we

will refer to break-up as fragmentation.

1.4 Thesis Organization

The thesis is organized as follows: In chapter 2 the RMPC background is presented, discussing the reaction

mechanism, the collision rule and the free-streaming of the particles with appropriate boundary conditions.

In chapter 3, the exact solution for a reactive mechanism for an infinite system describing aggregation only,

as well as aggregation with break-up of particles, is found and analyzed. Chapter 4 provides the numerical

ODE solution for a finite system in which there is a maximum cluster size. Both the cases for aggregation

only, and aggregation together with break-up are considered. In Chapter 5, we provide the results for

4
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particle-based simulations using RMPC and compare the results to the exact solution for the infinite system

as well as the finite ODE solution. Constant aggregation and break-up rates are considered, much larger

aggregation rates compared to break-up rates are discussed, smaller break-up rates compared to aggregation

rates are presented, and a case for cluster-size dependent rates is also shown. A summary of the key findings,

a discussion of the results and important conclusions and future work is contained in chapter 6.
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Chapter 2

Reactive Multiparticle Collision

Dynamics

In this chapter the basic properties of reactive multiparticle collision dynamics(RMPC) are discussed and

the numerical implementation of RMPC dynamics is explained. We have modeled the dynamics of a 3-D

system consisting of particles satisfying the reactive mechanism associated with aggregation and break-up

of red blood cells. The boundary condition to model particle interaction is discussed.

RMPC dynamics is a process made up of three basic elements that occur at discrete time steps. The ele-

ments are: collisions between particles, reactions, and ballistic particle motion in the form of free-streaming.

The system volume V , containing N particles, is divided into subvolumes or cells Vξ with collisions and

reactions occurring locally in each subvolume, followed by free-streaming of particles irrespective of this

subdivision. The velocity distribution of the particles in the RMPC method are taken from the same

Maxwell-Boltzmann probability distribution that is given by

p(v) =

(
m

2πkBT

) 3
2

exp

(
− m

2kBT
v2

)
which has zero mean and variance kBT

m . Here kB is the Boltzmann constant, m is the mass of a particle, and

T is the system temperature. The reason for assigning velocities from this distribution is that, it has been

shown that particles in an RMPC system satisfy this particular velocity distribution at equilibrium [19].

2.1 Reaction Mechanism

Suppose the reactive mechanisms for s chemical species Xl(l = 1, ...s) include a set of r reactions Rν with

respective rate constants kν in the form

Rν :

s∑
l=1

uνlXl
kν

−→

s∑
l=1

ūνlXl (ν = 1, ...r),

6
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where uνl and ūνl are the stoichiometric coefficients for reaction ν and the subscript l denotes the chemical

species type. Suppose there are Nξ
l particles of species l in cell ξ. Then summing over all chemical species

gives the total number of particles in a cell as Nξ =
s∑
l=1

Nξ
l . It is assumed that reactions occur independently

in a cell for every time step. The probability bξν that reaction Rν occurs in cell ξ with reaction rate kν , in

the time interval (t, t+ dt) is bξνdt = kν(Vξ)h
ξ
νdt, where hξν is the combinatorial factor that accounts for the

number of different ways the reaction can occur in the cell, and kν(Vξ) indicates that rate constants have

been scaled by the cell volume Vξ. For a randomly chosen reaction Rν in Vξ we have

bξν = kν(Vξ)h
ξ
ν = kν(Vξ)

s∏
l=1

Nξ
l !(

Nξ
l − uνl

)
!
.

Note that the combinatorial factor hξν = 0 if uνl > Nξ
l for a given species l in the cell, in which case reaction

Rν will not happen in the cell since bξν = 0.

In RMPC, at discrete time intervals τ , each particle in the system is considered for a reaction separately.

For example, suppose the chemical species of a given particle in the system is Xl0 . If a particular chemical

species Xl0 is part of more than one reaction mechanism, one of the possible reactions for that species is

chosen randomly. Another random number is then drawn, and if it is less than

(Nξ
l0
− 1)!(

Nξ
l0
− uνl

)
!
kν(Vξ)

s∏
l=1
l6=l0

Nξ
l !(

Nξ
l − uνl

)
!
,

then reaction Rν will take place in cell ξ changing the chemical species of particles involved in the reaction

mechanism according to the stoichiometry of the reaction.

2.2 Particle Collisions

Suppose the system volume V is divided into Nc cells or subvolumes of equal volume Vc. Let Lx, Ly and

Lz be the number of subvolumes in the x, y and z-directions so that Nc = (Lx)(Ly)(Lz) and V = NcVc.

Collisions update the velocities of particles based on local information in cell ξ according to two rules: an

all-species collision followed by a single-species collision. Each collision rule amounts to a random rotation

operator acting on the deviation of a given particle velocity from the average velocity in the cell. For a

randomly chosen rotation angle, the rotation operator ω̂ξ is given by [9, 27]

ω̂ξ =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


l2x + (1− l2x)cφ lxly(1− cφ)− lzsφ lxlz(1− cφ) + lysφ

lxly(1− cφ) + lzsφ l2y + (1− l2y)cφ lylz(1− cφ) + lxsφ

lxlz(1− cφ)− lysφ lylz(1− cφ) + lxsφ l2z + (1− l2z)cφ

 (2.1)

where lx = cosψ
√

1− θ2, ly = sinψ
√

1− θ2, lz = θ, and ψ and θ are random numbers on the interval

[0, 2π] and [−1, 1] respectively. The abbreviated form cφ = cosφ and sφ = sinφ is used for clarity and φ

represents the randomly chosen rotation angle specifying the collision rule. Let the set of rotation angles for
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the all-species collision rule be Ω and for the single-species collision rule for species l be Ωl where l = 1, . . . s.

Then φ ∈ Ω in (2.1) leads to the all-species collision rule while φ = φl ∈ Ωl gives a single-species collision.

Application of the all-species collision rule then updates the velocity vj(t) of particle j at time t in cell

ξ at discrete time steps τ according to

vj(t+ τ) = Vξ + ω̂ξ(vj(t)−Vξ). (2.2)

where the mass center velocity of all of the particles in the cell is given by

Vξ =
1

Nξ

Nξ∑
n=1

vn (2.3)

with Nξ being the number of particles in the cell at that time.

The collision rule (2.2) is the all-species collision rule as there is no distinction between the species of

the particles in the cell in which particle j resides. If there is more than one species in the system, different

diffusivities of the particles can be incorporated into the dynamics by using a different set of collision angles

for the different species. Then, rule (2.2) with ω̂lξ for φ = φl ∈ Ωl and mass center velocity Vl
ξ of species

type l instead of Vξ leads to the single-species collision rule. Applying the single-species rule following the

all-species rule leads to the combined velocity update of particle j over the time step τ as

vj(t+ τ) = Vξ + ω̂ξ
(
Vl
ξ −Vξ

)
+ ω̂lξ ω̂ξ

(
vj(t)−Vl

ξ

)
.

Note that Vξ is the pre-collision mass center velocity of all the particles in cell ξ at time t, and Vl
ξ uses the

post-collision velocity information after the all-species rule is applied.

In Figure 2.1 a diagrammatic representation of the collision rule (2.2) can be seen. Although the figure

shows the rule for two particles, there can be any number of particles in the cell, and in particular, if there is

only one particle in the cell, the collision rule leaves the particle’s velocity unchanged. It is worth mentioning

that that collision rule (2.2) conserves mass, momentum and energy locally in a collision cell as shown in

[19]. Additionally, the collision rule of MPC dynamics is much more efficient numerically compared to other

particle-based methods.

Following the collision rules is the free-streaming of particles discussed next.

2.3 Free-Streaming

In RMPC dynamics, positions and velocities of particles are continuous vectors. The free-streaming step

updates the position of particle j, rj(t), using the post-reaction and post-collision velocity vj(t+ τ), leading

to the new position of the particle at t+ τ

rj(t+ τ) = rj(t) + vj(t+ τ)τ.

