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Abstract 

With advances in mobile technologies, social networks and global positioning (GPS) in the 

digital world, alternative mobility systems (taxis, carpool, demand-responsive services, peer-to-

peer ridesharing, carsharing) have garnered interest from both public and private sectors as 

potential solutions to address last mile problem in public transit. Although there are number of 

models to optimize flexible or dynamic transit operations there has not been any methodology to 

evaluate equilibrium demand and effect on social welfare for these systems in an integrated supply-

demand context. This study lays the groundwork for studying the equilibrium of these systems, 

and proposes an agent-based adjustment process to evaluate the properties of a stable sate as an 

agent-based stochastic user equilibrium (SUE). Four sets of experiments are conducted: (1) 

illustration with a simple 2-link network, (2) evaluation of a dynamic dial-a-ride policy, and (3 

&4) illustration using real data from Oakville, Ontario & Manhattan, NY. The experiments 

demonstrate that the proposed model with multiple sample populations can generate an invariant 

distribution of demand and welfare effects and it can effectively be used to measure the effect of 

changes in flexible transport services operation policies on ridership. Moreover, this study also 

explores flexible transport services as two-sided markets, and extends the proposed agent-based 
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day-to-day adjustment process to include day-to-day adjustment of the service operator(s) as a 

two-sided market. Additional computational experiments and a case study are conducted. Findings 

confirm the existence of thresholds from which network externalities cause two-sided and one-

sided market equilibria to diverge. The Ramsey pricing criterion is used for social optimum to 

show that perfectly matched states from the proposed day-to-day process are equivalent to a social 

optimum. A case study using real data from Oakville, Ontario, as a first/last mile problem example 

demonstrates the sensitivity of the two-sided day-to-day model to operating policies. 
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Chapter 1. 

Introduction and Motivation 

1.1. Introduction 

 

The three main problems associated with road transportation are congestion, the collision rate and 

high level of pollution. According to the study conducted by METROLINX (2008) in 2006, the 

annual cost of travel delays, increased impact to the environment, and increased chance of vehicle 

collision to commuters in the Greater Toronto and Hamilton Area was $3.3 billion. In 2006 the 

cost to the economy in the form of GDP was estimated at $2.7 billion and the estimated costs for 

2031 to commuters and economy will balloon to $7.8 billion and $7.2 billion respectively. 

Therefore as can be seen the “Big Three” needs in road transportation system are (Shladover, 

2009): 

 Improving safety so that crashes are reduced in frequency and severity; 

 Improving efficiency of use of the roadway infrastructure, to help reduce congestion; 

 Reducing energy consumption and pollutant emissions associated with vehicular travel. 

 

With continued rise in urban traffic congestion combined with the high cost of infrastructure 

enhancement, transportation engineers and planners around the world are increasingly seeking 

ways to better utilize transportation systems without adding more infrastructure.  

One solution would be providing better and more accessible public transit systems. However, 

the demand for transit, especially in low dense areas, is often hampered by lack of efficient and 

effective door-to-transit station service known as the “first mile/last mile” problem (Li and 
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Quadrifoglio, 2010).  One potential solution to the last mile problem is the concept of flexible 

transport (or transit) services (FTS) (Cortés et al., 2005; Mulley and Nelson, 2009; Quadrifoglio 

and Li, 2009). FTS consist of services that transport people without a fixed route and/or schedule, 

which is designed to accommodate door-to-door service. It includes demand responsive transit 

services (Schofer et al., 2003) like dial-a-ride (Wilson et al., 1976), and taxi service. Demand 

responsive connector (DRC) is also a type of FTS that acts as a feeder to main transit line providing 

riders door-to-transit services (Quadrifoglio and Li, 2009). 

Recent advances in Information Communications Technologies (ICT) have further made it 

more cost effective to operate flexible systems, and many private start-ups based on car sharing or 

ride sharing have arisen by leveraging such opportunities, e.g. Uber, Lyft, and Zipcar.  With the 

emergence of above mentioned services, in recent years public agencies have started to partner 

with private mobility services in order to address last/first mile problem. Table 1.1 provides 

snapshots of some public-private partnerships (adapted from Nourinejad et al, 2016).  

 

Table 1.1: Snapshots of some public-private partnerships with mobility services to address last mile problem 
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In addition to public-private partnerships presented in Table 1.1, starting August 17th, 2016 a 

community in the suburb of Denver, Colorado has been offering free Lyft rides to and from 

commuter rail. Moreover, Altamonte Springs community in Florida has been covering 25% of 

Uber rides to and from commuter rail (Bliss, 2016). 

 

1.2. Motivation 

 

As shown above there is definitely a value in providing door-to-transit services using these flexible 

services, however public policy makers are often faced with questions such as: what fleet size 

should be employed and what dispatch algorithm should be used for the given fleet size. Should 

such a service be operated 24 hours a day, or only during peak period? What pricing scheme should 

be used, should there be a fixed price or variable price depending on distance traveled or look 

ahead strategies similar to the pricing strategies proposed by Sayarshad & Chow (2015)? Should 

they offer single ride or shared ride? Each of these different design decisions and operating policies 

lead to different level of service (LOS) which in return maybe lead to different demand and 

different impacted welfare. It should be noted that change in the demand for FTS will also result 

in the change in demand for other travel modes (switching to and from auto, fixed route transit, 

bike, walk, etc) and will impact overall welfare of travelers.  While private companies can embrace 

the financial risks with operating such a service using their own capital and targeting customers to 

maximize profit, public agencies do not have such luxuries; services need to be accessible to a 

general public, and investments come from the public. As a result, public agencies hoping to 

operate FTS on a much larger scale require sufficient investment justification in terms of 

forecasting the demand for a particular operating design.  
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Since 1950’s variations (with and without a feedback loop) of the four step model (FSM) 

presented in Figure 1.1 have been used for modeling transportation demand and determining 

equilibrium flows. As shown in Figure 1.1 the demand is determined through trip generation, trip 

distribution and mode choice, and it is considered fixed regardless of changes in the transport 

supply. Despite the feedback process, the only equilibration is at the route choice level, therefore 

the effect of any changes in supply procedure will only be reflected on route choice of travelers as 

opposed to their mode choice (demand for different modes). 

 

 

Figure 1.1. The Four Step Model (source: McNally, 2007) 

 

The FSM presented in Figure 1.1 was mostly developed for evaluating large scale infrastructure 

projects and is not for projects involving more complex dynamic policies (dynamic pricing, fleet 

size, schedule)  that directly influence travel behaviour. In the case of FTS the demand is not fixed 

and varies from one day to another based on FTS level of service which is affected by operating 

policies and system designs. For example, imagine that there is only one taxi available (fleet 

size=1) and based on FSM there are two travelers that would like to use the taxi (let’s call them 

Agent1 (1) and Agent1 (2), and the rule is that they cannot share a taxi. As a result one of the 
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agents has to wait while the other one is being served which will result in the second agent being 

late at its destination (Agent1 (2)). The next day, Agent1 (2) having arrived late at its destination 

the previous day, it will adjust its departure time to leave earlier than the previous day so it can 

arrive on time at its destination. However since Agent1 (1) arrived on time the previous day and 

didn’t have to wait, it will choose to leave at the same time as previous day but since now Agent1 

(2) leaves earlier than the day before, Agent1 (2) will be served first making Agent1 (1) wait and 

consequently be late at its destination. At the same time since Agent1 (2) left earlier than the day 

before, it will arrive early at its destination. On the third day both agents having experienced 

schedule delay (late and early) from previous days may change their departure time or even their 

mode choice (resulting in change in demand of FTS and other modes). Let’s imagine that Agent1 

having arrived late at its destination on day two decides to take auto on day three, this results in 

one less traveler and less profit for FTS operator and as a result the FTS operator may decide not 

to offer taxi service on day 4, therefore on day 4 both travelers will shift to auto. The two agents 

may later shift due to congestion and FTS may once again increase its fleet size based on change 

in demand. The two agents will keep changing their choices till they achieve minimum disutility 

and minimum schedule delay, and where one cannot improve its choice without making the other’s 

situation worse than before.  It can be seen that even for such a trivial example, this shift in demand 

for different modes as the result of supply procedure (dynamic FTS fleet size) cannot be captured 

using FSM presented in Figure 1.1.  Therefore there is a need for a model that allows us to evaluate 

equilibrium demand for dynamic FTS policies and operating designs. Figure 1.2 presents the 

Manheim/Florian Transportation Systems Analysis Framework (TSA) (Manheim, 1979; Florian 

et al, 1988) for which the demand is not fixed and is equilibrated based on changes in supply 

procedure. 
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Figure 1.2. The Manheim/Florian Transportation Systems Analysis Framework (McNally, 2007) 

 

This leads us to the key problem which is also the motivation behind this study: there are currently 

no tools for evaluating the equilibrium demand for a particular operating design of an FTS in an 

integrated supply and demand context as shown in Figure 1.2. Simulation appears to be one way 

to deal with FTS equilibrium. Cortés et al. (2005) , Jung and Jayakrishnan (2014) and Atasoy et al 

(2015) acknowledged the lack of evaluation tools for FTS and provide a simulation-based 

evaluation, but only consider fixed demand for the service instead of variable demand based on 

dynamic policies. The question that above cited studies try to answer is that given the fixed demand 

what would be the optimal policy and design decision that maximize profit and level of service of 

FTS. However as explained earlier, what public policy makers are interested in is the equilibrium 

demand and their impacted welfare given a particular operating policy and design decision. In this 

study, this gap is addressed by laying the groundwork for studying the equilibrium of these systems 

and proposing an agent-based adjustment process to evaluate the properties of a stable state as an 

agent-based stochastic user equilibrium adopted from Nagel and Flötteröd (2012).  
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Moreover, in recent years it has become more apparent that many transportation markets 

may be regarded as two-sided markets or multisided platforms (Rochet and Tirole, 2003) [RT03]. 

Rochet and Tirole (2006) [RT06] define two-sided markets as “markets in which one or several 

platforms enable interactions between end-users and try to get the two (or multiple) sides ‘on 

board’ by appropriately charging each side”. It has been shown that the social optimum in a two-

sided market can be different from a conventional one-sided market [RT03]. As such, modeling a 

FTS as a one-sided market where only the population of travelers vary their choices on a day-to-

day basis may not properly capture network externalities between travelers and FTS operators if 

the system is naturally a two-sided transportation market. One such example of a two-sided 

transportation market is UberX (Hagiu, 2013). In the case of UberX, the fleet size is not fixed and 

varies from one day to another based on the number of drivers available on that particular day and 

the number of available drivers depends on factors such as available customers, operating costs 

and profit, etc.  Cantarella et al (2015) with a simple two mode-transport system with responsive 

bus operator showed the importance of including day-to-day adjustment process of the transport 

operators in the model as well as the day-to-day adjustment process of travellers. However, no 

studies have been conducted to understand the structural characteristics of a two-sided flexible 

transportation market. Therefore in this study in addition of  proposing the first agent-based day-

to-day adjustment process under FTS setting (as discussed earlier), the process is also extend to 

evaluate two-sided transportation markets, which is the first day-to-day process with this 

consideration. 
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1.3. Objectives & Research Questions 

 

Research has shown that with advances in communication capabilities, including mobile 

technology, social networks and global positioning (GPS) it is possible to reduce congestion and 

improve the efficient use of road infrastructure by providing better access to public transit using 

flexible transit service (dynamic ridesharing systems (taxi, carpool, shuttle)) as a feeder to the main 

transit. However, before any of these options can be implemented, they have to be evaluated. At 

the moment there is no “one” tool to evaluate these systems and compare their performances within 

an integrated supply-demand context. In addition, no method has yet been defined to evaluate peer-

based two-sided services where agents may choose to be a driver or a passenger, nor has the 

method been made operational in practice to evaluate the market equilibrium. The purpose of this 

research is to fill these gaps. The objective of this thesis is twofold. The two objectives and 

associated research questions are discussed in Sections 1.3.1 and 1.3.2.  

 

1.3.1. Objective 1 

 

As discussed earlier, there is a need for a tool to evaluate equilibrium demand for particular design 

of FTS and measure the effect of design decisions of FTS on demand and their impacted welfare. 

The first objective of this study is to design an agent-based day-to-day adjustment process to study 

the FTS-based equilibrium and evaluate its properties.  The following research questions are 

addressed:  

a) Why FTS is a special case that cannot be evaluated using analytical approaches?  
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b) How will the proposed agent-based SUE under FTS setting converge under different initial 

conditions for one simulated population? 

c) Whether the proposed agent-based SUE under FTS setting with multiple simulated 

populations can generate invariant sample distribution of consumer surplus 

d) Whether the proposed agent-based SUE under FTS setting can measure the effect of 

different dynamic operation policies on demand and their impact welfare in an integrated 

supply and demand context 

The research in this thesis will answer the above questions and a summary of the answers is 

presented in Section 4 of this dissertation. 

 

1.3.2. Objective 2 

 

The proposed agent-based day-to-day adjustment process under FTS setting (Section 1.3.1) is then 

extended to include day-to-day adjustment of service operator(s) as a two sided market.  

Computational experiments are conducted with a simple network. The following research 

questions are addressed:  

a) What criteria is necessary to define a two-sided transportation market? 

b) How do we design a day-to-day adjustment process to model a two-sided 

transportation market? 

c) How do we verify whether the dynamic equilibrium of the day-to-day process is a 

social optimum in a two-sided market? 

d) How significant can the differences be in the equilibria of a two-sided market that 

is modeled using the proposed adjustment process versus a one-sided adjustment 

process? 
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The research in this thesis will answer the above questions and a summary of the answers is 

presented in Section 5 of this dissertation. 

 

1.4.  Thesis Contributions 

 

In this section the contributions of the research are summarized. In general, the research has led to 

the development of an agent-based day-to-day adjustment process model to find the agent-based 

stochastic user equilibrium and welfare effects of dynamic FTS operating policies for one and two-

sided flexible transport markets. In Section 1.4.1 the scientific contributions are summarized 

whereas the societal contributions are summarized in Section 1.4.2. 

 

1.4.1. Scientific contribution 

 

There is a clear gap in methodologies to evaluate the user equilibrium for flexible transport services 

with dynamic operating policies. This research lays the groundwork for studying the equilibrium 

of these systems. The proposed agent-based adjustment process in Chapter 4 evaluates the 

properties of an invariant state of such a process as an agent-based stochastic user equilibrium. 

Moreover, in Chapter 5 the proposed agent- based adjustment process is further extended to 

evaluate two-sided transportation markets, which is the first day-to-day process with this 

consideration. 
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1.4.2. Practical innovation 

 

The proposed agent-based day-to-day adjustment process under dynamic FTS setting for one and 

two-sided flexible transportation markets proposed in Chapter 4 and Chapter 5 allows 

policymakers to evaluate system designs (e.g. fleet sizing), operating policies (e.g. 

dispatch/routing algorithm), or competing mode designs (e.g. fixed route transit headways) all on 

a common platform in terms of consumer surplus distributions.  

In this study the two proposed models are operationalized in MATLAB, which is an 

efficient setting for sensitivity analysis for academic purpose.  The two models can also be 

operationalized on a more efficient computational setting (e.g. C++) with even-based simulation 

for use by public agencies.  

 

1.5. Outline of the Thesis 

 

Chapter 2 presents challenges associated with one-size-fits all modeling of equilibrium demand of 

FTS. It also provides literature review on current day-to-day processes, agent-based modelling, 

and the criteria for a two-sided market. An overview of dynamic FTS operating policy is also 

presented in Chapter 2. 

Chapter 3 further illustrates research gaps and issues using real data from Oakville, Ontario 

and Manhattan, NY.  Chapter 3 also introduces the simulation tool developed for this study in 

MATLAB. 
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 Chapter 4 argues with an illustration for why FTS is a special case that cannot be evaluated 

using analytical approaches and presents agent-based day-to-day adjustment process. Moreover, 

Chapter 4 with the aid of computational examples verifies the proposed model and illustrates its 

applicability to transportation planners and policy makers using case studies.   

In Chapter 5 the proposed agent-based day-to-day process for a two-sided flexible transport 

market is introduced along with computational experiments to verify the proposed model. 

 Chapter 6 presents conclusions and future work directions.  
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Chapter 2. 

Literature Review 
 

Despite methods for specific types of FTS (e.g. Yang and Wong, 1998; Xu et al., 2015), as 

discussed in the previous chapter there is no one-size-fits-all framework for a public agency to 

make unified comparisons between different FTS service designs. Chapter 2 provides review of 

existing literature and explores the above mentioned research gap in more details.  This chapter is 

organized as follows, first review of current literature on FTS and fixed route transit is provided 

in Section 2.1. Then, Section 2.2 presents challenges associated with one-size-fits all modeling of 

equilibrium demand for FTS. Having built this foundation, we then provide literature review on 

some of the most important works on user equilibrium day-to-day adjustment process in Section 

2.3, and agent-based modeling in Section 2.4. After that an overview of FTS operation policy is 

presented in Section 2.5. Lastly concepts from two-sided market literature are explained in Section 

2.6. It should be noted that Sections 2.2 & 2.3 are adapted from Djavadian & Chow (2016). 

 

2.1. State-of-the-Art 

 

In the past 40 years there have been many studies on flexible transit specifically taxi. Table 2.1 

provides brief overview of these studies.  

 

 

 



14 
 

Table 2.1: Summary of studies focusing on flexible transportation services 

Studies Overview 

Douglas, 1972 Price regulation is considered to obtain maximum use of taxi 

service. 

Daganzo, 1978 Analytical model is proposed to obtain average waiting and 

riding time for taxi. 

Daganzo, 1984 A flexible system is introduced in which the pick-up and 

drop off locations are centralized (checkpoints).  

Chang and Schonfeld, 1991 Considering fixed route and flexible transit service, the aim 

is to minimize operator's and users' cost, using vehicle size 

and service area as decision variable. 

Bailey Jr. and Clark Jr, 1992 Fleet size management. 

Cairns and Liston-Heyes, 1996 Looks at supply-demand equilibrium under regulated and 

deregulated market. 

Arnott, 1996 Taxi subsidization. 

Yang and Wong, 1998 Taxi supply-demand equilibrium using time-dependent 

network-oriented model for long-term strategic management. 

Regan eta l, 1998 Dynamic fleet size management combining vehicle routing 

and traffic simulation. 

Horn, 2002 Fleet scheduling and dispatching for demand responsive 

services as an alternative to minibuses. 

Lee et al., 2004 Taxi dispatching is considered based on real time traffic 

conditions. Paramics is used to simulate taxi dispatching. 

Aldaihani et al, 2004 An analytical model is developed for designing hybrid grid 

network while integrating fixed route transit with flexible 

demand responsive service. 

Yang et al, 2005 Taxi supply-demand equilibrium is looked at using time-

dependent network-oriented model for long-term strategic 

management. 

Quadrifoglio et al., 2008 Considers MAST, proposing mixed integer programming 

formulation for static scheduling problem of MAST systems. 

Yang et al, 2010 Models equilibrium model to characterize the bilateral taxi-

customer searching and meeting on networks, using meeting 

function. 

Cheng and Nguyen, 2011 Decentralized dispatching is addressed. Multi-agent 

simulation is used to model independence of taxi drivers.  

Powell et al, 2011 A model is proposed that increases profitability by 

suggesting profitable locations to taxi cab drivers and in turn 

reducing number of cursing miles. 
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Jung and Jayakrishnan, 2011 Introduces optimization and simulation modeling for  high 

coverage point-to-point transit (HCPTT). 

Nourbakhsh and Ouyang, 2011 Introduces a new flexible route transit where service area 

resembles hub-and spoke and grid network, serving travelers 

in low demand areas. 

Maciejewski and Nagel, 2013 An agent-based activity and traffic simulator (MATSIM) is 

combined with dynamic vehicle routing problem optimizer 

tool (DVRP) to evaluate DVRP dispatch policies. The study 

assumed fixed demand and a day-to-day adjustment process 

per Cascetta and Cantarella (1991). 

Sayarshad and Chow, 2015 A non-myopic dial a ride and pricing is proposed. 

 

For more comprehensive review of current literature on flexible transit the interested reader is 

referred to Maciejewski and Nagel (2013), Agatz et al, (2012) , Quadrifoglio and Li (2009).   

As can be seen from Table 2.1 and as stated in the previous chapter the focus of the current 

studies have been on fleet sizing, pricing and vehicle routing. These studies mostly look at taxi 

service or other flexible services from the point of view of service operators where the aim is to 

minimize operators’ and travellers’ cost as such only the within day dynamics are considered and 

it is assumed that the system is at steady-state, meaning that current condition will be the same 

tomorrow and travelers will make the same choices the next day. The supply-demand equilibrium 

considered in these studies is based on market equilibrium where the learning behaviour of 

travelers is not considered. However as mentioned by Quadrifoglio and Li (2009) the demand for 

flexible transit varies according to the level of service of flexible transit and may change from one 

day to another and this is a key factor when it comes to transportation planning and is of great 

importance to public agencies when trying to justify one alternative over another. In addition, 

current studies have tried to evaluate flexible services isolated from other modes, omitting the 

effect of level of service of other modes on the demand for flexible transit and vice versa. Therefore 

from the transportation planning perspective there is a need for a tool that allows policy makers to 
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evaluate equilibrium for particular design of these services in an integrated supply-demand 

context, considering dynamic behaviour of the travelers. It is worth mentioning that current models 

can still be used for modeling within day dynamics. The aim of within day models presented in 

Table 2.1 is to optimize operating policy and system designs given a demand on a particular day, 

whereas the aim of the day-to-day model presented in this thesis is to find equilibrium demand 

given a particular operating design.   

There are also numerous models on transit assignment and equilibrium. Table 2.2 provides 

a brief summary of current models. It should be noted that the list provided in Table 2.2 is just an 

example and by no means covers the entire literature on fixed route transit.  

 

Table 2.2: Summary of studies on modeling fixed route transit systems 

Scope Studies 

Route/mode choice models de Cea and Fernández, 1993; Wu et al., 1994; 

Lam et al., 1999; Kurauchi et al., 2003; 

Dynamic departure time/mode split models Tian et al., 2007; Qian and Zhang, 2011; 

Gonzales and Daganzo, 2012 

Activity-based models  Li et al, 2010; Chow and Djavadian, 2015 

 

 

Similar to flexible transit models, majority of models used for the design of fixed route transit 

systems are either based on steady state analysis or/and look at fixed route transit in isolation. For 

example, Wahba and Shalaby (2014) proposed a microsimulation learning based approach to 

transit assignment (MILATRAS) and looked at day-to-day dynamics and learning behaviour of 

the travelers, however they looked at fixed route transit in isolation. Furthermore, in their study 
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Wahba and Shalaby (2014) considered fixed demand obtained from the four step model. In their 

study they only looked at departure time and route choice.  On the other hand Li et al (2012) looked 

at bi-modal transportation considering both transit and other modes of travel, however they did not 

consider the dynamics in travelers adjusting to any new policy measure. To the best of our 

knowledge there is not a model that captures day-to-day dynamics in the design of fixed route 

transit where at the same time considers multimodal network.  It should be noted that even if such 

a model existed it could have not been used for flexible transit service, because as will be explained 

in Section 2.2, flexible transit is inherently different from general transportation systems. 

