Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2008
The effect of multi-bit correlation on the design of
routing resources in field programmable gate arrays

Ping Chen
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Chen, Ping, "The effect of multi-bit correlation on the design of routing resources in field programmable gate arrays" (2008). Theses
and dissertations. Paper 292.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/292?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

THE EFFECT OF MULTI-BIT CORRELATION
ON
THE DESIGN OF ROUTING RESOURCES

IN FIELD PROGRAMMABLE GATE ARRAYS

by
Ping Chen
Bachelor of Applied Science

Beijing University of Aeronautics and Astronautics, 1996

A thesis

presented to Ryerson University

in partial fulfillment of the
requirements for the degree of
Master of Applied Science
in the Program of

Electrical and Computer Engineering
Toronto, Ontario, Canada, 2008
© (Ping Chen) 2008

PROPERTY OF -
RYERSON UNIVEREITY LIBRARY

I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to other

institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or
dissertation by photocopying or by other means, in total or in part, at the
request of other institutions or individuals for the purpose of scholarly

research.

iii

THE EFFECT OF MULTI-BIT CORRELATION
ON
THE DESIGN OF ROUTING RESOURCES OF
FIELD PROGRAMMABLE GATE ARRAY

Master of Applied Science, 2009
Ping Chen

Electrical and Computer Engineering
Ryerson University

ABSTRACT

The large arithmetic-intensive applications increasingly implemented on
field-programmable gate arrays (FPGAs) challenge FPGA architects to design FPGAs
that can efficiently transport large amount of multi-bit wide signals in the data-path
circuits of these applications. In this work, we investigate the area efficiency of two
FPGA multi-bit aware routing architectures — the sparse and the enhanced sparse
architectures, and compare them with the conventional and the configuration memory
sharing architectures. We found that the sparse and enhanced sparse architectures are
6-10% more area efficient than the conventional architecture. Our data also show that
while the configuration memory sharing architecture can achieve the highest level of
theoretical area savings for multi-bit transportation, it performs poorly for circuits with
50% or less multi-bit signals. These results suggest that FPGA architects should look
beyond conventional architectures in order to create more efficient routing architectures

for modern FPGAs.

ACKNOWLEDGEMENTS

Many people have helped and supported me in this long and intense endeavor that
took to get here.

I would like to first address my thanks to my family in China. I would like to thank
my father, whom I will always give credit for every achievement in my life even though
he could not even witness my graduation from high school. I would like to thank my
mother, who always offers unconditional help and support to every decision I have made
even when the decision was to bring me to the other side of the earth from her. I would
like to thank my sister, who is different from me in many ways but has influence on me in
all the ways, in a good way.

I would like to express my gratitude to the many helpful suggestions, endless patience
and great support from my supervisor, Dr. Andy Ye, who has given me the best career
opportunity I’ve received so far in Canada. He is a bit “difficult” when it comes to
writing, a skill I often overlooked in my research, but now when I look back, I really
appreciate his push and enjoy the progress I have made.

The two year study in Ryerson would have been much more stressful than it was
without my classmates, who shared pressure and happiness with me in the hall way of the
engineering building during class breaks or in the subway on our way back home. I
would like to thank all my classmates, in particular, Sebastian and Theepan.

I would like to thank my husband, Mark Stoodley, for his company to me during
those tiring weekends when I struggled for deadlines in the lab, for the warm meals he
prepared for me after I came home after night classes in cold winter nights, for the
knowledge he shares with me on programming and research, and for his patience to wait
for me to find my direction in this new continent. Running into him is my best luck.

Finally, I would also like to thank my parents in law, whose house is the warmest in
Toronto, and my brother in law’s family, who are always a lot of fun to stay with. I am
grateful and happy to be the person I am today and I would like to thank all the people
who make it happen.

vi

- TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

1.1. THESIS MOTIVATION ...ccooeuureteereerreeteesessseeeeseessreeeesssnssesssesssssssesssssssessssssssesessssssssessns
1.2, THESIS CONTRIBUTIONuuutuuurrrrrreeeerieeeeeeesssrssssssssseseeesseessessssssesssssssssssssssesssssssssnnnes
1.3. THESIS ORGANIZATIONuuuuuururrrrrereeeeeeeeeeerseeesssssssssessseeeseeeeeeseessassmsssssssessessssssssssnnnes

CHAPTER 2. BACKGROUND

2.1. GENERAL FPGA ARCHITECTURE........c.ceeetteeeeerrnrerrreereeeeeeeeeeeeseeesesssssssssssessessssssssssnnes
2.1.1. Overview of the General FPGA architeCturecceecueeveceeeivesreneeaeenneans
2.1.2. Common Logic BIOCK StFUCIUTES.ccueeueeceeeiecerecieeieeiiecieeeesieeveseesee e
2.1.3. Common Routing ArchiteCture StFUCIUFE.coecveereeereereeeeereessesresssesnennens

2.2. CONVENTIONAL ARCHITECTURES ettt ettt et r e e e e b e e a e st e b e srbesaeens
2.2.1. Structure of the Conventional ArcRiteCture....................ccoeveeveeeeeceeereeceeerresenenans

2.2.2. Routing Resource Modeling in VPR

3.1. THE SPARSE ARCHITECTUREcceetvrrtirrrrnreiiiiieeeeeeeeeeeeeereesrsssssssssssssssssssssssssssssssnnnsnns

3.2. THE ENHANCED SPARSE ARCHITECTURE

CHAPTER 4. TRADEOFFS BETWEEN ROUTING SWITCH DENSITY AND
ROUTING FLEXIBILITY...

2.3. CONFIGURATION MEMORY SHARING ARCHITECTUREcccceeceeuerrersuennernenneesnenanes -
2.3.1. FPGA with Configuration Memory Sharing Architecture....................ccocuvevenne..
2.3.2. Routing Resource Modeling in CAD T0O0l..............ccoourercemiineneseseneeeeecnennes

CHAPTER 3. THE SPARSE AND ENHANCED SPARSE ARCHITECTURES

...

3.3, DESIGN SPACE ANALYSIS ...ttiutiiiiiiueeertenineeieeeesteeeeeetessseessseesseessseesssessssesssesssesssssons

4.1. CIRCUIT ASSUMPTIONS ...eeeteeteeeeeeeseeeseeseeeeeeseeseessesseesseessesssessssssesessseesesssesssessessses
4.2. ROUTING SWITCH DENSITY COMPARISON.......uuuvrrrrereeeeeeeesiersssssrrrrereeeeosesesssssssssssseeees

CHAPTER 5. ROUTING TOOL SELECTION

CHAPTER 6. EXPERIMENTAL RESULTS

6.1. EFFECT OF CONFIGURATION MEMORY SHARING ON AREA EFFICIENCY.......ccoeevvnneee.
6.2. SHIFT AND CONTROL ENHANCED SPARSE ARCHITECTURES VS. CONFIGURATION
MEMORY SHARING ARCHITECTUREvvitiiirierreeiireteeeeeerssreeesesssssseeessessssessssssresesssssssssesssnnes
6.3. MULTI-BIT AWARE VS. CONVENTIONAL ARCHITECTUREScuvveeervrrereerrnrreeeeennneenes
6.4. PERFORMANCE COMPARISONccovveeiiirrurrtrneeenereseseeeeseeeeseeseessessssssssssssssssssssssssssssnnnss
CHAPTER 7. CONCLUSION
T. 1. THESIS SUMMARY .eevutuuuueeeeeeeeeeeetieeeeeerermssssinmmsssessssssessssssesssesesesssssssssssssssssssssssssssssnnns
7.2. SUGGESTIONS TO FUTURE WORKccccuuvuuttieriireeeeseeeeeeeeeeeerreersrsssessessssssssssessssssssssnsns
REFERENCE...

vii

..... 8

39

39
41

45
53
54

59
62
65

67

67
68

71

LIST OF TABLES

TABLE 3.1 CONNECTION BLOCK DESIGN SPACEcccccuvtrrrternnreeenreeieueessnecesmeesssmneesssnessssessssnees 38
TABLE 4.1 SINGLE-BIT AND MULTI-BIT TRACK REDUCTIONcuvttriuueerreeernreenireeeseeeeeneessneees 43
TABLE 5.1 ROUTING AREA FOR THE SPARSE ARCHITECTUREccceetteuererrirrenrenneneenseesuessennne 45
TABLE 5.2 ROUTING AREA FOR THE CONVENTIONAL ARCHITECTUREcccovieimuriinnneensnneecnnees 46
TABLE 5.3 COMPARISON OF ROUTING AREA FOR THE CONVENTIONAL ARCHITECTURE 51
TABLE 6.1 NOTATIONS FOR ARCHITECTURAL PARAMETERScuttivimiiinmiiiniiiiiiiecinnncinnncenneees 53

TABLE 6.2 PARAMETER SETTINGS FOR THE SPARSE AND THE CONFIGURATION MEMORY

SHARING ROUTING ARCHITECTURESccveeuiereereenesesessensensessessessessessessessessessessesseessssneneenne 54
TABLE 6.3 PARAMETER SETTINGS FOR THE ENHANCED SPARSE AND THE CONFIGURATION

MEMORS(SHARING ROUTING ARCHITECTURESueerueeveruerreeiveeeensessuesneessesseesseessessseseessens 59
TABLE 6.4 ROUTING AREA VS. % OF MULTI-BIT SIGNALS PER CIRCUITcoceceverrueruerereneennenne 62
TABLE 6.5 PARAMETER SETTINGS FOR THE CONVENTIONAL, SPARSE, AND

CONTROL-ENHANCED SPARSE ARCHITECTUREScovuetererereessnsesessssesssssesssessssssssessssssssns 63
TABLE 6.6 ROUTING AREA VS. % OF MULTI-BIT SIGNALS PER CIRCUIT 65

TABLE 6.7 ROUTING DELAYS OF 15 BENCHMARKS ROUTED ON THE 4 BEST ARCHITECTURES ..66

A viii

_ LIST OF FIGURES

FIG. 2.1 OVERVIEW OF THE GENERAL FPGA ARCHITECTUREcceerverenerrererirneneesesesesenessesesennns 8
FIG. 2.2 2-INPUT LUT (2-LUT) ..utiotiiieiirieeieeteseesteetest et sseeeseesssessesssasessesssessasssesssesssessassansenns 8
FIG. 2.3 A BASIC LOGIC ELEMENT (BLE)cueititiiieieiieieinrecteeste et sestese s easse e s esesssesesanes 9
FIG. 2.4 A 3-INPUT 2-OUTPUT CLUSTER.....cc0etrterreirrerreteressenseseesessessessessesessassessssessessesansessesaseens 10
FIG. 2.5 ROUTING SEGMENTS OF LENGTH 2coveutieieiinirieniereensereiesenseessesesesseastesesessesessssesesenes 10
FIG. 2.6 FULL SWITCHES AND HALF SWITCHES EMPLOYED IN SWITCH BLOCKSc.ccccoveveuennnn. 11
FIG. 2.7 SWITCH BLOCKcoveuiitenieniriinieninteteiensesteessessestesessessesessessessassessssessasssssssessesessensesassesenns 12
FIG. 2.8 CONNECTION BLOCK......c.couttruetrrereiirrerieteessesesessessesesessessessassesessessessesessesessensessesassons 13
FIG. 2.9. ALGORITHM TO GENERATE SWITCH PATTERNS IN CONNECTION BLOCKS.................... 14
FIG. 2.10 CONNECTION BLOCKS IN THE CONVENTIONAL ARCHITECTURES.......ccocerveverrenerrervenenn. 15
FIG. 2.11 ROUTING RESOURCE GRAPH IN VPRcooiiiiiiiiiiniiiiteeinree e csveeessneecssnneessnaeses 15
FIG. 2.12 FPGA WITH CONFIGURATION MEMORY SHARING ARCHITECTUREccccoveeereruennenenns 16
FIG. 2.13 MAP A 4 BIT WIDE ADDER TO A MULTI-BIT LOGIC BLOCKc.cceevvueiriererenrereesrenennnes 17
FIG. 2.14 A SIMPLE 4 BIT WIDE PROCESSORcceveuteteueiruerisaesaeeseseesesssesessesesessssesessssesssssesanens 18
FIG. 2.15 A PROCESSOR MAPPED ONTO AN FPGA WITH MULTI-BIT AWARE ROUTING
ARCHITECTUREc.cveueutteeneteseaestesesestssesesassestssesessesesassesestesensesesessentssenessesensssesesessesenesesesenes 19

FIG. 2.16 MULTI-BIT SWITCH BLOCK IN THE CONFIGURATION MEMORY SHARING

ARCHITECTUREeeuveeteetiecveseenseetessesssessesssesssesssssssessesssessssssasssssssesessessssssessasssssssessasssessasssans 20
FIG. 2.17 MULTI-BIT CONNECTION BLOCKS........ccciirrttiiniiieienirienieeeesesneessseeessssaessssnssssseesssssssnns 20
FIG. 2.18 CONNECTION BLOCK IN THE CONFIGURATION MEMORY SHARING ARCHITECTURE ...21
FIG. 2.19 ROUTING RESOURCE GRAPH FOR THE CONFIGURATION MEMORY SHARING

ARCHITECTUREuvtieiuteieieeersieeseseeeesseessissessssssessssasssssesssssssesssssssesssssssssssssesssssssssasssssassssasens 22
FIG. 3.1 SWITCH BLOCK ON MULTI-BIT TRACKS IN THE SPARSE ARCHITECTURESc.ccc0eeveenene. 24
FIG. 3.2 CONNECTION BLOCK IN THE SPARSE ARCHITECTUREccueevrverrenrenreeresressessessessesaneens 25
FIG. 3.3 CONFIGURATION MEMORY SHARING SETTING IN THE ARCHITECTURE FILE.................. 25
FIG. 3.4 SIGNALS ROUTED IN THE CONNECTION BLOCKS IN THE SPARSE ARCHITECTURE 26

FIG. 3.5 SIGNALS ROUTED IN THE CONNECTION BLOCKS IN THE SPARSE ARCHITECTURE WITH

EXTRA ROUTING SWITCHESccccceeruereeerrneeeeererressreesssessseesessessssessssessncessssessaessssesssassssessaasas 27
FIG. 3.6 THE ENHANCED SPARSE SWITCH PATTERNS INVESTIGATED IN THE RESEARCH............ 28
FIG. 3.7. THE ALGORITHM ADDING THE CONTROL PATTERNS TO THE SPARSE SWITCH PATTERN

... 29
FI1G. 3.8 THE CONTROL ENHANCED SPARSE SWITCH PATTERNS DESCRIBED IN AN

ARCHITECTURE FILEcoiiiiiiiniiiiiteeneectereeete ettt eee st s v s aesee st e s e e e ssessee e saesneenis 31
FIG. 3.9 AN ENHANCED SPARSE SWITCH PATTERNccccterrreremrerrueeranrenennernseessneeseesssessneene SR 32

FIG. 3.10 MERGED SWITCH PATTERNSccceeerterteeireeienreenresssessessesssesssesseesseessesssesssesssesssssssanssnes 32
FIG. 3.11 ROUTING RESOURCE GRAPH FOR THE ENHANCED SPARSE ARCHITECTURE 33
FIG. 3.12 SWITCH PATTERNS GENERATED BY VPR ...ttt 34
FIG. 3.13 SWITCH PATTERNS IN THE CONFIGURATION MEMORY SHARING ROUTING
ARCHITECTUREuvicuveereeeteerseessesisessseesasssessesssessesssesssessssssssssesssesssesseessesssesssessssssssnsssnsssasonns 35
FIG. 3.14 SWITCH PATTERNS IN THE CONTROL ENHANCED SPARSE ARCHITECTURE 36
FIG. 4.1 INPUT AND OUTPUT CONNECTION BLOCKS IN THE CONFIGURATION MEMORY SHARING

AND SPARSE ARCHITECTURESoeviuimimriiinesetennssesesessssiese st sssssssssssssssssssssssssssesessnnes 40
FIG. 4.2 INPUT AND OUTPUT CONNECTION BLOCK IN THE ENHANCED SPARSE ARCHITECTURE41
FIG. 4.3 ROUTING AREA PER TILE IN MIN WIDTH TRANS WHEN F¢ n/Fc 0i7=0.4/0.25 42
FIG. 4.4 ROUTING AREA PER TILE IN MINIMUM WIDTH TRANSISTORS......cceoeuruenerminennenenenuenennens 43
FIG. 5.1 A ROUTING ITERATION IN THE CONVENTIONAL ROUTING TOOLccevemmriereinnrnnnnnncnns 47
FIG. 5.2 A ROUTING ITERATION IN THE MULTI-BIT AWARE ROUTING TOOL......ccovviniriencnrinnnnne 48

FIG. 5.3 EXPERIMENT 1: CHANGE THE ROUTING SEQUENCE IN THE CONVENTIONAL ROUTING

FIG. 5.4 EXPERIMENT 2: CHANGE THE WAY OF RIPPING UP NETS IN THE MULTI-BIT AWARE
ROUTING TOOLuveuvenririeiieteciestestesteseeeeesestesaessessaesaesaestessessessessessesssensensessessessessssssesssssannas 50
FIG. 6.1 NUMBER OF SINGLE-BIT AND MULTI-BIT ROUTING TRACKS IN THE CONFIGURATION
MEMORY SHARING ROUTING ARCHITECTUREceevveeueenreeeeeseesseessesssesseessesssesssessessaessassnes 55
FIG. 6.2 NUMBER OF SINGLE-BIT AND MULTI-BIT ROUTING TRACKS IN THE SPARSE
ARCHITECTUREuveevieeveesvessaessseesssessssessssessseessseesssessssessssessseessssssssessssssssssssssssssssssssasssssans 55
FIG. 6.3 ROUTING AREA FOR SPARSE AND CONFIGURATION MEMORY SHARING ROUTING
ARCHITECTURESoetiuvierteesteerresssesssaessssesssesensessnsessseessstesssesssessssesssssssssossssesssessssesssssssnsnsaes 56
FIG. 6.4 MULTI-BIT TRACK REDUCTION DUE TO ROUTING ALGORITHM OPTIMIZATION............ 56
FIG. 6.5 REDUCTION IN ROUTING AREA FOR THE SPARSE ARCHITECTURE DUE TO ROUTING

ALGORITHM OPTIMIZATIONceiieriiirinneeiinreeisrneesiseesssssesssseesssssssssssssesssssesssssssssssssssasassnns 57
FIG. 6.6 ROUTING AREA VS. % OF MULTI-BIT TRACKS.......ccecctierttinrirntiiiiinieiiieenieecneesseessneenns 58
FIG. 6.7 TRACK SEGMENTS VS. % OF MULTI-BIT TRACKSccovviiiriiniiiniriniiintrestennsnssnessnnennne 59

FIG. 6.8 NUMBER OF SINGLE-BIT AND MULTI-BIT ROUTING TRACKS IN THE

CONTROL-ENHANCED SPARSE ARCHITECTUREceeeniireeenirieeeesneesieciieseneessneenssesasensees 60
FIG. 6.9 ROUTING AREA VS. % OF MULTI-BIT TRACKS......cccoveueriruemeninreinnenesenneisnssessssesensssasnens 61
FIG. 6.10 TRACK SEGMENTS VS. % OF MULTI-BIT TRACKSccccceeeiiivriiniiiniinriiniecneeeieennneenns 61
FIG. 6.11 MOST AREA EFFICIENT F y VALUES FOR THE CONVENTIONAL ARCHITECTURE......... 63
FIG. 6.12 ROUTING AREA VS. % OF MULTI-BIT TRACKScveeeuerteinrenreereenseneessessesessessesssnens 64
FIG. 6.13 TRACK SEGMENTS VS. % OF MULTI-BIT TRACKS....o..ccoeueurierecirieiicisicnsinssssanassesnaens 64

CHAPTER 1

INTRODUCTION

Field programmable gate arrays (FPGAs) are integrated circuits that can be
programmed to implement virtually any digital circuit. FPGAs were developed from
mask-programmable gate arrays (MPGAs). MPGAs, however, are programmed using
integrated circuit fabrication to form metal interconnections. FPGAs, on the other hand,
are programmed via electrically programmable switches. FPGAs are similar to the
traditional programmable logic devices (PLDs) but can achieve much higher level of
integration than PLDs [1].