8
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Figure 2.1: Diagrammatic representation of the multiparticle collision rule. The upper panel shows the
center of mass velocity and pre-collision velocities of the particles relative to the center of mass. The lower
panel shows the result of adding back the center of mass velocities to get the post-collision velocities. The
figure is a slight modification of [19] as modified by [17].
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2.4 Transport Coefficients

Using the MPC rule (2.2), the transport properties of the system can be computed. For example, the diffusion

coefficient Dl for a particular species l in the system can be shown to satisfy the Green-Kubo formula [27]

Dl =
kBTτ

2m

(
1 + γl
1− γl

)
where

γl =
1

ρ
+

(
1

3
+

2

3
cosψ

)(
1

ρl
− 1

ρ

)
+

(
1

3
+

2

3
cosψl

)(
1

3
+

2

3
cosψ

)(
1− 1

ρl

)
.

Here, ρ is the average mass density of all particles in a cell or subvolume, while ρl is the average mass density

of particles of species type l in a cell, and ψ and ψl are the random rotation angles for the all-species and

single-species collision rules respectively.

2.5 Boundary condition

The simulation domain is a cubic volume with total length L on each side, say. Periodic boundary conditions

are used in all of our simulations so that if the x-position at time t+ τ is greater than L, that is, x(t+ τ) =

L + dx for some value dx, then it is replaced by dx instead. This amounts to the particle exiting the right

part of the domain by a distance dx, and being placed that same distance from the left part of the domain

instead. The same thing is done for the y and z directions.
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Chapter 3

Infinite System

In this chapter, we derive the exact solution for an infinite system in which the particles aggregate, as well as

for aggregation and fragmentation combined. We present solutions for two initial conditions: only monomers

initially, as well as a distribution in concentrations for different sized particles.

3.1 Aggregation

Aggregation can be defined as a non-equilibrium process where reactive clusters join together when they

meet. It is normally an irreversible process so that the typical mass of a collection of aggregates grows

monotonically in time. There are many examples of aggregating systems, including the curdling of milk, the

coagulation of blood, and the formation of stars by gravitational accretion. Aggregation can be schematically

written as a set of reactive mechanisms as follows:

Ai +Aj
Kij

−→
Ai+j .

Here, As represents a cluster of size s, also called an s-mer, so that this reactive mechanism represents the

irreversible union of clusters of size i and j at rate Kij .

The corresponding set of reactive mechanisms can be cast into a system of ordinary differential equations

for the concentration Ck(t) of a cluster of size k and is given by

dCk
dt

=
1

2

∑
i+j=k

KijCiCj − Ck
∞∑
i=1

KikCi, k = 1, 2, ...

The first term on the right hand side represents all possible combinations of the creation of clusters of size

k due to the aggregation of an i-mer with a j-mer, each occuring at rate KijCiCj . The factor Kij is called

the reaction kernel and represents the rate at which an i-mer and a j-mer meet. The second (loss) term

accounts for the loss of clusters of size k due to their aggregation with other clusters in the system. The

prefactor 1
2 in the gain term ensures the correct counting of combinations of aggregates. For example, when
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i 6= j, there will be a 1
2KijCiCj term, as well as a 1

2KjiCjCi term, leading to a total contribution of the

sum of these two, while when i = j, there is only the 1
2KiiC

2
i term. The reaction rates Kij form an infinite

matrix, that is usually assumed to be symmetric so that Kij = Kji and Kik = Kki.

Further note that the system is an infinite system since k goes to infinity. Additionally the upper limit

of the second sum on the right hand side is infinity, making this a set of equations for what we will refer to

as the infinite system.

3.2 Fragmentation

Fragmentation can be defined as the breakup of clusters, which can happen by external forces or through

collisions for example. Some key examples of fragmentation processes include the breaking of chemical bonds

in polymer degradation and combustion which occurs at the molecular level, or in red blood cell clusters

suspended in shear flow.

Fragmentation can be schematically written as a set of reactive mechanisms as follows:

Ai+j
Wi+j,i

−→
Ai +Aj

This is simply the reverse of the aggregation process from the previous section. In this case an (i + j)-mer

breaks up into an i-mer and j-mer at rate Wi+j,i.

The corresponding set of reactive mechanisms can be cast into a system of ordinary differential equations

for the concentration Ck(t) of a cluster of size k as

dCk
dt

=

∞∑
i=k+1

WikCi −
1

2

k−1∑
i=1

WkiCk, k = 1, 2, ...

The first term on the right hand side represents the creation of clusters of size k due to the breakup of a

larger sized cluster, each occuring at rate WikCi for i > k. The factor Wik is called the reaction kernel

and represents the rate at which a k-mer is produced after break-up of an i-mer. The second (loss) term

accounts for the loss of clusters of size k due to their break-up into smaller ones. The prefactor 1
2 in the loss

term corrects for double-counting of most of the terms. For example, the i = 1 term and the i = k− 1 term

both represent the breakup of the k-mer into clusters of size 1 and size k − 1. The reaction rates Wik form

an infinite matrix just like the rates for aggregation, and one also usually assumes them to be symmetric so

that Wik = Wki.

This is again an infinite system as k goes to infinity, as does the limit of the first sum on the right hand

side, making this again what we will call the infinite system.

3.3 Classical aggregation-fragmentation process

The deterministic model for an infinite system combining coagulation and fragmentation leads to the differ-

ential equations for the cluster concentration Ck(t) of clusters of size k at time t as:
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dCk
dt

=
1

2

∑
i+j=k

KijCiCj − Ck
∞∑
i=1

KikCi +

∞∑
i=k+1

WikCi −
1

2
Ck

k−1∑
i=1

Wki, k = 1, 2, ...

3.4 Exact solution for aggregation

The solution for the Smoluchowski equation corresponding to aggregation in the infinite system for constant

reaction rates is well-known and derived here. Recall from Section 3.1 that the infinite system of ordinary

differential equations is given by

dCk
dt

=
1

2

∑
i+j=k

KijCiCj − Ck
∞∑
i=1

KikCi, k = 1, 2, ... (3.1)

Taking Kij = Kik = E, where E is a constant, the time evolution of the concentration Ck(t) is:

dCk
dt

=
1

2

∑
i+j=k

ECiCj − Ck
∞∑
i=1

ECi. (3.2)

For the constant kernel aggregation rates,the solution technique involves an exponential ansatz given by [16]

Ck(t) = A(t)a(t)k−1 (3.3)

with as yet unknown A(t) and a(t). One typically uses an initial monomer concentration, that is C1(0) = 1

and Ck(0) = 0, k > 1, which implies A(0) = 1 and a(0) = 0. This fact explains why we choose the power

k − 1 rather than k for a. Differentiating this expression gives the relationship

dCk
dt

= Ȧak−1 +A(k − 1)ak−2ȧ (3.4)

Substitution of (3.4) and (3.3) into equation (3.2) gives

ak−1Ȧ+A(k − 1)ak−2ȧ =
1

2

∑
i+j=k

A2ai+j−2E −Aak−1
∞∑
i=1

EAai−1 (3.5)

Divide both sides of the equation by Ck(t) = Aak−1 and rearrange:

Ȧak−1

Aak−1
+
A(k − 1)ak−2ȧ

Aak−1
=

1
2

∑
i+j=k A

2ai+j−2E

Aak−1
−
Aak−1E

∑∞
i=1Aa

i−1

Aak−1

⇒ Ȧ

A
+

(k − 1)ȧ

a
=

1

2

A

a
E(k − 1)− EA

∞∑
i=1

ai−1

⇒ Ȧ

A
+

(k − 1)ȧ

a
=

1

2

A

a
E(k − 1)− EA(1− a)−1
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⇒ Ȧ

A
+

(k − 1)ȧ

a
=

1

2

A

a
E(k − 1)− EA

1− a
Since this equation should hold for all values of k, and A and a are independent of k, all coefficients of powers

of k should be zero. Equating coefficients of k-dependent and k-independent terms leads to

Ȧ

A
= − EA

1− a
(3.6)

and

ȧ

a
=

1

2

EA

a
(3.7)

To simplify the solution process, one can use conservation of mass in the Smoluchowski equation. Mass in

the Smoluchowski equation is defined as
∑
k≥1

kCk, which is conserved since multiplication of (3.2) by k and

summing over k leads to d
dt

∑
k≥1

kCk = 0. Thus,
∑
k≥1

kCk(t) =
∑
k≥1

kCk(0) = 1 based on the monomer-only

initial condition. Substituting the ansatz (3.3) into this leads to∑
k≥1

kCk = A
∑
k≥1

kak−1 = A(1− a)−2

so that mass conservation implies

A = (1− a)2. (3.8)

Substituting this into (3.7) gives a separable ODE for a(t) that can be solved using standard methods:

ȧ =
1

2
E(1− a)2

⇒ 1

(1− a)2
da

dt
=

1

2
E

⇒ 1

1− a
=

1

2
Et+ C (3.9)

To find the constant of integration C, apply the initial condition a(0) = 0:

1

2
E(0) + C = 1

⇒ C = 1

Hence
1

1− a
=

1

2
Et+ 1
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⇒ 1− a =
2

2 + Et

⇒ a(t) =
Et

2 + Et

Thus, using (3.8) gives

A(t) =

(
1− Et

2 + Et

)2

=
4

(2 + Et)
2

Finally from (3.3)

Ck(t) =
4

(2 + Et)
2 .

