TAIL CALL ELIMINATION IN THE OPENSMALLTALK
VIRTUAL MACHINE

by
Matthew Ralston
Bachelor of Computer Science (Honours)

University of Windsor, 2004

A thesis
presented to Ryerson University
in partial fulfillment of the
requirements for the degree of
Master of Science
in the program of

Computer Science

Toronto, Ontario, Canada, 2019

© Matthew Ralston 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for
the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for
the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public for the
purpose of scholarly research only.

ii

Abstract

Tail Call Elimination in the OpenSmalltalk Virtual Machine

Matthew Ralston
Master of Science, Computer Science

Ryerson University, 2019

Tail call elimination is used by languages and compilers to optimize the activation of
methods in tail position. While this optimization has been the source of much research,
it has not previously been implemented in the OpenSmalltalk virtual machine - the
open-source Smalltalk virtual machine used by Smalltalk environments such as Pharo
and Squeak. There are many approaches described in the literature to implement tail call
elimination, such as removing stack frames on method activation instead of method re-
turn. Two implementations of tail call elimination using a stack frame removal approach
are presented for Opensmalltalk VM. One implementation is presented for the Inter-
preter and one for the Cog JIT compiler. These implementations are tested with both
ideal and real world scenarios and show improvements in execution time and memory

usage.

iii

Table of Contents

Abstract iii
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Problem Background o 1
1.1.1 Introduction to Smalltalk Syntax 1

1.1.2 Definition of a Tail Call 3

1.1.3 Tail Recursion: A Special Case 8

1.1.4 Rationale for Tail Call Elimination 9

1.2 Objectives and Proposed Methodology 9

1.3 Contributions Lo 10
1.4 Dissertation Outline 10

2 Related Work 11
2.1 The OpenSmalltalk Virtual Machine 11
2.1.1 Early Development 11

2.1.2 The Cog VM e 13

2.1.3 Other Work in OpenSmalltalk 17

iv

2.2.1 Scheme 19
2.2.2 Javascript 19
2.2.3 Java Virtual Machine 19
2.2.4 Common Language Runtime 20
225 Python 20
226 Other 20

2.3 Research in Tail Call Elimination 21
2.3.1 Continuation Passing Style and Trampolines 25

3 Experimental Design 27
3.1 OpenSmalltalk Architecture 27
3.2 Stack Interpreter L 28
3.2.1 Execution Flow in the Stack Interpreter 28
3.2.2 Sending on the Stack Level, 33
3.2.3 Returning on the Stack Level 36
3.2.4 Applying Tail Call Elimination 38
3.2.5 Identifying a Tail Call, 40

3.3 Cog JIT Compiler 41
3.3.1 Execution Flow in the Cog VM, 42
3.3.2 JIT Compiling a Method 46
3.3.3 Tail Call Elimination in the JIT 57
3.3.4 Garbage Collection and Method Compaction 63
3.3.5 Debugging 64

3.4 Designing Tests for Tail Call Elimination 64
3.0 Test Runner oL L 65
3.5.1 Execution Time.o 65
3.5.2 Memory e 65

3.6 Tail Call Recursion 66
3.6.1 Factorial 66
3.6.2 Fibonacci Sequence 69
3.6.3 WhileTrue Recursive Loop 71

3.7 Real World Scenarios 73
3.7.1 Compiler e 73
3.72 Browse Test 75

Results 78

4.1 Tail Call Statistics 79
4.1.1 Static Tail Calls 79
4.1.2 Dynamic Tail Calls L. 80

4.2 Tail Recursion Tests o 81
4.2.1 Factorial 500 Tests oo 81
4.2.2 Factorial 5000 Testso o 83
4.2.3 Fibonacci 1000 Tests oo 84
4.2.4 Fibonacci 10000 Tests Lo oo 86
4.2.5 WhileTrue 1000 Tests oo 86
4.2.6 WhileTrue 10000 Tests 88

4.3 Real World Performance Test 89
4.3.1 Compile Al Test 89
432 Windows Test 91

4.4 Analysis 93
4.4.1 Tail Call Recursion Analysis 93
4.4.2 Real World Analysis oL 94
4.4.3 Final Analysis 95

vi

5 Conclusions
5.1 Contributions

5.2 Future Work

Bibliography

Glossary

vii

97
97
98

99

104

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

Execution variables in StackInterpreter 30
Send and Return Bytecodes 30
IA-32 Registers and Usage 49
Execution Testso 79
Memory Tests o 79
Implementations to Testo 80
Static Tail Call Counts, 80
Dynamic Tail Call Counts 81

viii

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Stack before sending at: oL 5
Stack before sending linkAt: 6
Stack after sending linkAt: and before sending value 6
Stack after sending value 7
Stack after returning at:o 7
Smalltalk-80 Context Object 12
OpenSmalltalk Architecture 27
Method Execution in StackInterpreter 29
Spur 32 bit Method Header 31
Sending methodB: from methodA: 34
Activating methodB: aftersend L. 35
After activation of methodC: 36
Prior to return in methodC: L. 37
Stack of methodB: after returning from methodC: 37
Stack of methodA: after returning from methodB: 38
Tail call activation of methodC: 39
Method Execution in CogVM oo oL 44
Stack before returning after Send 1 49
Spur Object Header Format, 51
Spur Object Pointer Formats 51
Stack before returning after Send 2o 55
Factorial 500 - Execution Time, 82
Factorial 500 - Memory Usage 83
Factorial 5000 - Execution Time 83
Factorial 5000 - Memory Usage 84
Fibonacci 1000 - Execution Time 85
Fibonacci 1000 - Memory Usage 85
Fibonacci 10000 - Execution Time 86
Fibonacci 10000 - Memory Usage 87
WhileTrue 1000 - Execution Time 87
WhileTrue 1000 - Memory Usage 88
WhileTrue 10000 - Execution Time 89

ix

4.12 WhileTrue 10000 - Memory Usage 89

4.13 Compile-All - Execution Time 90
4.14 Compile-All - Memory Usage i 91
4.15 Windows - Execution Time (8 mb JIT space for Cog) 92
4.16 Windows - Memory Usage o 92

Chapter 1

Introduction

My thesis is that tail call elimination is a useful optimization for an object-oriented
language such as Smalltalk. This is demonstrated in the form of two implementations
using the open-source Smalltalk virtual machine OpenSmalltalk. One implementation
is done in the Stack Interpreter, which is the bytecode interpreter component of the
VM. The second implementation uses the just-in-time compiler (occasionally known as
the Cog JIT compiler, or Cog VM) to implement tail call elimination in the generated

machine code.

1.1 Problem Background

Before exploring the details of these implementations, it is worthwhile to fully explain
what tail calls are, and why elimination of tail calls would be considered an optimization.
This section will define what exactly a tail call is with examples drawn from Smalltalk.
An introduction to Smalltalk syntax is included to explain the concept of tail call elimi-
nation. Next, we describe a special case of tail call elimination: tail recursion. Finally,
we explain why tail call elimination is generally considered a valuable optimization and,

in some circumstances, a necessary one.

1.1.1 Introduction to Smalltalk Syntax

Smalltalk is different enough from other programming languages to warrant an intro-
duction to the syntax. A key difference between Smalltalk and other object oriented
languages like Java is that, in Smalltalk, everything is an object, including integers,
floats, booleans and characters. Individual objects are instances of classes and, like most

object oriented languages, there are instance methods and class methods that an object

CHAPTER 1. INTRODUCTION

has associated to it. In Smalltalk, methods are invoked by sending messages to objects.
A message consists of a selector, which specifies which method the message is meant to
invoke, and zero or more arguments. The object sending the message is referred to as the
sender, and the object receiving the message is referred to as the receiver. If the receiver
implements or inherits a method with the selector in the message, and the message in-
cludes the correct number of arguments, the corresponding method is executed. Like
many other object oriented programming languages, objects can have instance methods
invoked on them from their own class, or any class that they inherit from. Sending mes-
sages corresponds to calling methods or functions in other languages with some semantic
differences.! However, when the term call is used when discussing other languages, it can

be useful to consider them as equivalent to sends in Smalltalk. For a concrete example

of message sending in Smalltalk, consider the following method:

Integer>>factorial
self = 0 ifTrue:[11] ifFalse:[f{self * (self -1) factoriall

This method is an instance method for objects of class Integer that calculates the
factorial for a number and returns the result. An example of how this method would be
invoked would be as follows: 10 factorial, where 10 is an instance of Integer. Note that
this is a recursive implementation of the factorial calculation, as this method contains
another send of the factorial message. The selector for this method, factorial, is
an example of a unary message - it has a selector with no arguments. Walking through
the method, the first message encountered is self = 0. This is a message send, as it
sends a message with the selector = with one argument, 0, to self. The word self is a
reserved word in Smalltalk and means a reference to the same object that is executing
this method. The selector = is an example of a binary message. Binary messages take
one argument and the selectors are typically arithmetic operators such as + and -. In this
specific example, the binary message will be evaluated and a boolean will be returned.
Next, the boolean result will have a keyword message sent to it, ifTrue:ifFalse:, with
two blocks of code as arguments. Keyword messages are messages that have one or
more keywords as a selector, with an argument for each keyword. Selectors for keyword
messages are typically plain English descriptions of the purpose of the method, and each
keyword is ended by a colon and followed by the argument for that keyword. In this
case, the message ifTrue:ifFalse: is sent to the boolean result of the previous send.

If the boolean is true, the first block of code will be evaluated, and, if false, the second

!For example, sending an unimplemented message to an object can be a recoverable situation in a
Smalltalk program

CHAPTER 1. INTRODUCTION

block of code will be evaluated. Note that Smalltalk does not have a typical if/then/else
statement. In fact, all control structures in Smalltalk such as conditional statements and
loops are implemented by message passing, typically by providing blocks as arguments.
Blocks are one or more lines of code that are surrounded by square brackets and are
not immediately evaluated. Blocks also function as closures, and can reference variables
from the enclosing method as well as have their own temporary variables. Blocks are
also objects in Smalltalk, and can be passed into methods as arguments. Examining the
first block of code, we see the value of 1 being returned. The Smalltalk syntax to indicate
a return is typically a caret, and is stylized as 71" in the listing. In the second block of
the code, we see more messages being passed - the binary messages with selectors - and
x, and a recursive send of the unary message factorial. It is necessary to understand
the order of operations for message sends in a Smalltalk expression - unary messages are
evaluated first, then binary messages and, finally, keyword messages. In the ifFalse:
block, after evaluating self - 1 in brackets, the factorial unary message send will be
executed before the * binary message. Note that both blocks return a result. If there is

no explicit return, a reference to self is returned instead.

1.1.2 Definition of a Tail Call

A tail call is a call that is the last instruction before a return of the top of the call stack
- no further instructions within that block of code will be executed after the return.
Another way to describe a tail call is to say the call is in tail position. Consider the

following method in Smalltalk:

LinkedList>>at: index
1(self linkAt: index) value

The above listing is a method with the keyword selector at: with one argument. It
is a method for objects with the class LinkedList and is used to retrieve an element at
a specific index within a LinkedList instance. The method contains two message sends
- a message with the keyword selector 1inkAt: and a message with the unary selector
value, which are executed in that order. At the end, the method returns the result of
the value send. In order to clearly see the tail call pattern displayed in this example, it
is useful to see the compiled bytecode for this method. Smalltalk was designed to be a
platform-independent language which compiles to bytecode, and the bytecode then runs
on a platform specific virtual machine.? For the purpose of this example, a typical call

stack will be used. The following listing is the compiled bytecode for the at: method

2an idea adopted by Java 15 years later

CHAPTER 1. INTRODUCTION

presented above, with added comments to describe what each bytecode does and the

operations performed on the call stack.

17 <70> self "Pushes self, the current object, onto the stack"
18 <10> pushTemp: O "Pushes the argument onto the stack"

19 <EO0> send: linkAt: "Sends a message with the selector linkAt:"

20 <C9> send: value "Sends a message with the selector value"

21 <7C> returnTop "Returns the top of the stack"

First, a note about the format - the first column is the position of the bytecode in
the compiled method - in this example, the first bytecode is at position 17, preceded
by a header and an array of object references called literals which are not shown here.
The second column is the actual hexadecimal representation of the bytecode, followed
by the English description of the bytecode. Looking at the bytecode makes the order
of message sends clear - first, a reference to self is pushed to the top of the stack.
Next, the argument for 1linkAt: is pushed onto the stack. In this case, the argument
is actually the argument passed with at:. In Smalltalk bytecode, arguments and local
variables are referenced as part of the same pool of temporary variables - in this case,
the argument is the first (and only) temporary variable at index 0. Next, a message with
the selector 1inkAt: is sent, with the top of the stack as the argument, and the receiver
of the message as the top of the stack minus the number of arguments (if the selector
had no arguments, the receiver would be on top of the stack). Note that when 1inkAt:
returns, the argument and the receiver will be replaced with the return result of 1inkAt:.
Next, a message with the selector value is sent to the return result of linkAt: which,
as mentioned, will either be an explicit return result or a reference to 1linkAt:’s self
(in this case, the same self as this method). Finally, the top of the stack is returned,
which in this case is whatever the return result of value is.

With the syntax of Smalltalk in mind, the definition of a tail call can be revisited
which, as stated above, is a call that is the last instruction of a block of code, such as a
method or function, before a return of the top of the stack. Recall that, for the purposes
of this discussion, calls and sends will be treated as equivalent, and consider the send
of 1inkAt:. This send is not in tail position as it is not followed by a return - when
linkAt: returns, the result of that return is on the top of the stack. The second send of
the message value is in tail position - it is followed by a return of the top of the stack
(the return value of value). This can be more clearly demonstrated by showing the state
of a hypothetical call stack - the actual implementation of Smalltalk call stack in the
Cog VM will be explored later in Chapter 3. Unlike the actual implementation of the
Smalltalk call stack, this hypothetical stack will grow upwards, so the top of the stack

4

CHAPTER 1. INTRODUCTION

refers to the top-most entry in the visualizations. Another note about the visualizations
is that a distinction will be made between the values pushed at method activation, and
values pushed as part of method execution. The values pushed at activation will be
called the stack frame, and will only be shown if necessary. The values pushed as part
of method execution will be called the call stack. Both the stack frame and call stack
for a specific method will be grouped in a bold outline. The state of the stack prior to
calling the method 1inkAt: is represented in Figure 1.1. At the base of this stack is
the stack frame for an unspecified method that is sending the at: message. Next is a
reference to the object that will be receiving the at: message. On the top of the stack

is an argument being passed with the at: message.

Argument
Receiver

}sender of at:’s call stack

Stack frame
for sender of at:

Figure 1.1: Stack before sending at:

When the method at: is called, the current instruction pointer is saved by being
pushed onto the stack, and a new stack frame is built for the new method, which is
identified through a combination of the selector and receiver. Skipping ahead to the
state of the stack immediately before sending the linkAt: method, the receiver and
argument for linkAt: have been pushed onto the stack. Refer to Figure 1.2. The
details of the stack frame creation will be explored later.

When 1linkAt: is called, a stack frame will be created for 1inkAt: and the 1inkAt:
method will be executed. Skipping ahead to when the method linkAt: returns, the
receiver and argument for 1inkAt: are replaced with the return result and execution
continues - see Figure 1.3. The call to 1linkAt: is not considered to be in tail position
because execution of the method continues after 1inkAt: returns - the result of 1inkAt:
is not immediately returned.

Now consider the send of value. There are no arguments for value, and the message
is being sent to the return result of 1inkAt:, so there are no stack changes to demonstrate.
Once again, a stack frame is built for value and, upon completion, the receiver of the
value message is replaced with the return result of value - see Figure 1.4.

The next bytecode to execute in at: is the return of the top of the stack. No

CHAPTER 1. INTRODUCTION

Temporary 0

Self

Stack Frame for at:

Saved instruction pointer

Argument

Receiver

Stack frame
for sender of at:

}at:’s call stack

}sender of at:’s call stack

Figure 1.2: Stack before sending 1inkAt:

Result of 1inkAt:

Stack Frame for at:

Saved instruction pointer

Argument

Receiver

Stack frame
for sender of at:

Figure 1.3:

}at:’s call stack

}sender of at:’s call stack

Stack after sending linkAt: and before sending value

CHAPTER 1. INTRODUCTION

Result of value }at:’s call stack

Stack Frame for at:

Saved instruction pointer
Argument
Receiver

}sender of at:’s call stack

Stack frame
for sender of at:

Figure 1.4: Stack after sending value

further manipulation of the return value of value will occur within the method at:,
and no further use of anything local to at: is needed. The stack frame of at: can
be dismantled and the top of the stack, in this case, the return result of value, can
be returned as the result of at: and the saved instruction pointer is used to continue

execution - see Figure 1.5.

Return result of at: }sender of at:’s call stack

Stack frame
for sender of at:

Figure 1.5: Stack after returning at:

Based on the above definition, the call to value was a tail call. It was last instruction
of a method or function before a return of the top of the stack. When the call to value
was made, no further use of anything local to at:’s stack was needed, and the return
result of value was simply returned again by at:. This presents an opportunity for an
optimization - could the stack of at: be dismantled before calling value, or even reused,
preventing stack growth when tail calls are present? And could the return in value be
directly to the caller of at:, skipping the execution of redundant instructions? Also, are
there any common patterns in programming that naturally produce a large amount of
tail calls? Attempts to answer these questions, and the optimizations that come from

those answers, are known as Tail Call Elimination. Tail Call Elimination can therefore

7

CHAPTER 1. INTRODUCTION

be defined as a research area that explores how to effectively change the behaviour of a

call in tail position to eliminate unnecessary stack growth and return instructions.

1.1.3 Tail Recursion: A Special Case

A special case of a tail call that deserves mention is a tail recursive call. As the name
indicates, this is a recursive call in a function that is in tail position, that is, it’s a call
within a function that calls itself. Note that not all recursive calls are tail recursive - we

will demonstrate this by revisiting the implementation of factorial shown earlier.

Integer>>factorial
self = 0 ifTrue:[11] ifFalse:[fself * (self -1) factoriall

As a reminder, this is a method on an integer object, which would be called in the
following fashion, where 10 is an Integer: 10 factorial. Now, with the understanding
of both Smalltalk syntax, and tail calls, it is clear that the send of the factorial message
in the false case is not a tail call, as this send is followed by another operation (in this
case, the send of *). The send of * is, in fact, a tail call and would be a potential
candidate for tail call elimination if the send of * was handled like a typical method

3. Going back to the send of factorial, this means that, for each send of

invocation
factorial, a new stack frame needs to be created for each recursive loop. Essentially,
each new send of factorial sends the factorial message to itself after subtracting
one, and waits for the return to actually multiply the results. What if there was a way
to implement factorial without waiting for the return?

Consider the following factorial implemention:

Integer>>factorial
Tself factorialWithProduct:1.

Integer>>factorialWithProduct: product
(self = 0)
ifTrue: [Tproduct]
ifFalse: [{(self -1) factorialWithProduct: (product * self)]

This implementation does a couple of things differently from the previous. For one,
the factorial method sends a different message, factorialWithProduct: with an ar-
gument of one. The method factorialWithProduct: isimplemented slightly differently

- instead of waiting for the return result of the recursive call to multiply to the total,

3Basic arithmetic operations tend to be optimized in Smalltalk implementations already and would
not need to have a stack frame created

CHAPTER 1. INTRODUCTION

it does the multiplication before the recursive call and then sends the new total as an
argument with the recursive send of factorialWithProduct:. In this implementation,
the recursive call is in tail position, as no further operations are needed on the result
returned by each recursive call. Tail call elimination could potentially optimize these

calls, preventing a new stack frame from being created for each call.

1.1.4 Rationale for Tail Call Elimination

The rationale for optimizing calls through tail call elimination is simple. Eliminating tail
calls opens up the possibility of reducing the number of instructions necessary to perform
a call, and can prevent the growth of call stacks, which hypothetically can lead to reduced
execution time and memory usage. In addition, many functional programming languages
implement iteration via recursion as opposed to loops. Eliminating tail calls for, at least,
tail recursive calls in those language implementation prevent unlimited stack growth.
Despite being an object oriented language, Smalltalk also does not provide built-in loop
constructs - loops are implemented in Smalltalk as messages that are passed blocks of
code. While some simple loops are implemented by the compiler as typical loops in
bytecode as an optimization, other loops are implemented as message sends. With tail
call elimination implemented in Smalltalk, it may provide a benefit for these methods if
they currently use tail calls, or provide an incentive to adopt a programming style that

uses tail calls.

1.2 Objectives and Proposed Methodology

The objectives of this dissertation are as follows:

e Introduce tail call elimination by providing an explanation of what tail call elimi-

nation is and the research that has been done on implementing it.

e Introduce the OpenSmalltalk Virtual Machine by exploring the history of devel-
opment in Smalltalk that lead to the OpenSmalltalk VM and discussing past and

ongoing research in OpenSmalltalk.

o Having thoroughly explored the context of this research, present two implementa-
tions of tail call elimination in OpenSmalltalk - one in the interpreter and one in
the JIT compiler

The proposed methodology is to build the two implementations presented in this disser-

tation, and then perform tests that compare execution time and memory usage with the

CHAPTER 1. INTRODUCTION

existing implementation of OpenSmalltalk.

1.3

Contributions

The main contributions in this dissertation are:

1.4

Designing and implementing an approach for tail call elimination in the Stack

Interpreter;

Providing experimental evidence that there are significant benefits to this imple-

mentation;

Designing and implementing an approach for monomorphic tail call elimination in

the Cog VM,

Providing experimental evidence that there are significant benefits even with this

limited implementation.

Dissertation Outline

This dissertation is organized as follows:

chapter 2 presents background on the OpenSmalltalk VM, as well as previous work

in tail call elimination.

chapter 3 discusses two implementations of tail call elimination in OpenSmalltalk

in detail.

chapter 4 analyzes the performance of each implementation of tail call elimination
with statistics comparing execution between tail call eliminating and non-tail call

eliminating versions of the VM.

chapter 5 presents the conclusions from the above and suggests future work.

10

Chapter 2

Related Work

This chapter will provide an overview of research in two different bodies of work. First,
an overview of the OpenSmalltalk virtual machine will be given. This will cover historical
developments in Smalltalk leading to the VM, as well as some recent and ongoing work.
Secondly, tail call elimination will be discussed in two sections. First, a look will be
taken at what sort of support there is for tail call elimination in other programming
environments. Next, a look will be taken at what research has been done in tail call
elimination - this will cover early influential work and what sort of techniques have been

applied to implement tail call elimination in environments which do not support it.

2.1 The OpenSmalltalk Virtual Machine

The OpenSmalltalk Virtual Machine is an open source virtual machine for Smalltalk
which is available for Smalltalk environments such as Squeak and Pharo. OpenSmalltalk
uses features such as context-to-stack mapping, inline message caching, and JIT com-
pilation for efficient message sending. This section covers the history of the Smalltalk
VM with an eye towards message sending, development leading up to the OpenSmalltalk
VM, and a detailed look at message sending in OpenSmalltalk to build an understanding

of how tail call elimination may be introduced to the VM.

2.1.1 Early Development

The Smalltalk programming language was designed by Alan Kay at Xerox PARC. After
several early revisions, the specification for the Smalltalk language, interpreter and a
Smalltalk implementation of the interpreter were made available as Smalltalk-80 in what

is colloquially called the Blue Book [15]. Method activation is implemented in this

11

CHAPTER 2. RELATED WORK

implementation of Smalltalk-80 using heap-allocated context objects - when a message
is sent and a new method is activated, a new context object is allocated on the heap.
Refer to Figure 2.1 for details of the context object. While this allowed Smalltalk-80 to
achieve dynamic behaviour such as live debugging, this comes at the cost of performance

and space, as context objects must be allocated and later garbage collected.

Sender

Instruction Pointer
Stack Pointer
Method
(Unused)

Receiver

Arguments

Temporaries

Stack Contents

Figure 2.1: Smalltalk-80 Context Object

Deutsch and Shiffman presented a more efficient implementation of message sending
in Smalltalk-80, with the goal of improving performance on conventional hardware while
maintaining compatibility with existing implementations [12]. Rather than heap allocat-
ing all contexts, contexts are instead allocated onto a stack first. If no reference is made
to the context as an object, the context only ever exists as a stack frame - this is called
a volatile context. If a pointer is generated to a volatile context, a block of memory
reserved for a context is allocated and its address is stored in the stack frame - this is
called a hybrid context, as it exists on the stack but also has an (as of yet unpopulated)
object representation on the heap. Once a message is sent to the hybrid context, it is
converted to a full context object, where it can respond to the sent message - this is a
stable context.

