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ABSTRACT

Optical wireless communication (OWC) offers a promising alternative to radio frequency (RF)

based communication because it can support the increased demand for bandwidth in modern

networks. This thesis examined three strategies that could be implemented to improve or

simplify the design of a ground and satellite optical communication link. The acquisition of a

laser beam emitted from a space orbiting satellite was examined. Atmospheric conditions and

how they affect beam refraction was modeled using beam geometry and the refractive properties

of air. Simulation results indicate that a beam with a large zenith angle is refracted to a higher

degree than a beam with a smaller zenith angle. Beam refraction of an emitted beam with

zenith angles of 61o and 82o reached the Earth surface with a peak power of 1179 photons/bit

and 305 photons/bit respectively. Initial orbit estimation methods were examined, and it was

found that Gauss’ Angles Only method was able to predict the azimuth and elevation of a target

satellite with an average error of 6.38e−1. Which were positive results, and indicated that the

Gauss method would be useful for initial orbit determination of an emitting satellite. Finally, a

Extended Kalman Filter (EKF) state estimator was designed to evaluate whether the use of a

Kalman filter is suitable for orbit determination when only using the angular observations that

are available at an optical groundstation. Results indicated that when measurement errors of

±0.3 degrees were introduced into the system, position error state estimates reached a maximum

of 6.9 km and 0.013 km/s. When the EKF was given smaller measurement errors of±0.1 degrees,

the errors in the state estimates were found to be a maximum of 1.4 km and 0.002 km/s. The

results from the simulation for the state estimator indicated that an EKF can be applied to

track the motion of a target satellite.
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CHAPTER 1 INTRODUCTION

Traditionally, communication between Earth and Earth-orbiting satellites were performed by

using radio frequency communication (RF) links. This method of communication was selected

because transmitters and receivers could be designed within a reasonable mass and power bud-

get. Optical wireless communication (OWC) systems for space applications have become a

particularly interesting field, because it overcomes RF based limitations such as lower data

rates, high installation costs, and overcrowded spectra [1]. Despite its appeal, optical wireless

communications face an important hurdle: its reliance on an accurate pointing method in order

to establish an Earth-satellite communication link.

In recent years, with the appearance of lighter and steerable optics, free-space optical commu-

nication has become an attractive alternative to its traditional counterpart. Evidence indicates

that it is possible to develop a portable OWC based ground station through the use of a tele-

scope and star tracker [2]. This paper will investigate three strategies that can be used to set

up, acquire and track an optical communication link between a transportable groundstation and

Earth-pointing satellite.

Chapter 2 will provide a brief overview of existing optical communication systems, and will

discuss the key problems that OWC systems commonly face. Chapter 3 will examine the

fundamental Gaussian beam and consider how it can be combined with an atmospheric refraction

model to estimate ray bending in an optical communication link. Chapter 4 will compare the

Gauss prediction method with SGP4 data that is available through NASA’s Horizons database.

Once the observer at the groundstation can predict where the optical communication link will

be transmitted, it is possible to steer the groundstation configuration to match the direction

of motion of the orbiting satellite. Satellite tracking initialization is necessary for pointing

the groundstation receiver in the direction of the incoming communication link. Chapter 5 will

discuss the design of an Extended Kalman Filter to track a target satellite as it passes overhead.

A brief conclusion is included in Chapter 6 to summarize the results that were found after

examining several acquisition, prediction and tracking methods. It is intended that the work
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presented in this paper will be used to help with satellite-groundstation design configurations

for optical communication systems.
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CHAPTER 2 BACKGROUND

2.1 Prior Works

Optical wireless communication systems (OWC) are an alternate method of communication

for channels that require high bandwidth and an unrestricted spectra. OWC systems can be

broadly classified as either an indoor or outdoor optical wireless communication system. Indoor

optical communication systems are categorized by its system configuration. Outdoor optical

communication systems are classified by its communication link type (i.e.: terrestrial link or

space link) and are commonly called free space optical communication (FSO) systems. This

chapter will review some of the missions and briefly discuss the scientific milestones that were

achieved throughout the development of OWC systems. Particular attention will be given to

the development of FSO systems and the role that they play in the aerospace industry today.

Research in the field of OWC first started in the aerospace and defence industry 50 years ago,

and has since expanded into other technical fields. In 1967, Fried published work that explored

the theoretical effects of atmospheric turbulence on an optical communication link [3]. As a

beam is transmitted through the atmosphere, the composition of the atmosphere causes power

losses due to the absorption and scattering of the incident beam. Fried’s work was the first to

specifically examine the effect of atmospheric turbulence on an optical communication link that

was propagated in a vertical direction from a laser transmitter on the ground to a point in space.

Temperature variations in the atmosphere can also cause beam spreading, and temporal and

spatial fluctuations in the laser beam. This behaviour is called scintillation, and causes signal

power loss. After Fried’s publication, other theoretical studies pertaining to the scintillation

statistics and the effects of pointing jitter of an OWC system were conducted. Titterton used

Fried’s work to evaluate the power fluctuations caused by narrow beam motion in the far field

of the transmitter [4]. Yura formulated general equations that could be used to model the

mean duration of an infrared (IR) laser communication system signal fades and surges [5]. The

formulations made by Fried, Titterton and Yura created the theoretical foundation that was

needed for the OWC to progress.
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The advancement of research in the field of OWC systems made it possible for several small scale

experiments to succeed. An experiment lead by Bufton was able to successfully acquire data that

demonstrated the effects of scintillation on a communication link between the GEOS-II and an

earth-based ground station [6]. Experiments performed by Aruga et. al with the Japanese Test

Satellite-3 (ETS-3) showed that pitch, roll, and yaw angles of the satellite could be determined

from a laser beam transmitted from an Earth-based ground station to a satellite located in a

geosynchronous orbit [7]. In this experiment, satellite attitude estimations were estimated by

tracking the laser beam centroid and by detecting the polarization of the laser beam source.

Aruga’s results proved useful to the field of OWC because it could be extended and applied

to antenna pointing estimations and models for the differential absorption of light through the

atmosphere. These preliminary satellite optical communication experiments contributed to the

OWC field by demonstrating that an OWC link could be maintained between a ground station

and satellite.

The experiments that were performed in the early development of the OWC field created the

foundation that was necessary to develop the first Earth-to-space optical communication sys-

tems. The Relay Mirror Experiment (RME) was a system that sent a retro-reflected beam

to a satellite at an altitude of 350km. The RME uplink and retro-reflected irradiances were

measured and used to evaluate the temporal effects of scintillation on the fade statistics of an

optical communications link [8]. In 1992, the Galileo optical experiment (GOPEX) successfully

sent the longest range optical wireless communication transmission from the Galileo satellite as

it travelled from Earth and made its way to Jupiter. The experiment lasted 8 days, and con-

firmed that it is possible to transmit an optical communication link over a distance of 6 million

km [9]. Soon after, in 1995, the Ground/Orbiter Lasercomm Demonstration (GOLD) was the

first mission to send and receive information through an optical communication link. GOLD

was an international cooperative experiment between NASA and the Japanese Test Engineer-

ing Satellite (ETS-VI) that demonstrated the feasibility of a two-way acquisition and tracking

of a optical communication system. The two-way optical data that was gathered during the

experiment was used to measure bit error rates and atmospheric transmission losses [10].

The success of ground-to-space optical communication experiments led to an increased interest

in ground-to-satellite and satellite-to-satellite optical communication systems. The first suc-

cessful ground-to-satellite optical communication link was performed with the ETS-VI satellite

in Kongei, Japan [11]. In 2002, the Semi-conductor Intersatellite Link Experiment (SILEX)

was the first mission that successfully transmitted Earth observation data through an optical

communication link from the SPOT4 to the ARTEMIS satellite while in orbit. The in-orbit
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communication link that was performed during this experiment helped test and validate acqui-

sition and tracking methods for an optical communication system. The data that was collected

during this experiment was compared to predictive models and gave insight into bit error rate

measurements and data transmission structures [12]. In 2005, the National Space Development

Agency of Japan (JAXA) successfully completed a series of optical communication experiments

between the OICETS and ARTEMIS satellites. The experiment focused on collecting statisti-

cal data that was related to satellite link tracking and pointing, degradation characteristics of

optical devices, and satellite micro-vibration effects on the optical communication link. This

experiment demonstrated that an optical communication link can be used reliably to send and

receive data from a ground station at the Earth’s surface and can also effectively transmit data

between two orbiting satellites

The optical wireless communication (OWC) field has evolved from Fried’s theoretical research

to a technology that has been advantageous to several missions in the field of aerospace. Appli-

cations of OWC link systems have also extended to aircraft-to-GEO link and UAV-to-ground

link configurations [13], [14]. New developments and research initiatives appear every year, and

support the continuous growth of OWC technologies. As a result, OWC systems will continue

to be an integral part of the satellite and aircraft industries for years to come.

2.2 Space Segment Acquisition and Pointing

OWC systems require fine pointing parameters in order to be able to track and maintain an

optical communication link. This chapter will discuss the pointing characteristics that are

considered by both a satellite and optical communication groundstations.

The transmitter and receiver of the optical system need to be aligned in order to maintain a

communication link. The term pointing is used to describe the process where the transmitter

is aimed in the appropriate direction. Spatial acquisition is a term that is used to describe the

operation where the receiver is pointed in the direction that is required to capture the incoming

beam. Maintaining the pointing and tracking of the optical communication system is called

spatial tracking. Optical communication links are easiest to acquire if there is a reasonably long

transit time of the communicating satellite. A point-ahead set up is commonly adopted in order

to maximize the contact time of the satellite with the groundstation.

The point-ahead angle (θph) is determined by the speed of light (c) and speed (v) of the satellite

in the direction perpendicular to the line of sight. The point-ahead angle is a measure that

gives consideration to the motion of the satellite that occurs when a beam is transmitted from
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Figure 2.1: Satellite point-ahead configuration. [15]

the satellite to the groundstation, and back to the satellite again. It is a useful measure that

helps estimate the future position of the satellite as it moves along it’s propagation path during

transmission times.

The Earth’s atmosphere distorts the signal that is transmitted between transmitter and receiver.

Distortion of the beam can be seen in the power fluctuation and phase change of the emitted

signal. Changes to the beam geometry make the task of pointing and spatial acquisition of an

optical link more challenging. Severe bending of an optical communication link can shrink the

time-window in which the link is available or cause it to be missed by the receiver. Ground based

atmospheric refraction was studied by many researchers [16],[17], [18], and was typically used to

estimate the true and apparent position of stars as seen from Earth. Noerdlinger was the first

to propose reversing the atmospheric refraction model, and use it to estimate the atmospheric

refraction effects of a beam that is emitted from space [19]. Noerdlinger’s model is a useful tool

that helps determine the nominal refraction of an optical communication link that undergoes

atmospheric bending.