Over the years, FPGAs have developed rapidly to programmable logic devices that
can accommodate more than a half million logic elements and tens of millions of memory
bits. These devices can be clocked at over 600MHz to perform high speed tasks [2][3] .

FPGAs are optimized for implementing digital hardware algorithms and have the
added advantage of being able to change their functionalities in a fraction of second.
Being both hardware-oriented and programmable, FPGAs provide a unique blend of
performance and flexibility, which has proven essential in many applications. The
programmability of FPGAs, however, has made their design particularly challenging.
Typically, only 25% of FPGA area is actually used to perform computation while the
remaining 75% is used for the routing resources which connect the computing elements
together [1]. Due to their vast area consumption, the design of the routing resources is as
important as the design of the computing elements.

As the logic capacity of FPGAs increases, more and more arithmetic-intensive
applications are implemented on FPGAs. Consequently, there has been a corresponding
increase in the variety of FPGA computing elements. From a mere collection of logic
blocks, FPGAs now can include digital signal processors, multipliers, multi-bit
addressable memory cells, and even processor cores [2][3]. One of the common
characteristics of these new computing elements is their multi-bit design, where each

element is designed to process several bits of data at a time.

While the input and output pins of a conventional logic block carry independent bits
of information, the input and output pins of a multi-bit processing element are logically
organized to represent multiple-bit wide data. In this organization, pins that represent a
datum are often used at the same time. Similarly, routing resources are routinely used to
transport multiple-bit wide data from a common source to a common destination.

To transport a multiple-bit wide datum (a multi-bit signal), one can either treat the
datum as a set of independent signals (single-bit signals) and transport these signals
individually through conventional routing resources, or view the entire datum as a single
coherent unit and transport the unit collectively through a set of specialized routing
resources.

Conventional routing tools treat signals independently and route them individually. In
this thesis, we call routing architectures associated with the conventional routing tools as
the conventional architecture and the routing tracks in these architectures the single-bit
routing tracks. The conventional routing tools can be represented by the Versatile Place
and Route (VPR) tool [4], a successful FPGA CAD tool widely used in academia. VPR
assumes a routing architecture that distributes switches from logic block I/O pins to
routing tracks as uniformly as possible such that each /O pin has an equal chance to
connect to any of the routing tracks. Consequently, a multi-bit signal is often broken into
a sequence of single-bit signals — the correlation among these signals is ignored and the
regularity of the multi-bit signal is destroyed.

To preserve the regularity of multi-bit signals, we can transport a multi-bit signal as a
single unit on a set of specialized routing tracks. We call the specialized routing tracks
multi-bit routing tracks. The routing architectures containing multi-bit tracks are called
multi-bit aware routing architectures. The multi-bit tracks and logic block I/O pins are all
grouped into buses. Within a bus, each routing track or a logic block I/O pin is assigned
to a unique bit position. An I/O pin can only be connected to multi-bit tracks that are at
the same bit position and vice versa. Compared to the routing tracks in the conventional
architecture, a multi-bit track can connect to fewer logic block I/O pins. This reduced
connectivity results in sparser switch patterns which consume less active area. At the
same time, sparser switches also lower the flexibility of the routing tracks. As a result,

more tracks might be needed to route a particular circuit. Therefore, the area efficiency of

multi-bit aware routing architectures compared to conventional architectures depends on
the tradeoff between the spa}seness of the routing switches and the utilization of the
routing tracks. Investigation into the sparser switch pattern design may lead to more area
efficient FPGA routing architectures, but we are not aware of any previous work in this
direction.

Even though the commercially available general purpose FPGAs have included
data-path oriented features such as processors and multipliers, these features are mainly
aimed at improving the performance of specific arithmetic functions through
heterogeneous architectures. Recent research on commercial FPGAs center on improving
the performance or lowering the power consumption of FPGAs through more advanced
logic block and routing circuitry design [5][6][7]. The routing architectures in that
research, however, are still based on the conventional routing architectures. We are not
aware of any industrial research to investigate either multi-bit aware routing architectures
or the design of automated CAD tools that can capture and maintain data-path regularity.

Many academic researchers have studied data-path oriented field programmable
architectures, which are typically designed for arithmetic-intensive applications. These
studies, however, either have not empirically reported on the area efficiency of the
routing architectures or have focused on substantially different logic and routing
architectures from those found in conventional FPGAs. The field programmable
architectures investigated in previous research can be classified into 4 classes: 1)
processor-based architectures; 2) static Arithmetic Logic Unit (ALU)-based architectures;
3) dynamic ALU-based architectures, and 4) Look Up Table (LUT)-based architectures.
Examples of the processor-based architectures include PADDI-1[8], PADDI-2 [9], RAW
machine [10], and REMARC [11] architectures. Instead of processors, the static
ALU-based architectures are built on arrays of arithmetic logic units. This class of
architectures can be represented by Colt [12], DreAM [13], and PipeRench [14]
architectures. Unlike the static ALU-based architectures, which can be only configured
by configuration memory bits, the dynamic ALU-based architectures can also be
configured by the data from the computation process in the architectures. Several
dynamic ALU-based architectures are the RaPiD [15], MATRIX [16], and Chess [17]

architectures.

The above 3 classes of architectures are constructed from arrays of processors or
ALUs, which are considerably more complex than the conventional LUT-based logic
blocks and therefore have very different routing demands and routing resources. This
difference limits the researches on these architectures from benefiting from the current
work on FPGA routing architectures. The fourth class of the architectures — the
LUT-based architectures such as Garp [18], the mixed-grain FPGA [19], and DP-FPGA
[20][21] architectures — is the closest to conventional FPGA architectures. In the Garp
architecture, however, the track segments remain unconnected to each other instead of
being connected through routing switches as in the conventional architectures. This
feature severely limits the possible applications of this architecture. The mixed-grain
FPGA architecture study defined the basics of its routing architecture, which is closer to
conventional architectures than the Garp architecture, but this work didn’t measure the
area efficiency by actually placing and routing benchmark circuits on the architecture.
Like the mixed-grain FPGA architecture, the DP-FPGA architecture study did not
empirically report on the area efficiency of its routing architecture. In fact, this work did
not define a complete set of its building blocks, so there is not yet a CAD flow for the
DP-FPGA architecture.

Based on the DP-FPGA architecture, the work in [22] developed the MB-FPGA
architecture. This work carefully defined the detailed routing architecture for the
MB-FPGA architecture, and has designed a full CAD flow for the architecture. This work
also routed a set of benchmark circuits on the MB-FPGA architectures and found 8%
routing area saving over the conventional routing architectures. The MB-FPGA routing
architecture is multi-bit aware routing architectures and has multi-bit tracks that can be
grouped together for multi-bit transportation. The routing architecture, however, has
configuration memory sharing among the switches within a bus, so the effect of the
switch pattern design was mixed together with the effect of configuration memory
sharing. From the experimental results of this work, therefore, we can not decide how
much of the area savings can be attributed to the sparser switch pattern design on the

multi-bit tracks and how much is from sharing configuration memory.

1.1. Thesis Objectives

The motivation of this thesis is to investigate the sparser switch patterns
independently. In this research, we first separate the sparser switch patterns from
configuration memory sharing to generate a new routing architecture called the sparse
architecture, and then we improve upon this routing architecture to produce the enhanced
sparse architecture. The goal of this work is to look beyond the conventional
architectures and search for more area efficient FPGA routing architectures that can be

used to implement data-path oriented applications.

1.2. Thesis Contribution

This thesis evaluates two new FPGA multi-bit aware routing architectures: the sparse
and the enhanced sparse architectures. The research on these two routing architectures
greatly expands the FPGA routing architecture design space previously explored by the
conventional architecture. Our thesis shows that the conventional architecture only
explored a very small fraction of the total design space.

In the research, we routed a set of benchmark circuits on these two new routing
architectures and measured their area efficiency, track counts, and performance. We
found that the sparse and the enhanced sparse architectures are more area efficient than
the conventional architecture with only a slight increase in track count, and are as area
efficient as the configuration memory sharing architecture with significant decrease in
track count. We also found that the performance of these two new architectures is as good

as that of the conventional and the configuration memory sharing architectures.

1.3. Thesis Organization

The thesis is organized as follows. The general FPGA architecture and the two
existing routing architectures — the conventional and the configuration memory sharing
architectures will be described in Chapter 2. The two new routing architectures that this
research targets — the sparse and the énhanéed sparse architectures — are introduced in
Chapter 3. To understand the tradeoffs between the routing density and the routing
flexibility in these routing architectures, Chapter 4 then compares the routing resource

density of all four routing architectures and estimates the routing flexibility required by

the sparse and the enhanced sparse architectures to maintain their area efficiency. Before
we experimentally evaluate the area efficiency of these two routing architectures, we
select, in Chapter 5, the routing tools for the evaluation. Chapter 6 presents the results of

our evaluation. Finally, in Chapter 7, we summarize the thesis and propose future work.

CHAPTER 2

BACKGROUND

In this chapter, we describe the background material for the remainder of the thesis.
Section 2.1 introduces the general FPGA architecture, including the structure of logic
blocks and the routing architecture. We will then review two earlier routing architectures
in Sections 2.2 and 2.3, respectively: 1) the conventional architecture generated by the
VPR tool, and 2) the conﬁguration memory sharing architecture. The first routing
architecture acts as a baseline in our research, while the second one is the building block

of the new routing architectures described later in this thesis.

2.1.General FPGA Architecture

FPGA'’s programmability can be realized through various programming technologies
such as: anti-fuses, erasable programmable read-only memories (EPROMs) and static
random access memories (SRAMs). The FPGA logic blocks can be built on one or more
of the followings: transistor pairs, basic gates, wide fan-in AND-OR structures,
multiplexers and Look Up Tables (LUTs) [1]. SRAM based FPGAs whose logic blocks
are built on LUTSs are the main stream in the current FPGA market, and also the focus of

our research. In this section, we will introduce the architecture of these FPGAs.

2.1.1. Overview of the General FPGA architecture

The general architecture of an FPGA is shown in Fig. 2.1. The logic blocks are the
basic programmable computing elements in an FPGA. The input or output pins of the
logic blocks are connected to the routing tracks through the connection blocks and the
routing tracks are connected together through the switch blocks. The switch and the
connection blocks are the two building blocks for the FPGA routing architecture. The
I/O blocks exchange signals between the FPGA and external circuits. Since the remainder
of the thesis does not deal with the I/O blocks, we do not describe them in detail here. In
the remaining part of this section, we will give further details on the structures of the

logic blocks and the routing architecture.

1/0 Block

Logic Block

Switch Block

i Connection Block
—— Routing Tracks
Logic Block I/0 Pins

1/0 Block
1/0 Block

1/0 Block

Fig. 2.1 Overview of the General FPGA Architecture

2.1.2. Common Logic Block Structures.

The logic blocks are based on Look Up Tables (LUT). A LUT, paired with a register
forms a Basic Logic Element (BLE). Several BLEs are then connected together to
become a cluster. Finally, one or several clusters form a logic block. In this section, we
will introduce the structure of the logic block in details, starting from its basic building
blocks — LUTs.

In0 Out=aAND b a

- a | b |Out

0
0 0
@—‘ Out
0 1 0

1 0| O

T 111b

W
@__
@_

(a) (b) (c)
Fig. 2.2 2-Input LUT (2-LUT)
LUTs are combinational circuits consisting of K inputs, a set of multiplexers and

SRAMs, through which LUTs can be programmed to realize any K input combinational

logic functions. An example of a 2-input LUT (2-LUT) is shown in Fig. 2.2. The
structure of the LUT is illustr;lted in Fig. 2.2 (a) while Fig. 2.2 (b) and (c) show how the
LUT works as an AND gate. To map a 2-input AND gate to a 2-LUT, we need to store
all possible outputs of the AND gate in the SRAM cells of the 2-LUT. These outputs are
shown in the 3™ column of the truth table shown in Fig. 2.2 (b). Correspondingly, the
binary values “0 0 0 1” are stored in the SRAM cells of the 2-LUT as shown in Fig. 2.2
(c). In Fig. 2.2 (c), the digit “0” or “1” on each input line of multiplexers denotes the
value of the selection signal that is needed for the corresponding input line to be selected
to be the multiplexer output. For example, if the selection signal a is 1 and the selection
signal b is 0, the lower input to the multiplexer in the second stage and the upper input to
the multiplexer in the first stage are selected. As a result, the stored content in the 3™
SRAM is delivered to the output of the 2-LUT. This output matches the output in the 4™
row of the truth table shown in Fig. 2.2 (b). The remaining 3 cases in the truth table can

be verified in the same way.

CLK
Q [-
INO D J, ouT
IN1
N2 aLuT O”t.f - .
IN3
BLE

Fig. 2.3 A Basic Logic Element (BLE)

LUTs are the major programmable resources in FPGA logic blocks. A LUT is often
paired with a sequential circuit to form a higher level logic unit. In a typical FPGA, a
LUT and a register are wired together to form a Basic Logic Element (BLE) as shown in
Fig. 2.3. In the figure, 4 BLE inputs are directly connected to a 4-input LUT and the
output of the BLE can either be connected to the registered version of the 4-LUT output
or be directly connected to the output of the 4-LUT.

Several BLEs are then connected by a set of local routing resources to form a cluster.
Fig. 2.4 shows a cluster with 3 inputs and 2 outputs. This cluster has two 2-input BLEs
whose inputs can be connected to any of the inputs or outputs of the cluster through a set

of multiplexers controlled by SRAM cells. These inputs to the cluster are therefore

logically equivalent and so are the outputs.

=
-l

BLEO
INO oy —

IN1

SRS |
IN2 L~

Fig. 2.4 A 3-Input 2-Output Cluster.

BLE1 OouT1

CLUSTER

The conventional FPGAs assume that each cluster directly forms a logic block. The

data-path oriented FPGAs, on the other hand, group a set of clusters into a logic block.

2.1.3. Common Routing Architecture Structure

. .

Logic Logic Logic

Block Block Block
Routing
Tracks

Logic Logic Logic

Block Block Block
Routing
Tracks

]
Logic Logic Logic
Block Block Block

Fig. 2.5 Routing Segments of Length 2
The logic blocks are connected through programmable routing resources in an FPGA.
FPGA routing resources include routing tracks and programmable routing switches,

which are grouped into the switch and connection blocks.

10

The routing tracks are organized into routing channels, which run both horizontally
and vertically between the loéic blocks. A routing track is broken into track segments. A
track segment with length N spans N logic blocks. Fig. 2.5 shows a simplified routing
architecture with 2 horizontal and 2 vertical routing channels with the track segment
length of 2. The track segments are connected together through switch blocks and to the
logic block I/O pins through connection blocks. In the remainder of this section, we

describe the structure of the switch blocks and the connection blocks respectively.

[--SRAM .