(
Et

2 + Et

)k−1
=

4Ek−1tk−1

(2 + Et)
k+1

(3.10)

which is the solution to the aggregating system with constant reaction rates E and monomer-only initial

condition for the infinite system.

3.5 Exact solution for aggregation and fragmentation

The solution for the Smoluchowski equation corresponding to aggregation in the infinite system can also be

derived with the addition of fragmentation when reaction rates are constant and there are only monomers

initially in the system. Recall that the evolution equation for the concentration of a cluster of size k, Ck(t)

evolves according to the equations:

dCk
dt

=
1

2

∑
i+j=k

KijCiCj − Ck
∞∑
i=1

KikCi +

∞∑
i=k+1

WikCi −
1

2
Ck

k−1∑
i=1

Wki, k = 1, 2, .....

Taking Kij = Kji = E, and Wik = Wki = F , the time evolution of the concentration Ck(t) in presence of

aggregation and breakup is:

dCk
dt

=
1

2

∑
i+j=k

ECiCj − Ck
∞∑
i=1

ECi +

∞∑
i=k+1

FCi −
1

2
Ck

k−1∑
i=1

F, k = 1, 2, .... (3.11)

We again use the exponential ansatz to solve the equation, which was

Ck(t) = A(t)a(t)k−1 (3.12)

with as yet unknown A(t) and a(t). Again, the monomer-only initial condition implies A(0) = 1 and a(0) = 0.

Substituting into (3.11), also using (3.4) gives

Ȧak−1 +A(k − 1)ak−2ȧ =
1

2
EA2(k − 1)ak−2 − A2Eak−1

1− a
+
FAak−1

1− a
− 1

2
Aak−1(k − 1)F

15
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Divide both sides of the equation by Ck(t) = Aak−1 and rearrange:

Ȧ

A
+

(k − 1)ȧ

a
=

1

2

EA(k − 1)

a
− AE

1− a
+

Fa

1− a
− 1

2
F (k − 1)

Since this equation should hold for all values of k, and A and a are independent of k, all coefficients of powers

of k should be zero. Equating coefficients of k-dependent and k-independent terms leads to

Ȧ

A
= − AE

1− a
+

Fa

1− a
(3.13)

and

ȧ

a
=

1

2

EA

a
− 1

2
F (3.14)

Recall that this system can be simplified using conservation of mass, which still holds with the fragmentation

terms as well. This again implies d
dt

∑
k≥1

kCk = 0, leading to A = (1− a)2.

Substituting this into (3.14) gives the ODE for a(t) that can be solved:

ȧ

a
=

1

2

E(1− a)2

a
− 1

2
F

⇒ ȧ =
1

2
E(1− a)2 − 1

2
aF

da

dt
=

1

2
Ea2 + (−E − F

2
)a+

1

2
E

To solve this DE, we let

a = u+ y1, (3.15)

where y1 is a constant to be determined, and u(t) is the new unknown function.

To find the constant y1, we substitute this expression into the DE to get

du

dt
=

1

2
E (y1 + u)

2
+

(
−E − F

2

)
(y1 + u) +

1

2
E

=
1

2
Ey21 +

(
−E − F

2

)
y1 +

1

2
E + Euy1 +

1

2
Eu2 +

(
−E − F

2

)
u

Taking

y1 =
E + F

2 +
√
EF + F 2

4

E
(3.16)

16
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leaves only u-dependent terms with resulting DE for u given by

du

dt
= Euy1 +

1

2
Eu2 +

(
−E − F

2

)
u

This is a Bernoulli equation in the form

du

dt
− (Q+ 2y1R)u = Ru2

with R = 1
2E and Q = (−E − F

2 ).

Hence, to solve we use the substitution w = 1
u to get:

dw

dt
+ (Q+ 2y1R)w = −R

⇒ dw

dt
+

−E − F

2
+ 2

E + F
2 +

√
EF + F 2

4

E

 1

2
E

w = −1

2
E

⇒ dw

dt
+

(√
EF +

F 2

4

)
w = −1

2
E

This is a linear DE, so use the Integrating Factor I.F. = e

(√
EF+F2

4

)
t
:(

e

(√
EF+F2

4

)
t

)
dw

dt
+

(√
EF +

F 2

4

(
e

(√
EF+F2

4

)
t

)
w

)
= −1

2
E

(
e

(√
EF+F2

4

)
t

)

⇒ d

dt

(
w

(
e

(√
EF+F2

4

)
t

))
= −1

2
E

(
e

(√
EF+F2

4

)
t

)

⇒ we

(√
EF+F2

4

)
t

=
Ee

(√
EF+F2

4

)
t

−2
√
EF + F 2

4

+ C

⇒ w =
E

−2
√
EF + F 2

4

+
C

e

(√
EF+F2

4

)
t

⇒ 1

u
=

E

−2
√
EF + F 2

4

+
C

e

(√
EF+F2

4

)
t

⇒ u =
−2e

(√
EF+F2

4

)
t
√
EF + F 2

4(
−2C

√
EF + F 2

4

)
+ Ee

(√
EF+F2

4

)
t

(3.17)

17
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To find the constant of integration C, apply the initial condition u(0):

u|t=0 =
−2
√
EF + F 2

4(
−2C

√
EF + F 2

4

)
+ E

(3.18)

Since

a = y1 + u

from (3.15),

a|t=0 = 0⇒ (y1 + u)|t=0 = 0 (3.19)

⇒

(
E + F

2

)
+
√
EF + F 2

4

E
+ u|t=0 = 0

⇒ u|t=0 = −

E + F
2 +

√
EF + F 2

4

E


Substituting for u|t=0 from (3.18) gives

⇒
−2
√
EF + F 2

4

−2C
√
EF + F 2

4 + E
= −

E + F
2 +

√
EF + F 2

4

E


which can be used to solve for C:

⇒ C =

2E
√
EF + F 2

4 − E
(
E + F

2 +
√
EF + F 2

4

)
−2
√
EF + F 2

4

(
E + F

2 +
√
EF + F 2

4

) (3.20)

Substituting the value of C into equation (3.17),

⇒ u(t) =

−2e

(√
EF+F2

4

)
t
√
EF + F 2

4

(
E + F

2 +
√
EF + F 2

4

)
−
(
E2 + EF

2 − E
√
EF + F 2

4

)
+ E

(
e

(√
EF+F2

4

)
t

)(
E + F

2 +
√
EF + F 2

4

)

Thus, the solution for a(t) = y1 + u(t) is

18
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a(t) =
(E + F

2 ) +
√
EF + F 2

4

E
+

2

(
e

(√
EF+F2

4

)
t

)√
EF + F 2

4

(
E + F

2 +
√
EF + F 2

4

)
(
E2 + EF

2 − E
√
EF + F 2

4

)
− E

(
e

(√
EF+F2

4

)
t

)(
E + F

2 +
√
EF + F 2

4

)
(3.21)

giving the solution for A(t) = (1− a(t))
2

as

A(t) =

1−
(E + F

2 ) +
√
EF + F 2

4

E

−
2

(
e

(√
EF+F2

4

)
t

)√
EF + F 2

4

(
E + F

2 +
√
EF + F 2

4

)
(
E2 + EF

2 − E
√
EF + F 2

4

)
− E

(
e

(√
EF+F2

4

)
t

)(
E + F

2 +
√
EF + F 2

4

)


2

From,

Ck(t) = A(t)a(t)k−1

⇒ Ck(t) = A(t)a(t)k−1 =

1−
(E + F

2 ) +
√
EF + F 2

4

E

−
2

(
e

(√
EF+F2

4

)
t

)√
EF + F 2

4

(
E + F

2 +
√
EF + F 2

4

)
(
E2 + EF

2 − E
√
EF + F 2

4

)
− E

(
e

(√
EF+F2

4

)
t

)(
E + F

2 +
√
EF + F 2

4

)


2

×

 (E + F
2 ) +

√
EF + F 2

4

E

+

2

(
e

(√
EF+F2

4

)
t

)√
EF + F 2

4

(
E + F

2 +
√
EF + F 2

4

)
(
E2 + EF

2 − E
√
EF + F 2

4

)
− E

(
e

(√
EF+F2

4

)
t

)(
E + F

2 +
√
EF + F 2

4

)

k−1

(3.22)

which is the solution to the aggregation-breakup system with constant reaction rates E,F and monomer-only

initial condition for the infinite system.

