
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

Adopt: A Context-Aware Domain Ontology-Based
Framework For Public Transportation
Petar Kramaric
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Kramaric, Petar, "Adopt: A Context-Aware Domain Ontology-Based Framework For Public Transportation" (2012). Theses and
dissertations. Paper 1542.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1542?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

ADOPT: A CONTEXT-AWARE DOMAIN ONTOLOGY-BASED FRAMEWORK FOR

PUBLIC TRANSPORTATION

By

Petar Kramaric

B.Sc, Ryerson University, 2009

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2012

© Petar Kramaric 2012

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

ADOPT: A CONTEXT-AWARE DOMAIN ONTOLOGY-BASED FRAMEWORK FOR

PUBLIC TRANSPORTATION

Petar Kramaric

MSc, Computer Science, Ryerson University, 2012

Understanding dynamic environments is a problem that many developers face when developing

mobile applications for a particular domain. Dynamic environments can contain large sets of

objects, people, and places that have varying characteristics and attributes that are constantly

changing. Therefore, understanding all of the domain concepts and their relationships is a

challenge for many application developers. To solve this problem an ontology based framework,

ADOPT (context-Aware Domain Ontology-based framework for Public Transportation) was

constructed to provide application developers with the necessary tools and concepts that will

allow them to quickly create and personalize mobile applications for the public transportation

domain even if they have a limited knowledge of the domain. The goal of ADOPT is to provide

application developers with a better understanding of their desired domain in order to personalize

an application to meet the travel needs of various different types of passengers.

iv

Acknowledgements

I would like to thank my supervisor Dr. Hossein Rahnama, without whom this thesis could not

have been possible. He has devoted countless hours mentoring and guiding me through this

process without any hesitation. He has provided me with the foundations needed to achieve my

goals and helped me solve problems that I thought were unsolvable.

To my co-supervisor, Dr. Alireza Sadeghian, to whom I own many thanks. Without his insights

and encouragement I would never have embarked on this journey three years ago. His

willingness to guide a young undergraduate will never be forgotten. I would like to thank him for

his patience and willingness to let me explore my ideas and never once hold me back.

I would also, like to thank my parents and brother for encouraging me to achieve anything that I

set my mind to. Without their love and support I would not be where I am today. They have

supported me throughout all of my life’s challenges without a second thought and for that I am

truly thankful.

Finally, I would like to thank Karen D’Souza. There are no words to explain how much she has

supported me over the past several years. Every time I wanted to turn my computer off and do

something else, she has been there to turn it back on and encourage me to continue. I can

honestly say that I am truly lucky to have you in my life.

v

Dedication

This thesis is dedicated to my grandparents who taught me that no matter what life throws at you,

if you show kindness, perseverance, and determination you will be able to get through anything.

vi

Table of Contents

Author’s Declaration ... ii

Abstract .. iii

Acknowledgements .. iv

Dedication ... v

Table of Contents ... vi

List of Figures .. viii

List of Tables .. xii

List of Expressions ... xiii

Chapter 1. Introduction ... 1

1.1 Motivation ... 1

1.2 Problem Description ... 5

1.3 Objectives ... 8

1.4 Thesis Outline ... 10

Chapter 2. Background and Related Work ... 12

2.1 Context-Aware Computing ... 12

2.2 Context and Mobile Sensing ... 15

2.3 Context Abstraction .. 19

2.4 Context Modeling and Synthesis in Dynamic Spaces .. 24

2.4.1 Key-Value Modeling .. 25

2.4.2 Graphical Modeling .. 26

2.4.3 Logic-Based Modeling.. 27

2.4.4 Ontology-Based Modeling .. 28

2.5 Context Distribution.. 31

2.6 Contextual Information and Intelligent Transportation Systems (ITS) 36

Chapter 3. Methodology ... 43

3.1 Requirements of Context-Aware Systems .. 43

3.2 Ontology Structure .. 45

3.3 Top-Level Ontology.. 47

3.4 Domain-Specific Ontology Designed For Public Transportation 51

3.4.1 Entity Types .. 52

3.4.2 Scopes ... 64

vii

3.4.3 Representations ... 71

3.5 System Architecture Model .. 78

3.5.1 Context Models ... 80

3.5.2 Component Plans .. 82

3.5.3 Utility Functions ... 84

3.6 Summary of Adopted Methodology ... 87

Chapter 4. Results and Analysis ... 90

4.1 Case-Study: Person with Reduced Mobility (PRM) Application 90

4.1.1 Special Need/Date of Birth Context Specification 91

4.1.2 Location Context Specification ... 94

4.1.3 Network Signal Strength Context Specification 96

4.2 Approaches to Application Implementation ... 99

4.2.1 Linear Key-Value Modeling Approach .. 100

4.2.2 Proposed Ontology Modeling Approach .. 102

4.3 Results of Linear and Proposed Ontology Modeling Approaches...................... 113

4.3.1 Testing Environment ... 114

4.3.2 Case Study Results .. 115

4.3.3 Focus Group Results ... 122

Chapter 5. Conclusion .. 126

5.1 Contributions... 126

5.2 Limitations .. 128

5.3 Future Research .. 129

Appendix 1. List of Acronyms.. 132

References ... 134

viii

List of Figures

Figure 1.1 - The public transportation domain consists of people always on the move with

various needs ... 3

Figure 2.1 - Fundamental concepts of context-aware computing ... 15

Figure 2.2 - Examples of different types of context information determined by various sensors 16

Figure 2.3 - Context abstraction levels ... 20

Figure 2.4 - Context modeling techniques .. 24

Figure 2.5 - Various examples of key-value pairings ... 26

Figure 2.6 - Example of simple ORM fact type.. 27

Figure 2.7 - Example of a real estate ontology that can determine where a specific person is

located ... 29

Figure 2.8 - Example of an airport ontology that can determine where a specific person is located

... 30

Figure 2.9 - Distribution through a centralized server approach .. 32

Figure 2.10 - Example process of steps for peer-to-peer context distribution 34

Figure 2.11 - Example of a travel ontology for context grouping through the Interest concepts . 35

Figure 2.12 - Examples of context aware concepts within ITS .. 37

Figure 3.1 - Architecture of the system ontologies [65] ... 46

Figure 3.2 - Top-level ontology concepts [65] ... 48

Figure 3.3 - Example of incorporating a person entity type within the top-level ontology 49

Figure 3.4 - Example of multiple representations for location scope [65] 50

Figure 3.5 - Public transportation domain entity type subclasses ... 53

Figure 3.6 - Sample list of person entities before filtering out occupation-based persons 53

ix

Figure 3.7 - Sample of grouping maintenance employee entities ... 55

Figure 3.8 - Applying application specific entities to the ADOPT ontology 57

Figure 3.9 - ADOPT person entity type .. 58

Figure 3.10 - Sample subclasses of Device Entity .. 60

Figure 3.11 - Sample of device resources entity type ... 61

Figure 3.12 - Sample of vehicle resource entity type ... 62

Figure 3.13 - Sample of place resources ... 63

Figure 3.14 - Example of scopes that can/cannot be characterized by entity types within ADOPT

... 64

Figure 3.15 - Example of location basic scopes ... 65

Figure 3.16 - Example of application reconfiguration based on changes to NetworkStrength

scope ... 68

Figure 3.17 - Sample basic scopes with corresponding entity types .. 68

Figure 3.18 - Example of basic and composite scopes for a screen entity type 69

Figure 3.19 - Example of using multiple composite scopes to create a LatenessComposite scope

... 71

Figure 3.20 - Ontological structure of basic representations .. 73

Figure 3.21 - Example of associations between basic scopes and basic representations 74

Figure 3.22 - Example of BatteryLife scope with multiple representations 75

Figure 3.23 - AddressRepresentation example using object property restrictions 78

Figure 3.24 - ADOPT Architecture .. 80

Figure 3.25 - Generic context model for basic and composite scopes .. 81

Figure 3.26 - Example of location context model ... 82

x

Figure 3.27 - Generic component type definition ... 83

Figure 3.28 - Example of component type definition through atomic and composite realizations

... 84

Figure 3.29 - Example of a utility function for the location component 85

Figure 3.30 - Graph representing all of the threshold values described in Table 3.2 87

Figure 3.31 - Sample of proposed public transportation ontology ... 89

Figure 4.1 - Disability context model for PRM application ... 92

Figure 4.2 - Date of birth context model for PRM application ... 92

Figure 4.3 - PRM screenshot layout for passenger with no disability .. 93

Figure 4.4 - Distinction between activating the destination service through grid and gesture based

layouts ... 94

Figure 4.5 - Location context model for the PRM application ... 95

Figure 4.6 - Example of service availability at different stations ... 96

Figure 4.7 - Network signal context model for PRM application ... 97

Figure 4.8 - High and low bandwidth layout variants of information service 98

Figure 4.9 - Example of the hasStation and hasCellTower object properties 103

Figure 4.10 - PRM user interface variants .. 105

Figure 4.11 - Example of contextual information associated to particular atomic realization ... 106

Figure 4.12 - Example of the PRM user interface composite realization 106

Figure 4.13 - PRM component realizations .. 107

Figure 4.14 - Sample utility function for determining user interface variants............................ 108

Figure 4.15 - Graph depicting all of the threshold values for the user interface utility 109

Figure 4.16 - Utility function for signal strength .. 110

file:///D:/University/Dropbox/Thesis%20Sections/Completed%20Writings/MScThesisPetarKramaricFinal%20Revisions.docx%23_Toc335180591

xi

Figure 4.17 - Graph depicting all of the threshold values for the signal strength utility 111

Figure 4.18 - Person with Reduced Mobility Application Architecture 112

Figure 4.19 - Screenshots of GO Mobile .. 113

Figure 4.20 - Times in milliseconds of all standard user interface initializations 117

Figure 4.21 - Times in milliseconds of all mobility user interface initializations 117

Figure 4.22 - Times in milliseconds of all sight user interface initializations 118

Figure 4.23 - Time taken in milliseconds for the location component to reconfigure................ 119

Figure 4.24 - Minimum time needed for TTS component to reconfigure upon obtaining disability

context ... 120

Figure 4.25 - Charted time to reconfigure a service from low to high signal strength 121

Figure 4.26 - Charted time to reconfigure a service from high to low signal strength 122

xii

List of Tables

Table 2.1 - Examples of static and dynamic context information .. 17

Table 2.2 - Examples of cues and contexts ... 23

Table 2.3 - Examples of logic-based first order predicates .. 28

Table 2.4 - Examples of common characteristics for context grouping 34

Table 3.1 - Examples of indoor and outdoor place entities .. 58

Table 3.2 - Example of threshold values that correspond to a particular location variant according

to Figure 3.29 .. 86

Table 4.1 - Signal strength thresholds... 97

Table 4.2 - Summarized process of create a linear PRM application ... 102

Table 4.3 - Examples of individuals and their properties ... 104

Table 4.4 - Utility function values and their corresponding user interface variants 109

Table 4.5 - Signal strength threshold values used for reconfiguration 110

Table 4.6 - Four specific PRM scenarios for which quantitative measure are calculated 115

Table 4.7 - Average time to initialize the user interface (milliseconds) 116

Table 4.8 - Average time to retrieve and display the relevant service at various Paris metro

stations (milliseconds) .. 118

Table 4.9 - Average time for TTS activation/deactivation (milliseconds) 120

Table 4.10 - Average time for reconfiguration of low and high signal strength services

(milliseconds) .. 121

Table 4.11 - Time, in minutes, it took each participant to research and implement task 1 124

Table 4.12 - Time, in minutes, it took for each participant to research and implement task 2 ... 125

xiii

List of Expressions

Expression 2.1 - Example of key-value pair ... 25

Expression 2.2 - Structure of Subject Verb Object predicates .. 28

Expression 2.3 - Example of context definition using ScudWare [62]... 41

Expression 3.1 - Implementation format of a class restriction ... 74

Expression 3.2 - Example basic Boolean representation .. 74

Expression 3.3 - Example of restriction with hasUnit property ... 76

Expression 3.4 - Example of a restriction that allows for multiple units to be declared 76

Expression 3.5 - Example of declaring contextual information through enumerations 76

Expression 3.6 - Generic context model element definition ... 81

Expression 4.1 - Sample of key-value pair for PRM application ... 101

Expression 4.2 - Range calculation ... 116

1

Chapter 1. Introduction

1.1 Motivation

The seamless integration of computer systems into the objects and places that people encounter

on a daily basis is slowly becoming a reality. This integration is often achieved through sensor

embedded devices that are incorporated into the environmental spaces that people navigate every

day such as their homes, workplaces, universities, and vehicles [1]. Through this integration,

computational systems are able to obtain an extraordinary amount of data that pertains to our

lives in an effort to make our daily tasks more efficient. These sensor-based spaces are able to

collect information that can characterize our habits, routines, and schedules in order to

personalize a person’s experience within a designated space.

In recent years, with the advent of powerful mobile phones, smart spaces have become

increasingly dynamic entities that are no longer constrained to a physical location. Mobile

phones have given computer systems the ability to conceptually construct smart spaces

anywhere with only limited infrastructure needed. They can provide computational systems with

user-centric information such as a person’s location, profile, calendar information, contacts, and

any other data pertaining to the user. Despite all of this available data, most computational

systems still require the user to search for data that is relevant to them at a particular time. They

require users to search for things such as near-by restaurants, directions from one location to

another, and schedules for upcoming buses and trains, instead of providing this data

automatically based on the environment variables that surround the user. Providing data

automatically becomes even more problematic in very dynamic environments which consist of

thousands of different types of object and people constantly leaving and entering the designated

smart space. Therefore there is a need to create computational systems that can fully understand

2

and process all of the various environment variables within a particular domain. By detecting

changes to these environment variables, computational systems have the ability to inform people

with information that is relevant to them at a particular period of time.

Designing such computational systems for dynamic spaces can, however, become an ominous

task for developers, especially if they are not considered experts within a particular domain. For

purpose of this document domain experts also known, as domain analysts, are people who have

specific knowledge about a particular discipline and can create a knowledge base that consists of

a domain’s attributes, objects, and characteristics [2]. To create functional applications,

developers must understand all of the environment factors that can be used to determine specific

information within each smart space, as those environment factors will be used to determine

what actions can be taken by the application to enhance the experience of people within the

space. Unfortunately, developers do not always know or fully understand all of the environment

variables available to them to within a particular space. This is especially concerning as spaces

slowly become more and more dynamic therefore increasing the strain placed on developers as

they must understand all the changing environment variables within each space. Hence, there is a

need to create computational systems that developers, who are not considered experts, can use to

obtain the necessary knowledge needed to create their own applications. These applications can

then be used to enhance the user experience of people located within a particular smart space.

One such environment that encompasses many of the dynamic properties discussed above is the

public transportation domain. The public transportation domain is comprised of thousands of

different types of users, equipment, objects, and vehicles that are constantly changing within the

domain. This is especially evident with travelling passengers as they have varying

characteristics, attributes, ambitions, and objectives within their time of travel [3]; hence creating

3

applications that are personalized to each type of user in a domain can be an overwhelming task

for developers of public transportation applications.

Figure 1.1 - The public transportation domain consists of people always on the move with various needs

Additionally, in recent years there has been a steady increase in the amount of passengers that

travel using various public transportation methods in Canada [4]. This steady increase can be

attributed to various reasons that include saving time and money as well as reducing the amount

of vehicle emissions to better protect the environment [5]. At the same time, there has been

numerous government based initiatives that encourage the creation and expansion of public

transportation systems through monetary measures [4], [6]. With the overall increase in public

transportation ridership, there is a need for transportation operators to improve the travel

experience of, not only new passenger, but also passengers who have an elevated knowledge of

their daily commutes. As public transportation systems are comprised of thousands of different

4

types of users, improving the transportation experience of every user on an individual basis can

create an extraordinary drain on the people operating public transportation systems. This is

especially evident when problems arise that are out of the control of transportation operators

which includes issues that occur on a daily basis such as breakdowns, delays, malfunctions and

system complexity that can cause problems to passengers of all forms. Issues such as delays are

especially worrisome because they are often provoked by unexpected factors such as roadside

accidents, power outages, weather conditions, and traffic congestion which are often unknown to

passengers. Therefore, there exists a need for transportation operators to programmatically obtain

all of the environment variables from embedded sensors that can be found within the public

transportation domain. Using the data retrieved from these sensors, operators can better provide

information about actions such as vehicle delays, passenger detour options, vehicle arrival time

expectations, and causes of any machine malfunctions to their passengers. In order to provide

better information to passengers, application developers must understand how all of the problems

and issues that arise in the public transportation domain can directly affect a passenger’s travel

needs. These sorts of queries are often impossible to characterize by non-expert developer as no

reference point is provided. Additionally, improving the travel experience also includes

providing passengers with various entertainment options, points of interests, and social

interaction to keep them busy as their travels might be long and tedious [7].

With the rapid expansion of powerful mobile devices, the task of enhancing a passenger’s user

experience is becoming less burdensome to transportation operators. To achieve the goal of a

smart public transportation space, transportation operators have the ability to obtain specific

information either directly from a passenger’s mobile device or through the sensors embedded

within stations, vehicles, environment, and other various objects found within the public

5

transportation domain. Using this sensor-based information transportation operators have the

ability to personalize the information that each passenger receives on their mobile device. This

information can provide vital data about any possible delays, malfunctions, breakdowns, etc. that

impact the travel patterns of passengers as well as inform them of alternative measures that

might improve their travel. However, understanding the needs and wants of thousands of

passengers in large transportation systems can become a cumbersome task. Therefore, there is a

need to create intelligent automatic systems that define all of the various elements found within

the public transportation domain and how they are related to each other. By using such systems,

application developers have the ability to better understand how various concepts are associated

to each other and therefore create mobile applications that can better inform passengers of

information that is relevant to them at a particular time.

1.2 Problem Description

Understanding the public transportation domain is a task that can be overwhelming to developers

who are not considered experts within the domain. With the large number of sensor-based

information available, the initial construction of a public transportation mobile application can be

delayed due to the amount of research time needed to obtain all of the information needed to

create a dynamic application. Therefore, the need for a computational system that defines all of

the available environment information and their relationships is evident. With this computational

system in place, application developers would be able to eliminate or at least reduce the amount

of research needed to build a fully functioning mobile application for the public transportation

domain.

In addition, to create a developer-friendly environment for creating public transportation

applications there is a need to make these application dynamic and personalized to the individual

6

user of the application in order to provide more relevant information. Currently there are

numerous mobile applications that inform passengers of various information that is provided to

them by their public transportation operator of choice [8] [9] [10]. However, this information is

most often provided in a static format such as vehicle schedules, route maps, trip planners, and

near-by points of interest [11]. Although this information provides users with some valuable

information that can be used to enhance their travel experience, it rarely personalizes the data

presented based on the identity of the passenger using the application and what their objectives

within the public transportation system are. Through the use of an intelligent public

transportation computational system, application developers, who are not considered experts,

have the ability to understand how specific environment variables can directly affect a

passenger’s travel; hence they would have the ability to customize/personalize the application

experience for a user based on these variables obtained from the environment.

Currently there are applications that use various vehicle-based environment variables in order to

inform the passengers of a more accurate time that their vehicle will be arriving at their desired

destination [12], [13]. However, these applications do not provide passengers with any additional

features during the delay of the vehicle that can improve their travel experience such as their

surrounding points of interest. Therefore, there is a lack of mobile applications that retrieve a

combination of both static and dynamic information simultaneously in order to provide the

passenger with information that is relevant to them at a particular time.

There is also a lack of mobile applications that present relevant travel information in a user-

specific format that is most suitable to the user of the application. This is especially evident with

passengers that have a special need or a disability that might impede them from using their

mobile phone devices in the same way that a general passenger would. People with special needs

7

and disabilities should not be exempt from using an application because it does not suit their

needs, instead application developers should consider their limitations and restrictions when

designing an application and incorporate the necessary adjustments in order to maximize the

number of people that can functionally use the application. This is often the case with people

who have sight and cognitive disabilities as well as elderly passengers that use public

transportation methods as a vital avenue for getting from one place to another due to their lack of

ability in operating an automobile [14]. Yet, many mobile applications provide these passengers

with only limited accessibility features, if any at all, making these public transportation

applications unusable by passenger who perhaps need their relevant transportation information

most. The reason for this is that application developers often do not understand how a

passenger’s accessibility needs are affected within the public transportation domain. By

developing applications through a computational system that defines the necessary information

needed to determine if a user has a disability, application developers have the ability to

personalize the experience of those user’s within the mobile application. Public transportation

systems also contain passengers that speak hundreds of different languages, which creates a need

to alter the represented information on a mobile device in order to meet the needs of diverse

populations. Hence understanding the user of the application is vital to providing them with the

necessary information in a format that most suits the passenger.

Through these examples it is evident that there is a need to provide a computational system that

defines all of the relevant information found within a public transportation domain. Using such a

system, application developer will have the ability to personalize specific information based on

who the user is and what environment variables can be obtained around them. However,

currently there is a disjoint from making information personalized and flexible due to a lack of

8

developer understanding of the public transportation domain. Therefore, current public

transportation applications are generally directed towards the general population and lack any

form of personalization based on who is using the application. Creating a system that can obtain

information from both the passenger and the environment could be used to enhance the

experience of a passenger [15]. This is especially true when the passenger is a frequent user of a

public transportation system and their travel needs and patterns can be observed and collected

over an extended period of time. Therefore, there is an eminent need to create a computational

system that informs mobile applications of any changing information that could result in a more

personalized experience for the user. This system needs to also be able to reconfigure various

software-based components of an application in order to suit a passenger’s growing needs

automatically, rather than having the passenger search for the necessary information manually.

1.3 Objectives

Based on the problems described in the previous section, the objective of the presented thesis is

to describe a framework that provides application developers with the necessary tools needed to

create dynamic personalized public transportation mobile applications. The objective of the

proposed framework known as ADOPT, context-Aware Domain Ontology-based framework for

Public Transportation, is to provide application developers with the relevant relationships

between all of the concepts and objects found within the public transportation domain. Using

these concepts and relationships, application developers have the ability to define how changes

to public transportation based objects can directly affect the functionality of their ADOPT-based

mobile applications. Based on these changes, ADOPT-based mobile applications have the ability

to reconfigure various software components based on the needs of the passenger that is affected

by these changes. ADOPT uses an ontological structure in order to define the various user and

9

environment variables that encompass all of the concepts found within the public transportation

domain. It was built as a public transportation domain ontology that integrates with the MUSIC

context ontology presented by Reichle et al. [16]. Therefore, another objective of the

proposed ADOPT framework is to allow application developers to create multi-user experiences

that automatically reconfigure software components based on both the individual user’s

attributes and characteristics as well as the environment variables obtained from embedded

device sensors.