?ﬁﬁﬁ) o o[% [0 o
o o =

Wa BT

Bl 4§ Jejlo =
\
(a) Pass Transistor Based Full Switch (b) Tri-state Buffer Based Full Switch

g ﬁgw

(c) Pass Transistor Based Half Switch (d) Tri-state Buffer Based Half Switch

Fig. 2.6 Full Switches and Half Switches Employed in Switch Blocks

Fig. 2.6 shows two types of switches that are employed in a switch block — the full
and the half switch. A full switch connects 2 horizontal routing track segments with 2
vertical routing track segments. The switch can be constructed out of pass transistors or
tri-state buffers as shown in Fig. 2.6 (a) and (b). A half switch connects two
perpendicular routing tracks that continue through a switch block. A pass transistor based
half switch is illustrated in Fig. 2.6 (c) and a buffer based half switch is shown in Fig. 2.6
(d). |

Using the full and half switches, a switch in a switch block connects an incoming
track to a set of outgoing tracks. The topology of switch blocks decides the exact set of
outgoing tracks that an incoming track can connect to. Among several common

topologies used for switch blocks [23] [24] [25], we will describe the disjoint topology in

11

detail since the topology was shown to be one of the most efficient and is used in many
studies on the conventional architecture [4] [23] [26] and the configuration memory

sharing architecture [27].

.Q Full Switch

" Half Switch

o = N W

sy
N

0 1 2 3
(a) The Disjoint Topology (b) A Switch Block with The Disjoint Topology

Fig. 2.7 Switch Block

Fig. 2.7 (a) shows the connections in a switch block that employs the disjoint
topology. In this figure, a dashed line represents a connection between two track
segments. An incoming track in the switch block is always connected to 3 outgoing tracks
of the same index. For example, as shown in Fig. 2.7 (a), the horizontal track at index 1
entering the switch block from the left can connect to 1) the vertical track at index 1
leaving the switch block from the top, 2) the horizontal track at index 1 leaving the switch
block from the right or 3) the vertical track at index 1 leaving the switch block from the
bottom. Fig. 2.7 (b) shows actual construction of a switch block with the disjoint
topology. The switch block connects two perpendicular channels that contain 4 tracks
each. Two of these 4 tracks continue through the switch block while the other two end.
To connect the ending tracks, we need two full switches shown in Fig. 2.6 (a) or (b). To
connect the continuing tracks, two half switches shown in Fig. 2.6 (c) or (d) are used
instead.

The other types of building blocks for the FPGA routing architecture are the
connection blocks, which are used to connect either the routing tracks to the logic input
pins (the input connection blocks), or the logic output pins to the routing tracks (the
output connection blocks) . The input connection blocks are built from multiplexers while
output connection blocks are built from tri-state buffers. Fig. 2.8 shows a simple example
of an input connection block and an output connection block. In the input connection

block, the SRAMs connected to the select inputs of the multiplexers select the routing

track to be connected to a logic block input. In the output connection block, the SRAM
cell on the base of a pass transistor turns on the pass transistor to connect a logic block

output to a routing track.

] - SRAM
Logic Block

QutO

an}i — In1£ 1 v
T =

Routing
Tracks Zl&
ﬁ& il
: -5
Input Connection Output Connection
Block Block

Fig. 2.8 Connection Block.
More details about the connection and the switch block design will be described in
the next two sections where we introduce the two routing architectures studied in

previous research: the conventional and the configuration memory sharing architectures.

2.2.Conventional Architectures

In the section, the conventional architecture generated by VPR is introduced. We will
first describe the structure of the routing architecture, and then explain how the

architecture is modeled in VPR.

2.2.1. Structure of the Conventional Architecture

Similar to the general routing architecture introduced in Section 2.1.3, the building
blocks of the conventional routing architecture are the switch blocks and the connection
blocks. The switch blocks utilized by VPR are tri-state buffer based and employ the
disjoint topology. The design of the switch blocks are described in Section 2.1.3.

The connection blocks are more complex than the switch blocks. The switch patterns
in the connection blocks are generated by the algorithm shown in Fig. 2.9. In this figure,

F. is the fraction of routing tracks per channel that can be connected to a logic block input

13

or output (I/O) pin, P is the number of logic block I/O pins, and W is the number of
routing tracks per channel. The algorithm generates a switch pattern matrix containing the

index of a routing track that the jth connection of the ith logic block I/O pin connects to.

IF logic block 1/O pins are output pins THEN
C =ceil (Fc*W)

ENDIF

IF logic block I/O pins are input pins THEN
C = floor (Fc * W)

ENDIF

step=W/P/C

increment=W/C

FOR (i=0;i<P;it++)
FOR (j=0;j<C;j++)

switch_pattern[i][j] = floor(step * i + increment * j)

ENDFOR

ENDFOR

Fig. 2.9. Algorithm to Generate Switch Patterns in Connection Blocks

Fig. 2.10 shows 4 examples of the connection blocks that can be generated by the
algorithm with varying F, values. In the figure, a dot represents a switch in the
connection blocks. A vertical line is a logic block I/O pin and a horizontal line is a
routing track. There are a total of 4 I/O pins and 8 routing tracks in each of the switch
patterns shown in the figure. When F, is 0.25 as shown in Fig. 2.10 (a), two of the 8
tracks are connected to each logic block I/O pin via routing switches. When F¢ is 1.0 as
shown in Fig. 2.10 (d), all the tracks are connected to each logic block I/O pin.

F., and P are described in the architecture file [28] and W can be either specified by a
command line parameter input to VPR or decided by the routing process in VPR
according to routing requirements. VPR generates the specified FPGA architecture

according to the command line parameters and the architecture file.

’ LOGIC BLOCK _ 1 LOGIC BLOCK ‘ LOGIC BLOCK LOGIC BLOCK

Py
‘___

.__._

ot

(8) Fc=0.25 (b)Fc=0.5 (c) Fc=0.75 (d) Fc=1.0

Fig. 2.10 Connection Blocks in The Conventional architectures

2.2.2. Routing Resource Modeling in VPR

Routing resources in the conventional architecture include sources, sinks, input or
output pins of logic blocks, routing tracks and routing switches. All output pins from a
logic block are logically equivalent and originate from a common source. Similarly, all
the input pins to a logic block are also logically equivalent and terminate to a common
sink.

Routing resources in VPR are modeled as a directed graph called the routing
resource graph, or rr-graph [4]. In an rr-graph, the nodes are used to represent sources,
sinks, logic block I/O pins and routing tracks. Routing switches that connect logic block
I/O pins to routing tracks or routing tracks together are modeled as edges in the rr-graph.

To generate an rr-graph, VPR first generates a switch pattern using the algorithm
shown in Fig. 2.9. VPR then converts the pattern along with the assigned switch block
topology into connections between the nodes of the graph. During the conversion, the
specific circuit level details such as the buffer or pass-transistor based switches are also

modeled according to the architecture file.

Routing Switch | CLB CLB

Routing Track{ # * .' T #
Output T Input

Pin Switch Pin
Block

(a) Routing resource in FPGA (b) Routing resource graph

Fig. 2.11 Routing Resource Graph in VPR

15

Fig. 2.11 shows an example of the routing resource graph. The routing resources
shown in Fig. 2.11 (a) are represented by the routing resource graph shown in Fig. 2.11
(b). In this figure, all the routing resources except routing switches are modeled as nodes
that are represented by white circles, and the connection between two nodes is modeled

as a directed edge.

2.3. Configuration Memory Sharing Architecture

| | (A
sB |—| sB sB | SB SB |—
sw || CONN sw || conn SW
_ 1] 0 B 0
Multi-bit | = w _2 = N ﬁ e = we ==
pre— Sw CONN — sSw CONN sSw
Tracks = = =
1 1 T 10 O
. . || muLTIBIT . . || muLTi-BIT . .
g3 835 LOGIC 25 85 LOGIC £3 85
© © BLOCK © © BLOCK © °
o l i M [
Single-bit ngv] CCSJEIN H1—m— ss\?v] cgzN g\?v —
Tracks |“ m I]]E
= EE_—E = = =
= MB mB = mB MB = mB
— sw CONN || sw L] coN L] sw
= = =i = ==
1 I =F T |
- . || muLTiBIT . _ || muLTBIT . .
g3 85 LOGIC g3 85 LOGIC 23 88
b © BLOCK © © BLOCK © ©
[] [Il M _L1T
sB sB s8 [s it s8 |—
sw CONN sw [conn sSWo—
— 1] _ i _
= MB == MB = MB MB = MB
— sSwW CONN = sSw CONN % SwW

Fig. 2.12 FPGA with Configuration Memory Sharing Architecture
Another routing architecture we will describe in details is the configuration memory
sharing architecture. This architecture is one of the multi-bit aware routing architectures,
which are designed to take advantage of the large amount of multi-bit wide signals
existing in data-path oriented applications. Most of the earlier studies on data-path

oriented FPGAs have focused on the design of logic blocks [20][21]. The work in [22][27]

[29] investigated the design of the multi-bit aware routing architectures. This work,
however, focused primarily on the configuration memory sharing aspect of the multi-bit
aware routing architecture designs. In this section, we briefly review the configuration

memory sharing architecture studied in his work because it forms the basis of this thesis.

2.3.1. FPGA with Configuration Memory Sharing Architecture

Bit Slice 0 Cluster0
t Sum0
a0 LUTO | .—o Lurt iS4m0
b0 i "
Bit Slice 1 - Cluster1
al ~ [. Sum1
bl /n > Cluster0
al > LUTO | Lumt [Sym1
N R A=a3..a0 SUM=
b1 - f Clustert Sum3...
Sum0
+’
Bit Slice 2 Cluster2 Cluster2 4
2y, —Sum2 B=b3...b0
b2 a2 g Sum2 4
» LUTO |— LUT1 H2 Cluster3
b2 g
Multi-bit
Logic Block
Bit Slice 3 Cluster3
a3) q . Sum3
b3
a3 » LUTO —l L Lut1 [Sym3
b3 i "
(a) (b) (c)

Fig. 2.13 Map a 4 bit Wide Adder to a Multi-bit Logic Block

Fig. 2.12 shows an FPGA with the configuration memory sharing architecture. The
FPGA is constructed out of multi-bit logic blocks. These blocks are connected by two
types of routing tracks — the single-bit and the multi-bit tracks. A set of single-bit tracks
can be connected either to another set of single-bit tracks by a single-bit switch block
(SBSW) or to a set of logic block I/O pins by a single-bit connection block (SBCONN).
One major new feature of this routing architecture is the addition of multi-bit routing
tracks specialized for transporting multi-bit signals. The multi-bit routing tracks are
grouped into routing buses. A routing bus can be connected either to another routing bus

by a multi-bit switch block (MBSW) or to a set of logic block I/O pins by a multi-bit

17

connection block (MBCONN).
In the remainder of the section, we will describe each of the building blocks — the
multi-bit logic blocks, the switch blocks and the connection blocks. The switch blocks

include both multi-bit and single-bit ones and so do the connection blocks.

4-bit BUS: 4-bit BUS

h . BUS

BUS
Run Run - .
Reset) Done Reset Muiti-bit Muilti-bit Done
Control Unit " Logic Logic
n 0 Block2 || Block3

@ (b)
Fig. 2.14 A Simple 4 bit Wide Processor

Each multi-bit logic block contains M identical clusters and is designed to handle an
M-bit computation. Fig. 2.13 shows an example of 4-bit adder mapped to a 4-bit wide
multi-bit logic block. Fig. 2.13 (a) shows each individual bit slice of the 4-bit adder. Each
of these slices can be implemented in a cluster as shown in Fig. 2.13 (b). Four of the
clusters are grouped into a 4-bit wide multi-bit logic block that can perform a 4-bit
addition as shown in Fig. 2.13 (c). In the 4-bit wide multi-bit logic block, every 4 input or
output pins are grouped into an input bus or an output bus. In the example shown in Fig.
2.13 (c), there are two input buses used to input two 4-bit wide datum, A and B, to the
adder and an output bus to output a 4-bit wide result, SUM, from the adder.

The multi-bit logic blocks are connected through both of the single-bit and multi-bit
tracks. The multi-bit tracks are specialized for transporting multi-bit signals in data-path
applications while single-bit tracks are specialized for single-bit signals. As an example,
Fig. 2.14 shows a simple 4-bit wide processor. The data-path of the processor is shown in
Fig. 2.14 (a). It contains an adder, a multiplexer, and several 4-bit wide buses. Besides the
data-path, the processor also includes a control circuit. The control circuit sends out
single-bit control signals to the data-path based on external commands. To map the
processor onto an FPGA, we first mapped the processor into a set of multi-bit logic

blocks as shown in Fig. 2.14 (b). These multi-bit logic blocks are then mapped onto a

4-bit wide FPGA with the configuration memory sharing architecture as shown in Fig.

2.15. In the example, the single-bit signals are routed on single-bit tracks while the

multi-bit signals are routed on multi-bit tracks that are grouped into 4-bit wide buses.

Multi-bit
Tracks

Single-bit

Multi-bit
Logic

| Block3

Multi-bit

Tracks

il

Multi-bit |
Logic
Block2

¥
|l |
|

Signal

Single-bit

Signal

Fig. 2.15 A Processor Mapped Onto an FPGA with Multi-bit aware routing architecture

The multi-bit and single-bit tracks are connected together via the multi-bit and the

single-bit switch blocks respectively. The single-bit switch blocks employ the same

switch block design as described in section 2.2. The multi-bit switch blocks, on the other

hand, is constructed out of a set of full and half switches that share configuration memory.

A 4-bit wide switch block with the disjoint topology is shown in Fig. 2.16. Unlike the

conventional switch blocks, however, switches in the multi-bit switch blocks are grouped

into 4-bit wide groups and each group shares a single set of configuration memory. Note

that without configuration memory sharing, each full switch would require 12 bits of

configuration memory and each half switch would require 2 bits of configuration memory.

With conﬁguration memory sharing, 12 bits of configuration memory control the 4 full

switches in this example. Only 2 bits of configuration memory control the 4

half-switches.

19

/\/» A set of configuration
p ° \ memory sharing half
. switches
N)
A /
T
‘/I\ S~
AN
A set of configuration /_\"/‘) <> --- Full Switch
memory sharing full \ %" / » _
switches ¢ o --—- Half Switch
~_ '

Fig. 2.16 Multi-bit Switch Block in the Configuration Memory Sharing Architecture
Similar to the switch blocks, the multi-bit aware routing architecture utilize two types
of connection blocks — the single-bit and the multi-bit connection blocks. The single-bit
connection blocks employ the same design methodology as described in section 2.2. The
multi-bit connection blocks, on the other hand, is generated by operating the algorithm
shown in Fig. 2.9 on buses instead of individual bits. In this case, F_ is the percentage of
routing buses per channel that can be connected to a logic block input/output bus, P is the

number logic block input/output buses, and W is the number of routing buses per channel.

Multi-bit Multi-bit Multi-bit Multi-bit
Logic Block Logic Block Logic Block Logic Block
i 1
@-
1@
Multi-bi't<
Tracks
PLinm
Ige
w 2 T ®
9
|
(a) Fc=0.25 (b) Fc=0.5 (c) Fc=0.75 (d) Fe=1.0

Fig. 2.17 Multi-bit Connection Blocks
| Fig. 2.17 shows 4 examples of multi-bit connection blocks generated by the
algorithm described above with varying F, value. The bus width of these connection
blocks is 4. In the figure, a black dot represents a routing switch. The vertical lines are

I/O pins of multi-bit logic blocks and the horizontal lines are multi-bit tracks. Every 4

input or output pins are grouped into an input or output bus and every 4 routing tracks are
grouped into a routing bus. When F, is 0.25 as shown in Fig. 2.17 (a), each I/O bus
connects to 2 of the 8 routing buses through two sets of switches. When F, is 1.0 as

shown in Fig. 2.17 (d), every I/O bus can connect to any of the routing buses.

L1 Il leg—Ille 1]
% et s U Gonfiguration
* ® Memory Sharing
.
d \d
Multi-bit L.* oo /. O SRAM
Tracks A \d
® — 2/
%:f' 2 rad — -
" N 3
\d \d
H 1 I 3
Single-bit ' 00 0000 {\}
Tracks 000 0000 M
BN A {\”
0123 0123 0123 0123 0123 0123
p.—(—_J
Input Connection Output Connection
Block Block
(a) Connection Block In The Configuration (b) A Set of Switches Sharing Configuration
Memory Sharing Routing Architecture Memory In The Output Connection Block

Fig. 2.18 Connection Block in the Configuration Memory Sharing Architecture

Fig. 2.18 (a) shows a complete connection block in the configuration memory sharing
architecture. This connection block contains the multi-bit input and output connection
blocks as well as the single-bit input and output connection blocks. Each set of switches
in the multi-bit outpui connection block share configuration memory. as shown in Fig.
2.18 (b). Each switch in the multi-bit input connection block, on the other hand, is
independently controlled by its own configuration memory cells because this switch is an
input to a multiplexer which also takes inputs from single-bit tracks to a logic block input
pin.

Fig. 2.18 (a) also shows an important feature of the connection block in the
configuration memory sharing architecture: the switches in the multi-bit connection block
are much sparser than those in the single-bit connection block. One of the goals of this
research is to find out how much of the area efficiency of the configuration memory

sharing architecture is attributed to the sparser switch pattern in the multi-bit connection
block.

2.3.2. Routing Resource Modeling in CAD Tool

The routing resources in the configuration memory sharing architecture are modeled

21

by the multi-bit aware place and route tool [22][27]. The tool models the routing
resources with an rr-graph as well as several auxiliary data structures we describe later in

this section.