Deutsch and Shiffman also implemented inline caching of method addresses. While
Smalltalk is a dynamically typed language, the observation has been that message sends
often call the same method on objects of the same type, so the address of the method
is cached at send sites. They also presented a JIT compiler, or, in their terminology,

dynamic translation of virtual code to native code at runtime. These optimizations serve

12

CHAPTER 2. RELATED WORK

the basis of optimizations seen in the OpenSmalltalk VM [28, 23].

Squeak is an open source implementation of Smalltalk-80, which was released in 1996.
The creators of Squeak were looking for a portable, open development environment for
non-technical people and, finding no open Smalltalk environments, chose to build it
themselves and share it with the community [17]. The design of Squeak differs in a
few ways from the original Blue Book implementation of Smalltalk-80, as a new object
and image format were designed for Squeak. The object memory was redesigned for
a 32 bit address space and to use direct pointers instead of indirect pointers and an
object table. The headers for objects themselves were redesigned to be variable length,
where information about the object was encoded in either one, two or three 32-bit words.
Garbage collection had to also be redesigned for the new object format.

One of the goals of the developers of Squeak was to be able to develop and simulate
the virtual machine using Smalltalk, but also be able to build for a target platform
using C. This required the creation of a translator from Smalltalk to C. To avoid having
to emulate all of Smalltalk, only a subset of Smalltalk was chosen to be translated
(later called Slang), so blocks, message sending, and objects are not directly translated.
Methods can also be inlined when translated to C - this allows them to be kept as separate
methods in Smalltalk for ease of development without adding overhead of procedure calls
in C.

2.1.2 The Cog VM

The Squeak framework for building VMs, VMMaker, was extended by Miranda into the
OpenSmalltalk VM, which added, amongst other improvements, an extended bytecode
set, full closures, context-to-stack mapping, a JIT compiler, and inline caching [27].
Full closures were implemented first, replacing the implementation that was currently
in Squeak and based on the Blue Book Smalltalk-80 implementation [24]. Closures, or
blocks in Smalltalk syntax, were originally not implemented as proper closures, as they
lacked their full activation record to store their own arguments and temporary variables
- attempting to create blocks with recursive calls would fail due to this implementation.
Miranda corrected this implementation by ensuring each activation of a block would have
its own activation record, and ensuring that values of temporary variables defined in the
enclosing method but referenced within a block would be independent from references
within subsequent activations of the block. Bytecodes for the new closure implementation
were added to the existing Squeak bytecode set [25].

Context to stack mapping was implemented next as a precursor to adding a JIT

compiler - this class of the OpenSmalltalk project is called the Stack Interpreter [28].

13

CHAPTER 2. RELATED WORK

The Stack Interpreter is a reimplementation of method activation that attempts to make
the process more efficient by mapping heap allocated context objects to a call stack. As
mentioned earlier, Blue Book Smalltalk-80 implemented activation records as first class
heap allocated context objects which allowed Smalltalk-80 systems to have advanced
features like live debugging and exception handling. Each context contains a pointer
to the sender, a pointer to the current instruction, a stack pointer, a reference to the
compiled method, arguments, temporary variables and a call stack for that context.
Refer again to Figure 2.1 for details. Bluebook Smalltalk-80 presented an inefficient
implementation of method activation where the new context object is allocated on every
send. This is doubly inefficient as, not only is there a context object allocated on each
send, but eventually that context needs to be garbage collected as well. Squeak improved
the implementation by allowing unreferenced context objects to be reclaimed when a new
method is activated. As mentioned before, Deutsch and Schiffman presented a scheme
for mapping context objects to a call stack and Miranda developed a variation of that
scheme for the Stack Interpreter.

In the Stack Interpreter, a call stack is implemented in a manner similar to a language
like C. When a message is sent the receiver and arguments are pushed onto the stack
and then a stack frame is built by pushing the current frame pointer on to the stack,
and setting the stack pointer to be the new frame pointer. When a method returns, the
stack pointer reverts to the value of the frame pointer, and the frame pointer pushed up
earlier is set as the new frame pointer. The difference in implementation between the
stack interpreter and a language like C is that there needs to be a reference to a heap-
allocated context object - these context objects are allocated only when needed, such as
when a block closure is created and needs a reference to its enclosing method context, or
when engaging in some higher level activity like debugging. When a method is activated
on the call stack, an empty slot is pushed onto the call stack. This is replaced with a
context pointer, if the context object is created. The Stack Interpreter virtual machine
only allows for one context object to exist per stack frame. Unlike Blue Book context
objects, in the Stack Interpreter there is a single shared call stack and there needs to be
a mechanism for managing pages of stack frames. Because Smalltalk context objects are
heap allocated, Smalltalk implementations typically have been immune to stack overflow
- there can be as many method activations as there is memory available for the heap.
In the Stack Interpreter there is a set stack limit, and on each method activation that
stack limit is checked to see if it has been reached and a new stack page has to be
built. One interesting aspect of implementing this is support for non-local returns in

Smalltalk; this was challenging to implement as a non-local return needs to return to

14

CHAPTER 2. RELATED WORK

the activation record of the method in which it was defined, and which may need to
be returned across various different stack pages, stack allocated activation records, and
heap allocated context objects.

Having laid the groundwork with the Stack Interpreter, the Cog JIT compiler was the
next piece added to OpenSmalltalk [23]. The OpenSmalltalk VM with JIT compilation
is sometimes referred to as the Cog VM. The Cog VM consists of two major components
- first, there is a version of the Stack Interpreter (Colnterpreter) that functions like the
Stack Interpreter but is also able to invoke the JI'T compiler and transfer execution from
the interpreter to JIT compiled code and back again as needed. Second, there is the
Cog JIT compiler, which is responsible for generating platform specific assembly code.
The JIT compilation process itself first translates Smalltalk bytecode to an intermediate
representation using a generic assembly language, before being compiled to a platform
specific assembly language with real memory addresses. Execution jumps back and forth
between interpreted code and JIT compiled code using a series of trampolines (jumping
from the interpreter to JIT compiled) - interpreted code and JIT compiled code actually
share the same call stack, and when execution jumps back and forth, the stack pointer
and frame pointers are copied from registers used by the JIT code to variables used by
the interpreter and back again as the case may be. There are also three levels of inline
caching of message sends that are used in the Cog VM - monomorphic, polymorphic
and megamorphic. Monomorphic inline caches are caches of sends to a specific method
of a specific class of object - caches are implemented by caching a class tag at the send
site. Polymorphic sends are sends to methods of different classes with the same selector
- caches are implemented by sending to a lookup routine with the class tags and call
addresses of each method. There is an upper limit of how many methods can be in a
polymorphic inline cache, and, if broken, the send site is considered megamorphic and
the cache goes from a closed polymorphic inline cache to an open polymorphic inline
cache. A detailed look at method invocation and inline caching in the JIT will be given
later on, as the implementation presented in this thesis will involve changing the JIT
compiler.

As mentioned above, one of the important requirements of development of this series
of VMs since Squeak was to be able to develop and simulate the VM within Smalltalk.
With a JIT compiler, this means that generated assembly code for a specific target
platform also needs to be simulated within Smalltalk [26]. While the hardware of the
development platform could be used, it would mean that development would be tied to
the CPU platform of that hardware, and that incorrectly generated JIT code would be

running on the development machine, potentially causing crashes. The solution taken

15

CHAPTER 2. RELATED WORK

by Miranda was to simulate the generated assembly code within Smalltalk using existing
emulators for the target platform and building a Smalltalk FFI (foreign function inter-
face) to communicate with the emulator. For x86 and x64, the emulator Bochs was used
1

When discussing Squeak, it was mentioned that the Blue Book Smalltalk object
format was replaced for Squeak with a new 32 bit format which used a variable length
object header made up of one to three 32 bit words, depending on the class. There is a
known set of compact classes, for whom objects use one 32 bit header word, otherwise
another 32 bit word is added for a class pointer. If an object has more than 255 fields,
another 32 bit word is added to the header. This adds complexity to inline caching and
object instantiation in Cog, so the object header format was revisited with a project
called Spur [22]. The object header format is now one consistent 64 bit format, for both
32 bit and 64 bit implementations [6]. To reduce the size of the header, the header
no longer contains a pointer to the class as this would need to be 64 bits in a 64 bit
environment. Instead, the header contains a class index, and a class table is maintained
to look up classes. The saved space allows objects to have a bigger identity hash, reducing
collisions, and the consistent header size saves complexity. The class indices can also be
used when inline caching, which will be looked at in more detail later.

The Spur object model also allows for better support of live programming in an
object oriented environment where instances of objects can exist at the same time as the
code for the object is being modified [29]. Smalltalk implements this feature with two
primitives - one, called allInstances, to collect all instances of a class, and one, called
become:, that exchanges the identities of a pair of objects. Become has four different
forms: one way, in which a becomes b means references to a become references to b, two
way, in which a becomes b means references to a become references to b and references
to b become references to a, and bulk versions of one way and two way that operate
on arrays. Blue Book Smalltalk-80 has indirect access to objects - an object pointer
points to a header which then points to the object, so become is simply a matter of
changing which object the header references at the cost of having a pointer to an object
in every object header. However, Squeak’s original object format used direct pointers,
so become required a scan of all references to the object through the heap to replace
references. With Spur, which uses direct pointers, a scheme to lazily implement become
was presented by Miranda and Béra [29]. Existing instances of objects are edited to
become forwarding objects - their class index is changed to that of a forwarding object

and the first slot in the object is a pointer to the object it becomes. In a two way become,

'http://bochs.sourceforge.net/

16

CHAPTER 2. RELATED WORK

copies need to be created and the forwarding object forwards to a copy of the object it
became, as the original object it should have become also turned into a forwarding object.
References to forwarding objects are replaced with references to the actual object lazily,
as they are referenced. Checks for forwarding objects are minimized to certain cases to
avoid unecessary checking for forwarding objects (a read barrier) by preventing their use
in certain cases - for example, they can’t be the receiver or the method of an activation
to prevent a read barrier on instance variables. Forwarding objects also cannot be saved
in a method lookup cache, so they will fail lookup and be unforwarded.

Béra also introduced read-only objects into the Cog VM [4]. Introducing read only
object could involve an extra check, or write barrier, on each store into an object - if
the object is read only, the store would fail, and one of the requirements was that failure
should be handled at the language level. However, this would add overhead on each store
to an object, as each store would need to check for read access. The read only status of
an object can change as well, which is why the terminology write barrier was chosen as
opposed to immutability. Support for this was added to the virtual machine, as many
common operations in Smalltalk are implemented as primitive operations, which are
handled by the VM and not exposed to the Smalltalk image. Changing the behaviour of
these to enforce read only behaviour would be difficult to implement just in the image.
Also, some objects are not allowed to become read only, such as context objects, as
execution may rely on being able to change these objects. Implementing this change
required three modification to the VM: the object representation, the interpreter and
the JIT compiler. In the object representation under Spur, a flag is added to the header
of the object to indicate that an object is read only - this flag is modified by calling a
specific operation from Smalltalk code that invokes a primitive operation. Fortunately,
object headers under Spur left a few bits unused, so modifications like this can be done.
The interpreter was modified to handle the case where access to a read only object
could fail, including any primitives that access objects. Checks needed to be added in
primitives and in stores to instance variables. Similar modifications needed to be made
to JIT compiled primitives and instance variable stores. The overhead of checking at
every store is mitigated by adding this check to existing checks on behalf of the garbage

collector, which allowed this to be implemented with minimal overhead.

2.1.3 Other Work in OpenSmalltalk

Béra and Miranda introduced an alternative bytecode set to add support for adaptive
optimization into OpenSmalltalk [7]. The adaptive optimizer being designed was to be

implemented in Smalltalk above the virtual machine, and needed to extend the existing

17

CHAPTER 2. RELATED WORK

bytecode set for new operations. However, the existing bytecode set lacked room to add
new operations, with only three unused bytes. In addition, it had a few issues which
could be solved as well, of which a few examples will be given. The existing bytecode
set had a limit on the size of arguments - for example, the jump bytecode was limited to
only be able to jump 1024 instructions forward. This would actually cause compilation
failures and restrict the amount of code that the compiler could inline. Another issue
was how primitives were implemented - each primitive has an index, and the index of
the primitive is encoded in the method header in such a way that inlining a primitive is
impossible, which prevents operations implemented as primitives from being as optimized
as possible. The bytecode set also had some issues related to legacy support, such as
support for 16 bit Squeak versions and support for older hardware - the bytecode set
could be redesigned to remove this legacy support.

The new bytecode set (Sista) introduced some features, some of which are general
improvements and others of which are added to support the adaptive optimizer. An
extension bytecode was added, which allows for arguments to be infinitely extended -
this removes limitations on argument size such as the jump forward example given before.
This also allows a Smalltalk method to have more than 255 literals (literals being things
like selectors), as literal bytecodes can also be extended. Primitive indices have been
moved to bytecode instead of the header, and the primitive bytecode can be inlined to
improve performance. 15 bytecodes were also left available for future implementations.

To facilitate compatibility, the new bytecode set was added to the VM using the VM’s
support for multiple bytecode sets. The VM already had the ability to support multiple
bytecode sets, as it supported bytecode for both Smalltalk and Newspeak. This allowed
for execution of multiple bytecode sets in the same runtime without having to build
a converter for an image compiled in one bytecode set or another. Compiled methods
in Smalltalk are a special type of object with their own header format, and a flag bit
is included at the end of the method header to indicate which bytecode set it uses -
this bit is checked before method execution to determine which bytecode set to use for
interpretation. Support for multiple bytecode sets will be briefly revisited later, as it
was experimented with to implement tail call elimination in the Stack Interpreter.

Béra also introduced a potential replacement for the BlockClosure implementation,
discussed earlier, called FullBlockClosure with a new bytecode in the Sista bytecode set
[5]. The original implementation of BlockClosure required that an outer context object
exist for the enclosing method, however, the new implementation only requires an outer
context to exist when the block has a non-local return. FullBlockClosures also have their

own method (instead of just referencing their enclosing method).

18

CHAPTER 2. RELATED WORK

2.2 Tail Calls in Different Environments

Tail call elimination is a well known optimization and is implemented as a part of many
languages, whether that is as a requirement or as an optimization. This section provides
a breakdown of tail call elimination support in languages which have been chosen either
for their relevance to the history of tail call elimination or for their popularity. Note
that adding tail call elimination support for environments which do not support it is the
source of much interest (including this thesis) - attempts to add tail call elimination and

the methods employed will be discussed later in this chapter.

2.2.1 Scheme

Scheme, a programming language based on Lisp, is particularly noteworthy in tail call
elimination research, as general tail call elimination was first presented as part of the de-
velopment of the Scheme language [37]. Scheme requires implementations to be properly
tail-recursive as part of its specification [43]. The definition of properly tail-recursive as
presented in the specification encompasses both tail recursive calls and general tail calls
as well, not just recursive, or self, tail calls [10]. As a language where tail call elimination
is required, Scheme compilers are a source of much research in different strategies for

tail call elimination, which will be reviewed later in this chapter.

2.2.2 Javascript

Javascript is an implementation of the ECMAScript specification. The ECMAScript 6,
or 2015, specification introduced proper tail call elimination into the specification when
using strict mode [13]. The language definition defines what tail calls are considered and
an abstract operation is provided which handles the tail call. However, support at the

time of this writing is limited, with Safari/Webkit being the most notable inclusion [14].

2.2.3 Java Virtual Machine

The Java Virtual Machine, or JVM, is the specification for virtual machines to run the
Java programming language, as well as numerous other languages that target the JVM.
Tail call elimination was originally not included as part of the JVM due to security
methods that relied on counting stack frames - as tail call elimination may change the
number of frames, this security implementation prevented tail call elimination [11]. While
this security implementation has been replaced with something more robust, tail call

elimination has yet to be implemented. This creates a problem for functional languages

19

CHAPTER 2. RELATED WORK

which rely on tail call elimination for, at the very least, tail recursive calls to implement
looping in a functional paradigm. The approach taken by some languages is to add
special syntax to indicate tail recursive calls to the compiler. Examples of languages
designed for the JVM use this approach include Clojure, Scala, and Kotlin [42, 44, 20].
Compiling functional languages to the JVM is of some significant interest, and some

approaches will be looked at later in this chapter.

2.2.4 Common Language Runtime

The Common Language Runtime, or CLR, is Microsoft’s virtual machine for .NET ap-
plications programmed in languages such as C# and F#. The specification for the CLR
is laid out in the Common Language Infrastructure (CLI) specification and supports a
specific tail prefix to call instructions -this indicates that the stack frame of the current
method can be eliminated before the call is executed [36]. Implementations are only
required to honor the tail prefix for call instructions for which the targets are known
at compile time. F# uses the tail call capabilities laid out in the CLI for tail-recursive
calls, but does not perform general tail call elimination [39]. The Roslyn compiler for
C#, however, never emits the tail instruction [33]. Regardless of whether the individual
languages emit the tail instruction, the JIT compiler for CLR on AMD64 platforms can

opportunistically eliminate tail calls [18].

2.2.5 Python

Python supports neither tail call elimination or tail recursion elimination - this is by
design for several reasons discussed in the context of tail recursion elimination [34].
First, as tail recursion elimination removes stack frames, stack traces will not have the
eliminated stack frames. This will make debugging more difficult. Optional tail recursion
elimination to preserve debugging stack frames was also not considered due to a desire
to always default to useful debugging. Second, if tail recursion elimination is introduced
as a choice for implementers, programs may be written that rely on the presence of tail
recursion elimination and not run on implementations that choose not to implement
it. Third, Python also allows functions to be rebound at runtime, so implementing tail

recursion may be difficult to accommodate in all cases.

2.2.6 Other

The LLVM compiler infrastructure, used in the clang C compiler amongst other compil-

ers, has optional tail call elimination depending on the calling convention of the caller

20

CHAPTER 2. RELATED WORK

and the callee (typically preferring calling conventions where arguments are passed in
registers). Tail call elimination is implemented by having the callee reuse the stack of
the caller for calls in tail position. When the callee has more arguments than the caller,

the convention is that the callee pops the arguments [21].

2.3 Research in Tail Call Elimination

Steele presented tail call elimination implemented as a compiler optimization of machine
code while discussing the expensiveness of procedure calls compared to goto statements
[37]. Steele was demonstrating several points in comparing procedure calls to goto state-
ments in order to show that procedure calls were not necessarily too expensive and not
expressive enough compared to goto statements. When demonstrating expensiveness,
a simple Lisp method was shown compiled to a machine language with a small set of
instructions: JUMP, PUSHJ, and POPJ. JUMP jumps to an address, PUSHJ pushes a
location onto a call stack and then jumps to an address, and POPJ pops a location off of
a call stack and jumps to that location. The machine code representation of a procedure
call is shown to be a PUSHJ operation in that it pushes the current instruction and
then jumps. The machine code representation of a return at the end of the procedure
is shown to be a POPJ operation - it pops the previous address off the call stack and
jumps. Steele shows that the final procedure call in the procedure can actually sim-
ply be executed as a JUMP without pushing the address (with a PUSHJ) and without
needing the POPJ instruction for the return. Procedure calls can be optimized in this
way within the branches of conditionals, looping constructs and the last component of
a block, amongst others. Steele recognized this as a universal technique for optimizing
procedure calls as opposed to tail recursive specific optimization done in earlier work.
Hanson builds on Steele’s work from a compiler perspective [16]. Hanson presented
a technique for compiling tail-recursive languages using stack allocation. Hanson uses
Scheme as the example language, as it was a widely known tail recursive language - this is
using the Scheme definition of tail-recursive, which refers to general tail call elimination
and not just elimination of self tail calls. To set the context for Hanson’s implementation,
an activation record for procedure calls was presented. This activation record consists
of four types of fields: arguments of the called procedure, the return address, temporary
variables, and an access link which is a pointer to the activation record of the lexical
parent of the called procedure. Note that a control link, or a link to the activation record
that invoked the current procedure is not included - Hanson states that MIT Scheme

does not require this.

21

CHAPTER 2. RELATED WORK

First, Hanson shows a traditional non tail recursive implementation of procedure
calls and one-to-one stack growth with each procedure call. To present a tail recursive
implementation, Hanson recognized that some information needs to be removed from
the stack. Hanson broke activation records down to two parts in order to facilitate
discussion: control records, which consist of the return address, and environment records,
which contain bindings and the access link. Hanson also classified procedure calls into
two categories: subproblems, which are procedure calls where the calling procedure
will continue execution after the subproblem returns, and reductions, where the calling
procedure will not continue execution after the return. Tail recursion is then defined
as avoiding the pushing of unnecessary control records and popping the environment
records when they are not needed.

Reductions have unnecessary control records, as there is no need to use the return
address in the reduction when there will be no further execution in the calling proce-
dure. Control records for subproblems are needed, as execution does continue in the
calling procedure. Environment records can be discarded when the variable binding and
access links cannot be reached and are therefore no longer needed. These environment
records are popped in two cases - when a reduction is called, and when a return se-
quence happens from a reduction. When a reduction is called, the environment records
that are popped are ones which do not have a return address, and are not the lexical
parent of the reduction (and therefore the reduction would have no need to reference its
values). Returning from a reduction pops the environment record of the reduction, and
all remaining environment records up until a control record is reached, at which point
execution jumps to the return address of the control record.

Hanson recognized the challenge in implementing this, as the runtime needs to be
able to distinguish between environment records and control records, and there needs to
be added instructions for determining which records to pop during reduction calls and
return sequences. Building on earlier work, Hanson presents an implementation where
a control link is reintroduced, implemented as a register, as a control link points to a
control record in the previous activation record. In the tail recursive implementation, the
control link points to the topmost control record, thus providing a quick reference. When
calling a subproblem, the contents of the current control link register is pushed onto the
stack, and the stack pointer is copied into the control link register before the rest of the
activation record is pushed. When a reduction is called, the stack pointer is set to either
the control link register, or the access link, which pops any environment record without
a control record and which the reduction has no reference to. When returning, all of

the activation records above the topmost control record can be discarded by replacing

22

CHAPTER 2. RELATED WORK

the stack pointer register with the control link register. This simplifies the execution of
proper tail call recursion while adding the cost of a control link register, and pushing
the value of the control link register on subproblem activation. Added efficiency can
be gained by predicting the value of the control links and access links as offsets of the
stack pointer, which Hanson presents a few strategies for. Hanson leaves any actual
performance evaluation of these techniques to future work.

Kelsey presents several methods for implementing proper tail recursion in a stack-
based interpreter [19]. Kelsey first presents the issue as to why a traditional call stack
doesn’t provide proper tail recursion. As discussed elsewhere, when a function calls
another function in tail position, the environment (variables, access link) for the calling
function is left on the stack despite never needing to be referenced again. Kelsey then
considers three general approaches to dealing with this issue. The first is to allocate all
environments to a heap, and then later garbage collect any unused environments. The
second is to overwrite the existing environment with the new environment, replacing
existing arguments with new arguments. Third, the stack could be allowed to fill with
environments, and then later be garbage collected. Three garbage collection strategies
for the stack were looked at as well - compacting the existing stack, copying the stack
to a new stack and copying it to a heap. Looking at the three different approaches for
implementing tail recursion, as well as not using a stack at all, Kelsey looked at the costs
of making continuations, making procedure calls and garbage collection. Kelsey found
that the second approach worked best in general for languages except Scheme.

Benton, Kennedy and Russell presented a compiler for Standard ML to Java bytecode
which, amongst other things, implemented tail recursion elimination [3]. The compiler
converts tail recursive calls into goto instructions, but does not perform general tail call
elimination, as the authors believed that general tail call elimination would be added
to JVMs (as mentioned before, this has yet to happen). The compiler first converts an
ML program into one large term in a typed intermediate language, called the Monadic
Intermediate Language (MIL), before being translated into a low level code called Basic
Block Code (BBC). This is then converted into Java class files. For tail recursive calls
in the sense of self tail calls, the tail call is ultimately compiled as a goto bytecode for
the JVM. The authors suggested two possible techniques for general tail call elimination
if tail call elimination was never included in the JVM - one was to place tail calling
and callee functions in the same method (so that tail calls could still be replaced with
gotos), and the other would be to use the tiny interpreter (essentially a trampoline) in
the Glasgow Haskell compiler [31].