The reconfiguration aspect of ADOPT is critical to this framework as there is a need to

personalize each software component of the application based on the needs of the passenger. By

creating mobile applications that reconfigure based on what is occurring within a passenger’s

environment, both transportation operators as well as third-party application developers have the

opportunity to improve applications by providing dynamic content in a personalize fashion to

each individual user. The objective of this feature is to enhance a passenger’s experience while

traveling through the public transportation domain. The focus of ADOPT was, however, not to

introduce all the possible reconfiguration methods that application developers can use to

instantiate reconfigurations, but rather build a framework that allows application developers to

incorporate their own sensors and define how the retrieved sensor information should be used to

reconfigure their target applications. In addition, ADOPT, provides a blueprint that application

developers can use in order to quickly and efficiently build mobile application for the public

transportation domain even if the developer is not considered an expert.

To demonstrate the advantages of ADOPT, an objective of the ontology based solution was to

reduce the amount of time it took for software components to reconfigure once new sensor

information was obtained from the embedded environment and device sensors. Additionally,

10

ADOPT was built as a pluggable ontology that allows application developers to build their own

sensors that can detect various environment variables and include them into the system in order

to expand the system’s usability. This allows developers to use pre-built sensor retrieval methods

that allow an application to register to incoming sensor information about delays, promotions,

route information, and any additional information deemed suitable by the application developers

and/or transportation operators.

In addition to the proposed contribution, the author of this thesis was a contributing member of

the overall development of the MUSIC platform [17] which was designed by various research

and industry partners. The MUSIC platform was used as the basis for the thesis presented in this

document.

1.4 Thesis Outline

This chapter provided the introduction to the proposed thesis and outlines the motivations,

presents the problems currently facing dynamic public transportation domains, and provides the

contributions that will solve the described issues. Chapter 2 presents all of the background

information and related work needed to fully understand the concepts presented in this thesis. It

will focus on the characteristics, attributes, and concepts that pertain to dynamic spaces. The

concept of context-aware computing and its association to dynamic spaces and objects will be

introduced and examined in this chapter. Sections 2.2, 2.3, 2.4, and 2.5 and will focus on the

various principles and characteristics that can be associated to context-aware computing in order

to provide a more thorough understanding of dynamic spaces. Section 2.6 will focus on linking

the concepts discussed in the previous sections to the public transportation domain as the concept

of Intelligent Transportation Systems (ITS) will be examined in detail.

11

Chapter 3 introduces the proposed ADOPT solution for a public transportation domain, and in

section 3.4, examines all of the concepts and models that were implemented into the public

transportation ontology. Section 3.5 provides the system architecture of how the ontology can be

used to create fully functional mobile applications designed for public transportation. The goal of

this section is to introduce a solution that will incorporate the context-aware principles discussed

in Chapter 2 into a dynamic space such as that of public transportation.

Chapter 4 provides all of the quantitative and qualitative results that prove that the ADOPT

solution, described in Chapter 3, does in fact provide an improvement over linear key-value

based systems. This chapter, also, introduces a case study of a mobile application that was

implemented through both linear key-value models and the ADOPT framework, in an attempt to

personalize a metro passenger’s travel experience by reconfiguring various software components

based on changing sensor information. Chapter 4, also, demonstrates through quantitative results,

that the ADOPT framework can be used to reconfigure system components faster than standard

linear key-value solutions, therefore providing a more optimal solution for context-aware public

transportation mobile applications. Qualitative results in this chapter will discuss how research

time can be reduced through the use of ADOPT as all the necessary public transportation

concepts are already built into the framework.

Finally, Chapter 5, provides a summary of the presented work in this thesis, it discusses some

limitations to the current ADOPT framework as well as propose future work that can further

enhance the overall system.

12

Chapter 2. Background and Related Work

Public transportation systems provide an ideal environment to demonstrate how sensor-based

information can be highly dynamic and ever-changing. Public transportation systems consist of

thousands of diverse people who all have different objectives, emotional states, identities and are

constantly moving from place to place. This makes it an ideal candidate for the integration of the

context-aware principles discussed in this chapter which aims to provide a thorough review on

the concepts, principles and foundations of context-aware computing. These concepts and

principles include context and mobile sensing; the collection of data from physical, virtual, and

logical sensors, context abstraction; the transformation of raw data into high level data an

application can process, context modeling and synthesis; the formal representation of data within

a model and its reasoning techniques, and context distribution; the collection of context from

various devices and its distribution to all other devices within the system. In order to demonstrate

these four concepts a review of the Intelligent Transportation Systems (ITS) literature and the

challenges facing both research and the industry will be discussed.

2.1 Context-Aware Computing

The first notions on context-aware computing were introduced by Weiser [18] who described a

new form of computing, known as ubiquitous computing, that would vanish into the background

by seamlessly integrating into the devices that people use every day. One of the fields that

emerged from this vision was context-aware computing, which details the need to create

computational systems that can adapt and reconfigure their behavior, without interaction from

the user, in order to increase productivity, usability, and effectiveness of a system [19]. Theses

adaptations/reconfigurations in context-aware computing are triggered by changes to context

variables defined within a system.

13

The term context was first conceived by Schilit and Theimer [20] who originally equated it to

any information that can be used to characterize how a mobile user is situated in a particular

environment or scenario. Schilit and Theimer further elaborated on their definition by identifying

context as the locations and identities of nearby people and objects. As the term context matured,

alterations to the original definition were suggested by other researchers such as Ryan, et al. [21]

who claimed that a user’s location and identity did not provide sufficient information for a

system to fully characterize a user’s environment. Therefore, they added time to the original

definition. Time is a contextual characteristic that allows a system to understand a user’s history

and/or behavioral patterns which can be used to obtain a more precise understanding of what a

user’s objectives are within a specific scenario/domain.

Dey et al. [22] took these ideas a step further and defined context as “Any information that can

be used to characterize the situation of entities (i.e., a person, place, or object) that are considered

relevant to the interaction between a user and an application, including the user and the

application themselves. Context is typically the location, identity, and state of people, groups,

and computational and physical object”. Although this definition seems quite broad it entitles all

the necessary information needed to define context. In essence, context can be described as any

relevant information used to characterize a specific scenario. By using contextual information in

a particular scenario, a system has the ability to provide relevant information and/or services

based on the information collected [23]. This can be seen in early projects such as Stick-e Notes

[24] where based on a user’s location, a set of user created notes were made available on their

mobile device. By detecting changes to the contextual information, in this case location changes,

applications are able to initiate the desired reconfigurations defined within the system

architecture. In the Stick-e Notes project, as the user changes their location, their mobile device

14

automatically reconfigures by changing the displayed notes on the user’s screen to reflect the

notes of the new location. If however, in a certain location no notes are available then nothing is

displayed to that user. Since context-aware systems need to reconfigure automatically there is a

need to create systems that respond in real-time, are transparent and intuitive, and require users

to perform as little interaction as possible with a device [23].

To better understand the concept of context-awareness, a scenario of a context-based restaurant

finder can be examined. In such a scenario relevant contextual information could include a user’s

dietary needs, meal price range, and/or physical distance to a restaurant [25]. Based on these

contexts, an application can display a list of restaurants that will best suit the user’s current

needs. When any of the defined context variables change, a corresponding change to the result

set of restaurants the application displays is made. For example, if a user has indicated that their

dietary needs are vegan, the result set of displayed restaurants might be significantly different

from a user who has not indicated such a need. Based on all the contexts defined, the goal of a

restaurant finder system would be to provide a relevant set of restaurants based on a user’s needs

by detecting them automatically through the use of embedded sensors. This increases the

usability of a mobile application as it eliminates the need for users to persistently interact with

the application by manually searching for desired information. When deciding which contextual

information is central to a system developers need to understand the domain which their system

will be based within as the inclusion of irrelevant context variables can lower productivity and

slow their system down. Using relevant context information allows the system to reconfigure

only when a need is detected, creating a more efficient and useable the system to its users.

Context-aware systems are made up of four main principles; sensing, abstraction, modeling and

synthesis, and distribution. Section 2.2 will discuss the challenges and issues of context and

15

mobile sensing within a context-aware system. Section 2.3 describes the importance of

abstracting low-level context data into high-level situational data. Section 2.4 defines how sensed

and abstracted data can be modeled and processed by a computer system, and section 2.5 will

conclude with a discussion on the challenges of distributing contextual information throughout a

system. These relationships between these principles can be observed in Figure 2.1.

Collect context
information from

sensors

Derive sensed
data into

situational
information

Context Sensing Context Abstraction

Collect data from
sensors and

devices

Adaptation
Decision Making

Context Modeling
and Synthesis

Distribute
Context data

Context
Distribution

Figure 2.1 - Fundamental concepts of context-aware computing

2.2 Context and Mobile Sensing

The first core function of context-aware systems is the collection and gathering of sensor data in

order to determine the contextual information needed for system reconfiguration. This process is

known as context and mobile sensing. According to Indulska and Sutton [26], context and

mobile sensing can collect data from any of the following sources:

 Physical Sensors; hardware sensors used for detecting physical data. Some examples

include using accelerometers for movements, microphones for audio, electronic

thermometers for temperature, etc.

16

 Virtual Sensors; software services that can detect information stored in databases and/or

other software applications. Some examples of virtual sensors include collecting location

information based on a user’s mobile device calendar which can indicate where a user

should currently be located as well as retrieving information about a user’s friends and

family through a contact list found on their mobile device.

 Logical Sensors; the combination of physical and logical sensors. For example a logical

sensor can be used to get a person’s location based on which desktop that person is

logged into (physical) and a database of where that desktop is physically located (virtual)

[26].

User Information Smartphones

Wireless Sensors

Satellites

Weather Conditions

Databases

Location

Transportation
Information

Sensors

Electronic
Calendars

Context
Information

People Around You

Figure 2.2 - Examples of different types of context information determined by various sensors

Figure 2.2 demonstrates that contextual information can be sensed from a multitude of physical,

virtual, and logical sensors. Due to their dynamic nature, sensors offer an ideal way of detecting

17

and collecting raw context information, however there exist variables that at this present time

cannot be determined through the use of sensors. In order to collect this non-sensor based data, a

context-aware system needs to have the ability to process user-supplied data which the user can

manually enter through a system device [27]. An example of this data is often seen around a

user’s profile and can include information such as dietary needs, religious beliefs, date of birth,

etc. which sensors currently cannot detect. Regardless of the way that data is collected, context

information can be classified as either static or dynamic. Static context is the data that is

permanent and does not change or seldomly changes, while dynamic context refers to data that

changes frequently. Examples of static and dynamic context information can be seen in Table

2.1.

Table 2.1 - Examples of static and dynamic context information

Context Type Examples

Static Date of Birth, Religious Beliefs, Eye Colour, etc.

Dynamic Location, Mobile Device Bandwidth, Time of Day, Temperature, etc.

Knowing whether a context is static or dynamic allows context-aware systems to determine the

appropriate time for collecting contextual data. In context-aware systems there are two main

ways for collecting dynamic data; continuous or event-based [28]. Continuous context sensing

involves the need for a persistant connection with sensors where data can be obtained at specific

intervals that are predefined by a system expert in order to reduce overhead. This is espacially

useful when data is provided through software services and agents using conntection-oriented

protocols. Event-based context data, on the other hand, does not need to be constantly active, but

18

rather activated and deactived based on pre-defined events. An example of event-based sensing

can be seen when determing a user’s location based on Radio-Frequency IDentification (RFID)

tags. When a user enters a room and scans their RFID tag (often found in key cards), a system

event is triggered that indicates that a particular user has changed locations. Continous sensing,

on the other hand, would notify the system at specific time intervals even if the user’s location

has not changed. An advantage of event-based sensing is that it does not rely on the current

system states but rather depends on the changes to those states.

When collecting sensor data, either continously or through events, the notion of imperfect data is

a challenge that is present within all context-aware systems as sensors can become unreliable.

Accroding to Hendrickson and Indulska [27] there are four major categories that imperfect data

can be classified as, they are as follows:

 Erroneous Data; occurs when there is a discrepancy between data received from a sensor

and the actual data. Erroneous data can occur when sensors are programmed incorrectly

resulting in incorrect device data.

 Ambiguous Data; occurs when multiple sensors contradict each other by providing

opposing data. This can be seen when calculating the speed of the same vehicle using

different devices such as speedometers and radar guns.

 Unknown data; occurs when data cannot be retrieved from a sensors. This is often the

case when a mobile device loses connectivity to the server and cannot report specific

data.

 Imprecise data; occurs when data is received that, although correct, is not specific

enough for the system. This occurs when a system is trying to determine a user’s

19

location based on mobile cellular triangulation. Although the system can determine the

limited range of where the user is, their exact location is difficult to calculate.

Despite allowing context-aware systems to process data into context, a single sensor cannot

always fully characterize a context. There are cases where the use of multiple sensors is needed

in order to define a single context; this is known as context fusion. According to Bernardos et al.

[29], context fusion is the process of collecting and combining data from multiple heterogeneous

sensors in order to form more complex and reliable context data. Combining multiple sensors

aids the context-aware system to further understand the environment that a user is currently in as

more data is available to make various assumptions. This can be seen in a context-aware system

that needs to have knowledge of outdoor weather conditions. It is not enough to simply detect

and collect temperature readings from a single device to determine the state the weather is

currently in. The system needs to also obtain data from sensors that detect precipitation, air

pressure, wind speed, humidity, etc. By combining these readings, the context of “how the

weather is outside” can be determined more reliably and effectively than simply using the

temperature sensor. Then based on the weather conditions outside, the context-aware system can

reconfigure its behaviour accordingly.

2.3 Context Abstraction

After a context-aware system has collected all the necessary data from the sensors it needs to be

able to understand the data by converting it into contextual information that the system can

process. This is done through context abstraction. Context abstraction interprets the raw data

received from the sensors into something more meaningful to the system. Raw data, often

referred to as low-level data, consists of quantitative data that is received directly from a sensor

such as the precise temperature reading in Degrees Celsius or physical locations of objects using

20

geographic coordinates [30]. Context-aware systems can manipulate this quantitative data into

context variables that the system can process. For example the temperature reading of a room at

a raw data value of 25.2 Degrees Celsius, without any interpretation, is meaningless to a context-

aware system without the data being abstracted. Therefore, the raw data needs to be processed

using intelligent interpretation to form what is known as high-level abstracted data [31]. Using

the same example of temperature, by preforming high-level abstraction a system can determine if

the temperature reading indicates that the room is “too hot”, “too cold”, “just right”, etc. which

can then be used to determine if system reconfiguration should occur. Another form of

abstraction, according to Dey [32], is known as situational abstraction which combines multiple

high-level abstracted contexts to get a better understanding of what is currently happening within

the system domain. Examples of situational abstraction include determining, based on the

defined contexts, whether a user is “in a meeting”, “eating lunch”, etc.

Devices

Toward
s A

bstr
acti

on

Raw Sensor Data

High-Level Abstration

Situational Abstration

“25 C”

“80 km/h”
“60 dB”

“Too Cold”

“Stationary”

“In a Meeting”

“Sleeping” “Jogging”

“Sunny”

Figure 2.3 - Context abstraction levels

21

By determining situational contexts, computational systems are able to get a better understand of

what states its entities, such as users, are, therefore providing a better understanding of which

software component might need to be reconfigured. Figure 2.3 demonstrates how raw data, high-

level data, and situationally abstracted data are associated to each other, in this case, the higher

the level the more abstracted the context is.

In order to create high-level and situationally abstracted contexts, the use of widgets,

interpreters, and aggregators was proposed as part of the Context Toolkit architecture [22]. The

goal of widgets, interpreters, and aggregators is to transform the data received from sensors into

contextual information defined by the computational system. Context widgets provide the link to

the encapsulated raw sensor data that can be reused by any application across any domain. For

example a presence widget [22] can be used to determine who is currently present in a particular

room based on the RFID tags that are scanned whenever someone enters and leaves a room. N

general the advantages of widgets according to Dey et al. [22] are as follows:

 Hiding Complexity; manipulate the sensor response data into data an application can use

 Abstract Context Information; to suit the needs of an application

 Provide reusability; can be used by various applications at the same time

Interpreters, on the other hand, are responsible for increasing the abstraction levels of particular

context information. According to Dey et al [22], raising the abstraction levels of a context

variable can come in two forms:

 Simple; raising the abstraction of context data retrieved from a single widget, such as

converting geo-coordinates into city names using a geographic information database.

22

 Complex; raising the abstraction of context data retrieved from a combination of widgets,

such as determining if a meeting is occurring by using a presence widget, and a sound

level widget [22]. Situational abstraction is usually determined through complex

abstraction as multiple widgets are often needed to define a particular situation.

Finally, aggregators are used for collecting related contextual information relevant to an

application. They deliver specific context information from the widgets to the application itself

in order to reduce the complexity that an application may face when collecting context from

multiple widgets. Aggregators allow the application to retrieve information about a specific

entity from one source rather than having to retrieve it from multiple sources.

According to Schmidt et al. [33], an alternate way to abstract raw sensor data into complex

situational data is through the use of cues, contexts, and scripts which are particularly useful

when dealing with sensor fusion principles discussed in section 2.2. Cues take the input received

from the sensors and transform it into a symbolic output based on a pre-defined set of possible

values, such as “stationary” or “walking” which can be used for determining user movement.

Every cue is assigned to a single sensor; however multiple cues can be dependent on a single

sensor [33]. For example there could exist two cues that are created based on a single

accelerometer sensor; one cue can be used to determine if a user is “stationary” or “moving”

while another cue, based on the same sensor, can determine the orientation of a mobile phone as

either “landscape” or “portrait”.

By combining the data received from multiple cues, further abstraction is performed to create

contexts that can be used to define a particular situation [33]. Table 2.2 displays some examples

of cues that can be transformed, using intelligence methods, to create contexts.

23

Table 2.2 - Examples of cues and contexts

Contexts Cues

Sleeping Artificial light, stationary or moving, room noise, room location

Jogging [33] Natural light (cloudy or sunny), walking or running, dry or raining, high

pulse

Finally the scripting layer determines whether a context is being entered, left, or neither in order

to determine when system reconfiguration should occur [33]. When retrieved data from a cue

results in a change to a context, the new context information is considered to be the entering

context, while old context is considered to be the leaving context. For example, when a user

movement context changes from “moving” to “standing”, the entering context is “standing” and

the leaving context is “moving”. The goal of using these levels of abstraction is to allow an

application developer to fully characterize any situation relevant to an application. The number

of cues and contexts that one creates are usually in direct correlation with how complex a

context-aware system is. In most cases, the more complex a scenario is, the more sensors, cues,

and contexts are built into the system.

Context abstraction models affect the reliability of every context-aware system as they can

reduce the level of complexity when dealing with raw sensor data. Abstraction allows the

application developers the opportunity to use the data obtained from sensors in order to create

contextual variables which can be used to reconfigure an application. Without abstraction, it is

difficult for a system to determine what the user is doing and whether or not the system should

behave differently in a particular situation. Whether it is through the use of cues, interpreters, or

24

any other mechanisms, abstraction allows an application to process the situation that a user is

currently in.

2.4 Context Modeling and Synthesis in Dynamic Spaces

Along with the ability to sense and collect contextual data, context-aware systems need to have

the capability of storing sensed and abstracted data in a machine processable form in order for

system reconfiguration to successfully occur [19]. By having the ability to process the sensed

data and convert it into data the system can understand, abstraction is allowed to occur. This is a

critical aspect of any context-aware system and is known as context modeling. Context modeling

addresses the need of demonstrating how various context variables interact with each other in

order to validate that a particular situation is occurring. For contextual representation to be

modeled, a data model should be conceived for storing information about the context of a

particular event [34]. Due to the highly dynamic nature of context-aware systems, a good context

modeling schema should reduce complexity, improve the maintainability, and provide reusable

components [35]. A summary of the various context modeling techniques used in context-aware

systems can be seen in Figure 2.4.

Key-Value
Model

Graphical
Model

Logic-Based
Model

Ontology-
Based Model

Context Modeling
Techniques

Figure 2.4 - Context modeling techniques

25

Along with representing the contextual data within a model structure, context-aware systems

need to be able to deduce the contextual information found within a model to allow the system to

process which situation is occurring. By determining which situation is occurring, the system can

decide software component should be reconfigured; according to Zhang et al. [36] this is known

as context synthesis/reasoning.

2.4.1 Key-Value Modeling

A data structure that can be used to model contextual information is a Key-Value Model (KVM).

In order to reduce the complexity of contextual information KVMs use pairs of keywords and

values for each system defined context variable. However, as the complexity of context-aware

systems increases, the simplistic nature of KVMs make this form of modeling difficult to

integrate efficient retrieval algorithms used for determining context information [37]. A simple

key-value modeling example can be found in the Active Map Service (AMS) [20] project where

objects in the computational system are located based on key-value queries for specific

attributes. An example of a key-value tuple can be seen in Expression 2.1, which informs the

system that the context entity person has a “role” of a “passenger”. This information can then be

used to obtain information about a specific passenger. The Key-Value Model is also the primary

model used in the Context Toolkit [22].

 ()

Expression 2.1 - Example of key-value pair

Several other examples of key-value modeling can be seen in Figure 2.5, where specific

contextual information is paired with data retrieved from various sensors. In KVMs, the system

26

developer is responsible for determining which contexts are available to be used by an

application of that system.

PersonPersonDeviceDevice Vehicle Weather

device(key = “ID”,
value = “12325465793827”)

device(key = “Make”,
value = “Samsung”)

vehicle(key = “type”,
value = “bus”)

vehicle(key = “direction”,
value = “North”)

weather(key = “Temperature”,
value = “25C”)

weather(key = “Wind Speed”,
value = “20 km/h”)

person(key = “Name”,
value = “John Smith”)

person(key = “Age”,
value = “32”)

Figure 2.5 - Various examples of key-value pairings

2.4.2 Graphical Modeling

One of the more popular modeling techniques used for general purpose modeling is the Unified

Modeling Language (UML) which can be adapted to model context through its graphical

components [37]. Modeling techniques that involve graphical components such as UML

diagrams, Entity-Relationships (ER) diagrams, or conceptual graphs are known as Graphical

Models. One of the main benefits of graphical models is their ability to make information very

readable and understandable to the application developer [38]. One of the examples of a

Graphical Model was developed by Hendrickson et al. [39] who created an extension of the

Object-Role Model (ORM) [40] that revolves around the notion of a fact. In ORMs, facts are

used to model domains by identifying all the necessary entity types such as the people and/or

objects that have functioning roles within the domain [37]. An example of a simple ORM fact

can be seen in Figure 2.6 where two entities, person and device, are associated to each other

using the relationship “owned by”, suggesting that every device with an identifier (ID) in this

27

domain is owned by a specific person. Using ORM facts, such as the one in Figure 2.6, can help

developers better understand all of the contextual information found within a domain and the

scenarios that an entity or context can be a part of. One drawback to the graphical model

approach is the difficulty in characterizing incomplete and ambiguous data obtained from sensors

[37]. Although contextual information can be characterized using the graphical models, they are

limited in the way they represent inaccurate data obtained from sensors therefore that this

information can often be left out of graphical models.