Phase distortions and signal amplitude loss occurs as a result of the turbulent nature of the

atmosphere, and causes angle-of arrival fluctuations and channel fading at the receiver. Adap-

tive optics systems rely on measuring the phase changes of a predetermined source, and applies

corrections to the distortions that are sensed. In a vertical optical communication link, the
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index of refraction structure parameters (C2
n) is needed to better understand the signal fluc-

tuations along the link path. Several optical turbulence models have been explored over land

and sea environments and during the daytime and nighttime cycles [20]. It was found that

each turbulence model should be applied to specific environments with limited weather con-

ditions. The Hufnagel-Valley (H-V) profile model is an atmospheric turbulence model that is

used for theoretical studies. The H-V5/7 is the most common model used, and defines the at-

mospheric root-mean-square wind speed as 21 m/s and the nominal ground turbulence levels as

1.7x10−14m2/3 [15].

In some experimental setups, it is possible to use a guide star to include atmospheric turbulence

in the point-ahead estimation. A guide star is used as a reference becaon, because it is not

affected by the Earth’s atmospheric turbulence. The angular distance over which the atmo-

spheric turbulence is considered constant is called the isoplanatic angle (θ0). The isoplanatic

angle can be useful to an adaptive optic system, because it describes the wavefront distortions of

a propagated beam in the direction that the atmospheric turbulence is measured. In practice, it

was found that the point-ahead angle is typically near 50µ rad, which is typically much greater

than the magnitude of the isoplanatic angle in the direction of motion of the satellite. As a

result, it is concluded that the isoplanatic angle might not be very useful measure for correcting

wavefront distortions, that are caused by atmospheric turbulence, along the tracking path [15].

Beam bending due to atmospheric refraction is needed for the preliminary set up of the pointing

and spatial acquisition operations of the OWC system. Signal fade statistics and angle or

arrival fluctuations are measures that indicate the beam quality of the incoming signal once the

communication link between the transmitter and receiver has been established. The research

considered in this work focused on examining the effects of atmospheric refraction that would

impact the initial link setup. Atmospheric refraction was combined with the dynamic motion of

the satellite, and used to estimate the variation of the point-ahead angle of the satellite along its

propagation path. Atmospheric distortion effects due to beam bending through the atmosphere

are modeled both by using ray geometry and atmospheric data retrieved from weather balloons.

The models that were developed are further discussed in Chapter 3.

2.3 Two-Line Element Position Estimate Accuracy

Two-line element (TLE) sets were first designed as a means to standardize the method by which

satellite motion was tracked and archived. This chapter will briefly discuss the applicability and

accuracy of TLE sets to satellite orbit determination.
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Today, TLE elements provide information about the mean orbital elements of satellites and other

orbiting bodies. The North American Aerospace Defense Command/United States Strategic

Command (NORAD/USSTRATCOM) monitors and archives the TLE information of several

thousands of orbiting bodies, and makes it available to the general public. In the 1960s. the

Simplified General Perturbations (SGP) models was developed for the purpose of orbit de-

termination. Due to its deficiencies in orbit propagation, new mathematical techniques were

developed, and the SGP was replaced by other variants of the Simplified General Perturbations

model [21].

The SGP, SGP4, SDP4, SGP8, and SDP8 are the five orbit propagation models are currently

available to the public. Each of the propagation models have their own atmospheric and grav-

itational parameters. In comparison to the SGP4 model, the SDP4 model includes deep-space

perturbations. The SGP8 and SDP8 models were developed as a closed form solution to special

cases for orbit decay and re-entry. Each of the five models are compatible with TLE sets. Val-

lado et. al published work that described the differences between each propagation model, but

does not indicate the accuracy that can be achieved with each model [21]. Hoots and Roehrich

also warn that erroneous orbital parameters can be calculated if an incompatible propagation

method is used with TLE sets [22].

Two-line element sets have been used successfully in many applications relating to satellite orbit

determination, space debris collision avoidance, and satellite sensor calibration [23],[24],[25].

When TLE sets are properly combined with the correct propagator, useful orbit determination

estimates are generated. Unfortunately, as was discussed by Fruh and Schildknecht, the success

of using TLE sets is highly dependent on the specific mission in which they are applied [26].

TLE sets are not only limited by the capacity of the Space Surveillance Network and the orbit

determination resources, but also by the total number of decimal digits it can store for each

orbital element. For example, the epoch field can contain up to eight decimal places, which

yields an accuracy of 0.0004s. Fruh and Schildknecht pointed out that an object in Low Earth

Orbit (LEO) could move as much as 3m within the 0.0004s timespan. Given that an object in

LEO can move several meters in the short timespan, it is clear that the limited accuracy of the

TLE set can affect future orbit determination predictions. [26].

TLE sets can be a source for less accurate orbital information when collected after a satellite

launch or manoeuvre. A comparison of the CanX-2. PROBA 2, and PRISMA mission TLE

estimates and GPS data was performed by Kahr, Montenbruck and O’Keefe [27]. Results

indicated that the most significant degradation in TLE estimates were when manoeuvres were

performed and can be as high as 20 km in the along track at the time of ephemeris. Results also

indicated that good TLE estimates need to be observed over a longer period in order to be able
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to estimate the short-term perturbations that are not included in the model. If GPS data is

available, reasonably small corrections to the short-term TLE can be achieved by implementing

a least-squares estimator [27],[28].

TLE sets are useful source that is used to find initial position estimates of a target satellite.

The availability of a TLE set is sometimes delayed for newly launched satellites [29] and can

contain errors when generated over a short observation period, or after a satellite manoeuvre.

Given the set up of the optical communication ground station, it is possible to measure the

right ascension and declination of an orbiting satellite as it appears in the field of view of the

ground station. Orbit state vectors can be estimated by combining these telescope observations

with Gauss’ angles only method. The research presented in this work set its goal to examine

whether the orbital information of a satellite could be estimated and propagated by using optical

observations. The estimations were made with Gauss’ method, and then compared to the known

estimated TLE sets. The model that was used is further discussed in Chapter 4.

2.4 Ground Station Target Tracking

Satellite tracking is commonly performed at a ground station in order to maintain the com-

munication link quality within a specified limit. Due to the Earth’s atmosphere, satellites that

are seen from the ground can also overshoot its target and appear to jitter in the image plane

in which it is observed. As a result of this residual motion, tracking methods need to be used

in conjunction with satellite position estimates in order to maintain the communication link.

Kalman filters are good tools that can both track and propagate a satellites position. This

section will briefly discuss the use of Kalman filters for tracking a target satellite in an optical

communication system as it flies overhead.

A Kalman filter is a linear quadratic estimator that uses a series of measurements with pre-

modeled system dynamics to yield unknown state estimates. Kalman Filters (KF), Extended

Kalman Filters (EKF), Unscented Kalman Filters (UKF) are the three main types of Kalman

filters that are used in satellite position and attitude estimation. The EKF is different from

the KF algorithm in that it is applied to non-linear systems, and as such it contains a Jacobian

matrix in its Kalman gain component. The UKF was developed with the intention of addressing

instances where the EKF would have suboptimal performance or fail to converge to a solution.

The UKF is most similar to the EKF, but differs by the method in which the Gaussian random

variables are propagated through the algorithm [30].
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Kalman filters have been used to successfully capture the motion of a satellite as it travels along

its orbital path. Kalman filters are useful for orbit determination because it optimally combines

the satellite’s system dynamics with measurement updates. Several studies have been conducted

to validate the application of a Kalman filter for satellite position and attitude estimates [31],

[32]. The research that was conducted during this thesis applied the EKF algorithm to optical

observations and predicted the position and velocity of a target satellite. This model is further

discussed in Chapter 5.

2.5 Overview Sinclair Interplanetary Optical Downlink

Sinclair Interplanetary (SI) is a company that provides hardware, software, and training for

spacecraft related technologies. Within their Optical Communication division, they have de-

signed systems for optical crosslinks and downlinks. Figure 2.2 shows the star tracker and

telescope configuration that is proposed by SI.

 

Figure 2.2: Sinclair Interplanetary star tracker and telescope setup for optical communication.
[33]

The work that was considered in this thesis based its models on the optical downlink configu-

ration that was designed by SI. The downlink system that is proposed by SI uses a star tracker

for satellite guidance, and features a 22” Newtonian telescope with silicon APD at the optical

groundstation. A summary of the laser downlink and star tracker specifications are listed in

Table 2.1.

The SI optical downlink system combines a star tracker with a telescope and groundstation

software. This thesis used these specifications to evaluate the effects of atmospheric refraction,

to model the Gauss-Angles only problem, and to design an EKF state estimator.
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Table 2.1: Laser Downlink and Star Tracker Specifications [33]

Characteristic Value

Data Rate 1 Gbits/s at 1000km range

Star Tracker Performance Cross-Boresight 5 arcseconds

Star Tracker Performance Cross-Boresight 55 arcseconds

Acquisition and Tracking Envelope Tolerates 2o spacecraft pointing error.

Transmitter 1W at 785nm

Ground Receiver Diameter 0.55 m

Nominal Power +28 V

Downlink Power < 10 W

Star Tracker Power < 1W

Mass 335 g

Volume 79 mm x 68 mm x 68 mm (including baffle)

2.6 Research Goals

OWC systems offer certain benefits when compared to a traditional RF system. The use of an

OWC system appeals to many because it overcomes the typical problems that an RF system

encounters with crowded spectra, slower data transmission rates, and higher installation costs.

Despite these benefits, OWC systems have their own drawbacks that can severely impair an

optical communication link. This work aims to develop strategies that can improve the pointing

and tracking mechanisms of an optical communication ground station, in order to avoid scenarios

where link impairment may occur. The primary mission goals and objectives are summarized

below.

1. Evaluate the bending effects imparted by the Earth’s atmosphere on an incoming optical

communication link from a satellite in LEO.

2. Observe and model the dynamic evolution of an orbiting body in LEO using Gauss’

Angles-Only method, and compare it to available Two-Line Elements (TLE) sets.

3. Evaluate weather an EKF state estimator can be used to predict the position and velocity

of an orbiting body in space with an accuracy of < 12km by using optical ground station

observations (right ascension and declination).

It is predicted that the Earth’s atmosphere would cause scintillation effects on the optical

communication channel. This thesis wanted however to focus on the primary acquisition of

the incoming signal. As a result, the scintillation effect on the optical communication channel

quality will not be included in this report, and will be left for future works.
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CHAPTER 3 OPTICAL COMMUNICATION AND

TOTAL REFRACTION

3.1 Total Atmospheric Refraction

Light that travels from space to an observer on Earth is bent by the Earth’s atmosphere. The

change in direction of the emitted ray is modeled by considering the physical characteristics of

the atmosphere and position of the light source. The atmospheric model with parallel planes

is the simplest case, but becomes less accurate when observing objects with moderate to large

zenith angles (> 45o). In limited cases, atmospheric refraction modeled as parallel planes can

be used as a good starting estimate[34]. In general cases, the Earth’s atmospheric refraction is

modeled as a set of concentric shells. The concentric shells atmospheric model, is more difficult

to implement, but yields more accurate results. The concentric shell model can be simplified,

Simplifications to the concentric shell model can be made, but the refraction estimates typically

depends on observation models [19] that are developed for specific climates. This section will

discuss the full and simplified concentric shells total atmospheric refraction model.