 

2.2. Challenges of One-Size-Fits-all Modelling of Equilibrium Demand for 

FTS 

 

Consider a complete graph 𝐺(𝑉, 𝐸) of potential destinations traversed by a population of 

size 𝑁 throughout a period 𝑑 ∈ 𝐷 (e.g. a day) using a set of 𝑘 transport systems defined as directed 

subgraphs 𝑠𝑖(𝑉𝑠𝑖
, 𝐸𝑠𝑖

) ⊂ 𝐺, 𝛹 = 𝑠1 ∪ 𝑠2 ∪ … ∪ 𝑠𝑘. 𝑉 is a set of vertices or nodes and 𝐸 is a set of 

edges or links. By default, 𝑠1 is a subgraph for walking mode and 𝑠2 is a subgraph for the road 

network. Travel costs on the links in 𝐸𝑠1
 and 𝐸𝑠2

 are assumed to be continuous functions of flow. 

The time-dependent route or path chosen by each traveler for each trip in 𝑑 ∈ 𝐷 is 𝑝 ∈ 𝑃𝑤, which 

captures the departure times and links within each subgraph (including mode) traversed. This is 

consistent with that of Cantarella and Cascetta (1995). For 𝑘 > 2, each service 𝑠𝑖>2 ∈ 𝛹 follows 

a time-dependent operating policy 𝜋𝑠𝑖
(𝑡) where 0 ≤ 𝑡 ≤ 𝑑. Each user has a choice set of paths 
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𝜙𝑛 ⊂ 𝑃 (𝜙 = {𝜙𝑛}) if it involves the use of FTS, or a single path choice 𝑝 ∈ 𝑃 if it’s the use of a 

different mode. Then we define an FTS in Definition 1. 

 

Definition 1. A flexible transport service (FTS) operates under a dynamic policy with adapted 

information, 𝜋𝑠𝑖
(𝑡, 𝑊𝑡), where 𝑊 represents external stochastic information known up until time 

𝑡, i.e. 𝑊 = {𝑊𝑡; 0 ≤ 𝑡 ≤ 𝐷} is defined on probability space (𝛺, ℱ, 𝒫), where 𝛺 is a sample space, 

ℱ is a filtration representing the set of events, and 𝒫 is a mapping of the outcomes to probabilities. 

This external information may represent a number of different random events which include time-

dependent path flows, 𝑊𝑡 = 𝑊𝑡(𝜙(𝑡)), and the randomness represents lack of information from 

the choices made by travelers.  

 

In other words, we consider a problem setting with FTS that assumes travelers adjust their 

choices on a day-to-day basis, and choices within a day are time-dependent but not dynamically 

updated as the day progresses. Meanwhile, FTSs are assumed to be separate decision-makers that 

do have within-day dynamic choices, but those choices are dependent on the choices of travelers 

revealed dynamically as stochastic events. As a result, there are two implications: 

 

1) The link cost of an FTS is a function of route choice sets provided by everyone in the population 

as well as the operational policy of the service, 𝐶𝑎 = {𝐶𝑎 (𝜋𝑠𝑖
(𝑡, 𝑊𝑡(𝜙(𝑡)))) : 𝑎 ∈ 𝐸𝑠𝑖

}.  

2) The assigned path (mode/time/route) of a traveler is dependent on the sub-path traversing a FTS 

subgraph. The sub-path in turn is determined by the operating policy as a function of the time-

dependent path flows, 𝑓𝑝 = {𝑓𝑝 (𝑡, 𝜋𝑠𝑖
(𝜙(𝑡))) : 𝑝 ∈ 𝑃𝑤}. 

 

A traveler choosing to take a FTS does not select a single path from origin to destination; instead, 

the traveler makes choices for some dimensions of the path (e.g. desired departure times, pickup 

and drop-off locations, etc.) to filter out a choice set 𝜙𝑛 for themselves, and surrenders that set to 

the FTS to select from. In turn, the FTS chooses a single route from all the sets provided by the 

travelers arriving dynamically. While this phenomenon appears similar to the hyperpath or optimal 
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strategy concept in transit (see Spiess and Florian, 1989), the hyperpath does not depend on another 

decision-maker like the FTS travelers’ choice set would with the operator. 

In the FTS setting, the increased dependency between travelers and operator suggests a 

Stackelberg game. In this game, there are 𝑁 + 𝑘 players with 𝑁 travelers in a population and 𝑘 

FTS operators. The travelers are assumed to have heterogeneous travel preferences, and are the 

leaders in this game, while the 𝑘 operators are the followers. This generalized Stackelberg game 

is similar to the generalized Nash game proposed by Zhou et al. (2005), except the operators and 

population have their roles reverse. The role reversal is because the travelers need to select partial 

path choice set while anticipating the response of the operators based on the choices of other 

travelers and revealed to the operators in a within-day dynamic fashion. As noted by Zhou et al. 

(2005), such a game does not guarantee a unique equilibrium in the deterministic setting.  

In order to forecast the social impact of a particular transportation system design, it is 

necessary to analyze the interaction between the system and its travelers. There are two general 

ways to do so. First, there is the steady state equilibrium as described by Wardrop (1952). Second, 

there is a day-to-day dynamic model to describe these interactions. Cantarella and Cascetta (1995) 

pointed out that dynamic control strategies cannot be effectively modeled using the steady state 

equilibrium approach. A day-to-day model can capture within-day dynamics and a more general 

approach to demand assignment (Cantarella, 2013; Watling and Cantarella, 2013; Guo et al., 

2015). Because of the intricate dependencies posed by the FTS as defined, a steady state model 

would not be able to model the sensitivities attributed to within-day dynamic operating policies as 

desired. We turn to day-to-day models. 
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2.3. User Equilibrium from a Day-to-Day Adjustment Process 

 

Day-to-day models have been studied for several decades because of several useful properties. 

First, they are effective in describing network states that reflect empirical observations 

(Mahmassani, 1990; Chen and Mahmassani, 2004). Second, they can be used to explain the 

relationship of the state with traveler behavior (Horowitz, 1984; Mahmassani and Chang, 1986; 

Mahmassani, 1990; Cantarella and Cascetta, 1995). Smith (1984) introduced the use of a 

Lyapunov function—a mapping of path flows defined to monotonically reduce the path costs every 

iteration—to prove convergence of dynamic adjustment processes to a non-empty set of equilibria 

as long as the cost-flow function is monotone and smooth. Studies have also shown that state 

stability can depend on the particular definition of the state (Heydecker, 1986; Smith and Wisten, 

1995; Zhang et al., 2001), the stability of the state (Smith, 1979; Heydecker, 1986; Cascetta and 

Cantarella, 1991), and separability of link costs (Watling and Hazelton, 2003). As a result of these 

powerful properties, a number of variations of the model framework have been proposed. 

Cascetta and Cantarella (1991) represented the day-to-day process with departure time choice 

(doubly dynamic) as a Markov chain stochastic process, and showed that a fixed point in terms of 

link flow stability can be achieved if travelers have limited memory, choice probabilities are time-

homogeneous, and there is at least one path from every state to every other state. Friesz et al. 

(1993) proposed a variational inequality formulation for the dynamic user equilibrium of the route 

and departure time choice problem, and proved existence when link delay operators are continuous 

functions. Friesz et al. (1994) sought to describe the adjustment process under information 

provision using an economic “tatonnement” concept.  
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In providing a unified theory of dynamic equilibria in transportation networks, Cantarella and 

Cascetta (1995) showed that a deterministic process always has at least one fixed point. Friesz et 

al. (1996) further clarified the day-to-day disequilibria with a set of mathematical axioms related 

to economics and nonlinear control theory, specifically distinguishing fast and slow dynamic 

processes. Zhang et al. (2001) rigorously proved that a stationary link flow pattern is a necessary 

and sufficient condition for user equilibrium path flow. Yang and Zhang (2009) summarized five 

types of deterministic day-to-day adjustment processes and showed that they all belong under a 

general class of “rational behavior adjustment processes” (RBAPs).  

Bie and Lo (2010) used the Lyapunov function to investigate the boundaries of the local 

attraction domains of stable equilibria and found that the boundaries are formed by trajectories 

toward unstable equilibria. He et al. (2010) and Han and Du (2012) studied link-based day-to-day 

traffic assignment. Smith et al. (2014) used a mode split model to compare deterministic and 

stochastic adjustment processes and considered new processes that combined features from the 

two. Guo et al. (2015) proposed a link-based dynamic system that generalizes over the earlier 

models. Deterministic processes are known to exhibit separable basins of attraction. Stochastic 

processes can provide ergodic probability distributions even for examples with non-unique 

deterministic equilibria, but the set cannot be separated. It has also been shown that Monte Carlo 

simulation of stochastic processes can reach multiple basins. 

 To date, no day-to-day process has yet been proposed to evaluate FTS dynamic operating 

policies. There are features of such dynamic policies that hinder the straightforward use of, say, 

an RBAP.  

First, the system performance is not fully determined by only the travelers’ choices; it also 

depends on the operating policy adopted by the FTS serving as an additional decision-maker. FTS 
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are inherently dynamically scheduled services, and need to be analyzed with within-day stochastic 

dynamics. This feature is similar to the provision of information via ITS (Cantarella, 2013) which 

also requires dynamic decision-making from a third party.  

Second, the traveler using FTS does not have full control over the route to travel; it is decided 

by the operating policy of the FTS. In turn, the operating policy depends on the choice sets of the 

travelers. In traffic networks, the route choice depends solely on the traveler.  

Third, it has been shown in the literature (e.g. Morlok, 1979) that demand responsive public 

transit cost function can be non-monotonic with respect to flow. The link costs in an FTS are 

dependent on the operating policy and may be non-monotonic or follow discrete step functions. 

Furthermore, like the fixed route transit service, an FTS may result in non-separable link costs.  

The combination of these points—multiple basins of attraction due to Stackelberg game, 

heterogeneity of travelers, and stochastic dynamic filtering of traveler choice sets to realized 

vehicle routes—suggest the RBAP does not apply to the FTS setting. We consider an agent-based 

framework for the day-to-day process instead. It should again be kept in mind that the reason we 

need a day-to-day model is not so much to evaluate the disequilibrium, but because a steady state 

model would not be able to model dynamic operator policies like dynamic dispatch, different idle 

vehicle repositioning/rebalancing, etc. 

 

2.4. Agent Based Modelling 

 

As mentioned in Section 2.3 the performance of the FTS depends on the travelers’ choices as well 

as FTS policy. Therefore in order to capture day to day adjustment process of each traveler, and 

their individual attributes, interaction between travelers and the effect on system performance an 
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agent-based approach is employed in this study. Agents interact with each other in a virtual 

environment where one agent’s choice affects another agent’s choice and ultimately the whole 

environment. The collective behavior of agents is called swarm intelligence. Agent-based 

modeling has a long history dating back to von Neumann’s (1996) work on self-reproducing 

automat. As pointed out by Bonnel (1995) and Kim et al (2009) by employing agent-based model 

it is possible to use different constraints for each individual independently, so their travel decisions 

would be more realistic. In addition agent-based approach can model heterogeneity of travelers by 

taking into account different attributes of individuals.  An agent-based model is made up of three 

components: 

 The agents, 

 The agents’ environment 

 The rules defining how agents interact with one another and with their environment. 

 

The agents in a multi-agent system (M.A.S) have several important characteristics (Wooldridge, 

2002):  

 Autonomy: the agents are at least partially independent, self-aware, autonomous  

 Local views: no agent has a full global view of the system, or the system is too complex 

for an agent to make practical use of such knowledge  

 Decentralization: there is no designated controlling agent (or the system is effectively 

reduced to a monolithic system)(Liviu and Luke, 2005)  

 

Agents interact with each other in a virtual network where one Agent’s choice affects another 

Agent’s choice and ultimately the whole network. For example imagine that there is only one taxi 

available and there are two Agent 1s that would like to use taxi (let’s call them Agent1 (1) and 

Agent1 (2), and the rule is that they cannot share a taxi. As a result one of the agents has to wait 

while the other one is being served which will result in the second agent being late at its destination 
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(Agent1 (2)). The next day, Agent1 (2) having arrived late at its destination the previous day it 

will adjust its departure time to leave earlier than the previous day so it can arrive on time at its 

destination. However since Agent1 (1) arrived on time the previous day and didn’t have to wait it 

will choose to leave at the same time as previous day but since now Agent1 (2) leaves earlier than 

the day before, Agent1 (2) will be served first making Agent1 (1) to wait and consequently be late 

at its destination. At the same time since Agent1 (2) left earlier than the day before it will arrive 

early at its destination. On the third day both agents having experienced schedule delay (late and 

early) from previous days they may change their departure time or mode choice. The two agents 

will keep changing their choices till they achieve minimum disutility and minimum schedule delay 

and where one cannot improve its choice without making the other’s situation worse than before. 

This collective behavior of agents is called swarm intelligence. 

In recent years, agent-based modeling techniques have found many applications in 

transportation, particularly in travel behavior (TRANSIMS, MATSIM) and land-use models 

(ILUTE (Salvini & Miller (2005)), URBANSIM (Waddell et al., (2003))). There are usually two 

types of approaches available for an agent-based simulation. One approach uses the household as 

an agent whereas the other approach uses an individual as an agent. Compared to other modeling 

techniques, ABM provides a natural description of a system, it captures emergent phenomena, and 

it is a low cost and time saving approach. More detailed discussions regarding agent-based 

modeling can be found in Kim (2008), Bazghandi (2012), and Bazzan and Klugl (2013). 

Nagel and Flötteröd (2012) presented an agent-based perspective of traffic assignment 

principles. They distinguished between a deterministic user equilibrium (UE) , a stochastic UE, an 

agent-based deterministic UE, and an agent-based stochastic UE, as shown in Definitions 2 and 3.  
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Definition 2 (Nagel and Flötteröd, 2012). An agent-based UE (user equilibrium) implies 

individual travelers, additional choice dimensions, and possibly stochastic network loading. It 

corresponds to the particle UE, where no particle (agent) can unilaterally improve itself.  

 

Definition 3 (Nagel and Flötteröd, 2012). An agent-based SUE implies individual travelers, 

additional choice dimensions, and normally stochastic network loading. It corresponds to the 

particle SUE, where agents draw from a stationary choice distribution such that the resulting 

distribution of traffic conditions re-generates that choice distribution. 

 

Nagel and Flötteröd (2012) characterized the state conditions required for an agent-based day-to-

day process, but did not propose any specific process for an FTS setting. We address this challenge 

by designing an agent-based process that converges to an agent-based SUE as defined in Definition 

3. The design allows one to embed different stochastic dynamic vehicle routing problems for the 

operating policy. This new approach fundamentally differs from the deterministic rational 

behaviour adjustment process (RBAP) , which is an aggregate method that does not consider 

embedded vehicle routing problems (VRPs).  

 

2.5.  FTS Operating Policy Overview 

 

Since 1970 various vehicle routing policies have been studied for a dial-a--ride-problem (DARP) 

(Wilson et al., 1976; Jaw et al., 1986; Fu, 2002c; Cordeau and Laporte, 2007), focusing on both 

static and dynamic problem. What distinguishes, dynamic dial-a-ride problem from the static dial-

a-ride problem is that in dynamic dial-a-ride problem vehicles’ routes are modified in real-time in 

response to trip requests arriving in time. The dynamic dial-a-ride problem usually has two 

conflicting objectives identified as (a) system efforts and (b) the customer’s interests (Hyytiä et al, 

2012). In their study Hyytiä et al (2012) modeled the non-myopic dynamic DARP as a multi-server 

queue problem, where the process of modeling vehicle assignment was assumed to be similar to 

assigning a customer to a server in a multi-server queue. The model is non-myopic in the sense 
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that the decision is not based only upon the current information, but also includes a forecast of 

future conditions modeled with steady state queue characteristics. A fixed set of v uncapacitated 

vehicles with constant speed is assumed to provide pickup and delivery service for customers. 

Each trip request is assigned to a specific vehicle immediately after being requested, and the 

vehicle’s route plan is then updated to include both the pickup location and delivery location in 

that order, with no request being rejected.  

In their study, Hyytiä et al (2012) devised a policy called mm1 that minimizes a weighted 

sum of the distance the vehicles travel (per passenger) and the mean passengers’ travel time as 

shown in Eq. (1) . 

 

mm1: 𝑎𝑟𝑔𝑚𝑖𝑛𝑣,𝜉[𝑐(𝑣, 𝜉) −  𝑐(𝑣, 𝜉′)] (1) 

 

The relative value or cost of vehicle-route pair (𝑣, 𝜉) as a sum is defined by Eq. (2). 

 

𝑐(𝑣, 𝜉) = γ𝑇(𝑣, 𝜉) + (1 − γ) (𝜅𝑇(𝑣, 𝜉)2 + ∑ 𝑆𝑖(𝑣, 𝜉)

𝑖

) (2) 

 

where 𝑣 is a vehicle, 𝜉 is a tour obtained for a traveling salesman problem with pickup and delivery 

(TSPPD), 𝜉′ is the previous tour updated to the time of the current customer arrival, 𝑐 is the value 

function, 𝑇 is the tour length, 𝑆𝑖 is the total delay for customer 𝑖 (service plus wait time, i.e. time 

from call in to time they are delivered). Eq. (1)  allocates a customer to a vehicle 𝑣 such that the 

added cost to their current operations is minimized compared to dispatching other vehicles.  γ  

corresponds to the minimization of the system’s effort and can take values between 0 and 1. If γ =

0 the algorithm assigns passengers to vehicles in such a way that only minimizes customers’ travel 

costs, where as if γ = 1 the algorithm assigns customers to vehicles in such a way that only 

minimizes operators cost. If γ = 0.5 the algorithm takes into account both the travelers’ costs and 
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operators’ costs.   𝜅 is used to minimize the mean travel time by anticipating future requests. 𝜅 =

0 refers to a myopic system whereas 𝜅 > 0 refers to a non-myopic system. Since this service is 

shared-use as a dynamic DARP, a customer may be delayed in being dropped off in favor of 

another customer if it minimizes total cost.  In addition to clarify, minimization is used because 

this is an equation for getting the dispatch policy, not the dispatch policy value. The policy includes 

allocation of a customer to a vehicle (hence the v is a decision variable), and the tour assigned by 

the vehicle. This is a DARP with centralized dispatch.  

Aside from dynamic DARP, dynamic pricing has also been gaining interests among 

researchers and planners. Sayarshad (2015) in his study introduced a new dynamic dial-a-ride 

featuring non-myopic pricing based on optimal tolling of queues to fit with the multi-server 

queueing approximation method.  

 

2.6. Concepts from Two-Sided Market Literature 

 

Two definitions from the two-sided market literature are needed to address the research questions 

posed in Section 1.3.2. The first is what constitutes a two-sided market. The second is the criteria 

for whether a two-sided market is operating in a social optimum, a monopoly, or otherwise. 

 [RT06] gives a detailed explanation of what constitutes a two-sided market or multi-sided 

platform. It requires the assumption that an end user does not internalize the welfare impact of 

their use of the platform on other end users, resulting in Definition 4. 

Definition 4 ([RT06]). Consider a platform charging per-interaction charges 𝑝𝐵 and 𝑝𝑆 to the 

buyer and seller sides. The market for interactions between the two sides is one-sided if the volume 

of transactions realized on the platform depends only on the aggregate price level 𝑝 = 𝑝𝐵 + 𝑝𝑆. 

If by contrast volume of transaction varies with 𝑝𝐵 while 𝑝 is kept constant, the market is said to 

be two-sided. 
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[RT03] derive the conditions necessary for a monopolistic platform to operate under a profit 

maximizing setting as well as for a social optimal (Ramsey pricing) setting. Ramsey price is a 

price set by the platform that aims to maximize total welfare of both buyers and sellers. Let 𝐷𝐵 be 

a log-concave demand function for the buyers, and 𝐷𝑆 be a log-concave demand function for the 

sellers, and 𝑝𝐵 and 𝑝𝑆 be the corresponding prices for those users as described earlier, as illustrated 

in  Figure 2.1 The profit function Φ is shown in Eq. (3). 

 

 
Figure 2.1. Illustration of a two-sided market. 

 

 

 

Φ = (𝑝𝐵 + 𝑝𝑆 − 𝑐)𝐷𝐵(𝑝𝐵)𝐷𝑆(𝑝𝑆) (3) 

 

where 𝑐 is a transaction cost of using the platform. Under profit maximization, the first order 

condition of the total profit function leads to Eq. (4). 

 

𝜕𝐷𝐵

𝜕𝑝𝐵
𝐷𝑆 = 𝐷𝐵

𝜕𝐷𝑆

𝜕𝑝𝑆
 (4) 

 

 

For the social optimum, the net surplus ℎfor each end-user (j) is given by Eq. (5). 

 

                                                 ℎ(𝑝𝑗) = ∫ 𝐷𝑗(𝑤)𝑑𝑤
∞

𝑝𝑗                                                           (5) 

 

Seller Quantity Buyer Quantity 

Buyer Price Seller Price 

𝐷𝐵(𝑝𝐵) 

𝑝𝐵 
𝑝𝑆 

𝐷𝑆(𝑝𝑆) 
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As stated by [RT06] the Definition 4  implies that in the two sided market the total surplus of the 

buyer depends on the number of sellers (𝑁𝑆 = 𝐷𝑆(𝑝𝑆)) and the net surplus of sellers depends on 

the number of buyers (𝑁𝐵 = 𝐷𝐵(𝑝𝐵)). Therefore total surplus for buyer (𝐻𝐵 ) and seller (𝐻𝑆) are 

defined as shown in Eq. (6)  and Eq. (7), respectively.  

 

 

𝐻𝐵 = 𝑁𝑆ℎ𝐵(𝑝𝐵) = 𝐷𝑆(𝑝𝑆)ℎ𝐵(𝑝𝐵)  (6) 

 

𝐻𝑆 = 𝑁𝐵ℎ𝑆(𝑝𝑆) = 𝐷𝐵(𝑝𝐵)ℎ𝑆(𝑝𝑆)  (7) 

 

The social welfare 𝑊 is defined as shown in Eq. (8). 

 

𝑊 = 𝐷𝐵(𝑝𝐵) ∫ 𝐷𝑆(𝑤)𝑑𝑤

∞

𝑝𝑆

+ 𝐷𝑆(𝑝𝑆) ∫ 𝐷𝐵(𝑤)𝑑𝑤

∞

𝑝𝐵

, 𝑝𝐵 + 𝑝𝑆 = 𝑐  (8) 

 

Letting 𝜂𝐵 = −
𝑝𝐵

𝐷𝐵 (
𝜕𝐷𝐵

𝜕𝑝𝐵) be the elasticity of demand for the buyer and 𝜂𝑆 = −
𝑝𝑆

𝐷𝑆 (
𝜕𝐷𝑆

𝜕𝑝𝑆) be for 

the seller, first order conditions of Eq. (8) lead to the following characterization of the social 

optimal two-sided market in Eq. (9) ([RT03]). These terms represent the ratio of elasticities 

multiplied by the average surpluses per transaction for each market. 