Multi-bit Multi-bit
Logic Logic
Blocko Block1
T ‘_
Multi-bit i
Routing \ &
Tracks | 177 ?
0% *
Routing/ 0123 T 0123
Switch Output Switch Input
Pins Block Pins

(a) Routing Resource in the Configuration Memory Sharing Architecture

. . - 3 Node - . - . . Node
Source @@ @ @ Node Bito) (Bitr) (Bit2) (Bita) sink | 1%
Edge I B e Edge | e
Bus 0 [R E— =TT B oS I
Output — . : .\ | Node i : : . Input | Node
TACDICDICOICO v DI A
........... Edge Edge
Edge B e i ge .
Bus 1———>" """""""""""" { Bus2 Bus3 e
- Tk s> Tk s>
> Track 7> > Track 1>
> Track 0 >+ rack
Node Node
Bus 2 Bus 3

(b) Routing Resource Graph
Fig. 2.19 Routing Resource Graph for the Configuration Memory Sharing Architecture

The rr-graph used in the multi-bit aware place and route tool can represent multi-bit
as well as single-bit routing resources. Fig. 2.19 (a) shows a set of 4-bit wide multi-bit
routing resources. In this figure, a logic block output bus is connected to a logic block
input bus through routing buses and 3 sets of routing switches. These routing resources
aré modeled as an rr-graph by the multi-bit aware place and route tool as shown in Fig.
2.19 (b). Unlike the conventional architecture, each node representing a source, sink,
logic block I/O pin, or multi-bit track in the rr-graph for the configuration memory
sharing architecture belongs to a bus and has a bit position in that bus. These buses are
marked as node buses in Fig. 2.19 (b). Similarly, each edge representing a switch that

connects to sources, sinks or multi-bit tracks also belongs to a bus and has a bit position

in that edge bus. These buses are marked as edge buses in Fig. 2.19 (b).

The multi-bit aware place and route tool employs two sets of indices to record all the
buses in the rr-graph corresponding to: 1) the node buses, and 2) the edge buses. Each
node bus is assigned an index, numbered from zero, and the individual nodes comprising
that bus are assigned bit positions in the bus. Similarly, each edge bus is assigned an
index, also numbered from zero, and the individual edges comprising an edge bus are
assigned bit positions in the bus. These indices are stored in the data structures:
representing the nodes and edges in the rr-graph.

Configuration memory sharing is not represented explicitly in the rr-graph. Instead,
an array of integers is used to store whether each numbered edge bus index in the
rr-graph uses configuration memory sharing. We call this array the configuration memory
sharing array. When an integer in this array is one, the corresponding edge bus has
configuration memory sharing; otherwise, there is no configuration memory sharing in

the edge bus.

23

CHAPTER 3

The SPARSE AND ENHANCED SPARSE ARCHITECTURES

In this chapter, we introduce two multi-bit aware routing architectures that we
investigate in this research: the sparse and enhanced sparse architectures. We developed
the sparse architecture from the configuration memory sharing routing architecture and
we enhanced the flexibility of the sparse architecture to create the enhanced sparse
architecture. We describe the sparse architecture in Section 3.1 and the enhanced sparse

architecture in Section 3.2.

3.1.The Sparse Architecture

Compared to the conventional architectures, the configuration memory sharing
routing architecture not only requires fewer configuration memory bits, but also employs
sparser switch patterns in the multi-bit connection blocks. To isolate the effects of the
sparser switch pattern in the multi-bit connection block from the effects of fewer
configuration memory bits, we introduce the sparse architecture, which has the same
arrangement of switches as the configuration memory sharing routing architecture but
allows the switches to be individually controlled. Fig. 3.1 and Fig. 3.2 show the switch

block and the connection block, respectively, in the sparse architecture.

;/”

N

I

e

N

e
N
o

y
A
FNg
<

Full Switch -« Half Switch —, *

Fig. 3.1 Switch block on multi-bit tracks in the sparse architectures

Illeg Illeg Ille 1l
! R aa—rr) o
3 ® r
i @ d
Multi-bit) §—e% o —¢* , O SRAM N
Tracks ® ® o
i— ?) o = .(\‘
B)) N
3$ " "‘ ¢"‘ o) {v
~ i *l * @Z\/'
Single-bit { ' ve 000 3
Tracks T 00001 {\)
0123 0123 0123 0123 0123 0123
~ J —_—
Input Connection Output Connection
Block Block
(a) Connection Block In The Sparse Routing (b) A Set of Switches In The Output
Architecture Connection Block

Fig. 3.2 Connection Block in the Sparse Architecture

We call the sparse architecture’s switch pattern, which connects two buses using a set
of switches in a diagonal arrangement, the sparse switch pattern. Similar to the switch
patterns in the configuration memory sharing architecture, each switch in the sparse
switch pattern only connects logic block I/O pins to the routing tracks at the same bit
position. But unlike the configuration memory sharing routing architecture, each bit in a
bus in the sparse architecture can be connected to the corresponding bit in another bus
without affecting the connections in the other bits in the same bus.

We modeled the sparse architecture with the multi-bit aware place and route tool. To
represent the sparse architecture in the tool, we need to use the rr-graph and the
configuration memory sharing array. The rr-graph for the sparse architecture is the same
with that for the configuration memory sharing. The members in the configuration
memory sharing array, however, are not set to constants as in the original multi-bit aware

place and route tool.

#Multi-bit Architecture ~ #Multi-bit Architecture
CMSSw 0 CMSSw 1
CMSConnin 0 CMSConnin 0
CMSConnQut 0 CMSConnQOut 1

(a) Sparse (b) Configuration Memory Sharing

Fig. 3.3 Configuration Memory Sharing Setting in the Architecture File

25

We set the values of the configuration memory sharing array according to 3 variables
representing whether there is configuration memory sharing in the switch blocks, the
input connection blocks, and the output connection blocks. These 3 variables pick up
their values from the architecture file, which can now include 3 new keywords, as shown
in Fig. 3.3: CMSSw, CMSConnin, and CMSConnQOut. The parameter following the
keyword CMSSw decides whether there is configuration memory sharing in the switch
blocks. Value 1 or O for this parameter sets or clears, respectively, the configuration
memory sharing in the switch blocks. The other two keywords work in the same way:
CMSConnln for configuration memory sharing in the input connection blocks and
CMSConnQut for configuration memory sharing in the output connection blocks.

With the multi-bit aware place and route tool modified to handle these 3 new
keywords in the architecture file, we can then model either the sparse architecture with
the settings shown in Fig. 3.3 (a), or the configuration memory sharing routing
architecture with the settings shown in Fig. 3.3 (b). These new keywords simplify

exploring the multi-bit aware routing architectures.

3.2.The Enhanced Sparse Architecture

Multi-bit Logic Multi-bit Logic
Block 1 Block 2
; e W
0 ® 0‘ «* I
® @ @ ®
. %— @ 4 Q‘ ®
Multi-bit) o < < : o
Tracks | 3 ' \ 4 nd () Py
I i
A Y I
3 ® 7y 1 ’O ®
O=eTH—oPH—o! .
H 2 H
Single-bit ‘ @ So00 -
Tracks Sii Bt L
0123 0123 0123 0123 0123 0123
AN —
Input Connection Output Connection
Block Block

Fig. 3.4 Signals Routed in the Connection Blocks in the Sparse Architecture
In the sparse architecture, only signals from logic block output pins to the logic block

input pins at the same bit position can be routed through the multi-bit tracks. For example,

Fig. 3.4 shows an input and an output connection block in the sparse architecture. The
thick lines in the figure represent signals routed through these connection blocks. As
shown, the logic block I/O pins at bit position 0 can be only connected to the multi-bit
tracks at bit position 0, so signal 1 from bit 0 to bit 0 can be routed on the multi-bit tracks.
Signal 2, on the other hand, cannot be routed on the multi-bit tracks because this signal
connects bit 0 to bit 3. In this case, single-bit routing tracks are needed even though there

are empty multi-bit tracks.

Multi-bit Logic Multi-bit Logic
Block 1 Block 2
[E B Rk SRR
®) o
e ot
Multi-bit 01 4 . 5 (1)4
Tracks ® @
% \d | o
0 H f‘aﬁ oo > » \di
% s 2)
D @
et ¢
Single-bit { | | 0000
Tracks e e it
0123 0123 0123 0123 0123 0123
__ﬁh._.—/
Y .
Input Connection Output Connection
Block Block

Fig. 3.5 Signals Routed in the Connection Blocks in the Sparse Architecture with Extra Routing
Switches

If we sparsely add switches to the multi-bit connection blocks to connect logic block
I/O pins to routing tracks at different bit positions, as shown in Fig. 3.5, signal 2 can be
routed on the multi-bit tracks. In this figure, a white dot represents one of these added
switches on multi-bit tracks. With these added switches, the multi-bit connection blocks
become more flexible. We call the sparse architecture with added switches on multi-bit
tracks the enhanced sparse architecture.

In this research, we selectively investigated several switch patterns to enhance the
sparse switch pattern. We call these switch patterns enhanced sparse switch patterns, as
shown in Fig. 3.6. To simplify the description, we use a bus width of 4, but the enhanced
sparse switch patterns can be easily derived for other bus widths. In this figure, a set of

black dots represents the sparse switch pattern. We call the set of switch patterns shown

27

in Fig. 3.6 (a) formed by the white dots, indicating the added switches, shift patterns. In
the set, there are 3 shift patterns, indexed from 1 to 3. The added switch patterns shown in
Fig. 3.6 (b) are called vertical control patterns and the ones in Fig. 3.6 (c) are called
control patterns. Each set of vertical control patterns or control patterns contains 4 switch
patterns indexed from 1 to 4. The sparse switch patterns with the shift patterns are called
the shift enhanced sparse switch patterns. Similarly, we also define the vertical control

enhanced sparse switch patterns and the control enhanced sparse switch patterns.

(M @ (©)
(@)

l
(1 @ (©) 4)
(b)

l | [T
(1) @) (©) (4)
(c)
Fig. 3.6 The Enhanced Sparse Switch Patterns Investigated in the Research

Note that we do not add extra switches to every sparse switch pattern on multi-bit
tracks. Instead, we introduce a new architectural parameter F, ..;, which is the fraction of
routing buses that have enhanced switch patterns, so that the added density on the
multi-bit tracks can be controlled. It is crucial to be able to balance the routing
flexibility offered by the extra switches against the additional area those switches require.
In Section 4.2, we investigate just where this balancing point lies.

To generate the enhanced sparse switch patterns, we first generate the sparse switch
pattern as introduced in section 3.1. Then to the sparse switch pattern we add extra
switches. We did not incorporate the process of generating the enhanced sparse switch
patterns in the multi-bit aware place and route tool. Instead, we built an external program
which can output the description of the enhanced sparse switch patterns to the

architecture file. We then modified the multi-bit aware place and route tool to accept a

description for any arbitrary switch pattern in the architecture file.

Fig. 3.7 shows the algorithm which adds the control patterns shown in Fig. 3.6 (¢) to
the sparse switch pattern to éenerate the control enhanced sparse switch patterns in the
external program. As shown, we only show the algorithm for bus width 4, but the
algorithm can be easily adapted to any bus width.

NumEnhancedBus=floor(NumMultiBitTracks x Fc_Enh / BusWidth)
ControlPatternindex= 1
FOR each side of a multi-bit logic block
SET the current routing bus to be the NumEnhancedBus from the last bus in the
multi-bit tracks
FOR each routing bus in the enhanced routing buses
FOR each input bus on the current side of a multi-bit logic block
IF there is a sparse switch pattern on the current intersection between the
routing bus and the input bus
Put a control pattern at ControlPatternindex
Increase ControlPatternindex by 1
IF ControlPatternindex>4
ControlPosition=1
ENDIF
ENDIF
ENDFOR
ENDFOR
ENDFOR

Fig. 3.7. The Algorithm Adding the Control Patterns to the Sparse Switch Pattern
In Fig. 3.7, NumEnhahcedBus represents the number of routing buses that have
enhanced switch patterns. The number of routing buses that have enhanced switch
patterns is a fraction of the total number of multi-bit tracks and the fraction is represented
by F¢ enn. BusWidth is the bus width of the multi-bit tracks. ControlPatternindex is the
index of a control pattern ranging from 1 to 4. The control patterns are added to the
sparse switch patterns side by side with a multi-bit logic block. For each side of a

multi-bit logic block, control patterns are added along the enhanced routing tracks to the

29

intersections of the input buses and the routing buses where there is the spare switch
pattern. Every time a control pattern is added to the sparse switch patterns,
ControlPatternIndex increments by one until the variable equals 4 and is then reset to 1.
We can use the similar basic algorithm to generate the other two enhanced sparse switch
patterns. Instead of putting control patterns on a sparse switch pattern, we put a shift
pattern or a vertical pattern.

Note that we only put the added switches in the multi-bit input connection blocks.
The switches in the input connection blocks are constructed with multiplexers, so adding
a switch to an input connection block means adding an input pin to a multiplexer in the
connection block. Adding a switch to an input connection block consumes less active
area than adding a switch, which is a pass transistor, to the output connection block.

The algorithm outputs the description of the control enhanced sparse switch patterns
to the architecture file. Fig. 3.8 shows an example of the output of the algorithm. First,
the parameter following a keyword coarseTracksInUserMatrix declares the number of
multi-bit tracks in the switch patterns: 4 in this example. The keyword
fineTracksInUserMatrix declares the number of single-bit tracks in the switch pattern: it
is 0 because the algorithm doesn’t generate switch patterns for the single-bit tracks. The
following lines describe the matrix itself. The matrix for input pins of a multi-bit logic
block is described first and is followed by the matrix for output pins. For both the input
and output pins, the matrix is shown side-by-side along the edge of the multi-bit logic
block. For example, inputUserMatrix top means the matrix following the keyword is for
the input pins on the top side of the multi-bit logic block. In the matrix, ¢ indicates a
switch in the sparse switch pattern, / represents an added switch and 0 means no switch.
The set of switches denoted by ¢ in a bus must form the sparse switch pattern or else
these switches will be treated as added switches.

The control enhanced sparse switch patterns described in Fig. 3.8 is shown in Fig.
3.9. In this figure, a black dot represents a switch in the sparse switch pattern and a white
dot denotes an added switch. A thin short line is a logic block input pin and a thick short
line is a logic block output pin. The long lines represent multi-bit routing tracks. In the
switch patterns shown, the bus width is 4. There are a total of 40 input and 16 output pins

in the switch pattern shown, distributed on the 4 sides of a multi-bit logic block. Among

the 40 input pins, 8 input pins are located on both of the top and the right side and 12 are
located on both of the bottom and the left side of the multi-bit logic block. The 16 output
pins spread evenly on the 4 sides of the logic block. From left to right or from bottom to

top, every 4 pins can be grouped together to form a bus.

coarseTrackslinUserMatrix 4
fineTracksInUserMatrix O
inputUserMatrix top: 0000c111n

00000c00ON

000000cON

0000000c¢cn
inputUserMatrix bottom: 0000c000c000n

00001¢c110c00n
' 000000c011c1n

0000000c000cn
inputUserMatrix left: 0000c000c111n

00000c000c0O00ON

000000c000cON

0000111c000cn
inputUserMatrix right: c000c000N

17¢110c00n

00c011c1n

000c000cn
outputUserMatrix top: c000n

0cO0On

00cOn

000cn
outputUserMatrix bottom: c000n

0cO0On

00cOn

000cn
outputUserMatrix left: 0000n

0000n

0000n

0000n
outputUserMatrix right: c000n

O0cO0O0On

00cOn

000cn

Fig. 3.8 The Control Enhanced Sparse Switch Patterns Described in an Architecture File

31

|
- -} Output Pins
%‘ Muilti-bit

Logic Block C

Rl Input Pins

T i I
?g&g $# 1#&— }Multi-bit Routing
H ?l Tracks

[

Fig. 3.9 An enhanced sparse switch pattern
We call the switch patterns generated by an external program and described in the
architecture file the external switch patterns. After the multi-bit aware place and route

tool reads the external switch patterns, the tool compares the number of multi-bit tracks in

these switch patterns with that required by the tool. If the tool requires less multi-bit

tracks than those in the external switch patterns, the extra multi-bit tracks at the end of

these switch patterns will be ignored. If the tool needs more multi-bit tracks than those in

the external switch patterns, the tool will generate switch patterns on multi-bit tracks to

fill in the blank. The same process is applied to the single-bit tracks as well.

Ve |
Lo

@ Switch Patterns Generated by the Multi-bit Aware

Multi-bit ,‘ Py Place and Route Tool

tracks < —@ TQ

_ External Switch Patterns
\BdiDG
_‘

Switch Patterns Generated by the Multi-bit Aware
Place and Route Tool

Single-bit
tracks

Fig. 3.10 Merged Switch Patterns

When there are switch patterns generated by both an external program and the

multi-bit aware place and route tool, these switch patterns are merged in the way
illustrated in Fig. 3.10. The external switch patterns are inserted into the switch patterns
generated by the multi-bit aware place and route tool, between the multi-bit tracks and the
single-bit tracks, so that multi-bit tracks can stay together and so do the single-bit tracks

as shown in Fig. 3.10.