Bothner presented a compiler for dynamic languages such as Scheme on the JVM,

23

CHAPTER 2. RELATED WORK

based on the Kawa Scheme interpreter [8]. The implementation that the author presented
supported almost all features of Scheme at the time. The author considered writing a
Scheme interpreter directly in Java, or writing a compiler to translate the language
into Java source, but abandoned these ideas in favour of compiling Scheme to Java
bytecode. The overhead of an interpreter is avoided by compiling to bytecode first,
and JVM bytecode was considered by the author to be more expressive than the Java
language itself, such as having a goto instruction (which Java does not). The author
only implemented optimiztation of self-tail calls by replacing the calls with gotos for
the two standard Scheme looping forms - do and named-let. Without having direct
access to stack frames to implement general tail call elimination, the author presented a
proposed implementation of a framework for implementing continuation passing style in
Java, which would put tail calls inside of a switch statement.

Peyton Jones, Ramsey and Reig designed an intermediate assembly language named
C— that provided tail call elimination [32]. The motivation for writing this language was
to produce a portable high quality assembly language. The authors reject C as an inter-
mediate language for various reasons - relevant to here is the lack of easy implementation
of tail call elimination. In C—, tail calls are treated as jumps from which control does
not return. An implementation would be required to disassemble the caller’s stack frame
before the jump.

As mentioned earlier, one of the reasons that the JVM specification originally did
not include tail call elimination was because of a stack checking security mechanism.
Clements and Felleisen presented an abstract machine with general tail call elimination
that also has security stack inspection, which they claim invalidates the belief that tail
call elimination and stack inspection are incompatible [9].

Tauber et al. presented FCore, which is a JVM implementation of System F, a typed
lambda calculus, that has full tail call elimination [41]. The authors state that the JVM is
not designed for functional programming idioms such as recursion for iteration, and first
class functions, and state that functional languages in the JVM often work around such
issues by providing alternatives to functional programming style. Two typical approaches
on how to represent functions are discarded. Representing functions as Java methods is
one approach, but has limitations as JVM methods don’t support currying. Representing
functions as Java objects is another approach, which languages like Scala and Clojure
use, which allow for more flexibility. Functions as objects (FAO) can be represented as a
FAO interface, with an apply method that takes an argument. Neither option provided
a good solution to the problem of general tail call elimination. The authors presented a

different approach to representing first class functions called imperative function objects

24

CHAPTER 2. RELATED WORK

(IFO). IFOs are represented as an abstract class with argument and result fields, and
an apply function. are distinct from the previous approach for representing functions as
objects in that setting an argument and invoking a function are two different parts. In
tail calls, the IFO has its arguments set, but invocation is delayed - instead, an auxillary
structure saves the IFO. The saved IFO is executed at the original call site, looping until

the auxillary structure is null.

2.3.1 Continuation Passing Style and Trampolines

One strategy for implementing tail call elimination is for the compiler to convert a
program into continuation-passing-style (CPS). The term continuation passing style was
first used when describing iteration implemented with recursion in early Scheme [38]. It
is a style of programming where functions are supplied an extra argument in the form
of a continuation and, rather than returning, the function calls the continuation. CPS is
often used as an intermediate representation by compilers, and compiling tail calls with
CPS can provide tail call elimination [1].

Another method of implementing tail call elimination is to use a trampoline, occa-
sionally referred to as a dispatch loop. Assume a function f with a tail call to a function
g - fis called from the trampoline and returns g - the trampoline then calls g and so forth
as long as a function reference is returned by the function it calls. Because f returns, the
stack frame for f is popped before calling g thus preventing unlimited stack growth. This
technique isn’t necessarily separate from CPS, as it may be used to implement CPS.

In looking at the problem of compiling Scheme to C, Baker presents a solution in
which the Scheme program is converted into CPS [2]. Trampolines were considered,
but eliminated due to performance concerns and that arguments need to be passed into
global variables. The author proposed to compile Scheme by converting a program to
CPS. Each lambda in CPS would be compiled as separate C functions. Continuations
are passed as extra arguments - the code portion of a closure and the environment part
of a closure are passed as separate arguments.

Clinger presented a formal definition of proper tail recursion for Scheme which, once
again, is defined as including all tail calls, not just self tail calls [10]. Clinger presented
this in response to definitions of tail recursion that were either too implementation
specific, or too informal. Clinger defines tail expressions in core Scheme (after macro
expansion) as being the following: the body of a lambda expression and the branches of
a conditional expression, if the conditional expression itself is a tail expression. Tail calls
are therefore any tail expression that is also a procedure call. Self tail calls are tail calls

which calls itself recursively. Clinger defines the essence of proper tail recursion to be

25

CHAPTER 2. RELATED WORK

that a procedure can essentially return by performing a tail call. The responsibility for
the return is passed on to the procedure called during the tail call. Proper tail recursion
is important in Scheme as continuation passing style is a common idiom in Scheme and
requires proper tail recursion to be feasible, as proper tail recursion allows for CPS in a
bounded amount of storage. Because of the importance of proper tail recursion and its
space efficiency, Clinger defines proper tail recursion as a model of space consumption,
which serves as an asymptotic upper bound on the space consumption of the actual
implementations. Clinger’s work serves as the definition of proper tail recursion in the
specification for Scheme [43].

Schinz and Odersky implemented general tail call elimination for a functional lan-
guage called Funnel, which targeted the Java Virtual Machine [35]. Like many functional
languages, Funnel does not provide built-in loop constructs - instead it relies on recursive
calls to provide iteration. Furthermore, Funnel made use of visitors to provide algre-
braic data types, so recursive loops do not consist only of self tail calls. This required
implementation of general tail call elimination. The authors looked at several methods,
including compiling the entire program into one function, trampolines and conversion
into continuation passing style. Compiling the program to one function was deemed
unrealistic because the JVM has a size limitation for methods of 64 kb. Trampolines
were not attempted, as previous work had shown significant slowdown for C. Convert-
ing the program to CPS, and returning to the bottom of the call stack when nearing
stack overflow was of interest to the authors as it guarantees execution in a bounded
stack space, but tests showed that implementing a function in CPS caused significant
slowdown. The authors decided that one could add a counter for tail calls, tail call limit
(TCL), which, when reaching a maximum value, would trigger a return to a trampoline
at the bottom of the tail call chain. Returning to trampoline can be executed by either
a chain of return instructions, or by throwing an exception. Tuning the TCL is a matter
of choosing stack usage over speed - a high TCL means higher stack usage, but higher
speed (as less returns are needed), whereas a low TCL means the opposite.

Tarditi, Lee and Acharya presented a compiler for Standard ML to C, which needed
to maintain proper tail recursion [40]. The authors cited previous Scheme to C compilers
which failed to maintain proper tail recursive behavior, and sought to modify an existing
compiler, Standard ML of New Jersey, to produce C code that handled the language in
a faithful way. The existing compiler uses CPS as an intermediate representation before
code generation, and the decision was made to keep the same intermediate representation
and change the code generator to produce C. A trampoline (referred to by the authors

as a dispatch loop), is used to prevent stack growth for the C implementation of calls.

26

Chapter 3
Experimental Design

This chapter will discuss in depth the design and implementation of tail call elimination in
two different variations in the OpenSmalltalk VM, and will discuss the implementation of
tests for these variations. Relevant details about the implementation of OpenSmalltalk-
VM will also be discussed.

3.1 OpenSmalltalk Architecture

Tmage Virtual Machine
Smalltalk Source Bytecode Interpreter
Workspace Packages Interpret Loop |« > Primitives
Runtime
Smalltalk Bytecode
| >
Compiler Bytecode v
Cogit (Cog VM Only)
Bytecode JIT Compiler JIT Code
\ Assembly
Compiled Methods

Figure 3.1: OpenSmalltalk Architecture

The overall architecture of the OpenSmalltalk VM is detailed in Figure 3.1. Broadly
speaking, a Smalltalk system consists of a Smalltalk image and a virtual machine. A
Smalltalk image contains all of the Smalltalk source code, the compiled bytecode, and the
state of any instantiated objects. The image is also where the code for the Smalltalk to

bytecode compiler exists. The virtual machine is the component of the system responsible

27

CHAPTER 3. EXPERIMENTAL DESIGN

for the interpretation and execution of the compiled bytecode. In addition to executing
bytecode, it also executes runtime procedures called primitives. For the Stack Interpreter,
the bytecode interpreter is the only relevant component of the virtual machine. For the
Cog VM, there is also a JIT compiler component of the virtual machine, which compiles
bytecode to assembly. Note that the virtual machine never compiles or translates actual
Smalltalk source code, and that the Smalltalk image never executes, compiles or stores

any JIT compiled assembly code.

3.2 Stack Interpreter

The first section will discuss the implementation of several tail call elimination strategies
within the Stack Interpreter. The Stack Interpreter was chosen for this test for three
reasons. One, as mentioned earlier, the Stack Interpreter uses a traditional call stack and
only creates method context objects as needed, which makes it possible to implement
stack based strategies for tail call elimination. Two, the Stack Interpreter is a pure
interpreter - the subclass of the Stack Interpreter used for the JIT, the Colnterpreter,
would not be capable of testing a purely interpreter-based implementation of tail call
elimination. Third, from an implementation perspective, the Stack Interpreter is much
less complicated than the Cog VM and provided an ideal environment for experimenting
and learning about tail call elimination. In this section, the overall flow of execution in
the Stack Interpreter will be discussed. Next, the exact execution of a method send and
a return will be discussed in terms of the call stack. Finally, an implementation of tail

call elimination is discussed, as well as some approaches that were discarded.

3.2.1 Execution Flow in the Stack Interpreter

First, an overview of the flow of execution in the Stack Interpreter is needed. Figure 3.2
shows a simplified flowchart of the Stack Interpreter, with details relevant to message
sending. The interpreter runs as a loop, executing a bytecode and then fetching the next
bytecode. Table 3.1 shows a subset of the variables that the Stack Interpreter uses to
keep track of its state - this subset is made up of the variables relevant to this discussion.

Note that both Figure 3.2 and Table 3.1 make reference to internal and external
facets of the Stack Interpreter. In the virtual machine, the interpret loop and bytecode
execution are implemented as an interpret procedure containing a loop with a switch
statement, with bytecodes implemented as cases in this switch statement. The internal
variables are implemented as local variables to the interpret procedure as an optimization.

When a function is called from the switch statement (ie. an operation is needed outside

28

CHAPTER 3. EXPERIMENTAL DESIGN

Entry Internal Interpret Loop

A 4

Interpret Next
Bytecode

Execute
Quick inline
Primitive? and
Return
; Return return
© bytecode?
sender NO
NO
Lookup Prim-
itive Index
Execute Send
bytecode bytecode? v
Execute Primitive
Find method NO Return
with selector o from
primitive
YES
Primitive Fall back to
Index? bytecode
O
wa1th Alternate
ytecode bytecode?
set External Interpreter
NO
YES @ Connector to Interpret Loop
, Activate new @ Connector to Quick Primitive
method

Figure 3.2: Method Execution in StackInterpreter

29

CHAPTER 3. EXPERIMENTAL DESIGN

Internal Variable External Var. Purpose
localFP framePointer Stores current frame pointer
localSP stackPointer Stores current stack pointer
locallP instructionPointer | Stores current instruction pointer
currentBytecode n/a Stores current bytecode
method n/a Pointer to current method
bytecodeSetSelector n/a Offset for multiple bytecode sets

Table 3.1: Execution variables in StackInterpreter

of the bytecode case statements), the values of the internal variables are copied to the
corresponding external variables, which are implemented in C as globals. Any variable
without a corresponding external variable is either not needed outside of the interpret
procedure, or is calculated another way. Table 3.2 details what bytecodes and bytecode
ranges will be relevant to this discussion. Note that literal refers to a reference to a
string or symbol encoded in a method - in this case, the literals referenced will be

method selectors.

176 to 191 Special Arithmetic selectors
192 t0 207 Special Keyword selectors
208 to 223 Sends a 0 argument selector to the first 16 literals
224 to 239 Sends a 1 argument selector to the first 16 literals
240 to 255 Sends a 2 argument selector to the first 16 literals
131 Sends up to 7 argument selectors to the first 32 literals
134 Sends up to 3 argument selectors to the first 63 literals
132 Can send up to 31 argument selectors to 256 literals
120 Returns a reference to self.
121 Returns the boolean True.
122 Returns the boolean False.
123 Returns the Nil object.
124 Returns the top of the stack from a method.
125 Returns the top of the stack from a block

Table 3.2: Send and Return Bytecodes

Referring to Figure 3.2, execution enters the interpret loop, typically after the VM
starts up and the image is loaded, as indicated by the node labelled Entry. In the
interpret loop, the next bytecode is interpreted - as mentioned before, this is via a
switch statement matching on the currentBytecode variable. For the purpose of this
discussion, all bytecodes except send bytecodes and return bytecodes will be ignored -

refer to Table 3.2 for a look at the relevant bytecodes. If the executed bytecode is a

30

CHAPTER 3. EXPERIMENTAL DESIGN

return bytecode, a return sequence will be performed and execution will continue at the
next bytecode of the sender. Details of the return sequence will be given in the next
section. If the executed bytecode is neither a return or a send, the bytecode will be
executed and execution will continue at the next bytecode.

If the bytecode is a send bytecode, the interpreter first looks up the method using
the literal provided as the selector and the class of the receiver of the method. A com-
piled method in the Stack Interpreter has a special method header - this has encoded
information such as the number of arguments, number of temporaries, whether an al-
ternate bytecode set was used and the number of literals. See Figure 3.3 for the exact

specifications.

bl uf u ul a] af af af ¢f ¢[e[e[¢]] £ p[I[I[L[I[T[LJLJUJL[I[A[I[L[1] 1]

31 28 24 18171615 0
Bit(s) Meaning
31 Alternate bytecode flag

28-30 Unused

24-27 Number of Arguments
18-23 Number of Temporaries
17 Frame Size

16 Primitive Flag

0-15 Number of Literals

Figure 3.3: Spur 32 bit Method Header

In this case, the relevant field in the method header is bit 16 - if bit 16 is set to 1, this
indicates that the method has a primitive implementation. If the method has a primitive
implementation, the index of the primitive method is extracted from the argument of

the first bytecode!. Below is an example of a method with a primitive implementation.

SmallFloat64>>+ aNumber
<primitive: 541>
T aNumber adaptToFloat: self andSend: #+

The following is the bytecode for the above method. Note that the first bytecode has

the primitive index as an argument.

!Previous implementations embedded the primitive index within the header, which limited both the
number of primitives available in the system, and the size of the methods

31

CHAPTER 3. EXPERIMENTAL DESIGN

<primitive: 541>

21 <8B 1D 02> callPrimitive: 541
24 <10> pushTemp: 0O

25 <70> self

26 <21> pushConstant: #+

27 <FO0> send: adaptToFloat:andSend:
28 <7C> returnTop

If the primitive index falls into a certain range, 1 to 519 in the StackInterpreter, the
primitive is considered a quick primitive and is executed by the virtual machine before
returning to the interpret loop to execute the next bytecode of the calling method. Quick
primitives are operations that can be quickly completed without interpreting bytecode
or calling a function, such as simple arithmetic operations on lower precision numbers,
or simple boolean operations. If the primitive is not a quick primitive, the internal
variable values are copied to the global variables (the variables referenced in Table 3.1),
and the function corresponding to the primitive index is called. The primitive function
is executed and, if successful, execution is returned to the interpret loop and the state
of the loop is updated by copying the global variables back to the internal variables,
and execution continues at the next bytecode of the calling method. Primitives can
fail execution - for example, certain arithmetic operations may fail with high precision
numbers. If the primitive fails, execution returns back to the interpret loop and the
variables are copied back. However, instead of returning to the calling method, note that
in the example listing above there was still a bytecode implementation of the method
with the primitive index. Execution falls back to the bytecode implementation, skipping
ahead to the first non-primitive call bytecode.

In most cases, the method will not have a primitive index, and execution will continue
in the interpret loop (this is also the case if the primitive implementation fails). The
method will now be activated within the interpret loop. However, first, there is a check
to see if the method uses an alternate bytecode set. OpenSmalltalk has supported
multiple bytecode sets - first, it supported the bytecode set for Newspeak, and then it
supported the experimental Sista bytecode set. A flag in the method header is checked
(see Figure 3.3) to see if an alternate bytecode set is used - if so, each bytecode is
incremented by another byte (in essence, the interpret loop switch statement supports
512 bytecode operations - 2 sets of 256 operation bytecode sets). Finally, the called
method is activated and the next bytecode is interpreted.

One observation can be made from following the execution flow as it pertains to

tail call elimination. Implementation of tail call elimination need not be considered

32

CHAPTER 3. EXPERIMENTAL DESIGN

for primitives - quick and otherwise - as execution of quick primitives either occurs

immediately or outside of the interpreter’s call stack.

3.2.2 Sending on the Stack Level

Having followed the general flow of execution through the Stack Interpreter, two specific
things need to be examined in greater detail from the perspective of the call stack -
sending a message and returning. Recall the hypothetical call stack from the example
of a tail call given in Chapter 1 - in this section, a concrete example will be given using

methods implemented on an object named TestObject.

TestObject>>methodA: argA
self methodB: argA

The first method is methodA:, which simply takes an argument, and sends the mes-
sage methodB: with that argument to itself. The result is not explicitly returned, so, in

Smalltalk syntax, a reference to self is returned.

17 <70> self

18 <10> pushTemp: O
19 <E0> send: methodB:
20 <87> pop

21 <78> returnSelf

In the compiled bytecode, it’s clear that this method is not a tail call - this method
is just for producing side effects. The return result of the send to methodB: is discarded

before returning Self.

TestObject>>methodB: argB
T self methodC: argB

The next method is methodB:, which takes one argument, and sends a message to

methodC: with its own argument, and then returns the result.

33

CHAPTER 3. EXPERIMENTAL DESIGN

17 <70> self

18 <10> pushTemp: O
19 <EO> send: methodC:
20 <7C> returnTop

Looking at the bytecode, it is obvious that methodB: has a tail call, as it performs
a send of methodC; and then returns the top of the stack. Next, here is the receiving
method, methodC:.

methodC: argC
| temp |
temp := argC + 1.
T temp

In ths method, a temporary variable is created and assigned the value of the argument
+ 1. Then, the temporary variable is returned. Here is the compiled bytecode for
methodC:.

13 <10> pushTemp: O

14 <76> pushConstant: 1
15 <BO> send: +

16 <69> popIntoTemp: 1
17 <11> pushTemp: 1

18 <7C> returnTop

Looking at the bytecode, it’s clear that methodC: does not perform a tail call. The
result of the send to + is used after the send for other operations before returning the top
of the stack. Moving on, the call stack and the execution variables will now be shown.
Since the point of interest here ultimately is the tail call in methodB:, the activation of
methodA: will be skipped and the details of methodA:’s frame will be obscured. Refer

to Figure 3.4 for the result of jumping ahead to the invocation of methodB:.

localSP — Temp 0 (argA)
Receiver (self)
localFP — | Frame for methodA:

}methodA stack

locallP: 19
method: methodA:
currentBytecode: send: methodB:

Figure 3.4: Sending methodB: from methodA:

Right before the send to methodB: is executed, the receiver (self) and argument (arg)

34

CHAPTER 3. EXPERIMENTAL DESIGN

are pushed onto the call stack. localFP, the frame pointer, refers back to the start of
methodA:’s stack frame. localSP, the stack pointer, is pointing to the top of the stack.
Assuming that methodB: does not have a primitive index, Figure 3.5 shows the result of

activating methodB:.

localSP — self
Context (nil)
methodB flags
methodB:
localFP — | Saved FP (methodA)
Saved IP (methodA)
Temp 0 (argA)
Receiver (self)
Frame for methodA:

methodB frame

}methodA stack

locallP: 17
method: methodB:
currentBytecode: self

Figure 3.5: Activating methodB: after send

When methodB: is activated, several values are pushed onto the stack to serve as
the stack frame for methodB: and to facilitate the eventual return from methodB: to
methodA:. First, the instruction pointer, locallP, is pushed onto the stack- this saves
the instruction pointer’s location in methodA: for eventual return. Next, the previous
frame pointer, localFP, is pushed onto the stack, and then the current stack pointer,
localSP, is copied to localFP. localFP now serves as the frame pointer for methodB:. The
frame pointer serves as a known point in the stack, where, by using offsets, execution
can reference the receiver, arguments, temporaries, etc. Next, a reference to the current
method, methodB:, is pushed onto the stack. While a reference to the method also exists
in a local variable to the interpret loop, a reference on the stack is needed in case the
method needs to be accessed from outside the interpret loop. Next, a set of flags is pushed
- this contains values that need to be referenced such as the number of arguments. Next,
a slot is pushed for a reference to a heap allocated context object - recall that the Stack
Interpreter will allocate a context object as needed, so the slot initially is a reference to
the nil object. Finally, a reference to self is pushed. If methodB: had temporary variables,
they would be pushed now, but in this case they are not needed. From this point, the
execution of methodB is simple to follow, as a reference to self is pushed onto the stack,
followed by the argument and a call to methodC:, and the activation of methodC: will

be similar to the activation of methodB:, pushing the same values needed for the stack

35

CHAPTER 3. EXPERIMENTAL DESIGN

frame, and updating the execution variables. Figure 3.6 shows the stack after activation
of methodC:.

localSP — | Temp 1 (local variable temp)
self
Context (nil)
methodC flags methodC frame
methodC:
localFP — Saved FP (methodB)
Saved IP (methodB)
Temp 0 (argB)
Receiver (self)
self
Context (nil)
methodB flags
methodB:
Saved FP (methodA)
Saved IP (methodA)
Temp 0 (argA)
Receiver (self)
Frame for methodA:

}methodB stack

methodB frame

}methodA stack

locallP: 13
method: methodC:
currentBytecode: pushTemp: 0

Figure 3.6: After activation of methodC:

Figure 3.7 shows the stack after execution of methodC: right before the return in-
struction (methodB’s stack frame has been removed for clarity). Execution of methodC:
has proceeded up to the point where the temporary variable has been pushed onto the

stack, awaiting return.

3.2.3 Returning on the Stack Level

Continuing on from the previous section, the returnTop bytecode in methodC: will now
be executed. The return sequence for returnTop is simple - the stack frame for methodC:
should be removed, the execution variables should be set back to the sender, methodB:,
the arguments for methodC: should be consumed, and the return value should be pushed
the top of methodC:’s stack. This is accomplished in the following sequence - first, the
top of the stack is copied into a temporary variable. Next, the frame pointer, localFP,

is used to access the saved instruction pointer which is set back to locallP. Next, the

36

CHAPTER 3. EXPERIMENTAL DESIGN

localSP —

Pushed Copy of Temp 1

Temp 1 (local variable temp)

self

Context (nil)

methodC:’s flags

Ref. to Compiled method

localFP — Saved FP (methodB)
Saved IP (methodB)
Temp 0 (argB)
Receiver (self)
Frame for methodB:
localIP: 18

method: methodC:

}methodC stack

methodC frame

}methodB stack

currentBytecode: returnTop

Figure 3.7: Prior to return in methodC:

stack pointer, localSP, is set to the value of localFP with an offset applied based on the

number of arguments - this moves the stack pointer back to where the initial receiver was

in order to consume the arguments. The method variable is set back to the saved method

pointer, the next bytecode is fetched, and finally the saved return value is pushed onto

the top of the stack. Figure 3.8 shows the state of the stack after returning to methodB

from methodC.

localSP —

methodC:’s return value }methOdB stack

self

Context (nil)

methodB flags

methodB:

methodB frame

}methodA stack

localFP — | Saved FP (methodA)
Saved IP (methodA)
Temp 0 (argA)
Receiver (self)
Frame for methodA:
locallP: 20

method: methodB:
currentBytecode: returnTop

Figure 3.8: Stack of methodB: after returning from methodC:

Note that, since the send to methodC: inside methodB: was a tail call, methodB:

37

CHAPTER 3. EXPERIMENTAL DESIGN

now immediately returns the top of the stack back to methodA:. Figure 3.9 shows the
stack after performing the same returnTop sequence on methodB:. The return value of
methodC: is now on the top of the stack of methodA:.

localSP — | methodC:’s return value }methodA stack
localFP — Frame for methodA:

locallP: 20
method: methodA:
currentBytecode: pop

Figure 3.9: Stack of methodA: after returning from methodB:

3.2.4 Applying Tail Call Elimination

Having explored the concept of tail call elimination in the first two chapters, the oppor-
tunity to apply tail call elimination to the previous sequence of sends and returns should
be clear. From previous work, emulating a jump without pushing a return instruction
seems like a possible solution [37]. However, with Smalltalk bytecode, there is no direct
jump to an address available. Instead, a modification of the send sequence such that the
previous stack frame is removed or reused when making a tail call could be used, similar
to the approach discussed by Hanson when calling a reduction [16]. Assuming that a tail
call is somehow identified to the Stack Interpreter, the call and return sequence for the
tail call in methodB: could be redone with this approach. First, recall Figure 3.6, which
showed activation of methodC: after being sent from methodB:. Figure 3.10 shows the
activation of methodC: after using a tail call elimination strategy.