 

𝑝𝐵

𝜂𝐵𝐷𝐵
[ ∫ 𝐷𝐵(𝑤)𝑑𝑤

∞

𝑝𝐵

] =
𝑝𝑆

𝜂𝑆𝐷𝑆
[ ∫ 𝐷𝑆(𝑤)𝑑𝑤

∞

𝑝𝑆

] , 𝑝𝐵 + 𝑝𝑆 = 𝑐 (9) 

 

 

It should be noted that as mentioned in [RT03], Eq. (9) is based on the assumption that there is 

perfect match between sellers and buyers that each such a pair corresponds to one potential 

transaction.  
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Examples of two-sided market in everyday life are: credit card companies, game consoles, 

search engines, recruitment platforms, social mediums, etc.  
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Chapter 3. 

Problem Definition & Simulation 

Development 
 

Due to advances in communication technology and social networks, flexible mobility systems such 

as taxi, carpool and demand responsive transit have gained interests among practitioners and 

researchers as a solution to address such problems as the "first/last mile problem”. However, for a 

public agency to pick up any of these alternatives and use it as a form of public transit, they first 

need to evaluate these alternatives and compare their performances. As discussed in the previous 

two chapters, even though there are an abundant number of models to optimize a flexible transit 

operating design, at the moment there is no “one” tool to evaluate these systems and compare their 

performances within an integrated supply-demand context. In Chapter 2 we discussed the 

challenges of one-size-fits all modeling of equilibrium demand for FTS, in this chapter, in Sections 

3.1 & 3.2 , with the aid of two transportation planning examples based on real data from Oakville, 

Ontario and Manhattan, New York, we first illustrate these challenges, show why we need a one-

size-fits all simulation tool to evaluate performance of different designs of FTS, and discuss data 

requirements and preparation. After that an overview of the simulation tool developed for this 

dissertation in MATLAB is presented in Section 3.3. 
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3.1. Transportation Planning Example 1: Oakville, Ontario 

 

3.1.1. Background information 

 

To illustrate the need for a one-size-fits all frame work for FTS, we consider a real last mile transit 

problem in the town of Oakville, which is a suburban town in southern Ontario, Canada , located 

in Haltom Region. Town of Oakville, is also part of the Greater Toronto Area (GTA). According 

to 2011 census 185,250 people reside in the town of Oakville. Figure 3.1 presents Oakville study 

area within the GTA along with the activity patterns (e.g. dark blue represents work trips) of 

residents of Oakville who use Go Transit (an inter-regional transit system linking Oakville to 

Down Town Toronto) out of the Oakville Go station.  Figure 3.1 is created using disaggregate 

household travel survey data from the 2011 Transportation Tomorrow Survey (TTS) (DMG 2014). 

The scope of this study is residents of the town of Oakville who commute to downtown Toronto 

for work during morning peak period by taking Go Transit commuter rail out of the Oakville Go 

Station (in zone 4014 circled in Figure 3.1).   



33 
 

 

Figure 3.1. Oakville station study area within the GTA 

 

Based on 2011 household survey by TTS, of those Commuters who access Oakville Go Station 

for work trips from Oakville to Toronto, 73% used auto as the access mode, 19% used bus, 1% 

used taxi, 6% used bike and 1% walked to Oakville Go Station.  
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3.1.2. Problem definition 

 

As can be seen from the access mode statistics given in the previous section, auto is considered a 

major access mode to Oakville Go Station and because of this high dependency on auto as an 

access mode to the station, a significant problem facing Go Transit in Oakville is that almost all 

its parking lots have reached capacity  

For the purpose of this study, let’s “assume” a transit public agency would like to provide 

commuters better access to Oakville Go Station (last/first mile problem). One way for the public 

agency to achieve this goal is to provide door-to-Go Station flexible transit service as studied by 

Alshalalfah and Shalaby, (2012). For the purpose of this study we assume that the “taxi” service 

serving the commuters is the public flexible transit service providing last/first mile service and that 

the public agency would like to improve the current available flexible transit service in the 

following ways:  

 Improve level of service of current FTS by changing its design and operating policies: 

o Increase fleet size 

o Use alternative routing policy 

o Change fare price  

 

In addition to making changes to the current flexible transit system, the public agency can improve 

accessibility to Go Transit Station by providing higher frequency local transit. However, the public 

agency does not have the luxury of investing in all these changes, as such, before picking up any 

of the above mentioned alternatives, they first need to evaluate these alternatives and compare 

their performances in an integrated supply-demand context in terms of demand and their impacted 

welfare. Basically what the public agency needs to know is that for example, if the fleet size of 
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flexible transit service is increased, will there be a significant shift from other modes especially 

auto to flexible transit and how much will it impact the total welfare of the commuters. The 

following questions for this case study will be answered in Section 4.4 : 

1. Effects of different fleet sizes on equilibrium consumer surplus, 

2. Effect of different routing strategies on equilibrium demand and consumer surplus,  

3. Effect of changes in LOS of other modes on equilibrium demand and consumer surplus for 

FTS 

 

To evaluate the performance of different designs and operating policy of FTS and answer 

the above questions, the public agency would require a tool to evaluate equilibrium demand for 

particular design of flexible transit service, and measure the effect of design decisions of FTS on 

demand and their impacted welfare within an integrated supply-demand context. As discussed 

earlier, tools exist for evaluating demand for fixed schedule transit service, but because flexible 

transit is inherently different from general transportation systems, there are currently no adequate 

tools to address that issue.  The public agency would require a new framework to evaluate different 

designs of FTS that meets the following criteria: 

 Capture heterogeneity of travellers 

 Capture interaction between travellers  

 Capture impact of operation policy on travellers’ choice  

 Capture impact of travellers’ choice on FTS level of service 

 Capture day-to-day learning process of both travellers and FTS drivers (two-sided market) 

To meet the above mentioned requirements, an agent-based model under FTS setting is 

proposed in this thesis for one and two-sided flexible transport service. In the next section we will 

discuss data requirements and preparation for Oakville case study to be used with the proposed 

model. The overview of the agent-based transportation simulation tool developed in MATLAB for 
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this case study is presented in Section 3.3 . We provide the methodology for the proposed agent-

based day-to-day adjustment models implemented in the simulator in Chapters 4 & 5. The 

answers to the case study questions posed earlier will be provided in Section 4.4.  

 

3.1.3. Data requirements & collection 

 

In Section 2.4 we showed that an agent-based model is made up of three components: 

 The agents, 

 The agents’ environment 

 The rules defining how agents interact with one another and with their environment. 

 

In this case study there are two agents : one, residents of Oakville who commute to downtown 

Toronto daily for work by taking Go Transit out of the Oakville Got station and two, taxi vehicles 

(drivers). The agents’ environment is the road/transit network of town of Oakville, Ontario and the 

rules defining the interaction between the commuters and taxi vehicles(drivers) are operating 

policies of the flexible transit service available in Oakville (taxi system in Oakville). 

3.1.3.1. Commuter agents 

 

To capture heterogeneity of the commuters, they are defined by their individual origin, destination, 

desired departure time and their socio-economic characteristics. The demand and commuter 

characteristics for the base case scenario are extracted from TTS 2011 household travel survey. 

During the study period (6:30-7:30), 2000 commuters access Oakville Go Station for work trips 

from Oakville to Toronto.  The reason for selecting this study period is that due to large demand 

for parking at Oakville Go station, the majority of parking spaces are usually full before 7:00am 
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(Alshalalfah and Shalaby, 2012). Selection of only one hour peak hour period is due to the limited 

computational power of MATLAB, in the future studies similar to Alshalalfah and Shalaby (2012) 

longer study period should be considered. It is worth mentioning that even though one hour period 

is considered in this study, it will not affect the results since the purpose of this study is to do 

sensitivity analysis and to show proof of concept.  

The five access modes that are considered by the commuters are: bus, automobile, walk, 

fixed route transit and DRT (the modes listed in TTS). According to the survey data, only 17 

people used taxi. In typical transportation planning problems in practice, the existing condition is 

assumed to be in equilibrium, which is how the networks and demand get calibrated. In our study, 

since we are also looking at a transportation planning example where a public agency is taking 

existing data and trying to assess “what-if” situations, we make the assumption of surveyed system 

being at equilibrium. 

Table 3.1 presents sample itinerary and socio-economic characteristics of Oakville 

commuters obtained from TTS 2011 survey for the “Base Case Scenario”. It should be noted that 

original data obtained from TTS 2011 contains additional socio-economic characteristics of the 

commuters, however only the ones based on the “best estimated” logit model are given in Table 

3.1. More information on that will be given in Section 4.4.3.  

 

Table 3.1: Sample "Base Case Scenario" Oakville commuters’ itinerary & socio-economic characteristics 

Person n departure time 
origin

_TAZ 

destination

_TAZ 

driver

_lic 

n_vehicle_ava

ilable 

n_licence

holders 

Go Station 

access mode 

1 6:30:00 AM 4040 4014 1 1 2 Transit 

377 6:35:00 AM 4015 4014 1 2 3 Bike 

474 6:40:00 AM 4007 4014 1 2 2 Auto 

883 7:00:00 AM 4011 4014 1 2 3 Taxi 

1392 7:00:00 AM 4038 4014 1 2 2 Walk 
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3.1.3.2. Vehicle (driver) agents 

 

Vehicle (driver) agents’ itinerary is defined based on commuter agents’ requests. A sample vehicle 

agent itinerary for Oakville case study under “Base Case Scenario” is given in Section 4.4.2 . 

Vehicle (driver) agents can also be defined by their personal attributes. For example in the case of 

two-sided flexible transport market, driver agents are also decision makers and their aim is to 

maximize profit based on their profit threshold. In this dissertation only the profit threshold 

attribute of driver agents is considered. The data obtained for Oakville case study as is does not 

provide threshold profit for each driver, as a result arbitrary values are tested in this study. More 

information is provided in Chapter 5.  

3.1.3.3. Agents’ environment 

 

In this study the agents’ environment is the road/transit network of town of Oakville, Ontario. 

Figure 3.2 presents town of Oakville’s road/transit network in simulation platform developed in 

MATLAB (more information on the simulation platform will be provided in Section 3.3). The 

network contains 57 OD demand zones, and the corresponding zonal scheme is extracted from 

TTS. The network characteristic data and layout are obtained from DMTI Spatial Inc (through 

Scholars Geoportal) and fixed route transit stop schedule information is from Oakville Transit. As 

stated earlier, looking at Figure 3.2 it can be seen that even though there are several transit lines 

serving Oakville Go Station (green lines in), they do not cover majority of residential areas in 

Oakville. It should be noted that for this case the study effect of congestion on travel time is ignored 

(since the focus is more on day-to-day dynamics as opposed to within day dynamics), therefore 

free flow speed and free flow travel times are considered. Future studies should consider the 

congestion effect. 
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Figure 3.2. Oakville network in proprietary simulator in MATLAB 

 

 

3.1.3.4. The rules defining how agents interact with one another and with their environment 

 

The rules defining how agents interact with one another and with their environment is set by the 

operating policies (e.g. dispatch/routing algorithm, fare pricing) and system designs (e.g. fleet 

sizing, ride sharing) of the flexible transit service. For Oakville study, two dispatch/routing policies 

are considered, namely: greedy algorithm (as shown in Section 4.4.2) and dynamic DARP (as 

shown in Section 2.5). For the base case scenario under equilibrium sate a fleet size of 10 is 

considered.  For the purpose of this study FTS providing only single-rides is considered. 
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 The data obtained from TTS 2011 does not include taxi fare price, therefore for one-sided 

flexible transit market sensitivity analysis presented in Section 4.4 taxi fare price is set to 0. 

However, for two-sided flexible transit market sensitivity analysis presented in Section 5.4 fare 

price is calculated using Oakville taxi fare price guidelines, which charges commuters $4.25 for 

first 130m traveled and $0.25 per additional 130m thereafter.  

 

3.2. Transportation Planning Example 2: Manhattan, New York 

 

3.2.1. Background information 

 

For the first transportation planning example a first/last mile problem (many-to-one) is considered 

using real data from Oakville, Ontario. In this second example we look at a ride-sharing problem 

(many-to-many) using real data from Manhattan which is the most densely populated borough of 

New York City. According to 2015 census 1, 644, 518 people reside in Manhattan. The scope of 

this study is on residents of Manhattan who commute from home to work (H-W trips) during 

morning peak period (6:00am-10:00am) whose origins and destinations both are located in 

Manhattan.  Figure 3.3 presents morning peak period home-work trips made by all available 

modes (as shown in Table 3.2) for only those individuals having both their origin (yellow as shown 

in Figure 3.3) and destination (magenta as shown in Figure 3.3) located in Manhattan. Data for 

Figure 3.3 and Table 3.2 are obtained from New York 2010/2011 Regional Household Travel 

Survey (RHTS).  
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Table 3.2: Manhattan study -Modes used for H-W trips during AM Peak Period 

Paratransit Service (Access-a-ride, Dial-a-ride, etc) Subway (NYTCT, Staten Island Railway) 

For-Hire Van/Jitney/Gypsy Cab Charter Bus (employer-provided or Other contracted) 

Taxi (yellow, Medallion Cab) Shuttle Bus (Public or Employer provided) 

Railroad (LIRR, Metro North, NJ Transit, 

AMTRAK) 
Local Bus (regular, Standard, City) 

Express Bus Auto (Car or Small Truck) passenger 

Roosevelt Island Tram Motorcycle 

Bike Auto driver 

Walk   

 

 

 

Figure 3.3.  Manhattan Network- H-W morning peak period trips made by all modes 
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Figure 3.4 presents morning peak period home-work trips made only by taxi only for those 

individuals having both their origin and destination located in Manhattan. In Figure 3.4, green 

dots represent pick up locations and red dots represent drop off locations.  

 

Figure 3.4. Manhattan Network- H-W morning peak period trips made by taxi only 

 

One thing that is worth mentioning is that both Figure 3.3 and Figure 3.4 are based on sample 

size of 592 people (unexpanded data from NY2010/2011 survey). The reason for not using 

expanded population is threefold: one, the expansion factors for the survey were not available to 

us; two, we are doing a sensitivity analysis as such it is not required to consider the entire 
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population; three, the computational limitation of MATLAB does not allow us to simulate large 

sample population. Future studies should look at entire population using expansion factor. The 

implication of this simplification is that the results obtained can only be used as proof of concepts 

and sensitivity analysis and cannot be used to draw conclusions about the network or operation 

policies. 

 

3.2.2. Problem definition 

 

As can be seen from Figure 3.3 origins are spread out all through Manhattan but destinations are 

highly concentrated in Midtown and Lower Manhattan.  Similarly, looking at Figure 3.4 it can 

also be seen that taxi pickup locations are concentrated in both Upper West Side and Upper East 

Side whereas taxi drop off locations are concentrated in Midtown Manhattan.  The high 

concentration of destinations/drop offs in Midtown Manhattan, high taxi price and the fact that 

Manhattan is an overly populated borough, are the motivation for ride-sharing in this transportation 

planning example.  

For the purpose of this study we assume that the taxi service serving the commuters is 

actually a public flexible transit service providing many-to-many service. In this study we assume 

that a public agency is looking at changing the current design of flexible transit service from single-

ride to share ride. Similar to the Oakville case study, before the assumed public agency can 

implement the new alternative, they need to evaluate the performance of it to the base case scenario 

in terms of equilibrium demand and their impacted welfare.  Tools exist that allow policy makers 

to compare the level of service of single-ride service with a ride-sharing service in terms of wait 

time and number of customers served, however these tools/models assume fixed demand, where 
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as in this study we are interested to know whether changing the FTS design from single-ride to 

shared-ride will result in shifts from other modes to taxi or not, and what would be the total change 

in total consumer surplus. As such we need to look at day-to-day adjustment process of the 

travelers and their interactions with each other and the FTS. Therefore, similar to Oakville study, 

to answer these questions there is a need for one-size-fits all frame work to evaluate different 

designs of FTS within an integrated supply-demand context. Section 4.5 provides answers to the 

above questions by using the agent-based day-to-day process for one-side flexible market proposed 

in this dissertation.  

 

3.2.3. Data requirements and collection 
 

3.2.3.1. Commuter agents 

 

The scope of this study as mentioned earlier is on the residents of Manhattan who commute to 

work during AM peak period who have both their origin and destination located in Manhattan. 

The commuters’ origin, destination, departure time choice and mode choice, for this study are 

extracted from NY2010/2011 household survey data. As shown in Table 3.2 commuters can use 

15 different modes to reach their destinations. However, it is not easy to model all 15 modes in our 

proprietary simulator in MATLAB, as a result for the purpose of this study we only model taxi 

since only the level of service of taxi changes from one day to another. Other modes are considered 

as a generic mode other than taxi, hence there are two modes in the simulator: mode 1 (taxi), mode 

2 (generic mode representing all other modes). Moreover, unlike TTS survey, the NY2010/2011 

does not provide actual departure time of the commuters, instead it provides departure time range 

(e.g. 6:00am-10:00am), and consequently before we can use the data as input to our agent-based 
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simulation tool we need to obtain actual departure times. Obtaining actual departure times for 

commuters is done in two steps as discussed below: 

Step1: 

In step one current departure time range (2hr period) is converted to 30min range. To do this the 

demand data obtained from NY2010/2011 is fitted to the work trip departure time distribution 

from American Community Survey 2011. Figure 3.5 shows travel departure time distribution 

based on the data collected by ACS2011 as shown in AASHTO 2013 Commuting in America 

report. However, for this study we are only interested in the departure time distribution for the 

morning peak period, therefore Figure 3.5 is redrawn in Figure 3.6 for AM peak period.  

 

 

Figure 3.5. Distribution of workers by trip departure times (source: ACS2011/AASHTO 2013) 
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Figure 3.6. Distribution of workers by trip departure times –morning peak period (6:00am-10:00am) 

 

 

Table 3.3 presents data used to draw Figure 3.6 .  

 

Table 3.3: Distribution of workers by trip departure times –morning peak period (6:00am-10:00am) 

 

Morning Peak H-W 

Departure Range 

% over entire day 

(from ACS2011) 

% over morning peak range 

(out of 69.2) 

6:00-6:29 8.70 12.57 

6:30-6:59 9.90 14.31 

7:00-7:29 14.80 21.39 

7:30-7:59 12.80 18.50 

8:00-8:29 11.20 16.18 

8:30-8:59 5.50 7.95 

9:00-9:59 6.30 9.10 

Total 69.20 100.00 
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Departure time (AM peak period) percentages from Table 3.3 are used to obtain 30min departure 

time range for demand data obtained from NY2010/2011 survey. Table 3.4 shows work trip 

departure time range (30min) for the demand obtained from NY2010/2011 based on ACS work 

trips departure time distribution.  

 

Table 3.4:  Manhattan commuters- NY2010/2011 survey-H-W trips-AM peak period-departure time range 

Morning Peak H-W 

Departure Range 

% over morning peak 

range (out of 69.2) 

# of surveyed individual 

corresponding to specific range 

6:00-6:29 12.57 74.00 

6:30-6:59 14.31 85.00 

7:00-7:29 21.39 127.00 

7:30-7:59 18.50 110.00 

8:00-8:29 16.18 96.00 

8:30-8:59 7.95 47.00 

9:00-9:59 9.10 53.00 

Total 100.00 592.00 

 

Table 3.4 is used to assign new departure time range (30min period) to the 592 individuals in the 

sample data obtained from NY2010/2011 survey as follows: 

1. Using uniform distribution a random number between 0 and 1 is assigned to each 

individual in the sample 

2. Sample is sorted based on the assigned random numbers 

3. The first 74 people in the sample are assigned the departure range of 6:00-6:29, the 

second 85 people are assigned departure time of 6:30-6:59, and so on. 
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Step 2.  

In Step 1, the departure time range for each individual is modified from 2hr period to 30min period. 

In this step we convert departure time range to actual departure time as follows. 

1. For simplicity each departure time range (30min period) is divided into 5min 

increments (e.g. 6:00, 6:05, 6:10, etc.).  

2. It is assumed that each individual has the equal chance of departing at any time 

during their departure time range, therefore using uniform distribution a departure 

time is assigned to each individual. (e.g. An individual with departure range 6:00-

6:29, has equal chance of leaving at 6:05, or 6:10, etc. , randomly we assign it to 

6:05). 

Table 3.5 shows departure time conversion for person 1.  

 

Table 3.5: Sample departure time range to departure time conversion 

Person 

n 

Original 

departure 

time 

range 

Rand 

New 

Departure 

Time-range 

Actual 

Departure 

Time 

OTAZ DTAZ 
Mode 

used 
Choice 

1 6:00-10:00 0.00176 6:00-6:29 06:20:00 172.00 147.00 Subway 
Generic 

mode 

 

 

It is worth mentioning that since this is a sensitivity analysis study assuming uniform distribution 

for departure time assignment is acceptable, however for actual transportation planning studies 

more suitable distribution should be selected. In addition, since departure times are randomly 

selected, in future study more than one sample population should be considered.  
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3.2.3.2. Vehicle (driver) agents 

 

In this case study vehicle (driver) agents are not decisions maker and their itinerary is defined 

based on taxi requests of commuter agents. 

 

3.2.3.3. Agents’ environment 

 

 In this study the agents’ environment is the road network of Manhattan, NY. Figure 3.7  Presents 

Manhattan’s road network in the simulation platform developed in MATLAB. The network 

contains 317 OD demand zones, and the corresponding zonal scheme is obtained from the New 

York Metropolitan Transportation Council (NYMTC). The network characteristics data and layout 

are obtained from NYS GIS Clearninghouse.  
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Figure 3.7.  Manhattan network in proprietary simulator in MATLAB 

 

Unlike the Oakville example, in this example the effect of congestion is considered. However since 

it is cumbersome to actually model traffic in the current simulator, congested OD travel times are 

estimated using New York Taxi and Limousine Commission (NY TLC) 2010-2011 data.  NY TLC 

logs the GPS data for every taxi trip made which includes pickup/drop-off locations, pickup/drop-

off times. The collected data is made available to researchers as an open data source. Since 

pickup/drop-off travel time are available, then it is possible to estimate the in-vehicle travel times. 

This in-vehicle travel time is based on actual travel time in real network, therefore it captures 

traffic conditions in the network.  
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For this study data from the month of September 2010 (Yellow taxi only) is used. The NY taxi 

data for September 2010 alone contains over a millions observations , as a result for the purpose 

of this study we only extract morning peak period trips originating and ending in Manhattan and 

taking place during weak day. From that we used sample of 300,000 trips.  Following steps are 

conducted to obtain interzonal travel times for Manhattan network.  

For each individual observation: 

1.  Euclidean distance (future studies should look at using Manhattan distance) 

between  pickup location and drop of location is calculated using the 

longitude and latitude coordinates of pickup/drop off locations; 

2. Speed between pickup location and drop of location is calculated using 

Euclidean distance and the in-vehicle travel time from NY Yellow Taxi 

Data; 

3. Pickup locations and drop off locations are matched to the nearest traffic 

analysis zone (TAZ). Figure 3.8 provides sample speeds for TAZ 1 to TAZ 

3 estimated using data from NY Yellow Taxi data.   