3.1.1 Atmospheric Refraction Layer Approximation

Total refraction can be approximated by using a simple planar layer model or a concentric shell

model. The primary difference between both models is that the planar model assumes that the

area of intersection between neighbouring layers is flat. Both types of atmospheric refraction

models are briefly discussed in this section.

3.1.1.1 Simple Planar Layers

The refraction of light that is transmitted from objects with small zenith angles can be approx-

imated by using a series of parallel planes. This case is a unique instance when the curvature of
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atmospheric layers can be neglected. The refraction of light through neighbouring atmospheric

layers can be approximated by using Snell’s law [34].

n2 sin θ2 = n1 sin θ1 (3.1)

Given that neighbouring layers intersect as parallel planes, it can be shown that the refracted

beam angle that enters a layer at P is equal to the incident beam angle that is leaving the same

layer at Q. Figure 3.1 illustrates the true and apparent positions of the observed celestial body.

 

Figure 3.1: Snell’s laws for parallel layers [19].

The bounding surface of an arbitrary amount of parallel layers can be regarded as a series of

small refraction angles. As a result of the simplified geometry, the refracted beam angle at the

ground can be expressed in terms refraction constant of air at the Earth’s surface (µ0) and in

space (µs), and the refraction angle at the ground (ζ0) and in space (ζs) [35].

sin(ζ0) =
µs
µ0
sin(ζs) (3.2)

The planar layers model makes approximations that allow the refraction model to be solved

quickly. Despite the appeal of a quick calculation, given that the curvature of the Earth’s

surface is an important characteristic of the refraction model, the planar model does not yield

results that are accurate enough for OWC acquisition and tracking predictions.
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3.1.1.2 Concentric Spherical Layers

The concentric shells atmospheric model uses geometry to relate a geocentric distance of a

celestial object to the Earth’s atmospheric refraction. In contrast to it’s simpler counterpart,

the concentric shell model incorporates the curvature of the atmosphere into its geometric

formulation.

The refraction (∆REFRi) of a beam as it passes from one adjacent layer (i) to another was

defined by Smart [34] as a series of small refraction angles that are incrementally changed

by neighbouring atmospheric layers. The full derivation of Equation (3.3) was omitted for

convenience, but can be found in [34] and [17].

∆REFRi =
∆µ

µi+1

Ri+1µ
2
i+1 sin ζ

(R2
iµ

2
i −R2

i+1µ
2
i+1 sin2 ζ)1/2

(3.3)

If it is assumed that the atmospheric refraction constant in space is approximately 1, the total

(REFR) refraction through the atmosphere can be calculated by evaluating the integral in

Equation (3.3).

REFR = aµ20 sin ζ

∫ µ0

1

dµ

µ(R2µ2 − a2µ20 sin2 ζ)1/2
(3.4)

where a and R are the geometric distance of the observer and celestial object respectively, and

µ0 is the atmospheric refraction constant at the Earth surface.

If higher order terms are neglected, the height of the atmosphere (s) can be expressed in terms

of R and a as shown in Equation (3.5).

R

a
= 1 + s (3.5)

In the concentric shells model, it is acceptable to neglect higher order terms of s (i.e.: s2, s3,

etc.) because the height of the atmosphere is much smaller than the radius of the Earth [34].

Considering the denominator of the total refraction.

(R2µ2 − a2µ20 sin2 ζ)−1/2 = (a2(1 + s)2µ2 −2 µ20 sin ζ)−1/2

=
1

a
(µ2 −mu20 sin2 ζ + 2sµ2)−1/2

(3.6)

14



Using a Maclaurin series approximation,

f(s) ≈ f(0) + f ′(0)s+ f”(0)
x2

2!
+ ... (3.7)

f(s) = (µ2 −mu20 sin2 ζ + 2sµ2)−1/2 (3.8)

f(0) = (µ2 −mu20 sin2 ζ)−1/2 (3.9)

f ′(s) = −1

2
(µ2 −mu20 sin2 ζ + 2sµ2)−3/22µ2 (3.10)

f ′(0) = −(µ2 −mu20 sin2 ζ)−3/2µ2 (3.11)

Taking the lower order terms,

f(s) ≈ (µ2 − µ20 sin2 ζ)−1/2 − (µ2 − µ20 sin2 ζ)−3/2(sµ2)

= (µ2 − µ20 sin2 ζ)−1/2
(

1− sµ2

µ2 − µ20 sin2 ζ

) (3.12)

The total refraction can thus be separated into two integrals.

REFR = µ0 sin ζ

∫ µ0

1

dµ

µ(µ2 − µ20 sin2 ζ)
− µ0 sin ζ

∫ µ0

1

sµdµ

(µ2 − µ20 sin2 ζ)3/2
(3.13)

REFR = D1 +D2 (3.14)

Each integral (D1 and D2) can also be evaluated using binomial expansion. Ignoring higher

order terms, the solution to the first integral can be approximated by the following.

D1 = (µ0 − 1) tan ζ (3.15)
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The Gladstone-Dale law expresses the relationship between the index of refraction and atmo-

spheric density (σ) through a constant value (c) [19].

dn = cdσ (3.16)

If Equation (3.16) is combined with the second integral (D2) a solution can be approximated

by the following [19].

D2 = −

(
c

a

)
tan ζ sec2 ζ

= −B tan ζ sec2 ζ

(3.17)

where B is a value that is defined by c
a times the mass of the column of the layer considered.

The total refraction for a spherical atmosphere can thus be written as shown below.

REFR = (µ0 − 1) tan ζ +B tan ζ(1 + tan2 ζ)

= ((µ0 − 1) +B) tan ζ +B tan3 ζ

= A tan ζ +B tan3 ζ

(3.18)

where A is a function of B. Lumped parameter models were developed by many authors. To-

bias Mayer was the first to express atmospheric refraction constant in terms of meteorological

conditions [36]. A numerical comparison of the models that were authored by Mayer, Bessel,

Saar, Kaplan, Eisele & Shannon, Doggett, Bennett was presented by Wittmann [37]. It did not

include the methods that were proposed by Smart, Auer & Standish, Noerdlinger, and Stone.

Each lumped parameter method is constructed with a subset of fixed conditions in the atmo-

sphere, for the emitted beam or for the weather conditions at the observer’s groundstation. A

comparison of the conditions and limitations of these methods are summarized in Table 3.1.

Given that Noerdlinger’s model had the least amount of fixed conditions and could be used to

estimate refraction up to 90 degrees, Noerdlinger’s lumped parameter refraction equations was

selected to be used for further analysis in later chapters of this report.
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Table 3.1: Lumped Parameter Refraction Model Comparison

Author Fixed Conditions Zenith Limitations

Smart [34] Pressure and Temperature at Ground ζ0 < 75o

Auer & Standish [38] Two (N=2) Stage Atmosphere ζ0 < 90o

Stone [16] Operational Wavelength ζ0 < 75o

Noerdlinger [19] None ζ0 < 90o

3.2 Atmospheric Refraction Conditions and Characteristics

The characteristics of the Earth’s atmosphere, such as the pressure and temperature at different

altitudes, affects channel behaviour of an optical communication link. Atmospheric conditions

at different altitudes were retrieved from two sources. A bried discussion of these data sources

are considered in this chapter.

3.3 Optical Communication Gaussian Beam Link

The plane wave is the simplest way to model the propagation of an electromagnetic wave through

a medium. Unlike a plane wave, Gaussian beams have electric field variations in the direction

that is perpendicular to its axis of propagation. As such, the Gaussian beam model is a common

tool that is used to describe laser beam propagation behaviour. Gaussian beams play an integral

role in the field of optical communications, and as a result its theory and interpretations will

be discussed in this section.

3.3.1 Paraxial Equation and the Gaussian Beam

Wave propagation analysis can easily become a very complex vector problem, but can be sim-

plified by making a few key assumptions. An electromagnetic wave that propagates with a

constant field distribution is modeled as a plane wave. In the plane wave model, the electric

and magnetic fields amplitudes are constant, and both exist in planes that are mutually per-

pendicular to the wave’s axis of propagation. The plane wave is the most ideal formulation of

the wave propagation model, but since it omits field variations in the transverse direction, it

has limitations to its use. If it is assumed that the original beam source is largely collimated,

and thus has a distinct direction of propagation coupled with mild variations in the transverse

direction, a paraxial wave model can be developed. A paraxial wave is similar to a plane wave,

such that it maintains that the electric and magnetic fields are mutually perpendicular, but
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since beam diffraction is considered, the field distribution becomes dependent on position. If

the direction of propagation of a wave is in the z-direction, an element propagated through an

electric field (E) can be described by the following [39].

E(x, y, z) = u(x, y, z) exp−jkz (3.19)

where u describes the non-planar characteristics of the emitted beam. An element of an electro-

magnetic wave that travels through a uniform medium can be described by the Helmholtz wave

equation. A wave propagation equation can be approximated if Equation (3.19) is combined

with the Helmholtz equation. This formulation is fundamentally based on a quasi-plane wave

solution, and is thus sometimes called the reduced wave equation.

δ2u

δx2
+
δ2u

δy2
+
δ2u

δz2
− 2jk

δu

δz
= 0 (3.20)

Simplifications to the reduced wave equation can be made if it is assumed that the amplitude

variation caused by diffraction is small with respect to the wavelength of the propagated beam.

This assumption indicates that the third term in Equation 3.20 is much smaller than the other

terms, and can therefore be neglected. The paraxial wave equation is obtained from the re-

duced wave equation by omitting small axial variations, and can be expressed in rectangular

coordinates as follows [40].

δ2u

δx2
+
δ2u

δy2
− 2jk

δu

δz
= 0 (3.21)

The errors that are introduced by the simplification of the reduced wave equation was studied

by Couture, Bélanger, Agrawal, and Pattanayak [41], [42]. A formal bound within which the

paraxial equation can be applied has not been rigorously defined, but as a general rule of

thumb, it is assumed that it is a reasonable approximation to the wave propagation model if

the divergence angle is less than or equal to 0.5 radians [39].

Gaussian beam modes are solutions to the paraxial wave equation. The simplest solution is the

TEM00 mode (fundamental) Gaussian beam. A fundamental Gaussian beam model was used

to model the laser beam propagation throughout this work. The complete expression for the

fundamental Gaussian Beam is defined as follows [40].
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E(x, y, z, t) = E0
w0

wz
· exp

[
− x2 + y2

w2(z)

]
· exp

[
− i
(
k

2

(x2 + y2)

Rc(z)
− tan−1

z

z0

)]
·

exp

[
i(kz − wt)

] (3.22)

Where E0 is the amplitude of the electric field at the centre of the focal plane (i.e.: x = y =

z = 0), R(z) is the radius of curvature, and w(z) is the beam width. Equation (3.22) written

in polar form, and described in its characteristic components is shown below [43].