Device
(ID)

Person
(Name)

ORM Entity Type ORM Entity Type
ORM Fact Type

Owned by

Figure 2.6 - Example of simple ORM fact type

2.4.3 Logic-Based Modeling

Similar to graphical models, Logic-Based Models (LBMs) also uses facts in addition to

expressions and rules to model context variables. Logic-Based Models, unlike Graphical Models

however, provide a high level of formality while lowering readability and understandability in a

mutual trade-off [37]. Formality is critical to functionality of LBMs as it allows them to

determine exactly which information is needed to define a particular context. As facts are the

fundamental piece of information in LBMs, they can be used to define the various different types

of sensed and non-sensed context variables [41]. An example of Logic-Based Models can be seen

in Ranganathan and Cambell’s [41] first order predicates which are defined in Subject Verb

Objects (SVO) form, as presented in Expression 2.2.

28

 ()

Expression 2.2 - Structure of Subject Verb Object predicates

Based on the defined SVOs, computational systems have the ability to determine all the context

information found in the domain. Several examples of Logic-based predicates can, also, be seen

in Table 2.3.

Table 2.3 - Examples of logic-based first order predicates

Predicates Description

Location(Chris, Entering, Room 3231) Defines a Location predicate that consists of user

“Chris” entering room 3231.

Temperature(Room 3231, “=”, 23C) Defines a Temperature Predicate where the

temperature of room 3231 is equal to 23 Degrees

Celsius.

2.4.4 Ontology-Based Modeling

Another technique for modeling contextual information is through the use of ontologies.

Ontology-Based Modeling is used to describe a particular domain by forming relationships

between the various objects found within a specific domain. According to Kabilan [42]

ontologies are defined as real-world concepts that are organized hierarchically and modeled

using classes, characteristics, relationships, and properties. Ontologies, according to Kabilan

[42], can be classified as any of the following ontology types:

 Top Level Ontologies; general concepts found in any domain such as time, space, and

matter.

 Domain Ontologies; concepts that can be found within a particular domain.

29

 Application Ontologies; concepts that are contingent on both a particular task as well as a

specific domain.

By separating top level ontologies and domain specific ontologies there is an increase in

reusability as the same top level ontology concepts can be associated to any number of domain

specific ontologies. In many context-aware systems, top level ontologies are comprised of core

contextual concepts such as location, person, or device that can be associated to any domain

specific ontology. This can be seen in the comparison of Figure 2.7 and Figure 2.8. Figure 2.7

depicts a sample ontology of a real estate domain which consists of two type of users; realtors

and guests, two location where either person can be located; indoor or outdoor, along with what

the realtor is currently doing; in this case selling a house.

--

Top Level
Ontology

Domain Specific
Ontology

Indoor Outside

Realtor Guest

Location Person

Context Entity

Activity

Selling

Figure 2.7 - Example of a real estate ontology that can determine where a specific person is located

Figure 2.8 uses the same top level ontology but with a different domain specific ontology, in this

case an airport tracking ontology. The ontology presented in Figure 2.8 describes a scenario

where an employee or traveler is located in the plane or a terminal while in the process of

waiting for their flight or currently flying on their desired flight.

30

--

Location Person
Top Level
Ontology

Domain Specific
Ontology

Plane Terminal

Context Entity

Employee

Pilot Maintenance
Crew

Activity

Traveler

Disabled

Activity

Flying Waiting

Figure 2.8 - Example of an airport ontology that can determine where a specific person is located

By separating the top level ontology from the domain specific ontologies, it allows various

unique systems to use the same defined contextual information throughout various domains. An

example of this can be seen in Figure 2.7 and Figure 2.8 where the location context can be

derived differently, such as outdoor/indoor or plane/terminal, based on the domain that is

associated to it. This is an advantage to an application developer because they do not need to

worry about which information is used to form the location context, only that the location

context should be implemented.

Application ontologies, also, add the ability to define when a particular task or scenario has

occurred such as the contexts that surround a navigational application in a public transportation

domain. One of the benefits of using an ontology based modeling schema is that knowledge

representation languages such as the Web Ontology Language (OWL) and Resource Description

Framework (RDF) can provide context interpretability to context-aware systems. Another benefit

is the ability to express and process, through OWL and RDF, a complete knowledge-base about

the contexts in the domain, their characteristics, as well their relationships [43].

31

An example of an Ontology-Based Model developed using a top level ontology with domain

specific ontologies is CONtext ONtology (CONON) [44]. CONON was comprised of a top level

ontology that consists of the ontology concepts location, user, activity, and computational entity,

which can be used for retrieving contextual information. These concepts, according to Wang et

al. [44], are the fundamental contexts needed for capturing data about a particular situation. The

top level ontology concepts; location, user, activity, and computational entity can, then, be used

to connect to any of the domain specific concepts in order to create more abstracted contextual

information. Other well-known Ontology-Based Context Models include COntext BRoker

Architecture (COBRA) [45] and the Service-Oriented Context-Aware Middleware (SOCAM)

[46].

2.5 Context Distribution

The final principle of context-aware systems is the way contextual information from sensors is

distributed over an environment in order to allow the contextual information to be available

throughout the context-aware system. Distribution systems need to have the ability to resolve any

issues that might arise when devices fail to retrieve sensor information. For example, if one

particular sensor becomes unavailable, the system should still be able to retrieve the last known

contextual information from that sensor or obtain the same sensor information from another

sensor available within the environment. There are two main solution categories proposed in the

literature that are used to handle context distribution; through a central server or through a peer-

to-peer environment [47].

According to Kirsch-Pinheiro et al. [47] using a centralized approach for retrieving contextual

information requires the need of a central entity that manages the contextual information

available in a system. The central entity needs to be able to handle any requests that applications

32

make in order to retrieve specific contextual information. An example of a centralized approach

can be seen in the Pervasive, Autonomic, Context-aware Environments (PACE) project [48]. In

PACE, contextual information is stored and managed through the use of distributed context

repositories [40].

The benefit of such an approach is that individual context-aware applications are not directly

linked to a single context repository but can rather discover them through their catalog names.

An advantage of this approach is seen when a context repository becomes unavailable, in such a

case applications need to have the ability to discover other repositories with different catalog

names in order to get the desired contextual information. Like many server based topologies, one

of the drawbacks to a centralized approach is their susceptibility to malicious attacks on the

central server which can have an effect on the robustness of the system [49]. If the central server

was to loose connectivity or become unavailable then the applications in all likelihood would not

be able function properly when an application component needs to be reconfigured.

Central ServerCentral Server

Client AI. Request Location
Subsciption

II. Subscription to
Location Request

III. Send Changes to
Location Context

IV. Send Information
updates

Location

Temperature

Sensors

Figure 2.9 - Distribution through a centralized server approach

Figure 2.9 depicts the process of a client, in this case Client A, subscribing to a location sensor

that is accessed only by the central server. In such an approach the central server handles all of

33

the subscriptions made by the various clients and notifies them when a change in context occurs.

Once the subscription is made any changes to the data retrieved from the sensor will be routed to

all subscripted clients by the central server.

Unlike centralized approaches, the peer-to-peer model does not store context information in

repositories or on servers; instead it is distributed throughout the devices found within the system

environment. Although the cost of communication is higher than that of a centralized approach,

robustness of the system is improved as a single failure in the network will not disrupt the

context retrieval of all other nodes. Without the need to centralize information, adopting peer-to-

peer architecture appears to also be a good technique for mobile context-aware systems as they

are highly dynamic in nature [47]. An example of a peer-to-peer approach to context distribution

can be seen in the Peer-to-peer Context Sharing Model (PCSM) [49]. In PCSM, context

information is storing locally on each user’s mobile device for the purpose of context sharing and

fusion. Each device, within the domain, contains a Registration Center which stores all the

context references that are used to route context information to other nodes. Once a new device

enters the system it is able to retrieve all of the references to existing context information by

sending Context Sharing Messages (CSM). CSMs are used as broadcasting messages that notify

other devices that a new device has entered the system and that contextual information needs to

be delivered to it. As more contextual information becomes available, it is routed to all the other

devices within the system. Figure 2.10 demonstrates the process that peer-to-peer connected

nodes perform in order to successfully subscribe to sensors already accessed by other nodes in

the system. In Figure 2.10, Node B subscribes to sensors accessed by Nodes A and C in order to

receive updated location and temperature data from the environment sensors. The subscriptions

in this model are processed on the device level rather than the server.

34

Sensors

Node A

Node B

Location

I. Request subscription
to location changes

IV. Send updated
location information

II. After subscription is
complete request

location information

III. Send location
information

Node C

Sensors

Temperature

Figure 2.10 - Example process of steps for peer-to-peer context distribution

One of the problems that arise from peer-to-peer context distribution is the amount of

communication that needs to occur between system nodes. In order to reduce the overhead,

several context grouping techniques [47] and [50] have been proposed. Context grouping allows

nodes, such as mobile devices, with common contextual characteristics to be separated into

distinct groups [50]. Examples of such characteristics and the explanation to why grouping can

occur can be seen in Table 2.4. The process of sharing contextual information is made easier

through context grouping as all common information can be found within a specific group of

nodes rather than sending request messages to all the devices within the network. This is

especially true in domains that consist of thousands of users such as public transportation.

Table 2.4 - Examples of common characteristics for context grouping

Characteristics Description

Location Group all devices that are located in the same proximity.

Profession Group all devices whose users have the same profession such as an

accountant or maintenance crew.

Interest Group all devices whose users have similar interests such as playing

basketball or stamp collecting.

35

An example of context grouping can be seen in Figure 2.11 where information about a user’s

travel plans can be grouped based on their preferred form of travel as well as their method of

transportation. In Figure 2.11, based on a user’s travel “interest”, in this case “airplane” and

“Florida”, a system can group users’ mobile devices that have the same interest in order to share

other common contextual information. This creates a much more cost efficient solution to peer-

to-peer distribution as context discovery is limited to other devices with the same interest.

Travel Entity

Vehicle Location

Automobile Airplane Florida California

Interest

Weather

Sunny Cloudy

Context Entity

Figure 2.11 - Example of a travel ontology for context grouping through the Interest concepts

One of the functional requirements of any context distribution system is the ability to share

context information between the devices found within the system. Context sharing, especially in

mobile environments, enhances both node communication and social interaction between the

system users [51]. It allows system applications to minimize the direct communication with

sensors and therefore decreases their dependencies. If one application or device has the ability to

retrieve context data from a sensor then all the other applications and devices should have this

ability as well, regardless of whether a particular sensor becomes unavailable. This feature

should be present in both centralized and peer-to-peer context distribution solutions.

36

2.6 Contextual Information and Intelligent Transportation Systems (ITS)

In order to improve the travel needs of passengers, transportation and commercial agencies have

attempted to integrate various Information and Communication Technologies (ICT), which

resulted in a new computing field known as Intelligent Transportation Systems (ITS). More

specifically, ITS according to Shank and Roberts [52], refers to the “application of advanced

sensor, computer, electronics, and communication technologies and management strategies in an

integrated manner to improve the safety and efficiency of the transportation systems”. Although

this statement exemplifies a broad definition of ITS, its meaning can be simplified dividing it

into numerous subsections that deal with specific needs, they are as follows:

 Advanced Public Transportation Systems (APTS): Refers to the various features of public

transportation such as improving the quality of service, operational efficiency, reducing

travel times, as well as operational and maintenance costs [53].

 Advanced Traffic Management Systems (ATMS): Refers to the gathering and combining

real-time data in regards to the flow of vehicle traffic, motorist information, incident

managements, etc. [54].

 Advanced Traveler Information Systems (ATIS): Refers to the enhancing the “planning,

perception, analysis, and decision making” [55] in order to improve travelers’

needs.

 Vehicle-to-Vehicle communication (V2V): Refers to the communication between vehicles

in order to improve safety [56] and make travel more efficient.

According to Foth and Schroeter [57], public transportation systems are highly dynamic

environments that are made up of diverse socio-economic passengers that can use public

37

transportation for extended periods of times on a frequent basis. Furthermore, transportation

systems are used every day by passengers who consider it part of their daily lives, this according

to the original Weiserian theory [18], make it an ideal circumstance for integrating ubiquitous

computing [58]. Since passengers often sit on public transportation vehicles with little

interaction, there is a need to integrate context-aware systems and applications that will inform

passengers about specific transfer information, nearby retail and commercial opportunities, as

well as the ability to communicate with the people around them. With a need to improve such

functionalities along with their highly dynamic nature, it is evident that ITS, and more concretely

APTSs, make ideal candidates for ubiquitous technology integration. By adapting ubiquitous

computing concepts in public transportation, the goal of enhancing user travel becomes tangible.

Figure 2.12 demonstrates how ITS is affected by integrating the various context-awareness

principles discussed in earlier section of this chapter.

Intelligent
Transport System

(ITS)

“Bus Location”

“User Profile”

“Schedule
Information”

Context Sensing

“Night Route”

“Waiting for Bus”

“Running Late”

Context Abstraction

“Retrieve schedule
information for a

central server”

Context
Distribution

“Reconfigure
Arrival Times Based

on Delays”

“Inform passenger
of number of free
seats on the next

train”

Context Modeling and
Synthesis

Figure 2.12 - Examples of context aware concepts within ITS

38

There are many issues and challenges that arise in ITS and in particular the public transportation

sector. According to Kjeldshov et al. [59] developers are faced with numerous challenges when

designing public transport systems, in particular these systems are both complex and inflexible

by nature. They are often complex as they are constructed based on hundreds of routes with

various paths of getting from one stop/station to another which can be overwhelming to new

passengers. Public transportation systems are also inflexible as vehicle routes rarely change; they

follow a specific sequence of stops and therefore might not suit all passengers. Public

transportation vehicles are also often delayed by various factors including; traffic congestion,

weather conditions, and road construction that makes timing trips difficult and inaccurate. All of

the aforementioned items can be considered contextual information in a public transportation

system as all of those variables can directly affect the functionality of the vehicles within the

domain. Therefore any intelligent system created must be aware of these concerns and adapt

accordingly.

As discussed, public transportation systems are a perfect candidate for context-aware integration

and when integrated with ITS solutions form what is known as Ubiquitous Transportation

Systems (UTS). According to Lee et al. [60] UTS are the “transparent service systems with the

omnipresent and transcendent transportation intelligence in all transportation related objects

(Smart Objects), which makes the transportation more safe and efficient” and are comprised of

four main properties:

 Anything; describes any entity found in the system such as vehicles, stop, stations, device,

etc.

 Anybody; describes any type of person found in the environment such as driver, traveler,

pedestrian, etc.

39

 Anytime; describes any time period when travel is happening, about to happen, or has

already happened.

 Anywhere; describes any location in the transportation environment such on the road,

underground, in a station, etc.

In order to implement effective UTS solutions in the transportation sector, information should be

provided in real-time through the use of handheld devices that allow passengers to access their

desired travel information at any time. With the advent of smart mobile devices and high-

bandwidth wireless infrastructure, users can have the ability to access network resources through

the Internet and can therefore retrieve real-time information provided by transportation operators.

Some of the resources that real-time systems can provide include; schedule timetables, traffic

patterns, maps, vehicle wait times, etc. By integrating the UTS with handheld mobile devices the

reality of context-aware transport systems becomes more tangible.

One of the original context-aware systems developed to improve user experience in public

transportation was known as Bus Catcher [61]. Bus Catcher was an application designed to

provide users with individual traveler information based on a specific traveler’s need. The goal

of Bus Catcher was to provide users with the ability to view specific bus locations in the user’s

proximity as well as provide accurate updated timetable information based on the time of day it

is and the varying weather conditions. Bus Catcher was designed as a thin client that was

developed on the Compaq Ipaq Personal Digital Assistant (PDA) that would connect to a central

server to retrieve the appropriate information. In order to maximize the efficiency of the

application most the processing, such as updating timetables, getting weather conditions, and

nearby vehicle information, was performed on the central server. One of the original advantages

of the Bus Catcher system was that it was developed to process real-time information so that

40

schedule timetables and specific route information were updated as soon as the changes were

detected. The biggest drawback to this system was that it did not take the individual user’s

profile into account as personal user traits such as a possible disability or basic user preferences

were not considered. Missing some of the personal features could have resulted in the alienation

of a section of the public transportation community that might require assistance most and

therefore suggests that Bus Catcher was not as flexible and convenient a solution for all the

passengers.

Another solution designed to improve public transportation systems was the ScudWare project

[62]. ScudWare allows users of any Smart Vehicle Space (SVS) to use their handheld mobile

device to activate and use services defined within the computational system. ScudWare does not

directly indicate which services are available in SVSs but indicates that it is up to the system

creators to create their desired services. In ScudWare the SVS is comprised of four main

components, they are as follows:

 Auto-Appreciating Context System; Senses the data from the sensors in the system such

as cameras, sound receivers, and other wireless sensors. This functionality is very similar

to context and mobile sensing described in section 2.2.

 Auto Controlling System; Controls the components of the system that deal with

communication, navigation, vehicle control, and security.

 Smart Reasoning System; Uses the context data and ontology-based modeling in order to

make appropriate decisions and adaptations. This is the context modeling aspect,

discussed in section 2.4, of the system.

41

 Centralized Processing System; Handles the communication between system

components.

Although ScudWare was originally designed to function in an automobile setting rather than a

public transportation one, much of the same principles apply to both such as an environment that

is dynamic changing on a constant basis. Using the Ontology-Based Modeling technique,

ScudWare defines three main context categories:

 Vehicle Context; status of the vehicle elements such as temperature, speed, lighting, etc.

 Environment Context; status of environment elements such as the weather conditions, and

traffic congestion.

 Driver Context; driver attributes such as tiredness, ability to drive, and alcohol density.

Using these contexts ScudWare, uses an ontology in order to define and process the various

context variables discussed above. Scudware defines context through the following format;

C=(S, P, O) where S demotes the context is question, P denotes the attribute in question, and O

denotes the value of the attribute. An example of defining a driver who has a blood alcohol level

of over 0.08 percent and therefore is perceived to be drunk is represented by Expression 2.3.

() () ()

Expression 2.3 - Example of context definition using ScudWare [62]

Both Bus Catcher and ScudWare provide examples of how context-awareness can be designed

for public transportation system. Both techniques, however, lack the ability to fully characterize

a transportation setting as they are designed for specific purposes and scenarios and limit

42

application developers from using the same system to create various different scenarios and

applications within the public transportation domain.

43

Chapter 3. Methodology

In order to successfully implement the context-aware principles discussed in Chapter 2 into a

dynamic context environment such as public transportation, a comprehensive system that allows

for rapid system reconfiguration and adaptation needs to be created. This chapter examines the

requirements needed for creating such a system, describes a framework that meets these

requirements, and introduces a domain ontology that enhances the integration of context-aware

principles into a dynamic settings such as the public transportation. Using this domain ontology,

application developers will have a better understanding of the public transportation domain and

therefore be able to decrease the amount of time needed to create context-aware mobile

applications.

3.1 Requirements of Context-Aware Systems

When deciding which context framework is most suitable for a rapidly changing domain there

are three main features/properties that need to be examined. The first feature examines a

system’s ability to obtain relevant contextual information within a particular setting and

processes that information to determine when and how component reconfiguration should occur.

This feature, according to Ruiz and Sanchez [63], is classified under the context sensing and

synthesis principle discussed in section 2.4. Under this principle a framework must be able to

include various reusable sensors that can be used by a multitude of applications, model when

system/component reconfigure should take place using at least one of the modeling techniques

described in section 2.4, and allow for dynamic activation and deactivation of sensors depending

on the needs of the application [63].

44

Secondly, context-aware systems should have the ability to automatically make decisions in a

timely manner regardless of the system’s size [63]. This feature, also known as multi-

dimensional decision making, enhances context-awareness by allowing any device registered to

the system to reconfigure based on the changing contextual information retrieved from sensors

within the domain. Multi-dimensional decision making is aided by the abstraction of retrieved

sensor data into information that the system can process and use to determine which variant of a

component needs to be reconfigured. As a result of this feature, a prerequisite of context-aware

systems is that they must be able to register/unregister various components such as sensors and

devices at any given time depending on the contextual needs of the system [63]. As not all

contextual changes result in component reconfiguration, there is, also, a need for context-aware

systems to register and unregister to individual components rather than the system as a whole.

The third major feature of a context framework is that there needs to be an emphasis on the

reusability of system components in order to allow numerous domain-based applications to be

developed rapidly using the framework [64]. This indicates that developers should not be

recreating data retrieval methods for sensors found in every domain but rather reuse prebuilt

context sensor widgets, described in section 2.3, that retrieve and abstract data directly from

sensors. To reduce domain dependencies, context sensor widgets should be implemented

independently of each other, therefore allowing devices to register to each widget based on the

needs of each application.

Considering these features and requirements, a middleware solution known as MUSIC [16] (self-

adapting applications for Mobile USers In ubiquitous Computing environments) was chosen as

the basis for implementing the context-aware principles into the public transportation domain.

This middleware was chosen, in part, due to the separation of the fundamental context-aware

45

principles that include sensing, abstraction, reconfiguration, and distribution from the application

logic itself [65]. By separating these principles each component is implemented individually and

is therefore decoupled from all other principles thereby enhancing a system’s reusability.

Additionally, each context-aware principle was implemented modularly resulting in further

separation, allowing middleware developers to continuously implement new components such as

context sensor widgets without having to directly affect any of the other components within the

system. By separating all the system in this manner, application developers can register their

applications to the pre-built components without needing to create their own.

The second major reason this framework was chosen was its ability to automate the multi-

dimensional decision making process. To accomplish this, the framework was designed using the

Model-Driven Development (MDD) approach in order to organize and manage developer

created domain models that define when and how reconfiguration can occur [66]. The

middleware uses a combination of user-defined ontologies and UML diagrams to model the

appropriate domain and its reconfiguration properties. The MDD approach, also, improves

flexibility as it allows developers to decide which modelling technique, such as OWL based

ontologies and UML diagrams they prefer using to define under which specific conditions

system reconfiguration should occur.

3.2 Ontology Structure

In order to enhance the scalability and adaptability of ADOPT, the system ontology is designed

as a three-level hierarchy consisting of a top-level ontology, domain-specific ontologies, and

application ontologies [65]. This three-tiered model can be observed in Figure 3.1.