Note that methodC: has essentially replaced methodB: in the stack. How did this
happen? Putting aside the problem of how the interpreter should identify a tail call for
now, the tail call implementation of a message send can be fairly simple. Recall that,
when executing a call, the receiver and any arguments are on the top of the stack, and
the frame pointer (localFP) and an offset is used to refer to them. Also, when returning,
the arguments and receiver are consumed and replaced with the top of the stack. The
stack frame needs to be replaced with a stack frame that contains references to the
called method. In the example above, methodB:’s stack frame needs to be replaced with
methodC:’s, and the receiver and arguments that precede methodC:’s stack frame need
to be methodC:’s receiver and methodC:’s arguments instead of methodB:. The amount
of operations required for this depend on how closely the called method matches the

callee. What follows is the chosen implementation for several different cases of tail call

38

CHAPTER 3. EXPERIMENTAL DESIGN

localSP — | Temp 1 (local variable temp)
self

Context (nil)

methodC flags methodC frame
methodC:

localFP — Saved FP (methodA)

Saved IP (methodA)
Temp 0 (arg)
Receiver (self)

Frame for methodA:

methodA stack

locallP: 13
method: methodC:
currentBytecode: pushTemp: 0

Figure 3.10: Tail call activation of methodC:

in the Stack Interpreter.

Tail Recursive Calls

For tail recursive calls, or self tail calls, the caller and callee methods are the same. This
is the simplest case of tail call elimination. Since the method is the same, we know
that the argument count is the same, and the saved method and method flags are the
same. Tail recursive calls can be implemented with the least number of changes, as the
number of arguments are the same and the method being called is the same. Therefore,
the receiver and arguments that were used to call the method with the tail call can be
replaced with the receiver and arguments of the tail call, and the saved method and
method flags in the stack frame can stay the same. The frame pointer (localFP) can
stay the same in this case as well. The saved instruction pointer stays the same, the
instruction pointer (locallP) is set to the first instruction of the method, and the stack
pointer (localSP) needs to be set to the frame pointer. Slots for the context, temporaries

and the self reference need to be repushed.

Tail Calls with Same Arity

Calls with the same arity but different methods are slightly more complicated. For calls
with the same number of arguments, in addition to replacing the arguments and receiver,
the method for the frame must also be changed. The saved method and method flags

must be updated with the new method, and the method execution variable must be

39

CHAPTER 3. EXPERIMENTAL DESIGN

updated. Like self tail calls, the frame pointer (localFP) can stay the same. The rest of

the process is the same as self tail calls.

Tail Calls with Different Arity

Calls with a different arity are the most complicated cases. For calls with a different
arity, the position of the stack frame is offset differently by the number of arguments.
Therefore, nothing about the stack can be modified in place - essentially, the stack frame
needs to be rebuilt with the new method, but in place of the old method instead of
afterwards. Values such as the saved frame pointer, saved instruction pointer, tail call
arguments and receiver need to be copied to temporary variables by the Stack Interpreter
runtime to avoid being lost. The stack pointer (localSP) is set prior to the receiver of the
method with the tail call in it, the receiver and arguments are pushed and then the stack
frame for the tail call is rebuilt, pushing the saved frame pointer and saved instruction
pointer from local variables in the process. In all of the above cases, the end result is such
that the method with the tail call is no longer executing, and execution will not return
to it. The returnTop bytecode seen in examples like methodB: will not be executed -

instead, when methodC: returns, its return value will be returned to methodA:.

3.2.5 Identifying a Tail Call

Having explored the implementation of tail call elimination in the Stack Interpreter, the
next question is how does the interpreter identify a tail call in order to execute a tail
call instead of a regular message send? One possible implementation would simply check
before execution of each send bytecode - it could prefetch the next bytecode and check
to see if it is a returnTop bytecode - if so, execution of the bytecode could switch to
a tail call version of that bytecode. This was ultimately the approach that was used
in the implementation, however, this approach does have the overhead of implementing
a new check on every send instruction. Some other approaches were explored to take
advantage of existing checks in order to minimize any overhead, or to shift the overhead
of doing a check for a tail call from runtime to compile time. If a tail call was identified
at compile time, any extra overhead would be only on method compilation. Identifying
a tail call at compile time is trivial, but coming up with a strategy for how to flag
this for the run time is more difficult. Ideally, there would be enough free space in the
bytecode set to implement new tail call versions of all send bytecodes seen in Table 3.2.

However, the current bytecode set has very limited free space.? Instead, two different

2The Sista bytecode set has more available space for experimentation with new bytecodes, but was
not the default bytecode set of either Squeak or Pharo at the time of development

40

CHAPTER 3. EXPERIMENTAL DESIGN

approaches were explored for ways to switch execution of calls to tail call implementations
using existing checks in the interpreter without adding any overhead to non-tail calls.
These approaches would use checks that have already been discussed in the context of
execution flow. Ultimately both of these approaches were discarded early in development
tests, as little benefit was seen from the added complexity of their implementation, and

are included for completeness.

Primitive Implementation

The first method tested is to add a primitive to the Stack Interpreter that signals a switch
of execution to an interpret loop with tail calls instead of regular calls. As explored ear-
lier in this chapter, methods with a primitive flag bit in their method headers will cause
execution to switch out of the interpret loop. The primitive index in the method is
extracted and the corresponding primitive function is executed - if the primitive fails,
execution falls back to the interpret loop, and if the primitive succeeds, execution con-
tinues after the point that the primitive method was invoked. In this approach, when

the compiler encounters a tail call, it sets a specific primitive on the method.

Alternative Bytecode Set

The next method tested is to add a new bytecode set, where all sends are implemented
as tail calls 3. As mentioned, method headers already have a flag to indicate whether an
alternate bytecode set is being used. And the flag is already being checked on method
activation to see what the bytecode offset should be?. If this flag is repurposed as a
check for a tail call, it adds no extra overhead. In this implementation, the compiler
determines that a method ends in a tail call, the alternate bytecode set flag will be set
on the method header. Then, when the method is activated and the flag is checked, the

bytecode set is flipped to the bytecode set where all calls are implemented as tail calls.

3.3 Cog JIT Compiler

The next section will discuss the implementation of tail call elimination in the OpenS-
malltalk JIT compiler. The JIT compiler is known as Cog, or Cogit, and the OpenS-
malltalk VM with the Cog JIT compiler is occasionally referred to as the Cog VM. The
Cog VM is made up of two main classes - the Colnterpreter and the Cogit. The Cogit is

3Currently, the OpenSmalltalk-VM only supports two bytecode sets - this implementation prevents
the use of both the default bytecode set and the Sista bytecodes
 As the flag is simply true or false, the offset is either 0 or 256

41

CHAPTER 3. EXPERIMENTAL DESIGN

the JIT compiler itself, which is responsible for JIT compiling new methods, and making
modifications to existing JIT-compiled methods. In Smalltalk, it is structured such that
the actual platform-specific back end is another object set in an instance variable in the
Cogit. Slang compiles these objects together into a platform-specific Cogit C file, which
is then built as an executable VM. The Colnterpreter is an extension of the StackInter-
preter with the added hooks installed to be able to JIT compile methods as appropriate,
and transfer control from interpreted methods to JITted methods, and back again. The
choice was made to add tail call elimination to the Cog VM because it is an important
piece of the OpenSmalltalk VM moving forward. Also, as JIT compiled code executes
on a call stack, it should be possible to use some of the same strategies used in imple-
menting tail call elimination on the interpreter. First, however, the flow of execution in
the Cog VM will be discussed. JIT compiled methods also use inline caching at send
sites, which will be looked at in detail. Finally, a tail call elimination implementation
will be presented, and how to manage it with inline caching and garbage collection will

be briefly discussed.

3.3.1 Execution Flow in the Cog VM

Figure 3.11 shows the flow of execution in the Cog VM. Broadly speaking, execution
in the Cog VM can be divided into the evaluation of bytecode, execution of the JIT-
compiled assembly; and the runtime routines that support these. Since bytecode execut-
ing on the interpreter and the JIT-compiled assembly code share a call stack, one can
think of them as executing on the Smalltalk stack (either by interpretation of bytecode
or directly executing assembly) The virtual machine runtime executes on a separate call
stack, referred to as the C stack. In the diagram, execution is divided into the same three
areas: interpreter, runtime routines and machine code. Specifically, the runtime routines
in the diagram represent trampolines, which switch execution from machine code to the
interpreter, and the aptly named enilopmarts®, which take execution from the interpreter
to the machine code. As mentioned, interpreted bytecode and JIT compiled code share
a call stack. Since the interpreter tracks execution of interpreted code using local vari-
ables (like the aforementioned stack pointer and instruction pointer), and assembly uses
registers for these values, it’s the job of the trampolines and enilopmarts to copy the
values back and forth between the two execution environments so that they can share
a common stack. As a general rule, when an enilopmart jumps from the interpreter to

executing JIT compiled machine code, it saves the existing values of the registers (saving

5This is simply “trampoline” reversed.

42

CHAPTER 3. EXPERIMENTAL DESIGN

the state of execution on the C stack), and copies the values of the interpreter’s local
variables to the registers. When a trampoline jumps back from JIT compiled machine
code to the interpreter it does the reverse - saving the values of the registers into the
interpreter’s local variables (saving the state of execution on the Smalltalk stack), and
copying the saved state of the C stack back into registers.

A note about the interpreter (the Colntepreter class) - recall that, in the Stack
Interpreter, much of the discussion of the execution flow was spent on the distinction
between bytecodes executed within the interpret loop versus code executed outside the
loop as primitives. All of this complexity still exists in the Colnterpreter, but has been
removed from the diagram for simplicity. Also, the stack frame format is very similar
between the Colnterpreter and the StackInterpreter, and differences between interpreted
methods and JIT compiled methods are quite minor.

Following the flow chart in Figure 3.11, execution enters the interpreter at startup
(the entry node) and, like the Stack Interpreter, execution continues in a loop interpreting
bytecode. If the bytecode to execute is a return bytecode, a return sequence is called
and, if the method being returned to is another interpreted method, execution remains
in the interpreter. If the method being returned to is a JIT compiled method, execution
enters a runtime enilopmart method to switch execution to machine code, in a process
which will be elaborated on shortly. Continuing on, if the bytecode is neither a return
nor a send, execution in the interpreter simply continues with the next bytecode. If
the bytecode is a send, the combination of the selector and the class of the receiver are
looked up in the interpreter’s method cache®. The method cache is a lookup table of
class and method selector combinations that have been called in the interpreter, and is
not specific to a send site. If the method is not found in the cache, it is added to the
cache and is activated for execution in the interpreter. If the method is found in the
cache, a check is done as to whether it has been JIT compiled or not - if it has been
JIT compiled, an enilopmart is called to transfer execution to machine code and the
method is activated. If it hasn’t been JIT compiled, a check is done to see if the method
can be JIT compiled (methods over a certain size will never be JIT compiled due to
space concerns). If the method can’t be JIT compiled, it is activated for execution on
the interpreter. If it can be JIT compiled, the method is compiled by the Cogit class
to platform specific assembly, and then an enilopmart is called to transfer execution to
machine code to activate the new method.

It’s worth taking a look at what exactly enilopmarts and their corresponding tram-

5This was also the case for the Stack Interpreter, but was omitted as it was not relevant to the tail
call implementation

43

CHAPTER 3. EXPERIMENTAL DESIGN

Interpreter Runtime Routines Machine Code Execution
Entry Execute
Assembly

v
Interpret

@—> Next :
Bytecode Trampoline
@4 to return to

Interpreter

Enilopmart
to return >@
to JIT NO @

(Do
Trampoline
YES

to Method

To Interp

To Intepreter

Inlined

?
Lookup Cached?
Lookup NO i
Method ‘HT,
Cache Compile
YES Class Cache
Add check against

. receiver
inline —

cache
Add to Method
cache Cached?
T.rampohne Cache
for Cache .
. Failed?
Failure

ar | NO
Compile
YES Activate new
JIT compiled 4—@

Method
Cogged?

v

method
Expand 4’@
Cache

@ Connector to Interpret Loop

Activate
Inter-
preted

method

}

@ @ Connector to Assembly Execution

Enilopmart @ Connector to JIT Activation

to new »@
method @ Connector to Enilopmart

JIT Compiler

Figure 3.11: Method Execution in CogVM

44

CHAPTER 3. EXPERIMENTAL DESIGN

polines in the other direction do to transfer execution between JIT compiled code and
the interpreter. Recall that, as mentioned before, Smalltalk bytecode executed on the
interpreter and JIT compiled code share a call stack. The actual virtual machine run-
time uses a different call stack, which is referred to as the C stack. The Colnterpreter,
like the Stack Interpreter, uses local variables for the stack pointer, frame pointer and
instruction pointer to track the execution of Smalltalk bytecode on the Smalltalk stack,
while tracking its own execution on the C stack in registers. However, when JIT com-
piled Smalltalk code is executing, those same registers are used to track execution on
the Smalltalk stack. The runtime methods that constitute trampolines and enilopmarts
are responsible for switching back and forth - a trampoline from JIT execution to the
interpreter will copy the values of the registers used for the stack pointer, frame pointer
and instruction pointer on the Smalltalk stack into the local variables used by the in-
terpreter, and then restore the saved values from the C stack to reenter the runtime.
An enilopmart will perform the opposite to transfer control from the interpreter to JIT
code - it will save the values of the registers pointing to the C stack, and then copy the
values of the local execution variables into the registers. Trampolines are often tailored
to specific methods in the interpreter that need to be called from JIT code, for example,
if a method fails in some way that needs to be handled by the interpreter - examples will
be seen shortly.

Continuing on through Figure 3.11, assuming that execution has reached machine
code execution through an enilopmart and a JIT compiled method has been activated,
JIT compiled assembly code is now being executed in the node labeled ’Execute Assem-
bly’. If the instruction is a return instruction, similar to how the interpreter handled
returns, execution will either stay in machine code or return to the interpreter via a
trampoline depending on what sort of method is being returned to. If the instruction is
neither a return nor a call, execution of assembly continues on to the next instruction. If
the instruction is a call instruction, there are a few possible scenarios - the details will be
discussed shortly as it is very relevant to how tail call elimination will be implemented.
However, from a high level perspective, a check for an inline cache in the JIT code is
done at the call site. This is different than the method cache discussed earlier in the
interpreter - this is a cache of a class and selector written directly into the call site in
the assembly code. If there is no cache, a trampoline is called to look up the method,
adding an inline cache if the method found is already JIT compiled, or is JIT compiled
if not. If there is an inline cache, it is verified against the receiver, and either the cache
matches and the new method is executed, or the cache is expanded and the new method

is executed either in machine code or is JIT compiled and then executed.

45

CHAPTER 3. EXPERIMENTAL DESIGN

3.3.2 JIT Compiling a Method

From the discussion above, a few design decisions can be made about the implementation
of tail call elimination. The best way to illustrate these decisions will be with a concrete
example of some method sends and a series of executions of that method in the Cog VM.

The target platform for the JIT compiler will be TA-32 assembly code.

Method Definitions

What follows is the Smalltalk source and compiled bytecode for a set of methods that
will be used in the concrete example. The first method, sendModifyArg:toRcvr:, is

implemented on an object of class SendingObject.

SendingObject>>sendModifyArg:arg toRcvr:rcvr
T rcvr modifyArg:arg

This method takes an argument, arg, and an object instance, rcvr, and sends the
modifyArg: message to rcvr with arg as the argument. It then returns the return value

of modifyArg:. Here is the compiled bytecode of sendModifyArg:toRcvr:.

17 <11> pushTemp: 1

18 <10> pushTemp: O

19 <EO> send: modifyArg:
20 <7C> returnTop

From the bytecode, it’s obvious that the send of modifyArg: is a tail call, as the
top of the stack is returned immediately afterwards. As a dynamically typed language,
the reciever of modifyArg:, rcvr, does not have a specific type - any object that has im-
plemented the method modifyArg: can successfully receive the message. The dynamic
typing of Smalltalk will be seen with the next two methods. First, there is an implemen-
tation of modifyArg: on an object of class ReceivingObjectA. The method takes the

argument arg, adds 2, copies the value into a temporary, and returns the temporary.

46

CHAPTER 3. EXPERIMENTAL DESIGN

ReceivingObjectA>>modifyArg: arg
| temp |
temp := arg + 2.
1 temp

Looking at the bytecode below, this implementation of modifyArg: does not have
a tail call - after the send to -+, further actions are taken before the top of the stack is

returned.

13 <10> pushTemp: O

14 <77> pushConstant: 2
15 <BO> send: +

16 <69> popIntoTemp: 1
17 <11> pushTemp: 1

18 <7C> returnTop

Continuing on, here is an implementation of modifyArg: on an object of class
ReceivingObjectB. This method is identical to the previous implementation of modifyArg:,

except that the argument’s value is incremented by 1.

ReceivingObjectB>>modifyArg: arg
| temp |
temp := arg + 1.

T temp

The bytecode for this implementation of modifyArg: is as follows - again, it’s nearly

identical to the previous implementation.

13 <10> pushTemp: O

14 <76> pushConstant: 1
15 <BO> send: +

16 <69> popIntoTemp: 1
17 <11> pushTemp: 1

18 <7C> returnTop

Finally, here is a snippet of code that calls sendModifyArg:toRcvr: numerous times.

This code could be in a method, or executed in a workspace.

47

CHAPTER 3. EXPERIMENTAL DESIGN

| sender receiverA receiverB |

sender := SendingObject new.
receiverA := ReceivingObjectA new.
receiverB := ReceivingObjectB new.

sender sendModifyArg:1 toRcvr: receiverA. “Send 1”7
sender sendModifyArg:1 toRcvr: receiverA. "Send 27
sender sendModifyArg:1 toRcvr: receiverA. “Send 37

sender sendModifyArg:1 toRcvr: receiverB. "Send 4~

In this code snippet, instances of the classes SendingObject, ReceivingObjectA,
and ReceivingObjectB are created first. Next, there are a series of message sends to
SendingObject - the first four are with the rcvr argument receiverA and the next two
are with the rcvr argument receiverB. Comments have been added to the sends for
the sake of this discussion. The bytecode for this code snippet is irrelevant, and will
not be shown. Why the repeated sends with the same argument? Remember that, in
sendModifyArg:toRcvr:, there is a tail call to modifyArg: with rcvr as the receiver
- the behaviour that will be shown in this concrete example is inline caching, as it is

relevant to the implementation of tail call elimination.

Execution of Send 1

Referring again to Figure 3.11 and the previous description of execution flow, execution
enters the interpreter which evaluates each bytecode - for the purpose of this discus-
sion, execution will skip ahead to Send 1. Also, the assumption will be made that this
is the first time that this snippet of code has been run and that these methods have
been called since the image was started up”. Since the method sendModifyArg:toRcvr:
has never been called, the method and class combination have not been added to the
method lookup cache in the interpreter - they will be added to the cache and the method
sendModifyArg:toRcvr: will be activated in the interpreter. Now, following the acti-
vation of sendModifyArg:toRcvr:, execution continues through that method until the
send of modifyArg: to the receiver, which is an instance of ReceivingObjectA. The
class and message combination are not in the method lookup cache, so they are added,
and ReceivingObjectA>>modifyArg: are activated and executed in the interpreter.

Figure 3.12 shows a simplified view of the stack at this point preceding Send 1.

"While a Smalltalk virtual machine preserves instances of objects and execution state in the image
on virtual machine shutdown and startup, JIT compiled methods are not saved

48

CHAPTER 3. EXPERIMENTAL DESIGN

ReceivingObject A
modifyArg: <+ Interpreter
Send 1’s frame <+ Interpreter
SendingObject

sendModifyArg:toRcvr:

Enclosing code snippet’s frame | < Interpreter

Figure 3.12: Stack before returning after Send 1

Continuing on with execution, modifyArg: executes a return of the top of the stack,
which returns to sendModifyArg:toRcvr:. Since the call to modifyArg: was a tail call,
the top of the stack is immediately returned to the enclosing code snippet, where the

next bytecode to be executed is Send 2.

Execution of Send 2 - JIT Compilation

Every JIT compiled method is compiled with a similar set of entry instructions. A
method is called at the address indicated above by the entry: label with a cached class
tag in the ecx register and a reference to the receiver object in the edx register. See
Table 3.3 for a table of how the TA-32 registers are used by the JIT compiled code.

Register Purpose
eax Temporary storage
ecx Selector or Class Tag
edx Receiver or Result
ebx Number of Arguments
esi First Argument
edi Second Argument
esp Stack Pointer
ebp Frame Pointer
eip Instruction Pointer

Table 3.3: TA-32 Registers and Usage

Continuing on, when the intepreter executes Send 2, the combination of the class

SendingObject and the method sendModifyArg:toRcvr: are in the method lookup

49

CHAPTER 3. EXPERIMENTAL DESIGN

cache. Following the flowchart, a check is done to see if sendModifyArg:toRcvr: for
SendingObject has already been JIT compiled. It has not at this point been JIT com-
piled, so the method is checked to ensure it can be JIT compiled and, since the method is
not overly large, it passes and execution continues to the JIT compiler. What follows is
a breakdown of the method sendModifyArg:toRcvr: compiled to IA-32 assembly code.
The code will be divided up in sections to offer explanation of what each section does,

as understanding it will be required later for the implementation of tail call elimination.

ABB60
objhdr: 8000000A000035
nArgs: 2 type: 2
blksiz: 80
method: 29278C0O
mthhdr: 4100007
selctr: 29278A0=#sendModifyArg:toRcvr:
blkentry: O
stackCheckOffset: 5F/ABBBF

cmRefersToYoung: no cmIsFullBlock: no

This is the header for a JIT compiled method as extracted from the Cog VM simulator
- ABB60 is the starting address of the method, followed by some information such as

the address of the bytecode compiled version of the method, the selector, etc.