Taking F → 0 in this solution gives the aggregation solution from the previous section, which can be
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CHAPTER 3. INFINITE SYSTEM 3.5. EXACT SOLUTION

seen as follows: Apply the Taylor’s series approximation for the term e

(√
EF+F2

4

)
t

as

e

(√
EF+F2

4

)
t

= 1 +

(√
EF +

F 2

4

)
t+

(√
EF + F 2

4

)2

t2

2!
+ ...... (3.23)

in the equation (3.21) to get

a(t) =
(E + F

2 ) +
√
EF + F 2

4

E

+

2

(
1 +

(√
EF + F 2

4

)
t+O(t2)

)√
EF + F 2

4

(
E + F

2 +
√
EF + F 2

4

)
(
E2 + EF

2 − E
√
EF + F 2

4

)
−
(

1 +
√
EF + F 2

4 t+O(t2)

)(
E2 + EF

2 + E
√
EF + F 2

4

)

a(t) =
(E + F

2 ) +
√
EF + F 2

4

E

+

(2E + F )
√
EF + F 2

4 + 2Et
(
EF + F 2

4

)
+ F

(
EF + F 2

4

)
t+ 2

(
EF + F 2

4

)
+

(√
EF + F 2

4

)3

t+O(t2)

−2E
√
EF + F 2

4 − E2

(√
EF + F 2

4

)
t− EF

2

(√
EF + F 2

4

)
t− E

(
EF + F 2

4

)
t+O(t2)

(3.24)

For F −→ 0, equation (3.24) becomes

a(t) = 1 +
2E

−2E − E2t

a(t) = 1 +
2

−2− Et

a(t) =
Et

2 + Et

giving the solution for A(t) = (1− a(t))
2

as

A(t) =
4

(2 + Et)
2

Finally from,

Ck(t) = A(t)a(t)k−1

Ck(t) =
4

(2 + Et)
2

(
Et

2 + Et

)k−1
=

4Ek−1tk−1

(2 + Et)
k+1

which is the solution to the aggregating system with constant reaction rates E and monomer-only initial
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condition for the infinite case with no break-up (F = 0) from the previous section.

3.6 Exact solution in aggregation for non-zero initial concentra-

tion for all clusters

The exact solution (3.10) from Section 3.4 was for aggregating systems governed by the Smoluchowski dif-

ferential equation that have an initial monomer concentration 1, and zero initial concentration for the other

particle cluster sizes. We can also find an exact solution if we change the initial concentration for other

particles to be non-zero, namely for Ck(0) = (1− q)2qk−1 for some 0 ≤ q < 1 [16], and it is derived here.

Based on this initial condition for Ck, we have the initial condition a(0) = q, which from the equation

(3.9) leads to
1

2
E(0) + C =

1

1− q

⇒ C =
1

1− q

Hence using (3.9) leads to the solution for this new initial condition

1

1− a
=

1

2
Et+

1

1− q

⇒ 1

1− a
=
Et(1− q) + 2

2(1− q)

⇒ 1− a =
2(1− q)

2 + Et(1− q)

⇒ a(t) = 1− 2(1− q)
2 + Et(1− q)

Thus

A(t) = (1− a)2 ⇒ A(t) =

(
2(1− q)

2 + Et(1− q)

)2

Finally

Ck(t) = A(t) (a(t))
k−1 ⇒

(
2(1− q)

2 + Et(1− q)

)2(
1− 2(1− q)

2 + Et(1− q)

)k−1
.

which is the solution to the aggregating system with constant reaction rates E and non-zero initial condition

for clusters of all sizes, in the infinite system.
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3.7 Exact solution in aggregation and fragmentation with non-

zero initial concentration

The exact solution (3.22) from Section 3.5 was for systems for which clusters can aggregate and break up,

with an initial monomer concentration 1, and zero initial concentration for the other particle cluster sizes.

Again, we can also find an exact solution if we change the initial concentration for other particles to be

non-zero in this case, namely for Ck(0) = (1− q)2qk−1 for some 0 ≤ q < 1 [16], and it is derived here.

Applying the initial condition a(0) = q in the equation (3.19) gives

a|t=0 = q ⇒ (y1 + u)|t=0 = q

⇒ u|t=0 = q − y1

= q −
E + F

2 +
√
EF + F 2

4

E

⇒ u|t=0 =
qE − E − F

2 −
√
EF + F 2

4

E
(3.25)

Equating the equations (3.25) and (3.18)

qE − E − F
2 −

√
EF + F 2

4

E
=

−2
√
EF + F 2

4(
−2C

√
EF + F 2

4

)
+ E

⇒
qE − E − F

2 −
√
EF + F 2

4

E
=

2
√
EF + F 2

4(
2C
√
EF + F 2

4

)
− E

⇒ 2C

√
EF +

F 2

4
− E =

2E
√
EF + F 2

4

qE − E − F
2 −

√
EF + F 2

4

C =

E

(
qE − E − F

2 +
√
EF + F 2

4

)
2
√
EF + F 2

4

(
qE − E − F

2 −
√
EF + F 2

4

)
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Putting this value of C in equation (3.17) gives

u(t) =

2e

(√
EF+F2

4

)
t
(√

EF + F 2

4

)(
qE − E − F

2 −
√
EF + F 2

4

)
E

(
qE − E − F

2 +
√
EF + F 2

4

)
− E

(
qE − E − F

2 −
√
EF + F 2

4

)
e

(√
EF+F2

4

)
t

Since a(t) = y1 + u(t) the solution for a(t) is

a(t) =
(E + F

2 ) +
√
EF + F 2

4

E
(3.26)

+

2e

(√
EF+F2

4

)
t
(√

EF + F 2

4

)(
qE − E − F

2 −
√
EF + F 2

4

)
E

(
qE − E − F

2 +
√
EF + F 2

4

)
− E

(
qE − E − F

2 −
√
EF + F 2

4

)
e

(√
EF+F2

4

)
t

so that

A(t) = (1− a(t))
2

gives

A(t) =

1−
(E + F

2 ) +
√
EF + F 2

4

E

−
2e

(√
EF+F2

4

)
t
(√

EF + F 2

4

)(
qE − E − F

2 −
√
EF + F 2

4

)
E

(
qE − E − F

2 +
√
EF + F 2

4

)
− E

(
qE − E − F

2 −
√
EF + F 2

4

)
e

(√
EF+F2

4

)
t


2

Thus the solution is

Ck(t) = A(t)a(t)k−1
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=

1−
(E + F

2 ) +
√
EF + F 2

4

E

−
2e

(√
EF+F2

4

)
t
(√

EF + F 2

4

)(
qE − E − F

2 −
√
EF + F 2

4

)
E

(
qE − E − F

2 +
√
EF + F 2

4

)
− E

(
qE − E − F

2 −
√
EF + F 2

4

)
e

(√
EF+F2

4

)
t


2

×

 (E + F
2 ) +

√
EF + F 2

4

E

+

2e

(√
EF+F2

4

)
t
(√

EF + F 2

4

)(
qE − E − F

2 −
√
EF + F 2

4

)
E

(
qE − E − F

2 +
√
EF + F 2

4

)
− E

(
qE − E − F

2 −
√
EF + F 2

4

)
e

(√
EF+F2

4

)
t


k−1

which is the solution to the aggregating system with break-up and constant reaction rates E, F and non-zero

initial condition for all cluster sizes in the infinite system.