46

Owl: Thing

Entity Type Scope Representation

...

Top-level ontology

...

Domain-specifc ontology n

...

... ...

......

... ...

...

... ...

Domain-specifc ontology 1

Application-specific ontology 1 Application-specific ontology n

Figure 3.1 - Architecture of the system ontologies [65]

The top-level ontology, which will be further discussed in section 3.3, is comprised of universal

concepts that can be used to create contextual information within any domain. The domain-

specific ontologies, as shown in Figure 3.1, are developed as extensible parts of the top-level

ontology and are used to provide a set of concepts that can be found within a specific domain

that represents a part of the world [65]. Once a domain-specific ontology is developed, the

relationships between itself and the various concepts of the top-level ontology need to be

established. Through these relationships, the creation of contextual information is made possible;

this will be further examined in section 3.4.2. The application ontology layer, much like the

domain-specific ontology layer, is also built as an extensible part of the overall ontology and

defines the concepts relevant to a particular application or scenario [65]. This ontological

structure allows for an arbitrary number of domain ontologies to be built using the same top-

level concepts. By creating a three-tiered hieratical ontology system, the system attempts to

reduce the amount of overhead that developers need to perform when developing their context-

47

aware applications [65]. Therefore, application developers can reduce the amount of research

needed to understand the public transportation domain as most the relevant concepts and

relationships are defined within the ADOPT domain ontology.

The advantage of the three-tiered framework is that each tier can be developed independently of

the others as each tier has a unique functionality. By creating a model that consists of unique

independently functioning systems, the framework discussed in this chapter is considered a

System of Systems (SoS) [67]. The SoS architectural approach allows application developers to

use ADOPT to incorporate independent application ontologies using the concepts defined in the

domain-specific ontology. This feature allows the proposed ADOPT system can be reused by

any application developer who intends on creating functional public transportation applications.

Therefore, the proposed ADOPT framework discussed in this chapter is built using a top-to-

bottom architecture with the top-level ontology consisting of basic elements that can be applied

in any domain. The domain-specific ontologies are then built as sub-systems of the top-level

ontology, with application-based ontologies built as further sub-systems of each domain-specific

ontology. This structure allows application developers to incorporate specific application

ontologies into the framework in order to reuse the already created software components such as

context widgets that inform applications of changing sensor information [68].

3.3 Top-Level Ontology

As the framework supports a wide variety of applications designed for various domains, there is

a need to establish reusable components that can be accessed across any domain [65]. To satisfy

this need, a top-level ontology was used to define the reusable components found within all

domains. According to Reichle [65], the top-level ontology designed in this framework was

motivated by the Aspect Scale Context (ASC) model described by Strang et al. [43]. The ASC

48

model is comprised of aspects which consist of information used to characterize specific data

within a domain and scales that are used to describe the format that an aspect can be represented

in. By combining aspects and scales, the ASC model is able to provide contextual information to

applications of a particular domain [65]. One example of contextual information that can be

categorized within the ASC model is location; where aspects are defined as geographic

coordinates used to describe the location of a particular item and scales are represented through

latitude and longitude measures used to describe an item’s geographic location coordinates.

Owl: Thing

Entity Type Scope Representation

Is a
Is a

Is a

 providesInformation characterizedBy

Information Source

Is a
provides

Figure 3.2 - Top-level ontology concepts [65]

Using the ASC model as the basis for the top-level ontology; the top-level ontology is comprised

of three core concepts; entity types, scopes, and representations [65], that are used to define all

context information found within a domain. The ontology representation of the concepts can be

seen in Figure 3.2.

The entity type concepts in the top-level ontology represent all of the real and/or logical entities

(objects) found within a particular domain. They are comprised of information sources such as

the physical, virtual, and logical sensors discussed in section 2.2, from which raw sensor

information can be obtained from. An example of an entity type is a person that either affects or

is affected by any changes to sensor data within a domain, such as a student, or professor that

49

can be found within a university domain. These entities can also be grouped together based on

similar attributes, suggesting that the concepts of student and professor can be grouped together

under a concept person, as seen in Figure 3.3. When creating a domain-specific ontology that

uses this top-level ontology approach, it is important to include all relevant entity types as they

will later (section 3.4.2) be used to define the contextual information found within the targeted

domain.

Owl: Thing

Entity Type Scope Representation

Is a
Is a

Is a

providesInformationcharacterizedBy

Person

Is a
provides

Student Professor

Is aIs a

Top-level Ontology

University Domain-Specific Ontology

Figure 3.3 - Example of incorporating a person entity type within the top-level ontology

The scope concept is used to define the functional context variables that can be obtained from the

set of defined entity types [65]. Each scope defines the information needed to determine context

information that is associated to at least one entity type. For example, the location scope can be

used to define the location of a person entity type, which can provide information about where a

professor is currently lecturing. Using the top-level ontology, an unlimited number of scopes can

be provided based on the defined set of entity types [65]. The information provided by a scope is

structured using the representation concept of the top-level ontology, which defines the internal

50

structure or format of the information provided by the scope [65]. An individual scope can be

represented by any number of representations needed for that particular domain. For example,

the location of a person can be obtained through the location scope that can use numerous

representations such as geo-coordinates, street addresses, postal codes, cities, etc. The

representation LocationGeo can be used to define the structure of the location scope by defining

the latitude and longitude locations of a physical object, meanwhile a LocationAddress

representation can define the location scope by combining strings such as the street name, unit

number, city, and country. This example is demonstrated in Figure 3.4.

RepresentationScope providesInformation

LocationInfo

Is a

LocationRep

Is a

providesInformation

LocationInfo_v1

LocationInfo_v2

Instance Of

Instance Of
Street = Front
Number = 32

City = Toronto
Country = Canada

Latitude = 43.65665
Longitude = -79.208

LocationAddress LocationGeo

Is a Is a

 hasRepresentation

 hasRepresentation

Instance Of

Instance Of

Figure 3.4 - Example of multiple representations for location scope [65]

The representation concept can be subclassed into two main categories; composite

representations and basic representations. Basic representations are used to define a single piece

of information that can be obtained from an individual sensor. For example, temperature

information (scope) can be classified under a basic representation as it can be obtained from a

single temperature sensor and can be categorized by individual measures such as Celsius or

Fahrenheit. Since the Celsius representation yields a different measure than that of a Fahrenheit

representation, two separate basic representations should be created for the temperature scope.

51

By creating different representations for an individual scope it allows application developers to

choose which measure or representation they are more comfortable developing with. Composite

representations, on the other hand, are formed using multiple representations associated to

multiple scopes. For example, a weather scope cannot be defined through a single scope as

weather is often affected by multiple factors. Therefore, the weather scope might provide

information that combines the scopes for temperature, humidity, precipitation, air pressure, etc.

which consist of their own basic representations. The weather composite representation,

therefore, can combine these and other basic representations in order to structure the data in a

particular format that the system is able to understand and process for component

reconfiguration.

3.4 Domain-Specific Ontology Designed For Public Transportation

The domain-specific ontology discussed in this section will provide developers with the

fundamental concepts and properties needed to create specific applications designed for the

public transportation domain. This section informs application developers of which entity types

may be incorporated into their public transportation applications. Using the entity types

described in this section, the process of establishing relevant contextual information, described

through scopes, will be defined. In particular, understanding why some scopes were included

into the domain-specific ontology while others were omitted is an essential concept to

understanding how a public transportation domain-specific ontology functions. In addition, some

proposed advantages of ADOPT model are examined when compared to linear key-value

models. The linear key-value model was chosen for comparison as it provided a good initial

barometer for determining if the ADOPT framework provides an improvement for software

reconfiguration. If the ADOPT framework provides an improvement over the simplistic key-

52

value model it would provide a good stepping stone to move on to more complex modeling

techniques.

The proposed public transportation ontology allows application developers to create fully

functioning applications that can be designed to provide static information or more complex user

personalized applications that reconfigure based on the needs of thousands of users. However,

the goal of ADOPT is primarily not to create a system that will contain all the information

needed to create all possible public transportation applications, but rather to provide application

developers with the necessary tools and requirements needed to develop pluggable context-aware

application ontologies designed for the public transportation domain. It is the responsibility of

each application developer to create their own application-specific ontology using the ADOPT

ontology, which will result in a more complete context-aware system. This section is divided into

three main subsections; entity types, scopes, and representations that detail the connection of the

context-aware principles within the ADOPT framework.

3.4.1 Entity Types

The first step to creating functional entity types found within a public transportation domain was

to determine which users and objects directly affect the functionality of a public transportation

system. This step allows application developers to gain a better understanding of their desired

domain and therefore understand which application users and objects are directly affected by

changes to contextual information. If application developers fully understand their domain then

they will be able to decide which sensor data their application needs to obtain and how each

entity is affected by the changing sensor data. Therefore, creating a concrete set of entity types

was the initial task of developing the fundamental aspects of a context-aware public

transportation system.

53

The initial set of entity types in the proposed ADOPT ontology was quite extensive with over

seventy unique concepts being defined. With this large set of concepts subclassed directly from

the entity type concept, the readability of the system was jeopardized as the sheer number of

concepts can be overwhelming especially when related concepts are not grouped together. In

order to improve this, five categories of entity types were implemented into the proposed public

transportation ontology. The five categories, also seen in Figure 3.5, are as follows; person [69]

[70], place [71] [1], vehicle [70], device [71], and resource. The goal of these categories was to

establish all of the logical and real-world objects that can be used to construct contextual

information within the proposed public transportation domain.

Figure 3.5 - Public transportation domain entity type subclasses

Figure 3.6 - Sample list of person entities before filtering out occupation-based persons

The first step to maturing the entity type concept was to introduce all of the various types of

people found within the public transportation domain and include them within the person entity

type. A sample list of the initial person entities can be seen in Figure 3.6. Once the complete list

54

of person entities was established it was important to discard any occupation-based persons from

the initial result set. Occupation-based persons describe people within the domain that are

associated with a particular occupation title and are only affected by contextual changes on an

application or scenario basis. Occupation-based persons are people who are not found in the

majority of applications designed for the public transportation domain. Removing occupation-

based persons from the ADOPT ontology reduces the overall size of the ontology and therefore

improves its readability without losing any functionality. In ADOPT, occupation-based person

entities should be migrated to the application ontology layer as their needs are specific to

particular scenarios and applications. For example, one such occupation-based person, as seen in

Figure 3.6, is the lawyer person that describes a passenger who travels using public

transportation and has an occupation of a lawyer. If the lawyer person was added to the domain

ontology then every application built using that domain ontology would include the lawyer

person entity. As there is only a limited amount of scenarios where a lawyer passenger entity is

needed, it would be more efficient for the lawyer entity to be implemented directly within the

application ontology.

Using the ADOPT model, application developers can dynamically add additional application

ontologies to the domain ontology based on new application requirements they might have.

Linear key-value models, on the other hand, do not allow for the addition of new application

ontologies once the original model has been constructed because for each new application a new

rule database must be created. Therefore, an application developer would need to construct new

if-else statements to determine when system reconfiguration should take place resulting in a lack

of reusable components for applications with similar capabilities.

55

The proposed ADOPT solution also provided developer with the ability to group entities with

similar attributes under a single individual entity. By grouping entities, ADOPT further

eliminates occupation-based persons by grouping related occupations under a single more

generic entity type. This feature is evident in the example of the maintenance person entity.

Instead of adding person entities such as an electrician, a network administrator, or a cleaner to

the domain ontology these entities can be grouped under the more generic entity maintenance, as

seen in Figure 3.7. If an application developer creates a specific application or scenario for one

of these maintenance entities, such as an electrician, they can simply subclass the maintenance

entity into their own application ontology and implement their own electrician entity.

Grouping various entities
into a single generic entity

Figure 3.7 - Sample of grouping maintenance employee entities

Furthermore, any domain essential entities need to be incorporated into the domain ontology.

Domain essential entities are entity types within a domain that directly affect the status of other

entities. For example, the maintenance entity directly affects the status of vehicles, elevators,

escalators, etc. as a malfunction or breakdown of such elements will directly result in changing

information received from sensors that can affect a subset of people using the public

transportation domain. For this reason, creating a maintenance entity within the person entity

optimizes ADOPT by providing more relevant entities that an application developer could

56

incorporate, customize and/or reuse rather than manually implementing them into their own

ontology. Domain essential entities differ from occupation-based entities as they include only the

entities that can directly cause contextual changes to other entities. For example a lawyer

passenger occupation-based entity does not directly affect the functionality of public

transportation system, while a maintenance crew member can directly affect the public

transportation system as the breakdown of vehicles can cause changes to contexts that affects a

subset of system users. The rest of the person entity type in ADOPT is subcategorized into the

following entities:

 Passenger; reflects all the different types of passengers found in the public transportation

domain regardless of their occupation.

 Maintenance; reflects the various types of maintenance crew employees available.

 Driver; describes all the employee drivers, regardless of which transport they operate.

 TicketAgent; describes the people that collect and/or sell tickets/passes within the

domain.

Although this can be considered a generic enough solution for the person entity, the passenger

entity can still be further subcategorized in order to give application developers more

granularities on the various types of passengers they can incorporate into their applications. Once

again this needs to be done in a generic way that allows application developers to further

subclass the passengers if needed. Therefore, the passenger entity is subclassed into the

following entities; general, senior, child, and disabled. Each defined passenger subclass has a

specific set of characteristics, attributes, and needs that distinguish them from the others as the

needs of disabled passengers are very much different than those of a general passenger. These

57

needs should to be implemented by the application developers for each transportation system

which will result in different reconfigurable components based on what that passenger’s needs

are. This is another important advantage of the ADOPT model compared to linear key-value

models, as it allows for the customization of entities based on the needs of the application. If an

application developer desires to implement their own passenger entity to include persons such as

a bicyclist, lawyer, and/or tourist they can do so by extending the domain-specific ontology and

incorporating the new passenger entities into their own application ontology. An example of

incorporating application-specific passenger entities can be seen in Figure 3.8 where the

application-based passenger entities; bicyclist, lawyer and tourist were directly subclassed from

the domain ontology’s general passenger entity.

Domain-Specific
Ontology

Application-
Specific Ontology

Figure 3.8 - Applying application specific entities to the ADOPT ontology

Using the proposed ADOPT ontology, developers can also distinguish between general lawyers

and those who are considered disabled and therefore require special needs within the public

transportation system; such as the locations of elevators within a station, or to inform them of

any accessibility limitations that approaching vehicles might consist of. The complete person

entity in ADOPT can be seen in Figure 3.9.

58

Figure 3.9 - ADOPT person entity type

In order to define all of the physical locations found within the public transportation domain,

high-level abstracted data, discussed in section 2.3, was used to produce the place entities found

within ADOPT. All high-level physical locations found within the place entity type such as the

entities station, stop, ticket booth, elevator, etc. can be obtained by abstracting low-level

measures such as geographic coordinates, street addresses, and/or a 3-dimensional Cartesian

coordinate system. The place entity can further be divided into two subclasses; indoor and

outdoor [1]. The indoor place entities describes the physical locations found inside public

transportation structures such as stations, while the outdoor place entity describes particular

locations of the domain found outdoors. Table 3.1 demonstrates the two subclasses of the place

entity with some examples found within each subclass. The goal of the place entity type is to

define the various points of interest (POI) within a public transportation domain that people

designated within the person entity type come across during their travel.

Table 3.1 - Examples of indoor and outdoor place entities

Place Entity Subclass Examples

Indoor Shop, Elevator, Escalator, Washroom, etc.

Outdoor Stop Shelter, Taxi Lot, Parking Lot, etc.

59

It is important to note that an indoor place entity is not necessarily disjoint from an outdoor

place as places such as stairwells and ramps can be located both indoors as well as outdoors.

Although some place entities can be considered objects or structures rather than physical

locations they can still be described using location variables such as geographic coordinates or a

Cartesian coordinate system, therefore they are be subclassed under the place entity.

The proposed vehicle entity type defines the various vehicles found within the public

transportation domain. It includes entities such as a bus, streetcar, subway, train, ferry, etc. The

vehicle entity type represents any physical machine that transports a passenger from one location

to another based on some form of payment by the user. The payment principle is an important

concept in the proposed vehicle entity type as concepts such as escalators and elevators can also

be used to move a passenger from one location to another however they are used for very short

distances and do not require a passenger to pay a transportation fee. If an application developer

desires to implement a system where passengers pay for using elevators and escalators, then they

can further subclass the vehicle entity within their own application ontology to include the

necessary entities.

The fourth entity class of the designed public transportation domain is the device entity. The

device entity type consists of the various devices that a person (found within the person entity)

can operate in order to get specific information that is relevant to their objectives within the

public transportation domain. For example, if there is a delay on a particular route, a passenger

who is waiting for a vehicle on that route needs to be informed of the delay. Although this

information can be announced, through intercoms, to passengers waiting at various stations,

there could exist a subset of smaller based stops along the route that do not have access to this

particular type of information unless it is sent directly to a user’s handheld mobile device.

60

Therefore, the goal of the device entity is to describe all of the devices that can inform

passengers and staff of information that is relevant to their specific tasks during any period of

time. These devices include entities such a phone, computer, tablet, and any other portable

devices used to execute particular mobile and system applications. These devices are convenient

not only to public transportation passengers but to staff such as the maintenance crew who can

use PDAs to assist them in repairing malfunctioning escalators or security staff who can use

them to locate any distressed passengers. Additional devices that can execute mobile and system

applications should be added to the developer’s application ontology. A sample subset of the

device entity can be seen in Figure 3.10.

Figure 3.10 - Sample subclasses of Device Entity

The final entity type used in the ADOPT ontology is the resource entity. The resource entity

describes all the usable parts that can be accessed by people within the public transportation

domain, such as hardware components found on an external system device, and physical

characteristics of various objects found within vehicles and locations described within the place

entity. The data provided about all of the entities within the resource entity can be obtained

through the use of embedded sensors that are found throughout the public transportation domain.

Therefore, the resource entity is subclassed into the following three main subclasses;

61

 Device resource; any hardware resource that can be obtained from a handheld device.

 Vehicle resource; any physical characteristic that is associated to a vehicle within the

domain.

 Place resource; any physical object that can be found to within a place entity.

The device resource entity is used to describe all of the resources, characteristics, and features of

handheld devices which can be associated to any of the entities found within the device entity

type discussed earlier in this section. Device resources equate to physical hardware components

built into handheld devices such as sensors and manufactured chipset. Some examples of a

device resource include a device’s battery, memory, CPU, Bluetooth, etc. which can all be found

within existing smart mobile phones, which is represented by the smartphone device entity. A

sample set of entity types found within the device resource entity can be seen in Figure 3.11.

Figure 3.11 - Sample of device resources entity type

62

The vehicle resource entity contains all the resources found physically on public transportation

vehicles. Using the sensors that relate to these resources, transportation operators are able to

obtain information about the current conditions of objects within a vehicle as well as the vehicle

condition itself. Some of the vehicle resources include entities such the Engine and GasTank that

directly relates to a vehicle’s physical engine and gas tank that may be present on a vehicle. A

sample list vehicle resources found in the proposed ontology can be seen in Figure 3.12.

Figure 3.12 - Sample of vehicle resource entity type

Finally, the place resource describes all the resources found within the public transportation

domain that can be observed within a physical locations described by the place entity. Each

resource in this entity can be directly associated to at least one place entity; therefore, place

resource entities need to be grouped according to their corresponding place entities. For example

a station’s emergency assistance alarms and Near Field Communication (NFC) payment sensors

are grouped under the StationPlaceResource as these resources can be found within a station’s

physical location. Therefore, each place entity will have a corresponding set of place resource

63

entities grouped together. The goal of this feature is to improve the readability of the place

resource entity as this concept consists of more than thirty entities. Samples of the place

resource entity can be seen in Figure 3.13.

Figure 3.13 - Sample of place resources

Similar to the place entity, resources are not disjoint, which implies that a resource associated to

a vehicle resource can also be found within the place or device resources as well. One example is

the NFC payment resource, which allows a user’s device to transmit payments from their

handheld device to transportation operator devices by being in close proximity to each other. The

NFC payment resource can be located anywhere inside a public transportation domain including

a device, a vehicle or place such as a station.

64

The role of resource entity does not, however, directly inform developers which specific

contextual information can be obtained from the various resources but rather it inform them of

which data, in regards to the objects and people, can provide sensor data used to create

contextual information. For example, the screen device resource, as seen in Figure 3.11, does not

inform developers which specific contextual information it provides but rather it allows the

application developers to develop contextual information such as a device’s screen resolution

which can be obtained from sensors that retrieve data about a screen device resource.

3.4.2 Scopes

Once all of the entity types of the public transportation domain had been established, domain-

specific contextual information needed to be established. Since the goal of the entity types was to

establish all domain specific objects and people that can be described by sensor information, it

was critical that scopes be associated directly to at least one entity type. This association is

created using the object property characterizedBy, as seen earlier in Figure 3.2. If a scope cannot

be directly associated to at least one domain-specific entity type than it should be removed from

ADOPT ontology.

Resource

EntityScope

Is a

BasicScope

FuelScope

Is a

Is a

VehicleResource

Is a

GasTankFuelCapacity

characterizedBy

Is aIs a

characterizedBy

Resource

EntityScope

Is a

BasicScope

OvenTemperature

Is a

Is a

characterizedBy

Example of a scope that can be characterized by Entity Types in ADOPT Example of a scope that cannot be characterized by Entity Types in ADOPT

Is a

???

Figure 3.14 - Example of scopes that can/cannot be characterized by entity types within ADOPT

65

One example of scope that is directly associated to an entity type is the FuelCapacity scope

which indicates the amount of fuel remaining in a vehicle’s gas tank. As Figure 3.14,

demonstrates the FuelCapacity scope is directly associated to the GasTank entity type through

the characterizedBy object property. Meanwhile, as Figure 3.14 also demonstrates, a scope such

as OvenTemperature that describes the temperature of a kitchen oven should not be included

within the ADOPT ontology as it cannot be associated to any particular entity found within the

ADOPT entity types. This approach allows developers to implement only the relevant scopes

(context variables) that directly affect people and objects within the public transportation

domain. Within ADOPT, scopes can be divided into two subclasses; basic and composite. Basic

scopes are used to characterize the contextual information that can be described through a single

measure, such as representing the location of a user through the city scope which indicates which

city a user is currently located in.