000abb7c: xorl %edx, %edx : 31 D2

000abb7e: call .+0xfff54b9d (0x00000720=ceMethodAbort2Args) : E8 9D 4B F5 FF
000abb83: nop : 90

000abb84: andl $0x00000001, Y%eax : 83 EO 01

000abb87: jmp .+0x00000011 (0x000abb9a=sendModifyArg:toRcvr:@3A) : EB 11
000abb89: nop : 90

000abb8a: nop : 90

000abb8b: nop : 90

entry:

000abb8c: movl %edx, %eax : 89 DO

000abb8e: andl $0x00000003, %eax : 83 EO 03

000abb91: jnz .+O0xfffffffl (0x000abb84=sendModifyArg:toRcvr:@24) : 75 F1
000abb93: movl %ds: (%edx), %eax : 8B 02

000abb95: andl $0x003fffff, %eax : 25 FF FF 3F 00

000abb9a: cmpl %ecx, %eax : 39 C8

000abb9c: jnz .+0xffffffe0 (0x000abb7e=sendModifyArg:toRcvr:Q@1E) : 75 EO

Figure 3.13 shows the format of an object header in the Spur memory manager used

50

CHAPTER 3. EXPERIMENTAL DESIGN

by the Cog VM, which is what the class tag is extracted from. Note that the object header
format is actually almost the same between the 32 bit and 64 bit memory manager -
in the 32 bit version, the header is made up of two 32 bit words. The relevant piece of
information here is the 22 bit class index, which is used as the class tag stored in the

ecx register.

s| s| s| s|s|s|s|s|x|x|hlh hl hlhl hl hl h{ h| h| h| h| h| h| h| h| h| h| h| h| h
x| x| x| f| f| f| f|f| x| x{c|c|lclclclelclclclelcelclclelclcelclclcelclclc
31 28 24 21 10
Word (32 bit) Bit(s) Meaning

1 24-31 Number of Slots

1 22 - 23 Unused

1 0-21 Identity Hash

2 22 - 23,29 -31 Unused

2 24 - 28 Object Format

2 0-21 Class Index

Figure 3.13: Spur Object Header Format

Immediate Object (Smalllnteger)
EEEE R EEEEEEEEEEEEEEEEEEEEEER

Immediate Object (Character)
x| x| o]] x| x| x|]] x| x| x] x| 5] x| x| x] x| o] x| x|] x] 5] x| x| x| x] 1] O]

Pointer to Heap Allocated Object
EEEEEEEEEEEEEEEEEEEEEEEEEEEEE N

Figure 3.14: Spur Object Pointer Formats

Another necessary piece of information is the pointer format, shown for 32 bit Spur in
Figure 3.14. Heap allocated objects are aligned such that every valid address is a multiple
of 4 - this means that every valid pointer’s last two least significant bits will be 0 and
0. The Spur memory manager uses this to encode what’s known as immediate objects -
any Smalllnteger or Character instance is encoded directly in the address as opposed to
being a pointer. Smalllntegers have 1 as the least significant bit, and Characters have
1 and 0 as the two least significant bits 8. With this information, the execution of the
assembly code after the entry: label can be followed. Recall that the edx register has

a pointer to the receiver and the ecx register has a class tag in it. First, the pointer of

81n the 64 bit version of Spur, the 3 least significant bits are used to encode immediates, as all valid
pointers are multiples of 8

o1

CHAPTER 3. EXPERIMENTAL DESIGN

the receiver is copied into the temporary register and is tested for whether it’s actually a
pointer by taking the last 2 bits and checking if they equal 0 - if they are not, execution
jumps back (in this case to address abb84), and the two bits have an and operation
applied on them with 1 - this produces 1 in eax if the receiver is a Smalllnteger and 0 if
the receiver is a Character (execution then jumps ahead to abb9a, which will be covered
imminently). If the receiver is actually a pointer, the value at the pointer is copied to the
temporary register eax - this is the header of the object. The class index, the last 22 bits
of the object header, is then put into the temporary register. Finally, at address abb9a,
the value of the temporary register (which is either the class index, 1 for a Smalllnteger
and 0 for a Character) is compared to the actual inline cache in ecx - execution jumps
to a method lookup failure trampoline back to the interpreter if they don’t match, and
continues on if they do. The next section of the JIT compiled code is the actual building

of the stack frame for sendModifyArg:toRcvr:.

noCheckEntry:

000abb9e: movl %ss: (%esp), %ebx : 8B 1C 24

000abbal: movl %edx, %ss:(lesp) : 89 14 24

000abba4: pushl %esi : 56

000abbab: pushl %edi : 57

000abba6: pushl %ebx : 53

000abba7: pushl %ebp : 55

000abba8: movl %esp, %ebp : 89 E5

00Oabbaa: pushl $0x000abb60=sendModifyArg:toRcvr:@0 : 68 60 BB 0A 00
IsAbsPCReference:

000abbaf: movl $0x0052d108=nil, %ebx : BB 08 D1 52 00

000abbb4: pushl %ebx : 53

000abbb5: pushl %edx : 52

000abbb6: movl %ds:0x7ffffdc8=&stackLimitFromMachineCode, %eax : Al C8 FD FF 7F
000abbbb: cmpl %eax, %esp : 39 C4

000abbbd: jb .+0xffffffbd (0x000abb7c=sendModifyArg:toRcvr:@1C) : 72 BD
HasBytecodePC bc 16/17:

Note the label noCheckEntry: - recall that the entry: label was jumped to if the
send was coming from an inline cache that needed to be checked. Execution jumps
to noCheckEntry: if a cache does not need to be checked, for example, if execution is
coming from the interpreter after JIT compiling the method for the first time, or coming
from a send without an inline cache. In these cases, the class is known before calling the
method. Continuing execution, it’s worth noting, at the top of the stack, there would

be a return instruction for the calling method, preceded by any arguments that could

52

CHAPTER 3. EXPERIMENTAL DESIGN

not fit into available registers. The first few instructions rearrange the stack so that the
receiver and all of the arguments, including ones in registers, are on the call stack, with
the return instruction on the top - this is the state as of instruction abba6. Next, similar
to activation of methods as seen in the Stack Interpreter, the frame pointer is pushed
onto the stack, and the stack pointer is copied to the frame pointer. Next, a reference
to the method is pushed onto the stack, and a reference to the nil object is pushed
as a placeholder for a heap-allocated context object. Finally, the receiver is pushed
again. A check is made to see if the stack pointer has passed a stack overflow limit,
and, if it has, execution jumps back up to the previous chunk of assembly code shown -
wiping the receiver register before calling the method failure trampoline to go back to the
interpreter (a blank receiver is used to flag the stack overflow state). With a stack frame
built, finally, the JIT compiled version of the method body of sendModifyArg:toRcvr:

can be shown.

000abbbf: movl 12(%ebp), %esi : 8B 75 OC
000abbc2: movl 8(%ebp), %edx : 8B 55 08
000abbch: movl $0x01f5lee8=#modifyArg:, %ecx : B9 E8 1E F5 01
00Oabbca: call .+0xfff548a9 (0x00000478=ceSendlArgs) : E8 A9 48 F5 FF
IsSendCall modifyArg: bc 19/20:
000abbcf: movl %ebp, %esp : 89 EC
000abbdl: popl %ebp : 5D
000abbd2: ret $0x000c : C2 0OC 00
000abbdb5: int3 : CC
000abbd6: int3 : CC
000abbd7: int3 : CC
000abbd8: int3 : CC
000abbd9: int3 : CC
0OOabbda: int3 : CC
000abbdb: int3 : CC
startpc: 16
16rABBAF IsAbsPCReference (16rABBDF)
16rABBBF HasBytecodePC (16rABBDE, bc: 16)
16rABBCF IsSendCall (16rABBDD, bc: 19 #modifyArg:)

Recalling the bytecode implementation of sendModifyArg:toRcvr, the method was
translated to 4 bytecode instructions - pushing temp 1 (the rcvr argument), pushing
temp 0 (the arg argument), sending modifyArg: to temp 1 with temp 0 as an argument,
and returning the top of the stack. The JIT compiler uses stack to register mapping

to avoid stack based operations when registers can be used instead, so neither push is

53

CHAPTER 3. EXPERIMENTAL DESIGN

compiled to assembly. When the send modifyArg: bytecode is compiled, the receiver
and argument are placed into the appropriate registers (recall that they were pushed
onto the stack from registers during the stack frame build). The next instruction moves
a pointer to the selector modifyArg: into the class tag register, and is followed by a
call to a method lookup trampoline. As previously discussed, this will eventually be
replaced with an inline cache as execution proceeds but, at JIT compilation, a receiver
is not known so no cache is made. Finally, the returnTop bytecode is compiled into a
simple sequence - first the stack pointer is set back to the frame pointer, and then the top
of the stack (the saved frame pointer) is popped off the stack into the frame pointer. A
return instruction is next, which consumes a saved instruction on the top of the stack to
return execution back to the caller of the method. The remainder of the assembly shown
is padding (the int3 instructions), as well as a lookup map that can be used by various
processes to find certain instructions like message sends in the JIT-compiled code, as

well as map from the JIT compiled code to the bytecode and vice versa.

Execution of Send 2 (cont.), and 3

Now that the JIT compiled version of sendModifyArg:toRcvr: has been explained,
execution of Send 2 can continue on the flowchart. An enilopmart is called to take
execution into machine code and the activation of the JIT compiled method. Remember
that, since the method was newly JI'T compiled, execution of the method begins at the
noCheckEntry: label in the JIT code. The method is activated, and execution continues
of assembly code until the call is hit - as the call does not have an inline cache, a method
lookup trampoline is called to look up the new method. Following the flowchart and what
has been revealed of the implementation, the method modifyArg: is looked up using the
selector modifyArg: and the class ReceivingObjectA, and, as it is not yet JI'T compiled,
execution jumps back to the interpreter. However, modifyArg: for ReceivingObjectA
is in the interpreter’s method lookup cache and capable of being JIT compiled, so now
this method is JIT compiled. Now, since modifyArg: for ReceivingObjectA has been
JIT compiled, the method lookup trampoline will actually create an inline cache this

time by using the JIT compiler to rewrite the call instruction.

000abbc5: movl $0x000011e2, %ecx : B9 E2 11 00 00
000abbca: call .+0x0000003d (0x000abcOc=modifyArg:©@2C) : E8 3D 00 00 00

The moving of the selector modifyArg: into ecx has been replaced with moving the
class index of ReceivingObjectA into ecx, and the call to the method lookup trampo-

line is replaced with the address of the entry: label in modifyArg:. Recalling back to

54

CHAPTER 3. EXPERIMENTAL DESIGN

Chapter 2 and the high level discussion of the Cog VM - this inline cache is known as
a monomorphic inline cache - it is monomorphic because it only applies to modifyArg:
implemented in one class - ReceivingObjectA. An inline cache that applies to more than
one class is referred to as a polymorphic inline cache. Monomorphic caches are specific
to a send site. Polymorphic caches are specific to a selector, and can be used by multiple
send sites. Since the cache is newly created, execution doesn’t actually jump to the
address used for the cache - it jumps to the noCheckEntry: label in modifyArg:. Ex-
ecution of modifyArg: continues and returns through sendModifyArg:toRcvr:, which
returns back to the enclosing code. Figure 3.15 shows the state of the call stack before

performing a return from modifyArg: in Send 2°.

ReceivingObject A
modifyArg: < Machine Code
Send 2’s frame < Machine Code
SendingObject

sendModifyArg:toRcvr:

Enclosing code snippet’s frame < Interpreter

Figure 3.15: Stack before returning after Send 2

Continuing on to Send 3, execution returns back in the interpreter and then Send 3
is encountered. sendModifyArg:toRcvr: is in the method lookup cache, and, this time,
is already JIT compiled, so execution can jump straight into machine code. Following
along execution of sendModfifyArg:toRcvr:, the send to modifyArg: is encountered and
execution of sendModifyArg:toRcvr: uses the inline cache to jump to the entry: label
in ReceivingObjectA’s JIT compiled code, where it successfully compares the receiver’s

class index to the cached class tag.

Send 4

At this point in time, a monomorphic inline cache has been created and used successfully

in Send 3, and now Send 4 is about to be executed. However, Send 4 differs from the pre-

9Some details have been omitted - the method lookup trampoline will actually have a stack frame
between sendModifyArg:toRcvr and modifyArg: but it’s not relevant to this discussion

95

CHAPTER 3. EXPERIMENTAL DESIGN

vious sends in that the second argument is receiverB, an instance of ReceivingObjectB.
At this point, the flow of execution has been well established, so execution will jump
ahead to the send of modifyArg: in sendModifyArg:toRcvr:. Since the send site has
a monomorphic inline cache, execution jumps to ReceivingObjectA’s implementation
of modifyArg:. However, this time, the class lookup fails as ReceivingObjectB has a
different class index and execution jumps to a method failure trampoline. In the method
failure trampoline, a lookup is done for the method that actually matches the combina-
tion of the selector modifyArg: and the class ReceivingObjectB - the method is JIT
compiled if it has not been JIT compiled already, and execution continues to expand
the existing cache. Since the cache is currently monomorphic, it is replaced with a poly-
morphic inline cache, which is a separate method that acts as a lookup table for all
encountered classes that match a given selector. Polymorphic inline caches, or PICs, are
not send site specific, so it’s possible that a PIC will already exist for a given selector -
in that case, the class will be added to an existing PIC for that selector. Once a PIC
has either been created or assigned, the send site is linked to the PIC instead of directly

to a method address. Here is the modified send site in sendModifyArg:toRcvr:.

000abbch: movl $0x000011e2, %ecx : B9 E2 11 00 00
000abbca: call .+0x0000015d (0x000abd2c=modifyArg:@2C) : E8 5D 01 00 00

The class tag hasn’t changed, but the address of the call has - it now goes to a PIC

lookup method, some of which will be shown next.

ABDOO
nArgs: 1 type: 4
blksiz: A8

selctr: 1F51EE8=#modifyArg:
cPICNumCases: 2 cpicHasMNUCase: no
000abdlc: xorl %ecx, %hecx : 31 C9
000abdle: call .+0xfff54b65 (0x00000888=cePICAbortlArgs) : E8 65 4B F5 FF
000abd23: nop : 90
000abd24: andl $0x00000001, Y%eax : 83 EO 01
000abd27: jmp .+0x00000011 (0x000abd3a=modifyArg:@3A) : EB 11
000abd29: nop : 90
000abd2a: nop : 90
000abd2b: nop : 90
entry:
000abd2c: movl %edx, %eax : 89 DO
000abd2e: andl $0x00000003, Y%eax : 83 EO 03
000abd31: jnz .+Oxfffffffl (0x000abd24=modifyArg:024) : 75 F1

56

CHAPTER 3. EXPERIMENTAL DESIGN

000abd33: movl %ds: (%edx), %eax : 8B 02

000abd35: andl $0x003fffff, %eax : 25 FF FF 3F 00

000abd3a: cmpl %ecx, %eax : 39 C8

000abd3c: jnz .+0x0000004a (0x000abd88=modifyArg:@88) : 75 4A
000abd3e: movl $0x0, %ebx : BB 00 00 00 00

000abd43: jmp .+0xfffffed6 (0x000abcle=modifyArg:@3E) : E9 D6 FE FF FF
ClosedPICCaseO:

ClosedPICCase4:

000abd88: movl $0x0, %ebx : BB 00 00 00 00

000abd8d: cmpl $0x000011e3, %eax : 3D E3 11 00 00

000abd92: jz .+0xffffff16 (0x000abcae=modifyArg:@3E) : OF 84 16 FF FF FF
ClosedPICCaseb:

000abd98: movl $0x000abd00=modifyArg:@0, %ecx : B9 00 BD OA 00

000abd9d: jmp .+0xfff54c96 (0x00000a38=cePICMisslArgs) : E9 96 4C F5 FF

startpc: nil

Execution enters at the entry: label, and, like method lookup with the monomorphic
cache, the class tag in ecx is compared to the receiver. However, if this check fails,
execution jumps through each additional case, comparing the receiver to a cached class
tag, jumping to a method if successful and proceeding to the next case if not. Eventually,
if all cases fail, execution jumps to another cache failure trampoline which expands the
PIC to add another class. There’s a fixed limit on how many classes can be added to
a PIC for a selector - when that happens, an open PIC is created instead of the closed
PIC. Earlier in chapter two, these sends were referred to as megamorphic sends. Open
PICs don’t have a class limit, but megamorphic send sites are rare enough that they will

not be explored further.

3.3.3 Tail Call Elimination in the JIT

Having thoroughly explored JIT compilation of methods and the first two levels of inline
caching, some design decisions can be made about when and how to introduce tail call
elimination. While the approach used in the Stack Interpreter could be maintained for
interpreted methods in the Cog VM, following the flow of execution shows that executing
interpreted methods may not be overly common - since methods are JIT compiled the
second time they are sent, commonly used methods will only ever be run through the
interpreter at fairly rare occurrences - after image startup and recompilation of the
method come to mind. Therefore, adding tail call elimination for interpreted methods

adds complexity without necessarily much gain, and will not be attempted. Similarly,

57

CHAPTER 3. EXPERIMENTAL DESIGN

adding tail call elimination for unlinked sends also may be unnecessary, as send sites
tend to be linked at least with a monomorphic cache on first execution of the send. Tail
call elimination will not be attempted for unlinked sends either. Monomorphic sends
are the most common types of sends, with about 90% of send sites being monomorphic
versus 9% polymorphic and 1% megamorphic [23]. Because of this, tail call elimination
was prioritized for monomorphic send sites, and was not attempted for polymorphic and

megamorphic send sites due to time constraints.

Identifying Tail Calls

In the Stack Interpreter, tail calls were identified at compilation time, and various tech-
niques were attempted to reduce the overhead of implementing tail calls in the interpreter
due to a lack of bytecode space. Since tail call elimination in the Colnterpreter will be
skipped, tail call elimination in the Cog VM does not have this issue. Tail calls can be
identified on JIT compilation by checking for a returnTop or returnBlock bytecode im-
mediately following a send bytecode. The actual generated assembly code can use jump
instructions as opposed to call instructions - as tail calls never need to return to their
call stack, there is no need for a call instruction to push a return instruction pointer onto
the stack [37]. The challenge encountered here are cases where, despite executing a jump
instruction, there actually is a need for a return instruction to be at the top of the stack.
There are several cases in the Cog VM where a return instruction on the top of the stack
is expected - based on the above restrictions, they can be limited to the method lookup
trampoline and the method lookup failure trampoline. The method lookup trampoline
is called when a send site is unlinked - as stated above, tail call elimination will not be
introduced for that case. A method failure trampoline is called when a class tag in a
cache fails to match the receiver. As covered earlier - the check of a class tag happens
in the linked method itself and relies on the presence of the sending method’s return
instruction to be at the top of the stack. For example, when modifyArg: was called
with ReceivingObjectB in Send 4 in the above example, the class tag check failed in the
implementation of ReceivingObjectA’s modifyArg:, and the method failure trampoline
used the return instruction in sendModifyArg:toRcvr: to reference the selector being
looked for. It is clear that there needs to be a way to use a jump instruction when per-
forming a tail call, but also ensure that the return instruction is pushed onto the stack
when needed. A solution, and the one used in this implementation, will be presented

next.

58

CHAPTER 3. EXPERIMENTAL DESIGN

Tail Call Elimination Implementation

The following listing is the JIT compiled version of sendModifyArg:toRcvr: with tail
call elimination implemented. Interspersed with the unlinked assembly code will be
the linked assembly code, as much of the changes are only used when the method is
linked. Much of the compiled method is the same as the previously presented version
- differences will be discussed as they come up. The following section of JIT compiled
code is essentially identical (except for the addresses) - this covers the entry code and

frame build, as well as the preparation for the send.

AFFB8
objhdr: 8000000A000035
nArgs: 2 type: 2
blksiz: B8
method: 29278C0O
mthhdr: 4100007
selctr: 29278A0=#sendModifyArg:toRcvr:
blkentry: O
stackCheckOffset: 5F/B0017
cmRefersToYoung: no cmIsFullBlock: no
000affd4: xorl %edx, %hedx : 31 D2
000affd6: call .+0xfff50745 (0x00000720=ceMethodAbort2Args) : E8 45 07 F5 FF
000affdb: nop : 90
000affdc: andl $0x00000001, Y%eax : 83 EO 01
000affdf: jmp .+0x00000011 (0x000afff2=sendModifyArg:toRcvr:@3A) : EB 11
0OOaffel: nop : 90
00Oaffe2: nop : 90
00Oaffe3: nop : 90
entry:
000affed: movl %edx, %eax : 89 DO
000affe6: andl $0x00000003, %eax : 83 EO 03
000affe9: jnz .+Oxfffffffl (0x000affdc=sendModifyArg:toRcvr:024) : 75 F1
000affeb: movl %ds: (%edx), %eax : 8B 02
00Oaffed: andl $0x003fffff, eax : 25 FF FF 3F 00
000afff2: cmpl %ecx, %eax : 39 C8
000afff4: jnz .+0xffffffe0 (0x000affd6=sendModifyArg:toRcvr:Q1E) : 75 EO
noCheckEntrys:
000afff6: movl %ss: (%esp), %ebx : 8B 1C 24
000afff9: movl %edx, %ss:(lesp) : 89 14 24
000afffc: pushl %esi : 56
000afffd: pushl %edi : 57

59

CHAPTER 3. EXPERIMENTAL DESIGN

00Oafffe: pushl %ebx : 53

000affff: pushl %ebp : 55

000b0000: movl %esp, %ebp : 89 E5

000b0002: pushl $0x000affb8=sendModifyArg:toRcvr:@0 : 68 B8 FF 0A 00
IsAbsPCReference:

000b0007: movl $0x0052d108=nil, %ebx : BB 08 D1 52 00

000b000c: pushl %ebx : 53

000b000d: pushl %edx : 52

000b000e: movl %ds:0x7ffffdc8=&stackLimitFromMachineCode, %eax : Al C8 FD FF 7F
000b0013: cmpl %eax, %esp : 39 C4

000b0015: jb .+0xffffffbd (0x000affd4=sendModifyArg:toRcvr:@1C) : 72 BD
HasBytecodePC bc 16/17:

000b0017: movl 12(%ebp), %esi : 8B 75 OC

000b001a: movl 8(%ebp), %edx : 8B 55 08

What follows is the first difference, between the tail call elimination version of the
method, and the non tail call elimination version - there is an extra jump. When un-
linked, the jump goes nowhere, and execution proceeds to the original implementation
of the send, where the selector is moved to the class tag and the lookup trampoline
is called. This ensures that a return address is still on the top of the stack when the
trampoline is called. The return instructions are also kept, so that, when the method is

eventually returned to, the return of the top of the stack still works.

Unlinked:

000b001d: jmp .+0x00000000 (0x000b001f=sendModifyArg:toRcvr:@67) : EB 00
000b001f: movl $0x01f5lee8=#modifyArg:, %ecx : B9 E8 1E F5 01

000b0024: call .+0xfff5044f (0x00000478=ceSendlArgs) : E8 4F 04 F5 FF

Linked:

000b001d: jmp .+0x00000017 (0x000b0036=sendModifyArg:toRcvr:@7E) : EB 17
000b001f: movl $0x000011e2, %ecx : B9 E2 11 00 00

000b0024: call .+0x00000073 (0x000b009c=modifyArg:0@2C) : E8 73 00 00 00

IsSendCall modifyArg: bc 19/20:
000b0029: movl %ebp, %esp : 89 EC
000b002b: popl %ebp : 5D
000b002c: ret $0x000c : C2 OC 00

When the send is actually linked and is a monomorphic send, the jmp instruction

is overwritten to jump ahead, in this case to address 000b0036. Essentially, it enters

60

CHAPTER 3. EXPERIMENTAL DESIGN

the class tag lookup that it would typically enter at the start of the receiving method.
However, as it has been moved to the sending method instead, the class check can abort
to the original implementation of the call if it fails, ensuring that the return instruction
will be on top of the stack when calling the cache failure trampoline. The following
section begins the implementation of the class tag lookup, as adapted to a tail call -
entering at address 000b0036.

000b002f: jmp .+0xffffffee (0x000b001f=sendModifyArg:toRcvr:@67) : EB EE
000b0031: andl $0x00000001, %eax : 83 EO 01

000b0034: jmp .+0x0000001d (0x000b0053=sendModifyArg:toRcvr:@9B) : EB 1D
000b0036: movl -8(%ebp), %eax : 8B 45 F8

000b0039: cmpl $0x0052d108=nil, %eax : 3D 08 D1 52 00

000b003e: jnz .+O0xffffffdf (0x000b001f=sendModifyArg:toRcvr:Q@67) : 75 DF

The operations at 000b0036 to 000b003e first check for something completely unre-
lated - in chapter 2, stack page management was briefly mentioned in the Stack Inter-
preter. The call stack is divided up into stack pages that are linked together via heap
allocated context objects, and each page of stack has an upper limit on the number of
frames allowed - if a stack frame goes over the limit, a stack overflow condition happens
and the frame is allocated on a new page instead. Recall that in the Stack Interpreter
and in the Cog Interpreter, slots are included in stack frames for a pointer to a context
object and are typically nil. A frame that is at the base of a stack frame needs to have
a populated context object, as the context object will have the reference back to the
previous page. In this implementation, the complexity of trying to rewrite a stack frame
for a different method with an existing context object is avoided by this check - if the
context object is not nil, execution jumps to the original implementation. If the context

object is nil, execution continues through the class tag lookup.

Unlinked:
000b0040: movl $0x01f5lee8=#modifyArg:, %ecx : B9 E8 1E F5 01

Linked:
000b0040: movl $0x000011e2, %ecx : B9 E2 11 00 00

000b0045: movl %edx, %eax : 89 DO

000b0047: andl $0x00000003, %eax : 83 EO 03

000b004a: jnz .+0xffffffe5 (0x000b0031=sendModifyArg:toRcvr:Q@79) : 75 E5
000b004c: movl %ds: (%hedx), %eax : 8B 02

000b004e: andl $0x003fffff, Yeax : 25 FF FF 3F 00

61

CHAPTER 3. EXPERIMENTAL DESIGN

000b0053: cmpl %ecx, %eax : 39 C8
000b0055: jnz .+O0xffffffd8 (0x000b002f=sendModifyArg:toRcvr:Q@77) : 75 D8

The class tag lookup code is essentially identical to its implementation in the entry
code. In its unlinked state, the selector is copied to ecx - this code should never be
reached as execution will never jump here when unlinked. When linked, the class tag
is copied to ecx, like in the original implementation of the call. Next, like in the entry
code for the receiving method, the class index of the receiver (or the least significant bit,
if it’s an immediate object) is compared to the class tag in ecx - if they don’t match,
execution jumps back to the original send implementation so that the call can put the
return instruction on the top of the stack. Ultimately, if the monomorphic inline cache
is replaced with a polymorphic cache, the jmp at 000b001d is simply reverted back
to a jump of 0 to fall back to the original implementation. Note that this choice of
implementation does cause the class check to be executed redundantly, but does ensure
that the stack is in the correct state. If the class check does match execution proceeds
to the tail call.