Taking F → 0 in this solution gives the aggregation solution from the previous section, which can be

seen as follows: Apply the Taylor’s series approximation for the term e

(√
EF+F2

4

)
t

as

e

(√
EF+F2

4

)
t

= 1 +

(√
EF +

F 2

4

)
t+

(√
EF + F 2

4

)2

t2

2!
+ ...... (3.27)

a(t) =
(E + F

2 ) +
√
EF + F 2

4

E

+

2

(
1 +

(√
EF + F 2

4

)
t+O(t2)

)√
EF + F 2

4

(
qE − E − F

2 −
√
EF + F 2

4

)
E

(
qE − E − F

2 +
√
EF + F 2

4

)
− E

(
qE − E − F

2 −
√
EF + F 2

4

)(
1 +

(√
EF + F 2

4

)
t+O(t2)

)

a(t) =
(E + F

2 ) +
√
EF + F 2

4

E

+

√
EF + F 2

4

((
2(q − 1)E − F − 2

√
EF + F 2

4

)
+

(
2(q − 1)E − F − 2

√
EF + F 2

4

)(√
EF + F 2

4

)
t+O(t2)

)
√
EF + F 2

4

(
2E − E

(
qE − E − F

2 −
√
EF + F 2

4

)
t+O(t2)

)
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a(t) =
(E + F

2 ) +
√
EF + F 2

4

E

+

(
2(q − 1)E − F − 2

√
EF + F 2

4

)
+

(
2(q − 1)E − F − 2

√
EF + F 2

4

)(√
EF + F 2

4

)
t+O(t2)

2E − E
(
qE − E − F

2 −
√
EF + F 2

4

)
t+O(t2)

(3.28)

Taking the limit F −→ 0 equation (3.28) becomes,

a(t) = 1 +
2qE − 2E

2E − qE2t+ E2t

a(t) = 1 +
2q − 2

2− qEt+ Et

a(t) = 1− 2(1− q)
2 + Et(1− q)

giving the solution for A(t) = (1− a(t))
2

in the limit as

A(t) =

(
2(1− q)

2 + Et(1− q)

)2

Finally from,

Ck(t) = A(t) (a(t))
k−1 ⇒

(
2(1− q)

2 + Et(1− q)

)2(
1− 2(1− q)

2 + Et(1− q)

)k−1
we get the solution from Section 3.6, which is the solution to the aggregating system with constant reac-

tion rates E and no break-up (F = 0) with non-zero initial condition for all cluster sizes in the infinite system.
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Chapter 4

Finite System

4.1 Aggregation-Fragmentation System with Maximum Cluster

Size

In the finite system compared to the infinite system, one assumes that there is a maximum sized cluster that

can form. The Smoluchowski equations for coagulation-fragmentation for a finite system with maximum

cluster size N , say, leads to the finite system of differential equations for the concentration Ck(t) of clusters

of size k at time t which is given by:

dCk
dt

=
1

2

∑
i+j=k

KijCiCj − Ck
N−k∑
i=1

KikCi +

N∑
i=k+1

WikCi −
1

2
Ck

k−1∑
i=1

Wki, k = 1, 2, . . . , N

Note that in this equation, the only difference from the Smoluchowski equation in the previous chapter

is that the sums on the right-hand side have a finite upper limit rather than ∞.

As an example, we write down the finite system equations for a maximum cluster size N = 5. In this

case, the time evolution for C1 to C5 are listed below:

dC1

dt
= −K11C

2
1 −K21C1C2 −K31C1C3 −K41C1C4 +W21C2 +W31C3 +W41C4 +W51C5

dC2

dt
=

1

2
K11C

2
1 −K12C1C2 −K22C

2
2 −K32C2C3 +W32C3 +W42C4 +W52C5 −

1

2
W21C2

dC3

dt
=

1

2
K12C1C2 +

1

2
K21C2C1 −K13C1C3 −K23C2C3 +W43C4 +W53C5 −

1

2
W31C3 −

1

2
W32C3
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dC4

dt
=

1

2
K22C

2
2 +

1

2
K31C1C3 +

1

2
K13C3C1 −K14C1C4 +W54C5 −

1

2
W41C4 −

1

2
W42C4 −

1

2
W43C4

dC5

dt
=

1

2
K23C2C3 +

1

2
K32C3C2 +

1

2
K14C1C4 +

1

2
K41C4C1 −

1

2
W51C5 −

1

2
W52C5 −

1

2
W53C5 −

1

2
W54C5

In the next sections, we demonstrate the general behaviour of solutions in this finite system compared

to the infinite system.

4.2 Cluster concentration with aggregation only

Here we compare the finite system solution for various values of N to the exact solution for the infinite system

as given in Chapter 3 for the aggregating system only. For demonstration purposes we take Kij = 8, and

Wij = 0 and consider monomer-only initial condition for various values of N , and different initial condition

for N = 5.

From Figures 4.1, 4.3, and 4.4, we conclude that there are some differences in the N = 5 curves compared

to the infinite system (Figure 4.1), while N = 10 and N = 20 curves agree well with the infinite system.

Thus, it is feasible to consider a finite system with a max cluster size of 10 for this scenario.

From Figure 4.2 it can be seen that the agreement between the infinite system exact solution and the

finite system numerical solution may not be as good when the monomer-only initial condition is changed to

one where there are clusters of all sizes present initially.

4.3 Cluster concentration with aggregation and fragmentation

Here we compare the finite system solution for various values of N to the exact solution for the infinite

system when there is aggregation and break-up. For demonstration purposes we take Kij = 8, and Wij = 5

with monomer-only initial condition for N = 5, 10 and 20. We consider the monomer-only initial condition

in Figures 4.5, 4.7 and 4.8, and demonstrate a non-zero initial condition for all cluster sizes in the N = 5

case in Figure 4.6.

From Figures 4.5, 4.7 and 4.8, we conclude that the simulation comparing the ODE for the finite system

to the exact solution for the infinite system there is very good agreement when N is as small as 5 (Figure 4.5),

and there is no distinguishable difference between the pairs of curves for all cluster sizes when N = 10 and

N = 20. In these figures, the initial condition is the monomer-only initial condition.

When the initial condition includes clusters of all sizes, then the agreement is not as good (see Figure 4.6).
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Figure 4.1: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 8,Wij = 0 with the initial condition C1(0) = 1 and Ck(0) = 0, for k ≥ 2.
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Figure 4.2: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 8,Wij = 0 with the initial concentration C1(0) = (1− q)2, C3(0) = q2(1− q)2 and
C5(0) = q4(1− q)2 for q = 0.75.
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Figure 4.3: Simulation of 1st, 5th and 10th cluster concentration of Numerical (N = 10) vs Exact solution
(infinite system) for Kij = 8,Wij = 0 with the initial condition C1(0) = 1 and Ck(0) = 0, for k ≥ 2.
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Figure 4.4: Simulation of 1st, 5th, 10th, and 20th cluster concentration of Numerical (N = 20) vs Exact
solution (infinite system) for Kij = 8,Wij = 0 with the initial condition C1(0) = 1 and Ck(0) = 0, for k ≥ 2.
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Figure 4.5: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 8,Wij = 5 with the initial condition C1(0) = 1 and Ck(0) = 0, for k ≥ 2.
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Figure 4.6: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 8,Wij = 5 with the initial concentration C1(0) = (1− q)2, C3(0) = q2(1− q)2 and
C5(0) = q4(1− q)2 for q = 0.75.
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Figure 4.7: Simulation of 1st, 5th and 10th cluster concentration of Numerical (N = 10) vs Exact solution
(infinite system) for Kij = 8,Wij = 5 with the initial condition C1(0) = 1 and Ck(0) = 0, for k ≥ 2.
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Figure 4.8: Simulation of 1st, 5th, 10th, and 20th cluster concentration of Numerical (N = 20) vs Exact
solution (infinite system) for Kij = 8,Wij = 5 with the initial condition C1(0) = 1 and Ck(0) = 0, for k ≥ 2.
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Figure 4.9: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 0.8,Wij = 0.8 (E = F ) with the initial condition C1(0) = 1 and Ck(0) = 0, for
k ≥ 2.