Can be combined to form the
composite LocationGeo scope

Figure 3.15 - Example of location basic scopes

Basic location scopes, within ADOPT, include concepts such as street, country, postalcode, etc.

which are all be grouped under the basic scope Location as seen in Figure 3.15. Composite

66

scopes, on the other hand, combine multiple basic scopes in order to represent specific contextual

information such as the geographic location of a user by combing the latitude and longitude

basic scopes into a single LocationGeo composite scope. Dividing the Location scope into

multiple smaller basic scopes, allows application developers to incorporate only the specific

location information that is needed within their application. This is an important characteristic of

the proposed ontology as not all applications need to know the exact location of a user/object;

instead they might only need one or two of the variables seen in Figure 3.15. Another example of

contextual information that can be associated to any entity type is the DateTime scope which is

comprised of basic time elements; second, minute, hour, day, month, and year. The goal of this

basic scope is to accurately portray time within the public transportation domain. Using the

DateTime scope, temporal context information such as when a specific vehicle will be arriving at

a passenger’s desired location can be obtained. By dividing the DateTime scope into various time

elements, it allows application developers to use granular time components to display contextual

information in units such as seconds or more complexly as a combination of all six elements

found within the DateTime scope. Through the Location and DateTime scopes, an advantage of

ADOPT over linear key-model models is evident; in a linear models the time and location is

always represented in the same fashion as defined by the system such a timestamp for time and

geo-coordinates for location. Using ADOPT, each application developer can customize their

desired contextual information in such a way that suits their implementation strategy most such

as defining time using an hour metric, a timestamp, or epoch time depending on the needs of the

application.

Once all system-wide basic scopes are established, specific entity type scopes needed to be

created. Entity type scopes describe the contextual information for a particular entity type

67

described in section 3.4.1. An example of an entity type scope is the Network scope which

describes the contextual information about the cellular network of an application user’s mobile

device. The Network scope is characterized by the CellularNetwork entity type which is

subclassed from the device resource entity type. The following are examples of basic scopes that

can be subclassed from the Network scope:

 NetworkStatus: The current status of a device’s network connection.

 NetworkStrength: The current signal strength of a device’s network connection.

 NetworkStrengthTrend: Describes whether the signal strength is increasing, decreasing

or remaining steady.

 NetworkType: Describes the current network method used for radio signal

communication such as CDMA, GSM, etc.

Allowing a system to obtain the cellular network information about a user’s handheld device is a

valuable context variable for applications that handle extensive network communication. For

example, if a user is trying to view a vehicle navigational video on their mobile device which has

at a strong network signal through a 3G connection (HSPA+), a mobile application has the

ability to stream a video explaining the route on the application user’s mobile device. If,

however, in the middle of the stream the mobile device’s network signal drops significantly

(based on the NetworkStrength scope) the application needs to be able to reconfigure and display

a textually based variant of the application in order to reduce the amount of information

downloaded onto the device so that the user does not have to wait for the video to buffer. This

example is summarized through Figure 3.16.

68

`

Scope Entity Type

ResourcesBasic Scope

NetworkScope

NetworkStength

Device Resource

Is a

Is a

CellularNetwork

Is a

Is a

Is a

characterizedBy

characterizedBy

As the network strength changes, all application
registered to the NetworkStrength Scope are informed

of new values

Is a

Equivalent Ontology
Model

Figure 3.16 - Example of application reconfiguration based on changes to NetworkStrength scope

In addition to the Network scope, various other device resource entities such as the battery, CPU,

screen, etc. need to be incorporated as basic scopes to allow application developers to obtain the

available device-specific information. All scopes that correspond to the entity types found within

the resource entity type should then be grouped together in order to improve the readability of

the ADOPT. Therefore, each resource subclass should also be subclassed within the basic scope

as seen in Figure 3.17.

Subclassed basic scopes
should contain corresponding

resource entity types

Figure 3.17 - Sample basic scopes with corresponding entity types

The second type of scope, composite, is comprised of contextual information that combines

multiple basic scope elements in order to provide high-level abstracted contextual information,

as described in section 2.3. One example of a composite scope is LocationGeo which combines

the three elements of the basic scope Location; latitude, longitude, and altitude, in order to

provide a comprehensive physical location of a person or object. Using this LocationGeo

69

composite scope, ADOPT can associate the latitude and longitude measures for a particular

station as such associating the station “Bercy” to a location with a latitude of “48.843932”

degrees and a longitude of “2.38266” degrees.

Figure 3.18 - Example of basic and composite scopes for a screen entity type

Another example of how to incorporate multiple basic scopes into an individual composite scope

can be seen in Figure 3.18 where the contextual information about a device’s screen can be

constructed using the basic scopes; width and height. By combining the width and height scopes,

ADOPT has the ability to construct contextual information such as a device’s screen size and

resolution using sensors that detect a device’s width and height. The scopes that represent screen

resolution, ScreenResolutionComposite, and screen size, ScreenSizeComposite, are considered

composite scopes as they are constructed using a combination of basic scopes, which in this case

would be the width and height. The difference between the two composite scopes can be seen in

the representation of each, as the ScreenResolutionComposite is characterized using an integer

representation that describes the number of pixels for a screen’s width and height, while the

70

ScreenSizeComposite scope is constructed using a float representation that describes the physical

width and height using inches as its measure.

By deriving composite scopes directly from basic ones, it allows application developers to build

additional domain-specific context variables that can be reused by multiple applications within

the domain, thereby increasing the reusability of the ADOPT ontology. This feature allows

application developers to reuse already constructed composite scopes by incorporating them into

their application ontologies. If, on the other hand, a scope is missing from the ADOPT ontology

and a developer implements it, it can be extended into the ADOPT repository so that it can be

used by other developers. This feature presents another advantage of ADOPT over linear key-

value models which have difficulties in integrating dynamic components into their system. One

of the goals of ADOPT was to improve the integration process of newly developed components

and to allow any new developer to integrate these newly added components into their

applications as seamlessly as possible.

Finally, composite scopes also provide the domain specific ontology with the ability to abstract

sensor data into high-level contextual information through sensor fusion, discussed in section

2.2. An example of sensor fusion within ADOPT is seen through the LatenessComposite scope

whose goal is to determine whether or not a particular public transportation passenger is going to

be late for an event by combining various scopes obtained from multiple sensors. In this

example, the composite scopes that are combined are the LocationComposite, DelayComposite,

and the SpeedComposite which together form the LatenessComposite scope.

The LatenessComposite is constructed using a Location scope (either LocationGeo or

LocationAddress) which determines both the passenger’s and event’s location, either as a geo-

71

coordinate or address obtained through the device GPS sensors. The DelayComposite scope

determines if the passenger’s transit vehicle will encounter any delays on its travel by accessing

the composite scopes that describe the weather conditions, traffic congestion, and slowdowns

due to power outages. The SpeedComposite scope indicated the speed the vehicle is currently

travelling at. By combining these three composite scopes into the LatenessInfo scope which is

represented using the composite representation LatenessRepresentation as well as applying

additional application logic that determines how speed and delays directly affect a vehicle’s

expected time of arrival (ETA), a person’s lateness, in terms of time, can be determined. This

example’s breakdown can be further seen in Figure 3.19.

hasSubclass
hasSubclass

hasSubclass hasSubclass hasSubclass

hasSubclass

hasRepresentationhasDelay
hasSpeed

hasLocaion

Figure 3.19 - Example of using multiple composite scopes to create a LatenessComposite scope

3.4.3 Representations

When all of the contextual information was defined and the necessary scopes for a domain were

created, the structure and format of each scope’s provided information needed to be established,

this step was achieved through the top-level representation concept. In order to accurately reflect

72

the created scopes, representations are divided into two subsections; basic and composite [65].

Basic representations are closely coupled with basic scopes and are therefore used to accurately

portray context information that is obtained through an individual measure. For example, an

altitude basic scope can be represented as a float value using the “meter” or “feet” unit base.

Therefore, the altitude of a person or vehicle can be retrieved in the form; “100 meters” or “328

feet”, depending on the preference of the application developer and their application ontology.

However, representing a scope that defines a particular date (Date scope) cannot be achieved

through a basic representations as a date is constructed using a combination of numerous basic

scopes such as day, month, and year. Therefore, basic representations cannot be derived from

other basic representations as they are the base unit of all representations [65].

One problem that arises from basic representations is the need to accurately portray units of

measure in contextual information. Having contextual information represented as a value without

a unit can be misleading to the application developer. For example, if a sensor was to report that

the altitude of a person as “100” without a unit the application developer would have no

knowledge to determine if this value was representing the altitude measured in “feet”, “meters”,

or through some other measure. Therefore, there was a need to integrate an additional units

ontology in order to portray contextual information in a more meaningful way [65]. To solve this

problem the SWEET Unit Ontology [72] was incorporated into the top-level ontology [65]. The

SWEET Units Ontology is comprised of BaseUnits, which represent the basic units of measure

according to the International System of Units (SI), and DerivedUnits, which represent units of

measure that can be calculated using units from the BaseUnits concept. The DerivedUnits

concept of the SWEET Unit Ontology demonstrates the advantage of this particular ontology as

all units can be derived directly from the instances of the BaseUnits. For example, a second is an

73

example of a BaseUnit as it is the basic unit of measure for time according to the SI. Using the

basic second unit, developers have the ability to derive additional units such an hour unit which

can be obtained by dividing the second base unit by sixty. Therefore using the SWEETS Unit

Ontology developers have the ability to construct any desired unit of measure by deriving it from

a base unit found in the BaseUnits concept.

Figure 3.20 - Ontological structure of basic representations

According to Reichle [65], basic representations, as seen in Figure 3.20, can be subclassed as

either numerical, which is structured by integers, floats, etc., or non-numerical data structured

through strings, Boolean values, etc. When all basic scopes have been defined, ADOPT needs to

be able to associate a basic representation to each basic scope. This association is defined using

the hasRepresentation object property, as seen earlier in Figure 3.2. The hasRepresentation

property allows a scope to be associated to at least one representation regardless of whether that

representation is a composite or basic one. The hasRepresentation object property links instances

of the scope concept to instances of the representation concept as seen in Figure 3.21. In order to

define a hasRepresentation property on a particular scope, a class restriction needs to be

implemented. The simplest way to implement a class restriction on a particular scope is to

associate one of the basic representation subclasses, such as StringRep, FloatRep, IntegerRep,

etc., to that particular scope.

74

Fuel_Instance1

Fuel_Instance2

City_Instance1

City_Instance2

6.4 L

0.5 L

Toronto

New York

Fuel

City

FloatRep

StringRep

Example of scopes Example of representationsInstances of representationsInstances of scopes

hasRepresentation

hasRepresentation

hasRepresentation

hasRepresentation

Instances Of

Instances Of

Instances Of

Instances Of

Figure 3.21 - Example of associations between basic scopes and basic representations

For example, in ADOPT the basic city scope can be defined as a string value representing the

name of the city. Expression 3.1 demonstrates a class restriction implemented for the city basic

scope.

Expression 3.1 - Implementation format of a class restriction

Expression 3.1 implies that the location information of the city basic scope can only be

represented using an individual string value (StringRep) such as “Toronto”, “New York”,

“Paris”, etc. as seen in Figure 3.21. The same structure can be followed for other non-numerical

basic representations such as the BooleanRep representation. A basic Boolean representation can

be used to define whether or not an assistance alarm is currently activated, as seen in Expression

3.2, with a result yielding true if the alarm is activate and false if it is not.

Expression 3.2 - Example basic Boolean representation

Basic representations can also associate numerical representations to the corresponding scopes,

with a unit value, defined within the SWEET ontology, distinguishing what each numerical

representation indicates. One example includes the BatteryLevel scope which is used to obtain

75

information about the current battery level of a device. A device’s remaining battery life can be

represented using multiple formats such as a percentage or time based measure, as seen in Figure

3.22. By having a system that allows for multiple representations, application developers can

choose which structure or format they feel most comfortable working with.

BasicRepresentation

RepresentationScope

Is a

BasicScope

BatteryScope

BatteryLife

Is a

Is a

Is a

FloatRep

Is a

Percent: 20.0 Seconds: 3600

Instance Of Instance Of

BatteryLife_Instance1

BatteryLife_Instance2

hasRepresentation

hasRepresentation

Instance Of

Instance Of

hasRepresentation

hasRepresentation

IntegerRep

Is a

Figure 3.22 - Example of BatteryLife scope with multiple representations

There are two ways to associate multiple representations, as seen in Figure 3.22, to a single

scope in the ADOPT ontology, either by implementing them directly into the hasRepresentation

class restriction or by defining a new scope for each representation such as

BatteryLifePercentage and BatteryLifeTime with each having its own representation restriction.

As discussed earlier in this section, ADOPT allows application developers to give their

representations a unit value in order to allow application developers to choose which format they

want to process the desired contextual information. In order to add a unit measure to the class

restriction, the object property hasUnit must be added to the restriction. An example of the

BatteryLifePercentage basic representation with a hasUnit restriction is defined in Expression

3.3.

76

 (())

Expression 3.3 - Example of restriction with hasUnit property

Expression 3.3 indicates that all formatted contextual information for the BatteryLifePercentage

scope must be formatted as a percentage. If a developer was to add another basic representation

such as an integer value that will represent the amount of time a battery has remaining in terms

of seconds it can be added to the restriction through the or operator demonstrated in Expression

3.4.

 ((()) (()))

Expression 3.4 - Example of a restriction that allows for multiple units to be declared

Finally, representations can also contain enumerations, meaning that the formatted representation

can be a specific value obtained from a pre-defined set of values. An example of such

representations can be seen in the basic representation for the BatteryChargeStatus scope which

is used to provide contextual information that describes whether or not the battery is currently

being charged. The system handles the proposed enumeration restriction by implementing the

hasSimpleValue object property for the desired scope. Expression 3.5 demonstrates a

representation indicating the status of whether a device is currently charging using a basic

StringRep representation whose value can only be charging, discharging, or unknown.

 (())

Expression 3.5 - Example of declaring contextual information through enumerations

The second type of representation used in ADOPT is the composite representation, which is used

to structure the composite scopes discussed in section 3.4.1. Since composite scopes cannot be

represented through individual basic representations, ADOPT needs to have the ability to

77

combine multiple basic representations in order to structure more complex data. One example of

a composite scope is the LocationAddress, which is used to obtain the address of a

passenger/object. Although the system can retrieve all the individual components of the Location

scope such as a city, country, street, etc. using basic representations, the application developers

would need to retrieve too many individual components in order to determine a particular

address. Therefore, using a composite representation allows application developers to retrieve all

the necessary address information through a single retrieval method.

Through composite representations, application developers have the ability to choose which

components of the Location scope are needed to determine the address within their application.

To accomplish this, composite representations group basic scopes through their object property

restrictions, which are used to create relationships between the instances of various scopes found

in the ontology [73]. One example of this can be seen in the composite representation

AddressRepresentation which has an object property restriction called hasCity that indicates that

instances of the concept AddressRepresentation must include instances of the city basic scope. In

order to link instances of AddressRepresentation and city, the hasCity restriction must implement

the OWL properties Domain and Range. The Domain and Range of an object property

restriction links instances of a Domain class to the instances of a Range class [73]. In the hasCity

restriction example, the Domain is defined as the AddressRepresentation and the Range is

defined as the city basic scope. This example is further expanded in Figure 3.23 as the composite

representation AddressRepresentation is associated to five object property restrictions; hasCity,

hasCounty, hasPostalCode, hasNumber, and hasStreet which are directly associated to the basic

Location scope’s city, country, postalcode, unitnumber , and street subclasses. Through this

method, an application which desires to retrieve contextual information about an address does so

78

through the LocationAddress composite scope which returns an AddressRepresentation

representation.

Composite
Representation

Basic Scope

City

Country

PostalCode

Street

UnitNumber

AddressRepresentationLocationAddress

Scope Representation

Is a

Is a

Is a

Is a

hasPostalCode

hasStreet

hasCity

hasCountry

hasNumber

Is a

Is a

Is a

Is a

Is a

hasRepresentation

LocationAddress

Is a

Figure 3.23 - AddressRepresentation example using object property restrictions

3.5 System Architecture Model

In order to allow ADOPT based mobile applications to reconfigure software components based

on changes to the various defined scopes, the architecture of the system needs to be examined.

The architecture of ADOPT was built on top of earlier work presented in MUSIC [17] model and

is comprised of three main layers:

 Ontology Layer: comprised of all entity types, scopes, and representations that are created

by the application developer for their desired mobile application.

 Context Layer: describes all contextual variables that will be implemented in the desired

application and is comprised of the application ontology and context model modules. The

79

context model defines all the contextual variables used for software component

reconfiguration [74] within the desired public transportation application.

 Logic Layer: describes all the software components that can be reconfigured within the

desired application and the variants of each component [75] (component plan module), as

well as determine which variant of a software component should be activated based on

changing contextual (utility function [76]).

An application developers initial step to initiating the ADOPT architecture is to derive all

possible entity types and scopes from the domain ontology, described in section 3.4.1 and 3.4.2,

to construct an application-based ontology for a mobile application developer’s desired scenario.

Once the application ontology is constructed, the developer needs to create all the context

models that will define the contextual information that will be obtained from various

environment and user based sensors. Context models are further explained in section 3.5.1. In

order to process the contextual information defined in the contextual models, a component plan

needs to be created that will inform the application of which variants each software component

can be reconfigured to, this is further explained in section 3.5.2. Finally, once all of the

contextual information and component plans have been defined, the application developer needs

to create utility functions, described in section 3.5.3, that will notify the application of any

reconfigurations that need to occur based on the changing sensor information defined within the

contexts models. This entire process is exemplified in Figure 3.24.

80

Application Logic

Utility FunctionsComponent Plans

Context Models

A
D

O
P

T
Fr

am
ew

o
rk

Entity Types Scopes Representations

Application Ontology

O
n

to
lo

gy
 L

ay
er

C
o

n
te

xt
 L

ay
er

Lo
gi

c
La

ye
r

ADOPT Based Public Transportation Application

Figure 3.24 - ADOPT Architecture

3.5.1 Context Models

When developing an ADOPT based public transportation application, application developers

need to define which scopes and entities their mobile applications will implement in order to

reduce the amount of imported ontology code added to the application. To do this, application

developers must define which contextual variables will be implemented into their application and

associate the necessary basic and composite scopes to them. Figure 3.25 demonstrates a generic

context model used for both composite and basic scopes described earlier in this chapter. Using

81

Figure 3.25 as the basis for defining contextual information an application developer needs to

create a context model for every piece of contextual information found within their application.

EntityType: #concepts.entities.entityName1
Scope: #concepts.scopes.basicScopeName1

EntityType: #concepts.entities.entityName1
Scope: #concepts.scopes.compositeScopeName1

EntityType: #concepts.entities.entityName
Scope: #concepts.scopes.compositeScopeName

Generic Composite Scope Context Model

EntityType: #concepts.entities.entityName
Scope: #concepts.scopes.basicScopeName

Generic Basic Scope Context Model

EntityType: #concepts.entities.entityName2
Scope: #concepts.scopes.compositeScopeName2

Figure 3.25 - Generic context model for basic and composite scopes

Elements found within the context model are always associated to a particular entity type

described in section 3.4.1 and a scope described in section 3.4.2. This association allows

application developers to link which context sensor widget, described earlier in section 2.3, their

application will register to in order to retrieve changing contextual information. If a developer

desires to include their own scope which is not included within ADOPT, then they then will need

to build the context widget associated to that new scope themselves. The context model elements

are each associated to an entity type and scope using the structure found in Expression 3.6.

Expression 3.6 - Generic context model element definition

In Expression 3.6, the elementType characteristic describes whether a context model element is

an entity type or a scope; while the elementName describes which element described in section

3.4.1 or which scope describe in section 3.4.2 the context model element references.

82

Figure 3.26 - Example of location context model

Figure 3.26 demonstrates an example of a location context model that a developer would

instantiate when attempting to obtain a physical location, such as the geographic coordinates, of

a passenger entity. If a passenger is detected to have changed their location, defined by the scope

name #concepts.scopes.basic.Latitude and #concepts.scopes.basic.Longitude, then applications

that have registered to the context varaible LocationGeo by the scope name

#concepts.scopes.composite.LocationGeo are informed of any location changes.

3.5.2 Component Plans

Once all the context models have been created, the application developer needs to define all of

the components that can be reconfigured within the application. To define the reconfigurations

within an application, application developers needs create a component plan that outlines all

possible variants for each software component. Variants can be classified as one of two different

types; atomic and composite realizations [75]. Atomic realizations are used to represent a variant

LocationGeo

«componentType»

EntityType: #concepts.entities.person.passenger

Scope: #concepts.scopes.composite.LocationGeo

Latitude

«ContextValue»

EntityType: #concepts.entities.person.passenger

Scope: #concepts.scopes.location.latitude

Longitude

«ContextValue»

EntityType: #concepts.entities.person.passenger

Scope: #concepts.scopes.location.longitude

83

that is composed of an individual software module that reconfigures when a contextual change is

detected. Composite realizations, on the other hand, are composed of multiple atomic realizations

suggesting that multiple modules need to be reconfigured when there is a change to contextual

data associate to that variant’s component type. Figure 3.27 demonstrates a generic example of a

component type with multiple variants represented through both composite and atomic

realizations. Figure 3.27, also, demonstrates that a generic component type can be comprised of

multiple variants with each variant comprised of unique modules. Each variant of a component

becomes activated under specific conditions that must be satisfied based on the processed

contextual data retrieved from a sensor. One example of a component type with multiple variants

is a component that determines which location sensor data to use in order to retrieve an accurate

location of a particular user.

Figure 3.27 - Generic component type definition

For this particular example let’s assume that there are only two ways of retrieving location data;

through GPS coordinates (more accurate but can only be used outdoors) or by triangulating the

user’s position through nearby cellular towers and Wi-Fi access points (less accurate but can be

used anywhere). Figure 3.28 demonstrates the GPS variant as an atomic realization because it is

composed of an individual module, while the triangulation module is described as a composite

84

realization because is it comprised of multiple modules, in this case cellular towers and Wi-Fi

access point modules.

Figure 3.28 - Example of component type definition through atomic and composite realizations

3.5.3 Utility Functions

The final step of the architecture is to determine when a component’s variants need to be

reconfigured. In order to successfully achieve this step, all the necessary contextual information

that the application will process need to be defined using the context models along with all the

possible variants that components can be reconfigured to. In order to successfully determine how

system reconfiguration should occur, a utility function for each component needs to be created in

order to determine when a variant should be activated and deactivated. The utility function

processes retrieved contextual information and uses developer-defined probabilistic functions to

determine which variant of a particular component needs to be activated, the probabilistic

functions provide a threshold value that determines which variant to reconfigure to [76]. Within

the utility function each variant is given a unique threshold range from 0 to 1 which will inform

the application of which variant to reconfigure to. For example, a utility function can be used to

85

determine which variant of the location component, seen in Figure 3.28, to reconfigure to. For

simplicity, the following example will remove the WifiAccessPoint realization from the location

example provided in Figure 3.28 and only allow reconfiguration of the location component to be

either the GPS or CellTower variants. In order to determine which of the two variants to activate,

the following ADOPT domain ontology scopes will be processed to determine a threshold value

that will inform the application of which variant to use:

 GPSAvailablity: a Boolean value that indicates whether or not the mobile device can

currently obtain a signal from GPS satellites.