E(r, z) = E0
w0

wz
· exp

[
− r2

w2(z)

]
(amplitude factor)

· exp

[
− i
(
k

2

(r2)

R(z)
− tan−1

z

z0

)]
(longitudinal factor)

· exp

[
i(kz − wt)

]
(radial phase factor)

(3.23)

A Gaussian beam is fully described by combining the electric field equation with three key

values: the radius of curvature (Rc), beam radius (w), and beam phase shift (φ0). These three

values change along the beam’s axis of propagation. The radius of curvature describes the

roundness of the beam wavefront along an equiphasal surface. The beam radius defines the

span of the beam at a distinct point in the direction of the beam propagation. Finally, the

phase shift is a measure that describes the relative phase variation of the beam at a fixed plane

a distance z away from the beam waist. Each of these characteristics can be calculated using

the following equations.

Rc = z +
1

z

(
πw2

0

λ

)2

(3.24)

w = w0

[
1 +

(
λz

πw2
0

)]
(3.25)

tanφ0 =
λz

πw2
0

(3.26)

The propagation of a Gaussian beam and some key characteristics are shown in Figure 3.2 and

Figure 3.3. These figure show the evolution of both the radius of curvature and the beam waist

along the axis of propagation.
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Figure 3.2: Evolution of the beam profile along the beam’s axis of propagation. [39]

 Figure 3.3: Evolution of the radius of curvature as seen in the equiphase surface. [39]

This section briefly discussed the Hemholtz equation and its relation to a Gaussian beam.

The Gaussian beam is a solution to the Hemholtz equation which applies in a very specific

set of circumstances. The formulation of the Gaussian beam as an electric field and in terms
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of its propagation characteristics is useful for understanding beam behaviour and for defining

Gaussian beam attributes.

3.3.2 Gaussian Beam Ray Model Approximation

A brief derivation of the Gaussian beam equation from the Hemholtz wave equation was dis-

cussed in the previous section. This section will focus on discussing the interpretation of the

Gaussian beam equation, and describe the ray approximation was used in the atmospheric

refraction model.

The intensity of a Gaussian beam [I(r, z)] is the squared magnitude of the electric field. Thus,

the equation for the Gaussian beam intensity is found by calculating the magnitude of Equation

3.23. During this operation, the imaginary components of the polar form of the electric field

equation reduce to 1, and produce Equation (3.27).

I(r, z) = |E(r, z)|2

= I0(0, z) exp

[
− r2

w2(z)

] (3.27)

where,

I0(0, z) =
w2
0

w2(z)
(3.28)

From the conservation of energy, the power is the square magnitude of the electric field integrated

over the area of the beam. Thus, the intensity of the Gaussian beam integrated over a transverse

plane produces the following relationship [43].

P =

∫
IdA (3.29)

P =

∫ ∞
0

I(r, z) · 2πr dr (3.30)

P =
I0
2

(πw2
0) (3.31)

I(r, z) =
2P

πw2(z)
exp

[
− 2r2

w2(z)

]
(3.32)
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Gaussian beam parameters such as the beam intensity and beam waist describe the beam

source parameters, whereas the radial distance (r) and beam waist at a distance (z) away from

the source define the beam characteristics in a plane that is perpendicular to the direction of

propagation of the source.

For a Gaussian beam at an arbitrary distance (z) from the source, where the on-axis intensity

is normalized to 1, the beam spot size and radial distance at full width half-maximum intensity

(FWHM) can be related by a constant as follows.

0.5 = (1) exp

[
r2

w2(z)

]
(3.33)

w(z) =
r√
1
2 ln 2

(3.34)

w(z)

r
= 1.699 (3.35)

The far field divergence angle (θ) of the Gaussian beam can be approximated as shown in

Equation (3.36) and (3.37) [44]. The angle (θr) of a point at a radial distance (r) and propagation

distance (z) from the source was defined by using trigonometry and followed from the Gaussian

beam geometry.

θ =
w(z)

z
(3.36)

θ =
M2λ

πw0
(3.37)

tan (θr) =
r

z
(3.38)

where M is a factor that defines the deviation of the beam’s intensity profile from the the perfect

Gaussian beam distribution. In this work, it was assumed that the satellite emitted optical link

was nearly ideal. As such, M was set to equal 1.

The divergence angle (θ1) at specific distances along the propagation path was separated into

smaller angles, and by using geometry, they were treated as a discrete set of rays that were
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emitted from a finite extent. The single ray approximation of the Gaussian beam was used to

estimate the change in intensity throughout the Gaussian beam profile as it traveled through

the atmosphere.

The Gaussian beam parameters that were discussed in this chapter were used to model optical

communication power fluctuations due to refraction. This was achieved by approximating the

laser beam behaviour as a ray that is emitted through the atmosphere, and is further discussed

in the next Chapter of this report.

3.4 Link Acquisition through Atmospheric Refraction

Spatial link acquisition through the atmosphere is challenging due to the bending effects that

are experienced by the laser beam. Laser beam bending behaviour was approximated by using

ray geometry coupled with the Gaussian Beam equation. The geometric model that was used

to define the satellite and groundstation configurations are discussed in this section.

3.4.1 Ground Station Based Beam Refraction

The general atmospheric refraction model is difficult to use in practice, because the model

requires knowledge of the beam’s incident angle prior to refraction (ζs). Noerdlinger proposed a

solution to this problem in [19] by showing that total refraction can be expressed as a function

of the apparent displacement of a refracted beam emitted from space. The algorithm that was

proposed is discussed in this section.

Noerdlinger’s refraction estimation method approximates the refracted zenith angle at the

Earth’s surface by combining geometry with a lumped parameter formulation of the total at-

mospheric refraction process. This method is convenient when a fast solution is required and

can be split up into three simple steps.

1. Establish a relationship between the zenith angles of the ideal unrefracted ray with the

true refracted ray.

2. Use geometry to relate the incoming ray geometry with the Earth’s surface

3. Calculate refraction for beams with large and small zenith angles using Noerdlinger’s

spliced lumped parameter formula.
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Figure (3.4) shows the ray geometry of the ideal un-refracted (ζ0), true refracted (ζ), and

apparent refracted (ζ ′) zenith angles.

ζ0

ζ'

ζ ζ(q)
p

A q
k

h

R

η 

� 

dang

Figure 3.4: Refracted and unrefracted ray geometry.

The relation between the true and ideal zenith angles are independent of the atmospheric struc-

ture. Instead, the angle between them is a result of the sphericity of the Earth. Chauvenet

showed in [17], when exploring the corrections for eclipse and occulation predictions at observ-

ing sites, that a running variable projected along an emitted ray (k) is related to atmospheric

refraction (µ) by a constant. The running variable is a the point along the emitted ray (k) at

which the interception of segment q and the emitted ray are considered. The location at which

k intercepts the ray will determine the initial value of ζ(q). In this thesis, the interception point

was taken at the location in space where the effects of atmospheric refraction start to impact

the incoming ray (80, 000km).

qµ sin [ζ(q)] = constant (3.39)

or equivalently,

qµ sin (ζor) = b (3.40)

where ζor is the running zenith angle of the running length (q). Although the original application

of the equation was created with a different purpose in mind, Chauvenet’s equation applies to

refracted beam for an optical communication link because the ray geometry is the same. If
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Equation (3.39) is applied at the point where the ideal un-refracted ray intersects the Earth’s

surface, since q is equal to A, it becomes the following.

A sin (ζ0) = b (3.41)

Both formulations for the refracted and ideal unrefracted beams are related to the constant

b. From Snell’s law (Equation (3.2)), the true and apparent zenith angles can be described in

terms of atmospheric refraction. If combined with the Equations (3.39) and (3.41) an expression

for the refracted ray at the Earth surface can be found. From the geometry of the proposed

problem, an expression for dang can also be formulated.

ζ ′ = arcsin

[
sin (ζ0)

µ0

]
(3.42)

dang =
d

A
= ζ0 − ζ (3.43)

where µ0 and d are the atmospheric refraction at the ground and the refracted distance of the

beam along the Earth’s surface. An expression that relates ζ and ζ ′ is need to calculate the

refraction distance. Noerdlinger’s lumped parameter refraction equation is a modified version

of Hohenkerk’s atmospheric refraction equation. The full derivation is described in [18]. Sim-

ilar to the atmospheric refraction models discussed in Chapter (2), the difference between the

Hohenkerk and Noerdlinger formulations were in terms of how the A and B constants were

derived. According to Noerdlinger, the refraction equation (REFR) should be spliced at 83.9o

to avoid discontinuities, and to maximize the range of applicability of the model.

REFR =

[
(µ− 1)

1 + (W/A)

]
·

[
tan (z′)− 0.00117 tan 3(ζ ′)

]
(forH > 6.06o) (3.44)

REFR = (0.00167o)

[
.28Pmb
T o

]
·

[
1

tan[(H + 7.31)/(H + 4.4)]

]
(forH < 6.06o) (3.45)

H =

[
180

π
·

(
π

2
− ζ ′

)]
(3.46)
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where W , Pmb, T
o are the atmospheric density scale height, pressure in millibars, and temper-

ature in degrees. Noerdlinger’s lumped parameter formulation was derived by assuming that

neighbouring atmospheric layers were concentric and spherically symmetric.

Noerdlinger’s conceptual formulation of refraction was expanded to account for local atmo-

spheric temperature and pressure variations. Noerdlinger’s method assumes that the total

refraction at the observing station is equal to the standard atmospheric constant. This pa-

per used the 1976 Standard Atmosphere and radiosonde (or weather balloon) data to model

the atmospheric environment. Each model of the atmosphere was used with the intention of

finding a better representation of the atmospheric conditions at the observing site. Similar to

Noerdlinger’s method, it was assumed that the atmosphere was made up of concentric shells

and sypherically symmetric. Both the 1976 Standard Atmospheric model and radiosonde data

was used to calculate the atmospheric refraction of neighboring atmospheric layers. The run-

ning zenith angle equation was used to find the incident angle at the uppermost portion of the

Earth’s atmosphere.

ζatm = arcsin

[
Re sin ζor

(Re+ hatm)qµ

]
(3.47)

where hatm is the height of the atmosphere above the Earth’s surface. The total refraction was

calculated (Refrlayers) by applying the refraction change equation (Equation (3.3)) at every

altitude where atmospheric data was available. The total refraction was calculated by summing

the individual refractive contribution for all atmospheric layers (N).

REFRlayers =

N∑
i=1

µi − µi+1

µi+1

Ri+1µ
2
i+1 sin ζ

(R2
iµ

2
i −R2

i+1µ
2
i+1 sin2 ζ)1/2

(3.48)

By this method, the incoming zenith angle is also affected by the refraction experienced at each

atmospheric layer.
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Figure 3.5: Discrete total atmospheric refraction model comparison.