4.4 Cluster concentration for equal aggregation and fragmenta-

tion

Here we compare the finite system solution for various values of N to the exact solution for the infinite

system for equal aggregation and break-up rates . For demonstration purposes we take Kij = 0.8, and

Wij = 0.8 with monomer-only initial condition for maximum cluster size N = 5, 10, 20 and non-zero initial

condition for a finite system with N = 5.

From Figures 4.9, 4.11 and 4.12, we conclude that there is essentially no distinguishable difference between

the ODE solution for the finite system and the exact solution for the infinite system for this monomer-only

initial condition. It can be noted that the concentration of monomers decreases and clusters of size 5 increases

slightly, but the rest of the cluster sizes are essentially unchanged and there is no major variation.
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Figure 4.10: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 0.8,Wij = 0.8 (E = F ) with the initial concentration C1(0) = (1 − q)2, C3(0) =
q2(1− q)2 and C5(0) = q4(1− q)2 for q = 0.75.
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Figure 4.11: Simulation of 1st, 5th and 10th cluster concentration of Numerical (N = 10) vs Exact solution
(infinite system) for Kij = 0.8,Wij = 0.8 (E = F ) with the initial condition C1(0) = 1 and Ck(0) = 0,for
k ≥ 2.
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Figure 4.12: Simulation of 1st, 5th, 10th, and 20th cluster concentration of Numerical (N = 20) vs Exact
solution (infinite system) for Kij = 0.8,Wij = 0.8 (E = F ) with the initial condition C1(0) = 1 and
Ck(0) = 0, for k ≥ 2.
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In the case for non-zero initial concentration for all clusters, Figure 4.10 we see once again that there are

differences between the finite and infinite system solutions.

4.5 Cluster concentration for aggregation and fragmentation when

E=2F

In Figures 4.13 to 4.16 we compare the finite system solution for various values of N with the exact solution

for the infinite system when the aggregation rate is twice the break-up value. For demonstration purposes we

take Kij = 0.8, and Wij = 0.4 with monomer-only initial condition for maximum cluster sizes N = 5, 10, 20

(Fig. 4.13, 4.15 and 4.16) and also apply different initial condition when the maximum cluster size is N = 5

(Fig. 4.14).

There is very good agreement between the finite system solution and that for the infinite system when

N = 5 (Figure 4.13) and essentially no difference when N = 10 and N = 20 (Figures 4.15 and 4.16) when

there are only monomers present initially. Once again when there are initial concentrations of all clusters,

(Fig. 4.14) the agreement is not as good as for the monomer-only initial condition.

4.6 Cluster concentration for aggregation and fragmentation rate

when F=2E

Here we compare the finite system solution for various values of N to the exact solution for the infinite

system when the break-up rate is twice the aggregation rate. For demonstration purposes we take Kij = 0.6,

and Wij = 1.2 with monomer-only initial condition for systems with maximum cluster size N = 5, 10, 20 and

for non-zero initial condition with maximum cluster size N = 5.

From Figure 4.17 we see that the curve for the 1st cluster concentration decreases for a small time

and then is unchanged while the 3rd cluster concentration increases before it reaches its equilibrium value.

However, the 5th cluster concentration is very small in this case. Additionally, the 5th cluster concentration

and all larger clusters in the larger systems are very small for all time (Fig. 4.19, 4.20). In this particular

scenario, the exact solution for the infinite system and the finite system solution already agree well for a

very small system size N = 5.

Changing the initial condition leads to some disagreement between the infinite system solution and the

finite (N = 5) case as can be seen in Figure 4.18.
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Figure 4.13: Simulation of 1st, 3rd and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 0.8,Wij = 0.4 (E = 2F ) with the initial condition C1(0) = 1 and Ck(0) = 0, for
k ≥ 2.
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Figure 4.14: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 0.8,Wij = 0.4 (E = 2F ) with the initial concentration C1(0) = (1− q)2, C3(0) =
q2(1− q)2 and C5(0) = q4(1− q)2 for q = 0.75.
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Figure 4.15: Simulation of 1st, 5th and 10th cluster concentration of Numerical (N = 10) vs Exact solution
(infinite system) for Kij = 0.8,Wij = 0.4 (E = 2F ) with the initial condition C1(0) = 1 and Ck(0) = 0, for
k ≥ 2.
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Figure 4.16: Simulation of 1st, 5th, 10th and 20th cluster concentration of Numerical (N = 20) vs Exact
solution (infinite system) for Kij = 0.8,Wij = 0.4 (E = 2F ) with the initial condition C1(0) = 1 and
Ck(0) = 0, for k ≥ 2.
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Figure 4.17: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 0.6,Wij = 1.2 (F = 2E) with the initial condition C1(0) = 1 and Ck(0) = 0, for
k ≥ 2.
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Figure 4.18: Simulation of 1st, 3rd, and 5th cluster concentration of Numerical (N = 5) vs Exact solution
(infinite system) for Kij = 0.6,Wij = 1.2 (F = 2E) with the initial condition C1(0) = 1 and Ck(0) = 0, for
k ≥ 2.
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Figure 4.19: Simulation of 1st, 5th and 10th cluster concentration of Numerical (N = 10) vs Exact solution
(infinite system) for Kij = 0.6,Wij = 1.2 (F = 2E) with the initial condition C1(0) = 1 and Ck(0) = 0, for
k ≥ 2.
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Figure 4.20: Simulation of 1st, 5th, 10th, and 20th cluster concentration of Numerical (N = 20) vs Exact
solution (infinite system) for Kij = 0.6,Wij = 1.2 (F = 2E) with the initial condition C1(0) = 1 and
Ck(0) = 0, for k ≥ 2.
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Chapter 5

Stochastic Simulations

Dimensionless RMPC simulations are performed on a 3−d cubic domain with Lx = 50 = Ly = Lz and

∆x = ∆y = ∆z = 1, giving Nc = 503 cells of unit volume. For all our RMPC simulations we have a

maximum cluster size of N = 3 so that the average cell density is ρ = C1 + C2 + C3 giving a total number

of particles in the system as ρLxLyLz. Additionally, we take the mass of a particle to be m = 1, the system

energy kBT/m = 0.3, and fixed time step τ = 1 as is commonly used. In each simulation, we compare the

stochastic RMPC results with the finite system (N = 3) ODE solution from Chapter 4, as well as the infinite

system solution from Chapter 3 where possible, and take 500 time steps, at which point the systems have

reached an equilibrium state. The reaction mechanism is implemented as follows: for a given particle of

species k, pick one of the possible reactions for that chemical species randomly, and then change its species

type based on the reactive mechanism. For example, in the aggregation mechanism Ai +Ak
Kik

−→
Ai+k, the

particle of species type k becomes an (i+ k)-mer if another randomly drawn number is less than Kikn
ξ
i .

For the numerical implementation, the particles are placed uniformly in the cubic domain, randomly

assigned velocities from a Maxwell-Boltzmann velocity distribution with zero mean and temperature T .

Both monomer-only initial conditions and non-zero initial condition for all cluster sizes (monomers, dimers

and trimers for N = 3) as discussed in the previous chapters are considered.

In the following sections we include the exact solution (infinite system, Chapter 3), the RMPC simulation,

and the numerical ODE solution (finite system, Chapter 4) for six different cases:

• Case 1: initial monomer concentration of 1 for fixed rate of aggregation Kij = E = 0.1 with varying

fixed rates of break-up

• Case 2: initial monomer concentration of 1 for fixed rate of break-up Wij = F = 0.1 with varying fixed

rates of aggregation

• Case 3: initial monomer, dimer and trimer concentration for fixed rate of aggregation Kij = E = 0.1

and break-up Wij = F = 0.1 as initial concentrations change (varying q)
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• Case 4: initial monomer, dimer and trimer concentration for fixed rate of aggregation Kij = E = 0.1

and break-up Wij = F = 0.01 as initial concentrations change (varying q)

• Case 5: initial monomer, dimer and trimer concentration for fixed rate of aggregation Kij = E = 0.01

and break-up Wij = F = 0.1 as initial concentrations change (varying q)

• Case 6: initial monomer, dimer and trimer concentration for aggregation rates K11 = 0.1, K12 =

0.001 = K21 and break-up rates W2 = 0.001, W3 = 0.1 as initial concentrations change (varying q)

5.1 Case 1: Effect of varying break-up rate

We consider the time evolution of the system with initial monomer-only concentration of 1. We take ρ = 1

so that initially there are 12500 particles in the system. We fix the aggregation rate Kij = E = 0.1 and vary

the break-up rate Wij = F = 0.01, 0.05 and 0.1. The time evolution of the monomers C1, dimers C2 and

trimers C3 are shown in Figures 5.1, 5.2 and 5.3 respectively .