 Accuracy: the required accuracy in meters of the retrieved location data.

 BatteryLifeRemaining: the current battery level, in percentage, in case the application

needs to conserve power at a low battery level

Figure 3.29 - Example of a utility function for the location component

86

Using these three contextual variables, Figure 3.29 displays a location utility function that will

provide threshold values ranging from 0 to 1 that indicate which variant of the location

component to use. Table 3.2 provides all the possible variants defined and their associated utility

threshold values. Therefore, when a utility function results in one of the defined “Utility

Function Outcomes” values, the designated location variant will made available.

Table 3.2 - Example of threshold values that correspond to a particular location variant according to Figure 3.29

Utility Function Outcome Designated Location Variant

0.0 – 0.125

- Indicates that neither of the variant requirements have been met

and that the user should be informed that a location cannot be

determined resulting in a None variant.

0.125 - 0.75

- Indicates that not enough of the requirements for the GPS

variant have been met but the requirements for the CellTower

variant have been met.

0.75 - 1.0 - Indicates that all the requirements of the GPS variant of the

location component have been meet.

In addition to Table 3.2, Figure 3.30 demonstrates a graph of all the possible threshold values

obtained from Figure 3.29 and which variant each threshold value will represent. Through this

graph, it is evident that under a majority (utility outcomes between 0.125 and 0.75) of

circumstances the location component will yield the CellTower variant as it requires the least

amount of contextual information to function correctly. The GPS variant only covers 25% of the

possible outcomes (0.75 - 1.0) as it functions correctly only under specific contextual

information conditions, such as the presence of GPS satellites. A small subset of outcomes (0.0 –

0.125) will yield an offline variant of the location component because the retrieved contextual

information will not have met either the CellTower and GPS variant criteria. This usually

87

happens when a mobile device in not in range of any cellular towers and has no direct line of

sight to any GPS satellites.

0 0.25 0.5 0.75 1.0

Legend

GPS variant

CellTower variant

None variant

Figure 3.30 - Graph representing all of the threshold values described in Table 3.2

3.6 Summary of Adopted Methodology

The goal of ADOPT was to improve the creation of context-aware applications designed for a

public transportation domain. Using the proposed system, application developers will have the

ability to efficiently create context-aware applications that retrieve sensor information, abstract

that information into data that the application can process, as well as initiate component

reconfiguration based on changes obtained from the sensed information. The goal of the ADOPT

framework was to allow application developers who are not considered experts in the public

transportation domain to quickly understand the contextual information available to them within

the domain and, therefore, reduce their development time to successfully implement a functional

public transportation mobile application.

In this chapter the proposed ADOPT domain ontology was built as an extensible component of

Reichle’s top-level ontology [65], and introduced public transportation concepts that directly

relate to the top-level ontology’s entity types, scopes, and representations. ADOPT details

various real-world/logical objects and people, also known as entity types, which directly affect

and/or are affected by contextual changes within the public transportation domain. Using these

88

entity types a concrete set of contextual information, known as scopes, was created which can be

used within any public transportation mobile application. Through these scopes, application

developers have the ability to directly integrate context sensors without the need to implement

them on their own.

ADOPT is comprised of created simple and complex representations and formats that the

contextual information can be delivered in when an application requests for contextual

information about a particular entity. If additional scopes and representation need to be created,

ADOPT provides application developers with the necessary tools to incorporate the conceived

concepts. A sample of the final public transportation domain specific ontology can be observed

in Figure 3.31. It is important to note that Figure 3.31 only displays a portion of the overall

ontology which consists of more one hundred and fifty concepts. In addition to Figure 3.31, there

are several figures found throughout this chapter including Figure 3.5, Figure 3.9, Figure 3.10,

Figure 3.11, Figure 3.12, Figure 3.13, Figure 3.15, Figure 3.17, Figure 3.18, Figure 3.19, and

Figure 3.20 that describe the ADOPT public transportation ontology in greater detail.

89

F
ig

u
re

 3
.3

1
 -

 S
a

m
p

le
 o

f
p

ro
p

o
se

d
 p

u
b

li
c

tr
a

n
sp

o
rt

a
ti

o
n

 o
n

to
lo

g
y

90

Chapter 4. Results and Analysis

Based on the methodology presented in Chapter 3, the strengths of the ADOPT framework will

be examined in this chapter. In particular, a specific case study comparing a linear key-value

model to the ADOPT framework will be examined in detail with the results presented. The goal

of this chapter is to demonstrate several key advantages through both qualitative and quantitative

measures of the ADOPT framework.

4.1 Case-Study: Person with Reduced Mobility (PRM) Application

The Person with Reduced Mobility (PRM) application was a mobile application designed to

demonstrate how contextual changes can result in component reconfigurations within a public

transportation domain. The objective of the PRM application was to enhance the travel

experience of general, elderly, and disabled passengers who travel on line 14 of Paris’s RATP

Metro system. In order to enhance their travel, the PRM application provides a set of passenger

relevant information, also known as services, based on the specific station that a passenger is

currently located in. As the passenger moves from station to station on line 14, the list of relevant

services changes based on the station the user is arriving at. Relevant services to a passenger can

include:

 Route Map/Station Location: map of the route the passenger is currently traveling on as

well as the map of the station that they are currently located in, along with any POIs

nearby.

 Arrival Alarm Notifications: informs the passenger when they have arrived at their

declared destination station.

91

 Request Assistance: informs a safety marshal of the whereabouts of the passenger in the

event that they have requested assistance.

 Station Information: additional information about the user’s current station.

The availability of these, passenger relevant services, are determined based on the contextual

variables defined by the system. In the PRM application, the following list of context variables

was used to determine, not only under which conditions the previously described services should

become available, but also when specific components such as the Text-To-Speech (TTS) service

should be made available to the passenger:

 Special Need: indicates whether a passenger has a disability, in the case of the PRM

application, disability options included; sight, mobility, both or none.

 Date of Birth: indicates the date of birth of the passenger which can be used to determine

their age.

 Location: detects the station that a passenger is currently located in.

 Network Signal Strength: the 3G connection signal strength of the passenger’s mobile

device.

4.1.1 Special Need/Date of Birth Context Specification

Two contextual variables, disability and age, were used to reconfigure an individual passenger’s

mobile screen layout in order to provide them with a flexible and more intuitive experience. Due

to a lack of sensors that determine a user’s disability and age, these variables needed to be pre-

filled by the passenger during the first time the mobile application is launched. The context

model of the disability and age context variables, as per the specifications described in section

3.5, can be seen in Figure 4.1. The context model, in Figure 4.1, describes the disability attribute

92

which is constructed following the conventions described in section 3.5. It is defined as a

composite scope that is made up of two basic scopes; sight and mobility which are indicated

using Boolean values.

EntityType: #concepts.entities.person.passenger
Scope: #concepts.scopes.composite.specialneed

EntityType: #concepts.entities.person.passenger
Scope: #concepts.scopes.basic.specialneed.sight

EntityType: #concepts.entities.person.passenger
Scope: #concepts.scopes.basic.specialneed.sight

Figure 4.1 - Disability context model for PRM application

Figure 4.2, on the other hand, demonstrates how the date of birth composite contextual variable

can be modeled using the individual metrics required for determining a user’s age.

EntityType: #concepts.entities.passenger
Scope:#concepts.scopes.dateofbirth

EntityType: #concepts.entities.passenger
Scope:#concepts.scopes.datetime.day

EntityType: #concepts.entities.passenger
Scope:#concepts.scopes.datetime.month

EntityType: #concepts.entities.passenger
Scope:#concepts.scopes.datetime.year

Figure 4.2 - Date of birth context model for PRM application

Using the context models described in Figure 4.1 and Figure 4.2, the PRM application is able to

reconfigure components such as the user interface layout based on changes to the contexts

93

SpecialNeed and DateOfBirth. In the PRM application, if a passenger has indicated that they do

not have a disability and their age is determined to be less than 65, then the list of relevant

services was presented in a grid-like layout, as presented in Figure 4.3, where each service could

be activated by the user selecting an icon.

Figure 4.3 - PRM screenshot layout for passenger with no disability

If the passenger has indicated a sight disability then the application needs to reconfigure its

layout by removing all the icons and texts, as a person with limited sight would have difficulties

viewing the icons and texts, and provide the passenger with a gesture-based user interface. The

gesture-based user interface allows users to activate any service by performing a specific touch-

and-drag pattern on the mobile device’s screen instead of selecting each service directly. The

distinction of the two methods can be seen in Figure 4.4.

94

If, on the other hand, if the user has indicated that they have a mobility impairment or that they

are older than 65, the layout needs to reconfigure and provide both a grid-like interface along

with the gesture-based interface that will allow a passenger to choose between the two methods

depending on which is more convenient. In addition to the reconfiguration of the layouts

displayed on the screen, if either a sight, or mobility disability, or an age of greater than 65 has

been indicated by the user, TTS will be activated thereby converting all information into audible

speech that the passenger can better understand. If the user has not indicated a disability and is

under the age of 65 then the TTS feature will not be activated.

Grid-Like layout
displayed when user

has indicated no
disability

Gesture-Like layout
displayed when user
has indicated a sight

disability

Figure 4.4 - Distinction between activating the destination service through grid and gesture based layouts

4.1.2 Location Context Specification

The location contextual variable in the PRM application reconfigures the availability of the

relevant services based on the station a passenger is currently located at. There are two ways for

the PRM application obtain a location accurate enough to understand which station a passenger

95

is located at; using the Global Positioning System (GPS) or through cellular tower identification.

If a passenger is located outdoors and their mobile device has a direct path to the GPS satellites

then the device should use the embedded GPS sensor to retrieve the location of the passenger. If,

however, the passenger is located indoors within a station and there is no clear path for a mobile

device to connect to GPS location satellites [77], the PRM application determines the station that

a passenger is located at through cellular tower identification as each station on line 14 of the

Paris Metro has dedicated cellular towers. Therefore once a user’s device connects a particular

tower, its identification number can be referenced to a database entry to determine which station

the passenger is currently located at. The contextual model for the location context of the user

can be seen in Figure 4.5.

Entity Type: #concepts.entities.passenger
Scope: #concepts.scopes.location

Entity Type: #concepts.entities…celltower
Scope: #concepts.scopes.location.cellid

Entity Type: #concepts.entities.passenger
Scope: #concepts.scopes.LocationGeo

Figure 4.5 - Location context model for the PRM application

An example of using the location context to retrieve relevant services can be seen in Figure 4.6

where a passenger’s location directly affects the relevant information that is presented to them.

In Figure 4.6, when the passenger is detected to be located at “Bercy” station, either by using the

GPS sensor or cellular tower identification, relevant services such as Station Location, Route

96

Map, Request Assistance, etc. will be made available to the passenger. When the passenger

leaves “Bercy” station and enters “Cour Saint Emilion” station, a different set of relevant

services will be made available to that passenger to reflect information found at the new station,

in such a case the Station Location service will no longer be available on the passenger’s mobile

device as the system does not contain a station map for “Cour Saint Emilion” station.

Services available at
Bercy Station

Services available at
Cour Saint Emilion

Station

Figure 4.6 - Example of service availability at different stations

4.1.3 Network Signal Strength Context Specification

The final context variable used in the PRM application is the cellular network signal strength of

the 3G data connection on the user’s mobile phone. In order for the PRM application to

determine what the cellular signal strength between the passenger’s device and the cellular tower

are, two key contextual variables (scopes) need to be examined; NetworkStatus and

NetworkStrengh. NetworkStatus informs the PRM application of whether or not the mobile

device currently has a mobile connection to a cellular tower. If no connection is available then

the device will not be able to access any of the services provided as no Internet connection is

97

available to retrieve information services from. If there is a connection to a cellular tower, the

NetworkStrengh variable is used to determine how fast the connection is. Based on the

connection speed, the PRM application will need to reconfigure to reflect the fluctuating signal

strength. The contextual model of a mobile signal strength can be seen in Figure 4.7.

EntityType: #concepts.entities.device.smartphone
Scope:#concepts.scopes.composite.network.networksignal

EntityType: #concepts.entities.resource.cellularnetwork
Scope:#concepts.scopes.networkscope.networkstatus

EntityType: #concepts.entities.resource.cellularnetwork
Scope:#concepts.scopes.networkscope.networkstrength

Figure 4.7 - Network signal context model for PRM application

In the PRM application, the signal strength is calculated using decibels (dB) and is divided into

four variants based on prior testing of the signal strength variable. For the purpose of the PRM

application, Table 4.1 examines the various threshold ranges and their corresponding.

Table 4.1 - Signal strength thresholds

Range (dB) Value Explanation

-50+ High Occurs when the Internet connection to the mobile

device is good enough for streaming videos

-50 to -70

Medium

Indicates that the Internet connection is slightly

weaker and therefore should display a graphical

version of a service without any videos

98

-70 to -113

Low

Indicates that the Internet connection is of poor

quality and downloading data should be kept at a

minimum resulting in a text-based version of a

service

-113

No Connection

Occurs when there is not sufficient access to the

connection resulting in no Internet service to the

mobile device

In the PRM application, if the application is receiving “high” signal strength, according to Table

4.1, and a user activates a service, that service will be presented in its intended form, if however

at any point the mobile device starts to receive a “low” signal strength, the service will

automatically reconfigure to display a text-based variant to reduce the amount of data

downloaded from the server.

High bandwidth
variant of the Video
information service

at Cour Saint Emilion
station

Low bandwidth
variant of the Video
information service

at Cour Saint Emilion
station

Figure 4.8 - High and low bandwidth layout variants of information service

The same can be applied to the “medium” and “offline” variants. Whenever the signal changes,

based on the values of Table 4.1, the corresponding change is made on the mobile device. The

99

inclusion of the signal strength variable allows mobile devices that receive poor connection to

reduce the amount of information displayed so that it can be rendered in a quicker manner.

Forcing the passenger to view a video when a low signal connection is present can take an

inordinate amount of time. An example of this process can be observed in Figure 4.8.

4.2 Approaches to Application Implementation

Based on the contextual requirements described in section 4.1, the PRM application was built

using two different approaches; the linear key-value model and the proposed ADOPT

framework. The reason the key-value model was chosen as the comparison model was to provide

a benchmark using the simplest context model with the ADOPT solution, if the ADOPT solution

demonstrates an advantage over key-value models it can then be compared to more complex

context models. The goal of these two approaches was to create a functional mobile application

that demonstrates the ability to retrieve contextual information from both the passenger and

environment sensors (context and mobile sensing), abstract sensed data into information that can

be processed by the system (context abstraction), and determine when reconfiguration should

occur (context modeling and synthesis). In order to best implement both approaches on a mobile

device, the Android operating system was chosen, in large part, due to the openness of its

platform [78]. Out of the five current smart mobile platforms; Android, Symbian, Windows

Mobile, iOS, and Blackberry, Android provide developers with the ability to access the most

system resources without requesting permission from either the user or the device [78]. This

implies that Android application developers have the ability to access and manipulate specific

system resources such as obtaining the signal strength of a 3G data connection and location

through cellular tower identification which is either not possible or requires special permissions

on other mobile platforms.

100

4.2.1 Linear Key-Value Modeling Approach

The first version of the PRM application that was created was one based on a linear

programming pattern where the application was created using only Android’s mobile Software

Development Kit (SDK) without integrating any additional libraries or components. In the linear

modeling technique the first step was to create all the user-interfaces (views) that would be

associated to the PRM application. This includes both the grid and gesture based user interfaces,

discussed in section 4.1.1, that will be displayed to the passenger based on their pre-defined

disability and age settings. Once all the views had been created the application needed to handle

a user’s interaction with the views. Therefore, each view component was associated with

listeners that detect when a user has requested to interact with the device. By creating all of the

views and listeners, the skeleton of the application was created with only the contextual logic

itself missing.

Before the contextual based application logic could be created, the application needed the ability

to retrieve information from specific mobile sensors in order to determine if any context

variables had been changed. Therefore, context widgets, described in section 2.3, needed to be

created for each dynamic context variable discussed in section 4.1 including the user location

and network signal strength. These context widgets were created using Android software

components known as Services, which are used by the Android platform to perform either long-

running operations, network communications, and/or collect specific information that can be

broadcast to the application itself. The cellular tower identification context widget retrieved

cellular tower information whenever the mobile device changed cellular towers. Once the

cellular tower identification could be retrieved from the cellular tower itself, the information

needed to be sent to the server, which would corresponded the cellular tower identification

101

number to the appropriate cellular tower. Once the context widget for a cellular tower obtained

the new station location, it would notify the PRM application that there has been a change in

location and the PRM application would need to retrieve the relevant services for the new

station. The second context widget that needed to be created was the network signal strength

widget. This widget retrieved the changing signal strength information every time there was an

adjustment to the connection. Once the widget retrieved the information, it would inform the

PRM application of the new signal strength. The other two context widgets; disability and age,

did not need to communicate directly with any sensors, they only needed to retrieve the disability

and age attributes from the server on the application’s launch. As these variables are static they

only needed to be accessed on the initial run-time of the application.

Based on the four context variable implemented by the PRM application, the linear key-value

model programming approach used if-else rules in order to determine whether the application

should reconfigure any software components. This suggests that whenever a context widget

informed the PRM application of new context data, the application needed to check to see if the

new context data is tangibly different than the previously retrieved data. If it is than the PRM

application would use if-else rules in order to determine which variant of the component the

application should reconfigure to. An example of a key-value pair found within this approach

can be seen in Expression 4.1.

()

Expression 4.1 - Sample of key-value pair for PRM application

In order to fully characterize all of the information retrieved from the sensors, every piece of data

provided by the context widgets needed to be characterized using the same key-value format

102

presented in Expression 4.1. Once all the possible key-values pairs were constructed and a

context widget retrieved specific sensor-based information, the application must check all of the

key-value pairs for a particular component (in this case location) to find out which key the data

obtained by the context widget matches. This process was performed through if, else if, and else

statements to check for matches. Once a match was found the application needed to reconfigure

to the appropriate match. The steps used for creating the PRM application through a linear

modeling approach are summarized in Table 4.2.

Table 4.2 - Summarized process of create a linear PRM application

Step Summary

1 - Construct all client-based user interfaces including the grid and gesture based

components (Create all application views)

2 - Create all action listeners used to respond to the user’s action and clicks on each

of the component found in each user interface (Create all controllers)

3 - Create dynamic context widgets for retrieving connection signal strength and

cellular tower identification through Android Services

4 - Create static context widgets for retrieving context variables such as age and

disability that do not change often.

5 - Create all key-value pairs for all the components found within the PRM

application.

6 - Create simple if-then rules that determine when application reconfiguration

need to occur within the application logic

4.2.2 Proposed Ontology Modeling Approach

Unlike the linear modeling approach, the first step of the ADOPT model approach was to design

an application ontology using the ADOPT ontology described in Chapter 3. Based on the

103

requirements described in section 4.1, there were no significant additions to the domain ontology

scopes as all of the required contexts; disability, date of birth, location, and network signal

strength were already included in the domain ontology. However, there were several minor

additions that needed to be added such as the CellTower entity; which was added to the resource

entity type. The CellTower entity needed to be added as there was a need to associate the

location of a particular station to a CellTower identity. In addition, a CellID basic scope was

added to the ResourcePlace basic scope in order to allow the PRM application to connect to the

CellTower scope and obtain its identification. Also added to the entity type list was the

RelevantService entity which was used to describe the relevant services that a user can view at

each station. Finally, a complete list of Individuals was added to ADOPT ontology in order to

represent all of the objects within the PRM application’s domain [73].

hasStation hasCellTower

Individuals

Legend

Figure 4.9 - Example of the hasStation and hasCellTower object properties

104

The Individuals included all instances of stations, cellular towers, and relevant services. In order

to link the various individuals to each other, object properties needed to be created for the each

entity. Examples of object properties added to the proposed ontology were the hasCellTower and

hasStation properties which link instances of the Station place entity type and those of the

CellTower StationPlaceResource entity. The hasCellTower indicates that all Station instances in

the PRM application domain must be associated to at least one CellTower instance while the

hasStation property represents the inverse of the hasCellTower property indicating that all

CellTower instances must be associated to at least one station. This example can be seen in more

detail in Figure 4.9. A sample list of the various individuals and properties that were added to the

application ontology can be seen in Table 4.3.

Table 4.3 - Examples of individuals and their properties

Entity Type Individual Object Property Data Property

Station Bercy hasCellTower 1730212

Station CourSaintEmilion hasCellTower 3098544

CellTower 1730212 hasStation Bercy

CellTower 3098544 hasStation CourSaintEmilion

RelevantService RouteMap hasStation Bercy

hasStation CourSaintEmilion

hasServiceName

“Route Map”

RelevantService StationLocation hasStation Bercy hasServiceName

“Station Location”

Once the ontology for the PRM application was constructed, application logic needed to be

created that would allow changes to the scopes (contextual information) to reconfigure specific

105

components of the application. Within the PRM application there were four main components

that were affected by changes to contextual information; user interface, activation of TTS,

availability of relevant location based services, and the structure (graphical versus text based)

that services should be presented in. The user interface, as discussed in section 4.1.1, was

comprised of four main variants; offline, mobility, sight, and standard which could be

reconfigured based on a user’s disability and age.

The offline variant of the user interface becomes available whenever the mobile device suddenly

loses its data connection and the NetworkStatus scope returns a “Disconnected” value. The goal

of displaying an offline variant of the user interface is to display offline content to the user in

order to avoid the application from displaying no data as it cannot obtain any of the relevant

information services. If the application, however, was able to initiate a 3G data connection than

one of the user interface variants, based on the disability and age variables, would become

available to the user. The architecture for the user interface component variants can be seen in

Figure 4.10.

Figure 4.10 - PRM user interface variants

UserInterface

«componentType»

OfflineUI

«atomicRealization»

SightUI

«compositeRealization»

MobilityUI

«compositeRealization»

StandardUI

«compositeRealization»

106

If a mobile device suddenly loses all network connectivity and the network status, as dictated by

the NetworkStatus scope defined in ADOPT, is set to “Disconnected”, then the PRM application

would need to reconfigure in order to display the corresponding variant of the user interface, in

this case the OfflineUI. Figure 4.11 demonstrates that the OfflineUI variant should be made

available only when the NetworkStatus scope is determined to be “Disconnected”.