 

 

Figure 3.8. Sample speeds (mile/hr) going from TAZ1 to TAZ 3 during AM peak period using NY TLC Yellow Taxi Data 
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It should be noted that even though observations spread over the morning peak period they are not 

all from the same day. For example one observation can be from Monday at 8:00am and another 

observation can be from Tuesday of next week at 9:00am. Therefore the difference in speeds is 

not only due to congestion during different time slots, it is also due to data being collected on 

different days.  To overcome this obstacle we use the average interzonal speed by taking average 

over the observed speeds. For example average speed from TAZ1 to TAZ 3 is 10 miles/hr. This 

average speed is used as input to the simulator for vehicles traveling from TAZ1 to TAZ3 as 

opposed to using free flow speed. This way we are able to capture effect of congestion in our 

simulator.  

3.2.3.4. The rules defining how agents interact with one another and with their environment 

 

Similar to the Oakville case study, the rules defining how agents interact with one another and 

with their environment is set by the operating policies (e.g. dispatch/routing algorithm, fare 

pricing) and system designs (e.g. fleet sizing, ride sharing) of the flexible transit service. For the 

Manhattan study dynamic DARP (as shown in Section 2.5) is considered. For the base case 

scenario under equilibrium sate a fleet size of 10 is considered.  

 The data obtained from NY survey does not include taxi fare price, however for this study 

fare price is calculated using NY TLC fare price guidelines, which includes fixed cost of $2.25 

and $0.50 per additional 1/5mile thereafter.   
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3.3. Agent-Based Transportation Simulation Tool in MATLAB 

 

For the purpose of this study an agent-based continuous time transportation simulation tool is 

developed in MATLAB to evaluate the impact of different designs and operation policies of FTS 

on demand and their impacted welfare within an integrated supply-demand context. The developed 

simulation tool is based on the proposed agent-based day-to-day adjustment process models under 

FTS setting that will be presented in Chapters 4 & 5.  Figure 3.9 presents the general agent-based 

transport simulation framework for evaluation of dynamic FTS policies; more detailed framework 

for the day-to-day adjustment will be presented in Chapters 4 and 5.  

 

 
Figure 3.9. Agent-based transportation simulation tool framework 
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As can be seen from Figure 3.9 the framework consists of an overall agent-based day-to-day 

simulation environment and a microsimulation sub-module. The three main components in the 

agent-based simulation environment are: 

 the agents,  

 the agents’ interaction environment (network microsimulation module) and 

 the rules governing agents interactions with each other and the environment.  

In addition to the main components, there are also two assistant managers, namely: loading 

managers and feedback manager. In this study as shown in Figure 3.9 there are two types of agents, 

namely: commuter agents and FTS vehicle (driver) agents. Each agent has its own objective to 

achieve, therefore on each day it makes choices to reach its goal.  Once individual commuter agents 

make their choices, these choices are communicated dynamically to the network microsimulation 

module by the commuter loading manager. The choices of FTS agents are also communicated to 

the network microsimulation module using FTS loading manager.  Then the microsimulation 

model handles the dynamic interactions between the two agents based on the set of governing rules 

(FTS policies). Next, agents’ memory is updated using feedback manager and learning model. This 

process is continued for days till the stopping criteria is met.  More information on commuter and 

driver agents, their strategy set, their day-to-day adjustment process, their interactions and stopping 

criteria is provided in Chapters 4 & 5.  

 

3.3.1. Input information required by the agent-based simulator 

 

Following information/input data is required to model the key components of the simulator: 
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Commuter agents 

 Socio-economic characteristics (obtained from household transport survey data) 

 Itinerary : origin, destination, desired pick up time, mode choice set (obtained from 

household transport survey data) 

 

Vehicle (driver) agents 

 Profit threshold 

 

Agents’ environment 

 Network characteristics and layout (GIS shapefiles) 

o Links 

o Nodes 

o Free flow speeds 

o Transit stops schedule 

o Traffic analysis zones/centroids 

o OD free flow travel time 

 

Rules governing interaction among agents and with their environment 

 FTS operating policy 

o Fare price 

o Fleet size 

o Vehicle routing algorithm 

 

3.3.2. Network microsimulation module 

 

Once the commuter loading manager communicates choices of the individual commuters to the 

network microsimulation module, commuters are sorted in chronological order based on their 

desired departure time from their origin and loaded into the network dynamically. Since the focus 

of this study is on day-to-day dynamics a simple within day microsimulation model is used to 

capture the within day interactions among and between agents. Moreover, since the focus of this 
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study is on FTS, only movements of FTS vehicles, FTS passengers and their interactions are 

simulated in the simulator.  Following simplifications are made in this study for commuters who 

choose alternative travel mode: 

Auto trips: 

 Effect of congestion is ignored, therefore those commuter agents who choose to travel 

with auto, will experience instantaneous time-independent shortest path travel time (free 

flow travel time (𝑡𝑎𝑢𝑡𝑜
𝑜𝑑 ) between their origin and destination. 

 No route choice is considered. 

Transit trips: 

 Since the focus of this study is on FTS as opposed to fixed route transit, the latter is 

modeled as follows: 

 Transit stops are used to obtain access/egress walk time  

(𝑡𝑎𝑐𝑐𝑒𝑠𝑠𝑤𝑎𝑙𝑘𝑡𝑖𝑚𝑒  , 𝑡𝑒𝑔𝑟𝑒𝑠𝑠𝑤𝑎𝑙𝑘𝑡𝑖𝑚𝑒  ) 

 Transit schedule is used to obtain wait time (𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑤𝑎𝑖𝑡) 

 Instantaneous time of day-independent shortest path travel time is used to 

obtain in-vehicle travel time (𝑡𝑎𝑢𝑡𝑜
𝑜𝑑 ) 

 Closest transit line to the origin is chosen 
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3.3.2.1. FTS Simulation 

 

Flexible transit drivers as mentioned previously are modeled in the simulation as FTS vehicle 

agents and represented by vi.  Each vehicle agent vi at each simulation time j is defined by its x 

positon (vi.xj) and y positon in the network (vi.yj). Vehicle agent’s speed depends on the free flow 

speed of each link on the network. The status of each vehicle agent at each simulation time j is 

defined as vi.sj=1 if busy and vi.sj=0 if free. When a call for taxi is made by a commuter agent, 

centralized dispatching will assign commuters to FTS vehicles based on pre-defined vehicle 

routing algorithm. Each vehicle follows centralized routing policy and based on that it updates its 

path (list of nodes to visit) and its itinerary (passenger pick up, drop locations, pick up time, drop 

of time, etc.). More information on stochastic dynamic loading and FTS simulation is provided in 

Section 4.1.4 and Section 4.4.2. 

 

3.3.2.2. Pseudo code for within day microsimulation model 

 

The following describes the microsimulation model capturing the interaction between and among 

agents.  On each day 𝑑 ∈ 𝐷, the time of day is divided into 𝐽 simulation time steps. Commuters 

are sorted in chronological order based on their desired departure time from their origin. Day 𝑑 

ends when all commuter agents arrive at their destinations (arrived=1). 
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Initialize j=1 

Initialize arrived=0 

While arrived =0 

 For c=1: total number of commuter agents 

  If commuter (c) departs at time step j 

                If commuter (c) chosen mode is auto 

                                                  commuter (c)  experienced travel time = 𝑡𝑎𝑢𝑡𝑜
𝑜𝑑   

                                                  commuter (c)  expected arrival time at destination = j + 𝑡𝑎𝑢𝑡𝑜
𝑜𝑑  

                                                Else if commuter (c) chosen mode is transit 

                                                  commuter (c) experienced travel time = 𝑡𝑎𝑐𝑐𝑒𝑠𝑠𝑤𝑎𝑙𝑘𝑡𝑖𝑚𝑒 + 𝑡𝑤𝑎𝑖𝑡 +

 𝑡𝑎𝑢𝑡𝑜
𝑜𝑑 + 𝑡𝑒𝑔𝑟𝑒𝑠𝑠𝑤𝑎𝑙𝑘𝑡𝑖𝑚𝑒 

                                                  commuter (c) expected arrival time at destination = j + 

𝑡𝑎𝑐𝑐𝑒𝑠𝑠𝑤𝑎𝑙𝑘𝑡𝑖𝑚𝑒 + 𝑡𝑤𝑎𝑖𝑡 +  𝑡𝑎𝑢𝑡𝑜
𝑜𝑑 +  𝑡𝑒𝑔𝑟𝑒𝑠𝑠𝑤𝑎𝑙𝑘𝑡𝑖𝑚𝑒   

                                                       Else if commuter (c) chosen mode is FTS 

                                                                 FTS dispatcher assigns commuter (c) to vehicle (v) based 

on predefined routing policy 

                                                                Vehicle (v) itinerary and path node list are updated 

 

             For v=1: total number of vehicle agents 

                     If vehicle (v) is active check to see if it has arrived at the drop of location of any of 

its onboard passengers or pick up location of its future customer 

                      If at the pickup location of commuter (c) 

                                                     commuter (c) pick up time = j 

                                                      commuter (c) experienced wait time = j – desired departure time 

                                              If at drop of location of commuter (c) 

                                                     commuter (c) arrival time = j 

                                                     commuter (c) experienced in-vehicle travel time = j – pick up time 

                    Advance vehicle (v) forward in the road network, (vi.xj), and (vi.yj) are updated. 

             

If all commuters have arrived at their destinations 

                    arrived=1; 

                    Else  

 j=j+1  

______________________________________________________________________________ 
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3.3.3. Agent-based transportation simulation outputs 

 

Following output information is provided by the developed agent-based simulator in MATLAB: 

 

Commuter agent 

 Mode choice and consumer surplus at equilibrium 

 

Vehicle (driver) agent 

 Profit at equilibrium 

 

Network wide 

 Total consumer surplus 

 FTS fleet size, wait time at equilibrium 
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Chapter 4. 

Agent-Based Day-to-Day Adjustment Process 

for Evaluating One-Sided Flexible 

Transportation Markets 
 

In the previous three chapters we discussed the need for equilibrium modeling for FTS, presented 

challenges associated with it and explored current gap in literature. In this chapter, we propose an 

agent-based day-to-day adjustment process to evaluate impacts of FTS alternative on the behavior 

of travelers and answer the research questions posed in Section 1.3.1. We do this in two steps. 

First, in Section 4.1 we show how the FTS policies are integrated into the model leading to the 

agent-based SUE (adapted from Djavadian & Chow, 2016). Second, we numerically illustrate the 

impacts on traveler choices, as shown in Sections 4.2 & 4.3 .  Lastly, in Sections 4.4 & 4.5 we 

apply the proposed model to the two transportation planning examples (Oakville network & 

Manhattan network) discussed in Sections 3.1 & 3.2 .  

 

4.1. Methodology 

 

We consider a day-to-day process designed to reach an agent-based SUE. We propose using two 

types of agents, commuters (Agent1) and taxi drivers (Agent2), where Agent1 unobservable 

characteristics are simulated via Monte Carlo and Agent2 characteristics are assumed fixed and 

known (in Chapter 5, characteristics of drivers (Agent2) will be also considered). Inclusion of 
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Agent2 (FTS drivers) allows us to embed dynamic vehicle routing operations into the within-day 

dynamics.  

 Agent 1 has predefined origin, destination and hard set desired arrival time at destination. 

Agent 2’s itinerary is defined by Agent 1’s requests. Agent2 serves Agent 1 based on predefined 

routing algorithm. Agent 1’s mission is to arrive at its destination on time and minimize its 

schedule delay, in order to achieve its objective Agent1 has to make two choices: 

1. Choose a mode with maximum utility (The modes modeled in the simulation are: walk, 

bike, drive, fixed route transit and flexible transit.  

2. Choose a departure time that will minimize its schedule delay. 

 

The following additional notation is used: 

𝑆: sample of Monte Carlo synthesized populations; 

Λ: fleet of vehicles from FTS; 

𝑠𝐹𝑇𝑆(𝑉𝑠𝐹𝑇𝑆
, 𝐸𝑠𝐹𝑇𝑆

): subgraph for the FTS network; 

휀𝑛,𝑠: utility of unobservable traits for agent 𝑛 in population 𝑠 ∈ 𝑆; 

𝑞𝑣: path of vehicle 𝑣 ∈ Λ; 

𝜏𝑣: arrival time vector of vehicle 𝑣 ∈ Λ; 

𝐶𝑎: cost on link 𝑎 ∈ 𝐸𝑠𝐹𝑇𝑆
, which may depend on flows 𝑓𝑝. 

 

Individuals’ unobservable traits are simulated for the population, after which a deterministic 

day-to-day adjustment process is executed to reach the agent-based SUE. In the case where 

demand is activity-based (e.g. HAPP (Recker, 1995; Chow and Djavadian, 2015) or MATSim 

(Maciejewski and Nagel, 2013)), schedule choice can also be considered.  The process is shown 

in Figure 4.1. For comparative purpose, we show a conventional RBAP in Figure 4.1 (a) and the 

proposed framework in Figure 4.1 (b).  
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(a) 

 
(b) 

Figure 4.1. Key components of (a) regular RBAP and (b) proposed agent-based model under FTS setting. 
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The stochastic component of the agent-based SUE is simulated via Monte Carlo to obtain a set 𝑆 

of different populations. For each population, a deterministic day-to-day process is run to get to an 

averaged state. The collection of |𝑆| state averages forms a distribution of the agent-based SUE. 

The following Proposition 1 is made.  

Proposition 1. The agent-based day-to-day process in Figure 4.1(b) converges almost surely to 

the agent-based SUE. 

 

Proof. By construction, one needs to show that the day-to-day process in Figure 4.1 indeed 

converges to the true SUE for a known example. This proof relies on taking the basic structure of 

our agent based day-to-day process and applying it to a standard traffic assignment network in 

Figure 4.2 where the SUE is known. Consider a 2-node, 2 link network shown in Figure 4.2 with 

the demand of 40 travelers going from A to B.   

 

Figure 4.2. 2-link example to proof proposition 1 

Let: 

𝑡1 = 6 + 0.2𝑥1, and 𝑡2 = 12 + 0.1𝑥2, 

Where:  

𝑥1 + 𝑥2 = 40. 

Assuming a logit-based choice model with  𝜃 = −0.2 ,  the utility functions for link 1 and link 2 

are: 

𝑈1 =  −0.2 ∗ 𝑡1 +  휀1 , and 𝑈2 = −0.2 ∗ 𝑡2 +  휀2 

 

A B 

Link 1 

Link 2 
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Therefore, the probability of choosing link 1 is: 

𝑝(1) =
1

1+𝑒−0.2(𝑡2−𝑡1), 

 

Using Methods of Successive Averages (MSA), the SUE for the aggregate homogenous 

population is at the fixed point:  

𝑥1 = 24.935, 𝑥2 = 15.065, 𝑡1 = 10.987, 𝑡2 = 13.507. 

Based on the results obtained from SUE, the aggregate homogenous utilities (𝑈) for link 1 and 

link 2 are: 

𝑈1 = −2.197 +  휀1  and 𝑈2 = −2.701 +  + 휀2  

The day-to-day process for disaggregate heterogeneous population is shown to approach the 

same split as aggregate SUE by reproducing its structure here.  

1. Simulate 휀𝑛𝑠𝑘 for 1000 populations of 40 individuals, such that 25 individuals would 

have −2.197 + 휀𝑛𝑠1 > −2.701 + 휀𝑛𝑠2 (which is the criterion for selecting link 1 under 

SUE) and 15 have −2.197 + 휀𝑛𝑠1 < −2.701 + 휀𝑛𝑠2 for all 1000 populations; 

2. For each population, run a deterministic day-to-day adjustment process based on MSA 

for the simulated population as follows:  

a. initiate with free-flow travel times 𝑡1,0 = 6, 𝑡2,0 = 12,  

b. then on day 𝑑 for each individual 𝑛, proportion selecting link 1 is 𝑝𝑛,𝑑(1) =

𝑝𝑛,𝑑−1(1)
(𝑑−1)

𝑑
+

1

𝑑
 if −0.2𝑡1,𝑑 + 휀𝑛𝑠1 > −0.2𝑡2,𝑑 + +휀𝑛𝑠2, else  𝑝𝑛,𝑑(1) =

𝑝𝑛,𝑑−1(1)
(𝑑−1)

𝑑
; 

 

After running this for the 1000 generated populations with MSA stopping tolerance of 0.00001, 

the distribution of flow on link 1, 𝑥1, has a mean of 25.00, and standard deviation of 0.0082.  

∎ 

In the proposed process, there are two sets of agents: commuters (Agent1) and operators (Agent2). 

Inclusion of Agent2 allows us to embed dynamic vehicle routing operations into the within-day 

dynamics. The components of our specific design of this process are described further. 
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4.1.1. Synthesize N “user” agent traits over 𝑺 populations 

 

Each of the 𝑁 members of the population is synthesized for the population sample set 𝑆, resulting 

in 𝑁|𝑆| unique values. Observable traits such as socio-economic characteristics of the travellers 

are obtained from transportation survey data, while unobservable traits are simulated to fit 

observed mode choices (𝑦𝑛𝑘 = 1 if user 𝑛 chose mode 𝑘, 0 otherwise). As an example, the utility 

of a mode on a particular day is shown in Eq. (10). 

 

𝑈𝑘𝑛𝑠𝑑 =   𝛽𝑥,𝑘
𝑇 𝑋𝑘𝑛𝑠𝑑 + 𝛽𝑦,𝑘

𝑇 𝑌𝑘𝑛 + 휀𝑘𝑛𝑠 (10) 

 

where 

𝑈𝑘𝑛𝑠𝑑 is the expected utility of mode 𝑘 for user 𝑛 in population 𝑠 at the start of day 𝑑; 

𝑋𝑘𝑛𝑠𝑑 is the  expected total travel cost vector related to mode 𝑘 that is updated each day 𝑑 for user 

𝑛 of population 𝑠 , it includes wait time, in vehicle travel time, schedule delay, and monetary costs 

such as parking cost and transit fare , mathematical definition is shown by Eq. (10). 

𝑌𝑘𝑛 is the set of day-to-day static attributes, e.g. socio-economic variables; 

𝛽𝑥,𝑘, 𝛽𝑦,𝑘 are the set of parameters corresponding to the attributes; 

휀𝑘𝑛𝑠 is the unobservable utility, modeled as a Gumbel distribution. 

 

All unobservable variables 휀𝑘𝑛𝑠 are randomly drawn to fit the observed choices from sample data. 

In the case of multinomial logit (MNL) mode choice, it is drawn from an inverse standard Gumbel 

distribution (maximum) (𝜇 = 0 and 𝛽 = 1) (Train, 2003). Sampling is repeated until the MNL 

choice matches the observed choice for each individual.  

Algorithm 1: Agent trait synthesis 

while 𝑦𝑛𝑘 = 1 and 𝑈𝑘𝑛𝑠𝑑 < max
l≠k

(𝑈𝑙𝑛𝑠𝑑) 

 for each 𝑘: 

  휀𝑘𝑛𝑠: = −ln (− ln 𝑟),  

 

                        𝑈𝑘𝑛𝑠𝑑 =  𝛽𝑥,𝑘
𝑇 𝑋𝑘𝑛𝑠𝑑 + 𝛽𝑦,𝑘

𝑇 𝑌𝑘𝑛 +  휀𝑘𝑛𝑠 
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where, −ln (− ln 𝑟), is the inverse cumulative distribution function of a standard Gumbel 

distribution, and 𝑟 is a random variate drawn from the uniform distribution on interval (0,1). 

Similar methodology was also introduced by Bierlaire and Sharif Azadeh (2016) where their 

proposed method used for feeding optimization model as opposed to us feeding a deterministic 

day-to-day equilibrium models. 

 

4.1.2. Initialize FTS fleet for a given population 𝒔 ∈ 𝑺 

 

For each simulated population, a deterministic day-to-day process is then conducted. In that 

process, an initial condition for the system needs to be defined. The initial positions of the fleet of 

vehicles need to be assumed, as well as operating hours, information available to the FTS at the 

start of the simulation, and the path costs perceived by the users. The conditions also vary 

depending on the type of FTS, e.g. DRT, flex-route bus, ride-sharing service, vehicle-sharing 

service, taxi, and microtransit.  

 

4.1.3.  Update strategy 𝝓𝒏 

 

Each individual n (agent1)  has a strategy set defined by 𝜙𝑛 : = {𝜙𝑛
1, . . , 𝜙𝑛

𝑑} where the aim is to 

maximize consumer surplus (utility) and minimize schedule delay. This component describes the 

day-to-day adjustment process of the users. Each strategy 𝜙𝑛
𝑑 consists of two interrelated choices: 

1) Choose a mode with maximum utility  

2) Conditional on chosen mode, choose a departure time that will minimize schedule delay. 

 



67 
 

Previous studies have combined mode choice, route choice and departure choice together (Zhou 

et al, (2008) and Small (1982). Those studies assumed homogenous population where everyone 

has access to all modes and the travel time and schedule delay associated with each mode had 

significant effect on the chosen mode. Furthermore departure time was discretized to departure 

intervals as oppose to using continuous departure time. These two assumptions allowed previous 

studies to combine mode choice with departure time choice. However these two assumptions do 

not hold for last mile problem mode choice and specifically for flexible transit. For last mile 

problem it is important to consider heterogeneous population, where not everyone has access to 

all modes and where other factors affect mode choice rather than just travel time. Furthermore to 

model flexible transit such as taxi where Agent1 competes for scarce supply the order of Agent1 

entering the system and placing request is important therefore in FTS setting, the specific arrival 

time into the dynamic network loading is crucial for FIFO considerations under capacity. As such, 

we need to treat departure time as a continuous variable as opposed to discrete time intervals. As 

a result, Agent1 makes a nested choice: mode is chosen and departure time choice is made 

conditional on the mode choice.  

 

4.1.3.1. Mode choice 

 

There are different methods to model an agent’s mode choice, to name a few:  Random Utility 

Maximization (McFadden, 1972) and Random Regret Minimization (Chorus et al., 2008). In the 

proposed process, a multinomial logit model based on Random Utility Maximization is chosen for 

convenience where 𝐶𝑆𝑛𝑠𝑑 is the expected consumer surplus of individual n from population 𝑠 on 

day d as defined by Eq.(11) .  
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𝐶𝑆𝑛𝑠𝑑 =  
1

𝜇
 𝑚𝑎𝑥𝑘(𝑈𝑘𝑛𝑠𝑑  ∀ 𝑘), 𝜇 = 1 (11) 

 

 

 

4.1.3.2.  Departure time choice conditional on mode choice 

 

Once individual n chooses their mode of travel it is possible to determine departure time using 

expected travel time of chosen mode. Agents are assumed to have desired arrival times (Small, 

1982; Hendrickson and Plank, 1984) and their objectives are to minimize late/early schedule 

delay as shown by Eq. (12). Given individual n has already chosen mode k at day d: 

|𝐷𝐷𝑇𝑛𝑠𝑑 + 𝑋𝑘𝑛𝑠𝑑
𝑟𝑧∗ −  𝐷𝐴𝑇𝑛| ≤ ∆𝑛   (12) 

 

where 𝐷𝐷𝑇𝑛𝑠𝑑 is desired departure time of individual 𝑛 of population 𝑠 at day 𝑑 determined from 

Eq. (12).  𝑋𝑘𝑛𝑠𝑑
𝑟𝑧∗  is the perceived travel time of individual 𝑛 of population 𝑠 for mode 𝑘 on day 𝑑 

going from origin 𝑟 to destination 𝑧 and updated each day as shown in Section 4.1.3.3. 𝐷𝐴𝑇𝑛 is 

desired arrival time of individual n and  ∆𝑛  is individual 𝑛′𝑠 tolerance tolerance for being early or 

late, in this study  ∆𝑛  is set to 0. Therefore given ∆𝑛= 0, rearranging Eq.(12) , will result 

in 𝐷𝐷𝑇𝑛𝑠𝑑 = 𝐷𝐴𝑇𝑛 − 𝑋𝑘𝑛𝑠𝑑
𝑟𝑧∗ . It is worth mentioning that 𝐷𝐴𝑇𝑛 is constant and does not change 

from one population 𝑠 to another; it is obtained from survey data. 