Multi-bit Multi-bit
Logic Logic
Block0 Block1

I
3 ® s .t
Multi-bit .
- 2 L4 ® Added
Routin
51— ° d‘n)

Tracks Switches
0 —@ y
Routing /0123) 0123
Switch Output Switch Input
Pins Block Pins

(a) Routing Resource in the Enhanced parse Architecture

.] , , Node R . R . . Node
Source (Bit0 @ Bit2) (Bit3)| g oo Bito) (Bit1 @ Bit3) Sink | 502
Edge B B Edge e
Bus 0 B e " 2T B St I
Output — . . . Node - . . . Input | Node
P (B0 (01D (512) () 3 OICIOICOER
Edge Edge : :
Edge 9 i :
Bus1 . - — Buf' 2 Bus 3\;_-_ e e i
o Track 3> Tk s> |
> Track 2 >-—1> Track 2> L Added
TRk T> |- Track T T Switches
> Track 0 >+ rack 0 > :
Node Node
Bus 2 Bus 3

(b) Routing Resource Graph
Fig. 3.11 Routing Resource Graph for the Enhanced Sparse Architecture
To model the enhanced sparse switch patterns in the multi-bit aware place and route
tool, we modified the rr-graph in the tool. Fig. 3.11 (a) shows an enhanced sparse switch
pattern. The corresponding rr-graph is illustrated in Fig. 3.11 (b). In Fig. 3.11 (a), the
white dots denote added switches that connect multi-bit tracks to logic block input pins.
The edges representing these switches in the rr-graph are denoted by dashed lines as
shown in Fig. 3.11 (b). Since the added switches do not connect any buses, the edges
representing these switches do not belong to any edge bus. The existing multi-bit aware

place and route tool, however, assigns an edge bus index and a bit position to every edge

33

that connects to multi-bit tracks. We modified the tool so that the modified tool only
assigns edge bus indices and bit positions to the edges representing switches in the sparse

switch pattern.

3.3.Design Space Analysis

The major change in the sparse and enhanced sparse architectures introduced in this
chapter compared to earlier architectures is the design of the connection block. In this
section, we compare the number of switch patterns that are possible in the connection
block designs for the sparse and enhanced sparse architectures with that for the
conventional and configuration memory sharing routing architectures. Note that two
switch patterns can be different in either: 1) the arrangement of the switches (switch
arrangement), or 2) whether configuration memory sharing is used for these switches. In
this section, we use the number of possible switch patterns in a connection block to
quantify the design space available to a particular routing architecture.

To simplify the following description, we use three parameters to characterize a
connection block: W for the number of routing tracks, P for the number of logic block I/O
pins, and M for the bus width of multi-bit tracks. We also use an example 2-bit wide

connection block containing 4 logic block I/O pins and 6 routing tracks (W=6, P=4,

EEEEE
SR

Fig. 3.12 Switch Patterns Generated By VPR

For the conventional architectures, the number of connection block switch patterns
VPR can generate only depends on the number of routing tracks in the connection block.
In a connection block containing 6 tracks, VPR can generate 6 switch arrangements, as
shown in Fig. 3.12. Since the conventional architecture does not employ configuration
memory sharing, the number of switch patterns is the same as the number of switch
arrangements. To generalize this result: in a connection block containing W tracks, VPR

can generate W switch patterns.

The number of all the possible switch arrangements for a connection block can be

w
2

i=

P
calculated by the formula: [(Wj] . The example connection block in Fig. 3.12 has
1 l

almost 16 million possible switch arrangements. The number of switch patterns in the

conventional architecture is therefore only a tiny fraction of all possible switch patterns

for a connection block.

1 Routing
Bus

(@)

oY
“II

o7

Each I/0 Bus is Connected to
1 Routing Bus
|
o

s HEE

2 Routing
Buses

2

o33

{

(b)

Each I/O Bus is
Connected to
1 of 2 Routing Buses

Each I/0 Bus is
Connected to
2 of 2 Routing Buses

le
. vl
3R _
Buses | T1e% 2
@ 1 e

Each I/O Bus is
Connected to
1 of 3 Routing Buses

Each I/0 Bus is
Connected to
3 of 3 Routing Buses

Each I/0 Bus is
Connected to
2 of 3 Routing Buses
Fig. 3.13 Switch Patterns in The Configuration Memory Sharing Routing Architecture
The configuration memory sharing routing architecture makes a step towards the
wide open design space. The number of connection block switch patterns that can be
created in the configuration memory sharing routing architecture depends on the number
of tracks in the connection block and the bus width of the routing architecture. As shown
in Fig. 3.13, when there are 6 routing tracks in a 2 bit wide connection block, 11 switch
patterns can be generated. Fig. 3.13 (a) shows the switch patterns for the connection
block with only 1 routing bus. In the case, there is only 1 switch pattern for the multi-bit
connection block and 4 switch patterns for the single-bit connection block. When there

are two routing buses in the connection block as shown in Fig. 3.13 (b), two switch

patterns can be generated for the multi-bit connection block, and for each of the two

35

switch patterns, two switch patterns can be created for the single-bit connection block.
When there are 3 routing buses in the connection block, 3 switch patterns can be
generated for the multi-bit connection block and there is no single-bit connection block,

as shown in Fig. 3.13 (c). For any M bit wide connection block with W tracks, there are

("ﬁl) [i xmax(1,” —ixM)] switch patterns that can be generated in the configuration
i=1

memory sharing routing architecture.

The connection block switches in the sparse architecture are arranged in the same way
as those in the configuration memory sharing routing architecture, but they are controlled
differently. The number of connection block switch patterns in the sparse architecture,

‘therefore, is the same as for configuration memory sharing routing architecture. The

switch patterns are, however, distinct; the sparse architecture switch patterns are not the

same as the configuration memory sharing routing architecture.

1 Routing
. Bus
(@) ot
: I

Control Patterns on
the 1 Routing Bus

T e

Control Patterns on Control Patterns on
of the 2 Routing Buses 2 of the 2 Routing Buses

* 1o TeTl .
RAREN) B
Control Patterns on Control Patterns on Control Patterns on
Not an Enhanced 1 of the 3 Routing Buses 2 of the 3 Routing Buses 3 of the 3 Routing Buses
Sparse Switch
Pattern

Fig. 3.14 Switch Patterns in the Control Enhanced Sparse architecture
The number of connection block switch patterns that can be produced in the enhanced
sparse architecture depends on the number of routing tracks, the number of logic block
I/O pins and the bus width of the connection block. Fig.‘3.14 shows the possible switch
patterns for the enhanced sparse architecture. The black dots in the switch patterns in Fig.

3.14 (a) are arranged in the same way as those in Fig. 3.13 (a), but there are control
patterns (shown with white dots) on the multi-bit tracks in Fig. 3.14 (a). In Fig. 3.14 (b),
the switch patterns are divided into two groups according to the number of routing buses
that have control patterns. The black dots in each group are arranged in the same way as
those shown in Fig. 3.13 (b). Similarly, the switch patterns in Fig. 3.14 (c) are divided
into 3 groups. The black dot arrangements in each group are the same as those shown in
Fig. 3.13 (c). The first switch pattern in the first group, however, is not an enhanced
sparse switch pattern and should not be counted with the other patterns in this row of the
figure. In this extra switch pattern, the control pattern can not be added to the top routing
bus because this bus does not have any switches from the sparse switch pattern. This
situation can only occur when the number of routing buses is larger than the number of
logic block I/O buses. The amount by which the number of routing buses exceeds the
number of logic block I/O buses determines how many switch patterns should be
subtracted from the total number of possible switch patterns. As a result, we can generate
20 enhanced spare switch patterns in total for the connection block shown in Fig. 3.14.
We can generalize for any M bit wide connection block that contains W routing tracks

and P logic block I/O pins in the enhanced sparse architecture to compute the number of

wiM) max(i=P/M ,0)
switch patterns: Y |ixixmax(LW —ixM)— . j}.

P =

Note that the control enhanced sparse architecture is only one of the 3 enhanced
sparse architectures we investigate in this research. When the bus width of the enhanced
sparse architecture is more than 2, we can have all 3 types of enhanced sparse switch
patterns. Consequently, the number of the enhanced sparse switch patterns is 3 times of
that of the control enhanced sparse switch patterns.

Table 3.1 shows the number of switch patterns that can be generated for 4 bit wide
connection blocks with 8 logic block I/O pins and 8, 12, or 16 routing tracks. When there
are 8 routing tracks in the connection block, 8 switch patterns can be generated in the
conventional architecture, 6 in the configuration memory sharing and the sparse
architecture respectively, and 24 in the enhanced sparse architectures. The sparse and the

enhanced sparse architecture introduced in this research together more than double the

design space that has been previously explored by the conventional and the configuration

37

memory sharing routing architectures. This design space expansion with the two new

routing architectures is even more obvious when there are 12 or 16 routing tracks in the

switch pattern.
Table 3.1 Connection Block Design Space
Configuration
W | M | P | Conventional | Memory Sparse Enhanced
; Sparse
Sharing
8 4 8 8 6 6 24
12 4 8 12 19 19 %6
16 4 8 16 44 44 276

In the remainder of the thesis, we compare these two new routing architectures to the

earlier routing architectures in more detail, and empirically report on their area efficiency.

CHAPTER 4

TRADEOFFS BETWEEN ROUTING SWITCH DENSITY AND
ROUTING FLEXIBILITY

In this chapter, we compare the routing switch density in conventional and
configuration memory sharing routing architectures to that of the new routing
architectures introduced in this thesis: sparse and enhanced sparse architectures. From the
extra routing switch density in the sparse and the enhanced sparse over the configuration
memory sharing routing architecture, we then derive the extra routing flexibility needed
to compensate for the density increase in the two new routing architectures. The
evaluation covers a wide range of F, values for all of these routing architectures. Section

4.1 describes the circuit assumptions for the evaluation presented in Section 4.2.

4.1.Circuit Assumptions

Our evaluation is based on the following circuit level assumptions. First, as in [4], we
assume each SRAM cell is constructed out of six minimum width transistors. We also
assume that two types of buffers are used in our architectures — a 4x buffer with four
times the minimum driving strength and a 5x buffer with five times the minimum driving
strength. Both buffers use a two-stage design with a stage ratio of four and five
respectively.

The 5x buffers are used in constructing the two types of routing switches found in the
switch blocks — a full switch and a half switch. Each track segment is assumed to have a
segment length of 2. Bus width in our evaluation is 4. The general circuit design of
switch blocks is described in section 2.1.3. The switch block design for the configuration
memory sharing routing architecture is illustrated in section 2.3.1 and that for the sparse
and the enhanced sparse architectures is in section 3.1

For the conventional, the configuration memory sharing, and the sparse architectures,
we assume, as shown in Fig. 4.1, each logic block input pin is connected to its
neighboring routing channel through a 4x buffer followed by a multiplexer. The

multiplexer is constructed out of 27, -2 pass transistors of minimum width and is

39

controlled by [log,(7,)] SRAM cells, where I, is the number of multiplexer data

inputs. The multiplexer is then connected to routing tracks through a shared 4x buffer.

03 03
Logic Block —Qﬁ v = ‘% v
10 A n A 12 A 13 A % 97
[N[N[N[It -
»—'—\:_L_ »—I—Lé
4& — 4 . Y
A1 - =
3 . .
I_|1 l_l_al
Multi-bit T
Tracks Z} ...g .»J__L_—lﬁ_{E
_— _——™]
ZLl 0—‘\—]_|—$ 0—_,_\1'
_— M
Zﬁ TR i
— M
RN NI
Single-bit{ . S =y J ey
Tracks T — YT —u"
W W w W
cMS SPARSE
Input Connection Block Output Connection Block

Fig. 4.1 Input and Output Connection Blocks in the Configuration Memory Sharing and Sparse
Architectures

As shown in Fig. 4.1, each output pin is connected to a 5x buffer. The buffer is then
connected to a set of routing tracks with each track connected to the output of the buffer
through a 5x pass transistor. For the multi-bit routing tracks in the configuration memory
sharing architecture, every four pass transistors share a single bit of configuration
memory. For single-bit tracks in the configuration memory sharing architecture and all
tracks in the conventional and the sparse architectures, the pass transistors are
independently controlled. |

For the enhanced sparse architectures,vas shown in Fig. 4.2, we use the same circuit
assumption as that in the sparse architectures except that in the input connection block,

there are several extra connections indicated by thick lines in the figure.

Logic Block %:17
0
/I,OA /lzé le \/lsA %
5 ="
»—!‘—L‘L_
_—M]
o .
_— ™
3 =L
_(M]
Z} J"Lé
Multi-bit
Tracks ﬁ Z} J ._,_Ll——’:' (]
2 =,
M
A —,
% A ® || @
Single-bit . PRI = LN
Tracks i 4 .
J ﬁ @/

VT OV
Input Connection Block Output Connection Block
Fig. 4.2 Input And Output Connection Block In the Enhanced Sparse Architecture
Using these basic circuit components, we can evaluate the active routing area in each
of the four routing architectures. Note that, in this work, the active area is measured using
the equivalent minimum width transistor area as defined in [4] and is calculated using the

following equation:

Area =
z [0.5+ Drive _Strength _of the Current _Trans J

2 x Drive_Strength _of _Min_Width_Trans

All _Trans

4.2. Routing SWitch Density Comparison

The routing switch density for a routing architecture is measured by the active routing
area per file for the routing architecture. A tile contains a logic block, the horizontal
channel at the bottom and the vertical channel on the left of the logic block. In this
demonstration, we assume that the configuration memory sharing, the sparse and the

enhanced sparse architectures contain only multi-bit routing tracks and the routing

41

channels in all the routing architectures contain 40 routing tracks.

10000
9000
8000 —
7000

6000
5000
4000

3000
2000 —
1000

0 . . . \ J

CMS Sparse Enhanced Enhanced Conv
¢ emn=0.5 F¢ pni=1

Routing Area Per Tile

Architecture Settings
OSw EConn

Fig. 4.3 Routing Area Per Tile in Minimum Width Trans When F. jo/F¢ 0,+=0.4/0.25

Fig. 4.3 plots the routing area per tile for the configuration memory sharing (CMS),
the sparse, the enhanced sparse (Enhanced) and the conventional (Conv) routing
architectures when F ;,/F, 0,~0.4/0.25. F, i, represents the F, value for logic block input
pins and F¢ . represents the F, value for logic block output pins. As shown, the
configuration memory sharing, sparse and enhanced sparse architectures of different
F¢ enn values all consume significantly less area per tile than the conventional
architectures.

Fig. 4.3 also breaks down the tile area into switch block (Sw) and connection block
(Conn) area where switch block area is the total area consumed by the switch block and
the connection block area is the total area consumed by the connections between the logic
block input/output pins and the routing tracks. As shown, the sparse and the enhanced
sparse architectures consume the same amount of switch block area and less connection
block area than the conventional architectures. The configuration memory sharing
architectures, on the other hand, consume both less switch block area and less connection

block area per tile.

12500

11500 //)K
= 10500
= /
5:3 9500 /
< / / »
8 8500 /
< 7500)/"’*”'/’j(/
£ 6500 ;t—/—’ —
2 5500 g;
4500 1 L 1 1 _
CMS Sparse Enhanced Enhanced Conv
Fc_enh=0'5 Fc_enh= 1
Architecture Settings
—e—Fc_in/Fc_out=0.4/0.25 —=—0.6/04 —%—0.8/0.6

Fig. 4.4 Routing Area per Tile in Minimum Width Transistors
We vary the F, values from F¢ /F. 0,~0.4/0.25 to 0.8/0.6 in the example above and
the area per tile for all the routing architectures is plotted in Fig. 4.4. It is important to
note that with F, set to 0.8 for input pins and 0.6 for output pins the configuration
memory sharing, the sparse and the enhanced sparse architectures still consume

significantly less area than the conventional architecture with F; values of 0.4 and 0.25.

Table 4.1 Single-Bit and Multi-bit Track Reduction

F F Area Per 40 Increase | Multi-Bit [Single-Bit
Inpcu ¢ | ou t;)u ¢ Multi-Bit | Multi-Bit | from CMS Tracl_c Tracl'c

Track |Track Area| 0.4/0.25 |Reduction| Reduction
n 0.4 0.25 59.5 2380.6 0.0 0.0 0.0
= 0.6 0.4 65.4 2616.6 236.0 3.6 2.2
© 0.8 0.6 69.2 2768.6 388.0 5.6 3.6
Q 0.4 0.25 78.0 3118.6 738.0 9.5 6.8
§_ 0.6 0.4 84.8 3390.6 1010.0 11.9 9.3
n 0.8 0.6 90.4 3614.6 1234.0 13.7 11.4
E pe 0.4 0.25 82.5 3298.6 918.0 11.1 8.5
2| 06 0.4 88.1 | 35256 | 11450 | 13.0 10.5
& e 0.8 0.6 96.4 3854.6 1474.0 153 13.6

The above results show that, for the same F, values, the area per multi-bit track is
much less than the area per single-bit track. As the F, values increase, the area per track
increases as well. For example, with configuration memory sharing, when F. values are
set to 0.4 and 0.25 for the input and output pins (as in [22]Error! Reference source not
found.[22]), the area of a multi-bit track is 59.5 per tile. In this architecture, forty

multi-bit tracks consume 2380.6 equivalent minimum width transistors in a tile. In the

43

sparse architecture with the same F, values, the area per track increase to 78. Forty tracks
now consume 3118.6 minimum width transistors. This increase in 738 minimum width
transistors can be compensated by a reduction of 9.5 multi-bit or 6.8 single-bit tracks
through the increase in the routing flexibility of multi-bit track (assuming the F, values
are set to 0.4 and 0.25 for input and output pins respectively for the single-bit tracks). The
same calculation can be carried out for all configuration memory sharing, sparse and
enhanced sparse architectures shown in Fig. 4.4 and are summarized in Table 4.1.

From Table 4.1, one can see that the sparse and the enhanced sparse architectures
require significant reduction of routing tracks to compensate for the extra area
consumption on multi-bit tracks. To evaluate the area efficiency of these two routing
architectures, we perform a set of experiments in this research and we report the results in
Chapter 6, after the routing tools for this set of experiments are selected in the next

chapter.