From Figures 5.1, 5.2 and 5.3, it is observed that there is nice agreement only for the monomer concen-

tration when varying the break-up rates F . Additionally, for the smallest F value (F = 0.01), the stochastic

results give best agreement with the numerical ODE solution. All curves (RMPC, ODE-numerical and

Exact) predict lower equilibrium concentrations for C1, C2 and C3 as the break-up rate F decreases.

5.2 Case 2: Effect of varying aggregation rate

The time evolution of the system with initial monomer-only concentration of 1 is considered so that we again

have ρ = 1 and 12500 particles in the system initially. We fix the break-up rates Wij = F = 0.1 and vary

the aggregation rate Kij = E = 0.05, 0.01 and 0.1. The results are shown in Figures 5.4, 5.5 and 5.6.

From Figures 5.4, 5.5 and 5.6, it is observed that there is fairly good agreement for the monomer and

dimer concentrations. Additionally, for the smallest E value (E = 0.01), the infinite system gives the

best agreement with the numerical ODE solution, and in this latter case, there is little difference between

the numerical ODE solution (N = 3) and the RMPC results shown by the stochastic solution curve. All

curves (RMPC, ODE-numerical and Exact) predict lower equilibrium concentrations for C2 and C3 as the

aggregation rate decreases, while the equilibrium concentration for C1 increases.

5.3 Case 3: Effect of varying the initial condition, E = F = 0.1

Here we apply the initial concentration profile Ck = (1 − q)2qk−1, k ≥ 1, so that the initial monomer

concentration is C1 = (1−q)2, the initial dimer concentration is C2 = q(1−q)2 and initial trimer concentration

is C3 = q2(1− q)2. We fix the aggregation rate at E = 0.1, and the break-up rate at F = 0.1 and consider

the q values 0.25, 0.5 and 0.75. This gives resulting initial concentrations as follows: For q = 0.25 : C1 =

0.5625, C2 = 0.140 and C3 = 0.035, ρ = 0.7375 and the number of particles in the system is 92188. For
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Figure 5.1: Time evolution of 1st cluster concentration of Exact, ODE and stochastic simulation for i) E =
0.1, F = 0.01 (red curves), ii) E = 0.1, F = 0.05 (black curves) and iii) E = 0.1, F = 0.1 (blue curves), with
the initial condition C1(0) = 1 and C2(0) = C3(0) = 0.
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Figure 5.2: Simulation of 2nd cluster concentration of Exact, ODE and stochastic solution vs time for
(E = 0.1, F = 0.01(red)),(E = 0.1, F = 0.05(black))and (E = 0.1, F = 0.1(blue)) with the initial condition
C1(0) = 1 and C2(0) = C3(0) = 0.
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Figure 5.3: Simulation of 3rd cluster concentration of Exact, ODE and stochastic solution vs time for
(E = 0.1, F = 0.01(red)),(E = 0.1, F = 0.05(black))and (E = 0.1, F = 0.1(blue)) with the initial condition
C1(0) = 1 and C2(0) = C3(0) = 0.
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Figure 5.4: Simulation of 1st cluster concentration of Exact, ODE and stochastic solution vs time for
(F = 0.1, E = 0.05(red)),(F = 0.1, E = 0.01(black))and (F = 0.1, E = 0.1(blue)) with the initial condition
C1(0) = 1 and C2(0) = C3(0) = 0.
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Figure 5.5: Simulation of 2nd cluster concentration of Exact, ODE and stochastic solution vs time for
(F = 0.1, E = 0.05(red)),(F = 0.1, E = 0.01(black))and (F = 0.1, E = 0.1(blue)) with the initial condition
C1(0) = 1 and C2(0) = C3(0) = 0.
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Figure 5.6: Simulation of 3rd cluster concentration of Exact, ODE and stochastic solution vs time for
(F = 0.1, E = 0.05(red)),(F = 0.1, E = 0.01(black))and (F = 0.1, E = 0.1(blue)) with the initial condition
C1(0) = 1 and C2(0) = C3(0) = 0.
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Figure 5.7: Simulation of 1st cluster concentration of Exact, ODE and stochastic solution vs time at E =
F = 0.1 with the initial concentration C1(0) = (1−q)2, C2(0) = q(1−q)2 and C3(0) = q2(1−q)2 for different
values of q.

q = 0.5 : C1 = 0.25, C2 = 0.125 and C3 = 0.0625, ρ = 0.4375 and 54688 particles in the system. For

q = 0.75 : C1 = 0.0625, C2 = 0.046 and C3 = 0.035, ρ = 0.1435 and 17938 particles in the system.

From Figures 5.7, 5.8 and 5.9, one key observation is that the infinite solution curves for all three cluster

sizes tend to an equilibrium value that is independent of the initial condition (eg. all q values give the

same equilibrium concentration). This however, is not the case for the numerical ODE solution, nor for the

stochastic results, which change based on the initial condition. Comparing the stochastic and numerical

ODE solutions only, we see that there is better agreement in the C1 and C2 curves for smaller q values, while

the C3 curves match best when q is largest.
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Figure 5.8: Simulation of 2nd cluster concentration of Exact, ODE and stochastic solution vs time at
E = F = 0.1 with the initial concentration C1(0) = (1 − q)2, C2(0) = q(1 − q)2 and C3(0) = q2(1 − q)2 for
different values of q.
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Figure 5.9: Simulation of 3rd cluster concentration of Exact, ODE and stochastic solution vs time at E =
F = 0.1 with the initial concentration C1(0) = (1−q)2, C2(0) = q(1−q)2 and C3(0) = q2(1−q)2 for different
values of q.
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Figure 5.10: Simulation of 1st cluster concentration of Exact, ODE and stochastic solution vs time at
E = 0.1, F = 0.01 with the initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2
for different values of q.

5.4 Case 4: Effect of varying the initial condition, F � E

Here, the initial concentration profile Ck = (1 − q)2qk−1, k ≥ 1 as used in the previous section, is applied.

In this case, instead of equal aggregation and break-up rates, the aggregation rates are taken to be E = 0.1,

with much smaller break-up rates F = 0.01. Again, q = 0.25, 0.5 and 0.75 are considered. The results are

shown in Figures 5.10, 5.11 and 5.12.

From Figures 5.10, 5.11 and 5.12, it can again be seen that the exact/infinite ODE solution has an equi-

librium value independent of the initial condition (eg. all q values give the same equilibrium concentration),

while again, this is not the case for the numerical ODE solution nor the stochastic results. However, un-

like the previous section, for the smaller break-up rates compared to aggregation rates, the numerical ODE

solution agrees very well with the stochastic solution for all initial conditions for C1, fairly good for all C2

60



CHAPTER 5. STOCHASTIC SIMULATIONS 5.4. CASE 4: VARYING INITIAL CONDITION F � E

0 100 200 300 400 500

time

0

0.05

0.1

0.15

0.2

0.25

C
2

Time Evolution for C
2

Stochastic(q=0.25)
ODE-numerical(q=0.25)
Exact(q=0.25)
Stochastic(q=0.5)
ODE-numerical(q=0.5)
Exact(q=0.5)
Stochastic(q=0.75)
ODE-numerical(q=0.75)
Exact(q=0.75)

Figure 5.11: Simulation of 2nd cluster concentration of Exact, ODE and stochastic solution vs time at
E = 0.1, F = 0.01 with the initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2
for different values of q.
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Figure 5.12: Simulation of 3rd cluster concentration of Exact, ODE and stochastic solution vs time at
E = 0.1, F = 0.01 with the initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2
for different values of q.
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Figure 5.13: Simulation of 1st cluster concentration of Exact, ODE and stochastic solution vs time at
E = 0.01, F = 0.1 with the initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2
for different values of q.

curves, and best agreement for larger q values only in the C3 curves.