4.1.3.3. Perceived travel time update 

 

 𝑋𝑘𝑛𝑑
𝑟𝑠∗  is updated day to day for every traveller n as shown by Eq. (13) which is adapted from 

Bogers et al (2007) (which is not restricted to work for only one specific mode)  is adopted.  

𝑋𝑘𝑛𝑠𝑑
𝑟𝑧∗ = (1 −  𝜃)𝑋𝑘,𝑛,𝑠,𝑑−1

𝑟𝑧∗ +   𝜃𝛿𝑘,𝑛,𝑠,𝑑−1𝐸𝑇𝑇𝑘,𝑛,𝑠,𝑑−1
𝑟𝑧 +  𝜃(1 − 𝛿𝑘,𝑛,𝑠,𝑑−1)�̅�𝑘𝑠𝑑

𝑟𝑧    ∀ 𝑘 ∈ 𝐾 (13) 
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where 𝜃, 0 ≤ 𝜃 ≤ 1, is a parameter controlling the degree of learning attributed to experience on 

the prior day as opposed to learning it from all past experiences. 𝛿𝑘,𝑛,,𝑑  is a dummy variable; if 

individual 𝑛 of population 𝑠used mode 𝑘 on interval 𝑑 then  𝛿𝑘,𝑛,𝑠,𝑑 = 1 ,  else 𝛿𝑘,𝑛,𝑠,𝑑 = 0 . 

𝐸𝑇𝑇𝑘,𝑛,s,𝑑−1
𝑟𝑧   is the total travel time (including  in-vehicle time and  access, wait time and transfer 

times were applicable) experienced by user 𝑛 of population 𝑠 on mode 𝑘 on previous day 𝑑 − 1.  

Since a user does not experience the level of service of every alternative on each day, they 

may learn from the collective expectations from the population.  �̅�𝑘𝑠𝑑
𝑟𝑧   is the collective population 

s perceived attribute for mode 𝑘 on day 𝑑. The collective average perceived attributes �̅�𝑘𝑑
𝑟𝑧  are 

updated each day via MSA, as shown in Eq.(14) . Note that the perception update is based on 

travel times experienced by those who used that mode only, not for all travelers. This is the same 

assumption adopted by Ben-Akiva et al. (1991) that there is some mechanism of information 

sharing between travelers from one day to the next, such as a “Current Media Reports” input.  

 

�̅�𝑘𝑠𝑑
𝑟𝑧 = (1 −

1

𝑑 − 1
)  �̅�𝑘,𝑠,𝑑−1

𝑟𝑧 + (
1

𝑑 − 1
)

∑ 𝐸𝑇𝑇𝑘,𝑛𝑠,,𝑑−1
𝑟𝑧𝑁

𝑗=1

𝑁
   ∀ 𝑘 ∈ 𝐾 (14) 

 

On the first day, the population’s initial choice is based only on �̅�𝑘𝑑.  

Lastly, the generalized cost 𝑋𝑘𝑛𝑑 from Eq. (10)  is updated as shown in Eq.(15) .  

 

𝑋𝑘𝑛𝑠𝑑 =  𝑋𝑘𝑛𝑠𝑑
𝑟𝑧∗ +

𝑃𝐶𝑘𝑛𝑠𝑑
𝑟𝑧∗

𝑉𝑂𝑇
  ∀ 𝑘 ∈ 𝐾 (15) 
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where 𝑃𝐶𝑘𝑛𝑠𝑑
𝑟𝑧∗  is the perceived monetary cost of mode 𝑘 for individual 𝑛 of population 𝑠 on day 𝑑, 

and 𝑉𝑂𝑇 is the value of time. As can be seen, mode choice and departure time choice are connected 

by variable 𝑋𝑘𝑛𝑠𝑑
𝑟𝑧∗ .  

 

 

4.1.4.  Simulate stochastic dynamic loading 

 

This component describes the supply side simulation of the dynamic operational policy of the FTS. 

As an agent-based day-to-day process, a wide variety of operating policies can be simulated: flex-

route, DRT, ride-sharing, vehicle sharing, or taxis. While the operational policy is designed to 

accommodate user demand as a stochastic process (𝜋𝑠𝑖
(𝑡, 𝑊𝑡)), purely deterministic services (e.g. 

reservations the night before) or systems involving information exchange somewhere in between 

can also be modeled. As a result, different degrees of information flow and stochasticity can be 

evaluated in terms of their social impact (see de Borger and Fosgerau, 2012); as well as different 

time window or reservation policies (e.g. Kaspi et al., 2014; Nourinejad and Roorda, 2014); pricing 

policies (e.g. Furuhata et al., 2014; Chow, 2014; Sayarshad and Chow, 2015); or vehicle routing 

and scheduling policies (e.g. Quadrifoglio et al., 2008; Hyytiä et al., 2012; Jung and Jayakrishnan, 

2014). The most significant advantage of this methodology is that the social impact of all these 

policies can be compared on the same platform. 

 Each of the strategies decided by the user agents, 𝜙𝑛, are sorted into chronological order 

and simulated as events with corresponding actions by the FTS fleet’s operational policy 𝜋. The 

outcome of these policies determine locations and times of the fleet of vehicles, resulting in paths 

𝑞𝑣 for each vehicle 𝑣 ∈ Λ as shown in Eq. (16) and corresponding arrival times 𝜏𝑣 in Eq. (17) . 
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𝑞𝑣 = 𝜋(𝜙(𝑡), 𝑊𝑡) (16) 

 

𝜏𝑣 = 𝜋(𝜙(𝑡), 𝑊𝑡) (17) 

 

The 𝑊𝑡′𝑠 are stochastic variables representing the way information is filtered to the operator. They 

convert the choice sets (𝜙(𝑡)) into dynamic information. In turn, the policy 𝜋 converts that 

information into spatial and temporal decisions for the operator’s fleet. The exact filter will vary. 

For example, a system where people make reservations 24 hours in advance will have a different 

conversion than a system that is based on mobile reservations made on the spot. 

 The arrival times 𝜏𝑣 translate to experienced levels of service for the travelers, as shown in 

Eq. (18). 𝜏𝑛𝑑𝑣(𝑠), is the arrival of FTS vehicle v at the destination 𝑧 of onboard passenger n of 

population 𝑠 on day d associated with the desired departure time 𝐷𝐷𝑇𝑛𝑠𝑑 These are then fed back 

to Eq. (13) and Eq. (14) for updating the next day.  

 

𝐸𝑇𝑇𝐹𝑇𝑆,𝑛,𝑠,𝑑
𝑟𝑧 = 𝜏𝑛𝑑𝑣(𝑠) − 𝐷𝐷𝑇𝑛𝑠𝑑 (18) 

 

4.1.5. Invariance condition for each population 𝒔 ∈ 𝑺 

 

As mentioned earlier we are simulating multiple populations, and each population is running a 

deterministic day-to-day process. The individual population 𝑠 ∈ 𝑆 day to day process may lead to 

a stable state, or it may lead to oscillation or chaotic patterns. For the SUE, we choose an averaging 

condition to know when to stop the process (at which point the individual population might not be 

at a stable state), but when we aggregate up over multiple populations we end up with an invariant 
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distribution. That is our stable state from the view of a stochastic process. The following criterion 

in Eq. (19) is used to detect when an invariant (stable or oscillatory) condition is satisfactorily 

reached. 

 

|𝑇𝐶𝑆̅̅ ̅̅ ̅
𝑠,𝑑−𝑖 −  𝑇𝐶𝑆̅̅ ̅̅ ̅

𝑠,𝑑−𝑖−1|

|𝑇𝐶𝑆̅̅ ̅̅ ̅
𝑠,𝑑−𝑖−1|

≤  φ, for 0 ≤ 𝑖 ≤ 2 (19) 

 

where 𝑇𝐶𝑆̅̅ ̅̅ ̅
𝑠𝑑 is the average total consumer surplus of the population 𝑠 set equal to 𝑇𝐶𝑆̅̅ ̅̅ ̅

𝑠𝑑 =
∑ 𝑇𝐶𝑆𝑗,𝑠

𝑑
𝑗=1

𝑑
 and 𝑇𝐶𝑆𝑗𝑠 is the sum of the consumer surplus of all agents in population 𝑠 on day 𝑗 ≤ 𝑑, 

i.e. 𝑇𝐶𝑆𝑗𝑠 = ∑ 𝐶𝑆𝑛,𝑠,𝑗
𝑁
𝑛=1 . φ is a tolerance.  

 

After running the day-to-day process for the 𝑆 populations until invariance is reached for each, 

there would be an invariant sample distribution for the consumer surplus. This distribution satisfies 

the agent-based SUE from Definition 3 by Nagel and Flötteröd (2012) as proven earlier.  

 

4.2. Computational Experiment 1: Illustration with 2-Link Network 

 

We use the simple 2-link network in Figure 4.3 to conduct the following three tests. The stability 

issue in this type of problem is hard to investigate, as such in this study we are not trying to prove 

that the stability exist , rather using the first test the aim is to use only a single population to 

illustrate how even for a simple network, a deterministic day-to-day model may lead to varied 

state. The second test shows that the proposed model with a set 𝑆 of population samples of these 

states can nonetheless generate an invariant distribution for analysis despite those varied 

trajectories obtained from test 1. The reason for using a simple network is for replicability and 

clarity in illustration its points.  A similar two link network is also used by Horowitz (1984) to 
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show the stability of stochastic user equilibrium. A larger test problems are shown in Sections 4.4 

& 4.5 .  

 

Figure 4.3. 2-link example to illustrate proposed model 

 

Link 1 is a bidirectional link belonging to subgraph 𝑠𝑡𝑎𝑥𝑖({1,2}, 1) served by taxi. Taxi initial 

position (depot) is located at node 2. There is only one taxi available. Link 2 is a directional link 

going from node 1 to node 2 and is only accessible to private cars, 𝑠𝑎𝑢𝑡𝑜({1,2}, 2). Walking mode 

is assumed to be infinitely large and left out for convenience. The experienced travel time of person 

n traveling on link i on day d, going from origin 1 to destination 2,𝐸𝑇𝑇𝑖,𝑛,d
12, can be expressed as 

follows: 

𝐸𝑇𝑇1,𝑛,d
12 =  𝑡𝑖𝑛𝑣𝑒ℎ−𝑡𝑖𝑚𝑒𝑡𝑎𝑥𝑖,𝑛,𝑑 +  𝑡𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒,𝑛,𝑠,𝑑 +  𝑡𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ 𝑡𝑖𝑚𝑒  

 𝐸𝑇𝑇2,𝑛,s,d
12 =  𝑡𝑖𝑛𝑣𝑒ℎ−𝑡𝑖𝑚𝑒𝑎𝑢𝑡𝑜 ,𝑛,𝑑 +  𝛼𝑄2,𝑠,𝑑  

where 𝑡𝑖𝑛𝑣𝑒ℎ−𝑡𝑖𝑚𝑒,𝑛,𝑑 is the free flow in-vehicle travel time (and assumed to be the same value for 

auto and taxi in the example). Travel time on link 2 depends on congestion level, where 𝛼 is volume 

delay factor and 𝑄2 is flow on link 2 for population 𝑠 on day 𝑑 . For simplicity, the congestion 

effect is assumed to be independent of users’ departure time choices. Table 4.1 presents the free 

flow travel times and parking costs for the scenarios. The taxi fare is set to 0 and parking cost on 

1 2 

Link 1 

Link 2 
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link 2 relative to the taxi fare, 𝑃2,  changes from one scenario to another as  shown in Table 4.1, 

with value of time set to $0.33/min.  

 

Table 4.1: Network attributes 

 𝒕𝒊𝒏𝒗𝒆𝒉−𝒕𝒊𝒎𝒆 𝒕𝒅𝒊𝒔𝒑𝒂𝒕𝒄𝒉𝒕𝒊𝒎𝒆 𝒕𝒘𝒂𝒊𝒕𝒕𝒊𝒎𝒆 𝑷𝟐 𝜶 

Link1_BaseCase 5 min 2 min 5 min $0.00 - 
Link2_BaseCase 5 min - - $1.65 1 min/person 
Link1_Scenario1 5 min 0 min 5 min $0.00 - 
Link2_Scenario1 5 min - - $3.63 4 min/person 

 

 

As shown in Table 4.1 two scenarios are considered. The “Base Case” scenario is assumed to be 

used to calibrate the parameters of the travelers. The demand and demand attributes are assumed 

for the base case. The demand for this network going from node 1 to node 2 is set to 5, where the 

base case equilibrium demand for taxi is assumed to be 1 and auto demand is 4. The desired arrival 

time for all agents is 3600 s. The utility functions are assumed to be as follows. 

𝑈𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑 =  − 0.2𝑋𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑 +  휀𝑡𝑎𝑥𝑖,𝑛,𝑠  

𝑈𝑎𝑢𝑡𝑜, 𝑛,𝑠,𝑑 =  − 0.2𝑋𝑎𝑢𝑡𝑜,𝑛,𝑠,𝑑 +  휀𝑎𝑢𝑡𝑜,𝑛,𝑠 

 

Based on observed choices in the base case scenario, the utility from unobservable traits (휀𝑖𝑛𝑠) for 

each agent 𝑛 for a population 𝑠 with respect to each alternative 𝑖 is simulated with Algorithm 1. 

Up to |𝑆| = 30 samples are drawn, with the first sample shown in for illustration. For this example 

the operating policy of the taxi is set to be a greedy first-come first-serve policy. 
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Table 4.2: Simulated traits of the first sampled population 

Person 𝒏 𝜺𝒂𝒖𝒕𝒐,𝒏,𝟏 𝜺𝒕𝒂𝒙𝒊,𝒏,𝟏 

1 -1.09 0.46 
2 -0.03 -1.06 
3 1.01 -0.30 
4 0.24 -1.26 
5 1.74 -0.57 

 

 

Forecasted conditions in Sections 4.2.1-4.2.3 are evaluated under “Scenario 1” using the proposed 

model. 

 

4.2.1.  Local stability from initial conditions under Scenario 1 for one population 

 

To test whether the proposed agent-based day-to-day process converges (and how) to the same 

state under different initial conditions in Scenario 1, three different starting points are considered 

as shown in Table 4.3.  The initial travel disutility assumed by each agent in the population for 

each alternative starting point using the simulated traits is also shown in Table 4.3. Parameter 𝜃 is 

set to 0.2 (20%) as suggested by Bogers et al. (2007) based on empirical estimation of 𝜃. Results 

are presented in Figure 4.4. 

 
Table 4.3: Initial travel disutilities for taxi and auto (min) 

Sample Initial taxi travel disutility (min) Initial auto travel disutility (min) 

1 5 20 

2 12 10 

3 10 16 
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(a) 

 
(b) 

Figure 4.4. (a) Total network consumer surplus and (b) taxi demand at equilibrium. 
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As can be seen from Figure 4.4(a), after several iterations (days) the total network consumer 

surplus for each initial condition converges to a fixed point which is similar among all three starting 

conditions, suggesting that this point is locally stable. Furthermore, Figure 4.4(b) shows that after 

several days the demand for taxi also converges to a fixed point. At this state, three people use 

link1 (taxi) and two people use link2 (auto).  

 

4.2.2. Effect of Learning Rate 𝛉 on speed and smoothness of convergence in 

Scenario 1 

 

In order to illustrate the effect of learning rate on speed and smoothness of convergence, different 

learning rates ranging from 0 to 1 are also considered for the single population sample.  Results 

are presented in Figure 4.5 which shows that convergence is faster and more unstable with higher 

values of learning rate and slower, smoother and more stable with lower values of learning rate. 

The results obtained are in line with the findings of Kim et al. (2009). 

 

 

Figure 4.5. Effect of θ on single population convergence to invariance. 
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4.2.3.  Consumer surplus sample distribution as agent-based SUE 

 

The two tests presented in Sections 4.2.1 & 4.2.2 were conducted using one generated population 

, in this section the distribution for the 𝑆 populations is now examined. For this test 30 different 

populations are generated.  When the 30 population samples are each dynamically loaded onto the 

network via the day-to-day adjustment over 200 days (CPU time: 36s/iteration) under Scenario 1 

setting, a different sample distribution representing the agent-based SUE for Scenario 1 is 

obtained. If the resulting sample distribution of the consumer surplus exhibits central tendencies, 

then it confirms that there can exist an invariant distribution corresponding to stochastic route 

preferences of each individual, which meets the agent-based SUE requirement in Definition 3. 

Figure 4.6 presents results obtained for multiple populations under scenario 1.  

 

 
Figure 4.6. Total consumer surplus for multiple populations at equilibrium_scenario1 
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As can be seen from Figure 4.6 even for such a simple example the day-to-day trajectory is smooth 

for some populations (e.g. # 17 and #16), but periodic (e.g. 4 and #2) or chaotic for others (e.g. # 

19). This is in line with the definition of disequilibrium that states that the system may converge 

to a fixed point, or oscillate about a point or have a chaotic behaviour. Different convergence 

examples are highlighted in Figure 4.7.  

Looking at Figure 4.7 it can be seen that the speed and smoothness of convergence differ 

from one population to another due to different sensitivities to changes in the network (travel time, 

cost). For example, population 16 is less sensitive to changes in travel time, leading to smooth and 

fast convergence to a fixed point where as population 19 is extremely sensitive to the changes in 

the network (travel time) and as a result has slow and periodic convergence.  

 

 

Figure 4.7. Convergence of Scenario 1 total system travel time for populations #2, #4, #16, and #19. 
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Figure 4.8 presents distributions of the consumer surplus across the 30 sample populations under 

scenario 1. The consumer surplus for scenario 1 is shown alongside that of the base case. 

 

 

 

 

 

 

 

 

 

 

 Figure 4.8. Comparison of consumer surplus distribution from |S|=30 simulated populations. 

 

Figure 4.8 confirms that, despite the presence of populations leading to oscillatory or chaotic day-

to-day patterns shown in Figure 4.6, there exists an invariant sample distribution of consumer 

surplus with central tendencies as an agent-based SUE. The conclusion obtained from these results 

allows us to apply the proposed model to numerically evaluate effects of different operational 

designs. For example, imposing the changes shown in Table 4.1 led to a decrease in consumer 

surplus on the average of 10 units from the Base Case to Scenario 1.  
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4.3. Computational Experiment 2: Illustration of Embedding a Dynamic 

DARP 

 

In the third experiment, we illustrate the sensitivity of the proposed model to different dynamic 

operating policies using the simple network in Figure 4.9. The aim of this experiment is to test the 

effect of fare price of FTS operating policy on equilibrium demand and their impacted welfare for 

multiple sampled populations. In this example, an event based dispatching algorithm based on 

Hyytiä et al. (2012) is implemented for the dynamic dial a ride problem.  

As shown in Figure 4.9, there are 22 nodes in the sample network representing many-to-one 

last mile service, where nodes (1) – (20) are pickup locations, node (21) is a subway station and 

node (22) is the depot.  
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Figure 4.9. Sample network to illustrate proposed model. 

 

 

For the purpose of this study, morning rush hours is considered. The number of commuters during 

the rush hours period is set to 20. The 20 commuters can either access the subway station by car 

or by taxi. All 20 commuters are assumed to want to take the 8:00am train at the subway station, 

so they adjust their mode choice and departure time choice to maximize their utility and minimize 

their schedule delay. The parameters are generally the same as in the previous section unless 

specified otherwise below. The experienced travel time, and experienced travel cost of person n 

traveling by mode k on day d, going from origin r to destination z (subway) can be expressed as 

follows: 
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 𝐸𝑇𝑇𝐹𝑇𝑆,𝑛,s,d
𝑟𝑧 =  𝑡𝑖𝑛𝑣𝑒ℎ−𝑡𝑖𝑚𝑒𝐹𝑇𝑆,𝑛,𝑑 +  𝑡𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒,𝑛,𝑠,𝑑  

 𝐸𝐶𝑇𝐹𝑇𝑆,𝑛,s,d
𝑟𝑧 = 𝜎 + 𝜓(

𝐷𝑛,𝑑
𝑟𝑧

130𝑚
− 1) 

 𝐸𝑇𝑇𝑐𝑎𝑟,𝑛,s,d
𝑟𝑧 =  𝑡𝑖𝑛𝑣𝑒ℎ−𝑡𝑖𝑚𝑒𝑐𝑎𝑟,𝑛,𝑑 +  𝛼𝑄𝑠,𝑑  

 𝐸𝐶𝑇𝑐𝑎𝑟,𝑛,s,d
𝑟𝑧 = 0 (parking and fuel cost are assumed negligible) 

 

where 𝜎 is the base fare price ($) for an initial 130m, and 𝜓 is the fare ($) for each additional 130m. 

Taxi fare is adapted from taxi fare in GTA and varied for different scenarios as shown in Table 

4.4.  𝐷𝑟𝑧 is the traveled distance (m) from customer’s origin to destination. 𝑄𝑠,𝑑 is the total number 

of individuals in population  𝑠 that access subway station by car on day 𝑑.  It should be noted that 

in this example since the FTS under consideration provides only single rides (no ride sharing), the 

only variable that is population dependent is 𝑡𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒,𝑛,𝑠,𝑑. In the case of FTS with ride sharing 

the in-vehicle travel time of FTS and distance traveled 𝐷𝑟𝑧 will also become population dependent.  

 

Table 4.4: Scenarios 

Scenarios Base Price ($) Price ($)/additional 

130 m 

Volume delay 𝜶 

Base_Case Scenario 4.5 0.25 5 

Scenario_1 4.5 0.01 1 

 

 

 

The utility functions are assumed to be as follows.  

 

𝑈𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑 =  − 0.05𝑋𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑
∗𝑟𝑧 − 0.2𝑃𝐶𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑

∗𝑟𝑧 +  휀𝑡𝑎𝑥𝑖,𝑛,𝑠 

𝑈𝑐𝑎𝑟, 𝑛,𝑠,𝑑 =  − 0.24 − 0.05𝑋𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑
∗𝑟𝑧 +  휀𝑐𝑎𝑟,𝑛,𝑠 

 

As shown in Eq. (15) , 𝑋𝑘,𝑛,𝑠,𝑑 captures the effect of both the travel time cost and monetary cost 

of travel, in this example however the travel time cost is separated from monetary cost of travel.  

The demand and demand attributes are obtained from a hypothetical travel survey (base case). 