Two total atmospheric refraction geometries were considered in this section. The first model

was designed by Noerdlinger and uses a lumped parameter model to predict the bending as it

enters the atmosphere. Noerdlinger’s lumped parameter model will be referred to as Model 1 in

the following sections of this report. A discrete version of Noerdlinger’s method was developed

in this thesis. This was done with the aim of investigating the effect of the total atmospheric

refraction gradient that is present through the atmosphere at various altitudes.

3.5 Satellite Orbit and Optical Communication Link Power and

Intensity

The primary purpose of this work was to find strategies for implementing a ground to satellite

communication system. As such, a method for expressing the orbital geometry in terms of the

beam refraction and beam power of the emitted optical link was needed. Additional variables

were incorporated in order to fully define the satellite orbit geometry. Figure (3.6) illustrates the

geometric relation that was defined for both the observer and object. This model was expanded

from the orbit geometry model in [45] and combined with Noerdlinder’s geometry to find the

point of intersection of an refracted ray of light with an observer station at different zenith

angles and for different beam conditions.
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Figure 3.6: Satellite orbit beam emission geometry

The angular radius of the Earth (Ω) was calculated by using the altitude of the celestial object

(alt) and the radius of the Earth (Re).

sin Ω =
Re

Re + alt
(3.49)

The longitude and latitude of the observing station and satellite were used to find the nadir

angle of the satellite (η) and satellite elevation (ε) as follows [45].

cos τ = sin Γs sin Γt + cos Γt cos Γs cos ∆L (3.50)

tan η =
sin sin τ

1− sin cos τ
(3.51)

where,

∆L = Ls − Lt (3.52)

The refracted angle of the emitted light (dang) was used to estimate the apparent nadir (ηi) of

the celestial body. Small angular deviations were added (δzi) in order to examine the refraction

of off-axis optical light rays.
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Through geometry, the relationship shown in Figure 3.8 were established as follows. δri repre-

sents the angular distance of the ray from the centre of the beam.

ηi = η + ηrefr + δri (3.53)

cos εi =
sin ηi
sin ρ

(3.54)

τi =
π

2
− εi − ηi (3.55)

The angles η, τ form an obtuse triangle when the refracted beam intercepts the target. If we let

the third angle be named w′, to avoid angular ambiguities, the refracted earth centred refraction

angle was calculated as follows.

w′ =

(
R

G sin ηi

)
(3.56)

where if,

w′ <
π

2
w′ = π − w′ (3.57)
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Through this formulation, it was thus possible to calculate the expected elevation (εi) and Earth

central angle (τi) of both on-axis and off axis rays (i).

Gaussian beam geometry was incorporated into the observer-satellite geometric formulation. As

discussed in Chapter (3), if the full-width half-maximum angle (θFWHM ) of the beam is known,

then the beam waist (w0) and beam divergence angle can be found by combining Gaussian beam

equations as follows.

w0 =
M2λz

π(1.699r)
(3.58)

z =
r

tan θh
(3.59)

w0 =
M2λ

π(1.699 tan θh)
(3.60)

θ = 1.699 tan θh (3.61)

where,

θh =
θFWHM

2
(3.62)

Thus, that the beam intensity from Equation (3.32) can be written in terms of the propagation

distance and local on-axis offset (θi) and θ components in the x and y directions as shown in

Equation (3.63).

I(r, z) =
P

2π(zθ)2
exp

[
− 2 tan2 θi

θ2

]
(3.63)

For small angles, this equation can be simplified.

I(r, z) =
P

2π(zθ)2
exp

[
− 2θ2i

θ2

]
(3.64)

The ray approximation geometry combined with the satellite position is shown for reference in

Figure ??

30



Satellite
Beam Source

Towards
Groundstation

Towards
Nadir

η

z
θ iri

Figure 3.8: Emitted Gaussian beam satellite and groundstation contact.

If the detector size (Ad) at the observing station is known, the power spectrum of the refracted

beam at the ground (Pg) can be calculated by using intensity. Power was converted into photons

(P ) per bit by using Plank’s constant (n) and the beam’s wavelength (λ) [43].

P = ne (3.65)

e =
h

λ
(3.66)

Pg = AdI(r, z) (3.67)

Successful acquisition of an optical communication link depends on whether the sensor at the

groundstation can see the incoming signal. The total refraction geometry presented in this chap-

ter was used relate atmospheric data and satellite geometry to beam refraction. A simulation

was created to explore the effects that the atmosphere would have on an incoming optical com-

munication link. The simulation parameters and results are discussed in the following sections.

3.6 Total Atmospheric Refraction Simulation Parameters

The satellite-groundstation pointing geometry and beam parameters that were used are sum-

marized in Table 4.1.
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Table 3.2: Optical Communication Acquisition Link Geometry and Beam Parameters

Symbol Description Value

λ Wavelength [nm] 785e

alt Orbit Altitude [km] 500

a0 Altitude of Observer [m] 130

Re Radius of Earth [km] 6371

τ Earth Centred Observation Angle [deg] 7

rd Detector Radius [m] 0.3

θFHWMx Full Width Half Max Angle in x [deg] 0.01

θFHWMy Full Width Half Max Angle in y [deg] 0.06

M Gaussian Beam Mode 1

n Planck’s Constant [Js·e−34] 6.626

Two experiments were performed. The first experiment modified the beam geometry to compare

the power fluctuation change that was received at the groundstation for various zenith angles.

Since it most ideal to have the longest connection between the groundstation and satellite large

zenith angles were primarily considered. The second experiment considered comparing the

change in the power predictions if higher precision data was used for modeling the atmospheric

channel.

3.6.1 Atmospheric Channel Data

Two sources of atmospheric data were used in the total refraction estimation. The first was

the ICAO Standard Atmosphere table [46]. The standard atmosphere table provided the pres-

sure, temperature and density of the atmospheric layers above the Earth surface, and up to

80,000km. The atmospheric refraction model that was developed using the ICAO standard

tables is hereafter referred to as Model 2. Radiosonde data was retrieved from the Integrated

Global Radiosonde Archive. This database catalogues the pressure, temperature, and density

of the atmosphere close to local weather station. Atmospheric data is available up to 30,000km.

Since there is not a weather station near Toronto that offers this type of atmospheric data, the

weather station in Trenton Arpt with ID CAM00071621 was used. This was selected as the

local weather station because it is located at a latitude and longitude of 44.1170 and −77.5330.

The atmospheric refraction model that was developed using weather balloon data is hereafter

referred to as Model 3.
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3.7 Simulation & Results

The geometry that was presented in Figure (3.5) was used as a basis for the satellite point-ahead

simulation. Multiple beam refraction models were considered, and are described in Chapter 2

of this report. Among them, the following models of refraction Three models were simulated in

MATLAB.

Atmospheric Conditions and Atmospheric Geometry Model Types:

1. Model 1: Uniform Atmosphere Model (Noerdling Model) with ICAO constants

2. Model 2: Concentric Shells Atmosphere with ICAO constants

3. Model 3: Concentric Shells Weather Balloon data

Noerdlinger’s model was designed to make total refraction predictions based on the atmospheric

refraction constant at the groundstation. Model 2 was proposed in this paper, and uses ICAO

Atmospheric Standard constants to model total refraction in neighboring layers. Finally, Model

3 was developed in a similar method to Model 2, except local weather balloon data was used to

model atmospheric conditions.

Zenith angles measuring between 61 and 82 were considered. Beam refraction geometry was

used to find the refracted interception of the beam with the Earth’s surface. The surface distance

of the beam interception from the groundstation was calculated and used to relate the expected

power spectrum of the beam at that location. A summary of the results are listed in Table 3.4.

Table 3.3: Surface Distance of Refracted to Unrefracted Beam-Earth Intercept

Model 1 Model 2 Model 3

Zenith Angle [deg] Distance [m] Distance[m] Distance [m]

61 19.0103 21.2303 25.9285

64 25.9684 28.4957 34.7902

67 37.2711 40.1627 48.9918

70 57.5649 60.8282 74.0665

74 100.3159 103.5720 125.6455

77 221.856 221.3575 266.2178

82 1011.9432 919.4074 1072.2262
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The displacement of the beam peak value was also graphed for various zenith angles in Model

3 (see Figure 3.9). Results indicate that a 20 degree difference in zenith angle can cause beam

refraction surface distances to reach up to 1km.
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Figure 3.9: Satellite peak power difference for different zenith angles.

The expected power that was predicted by each model (for the same zenith angle) varied very

little. As such, it was concluded that a higher precision atmospheric model does not offer a

larger advantage over Noerdlinger’s lumped parameter model in terms of it’s power predic-

tion capabilities. The higher precision atmosphere would however help with beam refraction

centroiding at the groundstation if the refraction predictions are taken into account, and the

groundstation points it’s receiver in the most optimal direction for peak power. Table 3.4 lists

a comparison of the power in terms of photons/bit.
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Table 3.4: Peak Power (photons/bit) at Various Zenith Angles

Model 1 Model 2 Model 3

Zenith Angle [deg] Peak Power [ph/bit] Peak Power [ph/bit] Peak Power [ph/bit]

61 1.1785306e+03 1.1785354e+03 1.178546e+03

64 1.026634e+03 1.026639e+03 1.026650e+03

67 8.782027e+02 8.782070e+02 8.782200e+02

70 7.333956e+02 7.333993e+02 7.334145e+02

74 5.9183e+02 5.78326e+02 5.91853e+02

77 4.51671e+02 4.516706e+02 4.51696e+02

82 3.046865e+02 3.046565e+02 3.047060e+02

The experiment presented in this section looked at the comparison between the expected peak

power for satellites at different zenith angles. Results indicated that there was a trade off

between having a shorter period of contact with the groundstation (i.e.: with smaller zenith

angles) and the peak power that can be seen by the groundstation. The experiment that

was performed showed that an incident beam with an unrefracted zenith angle of 61 degrees

has a peak power of 1179 photons/bit and can drop down to 305 photons/bit for the same

configuration, but with a zenith angle of 82 degrees. Results showed that if a higher peak power

is required for ground-to satellite optical communication acquisition, a smaller zenith angle may

be necessary.
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CHAPTER 4 SATELLITE TRACKING INITIALIZA-

TION AND SETUP

Two methods for orbit determination were considered as ways to predict the location of ap-

pearance of an orbiting satellite communication system. Two-line element (TLE) sets were

considered a good candidate as a data source for orbital information because a large catalogue

of TLE sets were often updated and archived. Gauss’-Angles-Only (GAO) method was also

considered as an initial orbit determination method because it interfaced well with a trans-

portable groundstation set up. The GAO method uses three observations of right ascension

and declination that are spaced out in time to estimate the position and velocity vectors of an

orbiting body. Once the position and velocity of the orbiting body was known, it was possible

to calculate the azimuth and elevation of the satellite in the observer’s frame. This chapter will

discuss this process.

4.1 Gauss Angles Only Prediction Method to Azimuth and El-

evation

Gauss’ orbit determination method was revolutionary, at the time of its invention, because it

distanced itself from the methods that were based on hypothetical assumptions, and instead,

relied upon classical geometry [47]. The success of his method and its continued use today is

due to the fact that it can predict the motion of a rotating body from the measurements made

with a telescope [48][49]. A brief overview of Gauss’ method as described by Curtis [50] will

be presented in the following section. Gauss’ method was implemented in MATLAB and it’s

prediction accuracy was compared against NASA Horizons data.