Figure 4.11 - Example of contextual information associated to particular atomic realization

Figure 4.12 - Example of the PRM user interface composite realization

Within the PRM application, the MobilityUI composite realization is comprised of the atomic

realizations; GridUI and GestureUI as seen in Figure 4.12. In this example, the MobilityUI user

interface variant is comprised of both the grid and gesture based layout (described through

107

atomic realizations in Figure 4.12) which were discussed in section 4.1.1. Based on the

requiredProperty constraints, as seen in Figure 4.11 and Figure 4.12, the PRM application is able

to determine which user interface variant to display to the user based on which requiredProperty

values are retrieved from the context widget. For example, if the disability context widget

retrieves a sight disability then the SightUI composite realization user interface variant should be

displayed to the user as the GestureUI component is the only atomic realization that has a

disability requiredProperty of “Sight”. Figure 4.13 displays composite realizations for the

location, signal strength, and TTS components found within the PRM application.

Figure 4.13 - PRM component realizations

Low

«atomicRealization»
<<requiredProperty>>

{NetworkStrength <= -50

&&NetworkStrength > -70}

<<requiredProperty>>

{NetworkStrength > -50}

NetworkSignalStrength

«componentType»

TT S

«componentType»

On

«atomicRealization»

Off

«atomicRealization»

<<requiredProperty>>

{Disabil i ty = "Mobil i ty" | "Sight" }

<<requiredProperty>>

{Disabil i ty = "None"}

Location

«componentType»

<<requiredProperty>>

{GPSAvailable = true}

Medium

«atomicRealization»
<<requiredProperty>>

{NetworkStrength <= -70

&&NetworkStrength > -113}

High

«atomicRealization»
Offl ine

«atomicRealization»

<<requiredProperty>>

{NetworkStrength = -113}

GPS

«atomicRealization»

CellT ower

«atomicRealization»

<<requiredProperty>>

{GPSAvailable = false}

108

Once all the atomic and composite realizations have been created and associated to each variant

of a component, the rules for when variants should reconfigure needed to be created. As

discussed in section 3.5 this process is achieved through the utility function. Once it is

determined that a new variant should become available, the PRM application is notified and the

application needs to deactivate any previously activated variants and activate the new variant

determined by the utility function. A PRM utility function for the user interface component can

be seen in Figure 4.14, where based on disability and age contextual information obtained from

the corresponding context widget, a specific user interface variant should be displayed to the

user.

Figure 4.14 - Sample utility function for determining user interface variants

Using the logic described in Figure 4.14, the utility function returns a value that directly

corresponds to a particular user interface variant that an application should reconfigure to. Table

4.4 describes the user interface utility outcome values based on Figure 4.14 and what they

indicate to the PRM application.

109

Table 4.4 - Utility function values and their corresponding user interface variants

Utility Function Outcome User Interface Variants

0.0

- Indicates that there is no internet connectivity therefore the

OfflineUI variant of the user interface should be displayed (see

lines 12-15 of Figure 4.14).

0.01 – 0.167

- Indicates that the user has no disability and is under the age of

65 therefore the StandardUI variant should be displayed to the

user.

0.167 – 0.5 - Indicates that the user either has a mobility disability and/or is

over the age of 65 (see lines 22-23 of Figure 4.14) and therefore

the application should display the MobilityUI variant.

0.5 – 1.0 - Indicates that the user has a sight disability (see lines 25-26 of

Figure 4.14) and therefore the SightUI variant should be

displayed.

In addition to Table 4.4, Figure 4.15 demonstrates a graph of all the possible user interface

threshold values obtained from Figure 4.14 and which variant each threshold value will represent

0 0.25 0.5 0.75 1.0

Legend

Mobility

Standard

Offline

Sight

Figure 4.15 - Graph depicting all of the threshold values for the user interface utility

The signal strength utility functions much the same way as the user interface utility, the first

action the utility function takes is to determine whether or not the mobile device has a network

connection to the Internet.

110

Figure 4.16 - Utility function for signal strength

If it doesn’t, it returns the utility value corresponding to the “No Connection” as seen earlier in

Table 4.1. If the utility function can obtain a network connection it then needs to determine

which range the received signal strength is associated with. The utility function for signal

strength is displayed in Figure 4.16. Using the signal strength utility, in Figure 4.16, Table 4.5

displays all the corresponding utility values and what each threshold value reconfigures to.

Figure 4.17 demonstrates the signal strength variant with the corresponding threshold values.

Table 4.5 - Signal strength threshold values used for reconfiguration

Utility Function Outcome Signal Strength Variants

0

- Indicates that there is no internet connectivity therefore the

Offline variant of a service should be displayed.

0.01-0.5

- Indicates that the signal strength is very weak and the service

should only be displayed in a text-based therefore the Low

variant is displayed.

0.5-0.75

- Indicates that the signal strength is not strong enough to display

video based services therefore the service needs to reconfigure to

a Medium variant with consists of images and text rather than

111

videos.

0.76-1.0

- Indicates that the signal strength is strong enough to

reconfigure to the High variant of the signal strength allowing

the service to be displayed in its intended form.

0 0.25 0.5 0.75 1.0

Legend

Medium

Low

Offline

High

Figure 4.17 - Graph depicting all of the threshold values for the signal strength utility

As an application receives changing utility function values it will automatically activate and

deactivate particular components or variants of the application itself. Using ADOPT, the PRM

application has a total of four utility functions that the application was registered to. These

include the following:

 User Interface Utility: indicates which user interface (grid, gesture, or both) should be

displayed to the user.

 TTS Utility: indicates where or not TTS should be activated for the user.

 Bandwidth Utility: indicates where information services should be displayed in a video-

based, graphical-based, text-based, or offline format.

 Location Utility: indicates which location retriever should be used to obtain a passenger’s

location, explained in detail in section 3.5 Figure 3.29 and Table 3.2.

112

These utility functions help the application determine all the contextual reconfigurations that can

occur within the PRM application. The entire application model can be seen in Figure 4.18

where all the utility functions and component types are displayed. Each utility function is also

associated to various property types that define contextual information that each utility function

is allowed to access. This simplified model demonstrates the core functions that all ADOPT-

based mobile applications must be built on.

Figure 4.18 - Person with Reduced Mobility Application Architecture

When all of the contextual logic is implemented, the next step of the proposed ontology approach

was to create all of the platform-specific code for all of the variants to be fully functional.

Similarly to the linear modeling approach all of the variants included in the PRM application

were constructed using the Android mobile platform.

To further demonstrate the flexibility of the proposed ADOPT approach, the same process used

for the Person with Reduced Mobility mobile application was used to create another travel-based

mobile application, GO Mobile [8], for Ontario’s GO Transit. Much like the PRM application,

PRMApplication

«mApplication»UtilityLocation

«mUtil ityFunction»

UtilityTTS

«mUtil ityFunction»

UtilityUserInterface

«mUtil ityFunction»

Netw orkSignalStrength

«componentType»

TTS

«componentType»

Location

«componentType»

UserInterface

«componentType»

UtilityBandw idth

«mUtil ityFunction»

NETWORKSTATUS

«mPropertyType»

SIGNALSTRENGTH

«mPropertyType»

SIGHT_DISABILITY

«mPropertyType»

MOBILITY_DISABILITY

«mPropertyType»

GPS_AVAILABLE

«mPropertyType»

CELLTOWER_CONNECTED

«mPropertyType»

ACCURACY

«mPropertyType»

BATTERY_LIFE

«mPropertyType»

113

GO Mobile main’s contextual variable is the location of the user which is used to inform

passengers of nearby stations as well as valuable data about upcoming stations during their

travels. The GO Mobile application also accesses the accessibility of the user of the device and

renders the appropriate layout of the application to the user in order to suit the passenger’s needs.

The goal of the application is to improve the travel needs of passengers that travel on GO Transit

by offering them information such as upcoming schedules, maps of routes, arrival alerts, and

departure information based on your favourite routes. Figure 4.19 displays several screenshots of

the GO Mobile application.

Figure 4.19 - Screenshots of GO Mobile

4.3 Results of Linear and Proposed Ontology Modeling Approaches

In this section the results of the linear key-value and ADOPT approaches will be discussed in

detail with the advantages of the ADOPT model described in detail. The quantitative results

presented in this section will be examined in order to demonstrate the strengths of ADOPT in a

context-aware public transportation domain. The PRM case study discussed earlier in this

chapter is used as the basis for the results examined in this section.

114

4.3.1 Testing Environment

In order to obtain the results described in this chapter, a test environment needed to be created to

successfully retrieve the necessary experimental data. For the purpose of this study, all data was

simulated at the Digital Media Zone (DMZ) laboratory located at Ryerson University. Since a

subset of the data retrieved involved a user to move from one station to another, the DMZ was

divided into multiple subsections with each subsection representing a unique station on Paris

Metro’s line 14. Therefore moving from one subsection to another simulated a passenger

traveling from one station to another. Both versions, linear key-value and ADOPT, of the PRM

application were installed on the Motorola Atrix device, which was used to obtain all of the

charted information displayed in this section. The Motorola Atrix used for each test was using

Android’s Gingerbread (2.3.6) operating system and contained a Dual-core 1 GHz Cortex-A9

processor with 1 GB of RAM.

As the results were obtained from a physical device, the availability of contextual information

such as the 3G data connection was dependant entirely on the device itself. All signal strength

data was obtained only when the device was connected through a 3G connection, if the device

automatically switched over to a 2G or EGDE data connection the experiment was stopped until

a 3G data connection was re-established. This was done in order to obtain the most accurate

results possible. In order to reduce the factor of data connection speed, all results were calculated

from the time that a contextual change occurred to the time that a new variant was reconfigured

with all server data transfer time being removed from the results in order to increase the validity

of the experiments. Additionally, the only context that was simulated was the location of each

station on Paris’ line 14 as discussed earlier.

115

4.3.2 Case Study Results

The goal of calculating quantitative measures is to demonstrate that ADOPT provides a

performance improvement of the PRM application over the linear key-value approach. As this

study is focused on the topic of context-awareness, all quantitative results were gathered from

the time that a contextual change was detected by the context widget to the time that a

component was successfully reconfigured. One of the goals of ADOPT was to improve the

process of reconfiguring components based on contextual changes retrieved from the sensors

within the environment. Therefore, all quantitative results were gathered using the four main

case scenarios as described in Table 4.6.

Table 4.6 - Four specific PRM scenarios for which quantitative measure are calculated

Use Case

Scenario

Contextual Information Scenario Example

1

User’s Disability and Age

Once the passenger initializes the application, the

application should obtain a user’s disability and

age from a user profile and render the appreciate

user interface.

2 User’s Location As a user travels on Paris Metro’s Line 14, based

on the station they are currently located at, a

unique set of relevant information is displayed to

the user.

3 Activation/Deactivation of

TTS

If the disability of a user is detected as sight or

mobility, the Text-To-Speech service should be

activated on an application’s launch.

4

Signal Strength of 3G Network

Connection

When a user activates an information service at a

station, based on the 3G signal strength either a

high, medium, low, or offline variant of the service

is displayed to the user.

116

In order to demonstrate a specific advantage of the ADOPT approach the quantitative measures

that were calculated for the four scenarios described in Table 4.6 were done so using the time

metric which indicated the amount of time in milliseconds it took to successfully reconfigure

each application component after a contextual change has been detected. For these experiments,

the PRM application was initiated only once and each reconfiguration occurred during the

application’s initial lifecycle. The first measure calculated was the time it took for the PRM

application to reconfigure based on the retrieved disability and age by rendering the proper user

interface, as described in section 4.1.1. In addition, all experiments defined the range from the

minimum time value to the maximum value in order to determine the variation in the number of

outcomes. The range of each experiment was calculated using the formula defined in Expression

4.2.

Expression 4.2 - Range calculation

Table 4.7 demonstrates the average time of fifty reconfiguration attempts to deduce a passenger’s

disability (sight, mobility, both, or none) and age attributes in order to display the appropriate

user interface.

Table 4.7 - Average time to initialize the user interface (milliseconds)

User Interface Linear Key-

Value Approach

Linear Key-

Value Range

ADOPT ADOPT Range

Standard 100.12 77 91.18 76

Mobility 139.28 162 112.12 105

Sight 113.68 115 59.32 89

117

By examining Table 4.7, it is evident that the ADOPT approach provides faster reconfiguration

of the appropriate user interface variant. ADOPT reduces the time it takes to configure the user

interface by over 8.93% for the standard user interface, 19.50% for the mobility user interface,

and 47.82% for the sight user interface, which an average improvement of 25.42% or 30.15

milliseconds for all three user interfaces. Figure 4.20, Figure 4.21, and Figure 4.22 demonstrates

the fifty reconfiguration time entries tabulated to obtain the averages displayed in Table 4.7.

Figure 4.20 - Times in milliseconds of all standard user interface initializations

Figure 4.21 - Times in milliseconds of all mobility user interface initializations

0

50

100

150

200

0 10 20 30 40 50

M
ill

is
e

co
n

d
s

(m
s)

Attempts to reconfigure

Standard User Interface Reconfiguration

Key-Value

ADOPT

0

50

100

150

200

250

0 10 20 30 40 50

M
ill

is
e

co
n

d
s

(m
s)

Attempts to reconfigure

Mobility User Interface Reconfiguration

Key-Value

ADOPT

118

Figure 4.22 - Times in milliseconds of all sight user interface initializations

The second measure where time was used was the reconfiguration of relevant information

services based on the station that a user is currently located at. The list of relevant services is

unique to each station on line 14 of the Paris Metro, therefore as soon as the application detects a

change in cellular tower identification or GPS coordinates, the new station’s list of services

needed to be updated in a timely manner as the Paris Metro train was recorded to only remain at

each station for an average of 30 seconds. Table 4.8 demonstrates the duration it took for the

PRM application to retrieve a station’s service set once it has detected that the user is inside a

new station.

Table 4.8 - Average time to retrieve and display the relevant service at various Paris metro stations (milliseconds)

Linear Key-

Value

Linear Key-

Value Range

ADOPT ADOPT Range Percentage

Difference

29.1 48 25.34 27 +12.92%

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50

M
ill

is
e

co
n

d
s

(m
s)

Attempts to reconfigure

Sight User Interface Reconfiguration

Key-Value

ADOPT

119

Table 4.8 demonstrates that the average of fifty location-based changes and provides an

advantage by an average of over 3.76 milliseconds that it takes for the ADOPT approach to

retrieve and render the relevant services after there has been a change detected to the user’s

location.

Figure 4.23 - Time taken in milliseconds for the location component to reconfigure

Figure 4.23 demonstrates fifty different attempts for the mobile device to obtain new cellular

tower identification or GPS coordinates to the time that it took to render the relevant services.

Table 4.9 demonstrates the time that it took for both approaches of the PRM application to detect

a disability and activate/deactivate the Text-To-Speech (TTS) component on an Android based

mobile device. As can be observed from Table 4.9, there is an average reduction of 69.22% in

the amount of time it took for the proposed ontology approach to determine if either the sight or

mobility disability was present and therefore activate the TTS component.

0

10

20

30

40

50

60

0 10 20 30 40 50

M
ill

is
e

co
n

d
s

(m
s)

Attempts to reconfigure

Time from location change detection to
component reconfiguration

Key-Value

ADOPT

120

Table 4.9 - Average time for TTS activation/deactivation (milliseconds)

TTS Linear Key-

Value

Linear Key-

Value Range

ADOPT ADOPT Range

Activated 45.75 62 14.08 28

Deactivated Negligible Negligible Negligible Negligible

The deactivation of the TTS component took under a millisecond for both approaches as the only

time the TTS service should be disabled is when the PRM application is turned off. During this

time there is no logic that determines if the TTS component should be deactivated, it is simply

turned off because the application is no longer in use.. Figure 4.24 further demonstrates the

advantage of ADOPT as it displays all seventy five attempts at activating the TTS component.

Figure 4.24 - Minimum time needed for TTS component to reconfigure upon obtaining disability context

The final time attribute calculated by the PRM application was the time it took for an individual

service to reconfigure based on a detected change in the retrieved signal strength based on the

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

M
ill

is
e

co
n

d
s

(m
s)

Attempts to reconfigure

Time required to activate TTS component

Key-Value

ADOPT

121

specific strength thresholds discussed earlier. As Table 4.10 demonstrates, there is an

improvement using the ADOPT approach compared to that of the linear key-value approach by

over 29.62% when a service is reconfigured from a “high” signal strength variant to a “low”

signal strength variant. There is also a 40.87% reduction in the amount of time it took for the

ADOPT approach to successful reconfigure the displayed service from a “low” signal strength

variant to a “high” signal strength variant. The tabulated results of Table 4.10 can be seen in

Figure 4.25 and Figure 4.26.

Table 4.10 - Average time for reconfiguration of low and high signal strength services (milliseconds)

Reconfiguration Linear Approach Proposed Ontology Approach

High to Low 2269.77 1597.37

Low to High 4369.73 2583.9

Figure 4.25 - Charted time to reconfigure a service from low to high signal strength

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35

M
ill

is
e

co
n

d
s

Attempts To Reconfigure

Signal Strength Context Changes: From Low to
High

Key-Value

ADOPT

122

Figure 4.26 - Charted time to reconfigure a service from high to low signal strength

4.3.3 Focus Group Results

The results that appear in this section were obtained from a three-person developer survey of

Android application developers that vary in experience; including a beginner, intermediate, and

an expert in Android application development. The goal of survey was to access the benefits of

the ADOPT solution over the linear key-value approach. The first task that was requested of the

participants was to implement their own context widgets for each dynamic context variable

found in the PRM application. All three participants were required to use Android Services in

order to implement each of the context widget. If the participant was unsure of how to create a

service that obtains specific sensor data, they were allowed to research the topic before starting

each task with the research time recorded by each developer. For the purpose of this experiment,

the developers were asked to perform two unique tasks:

 Task 1: Create a service that broadcasts the identification number of the cellular tower the

phone is currently connected to. When there is a change in cellular tower id, the service

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35

M
ill

is
e

co
n

d
s

Attempts to reconfigure

Signal Strength Contextual Changes: From High
to Low

Linear Approach

Proposed Ontology Approach

123

should broadcast the new cell tower id to any application listening to that specific

broadcast.

 Task 2: Create a service that broadcasts the signal strength of the 3G connection of your

phone. When the signal strength changes, the service needs to broadcast the new signal

strength to any listening applications.

Through these two tasks the participants would familiarize themselves with the need to create

context widgets, regardless of the application these widgets were being built for. Once these two

tasks were completed the participants had created mechanisms to retrieve dynamic contextual

information and broadcast that information to an application. Using this broadcast information

an application would then have the ability to initiate the appropriate reconfiguration within the

application.

Following the completion of the task 1 and task 2 the participants were given two more

application scenarios and asked how they would obtain the necessary contextual information.

The two additional applications were:

 Application 1: A music streaming application that downgrades or upgrades the quality of

the music based on the data connection strength.

 Application 2: An application that notifies the user that their device is currently in

roaming mode due to the fact it is not connected to one of their network provider’s

cellular towers.

 Using these two new application scenarios the participants were asked how they obtain the

necessary contextual information needed to create both application. In response, all three

participants respond that they would reuse the two services they created in task 1 and 2, in order

124

to retrieve the necessary information. Based on this observation there is a clear need to create

reusable contextual information that can be used regardless of the application that a developer

intends to create. Although the participants were not required to build each requested application

the notion of reusing contextual information was apparent.

Through this example another benefit of ADOPT is evident; it provides the ability to create

pluggable context widgets that can be obtained directly from the scopes that are implemented

within both the domain-specific and application ontologies. Once a user has implemented a

scope into their application they will have access to the corresponding widget that notifies the

application of any contextual changes. Therefore whenever an application developer incorporates

ADOPT into their application they also incorporate the repository of all the context widgets that

can be associated to a corresponding scope. The benefit of such a feature is that it reduces the

research time that application developers need to obtain the necessary knowledge needed to

retrieve specific contextual information, such as the 3G signal strength from the mobile

platform’s system resources. Table 4.11 and Table 4.12 demonstrate the time it took for each

participant in the study to research each task and implement them. By using ADOPT, this time

would be negligible as all the information about the various contextual information (scopes) is

included within the system structure.

Table 4.11 - Time, in minutes, it took each participant to research and implement task 1

Participant Research Time Implementation Time

Participant A (Beginner) 45 20

Participant B (Intermediate) 17 13

Participant C (Expert) 10 8

125

Table 4.12 - Time, in minutes, it took for each participant to research and implement task 2

Participant Research Time Implementation Time

Participant A (Beginner) 0 10

Participant B (Intermediate) 2 4

Participant C (Expert) 4 6

126

Chapter 5. Conclusion

5.1 Contributions

The work presented in this thesis proposed a framework, ADOPT, designed for creating context-

aware public transportation mobile applications. The goal of ADOPT was to construct a

framework that allows application developers to create mobile applications, designed for the

public transportation domain, in a quick and efficient manner. Through the presented framework,

application developers will be able to better understand all of the concepts and their relationships

within the public transportation domain in order to reduce the amount of time needed to research

and implement these concepts within the public transportation domain. Within ADOPT, the

proposed domain ontology is constructed using hundreds of different concepts that can be found

within any public transportation domain, through these concepts, application developers will

save both research and implementation time by quickly understanding their desired domain. By

understanding their desired domain, application developers will know which sensor-based

information their applications will need. The framework also has the ability to allow application

developers to introduce their own contextual information either from a combination of already

pre-defined scopes or completely new concepts that will perhaps be available in the future.

Through ADOPT, application developers have the opportunity to create dynamic mobile

applications that use various environment embedded sensors along with any user-defined

attributes to provide public transportation passengers with a more personalized mobile

application. In order to personalize an application, software components must be able to

reconfigure based on the passenger’s current needs and the ever-changing environment variables

that surround them. These embedded sensors communicate with various applications by

informing them of changing contextual data. Based on this changing contextual data,

127

applications designed using ADOPT can reconfigure various software components in order to

enhance the user’s travel experience. Enhancing the travel experience can include reconfiguring

the user interface based on the passenger’s disability, providing relevant travel information

depending on the location of the user, and automatically informing the user if there is a delay on

their route.

Another goal of the proposed ontology based framework was to improve the flexibility that

application developers have when customizing a mobile application for a specific need. Through

the use of variants and components, application developers are able to define under which

contextual conditions a specific software component should be reconfigured in order to enhance

the experience of a public transportation user. By personalizing the experience for the user it

allows both application developers and public transportation operators the ability to reach more

people who have specific travel needs that might not be met by generalized applications. As

applications need to react quickly and efficiently the proposed ADOPT-based solution needed to

also demonstrate an enhancement in the amount of time that it took for a software

reconfiguration to occur. By using the ADOPT system, applications demonstrated an average

improvement of 27.64% when compared to linear key-value models, therefore proving that the

ADOPT-based solution is in fact a superior method of development.