The “Base Case” scenario is used to calibrate the parameters of the travelers. Table A1 and Table 
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A2 in the Appendix capture the made up observed itineraries of each traveler and the mode 

attributes, respectively. Based on the observed choices from “Base Case” scenario, unobservable 

trait (휀𝑖𝑛) for each agent n and mode k is simulated using Algorithm 1.  For the purpose of this 

study, up to 100 sample populations are synthesized. Each of the |𝑆| = 100 population samples 

are run up to 500 days (CPU time: 36s/iteration) in Scenario 1 setting to evaluate the variation in 

their convergence properties and central tendencies of the consumer surplus sample distribution 

compared to the Base Case. Figure 4.10 presents results obtained for multiple populations under 

scenario 1.  

 

 

Figure 4.10. Consumer surplus distribution at simulated equilibrium for scenario 1 and in the base case scenario. 

 

Looking at Figure 4.10 it can be seen that decreasing the fare price and decreasing volume 

delay parameter, which reflect the operating policy, leads to a measurable increase in total 

consumer surplus.  
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4.4. Case Study: Oakville Last Mile Problem One-Sided FTS Market 
 

In Chapter 3 we introduced two transportation planning case studies (Oakville & Manhattan) 

involving FTS for which public agencies would require a one-size-fits all transport simulation tool 

to evaluate impact of different design of FTS on demand and their impacted welfare. In this section 

the proposed model is applied to a taxi system in Oakville, Ontario, as a potential feeder service 

solution to the last mile problem connecting residents from home to the terminal rail station. The 

travelers’ data and network used for tests scenarios are obtained as explained in Section 3.2.3. The 

FTS operating policy used for Oakville case study is provided in Section 4.4.2 . Test results are 

presented in Sections 4.4.4.1 and 4.4.4.2.  

 

4.4.1. Oakville case study 1: objectives 

 

As discussed earlier in Section 3.1.2, the inter-regional transit system in Oakville, Ontario (as 

showing in Figure 3.1 ) is facing the problem of having all its parking lots reaching capacity. In 

addition the local transit lines that serve Oakville Go station do not cover majority of residential 

areas (as shown in Figure 3.2), one way of tackling this problem is then to encourage public to 

switch from auto to flexible transit by improving the accessibility to Oakville Go Station by 

improving the level of service of flexible transit available (as discussed in Section 3.1.2). To 

implement any of these alternatives it is needed to compare their performances. The aim of this 

section is to answer the following questions posed in Section 3.1.2 .  

1) Effects of fleet size on stable demand for flexible transit and consume surplus 

2) Effect of alternative routing policy on performance of FTS 
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3) Effect of changes in LOS of other modes on performance of FTS 

 

4.4.2. FTS operating policy simulation 

 

For this case study a greedy first come first serve FTS operating policy is used. The FTS operation 

policy is defined by time-of-day dynamic updating of commuter requests.  The following describes 

the policy simulated for the model. On each day 𝑑 ∈ 𝐷, the time of day is divided into 𝐽 simulation 

time steps.  

Pseudo code for flexible transit operating policy 

For j=1: J 

If commuter (n) requests a taxi 

For i= 1: total number of vehicles 

     If vehicle (i) is free 

Assign vehicle (i) to customer (n) 

Create vehicle (i) itinerary based on itinerary of commuter (n).  

Create vehicle (i) Path (list of nodes to visit) 

Update vehicle (i) status to busy                   

If no vehicle is available to be assigned to customer (n) 

                            Check to see which vehicle (i) will become available in the upcoming time steps 

            Add commuter (n) to the list of passengers for vehicle (i) 

                            Update vehicle (i) itinerary 

                            Update vehicle (i) Path 

       For i =1: total number of active vehicles 

                 If all the passengers for vehicle (i) have been dropped off  

                      Change vehicle (i) status to free  
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Table 4.5 presents an example of vehicle agent itinerary from Oakville case study. 

 

Table 4.5: Sample vehicle agent (i) itinerary 

n_ID n_O n_D n_DD n_AP n_AD 

1 4038 4014 1426 1809 2155 
366 4036 4014 2075 2470 2749 
708 4037 4014 3014 3530 4024 

1525 4011 4014 3704 4349 4681 
1697 4023 4014 4217 5031 5382 
1719 4011 4014 4361 5707 6039 
1999 4016 4014 6112 6292 6496 
2000 4040 4014 7392 7661 7883 

 

 

where: 

n_ID  :ID of customer agents (n) that are served by vehicle agent (i) 

n_O   : pick up location of agent n 

n_D   : drop off location of agent n 

n_DD: desired departure time of agent n (when call for taxi is placed) 

n_AP: actual pickup time of agent n 

n_AD: actual drop- off time of agent n 

 

An example of vehicle agent path is as follows (corresponding to vehicle agent itinerary presented 

in Table 4.5. The start location of vehicle (i) is at depot located at node (4114). 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑖). 𝑃𝑎𝑡ℎ = [4014,

4038, 4014, 4036, 4014, 4037, 4014, 4011, 4014, 4023, 4014, 4011, 4014, 4016,
4014, 4040, 4014]  

 

In this study two routing policies are considered.  The routing policy explained above is called 

“Routing (1)” which is based on the assumption that idle vehicles stay idle at locations other than 

the depot when their route is finished and when they are waiting for the next call to arrive. With 
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our proposed model, we can evaluate the policy of sending vehicles back to the depot when they 

are idle, which we will call “Routing (2)”.  To summarize the two routing policies are as follows: 

 Routing (1): vehicles can wait idle at locations other than the depot when their route 

is finished waiting for the next customer call. 

 Routing (2): vehicles have to relocate to depot after finishing their route and wait at 

the deport for the next customer call. 

 

 

4.4.3. Oakville case study 1:  MNL estimation + desired arrival time estimation 

 

As mentioned in Section 3.1 for the purpose of this case study only home-to-work (H-W) trips are 

considered, along with five access modes: bus, automobile, walk, fixed route, transit and DRT. It 

is assumed that only 10 taxi vehicles (as discussed in Section 3.1.3.4) are available in the base 

scenario, although other fleet sizes can also have been considered.  Commuters, vehicles and 

network characteristics are obtained as explained in Section 3.1.3. 

In addition to commuters’ attributes we also require mode attributes, which we obtain by 

simulating the base case scenario using fleet size of 10 and the FTS policy described in Section 

4.4.2. Table 4. presents sample commuter specific mode attributes obtained from simulation under 

“Base Case Scenario”. For the purpose of this case study it is assumed that the flexible transit 

service provided is free therefore taxi fare price is set to 0. 
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Table 4.6: "Base Case Scenario" Oakville commuters' specific Mode attributes 

Person 

n 

ETT_Auto 

(min) 

ETT_Walk 

(min) 

ETT_Bike 

(min) 

ETT_Transit 

(min) 

ETT_Taxi 

(min) 

1 3.52 46.91 15.64 8.95 13.43 

377 1.76 11.04 3.68 6.29 11.68 

474 6.45 59.91 19.97 13.25 16.37 

883 4.85 45.05 15.02 17.47 10.95 

1392 5.40 61.83 20.61 11.93 15.32 

 

 

It should be noted that experienced total travel time of taxi (ETT_Taxi) includes both in-vehicle 

travel time and wait time. The in-vehicle travel time is the free flow travel time from origin to 

destination and is the same as experienced total auto travel time. The wait time is obtained from 

the simulation using fleet size of 10. For example the total experienced taxi travel time for person 

(883) is made up of 4.85min (in-vehicle time) and 6.10 min (wait time).  

Using BIOGEME (Bierlaire, 2003) MNL parameters are estimated using commuters’ socio-

economic and mode specific attributes obtained from TTS as explained in Chapter 3. Several 

models were tested; the best estimated consumer surplus (utility) function (based on t-test and chi-

square test) for each mode is presented below: 

 

𝑈𝑎𝑢𝑡𝑜,𝑛,𝑠,𝑑 = 0.481 − 1.65 ∗
# 𝑜𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑙𝑖𝑐𝑒𝑛𝑐𝑒 ℎ𝑜𝑙𝑑𝑒𝑟𝑠 𝑖𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑛

# 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑛
+  휀𝑎𝑢𝑡𝑜,𝑛,𝑠                                             

𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛,𝑠,𝑑 =  −0.0749 ∗ 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛,𝑑
𝑟𝑠∗ − 1.87 ∗ 𝑑𝑟𝑖𝑣𝑒𝑟 𝑙𝑖𝑐𝑒𝑛𝑐𝑒𝑛  +  휀𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛,𝑠                                      

𝑈𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑 =  −0.384 ∗ 𝜏𝑡𝑎𝑥𝑖,𝑛,𝑑
𝑟𝑠∗ +  휀𝑡𝑎𝑥𝑖,𝑛,𝑠                                                                                               

𝑈𝑤𝑎𝑙𝑘,𝑛,𝑠,𝑑 =  1.11 − 0.133 ∗ 𝜏𝑤𝑎𝑙𝑘,𝑛,𝑑
𝑟𝑠∗ +  휀𝑤𝑎𝑙𝑘,𝑛,𝑠                                                                                 

𝑈𝑏𝑖𝑘𝑒,𝑛,𝑠,𝑑 =  −0.402 ∗ 𝜏𝑏𝑖𝑘𝑒,𝑛,𝑑
𝑟𝑠∗ +  휀𝑏𝑖𝑘𝑒,𝑛,𝑠                                                                                           

 

It is worth mentioning that in estimating the logit parameters, several models have been 

tested using other socio-economic characteristics of the commuters such as age, gender, income, 

employment, etc. The model presented above is the best model obtained. The socio-economic 

characteristics presented earlier in Table 3.1 is based on the above presented best model.  
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Individual commuter’s origin, destination and desired departure time from origin is 

obtained from TTS 2011 survey as explained in Section 3.1.3.1 . However as shown in Eq. (12) 

the aim is to minimize schedule delay and as such desired departure time varies from one day to 

another where as desired arrival time at destination (Oakville Go Transit Station) is kept constant 

(future studies should look into flex work times), therefore we also need to obtain desired arrival 

time at destination for each individual commuter. One thing that should be noted the desired arrival 

time at destination for this study is actually the desired arrival at the Go Station for taking 

scheduled train not arrival at final destination (work). As mentioned in Section 3.1.3.1 it is 

assumed that system under “Base Case Scenario” is at equilibrium, therefore knowing individual’s 

departure time from destination and access mode used (from TTS 2011) and knowing the travel 

time of the access mode used from origin to Go station (using simulation ) we can obtain desired 

arrival time at destination (Go Station). Sample calculation is given bellow for obtaining the 

desired arrival time of commuter 883 at Oakville Go Transit Station using data from Table 3.1 

and Table 4. Under “Base Case Scenario”, 𝑑 = 0: 

𝐷𝐷𝑇883,0 = 7: 00 𝑎𝑚 

𝑋𝑡𝑎𝑥𝑖,883,0
4040−4014∗ = 10.95 𝑚𝑖𝑛 

∆883= 0 

Re-arranging Eq. (12): 

𝐷𝐴𝑇883 =  𝐷𝐷𝑇883,0 + 𝑋𝑡𝑎𝑥𝑖,883,0
4040−4014∗ = 7: 10: 57𝑎𝑚 

 

For this case study 𝜃 for all the commuters is set to 0.2.   
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4.4.4. Oakville test scenarios 

 

In order to answer the objective questions posed in Section 4.4.1, three scenarios are considered, 

using one simulated preference sample to illustrate the sensitivity of the welfare effects to those 

scenarios. As the scope of this study is a new methodology, we focus on illustrating the mechanics 

behind the sensitivities of one sample.  A full MC simulation to obtain the sample distribution of 

an agent-based SUE analyzing a more diverse set of operating policies will be conducted in a 

future study. Table 4.7 provides the summary of scenarios tested. The base case scenario is used 

as a starting point for each fleet size, where mode choice and departure choice are obtained from 

TTS data as discussed in Section 3.1.3 .  

 

Table 4.7: Oakville Case Study test scenarios summary 

Scenario Fleet size Routing Fixed transit frequency 

Base case 10 Routing (1) 6 buses/hr 

Scenario 1 10 – 40 Routing (1) 6 buses/hr 

Scenario 2 15 Routing (2) 6 buses/hr 

Scenario 3 15 Routing (1) 15 buses/hr 

 

 

4.4.4.1. Scenario 1: Effect of fleet size on demand for flexible transit and consumer surplus 

 

In order to investigate the effect of fleet size on demand for FTS and consumer surplus, fleet size 

is increased from 10 (base case) to 40 in increments of 5, with each of fleet size samples running 

up to 35 days (iterations) (CPU time: 1000s/iteration). One thing that is worth mentioning is that 

the assumption of the 10 taxi vehicles for the base case is arbitrary and that while we are using real 

data, as mentioned previously our analysis here is just meant to be exploratory and illustrative of 
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the trade-offs under a real data setting.  The simulation results are presented in Figure 4.11. As 

can be seen from Figure 4.11(b) increasing the fleet size increases the demand for flexible transit 

which is an obvious conclusion because having additional vehicles means lower wait times/travel 

disutility which in turn attracts more customers. However, Figure 12(b) also shows that there 

exists an upper bound on demand, after which increasing the fleet size will provide the same 

disutility and result in the same demand level. This is due to having a finite population with demand 

defined by a preset number of attributes of which wait time is only one. The results suggest that it 

is possible to improve flexible transit level of service and increase social welfare (Figure 4.11 (a)) 

of everyone using Oakville Go Station by increasing flexible transit fleet size up to a certain point.  

 

 

 

(a)                                                                            (b) 
Figure 4.11. Percent change in (a) total consumer surplus and (b) taxi demand. 
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4.4.4.2.  Scenario 2 & 3: Effect of alternative routing policy and other mode operations on 

FTS 

 

To test the effect of alternative routing policy and other mode operation on FTS we consider two 

alternative scenarios. In Scenario 2, the routing policy is modified to reflect the capability of the 

proposed model in simulating the welfare effects of changes in operating policy. With scenario 3 

we try to illustrate capability of simulating the welfare effects of operating designs in other systems 

like the fixed route transit system for accessing the terminal station.  Table 4. presents the results 

obtained from Scenarios 2 & 3, along with the results from Scenario 1. Looking at Table 4. it can 

be seen that obtained results clearly demonstrate the ability of the proposed agent-based day-to-

day process in comparing the welfare effects from changes in system design and operating policy 

in the same simulation environment. 

 

 
Table 4.8: Comparison of consumer surplus and taxi demand 

Scenario Consumer surplus (% change) Taxi demand 

Base -1484.34 17 

Scenario 1: fleet 20 -1405.57 (+5.31%) 80 

Scenario 1: fleet 25 -1404.37 (+5.39%) 83 

Scenario 1: fleet 30 -1403.43 (+5.45%) 85 

Scenario 1: fleet 35 -1402.84 (+5.49%) 86 

Scenario 1: fleet 40 -1402.81 (+5.49%) 86 

Scenario 2 -1411.10 (+4.93%) 71 

Scenario 3 -1339.26 (+9.77%) 59 
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4.5. Case Study: Manhattan Shared-ride 

 

In this section the proposed model is applied to a taxi service in Manhattan, New York 

(transportation planning example 2 from Section 3.2) to evaluate the effect of ride sharing on the 

equilibrium demand of FTS and their impacted welfare. For the purpose of this case study a 

dispatching algorithm based on Hyytiä et al. (2012) as described in Section 2.5, is implemented 

for the dynamic dial a ride problem. 

 

4.5.1. Binary logit estimation + arrival time at destination estimation 

 

As mentioned in Section 3.2  the scope of this study is on the residents of Manhattan who commute 

to work during morning peak period and have both their origin and destination located in 

Manhattan. The travelers’ data and network used for tests scenarios are obtained as explained in 

Section 3.2.3. It is assumed that only 10 taxi vehicles (as discussed in Section 3.2.3.4) are available 

in the base case scenario, although other fleet sizes can also have been considered.  Similar to 

Oakville case study, in addition to commuters’ attributes we also require mode attributes, which 

we obtain by simulating the base case scenario. Binary logit parameters are estimated using 

commuters’ socio-economic and mode specific attributes. 
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 The estimated consumer surplus (utility) function for each mode is presented below: 

 

𝑈𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑚𝑜𝑑𝑒,𝑛,𝑠,𝑑 = 0                                             

𝑈𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑 =  −2.08 − 0.0520 ∗ 𝑋𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑 +  휀𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛,𝑠                                      

 

 

For each individual 𝑋𝑡𝑎𝑥𝑖,𝑛,𝑠,𝑑  is calculated using Eq. (15). The desired arrival time for each 

individual is determined using the method explained in Section 4.4.3 .  

 

4.5.2. Manhattan test scenarios 

 

In order to answer the objective questions posed in Section 3.2.2 one alternative scenario is 

considered. For the purpose of this study, up to 30 sample populations are synthesized. Each of 

the |𝑆| = 30 population samples are run up to 50 days (CPU time: 900s/iteration). It is worth 

mentioning that since this is a sensitivity analysis study using sample size of 30 populations is 

reasonable, however, a full MC simulation to obtain the sample distribution of an agent-based SUE 

analyzing a more diverse set of operating policies will be conducted in a future study. Table 4.9 

provides the summary of the scenario tested.  

 

Table 4.9: Manhattan Case Study test scenario summary 

Scenario Fleet size Base Price ($) Price ($)/0.2 mile Ride sharing 

Base case 10 2.5 0.50 No 

Scenario 1 10 5 0 Yes 
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4.5.2.1. Scenario 1: Effect of ride sharing on FTS demand and their impacted welfare 

 

The “Base Case Scenario” obtained from the NY survey data is based on the assumption of single-

ride taxi service, however it has been shown in the studies that ride-sharing has been gaining 

interest in the recent years not only as a mean to reduce congestion but also to reduce monetary 

travel costs for the travelers.  The aim of this section is to show the capability of the proposed 

model in comparing different designs of FTS namely: ride sharing and single ride FTS, in terms 

of equilibrium demand and their impacted welfare. To achieve the objective, “Base Case” Scenario 

is compared to Scenario 1 for which as shown in Table 4.9 ride sharing is allowed.  In addition 

under Scenario 1 the taxi fare price is fixed whereas under the “Base Case” Scenario taxi fare price 

consists of initial fixed price and variable price based on the distance traveled. The results obtained 

for multiple populations are shown in Figure 4.12. As can be seen from Figure 4.12 providing 

shared-ride and fixed price as opposed to single ride and variable price, which reflect the operating 

policy and service design, results to a measurable increase in total consumer surplus.  

 

 

Figure 4.12. Manhattan case study: Consumer surplus distribution at simulated equilibrium for scenario 1 and in the 

base case scenario. 
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4.6. Discussion 

 

In this research we proposed an agent-based-day to day process that is embedded with dynamic 

routing and scheduling policies like a dynamic vehicle routing policy. The stable state properties 

of this process is evaluated as an agent-based stochastic user equilibrium adopted from Nagel and 

Flötteröd (2012). 

 Four sets of experiments are conducted: (1) illustration with a simple 2-link network, (2) 

evaluation of the dynamic dial-a-ride problem from Hyytiä et al. (2012), (3) illustration using real 

data from Oakville, and (4) illustration using real data from Manhattan, New York. The 2-link 

example demonstrates that a fixed point can exist, although even for such a simple case the process 

can lead to perpetual oscillations depending on simulated population. The dynamic DARP 

evaluation successfully demonstrates that an operating policy can be integrated with the day-to-

day adjustment process. Sensitivity tests from the Oakville and Manhattan experiment illustrate 

the effectiveness of the proposed process in evaluating ridership and a single sampled consumer 

surplus with respect to changes in system operating parameters and system designs like fleet size 

, routing policy, or single-ride vs. ride-sharing. 

The contribution of this study is an evaluation model that allows public agencies to evaluate 

equilibrium demand and their impacted welfare for particular design of FTS and measure the effect 

of design decisions of FTS on demand and their impacted welfare within an integrated supply-

demand context. 
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Chapter 5. 

Agent-Based Day-to-Day Adjustment Process 

for Evaluating Two-Sided Flexible 

Transportation Markets 
 

In Chapter 4 an agent-based day-to-day process was introduced to evaluate the equilibrium for 

flexible transit systems under different operation policies. However, the proposed method in 

Chapter 4 is not defined to evaluate peer-based two-sided services where driver agents can choose 

to be a driver or not, resulting in dynamic fleet size, nor can it be made operationalized in practice 

to evaluate equilibrium for some key operational models that are gaining interest in the public, e.g. 

two-sided matching markets. In this chapter we address these gaps by incorporating day-to-day 

adjustment process of drivers in the agent-based day-to-day process proposed in Chapter 4. In 

this chapter we try to answer the research questions posed in Section 1.3.2 .  First, in Section 5.1 

we prove why flexible transport market is a two-sided market and should be considered as such. 

Then in Section 5.2, the proposed agent-based day-to-day adjustment process for two-sided 

flexible transport market is introduced. In Section 5.3 the proposed model is applied to a simple 

sample network for illustration and verification. After that, the proposed model is implemented in 

a case study to evaluate a taxi fleet serving last mile trips in Oakville, Ontario (from Section3.1 ) 

and the results are presented in Section 5.4.  
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5.1. Two-Sided Transport Markets 

 

As discussed in Section 2.6 and shown in Eq. (6) and Eq. (7),  a two-sided market requires the 

total consumer surplus (𝐻) of one market to be dependent on the quantity set in the other market, 

i.e. 𝐻𝐵 = 𝐻𝐵(𝑝𝐵, 𝐷𝑆) and vice versa.  𝑝𝐵 is the generalized cost to the travelers, and  𝐷𝑆 is the 

sellers demand (in this case FTS fleet size). In this section we illustrate that flexible transport 

market exhibits the two-sided market characteristic. We can define the conditions needed for a 

two-sided market using the following assumptions and proposition. 

 

Assumptions 1 

a) The exchange platform is represented by the combination of the infrastructure network 𝐺 =
𝐺(𝜋) and operating policy 𝜋 = 𝜋(𝐷𝑆). For example, having a fleet of 10 vehicles versus 100 

vehicles will directly impact the scheduling/routing policy, which in turn also impacts the 

network performance. 

b) The system features generalized cost to travelers (𝑝𝐵) and a consumer surplus function for 

travelers who choose to use the system (𝐻𝐵). The generalized traveler cost may capture a 

number of different disutilities: travel time, schedule delay, wait time, fare cost, etc. The 

consumer surplus is a function of generalized cost and socio-economic characteristics (𝑎𝐵) of 

the travelers. 𝐻𝐵 = 𝐻𝐵(𝑎𝐵, 𝑝𝐵) 

c) The system features a cost to FTS operator(s) (𝑝𝑆 = 𝑝𝑆(𝜋, 𝐺)) and a net consumer surplus 

function for number of operators who choose to provide service (𝐻𝑆). The cost to the FTS 

operator(s) should reflect the system operating costs: fuel, driver wages, vehicle depreciation, 

etc., offset by the fare revenue. These costs depend on the network structure (dense versus 

sprawled networks impact costs of service) as well as operating policy, as some are more 

profitable or cost effective than others. The net consumer surplus for the operator is the 

function of characteristics of the operators (e.g. drivers’ preferences for services such as Uber) 

and cost to the FTS operator. 𝐻𝑆 = 𝐻𝑆(𝑎𝑆,  𝑝𝑆) 

 

Proposition 1. A transport service operating under Assumptions 1 is a two-sided market if the 

operating policy is a function of traveler demand, 𝜋 = 𝜋(𝐷𝐵) (e.g. depending on demand and 

where they are located in the network, operator may change fare price and routing), and the 

travelers’ costs are functions of the operating policy and network, 𝑝𝐵 = 𝑝𝐵(𝐺, 𝜋)(e.g. wait time 

for taxi depends on routing policy of FTS and network structure). 
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Proof. In the travelers’ case, 𝐻𝐵 = 𝐻𝐵(𝑎𝐵, 𝑝𝐵). Since 𝑝𝐵 = 𝑝𝐵(𝐺, 𝜋), then from Assumptions 

1a it is clear that with 𝜋 = 𝜋(𝐷𝑆) then 𝐻𝐵 = 𝐻𝐵(𝑎𝐵, 𝑝𝐵 , 𝐷𝑆, 𝐺). In the operator’s case, 𝐻𝑆 =
𝐻𝑆(𝑎𝑆, 𝑝𝑆). 𝑝𝑆 = 𝑝𝑆(𝜋, 𝐺), and from Proposition 1 we have 𝜋 = 𝜋(𝐷𝐵), then 𝐻𝑆 =
𝐻𝑆(𝑎𝑆, 𝑝𝑆, 𝐷𝐵, 𝐺). 