Consider three observations that were made at times t1,t2, and t3. The geocentric position

vector of the observer at these times were represented by vectors G1, G2, and G3. Similarly,

the geocentric position of the orbiting body were defined by vectors R1, R2, and R3. The
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relative position vector of the orbiting body relative to the observer was denoted by ρ, and ρ̂ is

a unit vector that points in the direction of the orbiting body.

Since the earth is a slightly oblate spheroid, the geocentric position vector (G) was resolved in

terms of the geodetic latitude (Γ) and local sidereal (LST ) time of the observer as shown in

Equation 4.1 [50].

G =

[
Re√

1− (2f − f2)sin2Γ
+H

]
cos Γ(cos(LST )Î+

sin(LST )Ĵ) +

[
Re(1− f)2√

1− (2f − f2) sin2 Γ
+H

]
sin ΓK̂

(4.1)

where Re, H,φ and f were the Earth radius, observer height and Earth flatness factor (respec-

tively). Here, the local sidereal time was taken as the angle between the vernal equinox direction

and the local equinox. This was calculated by adding the Greenwich sidereal (LSTG) time to

the east longitude (L).

LST = LSTG + L (4.2)

The relationship between the observer and body was described by Equations (3)-(5).

R1 = G1 + ρρ̂1 (4.3)

R2 = G2 + ρρ̂2 (4.4)

R3 = G3 + ρρ̂3 (4.5)

Suppose we use a non-rotating topocentric equatorial frame that coincides with the inertial

geocentric equatorial coordinate system. The unit vector in the direction of the orbiting body

was defined in terms of the topocentric right ascension (α) and declination (δ) by Equation (6).

To avoid errors caused by parallax, the vectors r and ρ are considered uniquely.

ρ̂ = cosδcosαÎ + cosδsinαĴ + sinδK̂ (4.6)

At this point, it was concluded that with the topocentric right ascension and declination, lati-

tude of the observer, and local sidereal time of the observations, it is possible to find the vector
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quantities G and ρ̂. Thus, all that was left to find were the three components of the position

vectorsR at the time instances t1, t2, and t3 and the magnitudes of the slant range ρ1, ρ2, and ρ3.

From the conservation of angular momentum, it was assumed that the three vectors R1, R2,

and R3 lie in the same plane. As a result, they were expressed as follows.

R2 = c1R1 + c3R3 (4.7)

Assuming that the time diffrence between observations are small, let:

τ1 = t1 − t2 (4.8)

τ3 = t3 − t2 (4.9)

τ = τ3 − τ1 (4.10)

Through several steps of algebraic manipulation, it can be shown that the coefficients c1 and c3

can be expressed in terms of the slant range as follows.

G2 + ρ2ρ̂2 = c1(G1 + ρ1ρ̂1) + c3(G3 + ρ3ρ̂3) (4.11)

Let,

D0 = ρ̂1 · (ρ̂2 × ρ̂3) (4.12)

Multiplying each term in Equation (13) by ρ̂2 × ρ̂3, yielded the following equation for ρ1.

ρ1 =
1

D0

(
−D11 +

1

c1
D21 −

c3
c1
D31

)
(4.13)

By a similar approach, if the terms in Equation (13) were multiplied by ρ̂1 × ρ̂3 and ρ̂1 × ρ̂2 it

was possible to find terms for ρ2 and ρ3.

ρ2 =
1

D0

(
− c1D12 +D22 − c3D32

)
(4.14)
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ρ3 =
1

D0

(
− c1
c3
D13 +

1

c3
D23 −D33

)
(4.15)

where the D terms represent scalar triple products.

D11 = G1 · (ρ̂2 × ρ̂3) D21 = G2 · (ρ̂2 × ρ̂3) D31 = G3 · (ρ̂2 × ρ̂3) (4.16)

D12 = G1 · (ρ̂1 × ρ̂3) D22 = G2 · (ρ̂1 × ρ̂3) D32 = G3 · (ρ̂1 × ρ̂3) (4.17)

D13 = G1 · (ρ̂1 × ρ̂3) D23 = G2 · (ρ̂1 × ρ̂3) D33 = G3 · (ρ̂1 × ρ̂3) (4.18)

After several algebraic manipulations of the Lagrangian coefficients, coefficients c1 and c3 can

be approximated in terms of the time difference of the observations as follows.

c1 ≈
τ3
τ

[
1 +

1

6

µ

R3
2

(τ2 − τ23 )

]
(4.19)

c3 ≈ −
τ1
τ

[
1 +

1

6

µ

R3
2

(τ2 − τ21 )

]
(4.20)

Substituting the definition of c1 and c3 into Equation (14) yielded a correlation between the

slant range and the magnitude of the position r2.

ρ2 = A+
µB

R3
2

(4.21)

where,

A =
1

D0

(
−D12

τ3
τ

+D22 +D32
τ1
τ

)
(4.22)

B =
1

6D0

(
D12(τ

2
3 − τ2)

τ3
τ

+D32(τ
2 − τ21 )

τ1

τ

)
(4.23)

By a similar approach, by substituting the values of c1 and c3 into Equation (15) and (16), the

following was found.

ρ1 =
1

D0

[6

(
D31

τ1
τ3

+D21
τ
τ3

)
R3

2 + µD31(
2−τ21 ) τ1τ3

6R3
2 + µ(τ2 − τ23 )

−D11

]
(4.24)
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ρ3 =
1

D0

[6

(
D13

τ3
τ1

+D23
τ
τ1

)
R3

2 + µD13(
2−τ23 ) τ3τ1

6R3
2 + µ(τ2 − τ21 )

−D33

]
(4.25)

Substituting Equation (21) into Equation (4) and expanding terms yielded an 8th degree poly-

nomial.

R8
2 + aR6

2 + bR3
2 + c = 0 (4.26)

where

a = −(A2 + 2AE +G2
2) (4.27)

b = −2µB(A+ E) (4.28)

c = −µ2B2 (4.29)

Solving for the positive roots of Equation (26) yielded the magnitude of R2. Substituting this

value into Equation (21) to (25) lead to values for the slant ranges ρ1, ρ2, and ρ3. Thus, from

Equation (3) to (5) the values for the vectors R1, R2, and R3 can be calculated.

Lagrangian coefficients (f and g) contain information about state vectors at an instance in

time, and how these states change as a function of time. Thus, in the case of relative two body

motion, it can be shown that the position and velocity are linear combinations of the position

and velocity vectors at another time multiplied by Lagrangian coefficients. Within the context

of this problem, considering R1 and R3 this can be expressed as follows.

R1 = f1R2 + g1v2 (4.30)

R3 = f3R2 + g3v2 (4.31)

Given that τ1 and τ3 are assumed to be small time intervals, the first two terms of the Lagrangian

series expansion for f and g can be evaluated as follows.
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f1 ≈ 1− 1

2

µ

R3
2

τ21 (4.32)

f3 ≈ 1− 1

2

µ

R3
2

τ23 (4.33)

g1 ≈ τ1 −
1

6

µ

R3
2

τ31 (4.34)

g3 ≈ τ3 −
1

6

µ

R3
2

τ33 (4.35)

An equation for v2 was found by combining Equation (30) and (31).

v2 =
1

f1g3 − f3g1
(−f3R1 + f1R3) (4.36)

Vector v2 can be calculated by substituting the results from Equation (32) to (35) into Equation

(36).

Gauss’ initial orbit determination method can be improved by finding better values for the La-

grangian coefficients f1 and f3. The process outlined in this section was proposed in [50].

Stumpff’s transcendental equation of Kepler’s universal equation can be written as in terms of

the time difference τ1 and τ3 as follows [50].

√
µτ1 =

R2vR2√
µ

χ2
1C(αχ2

1) + (1− αR2)χ
3
1S(αχ2

1) +R2χ1 (4.37)

√
µτ1 =

R2vR2√
µ

χ2
3C(αχ2

3) + (1− αR2)χ
3
3S(αχ2

1) +R2χ3 (4.38)

where the magnitude of R2 and velocity v2 are calculated from the results that were found by

Gauss’ initial orbit determination method. The reciprocal of the semi-major axis (α), radial

velocity (vR2), and initial guess (χ0) components were found as follows.

α =
2

R2
− v22
µ

(4.39)
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vR2 =
v2 ·R2

R2
(4.40)

χ0 =
√
µ | α | τi (4.41)

where µ and τi were the Earth’s gravitational parameter and time of interest.

The Stumpff functions S(αχ2) and C(αχ2) were defined by:

S(y) =



√
y−sin√y
(
√
y)3

(y > 0)

sinh
√
−y−

√
−y

(
√
−y)3 (y < 0)

1
6 (y = 0)

(4.42)

C(y) =



1−cos√y
y (y > 0)

cosh
√
−y−1
−y (y < 0)

1
2 (y = 0)

(4.43)

y = αχ2 (4.44)

The Lagrangian coefficients that were presented in Equation (30) and (31) were expressed in

terms of Kepler’s universal anomaly (χ) and Stumpff function as follows.

f1 = 1− χ2
1

R2
C(αχ2

1) (4.45)

f3 = 1− χ2
3

R2
C(αχ2

3) (4.46)

g1 = τ1 −
1
√
µ
χ3
1S(αχ2

1) (4.47)

g3 = τ3 −
1
√
µ
χ3
3S(αχ2

3) (4.48)

χ1 and χ3 from Equation (37) and (38) were solved through Newton’s iterative process. Once

χ1 and χ3 values were found under the desired tolerance level, they were used in Equation (44)

to (47) to find better values for f1, f3, g1, and g3.
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Coefficients c1 and c3 were written in terms of the Lagrangian coefficients as shown in Equation

(48) and (49).

c1 =
g3

f1g3 − f3g1
(4.49)

c3 = − g1
f1g3 − f3g1

(4.50)

These results were combined with Equation (15) to (17) to calculate new slant range magnitudes

ρ1, ρ2, and ρ3. The process of estimating new slant range magnitudes were repeated until there

weren’t any significant changes between the new and old calculated values of the slant range.

From here, a new estimate of the position and velocity vector of the orbiting body was found

following the steps that were outined in Section 3.1 of this report.

The sate vector (r,v) of an orbiting body and its time-derivative were found in terms of La-

grangian coefficients (f, g) using the method presented in [50].

R = fR2 + gv2 (4.51)

v = ḟR2 + ġv2 (4.52)

The Lagrangian and change in Lagrangian coefficients can be written in terms of the Stumpff

coefficients by:

f = 1− χ2

R2
C(αχ2) (4.53)

g = ∆t− 1
√
µ
χ3S(αχ2) (4.54)

ḟ =

√
µ

R2
[αχ3S(αχ2)− χ] (4.55)

ġ = 1− χ2

R
C(αχ2) (4.56)

where ∆t is the new time of interest for the new predictions.
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The universal anomaly (χ) and the Stumpff coefficients were found by using the same method

that was outline in Section 3.2 of this report. Equation (51) and (52) were then used to find a

new state vector at the specified change in time ∆t.