000b0057: movl %ebp, %esp : 89 EC

000b0059: popl %ebp : 5D

000b005a: popl %eax : 58

000b005b: addl $0x0000000c, %esp : 83 C4 OC
000b005e: pushl %eax : 50

Unlinked:
000b005f: jmp .+0xfff50414 (0x00000478=ceSendlArgs) : E9 14 04 F5 FF

Linked:
000b005f: jmp .+0x0000004a (0x000b0OOae=modifyArg:@3E) : E9 4A 00 00 00

IsSendCall:

000b0064: int3 : CC

000b0065: int3 : CC

000b0066: int3 : CC

000b0067: int3 : CC

000b0068: int3 : CC

000b0069: int3 : CC

startpc: 16
16rBO007 IsAbsPCReference (16rBOO6F)
16rB0017 HasBytecodePC (16rBOO6E, bc: 16)
16rB0029 IsSendCall (16rB006D, bc: 19 #modifyArg:)

62

CHAPTER 3. EXPERIMENTAL DESIGN

16rB0064 IsSendCall (16rB006B, bc: 0)

Finally, having ensured that the class tag matches the receiver, the tail call itself
is implemented. Similar to the Stack Interpreter implementation, the tail call is imple-
mented such that the current stack frame is popped, and the arguments and receiver
that were on the stack are consumed and replaced with the arguments and receiver of
the tail call. First, the frame pointer is copied into the stack pointer, and then the
saved frame pointer on the top of the stack is popped into the frame pointer. Now,
the saved instruction pointer of the caller of the method with the tail call is on top
of the stack, followed by the arguments and the receiver used to call the method with
the tail call. Recall that, as part of the JIT compiled noCheckEntry labelled code that
builds a stack frame, the arguments and receiver are pushed onto the stack from registers
if there are enough registers to hold the arguments - this means that when doing the
tail call, if there are enough registers to hold the arguments, the tail call only needs
to consume the existing arguments. In this case, modifyArg: has only one argument,
so its argument will be re-pushed onto the stack from a register when it is activated
along with the receiver. This is implemented by popping the saved instruction pointer
into a temp register, shifting the stack pointer up by the number of arguments + the
receiver (consuming the arguments and the receiver), and then pushing the return in-
struction back on top of the stack. Finally, instead of a call, the tail call is executed
as a jmp - the unlinked version will never be called, so the linked version is the only
one worth considering. Because the class lookup has already occurred, the jmp jumps
to the noCheckEntry label in the destination method, skipping a redundant class check.
The cost to this approach is the extra space usage - each tail call has significantly more
instructions with this implementation, and some ideas on how to work around this will

be discussed later on.

3.3.4 Garbage Collection and Method Compaction

Complications to this implementation of tail call elimination arise in the form of method
compaction and garbage collection. JIT compiled machine code exists in a limited
amount of memory - when this space fills, the Cog VM performs compaction of JIT
compiled methods by freeing older methods - the remaining methods are then shifted
into the space made available. Since calls and jumps in JIT code use offsets to the actual
address they jump to, any linked send needs to be relinked to a new offset depending on
where the method has moved to. Also, any linked send to a method which has been freed

needs to be unlinked. In garbage collection, linked sends may also have to be unlinked if

63

CHAPTER 3. EXPERIMENTAL DESIGN

the target method or PIC has been freed. Since the tail call elimination implementation
of a linked send is quite different than that of a non tail call method, different steps
need to be followed to unlink a tail call. Both the original call address and the jump
address need to be set back to the trampoline, and both the original cache tag and the
second cache tag in the class lookup machine code need to be set back to the selector
as well. Also, the jump to the class lookup needs to be set back to 0. The VM also
needs to test each send site to see if it’s a tail call before deciding on what steps to take
- deciding whether a call is a tail call or not is simply a matter of checking for some
known bytes around the call, such whether a call and class tag is preceded by a jump.

This complexity adds overhead to the implementation of tail call elimination.

3.3.5 Debugging

Recall that, in the above implementations, tail call elimination is not performed when
there is a context object present. This was a work around to avoid tail call elimination
for base frames in a stack page. A side effect of this implementation is that, when
debugging, tail call elimination is not performed as context objects are created for each
frame. Recall from the previous chapter that maintaining proper stack traces was a
reason for not implementing tail call elimination in Python - this side effect points to a

mechanism for maintaining proper stack traces when debugging.

3.4 Designing Tests for Tail Call Elimination

The effectiveness of tail call elimination will be tested by executing test programs and
timing the execution of these programs using Smalltalk’s facilities. The different im-
plementations will be tested and compared to each other, and to versions of the Stack
Interpreter and Cog VM compiled without tail call elimination turned on. The choice of
tests is designed to show both the ideal performance and real world performance. Ideal
performance is tested by demonstrating tail call elimination in the special case of tail
call recursion. Real world performance is tested by running a computationally significant
process - the recompilation of every method in the system was chosen as a sufficiently
complex method to execute. Testing will be done for execution time and memory usage.

Tests are run on an Apple Macbook Pro (13 inch late 2013) with a dual core Intel Core
i5 processor running at 2.6GHz. The test machine has 16gbh of 1600MHz DDR2 memory.
The operating system version is macOS High Sierra (v10.13.6). Tail call elimination
was implemented onto OpenSmalltalk-VM obtained on January 24th, 2019[30]. Unless

otherwise stated, no parameters were changed from the default VM parameters.

64

CHAPTER 3. EXPERIMENTAL DESIGN

3.5 Test Runner

Creating a framework for testing and recording results is the first challenge. As Smalltalk
code is run in a live environment with garbage collection events, and is running in an
operating system with its own events that can affect the availability of resources, it’s

important to build a test suite that can run a test multiple times for later analysis.

3.5.1 Execution Time

The following listing is a Smalltalk method which will be used as a test runner to track
execution time of a test over the course of multiple executions of that test. We will refer

to each execution of a test as a run.

ThesisTestSuite class>>runBlock: ablock runs: r
| execution |
execution := ThesisTestExecution new.

execution block: ablock; executions: r.

r timesRepeat: [
|time|
time := Time millisecondsToRun:ablock.

execution addTime:time.
1.

Texecution

This method is implemented as a class method for a class called ThesisTestSuite.
It takes a block of code and the number of runs as arguments. It creates an instance of
a class, ThesisTestExecution, which is a container for information about the current
test - it stores the block and the number of runs in instance variables. The method then
runs the block by the number of runs, and the time in milliseconds of each run of the
block is saved in a collection in the instance of ThesisTestExecution. Finally, when

completed, the instance is returned.

3.5.2 Memory

A Smalltalk VM offers methods to get information about the current state of the image
and memory usage, which provides a simple way of getting a snapshot of memory usage
during a test. However, memory usage is best monitored during execution of the test, not
after, to get a sense of how the test affects memory consumption. As a result, memory

usage will be tracked by saving the current memory usage in a file at key intervals during

65

CHAPTER 3. EXPERIMENTAL DESIGN

method execution and then comparing memory usage afterwards - the existing test suite

will be reused for memory tests.

3.6 Tail Call Recursion

The first set of tests will show examples of tail recursive behaviour, using common
examples of tail recursive calculations as well as an implementation of a Smalltalk control

structure in a tail recursive form.

3.6.1 Factorial

The first test will be the tail recursive implementation of factorial shown back in chapter
1. Here is the implementation again, this time as a class method on a class called
ThesisTestSuite.

ThesisTestSuite class>>factorial: n

Tself factorial:n accumulator: 1

ThesisTestSuite class>>factorial: n accumulator: i
(n = 0) ifTrue: [1i]

ifFalse: [fself factorial: (n-1) accumulator: (i * n)].

Here is compiled bytecode for factorial:accumulator:, demonstrating clearly the
tail call to factorial:accumulator as the last instruction before the return to the top of
the stack.

21 <10> pushTemp: O

22 <75> pushConstant: O
23 <B6> send: =

24 <99> jumpFalse: 27
25 <11> pushTemp: 1

26 <7C> returnTop

27 <70> self

28 <10> pushTemp: O

29 <76> pushConstant: 1
30 <B1> send: -

31 <11> pushTemp: 1

32 <10> pushTemp: O

33 <B8> send: *

34 <F0> send: factorial:accumulator:
35 <7C> returnTop

66

CHAPTER 3. EXPERIMENTAL DESIGN

Execution Time

The method to measure execution time in Smalltalk has a precision of one millisecond.
Therefore, rather than measure the execution time of one calculation of the factorial of n,
we will measure the total execution time of several iterations of calculating the factorial
of n. When discussing these tests, we will refer to the number of repeated calculations
that make up a test as an iteration. We can say that a test is made up of one or more
iterations of an action (a calculation, or a method call), and each run of a test collects
a measurement.

Two values of factorial will be calculated - the factorial of 500 and the factorial of 5000
- this is to verify if there is any significant performance in performance between smaller
and larger call stacks. Here is the factorial test suite for measuring performance speed
- note that the block run in ThesisTestSuite contains an inner timesRepeat: block.
The inner timesRepeat: block is where the factorial of n is calculated by the number
of iterations, and the measurement of the execution time is taken at the completion of
all iterations. The method report:name:testtype:n:iterations:runs: is a utility
method for writing the results of each run to a file - the implementation will not be

shown here.

ThesisTestSuite>>runFactorial: n iterations: i rumns: r

| execution testname testtype |

testname := ’factorial’.
testtype := ’execution’.
execution := ThesisTestSuite runBlock: [

i timesRepeat: [ThesisTestSuite factorial:n]
] runs: r.
self report: execution name: testname

testtype: testtype n: n iterations: i rumns: r.

” Factorial 5007

ThesisTestSuite runFactorial:500 iterations:1000 runs: 100.
” Factorial 50007

ThesisTestSuite runFactorial:5000 iterations:100 runs: 25.

Memory Usage

To track memory usage during the execution of a tail recursive algorithm, a slight mod-

ification of the existing factorial:accumulator: method is made. Now, when the

67

CHAPTER 3. EXPERIMENTAL DESIGN

base case of factorial is reached, the current memory usage (based on the same calcula-
tion done by the Smalltalk image when displaying memory usage) is stored into a class

variable Memory.

ThesisTestSuite class>>factorialMem: n accumulator: i
(n = 0) ifTrue: [Memory := self getMemory. fil

ifFalse: [fself factorialMem: (n-1) accumulator: (i * n)].

factorialMem: n

Tself factorialMem:n accumulator: 1

What follows is the listing of the test suite with modifications to save memory mea-
surements into a file. The methods startFileName:type:n:iterations:runs: and
recordValue:value: are utility methods for creating and recording memory values to
a file and will not be included here. Note that the tests are run with only one iteration,
as we are measuring total memory usage at a given point in a test, not a cumulative

measurement like execution time. Instead, we can simply execute more runs.

ThesisTestSuite class>>runFactorialMem: n each: m times: iterations
| execution file
file := self startFileName:’factorial’ type: ’memory’ n: n

iterations: i runs: r.

execution := ThesisTestSuite runBlock: [
i timesRepeat: [
ThesisTestSuite factorialMem:n.

self recordValue: file value: Memory asString
]

] runs: r.
file close.

” Factorial 5007

ThesisTestSuite runFactorialMem:500 iterations:1 runs: 1000.

” Factorial 50007

ThesisTestSuite runFactorialMem:5000 iterations:1 runs: 250.

68

CHAPTER 3. EXPERIMENTAL DESIGN

3.6.2 Fibonacci Sequence

Another well known recursive algorithm is the calculation of a specific number in the
Fibonacci sequence. Like the implementation of factorial shown above, the Fibonacci
sequence can be calculated using recursion with and without tail recursion. For this test,
a tail recursive implementation of the Fibonacci sequence will be used, and is presented

in the following listing.

ThesisTestSuite class>>fibonacci: n
Tself fibonacci: n a: O b: 1.

ThesisTestSuite class>>fibonacci: n a: a b: b
0) ifTrue:[fTa].

(n = 1) ifTrue: [Tb].

Tself fibonacci: n - 1 a: b b: a+b

(n

The compiled bytecode for this method will be omitted, but the tail recursive call of
fibonacci:a:b is apparent in the listing. For values of n greater than 1, a tail call is

made back to fibonacci:a:b with n-1, tracking the result in the arguments a and b.

Execution Time

Like the factorial test above, the Fibonacci sequence for a given number will be calculated
a number of times corresponding to the number of iterations. A measurement of the
execution time will be taken after the number of iterations are complete, and the entire
test will be repeated with multiple runs. Also similar to the factorial test, both a lower
and higher number will be tested with Fibonacci to detect any difference in smaller vs
larger numbers of created stack frames. The following listing is the test runner and the

two tests for the Fibonacci sequence.

ThesisTestSuite class>>runFactorial: n iterations: i runs: r

| execution testname testtype

testname := ’factorial’.
testtype := ’execution’.
execution := ThesisTestSuite runBlock: [

i timesRepeat: [ThesisTestSuite factorial:n]

] runs: r.

self report: execution name: testname testtype: testtype n: n

iterations: i runs: r.

69

CHAPTER 3. EXPERIMENTAL DESIGN

"Fibonaceci 10007
ThesisTestSuite runFibonacci:1000 each:1000 times: 100.

”Fibonacet 100007
ThesisTestSuite runFibonacci:10000 each:100 times: 25.

Memory Usage

Memory usage for the Fibonacci sequence will be measured in the same way as factorial
- a memory measurement will be taken at the end of each recursive case. The following
listing shows the modifications made to the tail recursive Fibonacci sequence implemen-
tation, with memory measurements at each base case. Also shown is the modifications
made to the test runner and the tests to be run - the modifications made are similar to

those made to the factorial test runner.

ThesisTestSuite class>>fibonacciMem: n a: a b: b
(n = 0) ifTrue: [Memory := self getMemory.tal.
(n = 1) ifTrue: [Memory := self getMemory.fb].

Tself fibonacciMem: n - 1 a: b b: a+b.

ThesisTestSuite class>>fibonacciMem: n

Tself fibonacciMem: n a: 0 b: 1.

ThesisTestSuite class>>runFibonacciMem: n iterations: i runs: r

| execution file

file := self startFileName:’fibonacci’ type: ’memory’ n: n
iterations: i rumns: r.
execution := ThesisTestSuite runBlock: [
i timesRepeat: [
ThesisTestSuite fibonacciMem:n.
self recordValue: file value: Memory asString
]
] runs: r.

file close.

”Fibonacci 20007

ThesisTestSuite runFibonacciMem:1000 iterations:1 runs: 1000.

70

CHAPTER 3. EXPERIMENTAL DESIGN

”Fibonacci 100007

ThesisTestSuite runFibonacciMem:10000 iterations:1 runs: 250.

3.6.3 WhileTrue Recursive Loop

As mentioned in chapter 1, Smalltalk does not have typical control structures for it-
eration and conditions such as for loops, while loops and if-then-else blocks. Instead,
control structures are implemented by sending messages to blocks of code, which function
as closures and as first class objects. Many of these methods are highly optimized by the
compiler and are actually compiled to more traditional imperative control structures.
However, implementing tail call elimination may present the opportunity to compile
some control structures to bytecode that maintains the semantics of Smalltalk, while
still executing efficiently. The next test presents an alternate implementation of a com-
mon Smalltalk control structure - whileTrue:. This alternate implementation given the
selector whileTrueTail: in order to differentiate it to the compiler from the original
implementation, so that the compiler does not try any additional optimizations. This
control structure is implemented as an instance method for BlockClosure, or blocks of
code, and is given a block of code as an argument - if the block instance evaluates to
true, the block passed in as an argument will be evaluated, and then the method will be

called again with the same block argument.

BlockClosure>>whileTrueTail: aBlock
T self value ifTrue: [
aBlock value.
1 self whileTrueTail: aBlock

Execution Time

Next is the test runner for execution time for this method. The call to whileTrueTail:
is used as part of a simple loop structure, as seen in the following listing in the argument
to runBlock:. A local variable j, initialized to 0, is incremented while the condition
j < nis true. Once this condition fails, the loop is repeated by a specified number of
iterations. Once the iterations complete, a measurement of execution speed is taken, and
the entire test is repeated for the specified number of runs. The test will be run for both

a smaller value of n and a larger value of n, which are specified in the listing as well.

71

CHAPTER 3. EXPERIMENTAL DESIGN

ThesisTestSuite>>runWhileTrueTail: n iterations: i rumns: r

| execution testname testtype

testname := ’whiletrue’.
testtype := ’execution’.
execution := ThesisTestSuite runBlock:[i timesRepeat:[
3]
j =0
[j<n] whileTrueTail:[j := j + 1]
1.

] runs: r.

self report: execution name: testname testtype: testtype n:n

iterations: i runs: r.

"WhileTrue 10007
ThesisTestSuite runWhileTrueTail:1000 iterations:10000 runs: 100.

"WhileTrue 10000”
ThesisTestSuite runWhileTrueTail:10000 iterations:1000 runs: 25.

Memory Usage

For the memory usage test, a modification is made to the implementation of the test
whileTrueTail: - a memory measurement will be taken when the condition fails and
the argument block is no longer repeated. The memory measurement is stored in a class
variable of the ThesisTestSuite class, and is recorded in a file prior to the next run.

Included in this listing is the modified test runner and the actual tests to be run.

BlockClosure>>whileTrueTailMem: aBlock
T self value ifTrue: [
aBlock value.
1 self whileTrueTailMem: aBlock
] ifFalse: [

ThesisTestSuite setMemory

ThesisTestSuite>>runWhileTrueTailMem:n iterations: i runs: r

| execution file

file := self startFileName:’whiletrue’ type: ’memory’ n: n

72

CHAPTER 3. EXPERIMENTAL DESIGN

iterations: i runs: r.

execution := ThesisTestSuite runBlock: [
i timesRepeat: [
|31
j = 0.
[j<n] whileTrueTailMem:[j := j + 1].
self recordValue: file value: Memory asString.

]

] runs: r.
file close.

"While True 10007

ThesisTestSuite runWhileTrueTailMem:1000 iterations:1 runs: 1000.

"While True 100007

ThesisTestSuite runWhileTrueTailMem:10000 iterations:1 runs: 250.

3.7 Real World Scenarios

Testing the effect of tail call elimination on real world performance is done by selecting

computationally significant methods in a Smalltalk image and measuring execution time.

3.7.1 Compiler

For this test, the method recompileAll has been chosen - this method cycles through
every class and trait in the Smalltalk image and calls the method compileAll which, as
the name suggests, compiles every method that is part of that class or trait. Progress
is displayed with a progress bar on the display. Listed below is the implementation of

recompileAll.

Compiler>>recompileAll
Smalltalk allClassesAndTraits
do: [:classOrTrait | classOrTrait compileAll]

displayingProgress: [:classOrTrait| ’Recompiling,’, classOrTrait]

73

CHAPTER 3. EXPERIMENTAL DESIGN

Execution Time

Running recompileAll takes some time to execute, so the measurement taken will be
the milliseconds to execute one recompileAll, averaged over 10 runs. Here is the test

runner method.

ThesisTestSuite>>runCompileAllRuns: r

| execution testname testtype

testname := ’compileall’.
testtype := ’testtype’.
execution := ThesisTestSuite runBlock: [Compiler recompileAll] runs: r.

self report: execution name: testname testtype: testtype

iterations: 1 runs: r.

"Compile x10”
ThesisTestSuite runCompileAllRuns: 10.

Fach test will be run immediately on loading the Smalltalk image. Execution is
logged to a file contain the results of each run, and information about the VM used for
the test. Compile x10 will be run for both Stack Interpreter implementations and JIT

implementations.

Memory Usage

In order to monitor the memory usage of recompileAll:, a method needs to be devised
to check memory usage at key intervals during the execution. We can make a modification
to sample memory during the method by making our own implementation of the method
- in this implementation, a memory sample will be taken after the recompilation of each

class. The following is the listing and the test runner for this test.

ThesisTestSuite>>recompileAll: file

Smalltalk allClassesAndTraits
do: [:classOrTrait | classOrTrait compileAll.

file nextPutAll: (self getMemory) asString , Character cr asString.
]

displayingProgress: [:classOrTrait| ’Recompiling,’, classOrTrait].

ThesisTestSuite>>runCompileAllMemRuns: r

| execution file

74

CHAPTER 3. EXPERIMENTAL DESIGN

file := self startFileName:’compileAll’ type: ’memory’ iteratiomns: 1
runs: r.
execution := ThesisTestSuite runBlock: [

self recompileAll: file

] runs: r.

"Compile x10”
ThesisTestSuite runCompileAllMemRuns: 10.

3.7.2 Browse Test

The next test is designed to simulate interaction with the user interface. It takes a class
as a parameter and sends the browse message to each subclass of that class. The browse
message opens up a browser window, which is the primary development interface in
Smalltalk for adding and modifying classes and methods. After each browser window is
opened, a message is sent to do an update of the user interface - this allows each browse
windows to be drawn on the screen without waiting for the entire do loop to complete.
Once all of the browse windows are open, all open instances of browse windows are sent
a delete message to close all of the windows. Again, after each window is closed, the
user interface is redrawn. The following listing shows the code for this test, with class
as a parameter. For the purpose of this test, the class Number has been chosen. The

Number class has nine subclasses in the Squeak image that is being used for testing.

ThesisTestSuite>>windowTestWithClass: class
class allSubclassesDo:[:a
a browse.
self currentWorld doOneCycle
1.
Browser alllnstancesDo:[:a
(a dependents select:[:
each | each isMemberOf: PluggableSystemWindow]
) do:[: each|
each delete.

self currentWorld doOneCycle
1.

75

CHAPTER 3. EXPERIMENTAL DESIGN

Execution Time

The measurement taken will be the milliseconds to execute one cycle of opening and

closing all browser windows averaged over 10 runs. Here is the test runner method.

ThesisTestSuite>>runWindowsTest: class runs: r

| execution testname testtype

testname := ’windows’.
testtype := ’execution’.
execution := ThesisTestSuite runBlock: [

self windowTestWithClass:class.

] runs: r.

self report: execution name: testname testtype: testtype

n:class iterations: 1 runs: r.

"Windows x10”
ThesisTestSuite runWindowsTest: Number runs:10.

Memory Usage

To measure memory usage, a modification will be made to the windows test - memory
measurements will be taken after opening all browse windows and after closing the

windows. Here is the modified version of the test, and the modified test runner to be

used for this test.

ThesisTestSuite>>windowTestMemWithClass: class file: file
class allSubclassesDo:[:a | a browse. self currentWorld doOneCycle].
self recordValue: file value: (self getMemory) asString.

Browser alllnstancesDo:[:a
(a dependents select:[: each | each isMemberOf: PluggableSystemWindow])

do:[: each| each delete. self currentWorld doOneCycle].

self recordValue: file value: (self getMemory) asString.

1.

ThesisTestSuite>>runWindowsTestMem: class runs: r

| execution file

file := self startFileName:’windows’ type: ’memory’

n: class iterations: 1 runs: r.

76

CHAPTER 3. EXPERIMENTAL DESIGN

execution := ThesisTestSuite runBlock: [
self windowTestMemWithClass:class file: file.
] runs: r.

file close.

"Windows x10”

ThesisTestSuite runWindowsTestMem: Number runs:10.

77

Chapter 4

Results

This chapter will discuss the results of the experiments laid out in the previous chapter.
The first section will include statistics on how many tail calls are in a Smalltalk image
statically in compiled code, and how many tail calls are actually called dynamically. The
second section will discuss the results of the tail recursive tests, and the third section will
discuss the results of the real world test. Each test result section will be broken down
into execution time and memory, and will be followed with a discussion of the results.
Refer to Table 4.1 and Table 4.2 for the full chart of tests to be run and Table 4.3 for
the list of virtual machine implementations to be tested. As explained, iterations refer
to the number of times an individual calculation is run before collecting a measurement,

and runs refer to the number of times a test is run, with each run corresponding to a

measurement. Mean results are presented in a visual format. In addition, the mean,
standard deviation, and median for each test are presented in a table. Percentage im-
provement for tail call eliminating implementations is also included, with the column
headers %Imp for the mean improvement, and %SD for the percentage of uncertainty
in the improvement. The formulas to calculate the percentage improvement and the

uncertainty in the improvement are below.

meany — Mmeang

iMPap = meany * 100 (4.1)
\/o2 + o}

where:
0, = standard deviation of tail call eliminating version

op = standard deviation of non tail call eliminating version

78

CHAPTER 4. RESULTS

meany, = mean of non tail call eliminating version
mean, = mean of tail call eliminating version
imp,b = percentage of difference of a relative to b

unceb = percentage of uncertainty in difference from a relative to b

Test Name Iterations | Runs
Factorial 500 1000 100
Factorial 5000 100 25
Fibonacci 1000 1000 100

Fibonacci 10000 100 25
whileTrue 1000 10000 100
whileTrue 10000 100 25
CompileAll 1 10
Windows 1 10

Table 4.1: Execution Tests

Test Name Iterations | Runs
Factorial 500 1 1000
Factorial 5000 1 250
Fibonacci 1000 1 1000

Fibonacci 10000 1 250

whileTrue 1000 1 1000

whileTrue 10000 1 250
CompileAll 1 10
Windows 1 10

Table 4.2: Memory Tests

4.1 Tail Call Statistics

The number of potential tail calls that could be eliminated can be looked at from two
perspectives - static and dynamic. In this case, static refers to compiled Smalltalk code

and dynamic refers to the number of tail calls actually executed at runtime.