 

Since FTS by definition has an operating policy dependent on traveler demand and travelers’ costs 

are functions of operating policy and network like any other transport service, the following 

assertion can be made in Corollary 1. 

 

Corollary 1. An FTS under Assumptions 1 is a two-sided market, categorized as a two-sided 

flexible transport market. 

 

5.2. Methodology 

 

The agent-based day-to-day process proposed in Chapter 4 only captures the adjustment process 

of the travelers, in this section the proposed process is extended to include an additional adjustment 

process for the fleet of vehicles. We design such a process that includes day-to-day adjustments 

from both passengers and vehicle fleet such that their interactions may lead to agent-based SUE 

similar to the one described and achieved in Chapter 4.  

Like in Chapter 4, due to the inherent stochastic dynamic characteristics of FTS, we use 

an agent-based approach to simulate a sample of populations from which deterministic processes 

are run. The key algorithmic components of the proposed agent-based process are highlighted in 

Figure 5.1 for a single (instead of 𝑘 different) FTS without loss of generality. The red dotted 

square highlights the additional components that were added to Figure 4.1(b) to incorporate day-

to-day adjustment process for the vehicle fleet. 
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Figure 5.1. Key components of proposed agent-based RBAP under two-sided flexible transport market 

 

 

Keeping Eq. (10)  to Eq.(19) intact, additional equations are introduced in the following sections 

to accommodate the operator (drivers) day-to-day adjustment process. The following notations are 

added to the original model proposed from Chapter 4: 

 

𝑀: population of vehicle agents (to allow for autonomous vehicles, terms “vehicles” and  “drivers” 

are used interchangeably); 

Λ𝑑: fleet of vehicles on day, d,  from FTS  ; 

𝜌𝑚: profit($) threshold for agent 𝑚; 

𝜇𝑚
𝑑 : choice of vehicle agent 𝑚 to enter the market, 𝜇𝑚

𝑑 ∈ Λ𝑑, or stay out of the market, 𝜇𝑚
𝑑 ∉ Λ𝑑; 

𝑃𝑃𝑣: perceived profit ($) of vehicle 𝑣 ∈ Λ𝑑 
 

As shown above in the case of two-sided flexible transport market unlike one-sided flexible 

transpot market (Chapter 4),  fleet size is not fixed and can vary from one day to another 
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depending on the available vehicles (drivers). The effect of this varying fleet size and choices of 

drivers will be explored in the upcoming sections.  

 

5.2.1. Synthesize M vehicle agent traits 

 

An FTS may operate as a centralized or decentralized fleet. From the perspective of day-to-day 

adjustments, choices from a centralized fleet may be modeled assuming homogeneous vehicles. 

As such, in this study we consider the more generalized case of homogenous vehicles, or 

decentralized fleet. Future studies should look into decentralized fleet with heterogeneous vehicles.  

The FTS vehicles (taxi drivers) determine their strategies as choice sets by choosing 

whether to enter the market on a particular and be active or not, which varies fleet size (Λ𝑑).  For 

example, an FTS similar to Uber, may have a maximum of M registered vehicles(drivers) however 

individual vehicles based on their perceived profit and individual profit threshold may decide to 

be active on a particular day or not. The choices of drivers will in return affect fleet size by varying 

it from one day to another, which in return will affect LOS and operating policy of FTS.  The profit 

threshold represents the combination of unobservable costs (e.g. capital costs, market forces, etc.) 

that are not explicitly accounted for in the profit function. The vehicle population is synthesized 

by generating a profit threshold (𝜌𝑚) for each vehicle. In the case of a homogeneous fleet, the 

same threshold may be used for all vehicles. Heterogeneous fleets may have thresholds randomly 

sampled from normal or uniform distributions, for example.  
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5.2.2. Update choice 𝝁𝒎 

 

Each individual vehicle (driver) m has a strategy set defined by 𝜇𝑚 : = {𝜇𝑚
1 , . . , 𝜇𝑚

𝑑 } where the aim 

is to maximize profit. This component describes the day-to-day adjustment process of the drivers. 

Each strategy 𝜇𝑚
𝑧  consist of choice whether to enter the FTS market and be active or not on each 

day 𝑑.  Vehicle 𝑚 chooses to be active if the perceived profit of vehicle 𝑚 on day 𝑑, 𝑃𝑃𝑚,𝑑, is 

equal or higher than the profit threshold of vehicle 𝑚, as shown in Eq. (20).  

 

𝜇𝑚
𝑑 = {

1, 𝑃𝑃𝑚,𝑑 ≥ 𝜌𝑚

0, 𝑃𝑃𝑚,𝑑 < 𝜌𝑚
 (20) 

 

𝑃𝑃𝑚,𝑑 is updated similarly to the perceived travel time 𝑋𝑘𝑛𝑠𝑑
𝑟𝑧∗  update shown in Eq. (13) in 

Section 4.1.3.3 . Each day 𝑑, the vector containing vehicle IDs ([1, 2, 3, …, m]) is randomly 

permuted by taking a random number between 1 and m sequentially ([10, 50, 1, 13, n, …, 2]) to 

assume that each vehicle is equally likely to be assigned a customer from a dispatch, all else equal. 

A vehicle may not always make profit due to not being active all the time or being active but not 

getting assigned to a customer under the network 𝐺 and operating policy 𝜋. As a result, vehicles 

learn from their previous experience or from the collective expectations from the vehicle fleet, as 

shown in Eq. (18) for each day 𝑑 ≥ 2. 

 

𝑃𝑃𝑚,𝑑 = (1 −  𝜔)𝑃𝑃𝑚,𝑑−1 +   𝜔𝜇𝑚
𝑑−1𝐸𝑃𝑚,𝑑−1 +  𝜔(1 − 𝜇𝑚

𝑑−1)𝑃𝑃̅̅ ̅̅
𝑑 (21) 

where 𝜔, 0 ≤ 𝜔 ≤ 1, is a parameter controlling the degree of learning attributed to experience on 

the prior day as opposed to learning it from all past experiences.  𝑃𝑃̅̅ ̅̅
𝑑  , is the collective fleet 

perceived profit on day,𝑑 and 𝐸𝑃𝑚,𝑑−1  is the total experienced profit of vehicle m on day 𝑑-1.  
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The collective perceived average assigned profit 𝑃𝑃̅̅ ̅̅
𝑑 is updated each day via the Method 

of Successive Averages, as shown in Eq. (22).  

 

𝑃𝑃̅̅ ̅̅
𝑑 = (1 −

1

𝑑
)  𝑃𝑃̅̅ ̅̅

𝑑−1 + (
1

𝑑
)

∑ 𝐸𝑃𝑗,𝑑−1
|Λ𝑑|
𝑗=1

ℑ𝑑−1
 (22) 

 

where, ℑ𝑑−1 is the number of active vehicles assigned to passengers. On the first day, the fleet’s 

initial choice 𝑃𝑃𝑚,1 is set to an exogenous 𝑃𝑃̅̅ ̅̅
1, i.e. 𝑃𝑃𝑚,1 = 𝑃𝑃̅̅ ̅̅

1.  

 

The experienced profit 𝐸𝑃𝑚,𝑑 of vehicle 𝑚 on day 𝑑 is calculated using Eq. (23).  

 

𝐸𝑃𝑚,𝑑 = 𝐸𝑅𝑚,𝑑 −  𝑂𝐶𝑚,𝑑 (23) 

 

where 𝐸𝑅𝑚,𝑑 is the experienced fare revenue of vehicle 𝑚 on day 𝑑, and 𝑂𝐶𝑚,𝑑 is the operating 

cost of vehicle 𝑚 on day 𝑑. If a driver is not active on day 𝑑 or is active but not assigned to any 

passenger, 𝐸𝑃𝑚,𝑑 = 0. 

It should be noted that  𝑃𝑃̅̅ ̅̅
𝑑 shows the perceived average of the profit conditional on being 

assigned to customers, as opposed to the average of the expected profit that accounts for probability 

of not getting any service that day. This is because the probability of not getting any service is 

already accounted for in the 𝐸𝑃𝑚,𝑑. In other words, the probability of getting a passenger is not 

perceived from the events observed by the whole population, but by the day to day experiences of 

the vehicle. For example, if a vehicle on a given day has 30% of being assigned a passenger, where 

they would experience a profit of $2, then there is a 30% chance that 𝐸𝑃𝑚,𝑑 = 2 and 70% that 
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𝐸𝑃𝑚,𝑑 = 0 on that day. This would then get relayed to the next day’s perception via Eq. (21). Eq. 

(22) is then used to update the actual profits earned by vehicles assigned to passengers that day. 

 

5.2.3. Simulation stopping criterion 

 

Since there are two distinct agents present in the simulation namely user agents and vehicle agents, 

two distinct stopping criteria are chosen, that both need to occur. For the purpose of this study as 

mentioned previously we are considering centralized dispatch system with homogenous vehicles 

as a result we are only simulating one deterministic population of vehicles running a deterministic 

day-to-day process. The deterministic day-to-day process of this single population similar to the 

individual traveler agent’s day-to-day process maybe lead to stable state or maybe lead to 

oscillation or chaotic pattern. If the population of vehicle agents were to be run in isolation from 

the population of traveler agents then we would have not need a stopping criteria. The reason for 

this is that as mentioned earlier a deterministic day-to-day process by itself reaches stable, 

oscillatory or chaotic state therefore in that case all we need to do is to let the simulation run for 

several days (iterations) to reach that state. However in this study since we are looking at two-

sided transport market and we are considering the interaction between vehicles and travelers, we 

are simulating one population of vehicles with multiple populations of traveler agents therefore 

we can use averaging method and if we aggregate up over those runs we end up with invariant 

distribution similar to the agent-based SUE for traveler agents. This means that even though 

population of vehicle agent is deterministic the outcome is stochastic because of the variation in 

the choices of different populations of traveler agents. This will be discussed in more details in the 

upcoming sections.The first stopping criterion used in this study is from Eq. (19) from Section 
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4.1.5, for traveler agents. The second criterion is for vehicle agents, selected based on the average 

expected profit ($) per vehicle, as shown in Eq.(24). 

 

|𝑃𝑃̅̅ ̅̅
𝑑−𝑖 −  𝑃𝑃̅̅ ̅̅

𝑑−𝑖−1|

|𝑃𝑃̅̅ ̅̅
𝑑−𝑖−1|

≤  𝜑𝑣, for 0 ≤ 𝑖 ≤ 2 
     

(24) 

 

where, 𝜑𝑣 is a tolerance factor.  
 

5.2.4.  Social optimum evaluation 

 

The stopping point obtained from the agent-based day-to-day process can be evaluated with Eq. 

(9) in Section 2.5 to determine whether it is socially optimal. The translation of the abstract 

notation to the variables used in this process is as shown: 

 Buyer price, 𝑝𝐵: total cost of using FTS (wait time + fare cost) 

 Seller price, 𝑝𝑆: operating cost for drivers 

 Buyer demand, 𝐷𝐵: number of travelers choosing FTS mode 

 Seller demand, 𝐷𝑆: the equilibrium fleet size 

 Buyer elasticity, 𝜂𝐵: can be estimated using arc-elasticity of demand using another 

equilibrium traveler demand value for another fare price  

 Seller elasticity, 𝜂𝑆: can be estimated using arc-elasticity of demand using another 

number of active assigned drivers for another fare price 

 Buyer welfare, ∫ 𝐷𝐵(𝑤)𝑑𝑤
∞

𝑝𝐵 : sum of the utility over the population of FTS users 

 Seller welfare, ∫ 𝐷𝑆(𝑤)𝑑𝑤
∞

𝑝𝑆 : sum of the profit over the active fleet 

 

5.3. Computational Experiments 

 

We use the simple replicable example show in Figure 4.9 from Section 4.3 to test the proposed 

agent-based day-to-day process for two-sided flexible transport market.  For the purpose of this 

study the simulation platform developed in MATLAB from Chapter 3 is modified based on 
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proposed day-to-day adjustment process of driver agents and is used for both the numerical 

example and the case study. Moreover, an event based dispatching algorithm based on, Hyytia et 

al. (2012) routing policy from Section 2.5 is used.  Four experimental objectives are tested: 

1. whether the distribution of the state is indeed stable over a range of different initial 

conditions,  

2. whether the proposed process for two-sided flexible market can generate invariant 

distribution for analysis,  

3. whether the proposed model for two-sided flexible transport market  differs from the 

proposed model for one-sided flexible transport market (Chapter 4) when applied to the 

same example, and 

4. whether the proposed two-sided agent-based day-to-day process leads to a social optimum 

as defined by Eq. (9). 

 

5.3.1. Scenario parameters 

 

As stated earlier for this section the same sample network shown in Figure 4.9 from Section 4.3  

is used. Similar as before in the simulation there are two agents, namely, travelers and vehicles, 

however unlike the previous example in Section 4.3 , in the example used in this section vehicle 

agents are also decision makers, as such their day-to-day adjustment process is also considered 

along with the day-to-day process of traveler agents. Following additional parameters are added 

to the example to capture day-to-day adjustment process of the vehicle agents as well.  

 Maximum fleet population is 𝑀 = 20 

 Fleet is assumed homogeneous with 𝜌𝑚 = 1 ∀𝑚 

 𝑂𝐶𝑚,𝑑 =  𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑐𝑎𝑛𝑡 𝑇𝑖𝑚𝑒𝑚,𝑑 ∗ 𝑉𝑂𝑇 

 𝐸𝑅𝑚,𝑑 =  ∑ 𝜎 + 𝜓(
𝐷𝑛,𝑑

𝑟𝑧

130𝑚
− 1)𝐿

𝑛 , 𝐿 ∈ 𝑁, where 𝐿 is the total number of travelers served by 

vehicle 𝑚 on day 𝑑 
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 Vehicle learning rate 𝜔 = 0.2 

 Driver value of time is 𝑉𝑂𝑇 = $0.33/𝑚𝑖𝑛 

 The dispatch policy from Eq. (1) to Eq. (2) from Section 2.5 is evaluated in these experiments, 

with γ = 0.5 and 𝜅 = 0. 

 𝜑𝑣 = 𝜑𝑝~0 
 

Where 𝜎 + 𝜓(
𝐷𝑛,𝑑

𝑟𝑧

130𝑚
− 1) as explained in Section 4.3 is the fare price for an individual FTS 

customer.  

 Three scenarios are considered. The different scenario attributes are shown in Table 5.1.  

 

 

 
Table 5.1: Scenario characteristics 

Scenarios Base Price ($) Price ($)/additional 130 

m 
𝜶 𝝆𝒎 𝑷𝑷̅̅ ̅̅

𝟏 

Base 4.5 0.25 5 1 15 

1 4.5 0.25 1 5 {5,10, … ,95,100} 

2 4.5 0.25 1 5 15 

3 4.5 0.01-1.00 (increments of 0.01) 1 {0,2,4,6,8,10} 15 

      

 

 

Figure 5.2 presents the consumer surplus distribution for the base scenario over multiple 

populations of commuters. Data for Figure 5 is obtained from Section 4.2. 
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The base scenario is assumed to be in steady state already, where the average of the perceived 

profits, PP𝑚,∞ is $4.38 and average number of active drivers are|Λ∞| = 20.   

 

5.3.2. Results 

 

The results obtained from the three scenarios are presented in the next sections.  

 

5.3.2.1. Stability from initial conditions under Scenario 1 

 

Scenario 1 is used to illustrate the convergence of the proposed two-sided agent-based day-to-day 

process to unique stable state under different starting points. Twenty different initial conditions 

are considered for the one of the simulated populations 𝑠 of traveler agents. The initial conditions 

are generated by varying 𝑃𝑃̅̅ ̅̅
1 from $5 to $100 in increments of $5. The day-to-day convergence 

Figure 5.2. Simulated population consumer surplus distribution in base scenario 
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for vehicle agents is plotted in Figure 5.3, whereas the day-to-day convergence for traveler agents 

is plotted in Figure 5.4.  

 As can be seen from Figure 5.3(a), the expected profit ($)/driver for each initial condition 

converges to a fixed point which is similar among all 20 starting conditions, suggesting that this 

point is locally stable. Figure 5.3(b) shows that the fleet size also converges to a fixed point of 

|Λ∞| = 11 vehicles for this simulated population. Similarly, Figure 5.4(a) and Figure 5.4(b) 

show that FTS demand and total consumer surplus also converge to fixed points, with FTS demand 

converging to 8 people.  
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(b) 

Figure 5.3. Convergence of (a) average experienced profit ($)/driver and (b) number of active drivers 
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(b) 

Figure 5.4.Convergence of (a) taxi demand and (b) total consumer surplus 

 

 

5.3.2.2. Consumer surplus sample distribution as two-sided agent-based SUE under Scenario 

2 

 

In Scenario 2, each of the |𝑆| = 100 population samples (from Section 4.3) are run up to 500 days 

(CPU time: 36s/iteration) to evaluate convergence and central tendencies of the consumer surplus 

sample distribution. It should be noted that for this test only one homogenous population of vehicle 

agents is used.  Figure 5.5. shows distributions of (a) consumer surplus, (b) taxi demand, (c) 

expected profit per vehicle, and (d) average fleet size across the 100 sample user populations under 

scenario 2. 

 

-30

-25

-20

-15

-10

-5

0

0 100 200 300 400 500

To
ta

l C
o

n
su

m
er

 S
u

rp
lu

s

Day #

Convergence of Total Consumer Surplus 

$5 $10 $15 $20 $25 $30 $35

$40 $45 $50 $55 $60 $65 $70

$75 $80 $85 $90 $95 $100



113 
 

                                            (a)      (c) 

                                            (b)                                                                                            (d)                                          

 

 

As can be seen from Figure 5.5., average profit ($)/driver and fleet size are fairly distributed even 

though a homogeneous vehicle fleet is used. The reason for this is that the day-to-day choices and 

the adjustment process of “traveler” population can affect choices and day-to-day adjustment of 

drivers which in return affect the level of service of the FTS. These results show that there exists 

a sample distribution of consumer surplus with central tendencies as agent based-SUE for both the 

traveler and vehicle agents. 

 

Figure 5.5. 100-sample distribution of equilibrium (a) Consumer surplus, (b) FTS demand, (c) average expected profit per 

vehicle, and (d) average fleet size 
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5.3.2.3. Significance of incorporating day-to-day adjustment process of drivers under 

scenario 3 

 

In the two-sided market literature (e.g. Eisenmann et al., 2006), it has been shown that a analyzing 

a two-sided market using one-sided market pricing would result in inefficiencies. In this section 

significance of incorporating the day-to-day adjustment process of drivers is investigated by 

comparing static fleet size (not considering day-to-day adjustment process of drivers) ( Λ𝑑 =

Λ𝑑+𝑛 ) with dynamic fleet size (considering day-to-day adjustment process of drivers)( 

Λ𝑑  ≠ Λ𝑑+𝑛). With Scenario 3, we conduct such a test by using the two-sided market day-to-day 

process and comparing it to the solution from the one-sided day-to-day process from Section 4.3. 

The one-sided day-to-day process simply assumes all 20 vehicles in the fleet are always in the 

market. The results are presented in Figure 5.6 for (a) consumer surplus and (b) FTS ridership 

demand, over a range of different fare prices. Furthermore, this section investigates the effect of 

fare price and driver profit threshold on taxi demand and total consumer surplus of the user 

population at equilibrium. It should be noted that in scenario 3, one “user” population is used.  

The most significant finding here is that modeling the scenario as a one-sided market will 

lead to overestimation of total consumer surplus and taxi demand at equilibrium when the fare 

price is below a certain range (~ $0.30 per 130m). At higher fare price ranges, they can be 

equivalent to the two-sided market condition. This makes sense, as two-sided markets can only be 

exploited for greater value when there is value to re-allocate costs from one market to the other. 

Furthermore, this comparison pinpoints the threshold where there is value to modeling the system 

as a two-sided market. The reason behind the above mentioned phenomena is shown in Figure 

5.7. 

 

 

 



115 
 

 
 

(a) 

(b) 
*PT is driver profit ($) threshold, and, CS, is total consumer surplus. 

 

Figure 5.7 presents FTS fleet size, taxi demand and # of active drivers at equilibrium. As can be 

seen from Figure 5.7(a), fare price and driver’s profit ($) threshold have significant effect on fleet 

size, which in turn affect LOS of FTS, taxi demand and total consumer surplus of users.  
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Figure 5.6.Comparison of equilibrium (a) total consumer surplus and (b) FTS demand, under one-sided (“static”) and 

two-sided (“dynamic”) market assumptions. 
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(a) 

 

 
(b) 

Figure 5.7.Comparison of (a) Fleet size and (b) Taxi demand and number of active assigned drivers at equilibrium under 

various driver profit ($) threshold 

 

Moreover, looking at Figure 5.7(a)&(b) it can be seen that for each driver profit ($) threshold, 

under specific fare price, the taxi demand and number of active drivers are equal at equilibrium 
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and is the same as number of assigned drivers (meaning all active drivers are assigned, and there 

is one driver per passenger). For example for profit threshold of $4.00 and fare price of $0.13, the 

taxi demand is 6, fleet size is 6 and number of assigned drivers is also 6, this means that there is a 

perfect match between drivers and customers. This is called competitive market equilibrium where 

there is a balance between supply and demand. That price is considered as equilibrium market fare 

price. 

 

5.3.2.4.  Evaluating social optimality of equilibrium under Scenario 3  

 

In this section we demonstrate the social optimality criterion from Eq. (9)  from Section 2.6 using 

a sample population Scenario 3. As was stated in Section 5.2.4, there has to be a perfect match 

between sellers and buyers and in this case it means that all the active drivers should be assigned 

to one customer. For the purpose of this study, two tests are conducted, one choosing a population 

and fare price from scenario 3 where there is a perfect match between buyers and sellers (drivers 

and travelers) and  a population and fare price from scenario 3, where there isn’t a perfect match 

between sellers and buyers (supply exceeds demand). 