The azimuth (Λ) and angular elevation (ν) angle of the orbiting body after a time lapse ∆t was

found as follows. Using Equation (1), the geocentric position vector (G) at the new sidereal

time (θ) was calculated. The slant range was found by using Equation (57), and converted from

the geocentric equatorial coordinate system to the North-East-Up topocentric frame (ρT ) by

using the rotation matrix shown in Equation (58).

ρ = R−G (4.57)

CGT =


− sin(LST ) cos(LST ) 0

− sin Γ cos(LST ) − sin Γ sin(LST ) cos Γ

cos Γ cos(LST ) cos Γ sin(LST ) sin Γ

 (4.58)

ρT = CGTρT (4.59)

where Γ is the geodetic latitude of the observer.

The unit vector of the slant range (ρ̂T ) was described in terms of the azimuth and elevation by:

ρ̂T = cosαsinΛî+ cosαcosΛĵ + sinνk̂ (4.60)

The elevation and azimuth of the orbiting body was found by combining the results from Equa-

tion (58) with the definition of the slant unit vector from Equation (60), and isolating for α

and Λ. Flow charts in Figure 4.1 and 4.2 illustrate the correlation between key values in Gauss’

method.

4.2 TLE Predictions

TLE information for many satellites are available for free download on the Celestrak website. It

was noticed however that TLE information for the same satellite was often only available twice
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a day. As such, a propagation method would be necessary to calculate the expected location of

appearance of the orbiting satellite system. Given that a transportable groundstation is equip to

find the right ascension and declination of an orbiting object, it was decided that Gauss’ Angles

only method would be best suited. The Horizons data that was generated for comparison in

the following section were generated by NASA’s JPL lab through a propagator that sources it’s

information from NORAD’s TLE sets. Key NORAD TLE components are itemized in Table

(4.1) for completeness.

Table 4.1: NORAD Two-Line Element Set Key Information [51]

Line Column Description

1 01 Line Number of Element Data

1 03-07 Satellite Number

1 19-20 Epoch Year (Last two digits of year)

1 21-32 Epoch (Day of the year and fractional portion of the day)

2 09-16 Inclination [Degrees]

2 8-25 Right Ascension of the Ascending Node [Degrees]

2 27-33 Eccentricity (decimal point assumed)

2 35-42 Argument of Perigee [Degrees]

2 44-51 Mean Anomaly [Degrees]

2 53-63 Mean Motion [Revs per day]

2 64-68 Revolution number at epoch [Revs]

The orbital information that was retrieved from the Horizons propagator was converted into a

position and velocity state vectors in the ECI and ECEF frames by using the standard method

outlined in [50]. These vectors were then used to find the azimuth and elevation of the orbiting

body. The right ascension and declination in the inertial frame was used to estimate the position

of an Earth orbiting object in the telescope’s image plane and is discussed in Chapter (6).

4.3 Simulation & Results

As discussed in [49] and [48], Gauss’s method is still used today as a way to make an initial

estimate of a body’s position and velocity vectors. Its continued use and relevance was one of

the reasons that this method of orbit determination was selected for the work presented in this

paper. This section will discuss the simulation that was designed in MATLAB and compares
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the results that were found for the position and velocity estimates to database information that

was derived from TLE sets.

NASA JPL’s Horizons system is a database that converts TLE sets (for comets, asteroids,

planes, and satellites) into state vectors and orbital elements by using an SPG4 propagator.

The Horizons database offers a large range of astronomical datasets and provides statistical

uncertainties for the information that is generated. Horizons creators estimate that there is a

3σ standard deviation statistical uncertainty for orbit quantities that are generated for asteroids

and comets.This statistical estimate assumes that the orbit observational errors are random, and

expects that there is a 99.7% chance that the predicted value is within the sigma bound [52].

Statistical uncertainties for other celestial bodies are not indicated. The Horizons database was

selected as a source for orbit information due to its availability and because of the precision of

the orbital quantities that were outlined for a subset of celestial bodies.

Gauss’ orbit determination method makes it possible to calculate the future state vectors (r,v)

of an orbiting body from angular measurements made with a telescope. This information can

then be used to calculate the altitude and elevation of an orbiting body at future instances in

time. A MATLAB code was developed using Gauss’ method to predict future state vectors

of the International Space Station (ISS) and were compared to the propagated SPG4 values

that were available on NASA JPL’s Horizons. The model that was created and the results that

were found are presented in this chapter. The MATLAB model that was developed made the

following key assumptions.

• The observer-ISS model was a two-body problem.

• The time between observations of the ISS were small.

The state vector of the ISS was calculated by using the extended Gauss orbit determination

method. The future states of the ISS were predicted by using Lagrangian coefficients. Flow

charts in Figure 4.1 and 4.2 illustrate the correlation between key values in Gauss’ method.
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Figure 4.1: Gauss’ Initial orbit determination method variables.

Figure 4.2: Finding Azimuth and elevation from Gauss’ predictions.

The right ascension and declination, at the time of the ISS’ appearance, were retrieved from

JPL’s Horizons System [53]. Five different time windows were evaluated between November

10th, 2017 and November 11th 2017. This data was generated from the web-interface on Novem-

ber 15th, 2017. The sample ephemeris data considered were selected at times when the ISS was
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visible from Toronto. Three local apparent right ascension, declination and sidereal time were

sampled at 1 minute intervals for each trial.

NASA’s Horizons web-interface right-ascension and declination predictions were made for an

airless environment. The azimuth and elevation predictions were adjusted for light-time, grav-

itational deflection of light, precession and nutation. Internally, the Barycentric Dynamical

Time scale was used for all predictions. For future predictions, the last known leap second was

implemented into time conversions [53].

Each right ascension and declination measurement was propagated forward in time up to 5

minutes into the future, and used to predict the ISS’ azimuth and elevation as seen from Toronto.

As seen in Figure (4.3) Results indicated that the error of the prediction increased on average

as the predictions were made further into the future.

Figure 4.3: Azimuth and elevation error predictions for Gauss’ method over time with J2.

Gauss’ method was also able to predict the azimuth and elevation for each sample with an

average error of 6.38e−3 degrees after 5 minutes if the J2 effects are included. Position and and

velocity error predictions dropped to a maximum of 0.5e−4 km and 0.8e−6 km/s when the J2

effects were not included in the vector estimations.
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Figure 4.4: Azimuth and elevation error predictions for Gauss’ method at 5 minutes with J2.

Figure 4.5: Position prediction errors without J2.
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Figure 4.6: Velocity prediction errors without J2.

The comparison of Gauss’ method with Horizons SPG4 data indicates that Gauss’ method

would be a good way to approximate the orbital characteristics of the ISS. Horizon’s data is

derived from TLE data that were generated several hours before a groundstation might try to

connect with the ISS. As such, Gauss’ method can be used instead from telescope measurements

at the early stages of the ISS’ orbital pass. The correct position a velocity vectors will allow

the groundstation tracking manoeuvre to be more accurate.
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CHAPTER 5 EXTENDED KALMAN FILTER

The Kalman Filter (KF) was first developed by R.E. Kalman in 1961 as a method to optimally

filter process the noise in the system dynamics and the measurement noise present in the sensor

readings [32]. The KF has found its use in numerous industries and practical applications today.

This chapter will discuss the design of the Extended Kalman Filter (EKF) that was developed

for the optical communication tracking problem. This EKF formulation was implemented in a

MATLAB simulation. The results of the simulation are discussed at the end of the chapter.

5.1 Kalman Filter Overview

A Kalman filter is an algorithm that provides a recursive solution to dynamical system. Kalman

filters are an attractive solution generators because it does not store all previously observed data.

Instead, it uses a recursive approach which relies only on the last state vector estimate and most

recent measurement update. By this, Kalman filters are computationally more efficient than a

system where all archived data is used in a state estimate. This section will give a brief overview

of the components that are used in an EKF algorithm.

Kalman filters in its primary process contains a state vector (xj), a state transition matrix

(Φj+1,j), and process noise (Qj). The KF requires that a linear, time-varying, and uniquely

defined dynamic model be designed in order to estimate the system state over time. The state

transition matrix propagates the evolution of the state and its errors from one instance in time

(j) to the next (j+1). The process noise represents the random changes in the dynamic system

over time. It is assumed that the process noise is white Gaussian and additive. The state

transition matrix, at time t, is approximated by using a Taylor series expansion.

X̄j+1 = X̂j +
˙̂
Xj∆t+

¨̂
Xj

∆t

2!
+ . . . (5.1)
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If Equation 5.1 is placed into the dynamic model, the state transition matrix can be defined as

follows.

X̄j+1 = X̂j + FX̂j∆t+ F 2X̂j
∆t2

2!
+ . . . (5.2)

where,

F (t) =
∂f(X)

X
(5.3)

Φ = I + F∆t+ F 2∆t2

2!
+ . . . (5.4)

A standard Kalman Filter can only be used for a linear system. For some systems, it is possible

to create a Linearized Kalman Filter (LKF) by linearizing about the state. The EKF algorithm

is similar to the LKF formulation, but it updates the reference state when an observation is

collected. This state updates enables the EKF to experience few divergence issues when there is

a sizeable difference in the measurement data. As such, it was found that an Extended Kalman

Filter would suit the orbit determination estimation problem best.

The observation matrix (H) is defined as the change of the state with respect to the change in

the observations, and is typically calculated analytically.

H =
∂observationsj+1

∂X̄j+1
(5.5)

The predicted state noise, measurement covariance, process noise covariance matrices are initial-

ized at the beginning of the EKF algorithm and are given values based on the dynamic problem

that is considered. It is sometimes difficult to correctly initialize the process and observation

noise covariances, and so additional tuning may be required.

This section focused on describing key components of the Kalman filter. Non-linear systems

can sometimes use an LKF, but might encounter issues with convergence. As such, the EKF

algorithm is often preferred. Although the EKF is better equip to handle large differences in

observational data, it should be noted that the EKF is more computationally expensive because

an integration is performed to find the error state transition matrix at each observation time.

Despite the additional computational expense, the EKF method was selected for this work.
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5.2 EKF Filter Formulation

The Extended Kalman Filter method uses state, error covariance, and observation information

recursively in order to predict the state of the system at a specific time in the future. This

chapter will summarize the steps that are used in the EKF algorithm.

The variables that are essential to the EKF algorithm were discussed in the previous chapter.

The evolution of these system components are co-dependent and are used to estimate the state

as shown in the below [54].

The process is first initialized with values for the state, process noise and measurement covari-

ance, and then the following measurement matrix is calculated.