CHAPTER S

ROUTING TOOL SELECTION

Two existing routing tools that we select for our architectural evaluation are: 1) the
conventional routing tool in VPR; 2) the multi-bit aware routing tool in the multi-bit
aware place and route tool. The conventional routing tool is designed for the conventional
architecture and routes signals one bit at a time. The multi-bit aware routing tool, on the
other hand, is designed for the configuration memory sharing architecture and identifies
multi-bit signals, which in turn are routed in groups by the tool. Similar to the
configuration memory sharing architecture, the sparse and enhanced sparse architectures
have multi-bit routing tracks. The multi-bit tracks in the sparse and enhanced sparse
architectures, however, are independently controlled by configuration memory cells as in
the conventional architecture. As such, we can use either the conventional routing tool or
the multi-bit aware routing tool for the sparse and enhanced sparse architectures. In this

chapter, we consider each of these alternatives.

Table 5.1 Routing Area for the Sparse Architecture

Minimum Routing Area Conventional

Benchmarks in Minimum Width Transistor | Over multi-bit
Multi-bit Aware | Conventional Aware
code _seq dp 2.64E+05 2.56E+05 -3.0%
Dcu_dpath 7.86E+05 7.22E+05 -8.2%
ex_dpath 2.88E+06 2.53E+06 -12.3%
exponent_dp 5.09E+05 4.42E+05 -13.1%
Icu dpath 3.34E+06 2.94E+06 -11.8%
imdr_dpath 1.19E+06 1.06E+06 -10.7%
Incmod 7.23E+05 6.53E+05 -9.6%
mantissa_dp 1.09E+06 9.74E+05 -10.8%
multmod dp 1.44E+06 1.38E+06 -4.3%
pipe_dpath 2.63E+05 2.53E+05 -3.7%
prils_dp 2.56E+05 2.39E+05 -6.7%
rsadd dp 2.02E+05 1.96E+05 -2.9%
smu_dpath 3.96E+05 3.78E+05 -4.6%
| ucode dat 1.07E+06 9.57E+05 -11.0%
ucode reg 5.30E+04 5.24E+04 -1.1%
Average 9.65E+05 8.69E+05 -9.9%

To find out which routing tool should be employed in our evaluation, we used both |

tools to route 15 data-path circuits from the Pico-Java processor [30] on the sparse

45

routing architecture. We set the F, values on both multi-bit and single-bit tracks to 0.4 for
logic block input pins and 0.25 for logic block output pins, as in the research in [27].
Fixing F, values, we then varied the number of multi-bit tracks from 4 to 64 tracks. For a
given number of multi-bit tracks, we search for the minimum number of single-bit tracks
that are required to implement each benchmark circuit. The minimum implementation
routing area for each benchmark circuit, measured in minimum width transistors, is
shown in Table 5.1. As shown, the average routing area obtained by the conventional
routing tool is unexpectedly smaller (9.9%) than the multi-bit aware routing tool’s result.
We find this difference to be surprising because we started this research with two
basic assumptions: 1) the multi-bit aware and the conventional routing tools have similar
area efficiency when routing either single- or multi-bit signals one bit at a time, and 2)
routing multi-bit signals in groups as in the multi-bit aware routing tool is more area
efficient than breaking these signals into single-bit signals as in the conventional routing
tool. If these two assumptions were correct, we should see better routing results for the
sparse routing architecture from the multi-bit aware routing tool than the conventional
tool. The actual result, however, is the opposite, which motivated us to examine our
assumptions more carefully. The remainder of this chapter describes our efforts to better

understand the results presented in Table 5.1.

Table 5.2 Routing Area for the Conventional Architecture

Routing Area In Minimum Conventional
Benchmarks Width Transistors Over Multi-bit
Multi-bit Aware | Conventional Aware

code seq dp 2.663E+05 2.570E+05 -3.5%
dcu_dpath 8.811E+05 8.159E+05 -7.4%
ex_dpath 3.460E+06 2.999E+06 -13.3%
exponent dp 5.397E+05 4.531E+05 -16.1%
icu dpath 4.072E+06 3.325E+06 -18.3%
imdr_dpath 1.287E+06 1.161E+06 -9.7%
Incmod 7.274E+05 6.863E+05 -5.7%
mantissa_dp 1.164E+06 1.013E+06 -13.0%
multmod dp 1.466E+06 1.383E+06 -5.6%
pipe_dpath 2.712E+05 2.653E+05 -2.2%
prils_dp 2.535E+05 2.432E+05 -4.1%
rsadd dp 2.087E+05 1.914E+05 -8.3%
smu_dpath 4.165E+05 3.891E+05 -6.6%
ucode dat 1.164E+06 1.066E+06 -8.5%
ucode reg 5.646E+04 5.865E+04 3.9%
Average 1.082E+06 9.538E+05 -11.9%

46

We begin with our first assumption that the two routing tools have similar efficiency
when routing signals one bit at a time. Rather than studying the sparse architecture which
has a mixture of single and multi-bit routing tracks, we decided to simplify our analysis
by applying the two routing tools to the conventional architecture where signals can only
be routed one bit at a time. As shown in Table 5.2, similar to the result obtained for the
sparse routing architecture, the average routing area obtained by the conventional routing
tool again is 11.9% smaller than that obtained by the multi-bit aware routing tool.

To understand why the multi-bit aware routing tool is less area efficient than the
conventional routing tool for the conventional architecture, we looked more deeply into
the tools. Both the conventional and multi-bit aware routing tools use many routing
iterations to successfully route a circuit [31]. During each routing iteration, previously
routed nets are ripped up and rerouted based on the congestion cost obtained in the
previous routing iteration. The routing process stops when a feasible routing solution is
found or the number of iterations has reached a limit. Fig. 5.1 and Fig. 5.2 show a routing

iteration in the conventional and multi-bit aware routing tools, respectively.

Sort all nets by decreasing fan-out of the nets
FOR each net
IF the net is routed
Rip up the net
ENDIF
Route the net on either multi-bit or single-bit tracks
ENDFOR

Fig. 5.1 A Routing Iteration in the Conventional Routing Tool

As shown in Fig. 5.1, the conventional routing tool sorts all the multi-bit and
single-bit signals by decreasing fan-out and then routes signals bit by bit on either the
multi-bit routing tracks or the single-bit tracks, whichever has the lowest routing cost.
The routing tool removes the routing for one net (rip up a net) at a time and re-route the
net immediately.

In Fig. 5.2, the multi-bit aware routing tool routes multi-bit signals first, followed by
single-bit signals sorted by the decreasing fan-out of the nets. When routing multi-bit
signals, the multi-bit aware routing tool first rips up all the nets in a multi-bit signal and

tries to route the multi-bit signal on the multi-bit tracks as a coherent group. If the attempt

47

fails, the nets in the multi-bit signal will be routed as a sequence of individual signals on

either the multi-bit or single-bit tracks.

FOR each multi-bit signal
FOR each bit in the multi-bit signal
IF the net at the current bit position in the multi-bit signal is routed
Rip up the net
ENDIF
ENDFOR
Route the multi-bit signal on multi-bit tracks
IF the multi-bit signal can not be routed on multi-bit tracks
FOR each bit in the multi-bit signal
Route the net at the current bit position on either multi- or single-bit tracks
ENDFOR
ENDIF
ENDFOR

Sort all the single-bit nets by decreasing fan-out of the nets
FOR each single-bit net
IF the net is routed
Rip up the net
ENDIF
Route the net on either multi-bit or single-bit tracks
ENDFOR

Fig. 5.2 A Routing lteration in the Multi-bit Aware Routing Tool

On a conventional routing architecture, which does not contain any multi-bit tracks,
there are two differences between the multi-bit aware and the conventional routing tools:
1) the order in which nets are considered for routing, and 2) the way in which nets are
ripped up before re-routing. In the multi-bit aware routing tool, multi-bit signals are
routed before single-bit signals, whereas the signals are routed in order of decreasing
fan-out in the conventional routing tool. The multi-bit aware routing tool also rips up all
the nets in a multi-bit signal at the same time and these signals are then routed
individually on single-bit routing tracks. The conventional routing tool routes all signals
as single-bit signals, so it only rips up and routes one net at a time.

To find out which difference between the two routir}g tools contributes most to the

results shown in Table 5.2, we performed two experiments, each of which targets one of

the two differences. In the first experiment, we changed the routing sequence in the
conventional routing tool to be the same as the one in the multi-bit aware routing tool,
while in the second experiment, we modified the way signals are ripped up in the
multi-bit aware routing tool to be the same as in the conventional routing tool. If these are
the only two differences between the two routing tools, the routing results in the first and
the second experiment should be identical. Also, the area result will tell us how much of
the 11.9% difference can be attributed to each of differences between the two tools.

FOR each multi-bit signal
FOR each bit in the multi-bit signal
IF the net at the current bit position in the multi-bit signal is routed
Rip up the net
ENDIF
Route the net on either multi-bit or single-bit tracks
ENDFOR
ENDFOR

Sort all the single-bit nets by decreasing fan-out of the nets
FOR each single-bit net
IF the net is routed
Rip up the net
ENDIF
Route the net on either multi-bit or single-bit tracks
ENDFOR

Fig. 5.3 Experiment 1: Change the Routing Sequence in the Conventional Routing Tool

In the first experiment, we changed the routing sequence in the conventional routing
tool so that the conventional routing tool routes multi-bit signals before single-bit signals
as in the multi-bit aware routing tool. The process is shown in Fig. 5.3.

The second experiment modified the way signals are ripped up in the multi-bit aware
routing tool. As shown in Fig. 5.4, the routing tool first rips up all the nets in a multi-bit
signal and at the same time, the routing tool temporarily stores the routing for the nets at
non-zero bit positions. After the attempt to route the multi-bit signal on multi-bit tracks
fails, which is always the case on the conventional architecture, the routing tool recovers
the routings for the nets at non-zero bit positions in the multi-bit signal, and then rips up
and routes the nets in the multi-bit signal one by one. For multi-bit aware architecture, if

the multi-bit signal is successfully routed on the multi-bit tracks, the routing process frees

49

the temporarily stored routing for the nets at non-zero bit positions and continues to route
the next signal. After finishing routing all the multi-bit signals, the routing tool will route
single-bit signals sorted in the decreasing fan-out order. With the modification, the
multi-bit aware routing tool rips up nets for both multi- and single-bit signals the same
way as the conventional routing tool on the conventional architecture.

FOR each multi-bit signal
IF the multi-bit signal is routed
FOR each bit in the multi-bit signal
IF the current bit position is 0
Rip up the net at the current bit position in the multi-bit signal
ELSE
Temporarily store the routing for the net at the current bit position
Rip up the current net at the current bit position
ENDIF
ENDFOR
ENDIF
Route the multi-bit signal on multi-bit tracks
IF the multi-bit signal can not be routed on multi-bit tracks
IF there are temporarily stored routing for the nets at non-zero bit positions
in the multi-bit signal
Recover the routing for these nets
ENDIF
FOR each bit in the multi-bit signal
IF the net at the current position is not ripped up
Rip up the net
ENDIF
Route the net at the current bit position on either multi- or single-bit tracks
ENDFOR
ELSE
Free temporarily stored routing for the nets at non-zero bit positions
ENDIF
ENDFOR

Sort all the single-bit nets by decreasing fan-out of the nets
FOR each single-bit net
IF the net is routed
Rip up the net
ENDIF
Route the net on either multi-bit or single-bit tracks
ENDFOR

Fig. 5.4 Experiment 2: Change the Way of Ripping Up Nets in the Multi-bit Aware Routing Tool

Table 5.3 Comparison of Routing Area for the Conventional Architecture

Routing Area In Min Width Transistors
Benchmarks Conventional | Experiment 1 Experiment 2 I\/Xﬂtl-blt
ware
code seq dp 2.570E+05 2.663E+05 2.663E+05 2.663E+05
dcu_dpath 8.159E+05 8.159E+05 8.159E+05 8.811E+05
ex_dpath 2.999E+06 2.999E+06 2.999E+06 3.460E+06
exponent_dp 4.531E+05 4.650E+05 4.650E+05 5.397E+05
icu dpath 3.325E+06 3.377E+06 3.377E+06 4.072E+06
imdr_dpath 1.161E+06 1.148E+06 1.148E+06 1.287E+06
Incmod 6.863E+05 6.978E+05 6.978E+05 7.274E+05
mantissa_dp 1.013E+06 1.013E+06 1.013E+06 1.164E+06
multmod _dp 1.383E+06 1.367E+06 1.367E+06 1.466E+06
pipe dpath 2.653E+05 2.541E+05 2.541E+05 2.712E+05
prils dp 2.432E+05 2.482E+05 2.482E+05 2.535E+05
rsadd dp 1.914E+05 1.958E+05 1.958E+05 2.087E+05
smu_dpath 3.891E+05 3.748E+05 3.748E+05 4.165E+05
ucode dat 1.066E+06 1.066E+06 1.066E+06 1.164E+06
ucode reg 5.865E+04 5.865E+04 5.865E+04 5.646E+04
Average 9.538E+05 9.565E+05 9.565E+05 1.082E+06
- 27% 11.6 % «

The results are shown in Table 5.3, where the routing results for the conventional and
the multi-bit aware routing tools are in column 2 and column 5 as reference. Columns 3
and 4 show the routing results for the two experiments. Changing the routing sequence in
the conventional routing tool to be the same as in the multi-bit aware routing tool
(experiment 1) yields a slight area increase of 2.7%. Modifying the way the multi-bit
aware routing tool rips up nets to match how nets are ripped up in the conventional
routing tool (experiment 2) caused a significant 11.6% drop in average routing area from
the original multi-bit aware routing tool result. Therefore, the different ways the two
routing tools rip up nets accounts for most of the difference in the routing results obtained
from the single-bit and multi-bit aware routing tools on the conventional architecture.
Because the two routing results for experiment 1 and experiment 2 are identical, we have
also verified that only these two differences exist between the conventional and the
multi-bit aware routing tools. |

These two experiments, however, are not able to fully account for the area
differences shown in Table 5.1 for the sparse architecture. In particular, the algorithm
shown in Fig. 5.4 can only rip up or recover complete nets at non-zero bit positions in a
multi-bit signal. In multi-bit aware routing architectures, a multi-bit signal with multiple

fan-outs can be partially routed on multi-bit tracks after being completely ripped up. In

51

the case, the multi-bit aware routing tool needs to recover only the unrouted parts of the
nets at non-zero bit positions in the multi-bit signal, and then partially rip up each bit
before re-routing it. Changing the way in which the nets are ripped up for multi-bit aware
routing architectures requires, therefore, a much more extensive modification than what
was needed for the conventional architecture. Since our primary research focus is on
routing architectures rather than routing tool design, we chose not to divert our studies;
we leave to future work the required modifications to the multi-bit aware routing tool for
multi-bit aware routing architectures. Until these modifications are made, however, the
multi-bit aware routing tool will have lower area efficiency than the conventional routing
tool when routing signals on multi-bit aware routing architectures without configuration
memory sharing.

Investigating the second assumption we described at the beginning of this chapter —
that routing multi-bit signals in groups as in multi-bit aware routing tools is more area
efficient than routing multi-bit signals bit by bit as in the conventional routing tool — also
depends upon these extensive modifications to the multi-bit aware routing tools. We
must therefore defer an in depth examination of this assumption to future work.

The lower efficiency of multi-bit aware routing tool compared to the conventional
routing tool when routing signals bit by bit, however, means we must be careful to avoid
including differences in the routing tool when comparing the sparse and enhanced sparse
routing architectures to other architectures. Consequently, for the remainder of the thesis,
when we compare the sparse and enhanced sparse routing architectures to the
configuration memory sharing architecture, we will use the multi-bit aware routing tool.
When we compare to the conventional architectures, we will use the conventional routing
tool. In this way, we keep the comparison strictly fair and avoid inaccuracies due to
differences between the multi-bit aware and conventional routing tools. The results of

these comparisons are in Chapter 6.

CHAPTER 6)

EXPERIMENTAL RESULTS

To understand the trade-off between the routing flexibility and the routing switch
density, we employ 15 data-path circuits from the Pico-Java processor [30]. These
circuits are implemented on both the conventional and the multi-bit aware routing
architectures.

Through these implementations, we attempt to address the following four questions:
1. What is the effect of configuration memory sharing on the overall area efficiency of
FPGAs? 2. What is the most efficient method of increasing the area efficiency of the
sparse architecture — increasing the flexibility of the input connection blocks through
control and shift enhancements or reducing the implementation area of the output and
switch blocks through configuration memory sharing? 3. How does the area efficiency of
the multi-bit aware routing architectures compare to the area efficiency of the
conventional architecture? 4. How does the performance of the multi-bit aware routing

architectures compare to the that of the conventional one?

Table 6.1 Notations for Architectural Parameters

Classification Parameter Description

F . Fraction of routing tracks a logic block input

Parameters for Conventional = pin connects to
ameters 10 Fraction of routing tracks a logic block Output

Architecture Fe ou .
- pin connects to
w Number of routing tracks per channel
Fraction of single-bit tracks a logic block
F c_in_single : :
Parameters for - - 1nput pin connects to
Single-Bit F . Fraction of single-bit tracks a logic block
Tracks c-outsingle | Qutput pin connects to
Parameters for W singie Number of single-bit tracks per channel

Multi-bit aware F _ Fraction of routing buses a logic block input

routing c_in_multi bus connects to
architecture | Parameters for F ' Fraction of routing buses a logic block Output

Multi-Bit coumuli | bys connects to

Tracks Wi Number of multi-bit tracks per channel
Fraction of routing buses that have the
F, c_enh :
enhanced sparse switch patterns
Common Parameters L The length of a routing track segment

In this chapter, we characterize the variation in the architectures we studied by several

53

architectural parameters, whose notations are described in Table 6.1.

6.1.Effect of Configuration Memory Sharing on Area Efficiency

Table 6.2 Parameter Settings for the Sparse and the Configuration Memory Sharing Routing
Architectures

Classification] Parameter [Minimum Value Maximum

Value

Parameters | Fe_ iy single 0.4 N.A.
for | Fo ou singte 0.25 N.A.