Therefore, the main contribution of the proposed solution was to create an ontological system

that allows application developers to quickly design public transportation applications that can

reconfigure software components based on the changing contextual information received from

sensors embedded within the public transportation environment. The goal of reconfiguring

various application components is to enhance the user experience of someone who is using

public transportation as a means of traveling from one location to another.

128

5.2 Limitations

Although the proposed ontological solution provides an enhancement over a linear key-value

solution, limitations in the proposed approach are present. The largest limitation of ADOPT is

that once an application ontology has been constructed for a particular domain and scenario, with

all of the scopes and entity types defined, the defined contexts cannot be changed or altered by

the application developer therefore creating a static environment. This becomes apparent when

the application developer of the PRM application decides to remove the ability of reconfiguring

the user interface based on the disability attribute of the passenger. If the developer was to

remove this from the application ontology and redeploy a new ontology the application would

not be able to display a user interface as the application logic will still try to search for the

previously defined scopes that are associated to the user interface. Currently the only solution to

this problem is to remove all the code associated to the application’s user interface and recompile

the application. However, this is not an optimal solution as the mobile device would need to

update the new application code base before obtaining the new application ontology.

Unfortunately, mobile device users do not always update their applications in a timely manner

therefore providing a new application ontology would in fact deteriorate the functionality of the

application as it will not understand how to process the missing scopes and entity types. This

problem persists within the entire realm of ADOPT and therefore changes to a deployed

application ontology have been disallowed to avoid inconstancies within the code.

The second major limitation is that all context sensor widgets need to be manually created before

the ontology is constructed. As of the time of this document’s creation not all context widgets

that correspond to the scopes defined in the domain specific ontology have not been created due

in part to the sheer size of the ADOPT ontology as it is comprised of over fifty basic scopes and

129

twenty-five composite scopes. Additionally context widgets are not platform independent, hence

to use this system across any platform still require platform-dependent context widgets to be

created for each desired mobile platform.

5.3 Future Research

The majority of the future work should be spent on solving the limitations presented in the

previous section. Firstly, creating a more dynamic ontology model would greatly enhance the

usability of ADOPT for aspiring application developers, as it would provide them with the

ability to enhance their applications at a future time. Creating a more dynamic ontology structure

would also further enhance the overall user experience for users as the

inclusion/exclusion/modification of various reconfigurable software components can be achieved

without requesting the application user to re-download a new version of the application. By

achieving this feature, ADOPT based applications would provide a more ubiquitous and

transparent experience to the end user. In order to construct a more dynamic development

environment several areas of research need to be investigated on a further basis. It is the opinion

of the author of this thesis that the following research areas would allow developers to further

improve on the limitations of the proposed ADOPT framework;

 Topic 1: Somehow indicate, within the domain ontology, which ontological concepts

have been added/removed/modified from a previous version.

 Topic 2: The creation of a client-based library that will be able to understand which

ontological concepts have been added/removed/modified and according

activate/deactivate the necessary component types. In short, improving the connection of

ontological concepts to the client software components.

130

 Topic 3: The separation of each software variants from the component types themselves.

Currently all components and their variants are closely linked so the removal of one

variant will cause the entire component to malfunction.

 Topic 4: The transfer of external contextual models to the application ontology layer.

Currently each piece of contextual information needs to be defined through both the

application ontology and then a context model in order for the utility function to obtain

the necessary information. However, as the information is identical, the utility function

can obtain the necessary contextual information directly from the scopes instead of

having the developers re-define their application’s desired context models.

 Topic 5: The creation of dynamic scopes. Currently all scopes are pre-defined by the

application developers and the proposed domain ontology, meaning that the LocationGeo

composite scope is always be made up of the same basic scopes such as Latitude and

Longitude. However, if under specific circumstances the application developer wants to

include the Altitude basic scope as well they must create a new composite scope entirely

and redeploy the ontology again, but by making the ontological scopes more flexible, it

allows application developers to fully use the capabilities of the utility function.

Through these five research areas, future development of a more dynamic development

environment will be made easier as the burden placed on application developers will be greatly

diminished. Additionally creating platform independent context widgets would greatly improve

the development time of ADOPT-based application, however there is currently very limited

similarities between the various mobile platforms, therefore to enhance ADOPT, a

transformation tool that automatically generates context widgets for a particular sensor would

need to be constructed. The proposed transformation tool would greatly benefit not only the

131

proposed ADOPT solution based application but also any application that a user might want to

build regardless of the platform they are developing for.

132

Appendix 1. List of Acronyms

ADOPT – context-Aware Domain Ontology-based framework for Public Transportation

MUSIC – self-adapting applications for Mobile USers In ubiquitous Computing environments

RFID – Radio Frequency IDentification

KVM – Key-Value Model

UML – Unified Modeling Language

ORM – Object-Role Model

LBM – Logic-Based Model

SVO – Subject Verb Object

OWL – Web Ontology Language

RDF – Resource Description Framework

CONON – CONtext ONtology

COBRA – COntext BRoker Architecture

SOCAM – Service-Oriented Context-Aware Middleware

PACE – Pervasive, Autonomic, Context-aware Environments

PSCM – Peer-to-peer Context Sharing Model

CSM – Context Sharing Messages

ICT – Information and Communication Technologies

ITS – Intelligent Transportation Systems

APTS – Advanced Public Transportation Systems

ATMS – Advanced Traffic Management Systems

ATIS – Advanced Traveler Information Systems

V2V – Vehicle-to-Vehicle

133

UTS – Ubiquitous Transportation Systems

PDA – Personal Digital Assistant

SVS – Smart Vehicle Space

MDD – Model-Driven Development

SoS – System of Systems

ASC – Aspect Scale Context

NFC – Near Field Communication

PRM – Person with Reduced Mobility application

TTS – Text-To-Speech

GPS – Global Positioning System

DMZ – Digital Media Zone

134

References

[1] X. Wang, J. S. Dong, C. Y. Chin, S. R. Hettiarachchi and D. Zhang, "Semantic Space: an

infrastructure for smart spaces," IEEE Pervasive Computing, vol. 3, no. 3, pp. 32-39, 2004.

[2] J. M. Neighbors, "The Draco approach to constructing software from reusable components,"

in Readings in artificial intelligence and software engineering, San Francisco, Morgan

Kaufmann Publishers Inc, 1984, pp. 525-535.

[3] J. Neff and L. Pham, "A profile of public transportation passenger demographics and travel

characteristics reported in on-board surveys," American Public Transportation Association,

Washington, 2007.

[4] M. Tweed, "Study on transit in Canada: Report of the standing committee on transport,

infrastructure and communities," Public Works and Government Services Canada, Ottawa,

2012.

[5] M. V. Vugt, P. A. M. V. Lange and R. M. Meertens, "Commuting by car or public

transportation? A social dilemma analysis of travel mode judgements," European Journal of

Social Psychology, vol. 26, no. 3, pp. 373-395, 1996.

[6] D. Wise, " Public transportation: federal role in value capture strategies for transit Is limited,

but additional guidance could help clarify policies," Diane Publishing, 2010.

[7] M. Foth and R. Schroeter, "Enhancing the experience of public transport users with urban

screens and mobile applications," in Proceedings of the 14th International Academic

MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, pp. 33-

40, 2010.

[8] "Google Play: Go Mobile Application," Retrieved July 15, 2012 from

https://play.google.com/store/apps/details?id=com.ryerson.go.

[9] "iTunes: MiWay," Retrieved July 15, 2012 from

http://itunes.apple.com/ca/app/id423819918?mt=8&ign-mpt=uo%3D4.

[10] "Google Play: RATP Subway Paris," Retrieved July 15, 2012 from

https://play.google.com/store/apps/details?id=com.fabernovel.ratp.

[11] L. Magrini, M. Nati and E. Panizzi, "RMob - a mobile app for real time information in

urban," in Proceedings of the International Working Conference on Advanced Visual

Interfaces, Capri Island, Italy, pp. 776-777, 2012.

[12] J. Biagioni, T. Gerlich, T. Merrifield and J. Eriksson, "EasyTracker: automatic transit

tracking, mapping, and arrival time prediction using smartphones," in Proceedings of the

9th ACM Conference on Embedded Networked Sensor Systems, Seattle, pp. 68-81, 2011.

135

[13] B. Ferris, K. Watkins and A. Borning, "OneBusAway: results from providing real-time

arrival information for public transit," in Proceedings of the 28th international conference

on Human factors in computing systems, Atlanta, pp. 1807-1816, 2010.

[14] S. Carmien, M. Dawe, G. Fischer, A. Gorman, A. Kintsch and J. J. F. Sullivan, "Socio-

technical environments supporting people with cognitive disabilities using public

transportation," ACM Transactions on Computer-Human Interaction, vol. 12, no. 2, pp.

233-262, 2005.

[15] P. Baumann, "User context recognition for navigation systems in public transportation," in

2012 IEEE International Conference on Pervasive Computing and Communications

Workshops, Lugano, pp. 552-553, 2012.

[16] R. Reichle, M. Wagner, M. U. Khan, K. Geihs, J. Lorenzo, M. Valla, C. Fra, N. Paspallis

and G. A. Papadopoulos, "A comprehensive context modeling framework for pervasive

computing systems," in Proceedings of the 8th IFIP WG 6.1 international conference on

Distributed applications and interoperable systems, Oslo, pp. 281-295, 2008.

[17] "IST-MUSIC: Context-aware self-adaptive platform for mobile applications," Retrieved

July 15, 2012 from http://ist-music.berlios.de/site/.

[18] M. Weiser, "The computer for the 21st century," Scientific American, pp. 94-104, 1991.

[19] M. Baldauf, S. Dustdar and F. Rosenberg, "A survey on context-aware systems,"

International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263-277,

2007.

[20] B. Schilit and M. Theimer, "Disseminating active map information to mobile hosts," IEEE

Network, vol. 8, no. 5, pp. 22-32, 1994.

[21] N. Ryan, J. Pascoe and D. Morse, "Enhanced reality fieldwork: the context-aware

archaeological assistant," in Computer Applications in Archaeology, Oxford, British

Archaeological Reports, 1997, pp. 34-45.

[22] A. K. Dey, G. D. Abowd and D. Salber, "A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications," Human-Computer

Interaction, vol. 16, no. 2, pp. 97-166, 2001.

[23] D. Salber, A. K. Dey and G. D. Abowd, "The context toolkit: aiding the development of

context-enabled applications," in Proceedings of the SIGCHI conference on Human factors

in computing systems, Pittsburgh, pp. 434-441, 1999.

[24] P. Brown, "The stick-e document: a framework for creating context-aware applications," in

Proceedings of the Conference on Electronic Publishing and document manipulation, Palo

Alto, pp. 259-272, 1996.

[25] M. F. Mokbel and J. J. Levandoski, "Toward context and preference-aware location-based

services," in Proceedings of the Eighth ACM International Workshop on Data Engineering

for Wireless and Mobile Access, Providence, pp. 25-32, 2009.

136

[26] J. Indulska and P. Sutton, "Location management in pervasive systems," in Proceedings of

the Australasian information security workshop conference on ACSW frontiers, Adelaide,

pp. 143-151, 2003.

[27] K. Henricksen and J. Indulska, "Modelling and using imperfect context information," in

Second IEEE International Conference on Pervasive Computing and Communications.

Workshop on Context Modelling and Reasoning, Orlando, pp. 33-37, 2004.

[28] A. Ferscha, S. Vogl and W. Beer, "Context sensing, aggregation, representation and

exploitation in wireless networks," Scalable Computing: Practice and Experience, vol. 6,

no. 2, pp. 77-81, 2005.

[29] A. M. Bernardos, P. Tarrío and J. R. Casar, "A data fusion framework for context-aware

mobile services," in Proceedings of the IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, Seoul, pp. 606-613, 2008.

[30] S. Sigg, D. Gordon, G. v. Zengen, M. Beigl, S. Haseloff and K. David, "Investigation of

context prediction accuracy for different context abstraction levels," Mobile Computing, vol.

99, pp. 1-14, 2011.

[31] J.-Z. Sun, J. Sauvola and J. Riekki, "Application of connectivity information for context

interpretation and derivation," in Proceedings of the 8th International Conference on

Telecommunications, Zagreb, pp. 303-310, 2005.

[32] A. Dey, "Understanding and Using Context," Personal Ubiquitous Computing, vol. 5, no. 1,

pp. 4-7, 2001.

[33] A. Schmidt, M. Beigl and H.-W. Gellersen, "There is more to context than location,"

Computers and Graphics, vol. 23, no. 6, pp. 893-901, 1999.

[34] D. Hong, H. R. Schmidtke and W. Woo, "Linking context modelling and contextual

reasoning," in Proceedings of the 4th International Workshop on Modelling and Reasoning

in Context, Roskilde, pp. 37-48, 2007.

[35] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan and D.

Riboni, "A survey of context modelling and reasoning techniques," Pervasive Mobile

Computing, vol. 6, no. 2, pp. 161-180, 2010.

[36] D. Zhang, M. Guo, J. Zhou, D. Kang and J. Cao, "Context reasoning using extended

evidence theory in pervasive computing environments," Future Generation Computer

Systems, vol. 26, no. 2, pp. 207-216, 2010.

[37] T. Strang and C. Linnhoff-Popien, "A context modeling survey," in Proceedings of the First

International Workshop on Advanced Context Modelling, Reasoning And Management,

Nottingham, pp. 33-40, 2004.

[38] J. F. Sowa, "Conceptual Structures Summary," in Conceptual Structures: Current Research

and Practice, Ellis Horwood, 1992, pp. 3-51.

[39] K. Henricksen, J. Indulska and A. Rakotonirainy, "Generating context management

infrastructure from high-level context models," in Proceedings of the 4th International

137

Conference on Mobile Data Management (MDM) - Industrial Track, Melbourne, pp. 1-6,

2003.

[40] T. Halpin, Information Modeling and Relational Databases: From Conceptual Analysis to

Logical Design, San Francisco: Morgan Kaufman Publishers, 2001.

[41] A. Ranganathan and R. H. Campbell, "An infrastructure for context-awareness based on

first order logic," Personal Ubiquitous Computing, vol. 7, no. 6, pp. 353-364, 2003.

[42] V. Kabilan, Ontology for information systems (04IS) design methodology: conceptualizing,

designing and representing domain ontologies, KTH, 2007.

[43] T. Strang, C. Linnhoff-Popien and F. Korbinian, "CoOL: A context ontology language to

enable contextual interoperability," in Proceedings of the 4th IFIP WG 6.1 International

Conference on Distributed Applications and Interoperable Systems, Paris, pp. 236-247,

2003.

[44] X. H. Wang, D. Q. Zhang, T. G. Gu and H. K. Pung, "Ontology based context modeling and

reasoning using OWL," in Proceedings of the Second IEEE Annual Conference on

Pervasive Computing and Communications Workshops, Orlando, pp. 18-22, 2004.

[45] H. Chen, T. Finin and A. Joshi, "An ontology for context-aware pervasive computing

environments," The Knowledge Engineering Review, vol. 18, no. 3, pp. 197-207, 2003.

[46] T. Gu, H. K. Pung and D. Q. Zhang, "A middleware for building context-aware mobile

services," in Proceedings of IEEE Vehicular Technology Conference, Milan, pp. 2656-2660,

2004.

[47] M. Kirsch-Pinheiro, Y. Vanrompay, K. Victor, Y. Berbers, M. Valla, C. Fra, A. Mamelli, P.

Barone, X. Hu, A. Devlic and G. Panagiotou, "Context grouping mechanism for context

distribution in ubiquitous environments," in Proceedings of the OTM 2008 Confederated

International Conferences, Monterrey, pp. 571-588, 2008.

[48] K. Henricksen, J. Indulska, T. McFadden and S. Balasubramaniam, "Middleware for

distributed context-aware systems," in Proceedings of On the Move to Meaningful Internet

Systems, Agia Napa, pp. 846-863, 2005.

[49] J. Ye, J. Li, Z. Zhu, X. Gu and H. Shi, "PCSM: a context sharing model in peer-to-peer," in

International Conference on Convergence Information Technology, Gyeongju, pp. 1868-

1873, 2007.

[50] A.-U.-H. Yasar, Y. Vanrompay, D. Preuveneers and Y. Berbers, "Optimizing information

dissemination in large scale mobile peer-to-peer networks using context-based grouping," in

Proceedings of the 13th International IEEE Conference on Intelligent Transportation

Systems, Madeira Island, pp. 1065-1071, 2010.

[51] L. Han, S. Jyri, J. Ma and K. Yu, "Research on context-aware mobile computing," in

Proceedings of 22nd International Conference on Advanced Information Networking and

Applications, Ginowan, pp. 24-30, 2008.

138

[52] D. Shank and D. Roberts, "Assessment of ITS benefits-results from the field," in

Proceedings of the 1996 Annual Meeting of ITS America., Houston, pp. 740-749, 1996.

[53] X. Yang and X. Zhou, "Conceptual study on evaluation of advanced public transportation

systems," in Proceedings of 2003 IEEE Intelligent Transportation Systems, Shanghai, pp.

1683-1687, 2003.

[54] J. L. Kay, "Advanced traffic management systems - an element of intelligent vehicle-

highway systems," in Proceedings of the International Congress on Transportation

Electronics, pp. 73-84, 1990.

[55] S. Shekhar and D.-R. Liu, "Genesis and advanced traveler information systems (ATIS):

killer applications for mobile computing," in Mobile Computing, Springer, 1994, pp. 699-

723.

[56] M. Torrent-Moreno, J. Mittag, P. Santi and H. Hartenstein, "Vehicle-to-vehicle

communication: fair transmit power control for safety-critical information," IEEE

Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3684-3703, 2009.

[57] M. Foth and R. Schroeter, "Enhancing the experience of public transport users with urban

screens and mobile applications," in Proceedings of the 14th International Academic

MindTrek Conference: Envisioning Future Media Environments, Tampere, pp. 33-40, 2010.

[58] H. Karvonen, "Different aspects of trust in ubiquitous intelligent transportation systems," in

Proceedings of the 28th Annual European Conference on Cognitive Ergonomics, Delft, pp.

311-314, 2010.

[59] J. Kjeldskov, S. Howard, J. Murphy, J. Carroll, F. Vetere and C. Graham, "Designing

TramMateña context-aware mobile system supporting use of public transportation," in

Proceedings of the 2003 conference on Designing for user experiences, San Francisco, pp.

1-4, 2003.

[60] E. Lee, K. Ryu and I. Paik, "A concept for ubiquitous transportation systems and related

development methodology," in Proceedings of the 11th International IEEE Conference on

Intelligent Transportation Systems, Beijing, pp. 37-42, 2008.

[61] M. Bertolotto, G. O'Hare, R. Strahan, A. Brophy, A. Martin and E. McLoughlin, "Bus

Catcher: a context sensitive prototype system for public transportation users," in

Proceedings Second International Workshop on Web and Wireless Geographical

Information Systems, Singapore, pp. 64-72, 2002.

[62] Z. Wu, Q. Wu, J. Sun, Z. Gao, B. Wu and M. Zhao, "ScudWare: a context-aware and

lightweight middleware for smart vehicle space," in Proceedings of the First international

Conference on Embedded Software and System, Hangzhou, pp. 266-273, 2004.

[63] P. A. Ruiz and J. M. Sánchez, "D20.3: Evaluation Framework Specification," in MUSIC

(IST-035166) Report, 2009.

[64] J. Li, Y. Bu, S. Chen, X. Tao and J. Lu, "FollowMe: On research of pluggable infrastructure

for context-awareness," in Proceedings of the 20th International Conference on Advanced

139

Information Networking and Applications, Vienna, pp. 199-204, 2006.

[65] R. Reichle, Information exchange and fusion in dynamic and heterogeneous distributed

environments, Kassel, 2010.

[66] M. Wagner, "D6.5: Modelling notation and software development method for adaptive

applications in ubiquitous computing environments," in MUSIC (IST-035166) Report, 2010.

[67] M. W. Maier, "Architecting principles for systems-of-systems," Systems Engineering, vol.

1, no. 4, pp. 267-284, 1998.

[68] N. Paspallis, R. Rouvoy, P. Barone, G. A. Papadopoulos, F. Eliassen and A. Mamell, "A

pluggable and reconfigurable architecture for a," in Proceedings of the OTM 2008

Confederated International Conferences, Monterrey, pp. 553-570, 2008.

[69] G. Gottlob, M. Schrefl and B. Rock, "Extending object-oriented systems with roles," ACM

Transactions on Information and System Security, vol. 14, no. 3, pp. 268-296, 1996.

[70] R. Wieringa, W. d. Jonge and P. Spruit, "Roles and dynamic subclasses: a modal logic

approach," in Proceedings of the 8th European Conference on Object-Oriented

Programming, Bologna, pp. 32-59, 1994.

[71] M. Hwang, J. Kemp, E. Lerner-Lam, N. Neuerburg and P. Okunieff, "Advanced public

transportation systems: state of the art update 2006," Report from United States Department

of Transportation, Washington, 2006.

[72] R. Raskin, "Guide To SWEET Ontologies," NASA Jet Propulsion Lab, Pasadena, 2006.

[73] M. Horridge, H. Knublauch, A. Rector, R. Stevens and C. Wroe, "A practical guide to

building OWL ontologies using Protege 4 and CO-ODE tools," University of Manchester

Reports, 2004.

[74] N. Paspallis and S. Hallsteinsen, "D2.4: Final Research Results on methods, languages,

algorithms, and tools to modeling and management of context," in MUSIC (IST-035166)

Report, 2010.

[75] A. Mamelli, A. Devlic and S. Hallsteinsen, "D1.4: Final research results on mechanisms and

planning algorithms for self-adaptation," in MUSIC (IST-035166) Report, 2010.

[76] K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven, S. Hallsteinsen, G. Horn,

M. U. Khan, A. Mamelli, G. A. Papadopoulos, N. Paspallis, R. Reichle and E. Stav, "A

comprehensive solution for application-level adaptation," Software Practice & Experience,

vol. 39, no. 4, pp. 385-422, 2009.

[77] G. Chen and D. Kotz, "A survey of context-aware mobile computing research," Technical

Report TR2000-381, Dartmouth, 2000.

[78] M. Anvaari and S. Jansen, "Evaluating architectural openness in mobile software

platforms," in Proceedings of the Fourth European Conference on Software Architecture,

Copenhagen, pp. 85-92, 2010.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Adopt: A Context-Aware Domain Ontology-Based Framework For Public Transportation
	Petar Kramaric
	Recommended Citation