Hj+1 =
∂Z

∂X̂j+1

(5.6)

The predicted state cycle is defined by,

X̄(tj+1|tj) =

∫ tj+1

tj

˙̄Xjdt+ X̄j (5.7)

F =
∂

˙̂
Xtj+1

∂X̂tj+1

, Φ̇(tj+1, tj) = F (t)Φ(tj+1, tj) (5.8)

The error covariance prediction is determined by,

P̄ j+1 = ΦP̂ jΦ
T +Q (5.9)

where the state update was initialized as follows.

δx̄j+1 = 0 (5.10)

The measurement update sequence involves calculating the estimated observation, Kalman gain,

state error estimate, and error covariance estimate, and are represented by Equation 5.11 to

Equation 5.14 (respectively). The measurement update sequence is performed when a new

measurement is introduced into the system. If there isn’t a new measurement that is input

into the system, the algorithm will continue to cycle through the state prediction process until

observation data is available.
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The measurement update cycle is defined by,

b̃j+1 = Z −Hj+1X̄j+1 (5.11)

δx̂j+1 = K̂j+1b̃j+1 (5.12)

Kj+1 = P̄ j+1H
T
j+1

[
Hj+1P̄ j+1H

T
j+1 +R

]−1
(5.13)

P̂ j + 1 = P̄ j+1 −Kj+1 +Hj+1P̄ j+1 (5.14)

Finally, the state estimate was made with the following.

X̂j+1 = X̄j+1 + δx̂j+1 (5.15)

Once the new estimated state and process covariance are calculated, the EKF algorithm is

repeated from state prediction cycle until the desired timestep k.

This section gave a brief summary of the EKF state estimation process. The following chapter

will discuss how each parameter within the algorithm were modeled.

5.3 System Dynamics

The EKF algorithm was used to estimate the position and velocity (r, v) of a target satellite.

To set up the EKF method, the state matrix and the observation matrix needed to be described

analytically. The method that was used to define these characteristics are discussed in this

section.

The state vector (X) of the system was defined as the position and velocity of the orbiting

satellite.

X =
[
rx ry rz vx vy vz

]T
(5.16)
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Using the equations of motion, a 2-body orbiting system, the state matrix was defined as follows.

F =
∂Ẋ

∂X
(5.17)

F =



∂vx
∂rx

∂vx
∂ry

∂vx
∂rz

∂vx
∂vx

∂vx
∂vy

∂vx
∂vz

∂vy
∂rx

∂vy
∂ry

∂vy
∂rz

∂vy
∂vx

∂vy
∂vy

∂vy
∂vz

∂vz
∂rx

∂vz
∂ry

∂vz
∂rz

∂vz
∂vx

∂vz
∂vy

∂vz
∂vz

∂rx
∂rx

∂rx
∂ry

∂rx
∂rz

∂rx
∂vx

∂rx
∂vy

∂rx
∂vz

∂ry
∂rx

∂ry
∂ry

∂ry
∂rz

∂ry
∂vx

∂ry
∂vy

∂ry
∂vz

∂rz
∂rx

∂rz
∂ry

∂rz
∂rz

∂rz
∂vx

∂rz
∂vy

∂rz
∂vz


(5.18)

F =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

− µ
|R|3 + 3µr2x

|R|5
3µrxry
|R|5

µrxrz
|R|5 0 0 0

µrxry
|R|5 − µ

|R|3 +
µr2y
|R|5

3µryrk
|R|5 0 0 0

3µrxry
|R|5

3µryrz
|R|5 − µ

|R|3 + 3µr2z
|R|5 0 0 0


(5.19)

where |R| is the magnitude of the position vector and µ is the Earth gravitational constant.

The observation matrix was found by calculating the partial derivative of the state vector with

respect to the observations. In this thesis, the optical observations that were input into the

system are made with respect to a ground station. As such, the observation matrix was defined

in terms of the slant range (ρ), satellite position (r) and observer position (G).

ρ =
[
ρx ρy ρz

]
(5.20)

ρ = R−G (5.21)

H =
∂obs
∂R

=
∂obs
∂ρ
· ∂ρ
∂R

=
∂obs
∂ρ
· I (5.22)
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H =


− ρy

ρ2x

(
ρ2y

ρ2x
+1

) 1

ρx

(
ρ2y

ρ2x
+1

) 0

−ρxρy
ψ −ρyρz

ψ

(
1√

ρ2x+ρ
2
y+ρ

2
z

− ρ2z
ρ2x+ρ

2
y+ρ

2
z

)3/2

· 1ψ

 (5.23)

where,

ψ =

√
1− p2z

ρ2x + ρ2y + ρ2z
(ρ2x + ρ2y + ρ2z)

3/2 (5.24)

The state matrix was defined by using the equations of motion of an orbiting satellite and the

observation matrix was found by taking the partial derivative of the slant range with respect to

the optical observations. Both of these matrices were used in the MATLAB simulation that was

developed to apply the EKF method to the optical communication target tracking problem.

5.4 Simulation & Results

The EKF state estimation method was simulated in MATLAB to evaluate its ability to use

optical observations for satellite target tracking. This section will present the experiments that

were conducted and discuss the significance of the results. The trials that were evaluated aim

to determine whether the EKF is a suitable state estimation propagator when only angular

information about the satellite is available.

A few simulation parameters were defined for the EKF estimator. Given that the measurement

data can change based on the observer’s location, it was decided that the observer would be

located in Toronto (latitude: 43.6532o, longitude: -79.3832o, altitude: 62 × 10−3 km). Also,

since the ISS information is continuously available at regular intervals, the simulation used the

position and velocity of the ISS that was reported at 7:51:00 on May 20th, 2018. The initial

state parameters in the ECI frame were as follows.

Table 5.1: EKF Initial Position and Velocity in ECI at 7:51:00 on May 20th, 2018

State Vector

Position [km] (6415.7,-2192.3,0.1730)

Velocity [km/s] (0.9,2.0,-7.4)

Measurement errors were introduced into the EKF data inputs to evaluate the suitability of

the Kalman filter for the angles-only orbit determination problem. The addition of normally
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distributed random variables within three ranges (±0.1, ±0.3, and ±0.5 degree) were added

to the measurement data. The Kalman filter was able to estimate the position and velocity

of the satellite within the 3σ range. As expected, larger error deviations were found when

more error was introduced into the measurement information. The Kalman filter was unable to

find position estimates that were within the sigma bound for angles that were greater than 0.5

degrees. The error of the position for all three tests are included below.
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Figure 5.1: EKF position state estimates in the Rx, Ry, Rz directions ±0.1o.
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Figure 5.2: EKF position state estimates in the Rx, Ry, Rz directions ±0.3o.
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Figure 5.3: EKF position state estimates in the Rx, Ry, Rz directions ±0.5o.
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In the instance where a 0.1 degree measurement error was introduced, the position and velocity

prediction errors could be as large as 1.4 km and 0.002 km/s respectively. Similarly, for the

experiment with 0.3 degree error, errors found were a maximum of 3.6 km and 0.0077 km/s.

Finally, when a measurement error of 0.5 degrees was included, errors were up to 6.9 km

and 0.013 km/s. Error in the velocity state predictions were small for all three angle ranges

considered. An example of the velocity error is included here for completeness.
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Figure 5.4: EKF velocity state estimates in the vx, vy, vz directions ±0.5o.

This section examined whether an EKF state estimator could be used to predict the position

and velocity of an orbiting satellite when only measurement information is available. Results

indicated that it is possible to make state estimation predictions, but the measurement error

would need to be less than 0.5o in order to remain within the 3σ bound.
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CHAPTER 6 CONCLUSION

This thesis examined three strategies relating to the acquisition of a refracted communication

beam, validated an angles only orbit determination method, and designed a groundstation

controller for satellite tracking maintenance.

The first strategy examined explored the effects of atmospheric conditions on the refraction of

a satellite-to-ground emitted beam. Beams that are emitted from space experience refraction

that can be modeled by Snell’s law. It was shown that Snell’s law can be used to approxi-

mate refraction between spherical concentric atmospheric layers, or be simplified to a planar

layer model. Since optical communication systems start operation at high zenith angles (i.e.:

at least greater than 45o), it was concluded that the planar refraction approximation could

not be applied. Empirical refraction models that were developed by Smart, Auer Standish,

Stone, and Noerdlinger were considered. However, since Noerdlinger’s empirical model had the

largest amount of flexibility it was selected as a central model in the test scenarios that were

performed. Nodlinger’s empirical model assumed that atmospheric layers were concentric, but

relatively uniform throughout. As such, Noerdlinger’s model was compared with two discrete

atmospheric model that used weather balloon data and ICAO standard atmospheres to model

atmospheric conditions. Results indicated that atmospheric layers had the greatest impact

on beams with large zenith angles and a lesser impact on beams with smaller zenith angles.

Through a simulation it was found that the power of a refracted beam with an incident zenith

angle of 61 deg would emit 1179 photons/bit of power, whereas an incident zenith angle of 82

deg would emit a peak power of 305 photons/bit. Through the simulation it was also found that

the power predictions made by Noerdlinger’s empirical refraction model did not differ substan-

tially from the predictions that were made by the concentric stratified atmospheric refraction

model. As such, it was concluded that the detailed atmospheric model did not add any benefits

to the power predictions, but could benefit if precise beam centroiding was necessary.

Setting up a groundstation to receive a communication link from an orbiting satellite requires

precise knowledge of the location of the emitted beam. Satellite position estimation was achieved

by estimating the state vectors (r,v) of the orbiting satellite. TLE information is available
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for many satellites and is updated 2-3 times per day. An SPG4 propagator can be used to

propagate the orbital elements to a later time in the day to describe a more current set of

orbital parameters. This work used Gauss’ angles only method to use information that is

observable with a telescope to define state vectors. Gauss’ method was considered because it

could be implemented with real-time observations and could estimate the most current orbital

parameters as a satellite travels through the sky. To validate the use of Gauss’ method, it was

compared to the SPG4 data that is generated by NASA. Results indicated that Gauss’ method

can make azimuth and elevation predictions with an average error of 6.38e−1 degrees. Similarly,

it was found that prediction errors for the satellite position and velocity were 0.5e−4 km and

0.8e−6 km/s respectively. Although it was found that Gauss’ method was appropriate for

satellite state estimation, results indicated that the error of the predictions grew as predictions

were made further in the future. As such, caution should be used when applying this estimation

method over long periods of time.

Tracking a satellite from an optical ground station is necessary for maintaining an optical

communication link. As such, an Extended Kalman Filter was designed to observe and predict

the position of a target satellite. Through a MATLAB simulation, it was possible to examine

the effects that incorrect observation data could have on state predictions. In this experiment,

the right ascension and declination of a satellite in LEO was subjected to errors between three

ranges (±0.1, ±0.3, and ±0.5 degrees). Results showed that the EKF could still predict the

state variables of the satellite errors that were as small as 1.4km and 0.002km/s and as large as

6.9km and 0.013 km/s.

The studies presented in this work demonstrated that strategies can be put in place to improve

or simplify the setup and design of a ground and satellite optical communication system. The

results that were found are positive and indicate that the a satellite to ground optical system

can implement strategies to increase the chances of a successful link acquisition and tracking.
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