S l}lfalzkg " I/Vsingle Best - N.A.
Parameters F. i musi 0.4 1.0
for Multi-Bit| F, ou mutsi 0.25 0.8
Tracks W it 4 64

L 2 N.A.

Common) Multi-Bit
Parameters |Routing Tool Aware [29] N.A.

To investigate the effect of configuration memory sharing on the area efficiency of
FPGAs, we measure the amount of routing area that is required to implement the
benchmark circuits for both the configuration memory sharing and the sparse
architectures. The parameter settings used in this investigation are shown in Table 6.2. As
shown, the F. values (F¢_in_single a0d F; ous single) are kept constant for single-bit tracks in
both architectures. These values were found to be the most efficient for the configuration
memory sharing architecture in [22][22]. We assume that they are equally efficient for
the sparse architecture. Similarly, the routing track segment length was set to two and the
minimum area implementation of the multiplexer is used.

We varied F. values (F¢ in mui and Fg ous mus) for the multi-bit tracks for both the
configuration memory sharing and the sparse architectures. For each set of F. j, s and
F¢ out muri values, we varied the number of multi-bit tracks from 4 to 64 tracks. For a
given number of multi-bit tracks, we search for the minimum number of single-bit tracks
that are required to implement each circuit.

Fig. 6.1 and Fig. 6.2 show the average number of routing track segments that are
required to implement a circuit for the configuration memory sharing and the sparse
architectures, respectively. There are two curves in each figure — one shows the average
number of single-bit track segments that are required to implement a circuit while the

other shows the average number of multi-bit track segments. As shown in Fig. 6.1, for the

configuration memory sharing_architecture, the utilization of the multi-bit tracks increases
with the increasing values of F; i puii and F¢_ous puu. In particular, when F i puii is set to
0.4 and F ous muri s set to 0.25, 2663 multi-bit track segments are required to implement
a circuit. When F¢ iy _mui s increased to 1.0 and F¢ ous musi s increased to 0.8, only 1985
multi-bit track segments are required. Note that this reduction is largely due to the more
efficient use of the multi-bit tracks by the multi-bit signals since the number of single-bit

track segments stays largely the same over all values of F i muii and F¢ ous muti-

- <% - Single-Bit Tracks —3— Multi-Bit Tracks

2780
» 2680
£
g 2580
an
& 2480
-5
[*3
© 2380
b
© 2280
2
£ 2180
S

2080

1980 L L 1 ! X
0.4/0.25 0.5/0.3 0.6/0.4 0.7/0.5 0.8/0.6 1.0/0.8
Fe_in_multi/Fc_out_multi

Fig. 6.1 Number of Single-Bit and Multi-Bit Routing Tracks in the Configuration Memory Sharing
Routing Architecture

- =% - Single-Bit Tracks ~ —»— Multi-Bit Tracks
2780

2680 |
2580 T TNeal
480 | TTees

2380 | S e x.
2280 | s

3
2180 1_———_—‘*_—\//*

2080

Number of Track Segments

1980 1 1 1 1 l
0.4/0.25 0.5/0.3 0.6/0.4 0.7/0.5 0.8/0.6 1.0/0.8
Fe_in_multi/Fc_out_multi

Fig. 6.2 Number of Single-Bit and Multi-Bit Routing Tracks in the Sparse architecture
Fig. 6.2 shows that when configuration memory sharing is removed from the
multi-bit tracks, there is a substantial reduction in the number of multi-bit track segments
for small values of F¢ i musi and F¢ ous muii. This reduction is due to the increase in

multi-bit track flexibility. As the values of F¢ i mus and Fe our mui increase, the utilization

55

of the multi-bit tracks increases as well. This increase, however, is due to the more
efficient use of multi-bit tracks by multi-bit signals as well as single-bit signals.
Consequently, the total number of single-bit track segments decreases with increasing
values of F¢ in_muti and Fe_ous mulsi-

—s—Sparse - -3 - Config. Mem. Sharing

1.0E+06
9.9E+05 |

786105 ’Y\)*——————*//
9.7E405 |-

<
g 9.6E+05 |
£ 9.5E405

] ~ .a
3 946405 |5~ s
& e .
9.3E+05 |- ~g. P - PR, a”
9.2E405 |- TreageT :
9.1E+05 | ,
9.0E+05 . . .) »

0.4/0.25 0.5/0.3 0.6/0.4 0.7/0.5 0.8/0.6 1.0/0.8
Fe_in_multi/Fc_out_multi

Fig. 6.3 Routing Area for Sparse and Configuration Memory Sharing Routing Architectures
Fig. 6.3 shows the effect of multi-bit track utilization on routing area. In the figure,
area is the minimum average routing area across 15 benchmarks. The curve above is for
the sparse architecture while the curve below is for the configuration memory sharing
routing architecture. As shown, the best sparse architecture consumes 5% more routing

area than the best configuration memory sharing architecture.

- -3 - Single-Bit Tracks (Optimized) —B— Multi-Bit Tracks (Optimized)
- =% - Single-Bit Tracks (Original) —>— Multi-Bit Tracks (Original}
2850
2750
2650
2550
2450
2350
2250
2150
2050
1950
1850
1750 L

0.4/0.25 0.5/0.3 0.6/0.4 0.7/0.5 0.8/0.6 1.0/0.8

Fe_in_multi/Fc_out_multi

Number of Track Segments

Fig. 6.4 Multi-Bit Track Reduction Due to Routing Algorithm Optimization
In Fig. 6.3, the same multi-bit aware routing algorithm [29] is used for both the

configuration memory sharing and the sparse architectures. The algorithm, however, is

specialized for configuration memory sharing. Since it is very expensive to route a single
bit signal on a set of configuration memory sharing routing resources, this algorithm
encourages multi-bit signals to use multi-bit tracks as much as possible. It heavily
penalizes the act of breaking a multi-bit signal into individual bits and routing some of
the bits on single-bit tracks and the remaining bits on multi-bit tracks [27][29]. Without
configuration memory sharing, however, the penalty still forces the single-bit and
multi-bit signals to stay on their respective routing resources even when one type of

resource is much more congested than the other.

—— Sparse {Original) —8-—Sparse (Optimized} -3 - Config. Mem. Sharing
1.0E406

9.9E405
9.8E+05
9.7£405
9.6E+05
9.5£405
9.4E405
9.3£+05
9.2E405
9.1E405 |
9.0E+05 L L L L 4

0.4/0.25 0.5/0.3 0.6/0.4 0.7/0.5 0.8/0.6 1.0/0.8
Fe_in_multi/Fc_out_multi

Routing Area

Fig. 6.5 Reduction in Routing Area for the Sparse Architecture Due to Routing Algorithm
Optimization

We modified the routing algorithm for the sparse architecture by removing the
penalty. With the penalty removed, more multi-bit signals can be routed on single-bit
tracks. This results in a slight increase in the number of single-bit track segments and a
significant reduction in the number of multi-bit track segments as shown in Fig. 6.4.
Consequently, the routing area of the sparse architecture is further reduced as shown in
Fig. 6.5.

To determine the best proportion of multi-bit routing tracks for the configuration
memory sharing and the sparse architectures, we repeat the above experiment by fixing
Fes (Fe_in_muii and F¢ oy muii) While varying the proportion of multi-bit tracks. For the
configuration memory sharing architecture, we set F; i s to 0.6 and Fe o i to 0.4
because these values are found the most area efficient in Fig. 6.5. For the sparse

architecture, however, we set F.s to the second most area efficient values (F¢ _in_muii = 0.7

57

and Fe out putsi = 0.5). When we set Fe i s = 0.8 and Fe oy g = 0.6 in the sparse
architecture, the switches on multi-bit tracks are dense enough that even changing the
number of multi-bit tracks by a single bus of 4 tracks can significantly impact the number
of single-bit tracks required to the point that the percentage of multi-bit tracks can change
by more than 10%. For this reason, we were not able to collect data points in certain
percentage ranges for several of the benchmarks in our suite. For example, we were not
able to generate any area results for the code reg circuit with between 30%-40% or
50%-60% multi-bit tracks. For the results in this section, therefore, we chose to set F,s to
the values that are slightly less (0.3%) area efficient but allowed us to collect a more
complete set of data points for all the 10 percentile ranges of multi-bit tracks we
examined.

—3— Sparse (F¢_in_multi/Fc_out_multi=0.7/0.5)
- 43 - Config. Mem. Sharing {Fc_in_multi/F¢_out_multi=0.6/0.4}
1.13E+06

1.11E+06
1.09E+06
= 1.07E+06
ﬁ;n 1.05E406
§ 1036406
& 1.01E+06
9.90E+05
9.70E+05

9.50E+05
10-20% 20-30% 30-40% 40-50% 50-60% 60-70%
% of Multi-Bit Tracks

Fig. 6.6 Routing Area vs. % of Multi-Bit Tracks

The routing area results as a function of the percentage of multi-bit tracks for the
configuration memory sharing and sparse architectures are shown in Fig. 6.6. As shown,
the best number of multi-bit tracks as a percentage of the total number of tracks is
between 50 to 60% for the configuration memory sharing architecture and 40 to 50% for
the sparse architecture. The best sparse architecture consumes 1.3% more routing area
than the configuration memory sharing routing architecture. Fig. 6.7 shows the average
number of track segments as a function of the percentage of multi-bit tracks. As shown
the most area efficient sparse architecture uses 16% fewer track segments than the most

area efficient configuration memory sharing routing architecture.

—»— Sparse (Fc_in_multi/Fc_out_multi=0.7/0.5)

- -3 - Config. Mem. Sharing {Fc_in_multi/F¢_out_muiti=0.6/0.4}
G200
6000 |
5800 |
5600
5400 | -8
5200 f.-" S
5000 | ‘2
4800 |
4600
2400 ¥

4200 1 1 1 1 J
10-20% 20-30% 30-40% 40-50% 50-60% 60-70%
% of Multi-Bit Tracks

Number of Track Segments

Fig. 6.7 Track Segments vs. % of Multi-Bit Tracks

6.2. Shift and Control Enhanced Sparse Architectures Vs. Configuration
Memory Sharing Architecture

Table 6.3 Parameter Settings for the Enhanced Sparse and the Configuration Memory Sharing
Routing Architectures

Classification Parameter Minimum Value Maximum
Value
Parameters for Fe in single 04 N.A.
Single-Bit F¢ out single 0.25 N.A.
Tracks Wsingie best N.A.
0.6
(Configuration
Memory
F, c_in_multi Sharmg) / N.A.
0.7 (Enhanced
Parameters for Sparse)
R 0.4
Multi-Bit .
(Configuration
Tracks
F ‘ Memory NA
c_out_multi Sharin: g) / A
0.5 (Enhanced
Sparse)
W uitsi 4 64
F, c_enh 0 10
Common L 2 NA.
. Multi-Bit Aware
Parameters Routing Tool [29] (Optimized) N.A.

In this section, we evaluate the effect of the shift and control enhanced sparse
architectures on the area efficiency of FPGAs. The parameter settings used in this
investigation are shown in Table 6.3. In particular, the same parameter values from

Section 6.1 are used for the single-bit tracks. For multi-bit tracks, the F. i mus and

59

F¢ out muri Values are set to 0.6 and 0.4 for the configuration memory sharing architecture
and 0.7 and 0.5 for the enhanced sparse architecture, as in Section 6.1. For each set of
Fe in_mutsi and F¢_ouy i vValues, we vary the Fe_enn value from 0 to 1.0. For each value of
F, o, we vary the number of multi-bit tracks from 4 to 64 to find the minimum number

of single-bit tracks that is required to route a circuit.

- % - Single-BitTracks —— Multi-Bit Tracks

2600
2500
2400
2300
2200

Number of Track Segments

2100
2000
1800
1800
1700 1 1 1 1 1 1
0 0.2 0.5 0.6 0.7 0.8 1
Fc_enh

Fig. 6.8 Number of Single-Bit and Multi-Bit Routing Tracks in the Control-Enhanced Sparse
Architecture

For the control enhanced sparse architecture, Fig. 6.8 shows the effect of F, .., on
the average number of routing track segments that is required support a circuit. As shown,
as the value of F ., increases from 0 to 0.6, more and more single-bit signals are routed
on the multi-bit tracks due to higher routing flexibility on multi-bit tracks. Consequently
the number of multi-bit tracks increases and the number of single-bit tracks decreases. As
F, eny increases beyond 0.6, the number of multi-bit and single-bit tracks stabilizes as
most of the signals that can be efficiently routed through the multi-bit tracks have already
been moved onto these tracks.

Fig. 6.9 shows the effect of control and shift enhanced sparse architecture on routing
area. As shown, both the control and shift enhanced sparse architectures are more
efficient than the configuration memory sharing architecture over all percentage values of
multi-bit tracks. In particular, the best control enhanced sparse architecture (at 60%-70%

multi-bit tracks) is 2.6% smaller than the best configuration memory sharing architecture

(at 50%-60% multi-bit tracks) and 1.4% smaller than the best shift enhanced sparse

architecture (at 50%-60% multi-bit tracks). Fig. 6.10 shows the best control enhanced
sparse architecture requires 18% fewer routing tracks than the best configuration memory

sharing architecture.

- = & - :Config.Mem.Sharing(Fc_in_multi/Fc_out_multi=0.6/0.4)
— O - Shift (Fc_in_multi/Fc_out_multi/Fc_enh=0.7/0.5/0.6)
——8—Ctrl (Fc_in_multi/Fc_out_multi/Fc_enh=0.7/0.5/0.6)

1.12E+06
1.10E+06 .

1.08E+06 .
1.06E+06 .
1.04E+06
1.02E+06
1.00E+06
9.80E+05
9.60E+05
9.40E+05
9.20E+05

Routing Area

10-20% 20-30% 30-40% 40-50% 50-60% 60-70%
% of Multi-bit Tracks

Fig. 6.9 Routing Area vs. % of Multi-Bit Tracks

—8— Ctrl. (Fe_in_multi/Fc_out_multi/Fc_enh=0.7/0.5/0.6)
-3 - Config. Mem. Sharing {Fc_in_multi/F¢_out_muiti=0.6/0.4)
6200

6000 P

5800 | L’

5600 e

5400 -8 .a

5200 -~ ~e -

5000 h]

4800

4600 r

4400 ‘F‘ — L ST 3l

4200
10-20% 20-30% 30-40% 40-50% 50-60% 60-70%

% of Multi-Bit Tracks

Number of Track Segments

i ! s i)

Fig. 6.10 Track Segments vs. % of Multi-Bit Tracks
Table 6.4 summarizes the best implementation area for each benchmark circuit for the
configuration memory sharing and the control enhanced sparse architectures. These
circuits are divided into four groups according to the percentage of multi-bit signals that
they contain. As shown, for circuits with less than 60% multi-bit signals, the enhanced
sparse architecture are, on average, more area efficient than the configuration memory

sharing architecture. In particular, the enhanced sparse architecture consumes up to

61

18.9% less routing area than the configuration memory sharing architecture. For circuits
with more than 60% multi-bit signals, the configuration memory sharing architecture is
more area efficient. Compared to the configuration memory sharing architecture, the
enhanced sparse architecture at worst consumes 9.8% more routing area for the
ucode reg benchmark circuit. This benchmark circuit, however, is very small in area
among all the benchmark circuits, which means it has little influence on the average
routing area. The enhanced sparse architecture, on average, only consumes 1.9% more
routing area than the configuration memory sharing architecture for circuits that contain

over 60% multi-bit signals.

Table 6.4 Routing Area Vs. % of Multi-Bit Signals Per Circuit

Routing Area (1E+5)
IPercentage Benchmark Config. | Enhanced | Area Increase Over
Range | (% of Multi-Bit Signals) | Mem. Sparse |Config.Mem.Sharing
Sharing | (F; enn=0.6)
o multmod_dp (32%) 184 14.9 -18.9%
30-40% Average 18.4 14.9 -18.9%
prils_dp (42%) 2.87 2.64 -7.8%
code seq dp (46%) 2.81 2.71 -3.5%
40-50% exponent_dp (47%) 5.19 491 -5.4%
Incmod (48%) 7.86 6.86 -12.7%
Average 4.68 4.28 -8.5%
smu_dpath (51%) 4.29 3.89 -9.3%
imdr_dpath (53%) 11.4 11.6 1.6%
50-60% pipe_dpath (56%) 2.72 2.63 -3.1%
mantissa_dp (56%) 104 10.6 2.5%
Average 7.19 7.18 -0.2%
icu_dpath (61%) 322 31.1 -3.5%
ucode dat (61%) 9.36 9.86 5.3%
rsadd dp (61%) 2.02 1.95 -3.2%
Over 60% ex_dpath (61%) 26.2 28.0 6.8%
dcu_dpath (65%) 7.33 7.64 4.3%
ucode reg (74%) 0.58 0.64 9.8%
Average 12.9 13.2 1.9%

6.3. Multi-Bit Aware Vs. Conventional architectures

Having compared the area efficiency of the multi-bit aware routing architectures, this
section compares two of the most area efficient multi-bit aware routing architectures — the
sparse and the control enhanced sparse architectures — to the area efficiency of the
conventional architecture. Table 6.5 shows the parameter settings used in this

investigation. In particular, the conventional routing tool [31][32] is used since none of

the architectures employs configuration memory sharing and our results show the
conventional routing tool outperforms the multi-bit aware tool [29] for these

architectures.