4.1.1 Static Tail Calls

Statically, the number of tail calls can be determined by examining each instance of

CompiledMethod in a new Smalltalk image and counting each send bytecode in tail

79

CHAPTER 4. RESULTS

Code Implementation | Tail Call Elimination
si Stack Interpreter N

sitce Stack Interpreter Y
cog | Cog JIT Compiler N

cogtce | Cog JIT Compiler Y

Table 4.3: Implementations to Test

position, that is to say, immediately followed by a returnTop bytecode. For a sense
of how tail call elimination may benefit a specific operation, counting tail calls could

be limited to a specific package, or set of packages. As testing will be done using the

Bytecode | Packages | Tail Calls | Total | Percentage
131 to 134 All 3723 46240 8.05
176 to 191 All 1606 60142 2.67
192 to 207 All 1544 58207 2.65
208 to 255 All 18289 243382 7.51
All All 25162 407971 6.17
131 to 134 | Compiler 249 1785 13.95
176 to 191 | Compiler 79 1649 4.79
192 to 207 | Compiler 49 905 5.41
208 to 255 | Compiler 486 4408 11.03
All Compiler 863 8747 9.87

Table 4.4: Static Tail Call Counts

recompileAll: method in the Compiler class, static tail call numbers for methods in
the compiler-related packages will be given, along with totals in Table 4.4. In addition,
the total number of calls in the image are given to provide a sense of context. Refer back
to Table 3.2 for the difference between the bytecode sets. The static tail call statistics
show that 6.17% of compiled calls in methods are tail calls. There is a definite difference
between different types of methods, as keyword messages have the highest prevalence
of tail calls, while the math operator and special selector bytecode sets have a lower

prevalence.

4.1.2 Dynamic Tail Calls

The static count of tail calls in methods may not be reflective of how many tail calls are
actually executed, as not all methods may be executed at the same rate. Dynamically,
the number of tail calls can be counted as they are executed. As a baseline, the amount

of executed tail calls can be counted immediately after image startup, and can then be

80

CHAPTER 4. RESULTS

counted again after an action. In this case, the total tail calls will be counted after

running recompileAll:, to give a sense of how performance may be affected.

Bytecode Action Tail Calls Total Percentage
131 to 134 | Startup 3371 13198 25.54
176 to 191 | Startup 1525 10991 13.87
192 to 207 | Startup 3938 13036 30.21
208 to 255 | Startup 38835 181829 21.36
All Startup 47669 219054 21.76
131 to 134 | Recompile | 12131067 | 34943753 34.72
176 to 191 | Recompile | 1024145 | 25987376 3.94
192 to 207 | Recompile | 5292921 | 111534740 4.75
208 to 255 | Recompile | 73593216 | 378784134 19.43
All Recompile | 92041349 | 551250016 16.70

Table 4.5: Dynamic Tail Call Counts

Table 4.5 shows the total tail calls on image startup and after running recompileAll:.
Again, the total dynamic sends are included to give context. The dynamic statistics
present a different picture of tail call prevalence, with 21.76% of all calls on image
startup being tail calls. Interestingly, the bytecode set with the highest prevalence of
executed tail calls is the special selector set, despite the fact that, statically, relatively
few calls using this bytecode set were tail calls. After running recompileAll:, the totals
better reflect the static prevalence of tail calls, with keyword message bytecodes having
significantly more tail calls. Speculatively, the prevalence of tail calls in the extended
send set could be due to the number of keyword messages in the Compiler class with

more than two arguments.

4.2 Tail Recursion Tests

In this section, the result for the tail recursive tests are presented. For each test, the
results of the execution test will be shown, followed by the result of the memory usage

test. Each test will be followed by a brief discussion of the results.

4.2.1 Factorial 500 Tests

The Factorial 500 tests use the calculation of the factorial of 500 as the core calculation
of the test. The tail recursive implementation of factorial is included here again. The

test runner for execution time and for memory usage for factorial is in Section 3.6.1.

81

CHAPTER 4. RESULTS

ThesisTestSuite class>>factorialMem: n accumulator: i
(n = 0) ifTrue:[Memory := self getMemory. Ti]

ifFalse: [Tself factorialMem: (n-1) accumulator: (i * n)].

factorialMem: n

Tself factorialMem:n accumulator: 1

Execution Time

The execution time test measures the milliseconds to run 1000 iterations of factorial 500.

In total, 100 runs are performed. See Figure 4.1 for the results.

[~}
(S
o
T
I

Version Mean %Imp %SD Std Dev Median

milliseconds)
[~}
o
o
T
Il

150 | 1 si 258.43 141 258.00
E Ll | sitce 25161 26 0.7 1.02 251.00
g cog 223.18 15.46 217.00
S] cogtce 199.01 10.8 6.9 1.04 199.00
T e & ¢
& $o

Figure 4.1: Factorial 500 - Execution Time

Execution time tests show a slight difference between implementations with tail call
elimination, and implementations without tail call elimination. Mean execution time
for both tail call eliminating versions indicate a slight reduction, with a slightly higher

reduction being indicated in the Cog implementation.

Memory Usage

The next results to show are the memory usage tests for Factorial 500, in which a
measurement of memory usage is taken at the base case of each calculation of factorial.
Each test consists of one iteration of factorial 500, and the test is run 1000 times. See
Figure 4.2 for the results.

Memory usage across all implementations for Factorial 500 is very similar across the
different runs, registering slight increases for both the tail call eliminating implementa-

tions. However, both increases fall within one standard deviation.

82

CHAPTER 4. RESULTS

~
(==}
T
|

Version Mean %Imp %SD Std Dev Median

w
o
T

|

Memory Usage (megabytes)

si 42.96 1.70 43.03
20f | sitce 44.32 -3.2 5.6 170 44.31
ol | cog 44.31 170 44.42
cogtce 44.37 -0.2 54 1.70 44.37

0 T T] T

Figure 4.2: Factorial 500 - Memory Usage

4.2.2 Factorial 5000 Tests

The Factorial 5000 tests use the calculation of the factorial of 5000 as the core calculation
of the test. The tail recursive implementation of factorial can be referenced above in
Figure 4.2.1. The test runner for execution time and for memory usage for factorial is

in Section 3.6.1.

Execution Time

The execution time test measures the milliseconds to run 100 iterations of factorial 5000.

In total, 25 runs are performed. See Figure 4.3 for the results.

2 6,000 [[] 1
z 6
§ Version Mean — %Imp %SD Std Dev Median
&
= 00 1 s 6284.60 1252 6283.00
i sitce 1372.40 782 0.4 21.88 1356.00
é 2,000 |-) cog 6587.72 16.45 6591.00
= ﬂ ﬂ cogtce 1333.28 79.8 0.5 27.36 1314.00

TS e & ¢

> 00%

Figure 4.3: Factorial 5000 - Execution Time

Execution time shows a significant difference between implementations with tail call
elimination, and implementations without tail call elimination. For the stack interpreter,
mean execution time is reduced by 78.2 £0.4% of the original implementation, and, for

the JIT compiler, execution time is reduced to 79.840.5% of the original implementation.

83

CHAPTER 4. RESULTS

Memory Usage

The next results to show are the memory usage tests for Factorial 5000. Again, a
measurement of memory usage is taken at the base case of each run of factorial. Each
test consists of one iteration of factorial 5000 and the test is run 250 times. See Figure 4.4

for the results.

[=2}
(==}
T

|

— — Version Mean %Imp %SD Std Dev Median

'S
o
T
I

Memory Usage (megabytes)

si 61.11 3.28 60.33
sitce 47.37 225 7.7 3.35 47.22
208 : cog 61.92 6.17 59.50
cogtce 46.99 24.1 11.3 3.33 46.89
0 T T T T
& .\?“ZJ Q,Oo{) ,\\db
S &

Figure 4.4: Factorial 5000 - Memory Usage

Memory usage for Factorial 5000 also shows a significant difference between imple-

mentations with tail call elimination and implementations without tail call elimination.

4.2.3 Fibonacci 1000 Tests

The Fibonacci 1000 tests use the calculation of the Fibonacci sequence for 1000. Included
again is the tail recursive implementation of the calculation of a Fibonacci sequence

number. The actual test runner for this can be seen in 3.6.2.

ThesisTestSuite class>>fibonacci: n
Tself fibonacci: n a: O b: 1.

ThesisTestSuite class>>fibonacci: n a: a b: b
(n = 0) ifTrue:[fal.
(n = 1) ifTrue:[1b].

Tself fibonacci: n - 1 a: b b: a+b

Execution Time

For execution time, each test consists of 1000 iterations of calculating the Fibonacci

sequence for 1000. The milliseconds to run each test was collected for 100 runs. See

84

CHAPTER 4. RESULTS

Figure 4.5 for the results.

= 300f :

§] Version Mean %Imp %SD Std Dev Median
2 200) 1 si 338.12 1.54 338.00
Z sitce 325.73 3.7 1.2 3.68 324.00
g 100f 1 cog 268.94 1.99 268.00
H

cogtce 241.72 10.1 0.9 1.33 242.00

T 1 T
© oo &
&S
&

]
8y
%,
l(’

Figure 4.5: Fibonacci 1000 - Execution Time

The results of the Fibonacci 1000 tests follow a similar pattern as the results for
Factorial 500. Possible improvements are shown in mean execution time between the tail
call and non-tail call implementations of each VM, with a higher possible improvement
indicated for the Cog VM.

Memory Usage

Next are the memory usage results for the Fibonacci 1000 test. For this test, memory
usage was measured in the base case when calculating the Fibonacci sequence for 1000.

Measurements were taken for 1000 runs - see Figure 4.6 for the results.

.
S)
T
I

Version Mean %Imp %SD Std Dev Median

w
(==}
T
|

Memory Usage (megabytes)

si 42.99 1.70 42.98
201 . sitce 4430 -3.0 5.6 1.70 44.31
ol | cog 44.22 1.70 44.24
cogtce 44.17 0.1 54 1.70 44.18
0= ' y ‘
B é&& o0 Qo%‘c?

Figure 4.6: Fibonacci 1000 - Memory Usage

Memory usage follows a very similar pattern to Factorial 500, with a slight increase

in usage for the tail call eliminating implementation of the Stack Interpreter.

85

CHAPTER 4. RESULTS

4.2.4 Fibonacci 10000 Tests

The Fibonacci 10000 tests use the calculation of the Fibonacci sequence for 10000 - the
tail recursive implementation of this can be viewed above in Section 4.2.3. The actual

test runner for this can be seen in Section 3.6.2.

Execution Time

For execution time, each test consists of 100 iterations of calculating the Fibonacci
sequence for 10000. The milliseconds to run each test was collected for 25 runs. See

Figure 4.7 for the results.

— 2,000 [B

e}

§ 15001 | Version Mean %Imp %SD Std Dev Median
£ si 2019.44 24.74 2006.00
& 1oor | sitce 586.00 71.0 1.3 877 583.00
g ol | cog 2086.08 38.08 2067.00
3 H ﬂ cogtce 496.60 76.2 1.9 1021 494.00

T
(%)

T
> & Qo% Ne
o

&

Figure 4.7: Fibonacci 10000 - Execution Time

Execution time shows a significant difference, with large reductions in execution time
indicated for both implementations of tail call elimination. These results echo the results

of Factorial 5000, where larger numbers result in significant reduction in execution time.

Memory Usage

Next are the memory usage results for the Fibonacci 10000 test. For this test, memory
usage was again measured in the base case when calculating the Fibonacci sequence for
10000. Measurements were taken for 250 runs - see Figure 4.8 for the results.

Like the execution time results, the memory usage results follow a similar pattern
as the results of Factorial 5000, with a significant decrease in usage for both tail call

eliminating implementations.

4.2.5 WhileTrue 1000 Tests

The WhileTrue 1000 test uses a tail recursive implementation of a typical Smalltalk loop

structure, whiteTrue:, to repeatedly execute a block 1000 times. Included again is the

86

CHAPTER 4. RESULTS

E sl [] .

g" e []] | Version Mean %Imp %SD Std Dev Median
P | si 53.79 4.94 54.73
Z ol | sitce 4459 17.1 9.7 1.70 44.58
> cog 52.71 5.05 53.78
g 107 1 cogtce 44.37 158 10.1 1.71 44.42
5}

= 0 T T T T

Figure 4.8: Fibonacci 10000 - Memory Usage

tail recursive implementation of this method. The test runner for the execution tests

can be reviewed in Section 3.6.3.

BlockClosure>>whileTrueTail: aBlock
T self value ifTrue: [
aBlock value.
1 self whileTrueTail: aBlock

Execution Time

Execution time for this test is measured by running the tail recursive whiletrue loop with
a value of 1000, and measuring execution time for 10000 iterations. This test is repeated

for 100 runs and results are presented in Figure 4.9.

1,000 | -]
%\ 800 |- §
S Version Mean %Imp %SD Std Dev Median
2 I s 943.06 1.75 943.00
E a0} | sitce 91893 26 04 299 918.00
£ Ll | cog 316.94 2.78 317.00
= cogtce 169.37 46.6 0.9 0.60 169.00

0 T T T T
&> \‘c}’J 00‘50

'
é,é‘b
00

Figure 4.9: WhileTrue 1000 - Execution Time

The execution results for this test are interesting - in general, this test runs signifi-

cantly better in the Cog VM than in the Stack Interpreter, and in particular the tail call

87

CHAPTER 4. RESULTS

eliminating version of the Cog VM performs well. The Stack Interpreter implementa-
tion indicates a slight possible reduction in mean execution time, whereas the Cog VM

implementation shows a large reduction.

Memory Usage

Next are the memory usage results for the Whiletrue 1000 test. For this test, memory
usage was measured after the completion of one iteration of whiletrue with a value of

1000. Measurements were taken for 1000 runs - see Figure 4.6 for the results.

~
o
T
|

Version Mean %Imp %SD Std Dev Median

w
fe=l
T
|

si 42.71 1.58 42.64
20 . sitce 43.30 -1.4 3.9 0.58 43.30
cog 44.26 1.70 44.34

—
(e}
T
|

cogtce 45.30 -2.3 4.0 0.58 45.30

Memory Usage (megabytes)

o

Figure 4.10: WhileTrue 1000 - Memory Usage

Memory usage results shows slight increases for the tail call eliminating versions of

the implementations.

4.2.6 WhileTrue 10000 Tests

The WhileTrue 10000 test again uses the tail recursive implementation of whiteTrue: to
repeatedly execute a block 10000 times. The code and execution time test runner can be

reviewed above in Section 4.2.5 The memory test runner can be reviewed in Section 3.6.3.

Execution Time

In the final tail recursive test, execution time for this test is measured by running the
whiletrue loop with a value of 10000, and measuring execution time for 1000 iterations.
This test is repeated for 25 runs and results are presented in Figure 4.11.

The execution results for this test is also interesting - both implementations show a
large reduction in execution time when using tail call elimination, particularly for the

Cog implementation.

88

CHAPTER 4. RESULTS

1,500]
:CE
§ - Version Mean %Imp %SD Std Dev Median
= si 1448.28 4525 1454.00
£ 0 | ositee 92460 362 3.1 240 925.00
R cog 1033.20 25.98 1050.00
e B cogtce 168.36 83.7 2.5 0.49 168.00

S|

Figure 4.11: WhileTrue 10000 - Execution Time

Memory Usage

In the final memory usage test for tail recursion, memory usage was measured after the
completion of one iteration of whiletrue with a value of 10000. Measurements were taken

for 250 runs - see Figure 4.8 for the results.

E?
_
& aof | Version Mean %Imp %SD Std Dev Median
=
@ %0 | si 52.23 1.84 52.29
:%;207 | sitce 44.19 154 3.5 0.15 44.19
b cog 46.01 1.79 46.16
g 10r | cogtce 46.16 -0.3 3.9 0.15 46.16
= 0 T T

& & &° &

& &

Figure 4.12: WhileTrue 10000 - Memory Usage

Memory usage results show a decrease in the memory usage for the Stack Interpreter,

and a slight increase in memory usage for the Cog VM.

4.3 Real World Performance Test

4.3.1 Compile All Test

The compile all test calls the recompileAll method on the Compiler object and re-
compiles every method in the Smalltalk image. As a reminder, the code for this test

is included below - the test runners and memory test runner can be reviewed in Sec-

tion 3.7.1.

89

CHAPTER 4. RESULTS

Compiler>>recompileAll
Smalltalk allClassesAndTraits
do: [:classOrTrait | classOrTrait compileAll]

displayingProgress: [:classOrTrait| ’Recompiling,’, classOrTrait]

Execution Time

The next set of tests are the compiler tests using the recompileAll: method. As
mentioned before, the method will be run 10 times and the time in milliseconds is

collected for each run. The results are displayed in Figure 4.13.

150

%\wo—] = | Version Mean %Imp %SD Std Dev Median
e}

3 si 136.49 2.30 135.52
2 ol | sitce 129.68 5.0 1.7 0.33 129.60
o cog 109.59 0.90 109.29
cogtce 105.86 3.4 0.9 0.45 105.84

0 T T T T

& & ¥ <&

> 00%

Figure 4.13: Compile-All - Execution Time
Try: Try: 3.4

Both implementations show an improvement in overall execution time when using
tail call elimination. The Stack Interpreter implementation’s execution time shows a
5.0+1.7% improvement. The Cog VM implementation shows less of an improvement
- a 3.410.9% improvement to mean execution time. While this improvement is small,
the results are tightly clustered enough that this improvement is still several standard

deviations away from the non tail call eliminating version of Cog.

Memory Usage

The next results to show are the memory usage tests for the Compiler tests. Again, a
measurement of memory usage is taken after compiling each class. See Figure 4.14 for
the results.

In general, the results seen are not particularly different from one another, or even
particularly different between the Stack Interpreter and the Cog Interpreter, with minor

increases in memory usage being registered that fall well below one standard deviation.

90

CHAPTER 4. RESULTS

::é}\ 50- - -]

2

glm? | Version Mean %Imp %SD Std Dev Median
P l si 47.67 441 47.67
g 20! i sitce 4783 -0.3 13.1 4.45 47.85
> cog 47.46 4.39 47.41
= 7] cogtce 47.58 -0.3 13.0 4.36 47.57
5}

2 0] T 1 T

Figure 4.14: Compile-All - Memory Usage

4.3.2 Windows Test

The windows test calls the browse method on each subclass of Number, and then closes
the browse windows. As a reminder, the code for this test is included below - the test

runners and memory test runner can be reviewed in Section 3.7.2.

ThesisTestSuite>>windowTestWithClass: class
class allSubclassesDo:[:a
a browse.
self currentWorld doOneCycle
1.
Browser allInstancesDo:[:a
(a dependents select:[:
each | each isMemberOf: PluggableSystemWindow]
) do:[: each|
each delete.
self currentWorld doOneCycle
1.

Execution Time

The next set of tests are the execution tests for the windows test. As mentioned before,
the method will be run 10 times and the time in milliseconds is collected for each run.
The results are displayed in Figure 4.15.

Note that, while the results for the Stack Interpreter indicate a possible small im-
provement, the Cog implementation sees a possible performance decrease. Tuning the

memory available for JIT compiled code produces different results - the results presented

91

CHAPTER 4. RESULTS

Time (milliseconds)

2,000

1,500

1,000

[
o
[==}

Version Mean %Imp %SD Std Dev Median

i si 1842.60 51.99 1850.00
sitce 1759.90 4.5 4.2 56.60 1754.00
. cog 1115.40 62.26 1124.00
cogtce 1127.20 -1.1 7.5 55.21 1124.00
e ¢ e
&> N

Figure 4.15: Windows - Execution Time (8 mb JIT space for Cog)

here for both the tail call eliminating version of Cog and the non tail call eliminating

version of Cog both have 8 megabytes made available for JIT compiled code. By de-

fault (and in all other tests), only one megabyte is made available. With one megabyte,

performance suffers even more.

Memory Usage

The next results to show are the memory usage tests for the Windows tests. A mea-

surement of memory usage is taken after opening all windows, and again after closing

all windows. See Figure 4.16 for the results.

Memory Usage (megabytes)

60 |-

40 +

Version Mean %Imp %SD Std Dev Median

si 57.56 1.83 57.69
sitce 56.46 1.9 6.1 2.98 56.17
i cog 58.89 2.70 59.42
cogtce 5858 0.5 6.2 2.49 58.54
I
S o>

Figure 4.16: Windows - Memory Usage

The results here are not particularly interesting, with tests indicating possible de-

creases in memory usage for both tail call eliminating versions.

92

CHAPTER 4. RESULTS

4.4 Analysis

4.4.1 Tail Call Recursion Analysis

As a general observation, the results obtained during these tests were tightly clustered.
As a result, analysis will only consider the difference in the mean measurements be-
tween relevant implementations. Looking at the results of the tail recursive tests, there
is a consistent pattern across both the Factorial and Fibonacci tests. For Factorial 500
and Fibonacci 1000, the execution time results indicate a possible slight improvement
for the Stack Interpreter with tail call elimination with mean reductions of 2.64+0.7%
and 3.741.2% respectively. For Factorial 5000 and Fibonacci 10000, the execution time
results indicate a larger improvement for both the Stack Interpreter with tail call elimina-
tion with mean reductions of 78.24+0.4% and 71.0£1.3%. A similar pattern is exhibited
for the Cog VM implementation. For Factorial 500 and Fibonacci 1000, the execution
time results show possible mean reductions of 10.846.9% and 10.1+0.9%. For Factorial
5000 and Fibonacci 10000, there is a larger improvement for Cog with mean reductions
of 79.8+0.5% and 76.2+1.9%.

Memory usage results for Factorial and Fibonacci tests also show a consistent pattern.
For Factorial 500 and Fibonacci 1000, memory usage test results indicate a possible slight
increase for the Stack Interpreter with tail call elimination with decreases of -3.24+5.6%
and -3.01+5.6% respectively. In Cog, these tests don’t show a significant difference either
way. Memory usage shows a mean decrease for Factorial 5000 and Fibonacci 10000
22.5+7.7% and 17.1+£9.7% in the Stack Interpreter, and 24.1+11.3% and 15.8410.1% in
Cog.

Results for the Whiletrue 1000 and 10000 tests are roughly consistent with the results
of the other tail recursive tests, with much more significant differences between the Stack
Interpreter and the Cog VM on display. For Whiletrue 1000, the Stack Interpreter showed
a small possible decrease with 2.64:0.4%, and the Cog VM showed a significant decrease
of 46.6+0.9%. For Whiletrue 10000, the Stack Interpreter showed a possible decrease of
36.2+3.1%, and the Cog VM showed a very significant decrease of 83.74+2.5%.

Memory usage showed a pattern of slight increases in memory usage for Whiletrue
1000, which echoes the results of Factorial 500 and Fibonacci 1000. The Stack Inter-
preter showed a small decrease with -1.443.9%, and the Cog VM showed a decrease of
-2.34+4.0%. For Whiletrue 10000, the Stack Interpreter saw a memory usage decrease of
15.443.5%. Oddly, for the Cog VM, despite the significant decrease in execution time,
memory usage was not significantly different, registering a slight increase.