 

5.3.2.4.1. Evaluating social optimality of equilibrium under Scenario 3 

 

As discussed earlier, to test social optimality it is required to meet the perfect match criterion, 

hence it is necessary to select a population of drivers and fare price from Figure 5.7 that lead to 

perfect match between drivers and customers. In this experiment the driver population with profit 

threshold of ($4.00) and fare price of $0.13 are selected (taxi demand=6, fleet size=6, assigned 

drivers=6).  𝜂𝐵 and 𝜂𝑆 are obtained using equilibrium demand for fare price of $0.31.  As we 

defined in Section 5.2.4, the following values are obtained: 
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 Buyer price, 𝑝𝐵: 8.44 

 Seller price, 𝑝𝑆: 4.36 

 Buyer demand, 𝐷𝐵: 6 

 Seller demand, 𝐷𝑆: 6 

 Buyer elasticity, 𝜂𝐵: -1.26 

 Seller elasticity, 𝜂𝑆: 1.79 

 Buyer welfare, ∫ 𝐷𝐵(𝑤)𝑑𝑤
∞

𝑝𝐵 : -1.61 

 Seller welfare, ∫ 𝐷𝑆(𝑤)𝑑𝑤
∞

𝑝𝑆 : 4.20 

 

 

We get: 

 

For traveler market: 

 
𝑝𝐵

𝜂𝐵𝐷𝐵 [∫ 𝐷𝐵(𝑤)𝑑𝑤
∞

𝑝𝐵 ] = 1.79 , and  

For FTS market: 

𝑝𝑆

𝜂𝑆𝐷𝑆 [∫ 𝐷𝑆(𝑤)𝑑𝑤
∞

𝑝𝑆 ] = 1.70  

As can be seen from the results obtained for traveler market and FTS market are roughly 

equal (discrepancies are due to averaging in the simulation), suggesting that this state (perfect 

match between sellers and buyers) is indeed the social optimum state. 

 

5.3.2.4.2. Evaluating social optimality of equilibrium under Scenario 3(not perfect match) 

 

Unlike previous section for the current test we select a population of drivers and fare price from 

Figure 5.7 that do not lead to a perfect match. For this test the driver population with profit 

threshold of ($4.00) and fare price of $0. 31 are selected (taxi demand=3, fleet size=12, assigned 

drivers=3). Therefore as can be seen in this scenario there isn’t a perfect match between drivers 

and customers, since 9 drivers are not assigned to any customers.  𝜂𝐵 and 𝜂𝑆 are obtained using 

equilibrium demand for fare price of $0.13.The following values are obtained: 
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 Buyer price, 𝑝𝐵: 11.78 

 Seller price, 𝑝𝑆: 3.14 

 Buyer demand, 𝐷𝐵: 3 

 Seller demand, 𝐷𝑆: 3 

 Buyer elasticity, 𝜂𝐵: -3.52 

 Seller elasticity, 𝜂𝑆: 2.58 

 Buyer welfare, ∫ 𝐷𝐵(𝑤)𝑑𝑤
∞

𝑝𝐵 : -2.25 

 Seller welfare, ∫ 𝐷𝑆(𝑤)𝑑𝑤
∞

𝑝𝑆 : 8.22 

 

 

 

We get: 

 

For the traveler market 
𝑝𝐵

𝜂𝐵𝐷𝐵 [∫ 𝐷𝐵(𝑤)𝑑𝑤
∞

𝑝𝐵 ] = 2.51, and  

 

For the FTS market  

 
𝑝𝑆

𝜂𝑆𝐷𝑆 [∫ 𝐷𝑆(𝑤)𝑑𝑤
∞

𝑝𝑆 ] = 3.33  

 

Looking at the above results, it is clear that they are not equal which suggests that there is 

a more socially optimal state that can be achieved (shown in Section 5.3.2.4.1). From here, one 

can increase the average surplus per transaction for the traveler market, decrease the elasticity of 

demand of the travelers, reduce the operating cost of the FTS, or increase the elasticity of demand 

of the FTS, etc., to approach the social optimum. 

 

5.4. Case Study: Oakville First/Last mile Problem-Two-Sided Market 

 

The proposed two-sided market agent-based day-to-day process is tested on real data obtained 

from the Oakville, Ontario as explained in 3.1.3.  Similar to the case study in Section 4.4 this case 

study also focuses on the residents of town of Oakville who commute to downtown Toronto for 

work during morning peak period by taking Go Transit commuter rail out of the Oakville station. 
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It is worth mentioning that aside from testing different scenarios in this case study than the ones 

tested in Section 4.4, there are three distinct differences between this case study and the one 

presented in Section 4.4 which are: one, in this study two-sided day-to-day process is used, second, 

vehicle routing policy introduced in Section 2.5 is used as opposed to the greedy algorithm from 

Section 4.4.2, third , in the previous case study in Section 4.4 the taxi service is assumed to be 

free where as in this case study we investigate the effect of fare price on taxi demand.  

 

5.4.1. Oakville case study 2: MNL estimation + desired arrival time at destination 

estimation 

 

Since in this section we are investigating the effect of fare price on FTS demand, we need to re-

calibrate logit model from Section 4.4.3 in order to include the effect of fare price in the utility 

function of the travelers. Table 5.2 presents sample commuters’ specific mode attributes data 

including taxi fare price. For each commuter fare price is calculated as explained in Section 3.1.3.4 

using Oakville taxi rates. 

 

Table 5.2: Base Case Scenario" Oakville commuters' specific mode attributes (fare price included) 

Person n ETT_Auto 

(min) 

ETT_Walk 

(min) 

ETT_Bike 

(min) 

ETT_Transit 

(min) 

ETT_Taxi 

(min) 

Taxi Fare 

Price ($) 

1 3.52 46.91 15.64 8.95 13.43 11.85 

377 1.76 11.04 3.68 6.29 11.68 6.74 

474 6.45 59.91 19.97 13.25 16.37 14.43 

883 4.85 45.05 15.02 17.47 10.95 13.19 

1392 5.40 61.83 20.61 11.93 15.32 13.54 
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For the base case a fleet size of 10 taxi vehicles is assumed for illustrative purposes, which is 

consistent with the case study presented in Section 4.4. Moreover, in this study under the base case 

scenario it is assumed that all drivers have the same profit threshold of $1.00. MNL parameters 

are estimated based on these assumptions. The estimated consumer surplus (utility) function for 

each mode is presented below: 

 

𝑈𝑎𝑢𝑡𝑜,𝑛,𝑑,𝑠 = 2.99 − 2.19
# 𝑜𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑙𝑖𝑐𝑒𝑛𝑐𝑒 ℎ𝑜𝑙𝑑𝑒𝑟𝑠 𝑖𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑛

# 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑛
+ 휀𝑎𝑢𝑡𝑜,𝑛,𝑠                                             

𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛,𝑑,𝑠 =  −0.0944𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛,𝑑
𝑟𝑧∗  + 휀𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛,𝑠                                      

𝑈𝑡𝑎𝑥𝑖,𝑛,𝑑,𝑠 =  −0.276𝜏𝑡𝑎𝑥𝑖,𝑛,𝑑
𝑟𝑧∗ − 0.0759𝑓𝑎𝑟𝑒𝑝𝑟𝑖𝑐𝑒𝑡𝑎𝑥𝑖,𝑛,𝑑

𝑟𝑧∗ + 휀𝑡𝑎𝑥𝑖,𝑛,𝑠                                                                                               

𝑈𝑤𝑎𝑙𝑘,𝑛,𝑑,𝑠 =  2.35 − 0.109𝜏𝑤𝑎𝑙𝑘,𝑛,𝑑
𝑟𝑧∗ +  휀𝑤𝑎𝑙𝑘,𝑛,𝑠                                                                                 

𝑈𝑏𝑖𝑘𝑒,𝑛,𝑑,𝑠 =  −0.268𝜏𝑏𝑖𝑘𝑒,𝑛,𝑑
𝑟𝑠∗ +  휀𝑏𝑖𝑘𝑒,𝑛,𝑠                                                                                           

 

 

For this case study  𝜃 is set to 0.2.  The vehicle agents are assumed to be homogenous, 

with, 𝜔 = 0.2 , and 𝑉𝑂𝑇 = $0.33/𝑚𝑖𝑛. The vehicle agent’s profit ($) threshold for each scenario 

is presented in Table 5.3. For each individual commuter the same desired arrival time at the 

destination estimated in Section 4.4.3 is used.  

 

5.4.2. Oakville Case study 2: objective and test scenario 

 

The purpose of this case study is to illustrate that the proposed agent-based day-to-day process for 

two-sided flexible transport market is capable of determining the effect of fare price and drivers’ 

threshold on FTS demand and their impacted welfare (total consumer surplus).  In order to achieve 

this objective one test scenario is considered. For the purpose of this study, 10 simulated sample 

population is used to illustrate the central tendencies and sensitivity of the taxi demand and 

consumer surplus to fare price and profit threshold of drivers. Summary of the scenario tests is 
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presented in Table 5.3. The base case scenario is used as a starting point for each fleet size, where 

mode choice and departure time choice were obtained from TTS data (Chapter 3) 

 

 
Table 5.3: Oakville cast study_2 test scenario attribute summary 

Scenario Max Available 

Fleet size 

Profit ($) Threshold Fixed Fare Price 

($) 

Fare Price 

($)/additional 130m 

Base case 10 1 4.25 0.25 

Scenario 1 10 15 4.25 0.10 

 

 

As shown in Table 5.3  to test the sensitivity of demand to fare price ($),   fare price ($) per 

additional 130m traveled is lowered from $0.25 to $0.10. One may instinctively think that this 

decrease in fare price would result in increase in taxi demand, the validity of this hypothesis is 

tested below.  For this test as mentioned previously, 10 traveler populations are synthesized (|𝑆| =

30 ), with each individual population 𝑠 running up to 50 days (iterations) (CPU time: 

1000s/iteration). The average results are provided in Table 5.4.      

 

 
Table 5.4: Comparison of average consumer surplus, taxi demand, fleet size, and profit per vehicle at equilibrium 

Scenarios Taxi Demand Total Consumer Surplus Active Vehicles 
(fleet size) 

Profit($)/vehicle 

Base Case 17 2095.57 10 20.31 

Scenario 1 8 2093.00 4 17.26 

 

 

It can be seen from Table 5.4 that decreasing fare price ($)/additional 130m,  resulted in decrease 

in taxi demand and total consumer surplus which is clearly in contradiction with our earlier 

hypothesis. This discrepancy is due to the presence of the two-sided market.  At the same time that 
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we decreased fare price we also increased drivers’ profit ($) threshold (Table 5.3) as a result fewer 

drivers entered the market and were active (lowering fleet size), which led to higher wait time for 

customers which in return resulted in fewer number of users using taxi (looking at utility function 

of taxi, it can be seen that heavier weight is giving to travel time of taxi (wait time+ in vehicle 

time)). The results obtained clearly show the interdependencies of day-to-day adjustment process 

of drivers, users and LOS of FTS.  

 

5.5. Discussion 

 

We proposed an agent-based day-to-day adjustment process for two-sided flexbile transport 

market by extending the proposed model in Chapter 4 such that the day-to-day adjustment process 

of both the travelers and the operators and their interactions are considered. Computational 

experiments are conducted with a simple network. Findings confirm the existence of locally stable 

states, and illustrate the significance of incorporating the day-to-day adjustment process of the 

operators in the model, and of thresholds from which network externalities cause two-sided and 

one-sided market to diverge. We use the Ramsey pricing criterion for social optimum from Rochet 

and Tirole (2003) to show that perfectly matched states from our day-to-day process are equivalent 

to a social optimum. A case study using real data from Oakville, Ontario, as a first/last mile 

problem example demonstrates the sensitivity of the day-to-day model to FTS operating policies. 

 The contribution of this study is that it allows policy makers to evaluate system designs 

(e.g. fleet sizing), operating policies (e.g. fare price), all on a common platform in terms of 

consumer surplus capturing the adjustment process of travelers as well as FTS operators.  
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Chapter 6.  

Conclusions and Future Research 
 

This section provides a short summary of findings, list contributions that have been made in this 

research and future work directions. 

 

6.1. Summary 

 

In this dissertation it is shown that there is a clear gap in methodologies to evaluate the user 

equilibrium for flexible transit services. This gap is addressed by first arguing that day-to-day 

adjustment processes in the literature do not apply to flexible transport systems because of several 

key differences related to dependency on their operating policies. An agent based day-to-day 

adjustment process model for one-sided FTS is proposed to find the agent-based stochastic user 

equilibrium and welfare effects of dynamic FTS operating policies within an integrated supply-

demand context. As part of this dissertation, an agent-based multimodal transport simulation 

platform based on the proposed model is developed in MATLAB. To the best of our knowledge, 

this is the first such model and simulation tool. .  

To support the proposed model, four sets of experiments are conducted using the developed 

simulation tool. The first numerical test showed that even for such a simple case, deterministic 

day-to-day adjustments could lead to oscillatory or fixed patterns that depend on initial conditions, 

learning rate, or simulated traits. Nonetheless, the proposed model based on simulation of multiple 

population samples can lead to an invariant distribution representing the agent-based SUE.  
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The second test demonstrated how the proposed model is sensitive to different dynamic 

vehicle routing policies. The results from the first two experiments show that it is possible to obtain 

agent-based SUE with central tendencies.  

The results from the third and fourth numerical tests and the case studies, illustrate the 

sensitivity of a model calibrated to real data for a study areas in Oakville, Ontario and Manhattan, 

New York. The test showed how policymakers can evaluate system designs (e.g. fleet sizing, ride 

sharing), operating policies (e.g. dispatch/routing algorithm), or competing mode designs (e.g. 

fixed route transit headways) all on a common platform in terms of consumer surplus distributions. 

In the second part of this dissertation we showed that flexible transport market exhibits 

characteristics of two-sided market and as such should be treated as two-sided market. Therefore 

we modified the one-sided agent-based day-to-day process model to include day-to-day adjustment 

process for drivers’ population in order to evaluate the dynamic equilibrium and welfare effects of 

designs and operation policies in flexible transport services as two-sided market. The proposed 

model is the first agent-based stochastic user equilibrium model that considers day-to-day 

adjustment process of both the drivers and users populations as a two-sided market.  

To test the proposed model for two-sided flexible transport market, three sets of experiments 

are conducted. The tests showed that similar to the one-sided model, the proposed two-sided model 

based on simulation of multiple population samples can lead to an invariant distribution 

representing the agent-based SUE. The second set of experiments which is the comparison 

between a one-sided market and two-sided market demonstrated their differences and show how 

to identify thresholds for when network externalities lead to two-sided markets. In addition, the 

second test illustrated the significance of incorporating the day-to-day adjustment process of 
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drivers and well and the travelers. Moreover, the computation of social optimal criterion from 

second test provided guidelines for designing a more socially optimal service.  

The results from the case study showed how policymakers can evaluate system designs (e.g. 

fleet sizing), operating policies (e.g. fare price), all on a common platform in terms of consumer 

surplus, and that day-to-day adjustment process of vehicles should be taken into account when 

changing policies. For example, if drivers have a profit threshold, lower fare prices will not 

necessary result in higher demand.  

 

6.2. Contributions 

 

This thesis presents a significant step towards evaluating dynamic flexible transit systems in an 

integrated supply-demand context. In this study two agent-based day-to-day adjustment process 

models are proposed for evaluating equilibrium for particular design of FTS and measuring the 

effect of design decisions of FTS on demand and their impacted welfare. The first model looks at 

FTS as one-sided market considering only the day-to-day adjustment process of travelers whereas 

the second model treats FTS as two-sided market capturing the day-to-day adjustment process of 

both the travelers and the operators and their interactions.  The proposed models allow 

policymakers to evaluate system designs (e.g. fleet sizing), operating policies (e.g. 

dispatch/routing algorithm), or competing mode designs (e.g. fixed route transit headways) all on 

a common platform in terms of consumer surplus distributions.   

There are currently agent-based simulation tools available to public agencies for 

transportation planning and transit assignments (e.g. MATSIM and MILATRAS (Wahba, 2008)). 
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However as mentioned previously they are either catered to fixed route transit or assume fixed 

demand when it comes to evaluating flexible transit services. In this study the two proposed models 

are operationalized in MATLAB, which is an efficient setting for sensitivity analysis for academic 

purpose.  The two models can also be operationalized on a more efficient computational setting 

(e.g. C++) by public agencies, allowing them to evaluate equilibrium of dynamic flexible transit 

policies in an integrated supply-demand context.   

 

6.3. Future Research 

 

As mentioned previously, currently the two proposed models are operationalized in MATLAB, 

which is an efficient setting for sensitivity analysis but is not efficient for larger case studies. Due 

to computational limitations of MATLAB, the following simplifications were made in this study: 

shorter study period, using sample surveyed population instead of extended population, and using 

small sample of Monte Carlo simulated population. The implication arising from these 

simplifications is that the results obtained from this study can be used as a proof of concept but 

cannot be used to draw conclusions about the network, travel behaviour and particular design of 

FTS.  Future studies may operationalize the two models on a more efficient computational setting 

(e.g. C++) with event-based simulation for use by public agencies. As public agencies adopt last 

mile solutions or FTS options in pilot studies, they can use this model for deployment decision 

support. In addition, there are a number of different directions that can be taken in future research: 
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 In this dissertation a greedy vehicle routing policy and a dynamic DARP proposed by 

Hyytiä et al. (2012) are used, for future studies more advanced vehicle routing and pricing 

policies such as the one proposed by Sayarshad and Chow (2015) can be evaluated.  

 Alternative flexible transit services such as UberX (taxi sharing), and more advance ride 

sharing service can be explored. In this thesis, even though we considered ride-sharing, we 

assumed that there is a fixed cost for using the service. Future studies should look into cost 

allocations and peer-to-peer choices.  

 The experiments conducted in this study were for verification and proof of concept 

purposes. Future studies should look into using real data to validate the proposed models. 

Pilot studies can be used for validation. 

 In this thesis simplifications were made in terms of sample size and study period, future 

studies should consider extended population, along with larger Monte Carlo simulated 

population sample set and longer study period.  

 The day-to-day learning process used for travel time updating in Chapters 4 and 5 is only 

one way of modeling travelers’ behavior. Future studies should look into using other 

models. (e.g. Markovian Decisions Process,  Wahba and Shalaby (2014) ). 

 As stated in Section 3.3, a simple microsimulation model is implemented in the agent-

based simulation tool developed in MATLAB omitting the congestion effect, future studies 

can use a microscopic traffic simulator as a plug in in order to capture congestion effect.  

 With the potential for cooperative autonomous vehicles for FTS (e.g. Brownell and 

Kornhauser, 2014), the proposed model can also be modified to consider autonomous fleet 

agents. Employing autonomous fleet size will affect operating costs, idle times, 
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repositioning time, etc. and it is worth exploring the effect of these changes on demand and 

their impacted welfare. 

 In this study dynamic DARP and dynamic fleet size were considered. Future studies can 

look into dynamic pricing by modifying the FTS module as shown in Figure 3.9.  
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Appendix 
 

The itinerary of each individual in the “Base Case” is presented in Table A1 and mode attributes 

for each individual are presented in Table A2. Up to 100 sample populations are drawn, with the 

first sample shown in Table A3 for illustration. In addition, the value of learning rate for 

commuters θ is set to 0.2 (20%) as suggested by Bogers et al (2007).  

 

Table A1. “Base Case Scenario” commuters’ itinerary 

Person 𝒊 Desired 
Departure Time 

Desired Arrival 
Time 

Origin Destination Choice 

1 7:16 AM 8:00 AM 14 21 car 

2 7:17 AM 8:00 AM 1 21 car 

3 7:18 AM 8:00 AM 10 21 car 

4 7:18 AM 8:00 AM 18 21 car 

5 7:19 AM 8:00 AM 2 21 car 

6 7:20 AM 8:00 AM 3 21 car 

7 7:22 AM 8:00 AM 12 21 car 

8 7:43 AM 8:00 AM 8 21 taxi 

9 7:44 AM 8:00 AM 4 21 taxi 

10 7:46 AM 8:00 AM 7 21 taxi 

11 7:48 AM 8:00 AM 16 21 taxi 

12 7:50 AM 8:00 AM 20 21 taxi 

13 7:51 AM 8:00 AM 6 21 taxi 

14 7:51 AM 8:00 AM 13 21 taxi 

15 7:53 AM 8:00 AM 15 21 taxi 

16 7:53 AM 8:00 AM 11 21 taxi 

17 7:54 AM 8:00 AM 5 21 taxi 

18 7:54 AM 8:00 AM 17 21 taxi 

19 7:56 AM 8:00 AM 9 21 taxi 

20 7:56 AM 8:00 AM 19 21 taxi 
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Table A2. “Base Case Scenario” commuter specific mode attributes 

Person 𝒊 ETT_taxi 
(min) 

ETTcar 
(min) 

C_taxi 
($) 

X_taxi_time 
(min) 

X_car_cost 
($) 

X_car 
(min) 

1 43.18 12.40 10.48 43.18 12.40 10.48 
2 42.70 11.91 10.48 42.70 11.91 10.48 

3 41.83 11.04 10.48 41.83 11.04 10.48 

4 41.11 10.32 10.48 41.11 10.32 10.48 

5 40.76 9.97 10.48 40.76 9.97 10.48 

6 39.41 8.62 10.48 39.41 8.62 10.48 

7 37.60 6.81 10.48 37.60 6.81 10.48 

8 43.66 16.14 15.60 43.66 16.14 15.60 

9 43.53 15.77 15.43 43.53 15.77 15.43 

10 42.55 13.57 14.18 42.55 13.57 14.18 

11 41.62 11.35 12.98 41.62 11.35 12.98 

12 40.80 9.63 11.94 40.80 9.63 11.94 

13 39.45 9.00 10.20 39.45 9.00 10.20 

14 38.87 8.88 9.46 38.87 8.88 9.46 

15 39.19 6.84 9.87 39.19 6.84 9.87 

16 38.72 6.35 9.27 38.72 6.35 9.27 

17 36.01 5.89 5.80 36.01 5.89 5.80 

18 37.14 5.28 7.24 37.14 5.28 7.24 

19 37.26 3.56 7.40 37.26 3.56 7.40 

20 36.87 3.32 6.90 36.87 3.32 6.90 

 

 

 

 

Table A3. Simulated traits of the first sampled population 

Person 𝒊 𝜺𝒂𝒖𝒕𝒐,𝒏𝟏 𝜺𝒕𝒂𝒙𝒊,𝒏𝟏 

1 0.82 -0.26 
2 2.57 -0.25 
3 -0.12 -1.34 
4 0.01 -0.52 
5 3.11 -0.85 
6 -0.02 -0.35 
7 0.48 0.16 
8 1.77 4.21 
9 -1.04 0.58 

10 -0.38 4.34 
11 -1.68 -0.30 
12 -0.03 0.59 
13 0.23 0.68 
14 0.09 0.36 
15 -0.81 -0.52 
16 1.45 1.67 
17 0.79 0.42 
18 0.87 0.90 
19 -0.28 1.95 
20 -1.16 -0.11 
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