Table 6.5 Parameter Settings for the Conventional, Sparse, and Control-Enhanced Sparse

Architectures
Classification Parameter Minimum Value Maximum Value

Parameters for F. 0.3 0.8
Conventional F, u 0.25 N.A.
Architecture w Best N.A.
Parameters for F¢ in_single 04 N.A.
Single-Bit F¢ out single 0.25 N.A.
Tracks Wingie Best N.A.
Parameters for Fe in muas 04 L0
Multi-Bit Fc out_multi 0.25 0.8
Tracks Wmulti 4 64

F, .. 0 1.0
Common L 2 N.A.
Parameters Routing Tool | Conventional [31][32] N.A.

For the conventional architecture, the F, ,, value is set to 0.25. It is shown to be the
most area efficient in previous studies [33]. The F, ;, value is varied from 0.3 to 0.8 to
measure the minimum routing area that is required to implement the benchmarks. Fig,
6.11 shows that 0.4 is the most area efficient F ;, value for the conventional architecture.

9.95E405 -
9.90E405 | .
9.856405 | o

$ 9.80£405 X

<

¥9.756405

5

39708405 N /
9.656405 |\ K
9.606+05 | . ;

9.55E405

9.50E+05 ! L L L !
0.3/0.25 0.4/0.25 0.5/0.25 0.6/0.25 0.7/0.25 0.8/0.25
Fc_in/Fc_out

Fig. 6.11 Most Area Efficient F. ;, Values for the Conventional architecture
For the sparse and enhanced sparse architectures, we vary Fe i muti, Fe out mutir Wonuiti
and F, . as in Section 6.1 and Section 6.2. We found that for the conventional routing
tool, the most area efficient parameter values are F j; s = 0.6 and Fe out muii = 0.4 for
the sparse architecture and Fe i _muisi = 0.6, Fe ous muti = 0.4, and F ., = 0.8 for the control

enhanced sparse architecture.

63

Fig. 6.12 shows the routing area as a function of the percentage of multi-bit tracks for
the three architectures. As shown, the control enhanced sparse architecture is the most
area efficient. At 70%-80% multi-bit tracks, it consumes 10% less area than the
conventional architecture. The figure also shows that the sparse architecture also
consumes less area than the conventional architecture. At 50%-60% multi-bit tracks, the

sparse architecture is 5.8% smaller than the conventional architecture.

- =% - Conv.

—— Sparse {Fc_in_multi/Fc_out_multi=0.6/0.4}

—8— Ctrl. {Fc_in_multi/Fc_out_multi/Fc_enh=0.6/0.4/0.8)
1.15E406 -
1.10E+06
1.05E+06

1.00E+06

Routing Area

9.50E+05

9.00E+05

8.50E+05
10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90%
% of Multi-Bit Tracks

Fig. 6.12 Routing Area Vs. % of Multi-Bit Tracks

- =% - Conv.
—%— Sparse (Fc_in_muiti/Fc_out_multi=0.6/0.4)

—8— Ctrl. {Fc_in_multi/Fc_out_muiti/Fc_enh«=0.6/0.4/0.8)
6500

6000

Number of Track Segments

4500

4000)
10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90%
% of Multi-Bit Tracks

Fig. 6.13 Track Segments Vs. % of Multi-Bit Tracks
Finally, Fig. 6.13 shows the number of track segments per circuit as a function of the
percentage of multi-bit tracks. As shown, both the sparse and the enhanced sparse
architectures consume more track segments than the conventional architecture — with the
best sparse architecture employing 8% more track segments and the best control

enhanced sparse architecture employing 4% more track segments.

Table 6.6 summarizes the best implementation area for each benchmark circuit for the
conventional, sparse and control enhanced sparse architectures. These circuits are divided
into four groups according to the percentage of multi-bit signals in these circuits. As
shown, for circuits with more than 50% multi-bit signals, the sparse and the control
enhanced sparse architectures are, on average, significantly more area efficient than the
conventional architecture. In particular, the sparse and the control enhanced sparse
architectures consume 13.1% and 14.1% less routing area, respectively, than the
conventional architecture when averaging across benchmark circuits that contain over
60% multi-bit signals. For the circuit with less than 40% multi-bit signals, the
conventional architecture is significantly more area efficient (28.5%) than the sparse

architecture but only slightly more area efficient (3.8%) than the enhanced sparse

architecture.
Table 6.6 Routing Area Vs. % of Multi-Bit Signals Per Circuit
Benchmark Routing Area (1E+5) Area Increase over
Percentage (% of Multi-bit Conventional
Range o . Enhanced Enhanced
Signals) Conventional | Sparse Sparse

Sparse Sparse
30-40% multmod dp (32%) 13.8 17.8 14.4 28.5% 3.8%
° Average 13.8 17.8 14.4 28.5% 3.8%
prils dp (42%) 243 2.58 2.42 6.2% -0.4%
Code seq dp (46%) 2.57 2.84 2.70 10.5% 5.2%
40-50% exponent dp (47%) 4.53 4.64 4.39 2.3% -3.2%
Incmod (48%) 6.86 6.35 6.40 -71.4% -6.7%
Average 4.10 4.10 3.98 0.1% -2.9%
Smu_dpath (51%) 3.89 4.00 3.97 2.7% 2.0%
Imdr_dpath (53%) 11.6 10.7 10.2 -7.6% -12.4%
50-60% Pipe dpath (56%) 2.65 2.57 2.44 -2.8% -8.0%
mantissa_dp (56%) 10.1 9.84 9.17 -2.8% -9.5%
Average 7.07 6.79 6.44 -4.0% -9.0%
Icu dpath (61%) 333 28.3 28.1 -15.0% -15.5%
ucode dat (61%) 10.7 8.92 9.05 -16.3% -15.1%
rsadd dp (61%) 1.91 1.92 1.77 0.2% -1.7%
Over 60% Ex dpath (61%) 30.0 26.8 26.2 -10.8% -12.5%
Dcu dpath (65%) 8.16 7.12 6.92 -12.8% -15.2%
ucode_reg (74%) 0.59 0.52 0.56 -11.9% -4.6%
Average 14.1 12.3 12.1 -13.1% | -14.1%

6.4. Performance Comparison.

Our research focus is on FPGA routing area efficiency, but it is still important to

65

characterize how performance is affected by the differences in the conventional,
configuration memory sharing, sparse and enhanced sparse routing architectures. We
want to know if the area efficiency of the sparse and enhanced sparse architectures is
gained at the cost of performance degradation. In this section, the performance of an
architecture is measured by the geometric mean of the routing delays in the 15

benchmark circuits routed on the architecture.

Table 6.7 Routing Delays of 15 Benchmarks Routed on the 4 Best Architectures

Routing Delays (seconds)
Benchmarks Conventional COISlf};lg.Mem. Sparse Enhanced
aring
code seq dp 9.413E-09 8.009E-09 8.711E-09 9.413E-09
dcu_dpath 3.797E-09 3.797E-09 3.797E-09 3.797E-09
ex_dpath 2.767E-08 2.767E-08 2.556E-08 2.626E-08
exponent dp 1.558E-08 1.558E-08 1.558E-08 1.558E-08
icu_dpath 2.275E-08 2.275E-08 2.275E-08 2.275E-08
imdr dpath 2.907E-08 2.907E-08 2.907E-08 2.907E-08
incmod 2.837E-08 2.767E-08 2.767E-08 2.837E-08
mantissa_dp 4.348E-09 4.348E-09 4.348E-09 4.348E-09
multmod _dp 2.345E-08 2.135E-08 2.345E-08 1.347E-08
pipe dpath 1.067E-08 1.067E-08 1.067E-08 1.067E-08
prils_dp 1.152E-08 1.082E-08 1.152E-08 1.012E-08
rsadd dp 2.626E-08 2.556E-08 2.626E-08 2.556E-08
smu_dpath 2.556E-08 2.556E-08 2.556E-08 2.556E-08
ucode dat 3.797E-09 3.797E-09 3.095E-09 2.944E-09
ucode reg 2.242E-09 2.242E-09 2.242E-09 2.242E-09
Geometrie 1.224E-08 1.194E-08 | 1.193E-08 | 1.144E-08
Mean

Table 6.7 shows the routing delays of the 15 benchmarks routed on the most area
efficient conventional, configuration memory sharing, sparse and enhanced sparse
architectures. The geometric means of the routing delays across the 15 benchmarks for
the 4 architectures are listed at the bottom of the table. The geometric means of the
routing delays show that the most area efficient sparse and enhanced sparse architectures
have slightly better performance than the most area efficient conventional and

configuration memory sharing architectures.

CHAPTER 7

CONCLUSION

7.1. Thesis Summary

When averaging across all the benchmarks, we found that the sparse and the
enhanced sparse architectures are as area efficient as the configuration memory sharing
architecture. In particular, the sparse architecture only consumes 1.3% more routing area
than the configuration memory sharing architecture while the enhanced sparse
architecture consumes 2.6% less. We also found that the sparse architecture is 5.8% more
area efficient than the conventional architecture while the enhanced sparse architecture is
10% more area efficient. Furthermore, the greater routing flexibility allows the sparse and
the enhanced sparse architectures to use 16-18% fewer routing tracks than the
configuration memory sharing architecture. Even with significantly sparser routing
switches, the sparse and enhanced sparse architectures use only 4-8% more routing tracks
than the conventional architecture. Moreover, our experimental results show that the
performance of the sparse and the enhanced sparse architectures are as good as that of the
conventional and the configuration memory sharing architectures.

We discovered another important result when we grouped the individual benchmark
area results into buckets where the percentage of multi-bit signals in benchmark circuits
falls within a 10% range. We found that the enhanced sparse architecture is more area
efficient (up to 18.9% better) than the configuration memory sharing architecture when
the percentage of multi-bit signals is low (30%-40%). But even when the percentage of
multi-bit signals is over 60%, where we would expect the configuration memory sharing
routing architecture to have its best result, the enhanced sparse architecture is,b on average,
only 1.9% worse. Compared to the conventional architecture, the enhanced sparse
architecture gives the highest area improvement (14.1%) for circuits with over 60%
multi-bit signals, but is only 3.8% worse than the conventional architecture for circuits
with between 30%-40% multi-bit signals. These results suggest that the enhanced sparse

architecture is, on average, more area efficient across a broad range of circuits than either

67

the conventional or configuration memory sharing routing architectures, which each
target circuits with few or many multi-bit signals, respectively, but are much less efficient

on the opposite class of circuits.

7.2.Suggestions For Future Work

Following the work in the thesis, several projects can be taken up:

1. Improve the multi-bit aware routing tool and reexamine the configuration memory
sharing architecture

The experimental results in this thesis show that the conventional, sparse and
enhanced sparse architectures are more area efficient with the conventional routing tool
than the multi-bit aware routing tool. As described in Chapter 5, the multi-bit aware
routing tool can be improved for the multi-bit aware routing architectures and a direction
to improve the tool is introduced in the same chapter.

This thesis also shows that routing results for the configuration memory sharing
architecture are worse than those for the conventional architecture. The efficiency
difference between these two architectures suggested by the routing results, however, can
be from the efficiency difference between the conventional and the multi-bit aware
routing tools. For this reason, we think it is not fair to conclude that the configuration
memory sharing architecture is less efficient than the conventional architecture in this
thesis. We suggest to reexamine the configuration memory sharing architecture after the
multi-bit aware routing tool is improved.

2. Search for more efficient enhanced sparse architectures

The enhanced sparse architectures we investigated show very good area efficiency for
data-path oriented applications. However, the design space we explored in this research is
only a small portion of the total design space for the enhanced sparse architectures. For
future work, we suggest to search for: 1) new patterns to add on the sparse switch pattern;
2) new algorithm to spread added patterns onto routing buses. We deem our work in this
thesis as a step stone to research for new switch patterns in FPGA routing architectures.
From this work, we see a great opportunity to enhance the area efficiency of FPGAs

through routing architecture research.

REFERENCES

(11 J. Rose, A. El Gamal, A. Sangiovanni-Vincentelli, “Architecture of Field-Programmable
Gate Arrays,” in Proceedings of the IEEE, Vol. 81, No. 7, July 1993, pp. 1013-1029.

2] Stratix IV Device Family Overview, July 2008, http://www.altera.com/literature/
lit-stratix-iv.jsp.

3] Virtex-5 Family Overview, Sep., 2008, http://www.xilinx.com/support/documentation/
virtex-5.htm.

41 V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGASs,
Kluwer Academic Publishers, February 1999. ISBN 0-7923-8460-1.

(51 D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Galloway, M.
Hutton, C. Lane, A. Lee, P. Leventis, S.‘Marquardt, C. McClintock, K. Padalia, B. Pedersen, G.
Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens, R. Yuan, R. Cliff and J. Rose, “The
Stratix II Logic and Routing Architecture,” ACM/Sigda International Symposium on Field
Programmable Gate Arrays, 2005, pp. 14-20.

6] R. Tessier, V. Betz, D. Neto, A. Egier and T. Gopalsamy, “Power-efficient RAM Mapping
Algorithms for FPGA Embedded Memory Blocks,” IEEE Trans. on Computer-Aided Design of
Circuits and Systems, Feb. 2007, pp. 278-290.

(71 J. H. Anderson and F. N. Najm, “Low-power programmable routing circuitry for FPGAs,”
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) , 2004, pp. 602-609.
(81 D. Chen and J. Rabaey, “A Reconfigurable Multiprocessor IC for Rapid Prototyping of
Algorithmic-Specific High-Speed DSP Data Paths,” IEEE Journal of Solid-State Circuits,
December 1992, pp. 1895-1904. ‘

91 A. Yeung and J. Rabaey, “A Reconfigurable Data Driven Multi-Processor Architecture for
Rapid Prototyping of High Throughput DSP Algorithms,” Proceedings of the HICCS
Conference, January 1993, pp. 169-178.

[10] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring It All to Software: Raw
Machines,” IEEE Computer, September 1997, pp. 86-93.

(111 T. Miyamori and K. Olukotun, “REMARC: Reconfigurable Multimedia Array
Coprocessor,” Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, April 1998, pp. 389-397.

69

(121 R. Bittner, M. Musgrove, and P. Athanas, “Colt: An Experiment in Wormhole RunTime
Reconfiguration,” High-Speed Computing, Digital Signal Processing, and Filtering Using
Reconfigurable Logic. SPIE, November 1996, pp. 187-194.

[13] A. Alsolaim, J. Starzyk J. Becker, and M. Glesner, “Architecture and Application of a
Dynamically Reconfigurable Hardware Array for Future Mobile Communication Systems,”
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
April 2000, pp. 205-214.

(141 S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, “PipeRench: a
reconfigurable architecture and compiler,” IEEE Computer, April 2000, pp.70-77.

(151 C. Ebeling, D. Cronquist, P. Franklin, and C. Fisher, “RaPiD — A configurable computing
architecture for compute-intensive applications,” International Workshop on Field
Programmable Logic and Applications, 1997, pp. 126—135.

6] E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources,” Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines, April 1996, pp. 157-166.

(171 A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings, “A reconfigurable
arithmetic array for multimedia applications,” Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 1999, pp. 135-143.

(18] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable
Coprocessor,” Proceedings of the IEEE Symposium of Field-Programmable Custom Computing
Machines, April 1997, pp. 24-33.

119] K. Leijten-Nowak and J. van Meerbergen, “An FPGA architecture with enhanced datapath
functionality,” Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 2003, pp. 195-204.

20] D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA Architecture Optimized for
Datapaths,” VLSI Design, 1996, pp. 329-343.

121] D. Cherepacha, “A Field Programmable Gate Array Architecture Optimized for Datapaths,”
M.A.Sc. Thesis, University of Toronto, 1994.

221 A. Ye and J. Rose, “Using Bus-Based Connections to Improve Field-Programmable Gate
Array Density for Implementing Datapath Circuits,” IEEE Transations on Very Large Scale
Integration(VLSI), Vol. 14, No. 5, May 2006, pp. 462—473.

(23] G. G. Lemieux and S. D. Brown, “A detailed router for allocating wire segments in field
programmable gate arrays,” Préceedings of the ACM Physical Design Workshop, April 1993, pp.
215-226.

241 Y. W. Chang, D. Wong, and C. Wong, “Universal Switch modules for FPGA design,” ACM
Transactions on Design Automation of Electronic Systems, Vol. 1, January, 1996, pp. 80-101.
[25] Steven J. E. Wilton, “Architecture and Algorithms for Field Programmable Gate Arrays with
Embedded Memory,” Phd thesis, University of Toronto, 1997. »
[26] Herman Schmit, Vikas Chandra. “FPGA Switch Block Layout and Evaluation,” IEEE/ACM
International Symposium on Field Programmable Gate Arrays, February 2002, pp. 11-18.

271 A. Ye, “Field-Programmable Gate Array Architectures and Algorithms Optimized for
Implementing Datapath Circuits,” Ph.D. Thesis, University of Toronto, Nov. 2004

(28] V. Betz, VPR and T-VPack User’s Manual (Version 4.30), March 27, 2007

291 A. Ye and J. Rose, ;‘Measuring and Utilising the Correlation Between Signal Connectivity
and Signal Positioning for FPGAs Containing Multi-Bit Building Blocks,” IJEECDT, Vol. 153,
No. 3, May 2006, pp. 146-156.

[30] Pico-Java Processor Design Documentation, Sun Microsystems, 1999

311 V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA
Research,” FPL, 1997, pp. 213-222.

1321 C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Placement and Routing Tools for the
Triptych FPGA,” TVLSI, Vol. 3, No. 4, December 1995, pp. 473-482.

1331 V. Betz and J. Rose, “FPGA Routing Architecture: Segmentation and Buffering to Optimize
Speed and Density,” FPGA, 1999, pp. 59-68.

71

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2008

	The effect of multi-bit correlation on the design of routing resources in field programmable gate arrays
	Ping Chen
	Recommended Citation