5.5 Case 5: Effect of varying the initial condition, E � F

Here the initial concentration profile Ck = (1 − q)2qk−1, k ≥ 1 as used in the previous two sections is

applied again. In this case, the break-up rates are taken to be F = 0.1, with much smaller aggregation rates

E = 0.01. Again, q = 0.25, 0.5 and 0.75 is considered. The results are shown in Figures 5.13, 5.14 and 5.15.

From Figures 5.13, 5.14 and 5.15, it can again be seen that the exact/infinite ODE solution has an equi-

librium value independent of the initial condition (eg. all q values give the same equilibrium concentration),

while again, this is not the case for the numerical ODE solution nor the stochastic results. The numerical

ODE solution does not agree with the stochastic solution for all initial conditions for C1, it is fairly close to

C2 when q = 0.75, but agrees well for C3, especially for q = 0.5 and q = 0.75. The numerical and stochastic
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Figure 5.14: Simulation of 2nd cluster concentration of Exact, ODE and stochastic solution vs time at
E = 0.01, F = 0.1 with the initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2
for different values of q.
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Figure 5.15: Simulation of 3rd cluster concentration of Exact, ODE and stochastic solution vs time at
E = 0.01, F = 0.1 with the initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2
for different values of q.
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Figure 5.16: Simulation of 1st cluster concentration of Exact, ODE and stochastic solution vs time with the
initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2 for different values of q.

solution curves are closest to the infinite system solution for the smallest q values (q = 0.25) for all cluster

sizes in the finite system.

Here for smaller aggregation rates (E � F ) there is best agreement in C3, and better agreement for C2

than for C1.

5.6 Case 6: Effect of varying the initial condition with i, j-dependent

rates

In this case, the effect of varying q for the initial concentrations Ck = (1− q)2qk−1 for k ≥ 1 is considered,

where the aggregation and break-up rates can be cluster-size dependent. The rates are taken to be K11 = 0.1,

K12 = 0.0001 = K21, W2 = 0.001, and W3 = 0.1. The results are shown in Figures 5.16, 5.17 and 5.18. Note

that the q = 0 curve corresponds to the monomer-only initial condition.

From Figures 5.16, 5.17 and 5.18, it is observed that both the finite system ODE and RMPC solution
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Figure 5.17: Simulation of 2nd cluster concentration of Exact, ODE and stochastic solution vs time with the
initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2 for different values of q.
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Figure 5.18: Simulation of 3rd cluster concentration of Exact, ODE and stochastic solution vs time with the
initial concentration C1(0) = (1− q)2, C2(0) = q(1− q)2 and C3(0) = q2(1− q)2 for different values of q.
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curves agree well for all cluster sizes and are best when q is largest (q = 0.75). The RMPC simulation curves,

in general, agree well for C1 ,C2 and C3, they agree best for the largest q value, and in the C3 curve there

is noise at q = 0 which is the monomer-only initial condition.
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Chapter 6

Conclusions and Future Work

6.1 Summary

The rheological behaviour of blood in the microcirculation is primarily governed by the presence of red

blood cells (RBCs) and their respective interaction. It is believed that RBCs are the main contributors to

the non-Newtonian behaviour of blood. This is because the RBC interaction involves aggregation, which

leads to larger three-dimensional clusters, which affect the overall viscosity of the flowing blood in the

smaller vessels contained in the microcirculation. Changes in RBC interaction, as a result of cardiovascular

diseases or haematological changes in the components of blood themselves, affect the blood circulation and

are important in clinical diagnosis and disease management.

Reactive Multiparticle Collision Dynamics (RMPC) extends the well-developed particle-based method

called Multiparticle Collision Dynamics (MPC), and is a mesoscopic method that can simulate spatially

distributed chemically reacting systems in equilibrium conditions. The dynamics of RMPC includes the

MPC dynamics of collisions and free-streaming, and adds reactions to the mechanism. It is ideally suited to

model the aggregation and break-up mechanism for RBC interactions that can be idealized through a set of

reactive mechanisms, and hence RBC aggregation is the motivation for the work in this Thesis.

This Thesis considered a reactive mechanism modeling RBC interaction in the form of a Smoluchowski

equation, which is a coupled system of ODES for an infinite number of variables. Aggregation was considered

separately, as well as aggregation and break-up together. Exact solutions are possible for constant aggregation

and break-up rates for the infinite system of ODEs. This exact solution was used to determine how large a

finite system would have to be to agree with results for the infinite system. For the finite system, numerical

solutions to the finite ODE system were obtained, as well as stochastic simulations using the RMPC method.

Both the monomer-only initial condition, as well as initial concentrations for all cluster sizes was considered.

In the case where no exact solution for the Smoluchowski equation was possible, the numerical ODE system

solution in the finite case was compared to the stochastic RMPC solution. For the Smoluchowski equation

and the finite system ODE, we considered finite systems where the maximum cluster size was N = 5, 10, 20,

when aggregation and break-up rates were equal (Kij = Wij), when the aggregation rate was twice the
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break-up rate (Kij = 2Wij) and when the break-up rate was twice the aggregation rate (Wij = 2Kij). For

RMPC results, N = 3 was considered, and applied to two different initial conditions for the following three

cases: equal aggregation and breakup rates, aggregation rates that are much smaller than breakup rates,

and breakup rates that are much smaller than aggregation rates. The initial conditions considered included

monomer-only initial condition and non-zero monomer, dimer and trimer initial condition. For the last

simulation we take different aggregation and break-up rates for the monomer-only initial condition and for

non-zero monomer, dimer and trimer initial condition.

6.2 Conclusions

The RMPC dynamics has been successfully applied to simulate the concentration profiles through a 3 − d
cubic domain. The exact solution (infinite system), the RMPC simulation, and the numerical ODE solution

were compared for six different cases giving the key findings:

• The effect of varying break-up rate for fixed aggregation rate with monomer-only initial concentra-

tion shows that the stochastic result gives best agreement with the numerical ODE solution for the

smallest break-up rate, and all curves (RMPC, ODE-numerical and Exact) have decreasing equilibrium

concentrations for monomer, dimer and trimer concentrations as the break-up rate decreases.

• The effect of varying aggregation rate for fixed break-up rate with monomer-only initial concentration

shows that all three solutions predict lower equilibrium concentrations for trimers when the aggregation

rate is decreased while the equilibrium concentration increases for monomers .

• The effect of varying the initial condition for equal aggregation and break-up rates shows that the

RMPC solution agrees best with the numerical ODE for monomers and dimers for small q, while it is

best for trimers when the parameter q is largest.

• The effect of varying the initial condition for F � E, shows that the numerical ODE solution agrees

very well with the RMPC solution for monomers and fairly well for dimers. But the best agreement is

seen for trimers for the largest value of q in the initial condition.

• The effect of varying the initial condition for E � F , shows that there is best agreement between

the numerical ODE solution and the RMPC simulation results for trimers, and better agreement for

dimers rather than monomers.

• The effect of varying the initial condition when there are i, j-dependent rates, shows that both the

RMPC and ODE simulations agree best for the largest value of q in the initial condition when there

particle concentrations are all non-zero initially, although there is a little bit of noise for the monomer-

only initial condition.

We can summarize our results in two parts, that is, when there are only monomers initially, the simulation

for the RMPC(finite), numerical ODE(finite) and exact(infinite) have the best agreement in the equilibrium

concentration mostly for monomers. When the initial condition varies, better agreement can be found for
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dimers and trimers. However, the exact(infinite) solution shows some key differences in these cases so that

finite system effects are clearly visible.

6.3 Future work

The RMPC algorithm used in this work was for maximum cluster size N = 3 only. Larger maximum cluster

sizes should be considered and is part of future work. All simulations in our work used no flow conditions.

We plan on obtaining simulations for blood in flow conditions. Simulation of aggregation and break-up rates

for particles with constant versus cluster size-dependent rates in flow conditions is an additional goal, as well

as more realistic biological applications for systems that incorporate flow and complex flow geometries to

study changes in aggregation/break-up dynamics. Future extensions to applications for reactions and flows

in small physical and biochemical systems is also of interest.
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