The consistent results of the Factorial and Fibonacci tests suggest that tail call elim-

93

CHAPTER 4. RESULTS

ination improves execution time, and that this improvement becomes more pronounced
as the number of recursive calls increase, with significant decreases in execution time be-
ing seen for both Factorial 5000 and Fibonacci 10000. Memory usage is also significantly
improved when calculating large numbers, though there appears to be a small cost in
terms of memory usage when calculating smaller numbers. The results for the whileTrue
test generally exhibit a similar pattern, with much more pronounced difference between
the Stack Interpreter and the Cog VM. In particular, there is little variation between the
tail call and non tail call implementation of the Stack Interpreter for Whiletrue 1000,
whereas the Cog version of the same test already shows a significant improvement. Even
the Whiletrue 10000 test exhibits disparate results, though both implementations see
significant improvement. Speculatively, it could be that calculating large numbers in
the Fibonacci and Factorial tests perform similarly between the Cog VM and the Stack
Interpreter, while simple comparisons of smaller numbers may perform signficantly bet-
ter in JIT compiled code. Memory results also indicate a discrepancy between the two
implementations, with only the stack interpreter showing memory usage improvements
in the Whiletrue 10000 test. Memory usage for the Whiletrue 1000 test seem to indicate
again that there may be a small cost in memory usage to these implementations of tail
call elimination.

The results suggest that the value of tail call elimination in tail recursion may be
less about reducing the number of instructions required to execute a call and return, and
more about reducing the number of stack frames and stack pages allocated, which could
lessen the amount of background work that the VM and the garbage collector need to do.
The slight memory usage increase seen in the tail call eliminating versions are difficult
to explain for the Stack Interpreter - this could possibly be due to some overhead when
checking each send for tail call potential. For the Cog VM this could be explained by
the fact that JIT compiled methods have a slightly larger memory footprint.

4.4.2 Real World Analysis

The results of the compiler test show a modest benefit to execution speed using tail call
elimination in a real world scenario. The Stack Interpreter implementation of tail call
elimination showed better results with a decrease of 5.0£1.7%, despite the overhead of
checking each send for the next bytecode to determine whether it is a tail call or not.
The Cog VM implementation of tail call elimination showed a more modest improvement
of 3.44+0.9%, despite not having the same overhead. The execution time may be affected
by the limits of this implementation. As only monomorphic sends are implemented using

tail call elimination, the number of tail calls actually successfully executed are lower in

94

CHAPTER 4. RESULTS

the Cog implementation compared to the Stack Interpreter implementation. In Section
4.1.2 the number of dynamic tail calls was given. Testing indicates that, of those tail
calls, about 1% fail the monomorphic send cache and are reverted to normal calls to
polymorphic caches. However, statistics were not collected for how many calls are then
made using those polymorphic caches, however we speculate that about 15% of tail calls
use those caches. The results of testing memory usage confirms that, despite the use of
tail call elimination, memory usage in this scenario stayed the same. Reflecting on the
results of the tail recursive tests, this further confirms the speculation that improvements
in memory usage are tied to deep call stacks that require the allocation of many frames -
perhaps the methods used by the compiler simply don’t create the stack depth necessary
for the benefit of tail call elimination to be seen. For the windows tests, results indicate
that, while Ul interaction may be improved with tail call elimination, the implementation
presented for the Cog VM in this work may not be ideal, as significant tuning to JIT
code space memory was required just to produce results that indicate a small decrease

in performance.

4.4.3 Final Analysis

In general, the performance results across tests vary significantly depending on the type
of tests and the number of iterations. In addition, some tests showed a significant
difference in performance between the Stack Interpreter implementation and the Cog
implementation. Performance appears to be affected by three different factors: stack
size, instruction count and code space for JIT compiled code. Regarding stack size, the
results indicate that, across implementations, performance in terms of execution speed
and memory usage appear to be dramatically affected by the number of iterations in
tail recursive cases. The drastic improvements seen with tail call elimination in these
cases are likely due to the reduction in size of the call stacks needed to execute these
tests. It’s clear as to why memory usage would be reduced in this case, as tail recursion
elimination prevents stack growth. KExecution time is likely reduced as the overhead
for the virtual machine to manage stack overflow, creating new frames, and obtaining
memory for these frames is eliminated. With the dramatic savings in memory usage seen
with these results, there is also less overhead from the operating system, as there isn’t the
same pressure for memory pages. Regarding instruction count, there could potentially
be a difference in the number of instructions executed between the Stack Interpreter
implementation and the Cog implementation. While the number of instructions executed
in Cog is known, as these instructions are generated by the JIT compiler, the number of

instructions executed by the Stack Interpreter is an unknown. Speculatively, this could

95

CHAPTER 4. RESULTS

be a source of some of the differences in performance between the Stack Interpreter and
the Cog implementations. Finally, regarding code space for JIT compiled code, this could
also be a source of some performance difference between the two implementations. At
least one test indicated that JIT compiled code space management could be a source of
significant overhead for the Cog implementation, causing a significant difference between
implementations. This overhead could also be a source of some of the minor differences

between implementations as well.

96

Chapter 5

Conclusions

My thesis is that tail call elimination is a useful optimization for an object-oriented lan-
guage such as Smalltalk. This has been shown through the design of two implementations
of tail call elimination in the Smalltalk VM, targeting two variants of the VM. The results
for both implementations have shown that, generally speaking, there are significant im-
provements in execution time for computationally expensive real world processes - these
improvements show that tail call elimination is indeed a useful optimization. In addition,
tail call elimination has been shown to offer huge improvements in both execution time
and memory usage for tail recursive functions with deep call stacks. While this may be
of limited use in the current code base, having tail call elimination offers Smalltalk pro-
grammers the ability to program effectively using this style. The results presented here
may also have general application to other environments and programming languages
such as the JVM and Python. The challenges faced in this work are likely to be ap-
plicable, as JVM and Python both compile to platform-independent bytecode, support
object oriented programming with polymorphism, and have implementations which use

JIT compilation.

5.1 Contributions

e Designing and implementing an approach for tail call elimination in the Stack

Interpreter;

e Providing experimental evidence that there are significant benefits to this imple-

mentation;

e Designing and implementing an approach for monomorphic tail call elimination in

97

CHAPTER 5. CONCLUSIONS

the Cog VM;

e Providing experimental evidence that there are significant benefits even with this

limited implementation.

5.2 Future Work

The results presented are promising enough that future work in implementing tail call
elimination in the Opensmalltalk Virtual Machine is worth pursuing. This paper intro-
duced two possible methods for statically identifying tail calls in the Stack Interpreter -
one by flagging the method with a special primitive, and the other by switching imple-
mentation to a different bytecode set. However, the introduction of the Sista bytecode
set presents an opportunity for the introduction of at least one tail call bytecode, which
would allow for the recognition of tail calls in the interpreter at compile time. This
would eliminate the need to find creative ways to flag a method as having a tail call at
compile time. Recall from Chapter 2 that a Sista tail call bytecode can take extensions
- it could encode the number of arguments and the literal selector (or a special selec-
tor index). This should improve the presented implementation of tail call elimination
in the Stack Interpreter. In the Cog VM, work could be done to support polymorphic
and megamorphic send caches, allowing tail call elimination to be done on more than
just monomorphic sends. In addition, work could be done to reduce the redundant class
lookup used in the JIT code presented in this implementation. A tail call runtime method
could be implemented which does the necessary class lookups while still preserving the
instruction pointer in case of a call. Introducing a new parameter to the virtual machine
to control whether tail call elimination is being performed would be useful, as it could be
turned off to maintain proper stack traces. While maintaining full stack traces during a
debug session was a side effect of this implementation, formalizing this with a parameter

would be ideal, as the implementation may change.

98

Bibliography

Andrew W. Appel. Compiling with Continuations. New York, NY, USA: Cam-
bridge University Press, 1992. 1SBN: 0-521-41695-7.

Henry G. Baker. “CONS Should Not CONS Its Arguments, Part II: Cheney on
the M.T.A.” In: SIGPLAN Not. 30.9 (1995-09), pp. 17-20. 1SsN: 0362-1340. DOI:
10.1145/214448.214454. URL: http://doi.acm.org/10.1145/214448.214454.

Nick Benton, Andrew Kennedy, and George Russell. “Compiling Standard ML
to Java Bytecodes”. In: Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming. ICFP ’98. Baltimore, Maryland, USA:
ACM, 1998, pp. 129-140. 1sBN: 1-58113-024-4. DOI: 10.1145/289423 . 289435.
URL: http://doi.acm.org/10.1145/289423.289435.

Clément Béra. “A Low Overhead Per Object Write Barrier for the Cog VM”.
In: Proceedings of the 11th Edition of the International Workshop on Smalltalk
Technologies. IWST’16. Prague, Czech Republic: ACM, 2016, 22:1-22:10. 1SBN:
978-1-4503-4524-8. DOI: 10.1145/2991041.2991063. URL: http://doi.acm.org/
10.1145/2991041.2991063.

Clément Béra. FullBlockClosure design. 2016-06. URL: https://clementbera.
wordpress.com/2016/06/27/fullblockclosure-design/.

Clément Béra. Spur’s new object format. 2014-01. URL: https://clementbera.
wordpress.com/2014/01/16/spurs-new-object-format/.

Clément Béra and Eliot Miranda. “A bytecode set for adaptive optimizations”. In:
International Workshop on Smalltalk Technologies. Cambridge, United Kingdom,
2014. URL: https://hal.inria.fr/hal-01088801.

Per Bothner. “Kawa: Compiling Dynamic Languages to the Java VM”. In: Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference. ATEC
'98. New Orleans, Louisiana: USENIX Association, 1998, pp. 41-41. URL: http:
//dl.acm.org/citation.cfm?id=1268256.1268297.

99

http://dx.doi.org/10.1145/214448.214454
http://doi.acm.org/10.1145/214448.214454
http://dx.doi.org/10.1145/289423.289435
http://doi.acm.org/10.1145/289423.289435
http://dx.doi.org/10.1145/2991041.2991063
http://doi.acm.org/10.1145/2991041.2991063
http://doi.acm.org/10.1145/2991041.2991063
https://clementbera.wordpress.com/2016/06/27/fullblockclosure-design/
https://clementbera.wordpress.com/2016/06/27/fullblockclosure-design/
https://clementbera.wordpress.com/2014/01/16/spurs-new-object-format/
https://clementbera.wordpress.com/2014/01/16/spurs-new-object-format/
https://hal.inria.fr/hal-01088801
http://dl.acm.org/citation.cfm?id=1268256.1268297
http://dl.acm.org/citation.cfm?id=1268256.1268297

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

John Clements and Matthias Felleisen. “A Tail-recursive Machine with Stack In-
spection”. In: ACM Trans. Program. Lang. Syst. 26.6 (2004-11), pp. 1029-1052.
I1SSN: 0164-0925. DOI: 10.1145/1034774.1034778. URL: http://doi.acm.org/
10.1145/1034774.1034778.

William D. Clinger. “Proper Tail Recursion and Space Efficiency”. In: Proceedings
of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation. PLDI '98. Montreal, Quebec, Canada: ACM, 1998, pp. 174-185.
ISBN: 0-89791-987-4. DOI: 10.1145/277650.277719. URL: http://doi.acm.org/
10.1145/277650.277719.

ClojureTV. Brian Goetz - Stewardship: the Sobering Parts. 2014-11. URL: https:
//www . youtube. com/watch?v=2y5Pv4yNObO.

L. Peter Deutsch and Allan M. Schiffman. “Efficient Implementation of the Smalltalk-
80 System”. In: Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. POPL ’84. Salt Lake City, Utah, USA:
ACM, 1984, pp. 297-302. 1SBN: 0-89791-125-3. DOI: 10.1145/800017 . 800542.
URL: http://doi.acm.org/10.1145/800017.800542.

ECMASecript 2015 Language Specification. URL: http://www.ecma-international.
org/ecma-262/6.0/ (visited on 2019-04-13).

ECMAScript 6 compatibility table. URL: http://kangax . github.io/compat-
table/es6/ (visited on 2019-04-13).

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implemen-
tation. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1983.

Chris Hanson. “Efficient Stack Allocation for Tail-recursive Languages”. In: Pro-
ceedings of the 1990 ACM Conference on LISP and Functional Programming. LEP
’90. Nice, France: ACM, 1990, pp. 106-118. 1sBN: 0-89791-368-X. DOI: 10.1145/
91556.91603. URL: http://doi.acm.org/10.1145/91556.91603.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back
to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself”. In:
Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications. OOPSLA ’97. Atlanta, Georgia, USA:
ACM, 1997, pp. 318-326. 1SBN: 0-89791-908-4. DOI: 10.1145/263698.263754. URL:
http://doi.acm.org/10.1145/263698.263754.

JIT Compiler Structure. URL: https://github.com/dotnet/coreclr/blob/

master/Documentation/botr/ryujit-overview.md (visited on 2019-04-13).

100

http://dx.doi.org/10.1145/1034774.1034778
http://doi.acm.org/10.1145/1034774.1034778
http://doi.acm.org/10.1145/1034774.1034778
http://dx.doi.org/10.1145/277650.277719
http://doi.acm.org/10.1145/277650.277719
http://doi.acm.org/10.1145/277650.277719
https://www.youtube.com/watch?v=2y5Pv4yN0b0
https://www.youtube.com/watch?v=2y5Pv4yN0b0
http://dx.doi.org/10.1145/800017.800542
http://doi.acm.org/10.1145/800017.800542
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://dx.doi.org/10.1145/91556.91603
http://dx.doi.org/10.1145/91556.91603
http://doi.acm.org/10.1145/91556.91603
http://dx.doi.org/10.1145/263698.263754
http://doi.acm.org/10.1145/263698.263754
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-overview.md
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-overview.md

BIBLIOGRAPHY

[24]

[25]

[26]

[27]

[28]

[30]

[31]

Richard Kelsey. Tail-Recursive Stack Disciplines for an Interpreter. Tech. rep.
1993.

Kotlin. URL: https://kotlinlang.org/docs/reference/ (visited on 2019-04-13).
LLVM Language Reference Manual. URL: https://11lvm.org/docs/LangRef .html
(visited on 2019-04-13).

Eliot Miranda. A Spur gear for Cog. 2013-09. URL: http://www.mirandabanda.
org/cogblog/2013/09/05/a-spur-gear-for-cog/.

Eliot Miranda. Build Me o JIT as fast as you can... 2011-03. URL: http://www.
mirandabanda.org/cogblog/2011/03/01/build-me-a-jit-as-fast-as-you-
can/.

Eliot Miranda. Closures Part I. 2008-06. URL: http://www.mirandabanda. org/
cogblog/2008/06/07/closures-part-i/.

Eliot Miranda. Closures Part II — the Bytecodes. 2008-07. URL: http: //www .
mirandabanda.org/cogblog/2008/07/22/closures-part-ii-the-bytecodes/.

Eliot Miranda. Simulate Out Of The Bochs. 2008-03. URL: http://www.mirandabanda.
org/cogblog/2008/12/12/simulate-out-of-the-bochs/.

Eliot Miranda. “The Cog Smalltalk Virtual Machine writing a JIT in a high-level
dynamic language”. In: VMIL ’11. 2011.

Eliot Miranda. Under Cover Contexts and the Big Frame Up. 2009-01. URL: http:
//www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts—-and-
the-big-frame-up/.

Eliot Miranda and Clément Béra. “A Partial Read Barrier for Efficient Support
of Live Object-oriented Programming”. In: Proceedings of the 2015 International
Symposium on Memory Management. ISMM ’15. Portland, OR, USA: ACM, 2015,
pp- 93-104. 1SBN: 978-1-4503-3589-8. DOI: 10.1145/2754169.2754186. URL: http:
//doi.acm.org/10.1145/2754169.2754186.

Opensmalltalk-VM. URL: https://github.com/OpenSmalltalk/opensmalltalk-
vm (visited on 2019-04-13).

Simon Peyton Jones. “Implementing Lazy Functional Languages on Stock Hard-
ware: The Spineless Tagless G-Machine.” In: J. Funct. Program. 2 (1992-04),
pp- 127-202. por: 10.1017/50956796800000319.

101

https://kotlinlang.org/docs/reference/
https://llvm.org/docs/LangRef.html
http://www.mirandabanda.org/cogblog/2013/09/05/a-spur-gear-for-cog/
http://www.mirandabanda.org/cogblog/2013/09/05/a-spur-gear-for-cog/
http://www.mirandabanda.org/cogblog/2011/03/01/build-me-a-jit-as-fast-as-you-can/
http://www.mirandabanda.org/cogblog/2011/03/01/build-me-a-jit-as-fast-as-you-can/
http://www.mirandabanda.org/cogblog/2011/03/01/build-me-a-jit-as-fast-as-you-can/
http://www.mirandabanda.org/cogblog/2008/06/07/closures-part-i/
http://www.mirandabanda.org/cogblog/2008/06/07/closures-part-i/
http://www.mirandabanda.org/cogblog/2008/07/22/closures-part-ii-the-bytecodes/
http://www.mirandabanda.org/cogblog/2008/07/22/closures-part-ii-the-bytecodes/
http://www.mirandabanda.org/cogblog/2008/12/12/simulate-out-of-the-bochs/
http://www.mirandabanda.org/cogblog/2008/12/12/simulate-out-of-the-bochs/
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up/
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up/
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up/
http://dx.doi.org/10.1145/2754169.2754186
http://doi.acm.org/10.1145/2754169.2754186
http://doi.acm.org/10.1145/2754169.2754186
https://github.com/OpenSmalltalk/opensmalltalk-vm
https://github.com/OpenSmalltalk/opensmalltalk-vm
http://dx.doi.org/10.1017/S0956796800000319

BIBLIOGRAPHY

[32]

[38]

[39]

[40]

[41]

Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. “C—: A Portable As-
sembly Language That Supports Garbage Collection”. In: Proceedings of the In-
ternational Conference PPDP’99 on Principles and Practice of Declarative Pro-
gramming. PPDP ’99. London, UK, UK: Springer-Verlag, 1999, pp. 1-28. ISBN:
3-540-66540-4. URL: http://dl.acm.org/citation.cfm?id=645815.668891.

[Proposal] Support tail recursion #1235. URL: https://github. com/dotnet /
roslyn/issues/1235 (visited on 2019-04-13).

Guido van Rossum. Tail Recursion Elimination. 2009-04. URL: http://neopythonic.
blogspot.com/2009/04/tail-recursion-elimination.html.

M. Schinz and M. Odersky. “Tail call elimination on the Java Virtual Machine”.
English. In: Electronic Notes in Theoretical Computer Science 59.1 (2001). Cited
By :10, pp. 158-171. URL: www.Scopus.com.

Standard ECMA-335 Common Language Infrastructure (CLI). URL: https://www.
ecma-international.org/publications/standards/Ecma-335.htm (visited on
2019-04-13).

Guy Lewis Steele Jr. “Debunking the "Expensive Procedure Call”; Myth or, Pro-
cedure Call Implementations Considered Harmful or, LAMBDA: The Ultimate
GOTO?”. In: Proceedings of the 1977 Annual Conference. ACM ’77. Seattle, Wash-
ington: ACM, 1977, pp. 153-162. 1sBN: 978-1-4503-3921-6. DOI: 10.1145/800179.
810196. URL: http://doi.acm.org/10.1145/800179.810196.

Gerald J. Sussman and Guy L. Steele Jr. An Interpreter for Extended Lambda
Calculus. Tech. rep. Cambridge, MA, USA, 1975.

Tail calls in F#. URL: https://blogs.msdn.microsoft.com/fsharpteam/2011/
07/08/tail-calls-in-£f/ (visited on 2019-04-13).

David Tarditi, Peter Lee, and Anurag Acharya. “No Assembly Required: Compiling
Standard ML to C”. In: ACM Lett. Program. Lang. Syst. 1.2 (1992-06), pp. 161
177. 18sN: 1057-4514. pOI: 10.1145/151333.151343. URL: http://doi.acm.org/
10.1145/151333.151343.

T. Tauber, X. Bi, Z. Shi, W. Zhang, H. Li, Z. Zhang, and B. C. D. S. Oliveira.
Memory-Efficient tail calls in the JVM with imperative functional objects. English.
Vol. 9458. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Cited By :1. 2015,
pp. 11-28. URL: www.scopus.com.

102

http://dl.acm.org/citation.cfm?id=645815.668891
https://github.com/dotnet/roslyn/issues/1235
https://github.com/dotnet/roslyn/issues/1235
http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html
http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html
www.scopus.com
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/standards/Ecma-335.htm
http://dx.doi.org/10.1145/800179.810196
http://dx.doi.org/10.1145/800179.810196
http://doi.acm.org/10.1145/800179.810196
https://blogs.msdn.microsoft.com/fsharpteam/2011/07/08/tail-calls-in-f/
https://blogs.msdn.microsoft.com/fsharpteam/2011/07/08/tail-calls-in-f/
http://dx.doi.org/10.1145/151333.151343
http://doi.acm.org/10.1145/151333.151343
http://doi.acm.org/10.1145/151333.151343
www.scopus.com

GLOSSARY

[42]

[43]

[44]

The Clojure Programming Language. URL: https://clojure.org/index (visited
on 2019-04-13).

The Revised6 Report on the Algorithmic Language Scheme. URL: http://wuw .
rérs.org/ (visited on 2019-04-13).

The Scala Programming Language. URL: https://www.scala-lang.org/ (visited
on 2019-04-13).

103

https://clojure.org/index
http://www.r6rs.org/
http://www.r6rs.org/
https://www.scala-lang.org/

Glossary

Activation Record A data structure storing information about the activation of a call

or method. Often contains pointers to previous activation records.

Binary Message A message with an operator (such as + or x) as a selector and one

argument.

Block In Smalltalk, one or more lines of code surrounded by square brackets - blocks
are not evaluated until a specific message is sent. Blocks are first class objects and

are closures.

Call The process by which a function or procedure invokes another function or proce-

dure, with the capability of returning. Analogous to send in Smalltalk.
Cog The just-in-time compiler of the OpenSmalltalk Virtual Machine.
Cogit The name of the JIT compiler class in OpenSmalltalk.

Colnterpreter The name of the OpenSmalltalk VM interpreter class which does con-

tain a JIT compiler.

Continuation A representation of the current execution state of a program. Often

represented as a lambda or as an object.

Continuation-Passing Style A programming style in which functions never return a

result, instead passing a continuation to the next function.
Closure A function that has captured the free variables that it references.

Enilopmart A runtime routine for switching execution from JIT compiled assembly to

the interpreter.

Image A collection of Smalltalk objects which make up an executable Smalltalk system,
including source code, compiled code, and tools for interacting with the system.
Runs on a Smalltalk VM.

104

GLOSSARY

Inline Cache A cache used by the JIT compiler to store addresses of methods for
specific class/selector combinations. These are inline because either the cache

itself, or the address of the cache, is written directly into a send site.

Jump The process by which execution of a program jumps from one location to another,

without the capability of returning.

Just-In-Time (JIT) Compiler A compiler which compiles bytecode to platform spe-

cific assembly language as needed at run time.

Keyword Message A message with a selector made up of one or more keywords. Each

keyword ends in a colon and takes an argument.

Literal The components of a method which are hard-coded values, such as strings, num-
bers, and names of selectors. A compiled method contains an array of references

to these values.

Message A combination of a selector and zero or more arguments. Passed by objects

to communicate with each other.

Megamorphic Inline Cache A method lookup routine for a specific selector - can

support more classes than a polymorphic inline cache.

Monomorphic Inline Cache A send site specific cache of a class and a selector used

in JIT compiled code.

Polymorphic Inline Cache A selector specific runtime routine that contains a limited
set of class tags and addresses for methods matching the class tag and selector.

Can be used by multiple send sites.

Primitive A method which is implemented as part of the virtual machine runtime

instead of as a Smalltalk method.
Receiver In message passing, the object receiving a message.

Reduction A procedure call where the calling procedure will not continue execution

after the callee is complete. Analogous to a tail call.

Selector The component of a message that specifies which method the sender is re-
questing the receiver to execute. Usually represented as a text description of the

method or a mathematical operator.

105

GLOSSARY

Self A reserved word in Smalltalk which serves as a reference to the current object.

Typically used for an object to send messages to itself.

Send The process by which objects pass messages in Smalltalk. Analogous to call in

other languages.
Sender In message passing, the object sending a message.

Stack Interpreter The name of the OpenSmalltalk VM interpreter class which does

not contain a JIT compiler.

Subproblem A procedure call where the calling procedure will continue execution after

the callee is complete.
Tail call A call, or send, which is followed immediately by a return.
Tail recursion A pattern in which recursive calls are also tail calls.
Trampoline A loop which calls functions and iterates as long as a function is returned.

Trampoline (Cog VM) A runtime method which switches execution from the inter-

preter to JIT compiled code.
Unary Message A message with a selector and no arguments.

Workspace An interactive environment for executing Smalltalk code in Squeak.

106

